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Medicine, European University Cyprus, Nicosia, Cyprus, 3Department of Respiratory Medicine, Royal
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The airway epithelium comprises of different cell types and acts as a physical

barrier preventing pathogens, including inhaled particles and microbes, from

entering the lungs. Goblet cells and submucosal glands produce mucus that

traps pathogens, which are expelled from the respiratory tract by ciliated cells.

Basal cells act as progenitor cells, differentiating into different epithelial cell types,

to maintain homeostasis following injury. Adherens and tight junctions between

cells maintain the epithelial barrier function and regulate the movement of

molecules across it. In this review we discuss how abnormal epithelial

structure and function, caused by chronic injury and abnormal repair, drives

airway disease and specifically asthma and chronic obstructive pulmonary

disease (COPD). In both diseases, inhaled allergens, pollutants and microbes

disrupt junctional complexes and promote cell death, impairing the barrier

function and leading to increased penetration of pathogens and a constant

airway immune response. In asthma, the inflammatory response precipitates the

epithelial injury and drives abnormal basal cell differentiation. This leads to

reduced ciliated cells, goblet cell hyperplasia and increased epithelial

mesenchymal transition, which contribute to impaired mucociliary clearance

and airway remodelling. In COPD, chronic oxidative stress and inflammation

trigger premature epithelial cell senescence, which contributes to loss of

epithelial integrity and airway inflammation and remodelling. Increased

numbers of basal cells showing deregulated differentiation, contributes to

ciliary dysfunction and mucous hyperproduction in COPD airways. Defective

antioxidant, antiviral and damage repair mechanisms, possibly due to genetic or

epigenetic factors, may confer susceptibility to airway epithelial dysfunction in

these diseases. The current evidence suggests that a constant cycle of injury and

abnormal repair of the epithelium drives chronic airway inflammation and

remodelling in asthma and COPD. Mechanistic understanding of injury

susceptibility and damage response may lead to improved therapies for

these diseases.
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1 Introduction

The airway epithelium is a complex system of different cell types

that works in conjunction with the immune system to form an intact

barrier, which prevents foreign particles and pathogens from entering

the submucosal compartment. The whole system works together as

the first-line defence to protect and limit the damage caused by stress

(1, 2). The mucociliary system traps and expels foreign particles from

the respiratory tract. Furthermore, tight junctions and adherens

junctions form cell to cell contacts, and regulate the flow of

molecules across the basement membrane to the underlying sub-

epithelium. However, defects in these intertwined processes and loss

of barrier function can cause airway diseases, including chronic

obstructive pulmonary disease (COPD) and asthma.

Chronic exposure to cigarette smoke, which is the main risk

factor for COPD, as well as repeated infections, cause changes in the

epithelium including loss of ciliated epithelial cells (3–6), increased

goblet cell number (7), shortened cilia and reduced beat frequency

(8, 9). Epithelial injury triggers a chronic immune response that

drives alveolar destruction (emphysema), and airway remodelling

that involves peribronchial fibrosis and possibly increased airway

smooth muscle mass (1–5). Furthermore, the alterations in the cell

type proportions, causes increased mucus production, a

predominant feature of chronic bronchitis associated with

COPD (10).

Severe asthma is a chronic inflammatory disease classified as

heterogenous in relation to clinical phenotype, severity, and the

response of the epithelium to injury. Epithelial injury in severe
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asthma, whether due to allergen, pollution, viral or bacterial insult,

causes several changes in the response and integrity of the

epithelium, leading to immune cell recruitment, inflammation,

epithelial shedding (2, 11, 12). The asthmatic airway epithelial

layer is disrupted as evidenced by the detachment of ciliated

epithelial cells, and loss of cell-cell contacts that leads to reduced

integrity and increased permeability (13–15). This allows for the

release of pro-inflammatory cytokines, such as the alarmins IL-33

and IL-25 (16), and the Th2 cytokines IL-4 and IL-13 (14, 17).

These mediators activate and recruit immune cells, which further

damage the epithelial layer and contribute to patient exacerbations.

Mediators produced by the injured epithelium and the local

immune cells drive airway remodelling, which involves

subepithelial fibrosis due to increased ECM deposition, and

airway smooth muscle thickening caused by smooth muscle cell

hyperplasia and/or hypertrophy (1).

In this review we will demonstrate how the structure and

composition of the epithelium, and the basement membrane, and

their interaction with the innate immune system facilitates

homeostasis and protection of the airway. We will then discuss

how structural and functional changes in the COPD and asthmatic

epithelium further drive disease, exacerbations, and lung function

decline (Table 1). Specifically, epithelial dysfunction in COPD is

largely due to altered cell type composition and reduced

mucociliary clearance in response to cigarette smoke exposure.

On the other hand, in asthma, the reduced integrity and

increased permeability is caused by loss of epithelial cell-cell

contact and cell shedding due to chronic inflammation.
TABLE 1 Comparison of Asthma and COPD risk factors, pathogenesis and airway dysfunction manifestations.

Asthma COPD

Clinical
manifestations

Variable respiratory symptoms; reversible expiratory airflow limitation
associated with airway hyperresponsiveness. Cough and mucus production are
common symptoms of asthma that are correlated with worse outcomes.

Chronic irreversible airflow obstruction, which manifests as
shortness of breath, cough, and sputum production. Chronic
bronchitis is also feature of COPD.

Causes of
epithelial
dysfunction

Reduced integrity and increased permeability due to loss of cell-cell contact,
epithelial shedding caused by chronic inflammation.

Altered cell type composition and reduced mucociliary clearance in
response to cigarette smoke

Epithelial
structure
changes

Increased basal cell number with reduced differentiation and proliferation
capacity, Goblet cell hyperplasia.

Increased basal cell number with reduced differentiation and
regeneration capacity; Squamous cell metaplasia; Goblet cell
hyperplasia.

Abnormal cell
differentiation

Increased EGFR: IL-13 induced inhibition of ciliated cell differentiation and
increased differentiation of goblet cells; Downregulation of ciliated cell markers,
reduced FoxJ1 and increased JAK/STAT and Notch signalling.

Increased EGFR in basal cells in response to cigarette smoke. EGF
associated with increased goblet and squamous cell metaplasia.
Increased goblet cells leading to increased mucus production.

Changes in
Cilia

Dyskinetic cilia, reduced ciliary beat frequency. Loss of cilia, shortened cilia length, reduced cilia beat frequency.

Epithelial cell
response to
injury

Ciliated cell detachment, increased immune cell recruitment, epithelial junction
disassembly. Alarmin release through PRR and DAMP activation inducing Th2
response.

Increased ROS in response to cigarette smoke, Th1 immune cell
recruitment through epithelial alarmin release. Increased neutrophil
and macrophage infiltration.

Oxidative
stress

Increased apoptosis of ciliated epithelial cells due to oxidative stress of
mitochondria.
Reduction in the epithelial barrier integrity and permeability due to cleaving of
tight junction proteins.
Reduced epithelial pore-forming claudins.

Autophagy in response to oxidative stress is reduced causing
premature cell senescence, ROS dependent apoptosis and
necroptosis of ciliated epithelial cells.
Abnormal phosphorylation and redistribution of tight and adherent
junctions.

Inflammatory
response

Release of alarmins IL-25, TSLP and IL-33 from epithelial cells. Recruitment of
Th2 immune cells, eosinophils, mast cells release IL-13, IL-4 and IL-5 inducing
epithelial damage.

Epithelial cell release of pro-inflammatory cytokines CXCL8, G-CSF,
LTB4 and MCP-1. Recruitment of monocytes, macrophages, and
neutrophils. Release of IL-6 and TNF.
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2 Epithelial structure and cell types

The airway epithelium is a continuous sheet of epithelial cells,

comprised of different cell types: predominantly ciliated, goblet,

basal and club cells. These cells form a strong attachment to the

basement membrane and their differing height of nuclei give it a

characteristic pseudostratified appearance (14, 18, 19).

Basal cells are epithelial progenitor cells that are characterized

by the expression of cytokeratins 5 and 13, and Tumour Protein 63

(TP63) that is necessary for their differentiation and formation of

normal epithelium (17, 20). They are relatively undifferentiated and

are anchored to the underlying basement membrane by

hemidesmosomes. Basal cells have a capacity to migrate into

areas of injury and differentiate into other cell types, which

facilitate damage repair (17, 21).

Ciliated epithelial cells are the predominant cell type in the

airway epithelium. They have characteristic projections on the

apical surface (cilia) that provide forward and back-strokes in a

coordinated manner to move mucus, and pathogens trapped within

it, from the lower airways (22). The membrane of each cilium

surrounds an axoneme which has a repeating ‘9 + 2’ structure: nine

microtubule doublets which surround two central microtubules.

These microtubules move relative to one another through force

generated by dynein arms to move cilia in a coordinated manner

(23). Ciliated epithelial cell differentiation occurs in the absence of

Notch signalling. Without Notch suppression, Geminin coiled-coil

containing nuclear protein (GMNC) induces Multiciliate

Differentiation And DNA Synthesis Associated Cell Cycle Protein

(MCIDAS), which then activates Forkhead box protein J1 (FOXJ1)

(24). FOXJ1 is the primary transcriptional regulator of cilia

formation, regulating the docking of basal bodies to the apical

surface, the elongation of cilia and the generation of motile

components (25).

The secretory cells in the epithelium are comprised of goblet

cells and mucus-producing cells on the surface of submucosal

glands. These cells produce mucus comprised of heavily

glycosylated gel-forming mucins, which are highly water

absorptive allowing them to trap and expel foreign pathogens.

MUC5AC and MUC5B are the most expressed mucins, with

MUC5AC predominantly expressed in goblet cells and MUC5B

in submucosal glands (26, 27). Goblet cells facilitate constitutive

mucus secretion while submucosal glands, controlled by autonomic

innervation, can rapidly increase mucus production in response to

stimulation. Notch signalling promotes goblet cell hyperplasia by

supressing TP63 and GMNC and activating Sam-pointed domain

Ets-like factor (SPDEF), a driver of goblet cell differentiation (24).

Club cells are found in the small airways and their gene

expression is closely related to that of basal cells (28). They

provide an immunomodulatory role, secreting club cell secretory

protein (CCSP) which has antiprotease and anti-inflammatory

activity (29, 30). In addition to their host defence and anti-

inflammatory role, they have a progenitor role in the small

airways with the capacity to differentiate into ciliated, secretory or

alveolar cells (31, 32).
Frontiers in Immunology 03
3 The basement membrane and
cell-cell connections

The airway epithelium is a pseudo-stratified layer with clear

apical and basolateral aspects that play a role in intercellular

signalling (14, 15, 18). Epithelial cells sit on a basement

membrane providing support and enabling communication with

the underlying lamina propria. The basement membrane is an

acellular structure formed of a basal lamina on top of the

reticular basement membrane with proteins binding the two. The

basal lamina is formed of collagen IV, laminin and proteoglycans

synthesized by epithelial cells. The reticular basement membrane is

formed of collagen I, III, IV and tenascin which are produced by

fibroblasts in the underlying lamina propria. This functional and

homeostatic complex is formed from tightly interwoven barrier and

junctional complexes anchored to the basement membrane (1, 33).

This binding and anchoring formed through integrin binding and

hemidesmosomes stabilises the basal epithelial cell adhesion to the

basement membrane (1, 33).

Adherens and tight junctions are complexes that regulate the

airway epithelium’s permeability and maintain its barrier function

against foreign antigens that are not cleared by the muco-ciliary

system (Figure 1). The most apical of these complexes are the

Tight Junctions (TJs), formed of multiple protein strands that

maintain close opposition of adjacent cell membranes (1, 33).

Tight junction proteins include the Zona occludin molecules (ZO-

1, ZO-2, ZO-3), occludin, junctional adhesion molecules (JAMs)

and claudins. These proteins maintain barrier function by binding

to actin fibres and binding to each other in the cytoplasm (1, 33).

Further functions of tight junctions include influencing cell

morphology, cell proliferation and differentiation. The

distribution and amount of specific pore-forming and barrier-

forming claudins, play a role in determining the stability of the

barrier (33).

Adherens junctions form another junctional layer, which

consists of the transmembrane protein E-cadherin bound to

cadherin-catenin complexes in the cytoplasm of adjacent cells (15,

18, 34). They play an essential role in cell-cell adhesion,

differentiation, proliferation and maturation of adjacent cells (33,

34). Desmosomes are junction complexes, found near adherens

junctions, which interact with the cell’s intermediate filament

cytoskeleton and maintain cell mechanical integrity and polarity

(1, 15, 35). Finally, the gap junctions enable macromolecules and

metabolite movement between cells and, through connexins, aid in

the co-ordination of the epithelial ciliated cell beat frequency (18).

Despite forming a tight barrier, basement membrane pores are

important for enabling cells to move between the epithelium and

lamina propria and in reverse. In epithelial-mesenchymal transition

(EMT), epithelial cells lose epithelial markers (cytokeratins and E-

cadherin), migrate to the lamina propria and gain mesenchymal

markers (vimentin, N-cadherin, S100A4, MMP-9 and a-smooth

muscle actin). These cells synthesize extracellular matrix (ECM) to

provide a framework for basal cells to infiltrate and differentiate to

replace damaged epithelium.
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4 Exposures to the epithelium,
the acute and chronic
inflammatory response

Apart from its important role as a barrier, the airway epithelium

is also involved in the regulation of the innate immune response.

Airway epithelial cells have pattern-recognition receptors that

recognize inhaled irritants, such as allergens and pathogens,

triggering the release of cytokines, chemokines and alarmins that

regulate dendritic cell, T and B cell function and trigger an acute

inflammatory response. In susceptible individuals, such as patients

with asthma and COPD, prolonged activation of the epithelium by

inhaled irritants leads to a chronic and exaggerated immune

activation. This abnormal response leads to the production of

high levels of cytokines, chemokines, growth factors, proteases

and ROS, which exacerbate tissue injury and inflammation, and

drive abnormal repair and airway remodelling (13, 16, 36, 37).
4.1 Epithelium-immune cell crosstalk

The interaction of immune and epithelial cells is necessary to

maintain tissue homeostasis (1). The immune response is

dependent upon the co-ordinated response and activation of
Frontiers in Immunology 04
pattern recognition receptors (PRRs) and damage-associated

molecular patterns (DAMPs) that cause immune cell activation

and recruitment (1, 2). In the healthy airway, there is an effective

activation and resolution of the immune cell associated repair

mechanisms that are induced by and in response to epithelial

injury (1). The interaction of immune cells and the airway

epithelium means there is a continuous influence of the epithelial

cells on the immune cells and vice versa. As discussed previously,

the airway epithelium is the first line defence against any foreign

particles which are recognised by the PRRs and DAMPs. The main

mechanism of defence activated by the PRRs, and DAMPs are

epithelial alarmin release. Epithelial alarmins including IL-25, IL-

33, TSLP and HMGB and chemokine release including CCL17,

CCL-11 and CCL22, activates and recruits immune cells, both

directly and indirectly (1–3).
5 Airway epithelial dysfunction
in asthma

Asthma is a chronic inflammatory disease, characterized by a

heightened, continued, and chronic immune response. Patients

with asthma typically have a history of variable respiratory

symptoms, with reversible expiratory airflow limitation that may
FIGURE 1

Changes to the intercellular junctions in asthma and COPD. In the asthmatic airway, after exposure to pathogens, inflammatory cytokines and the
influx of inflammatory cells cause an increase in Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 (CEACAM5) expression on the apical
of surface of the cells. These cytokines and inflammatory cells, also cause a loss of vital gap junction, adherens junction and of barrier forming tight
junction proteins. A thickened basement membrane is a feature seen in the asthmatic airway, meaning that epithelial cell attachment to the
membrane is not altered, but the cell-cell contact is reduced. Taken together this induces epithelial shedding and denudation, reduced barrier
integrity and increased permeability in asthma. In the COPD airway, continued cigarette smoke exposure causes a redistribution of adherens
junction proteins, namely E-cadherin and b-catenin, reduced tight junction protein expression through abnormal phosphorylation. Unlike the
asthmatic airway, the basement membrane is fragmented, causing reduced binding of the cells to the basement membrane.
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be associated with airway hyperresponsiveness (38). In two thirds of

cases, it is linked to a history of atopy but can also be associated with

occupational and other exposures (39).

Cough and mucus production are common symptoms of

asthma that are correlated with worse outcomes. Post-mortem

studies have shown mucus plugging to be the primary cause of

death in asthma (40). Mucus hypersecretion is associated with

goblet cell hyperplasia and submucosal gland hypertrophy in the

epithelium (41). Recent studies, using CT and MRI imaging, have

shown an association between increased mucus and features of high

Th2 inflammation, ventilation mismatch and lower FEV1 in

patients with asthma (42–44). There has been a great expansion

in the development of monoclonal antibody treatments for asthma

that target mechanisms including the changes in the epithelium that

contribute to mucus hypersecretion (45).

In asthma, the airway epithelium shows structural and

functional abnormalities, which are possibly a result of chronic

injury and abnormal repair. Epithelial injury, whether due to

allergen, pollution, viral or bacterial insult, leads to several

changes in the response and integrity of the epithelium, which is

accompanied by immune cell recruitment, inflammation, and

epithelial shedding and remodelling. In the normal healthy non-

asthmatic airway this process resolves. However, the asthmatic

airway epithelium shows exaggerated release of cytokines/

chemokines, such as IL-6, CXCL8, and alarmins, including IL-25,

TSLP, IL-33, in response to injury. These mediators activate and

recruit immune cells such as eosinophils, Th2 cells, macrophages

and neutrophils. Macrophages and neutrophils produce proteases

and ROS, whilst eosinophils release cationic proteins, which further

damage the epithelial layer, and contribute to symptom

exacerbations (13, 15, 16, 37, 46, 47). Activated epithelial cells

and innate immune cells also release pro-remodelling factors, such

as epidermal growth factor receptor (EGFR) ligands, and

transforming growth factor (TGF)-b, which trigger goblet cell
Frontiers in Immunology 05
hyperplasia, EMT, fibroblast activation, and airway smooth

muscle cell proliferation and hypertrophy (1, 2).
5.1 Epithelial structural changes in asthma

Asthmatic airways show increased numbers of basal cells with an

impaired proliferation and differentiation capacity, goblet cell

hyperplasia and an imbalance in the production of mucins, with

increased MUC5AC and reduced MUC5B (Figure 2) (15, 17, 18, 22,

48–50). These two mucins have different roles within the airways:

MUC5B functions in normal mucus mucociliary clearance whereas

MUC5AC exacerbates airway hyperresponsiveness and mucus

plugging (51). Endobronchial biopsies from patients with asthma,

imaged with scanning electron microscopy, also show reduced

ciliation and increased areas of squamous epithelium (52).

Functionally, ciliated cells sampled from patients with severe

asthma show dyskinetic movement, slower ciliary beat frequency

and microtubule defects (53). Club cell markers (CCSP) are also

reduced in bronchial alveolar lavage fluid taken from patients with

asthma (54). CCSP has also been shown to increase following allergen

challenge in patients with allergic asthma, suggesting acute leakage

due to club cell damage in the small airway epithelium (55).

Abnormal cell differentiation may contribute to these

abnormalities. EGFR, which is increased in the asthmatic

epithelium, is a driver of abnormal cell differentiation and

epithelial dysfunction (56–58). Furthermore, IL-13, elevated in

allergic asthma, inhibits ciliated cell differentiation and causes

reduced ciliary beat frequency and abnormal distribution of basal

bodies, whilst enhancing goblet cell differentiation (17, 49).

Specifically, IL-13 upregulates SPDEF and MUC5AC expression,

whilst downregulating FOXJ1 and other cilia-related transcription

factors via activation of JAK/STAT and Notch signalling and

changes in histone methylation (59–61).
FIGURE 2

Effect of chronic inflammatory cells and cytokines on barrier function and integrity in asthma. Exposure of the airway to pathogens causes the
release of epithelial cell alarmins such as TSLP, IL-25 and IL-33. The alarmins activate Th2 inflammatory cells that release the IL-4, IL-5 and IL-13
cytokines. These cytokines play a role in driving the symptoms seen in asthma such as plasma cell activation, eosinophil expansion and airway
hyper-responsiveness. On a cellular level, the IL-5 induced eosinophil expansion interacts with the epithelial barrier and causes tight junction (TJ)
disruption through reduction of barrier forming claudins and mast cell degranulation. IL-4 and IL-13 inhibit the expression of TJ and adherens
junction (AJ) genes E-cadherin, occludin and ZO-1. These cytokines also induce goblet cell hyperplasia and defective basal cell repair causes
impaired barrier function and loss of ciliated epithelial cells.
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5.2 Epithelial integrity

In asthma, epithelial defects in the adherens, tight and gap

junctions, as well as altered permeability and integrity, are present

from the nose through to the lower airways (Figure 1). Junctional

complex disruption is thought to occur through hyperphosphorylation

and decreased expression of complex genes and proteins in asthmatic

patients because of deeper penetration and increased immune response

to particles (1, 17, 62). The disrupted and leaky barrier in asthma is

well-documented and a positive feedback loop of IL-4 and IL-13

contributes to this phenotype seen in patients with asthma. Reduced

expression of the barrier forming claudins -1, -3, -4 and -18 is

associated with increased IL-13 production in asthma, from mild-

moderate to severe asthma (14, 15, 33). Reduced ZO-1 and E-cadherin

expression are evident in asthma where they cause denudation and

detachment of ciliated epithelial cells (1, 14, 15, 62).

Ciliated epithelial cell detachment is paired with loss of cell-cell

contacts and reduced integrity (12, 14, 15, 63, 64). This leads to pro-

inflammatory cytokine release and recruitment of immune cells,

which induce apoptosis and further damage the epithelial layer (12,

14, 15, 63, 64). Apoptosis and autophagy occur in the non-

asthmatic airway epithelium and are crucial for airway epithelial

homeostasis (21, 64). These mechanisms regulate the number of

proliferating epithelial cells and remove damaged cells without the

induction of a chronic inflammatory response (21, 64). However, in

asthma there is increased apoptosis of ciliated epithelial cells leading

to epithelial shedding and barrier dysfunction, which increases with

disease severity.

Environmental pathogenic factors, including allergens, air

pollutants and respiratory infections, and the associated immune

response, cause airway epithelial injury (Figure 2). Allergen

proteases, such as Der p1 in house dust mites, induce

inflammation and disrupt the epithelial barrier either directly by

cleaving tight junction proteins, or indirectly by activating protease

activated receptor (PAR)-2 (14, 65, 66). PAR2-dependent signalling

promotes epithelial junction disassembly through ZO-1 and

occludin degradation, and EGFR-dependent redistribution of E-

cadherin (67). Furthermore, ATP released from the injured

epithelium may also promote loss of epithelial integrity through

activation of purinergic receptors (68). EGFR activation by allergens

also promotes EMT in airway epithelial cells (69). Allergens

promote oxidative stress, which triggers epithelial cell death and

inflammation through oxidative damage of DNA and mitochondria

(70–74). Mitochondrial dysfunction has been shown to cause ROS-

mediated disruption of barrier function in intestinal epithelium,

whilst reduced E-cadherin expression and loss of barrier function

are associated with attenuated mitochondrial biogenesis in airway

epithelial cells (75, 76). Viral infections and inhaled pollutants can

also cause epithelial injury by inducing cell death and disruption of

tight junctions (77–80).

The asthmatic airway immune response also leads to loss of

epithelial integrity. Mast cell degranulation, IL-5 and direct contact

with eosinophils, leads to disruption of tight junctions and

increased permeability (17, 37, 81). Furthermore, the T2 cytokines

IL-4 and IL-13 inhibit the expression of the key tight and adherens
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junction genes ZO-1, E-cadherin and occludin, and drive goblet cell

differentiation from basal cells (Figure 2) (13, 82).

Susceptibility to epithelial injury by environmental irritants,

and abnormal repair mechanisms, are key factors in asthma

pathogenesis. House dust mites, extracts from the allergenic

fungus Alternaria Alternata and cigarette smoke were shown to

induce greater barrier dysfunction in air-liquid-interface (ALI)

cultures of asthmatic airway epithelial cells compared to those of

healthy subjects (68, 83, 84). Inadequate antioxidant and antiviral

mechanisms in asthmatic airways may also confer epithelial cells

more susceptibility to oxidative and viral-induced damage (72, 85,

86). Epithelial cells from patients with asthma are also abnormally

slow at repairing injury in in vitromodels. This is possibly caused by

asynchronous mitosis of epithelial cells and is associated with

increased production of TGF-b which drives EMT and ECM

production (87–89).

Taken together, the data suggests that there is a vicious cycle of

epithelial cell injury and immune activation, which in conjunction

with increased susceptibility and abnormal repair mechanisms

promote an abnormal airway epithelium in asthma (13, 16, 37).
5.3 Epithelium-immune cell
crosstalk in asthma

In the asthmatic airway, alarmin and chemokine release

induced cytokine activation is a well-recognised disease driving

mechanism. The release of alarmins primes the Th2 CD4 T-cell

response through maturing dendritic cells (DCs) via CCL17 (42).

DCs in asthma mount an uncontrolled Th2 response and acts to

enhance ILC2, basophil and mast cell functionality (90). The

epithelium response to injury enhances the Th2 release of pro-

inflammatory cytokines such as IL-4 from mast cells and basophils

increasing levels of IgE, IL-5 for the activation and maturation of

eosinophils in the bone marrow and IL-13 that induces hyper-

responsive smooth muscle contraction, goblet cell hyperplasia and

the activation of macrophages (90).

The interaction between the epithelium and immune cells can

influence many different parts of the airway through alarmin

release; in the innate immune system, DCs cause increased

activation of Th2 cells, basophils have increased histamine

degranulation and ILC2 cells release increased pro-inflammatory

cytokines (17). In the epithelial and endothelial cells, a feedback

loop is induced, the epithelium becomes leakier due to cleaved

junctions, smooth muscle cells become hyper-responsive and

fibroblasts release increase CCL5, GM-CSF and CXCL8 (17).
6 Airway epithelial dysfunction
in COPD

COPD is a respiratory disease characterised by chronic

irreversible airflow obstruction, which manifests as shortness of

breath, cough and sputum production. Breathlessness typically

increases over time and is interspersed by periods of worsening
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respiratory symptoms known as exacerbations, which accelerate

lung function decline.

Chronic bronchitis is a clinical phenotype of COPD which

involves “chronic cough and sputum production for three months

a year for two consecutive years” (91). Patients with chronic

bronchitis have poorer quality of life, more frequent exacerbations,

faster lung function decline and increased mortality (54, 91–93).

COPD and chronic bronchitis are characterised by epithelial changes

that contribute to chronic mucus secretion (Figure 3). A reduction in

ciliated cells and an increase in secretory cells lead to more mucus,

which is more difficult to clear and contributes to symptoms, repeated

infections and faster lung function decline.
6.1 Changes to the epithelial
structure in COPD

There is evidence of increased numbers of basal cells in the

airways of patients with COPD, which however show compromised

capacity to regenerate and differentiate (94). EGFR is expressed in

basal cells and can be activated by EGF produced by ciliated cells in

response cigarette smoke and inflammatory mediators (5, 6). EGFR

is increased in smokers and is associated with increased mucous and

squamous metaplasia via Notch signalling (3).

Samples taken at bronchoscopy from people who smoke have

shown a loss of cilia, shorter cilia and ultrastructural defects in the

axoneme (8, 9, 90, 95–97). Gene expression of dynein arms (DNAH5,

DNAH9 and DNAH11) that drive cilia beating, and intraflagellar

transport proteins (IFT43, IFT 57, IFT144 and IFT172), which

determine cilia length and development, have been shown to be

reduced in smokers. Within COPD, similar features of loss of cilia,

shorter cilia and slower cilia are seen when compared to healthy

controls and healthy smokers (8, 98). Although inhaled therapies for

COPD, b2-agonists and muscarinic antagonists, can increase ciliary

movement these effects are blunted by high levels of inflammation

(99, 100).

Goblet cells are increased in smokers and patients with COPD,

which is thought to lead to an increase in baseline mucus production
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(7). Although submucosal gland density does not appear to be

increased in COPD, gland inflammation is increased and may

contribute to increased mucus release in response to infectious and

non-infectious triggers (10). The primary mucins, MUC5AC and

MUC5B are both increased in COPD (101–104). Furthermore, club

cells are reduced in the small airway epithelium of patients with

COPD (105). CCSP is reduced in smokers and patients with COPD

and has been shown to correlate with FEV1 (106, 107).
6.2 Epithelial integrity and permeability

In COPD, there is a known and recognised defect in the

epithelial barrier permeability and integrity in response to

stressors (Figure 1). In epithelial cells from patients with COPD,

reduced expression of occludins, claudins and JAM-1 is seen.

Oxidative stress leads to abnormal phosphorylation of occludin

and redistribution of occludins, ZO-1, E-cadherin and b-catenin
throughout the junction (79). Increased permeability of the

epithelium is seen in response to cigarette smoke and associated

chronic inflammation, with a reduction in staining of ZO-1 (108,

109). Many viruses including rhinovirus also reduce ZO-1, and

further lead to reduced epithelial resistance and increased

permeability in ALI cultures (110), Epithelial cells exposed to

TNFa and IFN-g also show reduced ZO-1 and JAM staining and

attenuated barrier function (111). This process of inflammation-

induced loss of tight and adherens junctions predisposes the

epithelium to further infection and exacerbates the persistent

chronic inflammatory state seen in COPD.

The reticular basement membrane in COPD is thicker than in

healthy controls but as not thick as seen in patients with asthma

(112, 113). However, fragmented reticular basement membrane is

seen in COPD and healthy smokers (114). In COPD, however,

repeated trauma leads to persistent EMT activation through TGF-b
activation and further basement membrane fragmentation (115,

116). EMT markers have been shown be increased in COPD and to

correlate with the severity of airflow obstruction (117, 118).
FIGURE 3

Epithelial changes in COPD. Cigarette smoke, reactive oxygen species, viral infection and acute inflammation leads to loss of ciliated epithelial cells
and squamous metaplasia. Persistent exposures and chronic inflammation lead to basal cell hyperplasia, goblet cell hyperplasia and reduced ciliation.
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6.3 Chronic inflammation in COPD

Chronic inflammation is a key factor in COPD pathogenesis

resulting from repeated insults and oxidative stress, which cause cell

death, senescence and abnormal cell differentiation and function.While

there are many risk factors, cigarette smoke is the most common in

COPD. Cigarette smoke contains reactive oxygen species (ROS) which

can be directly cytotoxic to epithelial cells and trigger an acute

inflammatory response, which is further exacerbated by bacterial and

viral infections. Epithelial cells release pro-inflammatory cytokines

CXCL8, G-CSF, LTB4 and MCP-1 resulting in the recruitment of

monocytes, macrophages and neutrophils which in turn release IL-6

and TNFa (4). The inflammatory response and oxidative stress lead to

necrosis and apoptosis of epithelial cells. In response to this trauma,

cells adjacent to the area de-differentiate to cover the denuded area,

forming a flattened area of squamous epithelium to protect against

future damage (119). In health, if toxic exposure to the epithelium

ceases, basal cells and CD45- stem cells differentiate for form a

pseudostratified epithelium (120, 121). However, in COPD, persistent

exposures and chronic inflammation prevent the formation of

structurally and functionally normal epithelium (Figure 3).

In the COPD epithelium, the chronic inflammatory process

occurs due to ongoing oxidative stress (usually from cigarette

smoke), persistent activation of inflammatory cells through cell

damage and impaired processes to fight infection. Toll-like

receptors on epithelial cells are directly stimulated by cigarette

smoke activating a cascade of inflammatory mediators, further

tissue damage and release of antigenic material (122, 123).

Antigens are also taken up by dendritic cells (which are increased

in the COPD epithelium) and are presented to CD8+ T cells (124,

125). CD8+ T cells are increased in COPD and numbers inversely

correlated with FEV1 (126). These cells are cytotoxic to epithelial

cells and release proteolytic enzymes including matrix

metalloproteases (MMPs) which can drive emphysema, a clinical

feature of COPD. Phagocytes, in particular neutrophils and

macrophages, are altered in COPD. Neutrophils and macrophages

engulf microbes and apoptotic cells. Neutrophils and macrophages

are increased in the epithelium and are associated with chronic

bronchitis, more severe airflow obstruction and faster lung function

decline (127–129). Despite being increased in number, they show

impaired phagocytic ability which predispose to recurrent infection

(130–132). Neutrophils and macrophages also release reactive

oxygen species, pro-inflammatory cytokines, growth factors and

MMPs, which propagate chronic inflammation, emphysema, and

airway remodelling processes, such as EMT, fibroblast activation

and airway smooth muscle proliferation (1) (Figure 3).
6.4 Epithelium-immune cell
crosstalk in COPD

The continued interaction of the immune cells and epithelium

(39, 133) in COPD is facilitated by the proximity of DCs to the

airway epithelial cells. In COPD, DCs have been identified as

upregulating the expression of chemokines CXCL10, CCL-20 and

CCL-10 that cause the activation of T-cells, predominantly a Th1-
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pro inflammatory profile (39, 133). Epithelial alarmin release of IL-

33 has also been identified as being upregulated in COPD; this has

been shown to cause an increase in neutrophil and macrophage

infiltration and activation. This drives a positive feedback loop on

both epithelial cells and immune cell upregulation of IL-6 and

CXCL8 release (39). The up-regulation of HGMB1 on epithelial

cells in COPD stimulates increased IL-1b production and release

from activated macrophages (39, 133).
6.5 The role of oxidative stress in
epithelial dysfunction

ROS, from cigarette smoke or the inflammatory response, drive

cell death, senescence, abnormal cell-cell connections and abnormal

remodelling (134, 135). Epithelial cells have antioxidant

mechanisms to mitigate the ill effects of ROS but these are

impaired in COPD which renders these cells more susceptible to

oxidative damage (72, 136–138). Epithelial cells in COPD, have a

dysregulated redox state which promotes airway inflammation and

remodelling by regulating the activity of ROS-dependent kinases,

phosphatases, transcription factors and epigenetic effectors, and by

drivingTGF- b expression and EGFR activation (139–141).

DNA damage occurs in response to oxidative stress and is

associated with nucleotide base oxidation, and single and double-

strand DNA breaks in COPD (142, 143). In addition to the

increased insults, DNA repair processes are defective in patients

with COPD (143, 144). These along with telomere damage, as a

result of oxidative stress, lead to upregulation of the cell cycle

inhibitor p16INK4 and mammalian target of rapamycin (mTOR)-

mediated signalling to trigger premature senescence in COPD

airway epithelial cells (145–149). Although acute senescence may

play a role in damage repair, prolonged senescence may lead to

impaired epithelial regeneration and damage repair by limiting the

proliferative capacity of progenitor cells. Furthermore, although in

cell cycle arrest, senescent cells remain metabolically active and

secrete a multitude of proteases, cytokines, chemokines and growth

factors, such as TGF-b (148). Therefore, accumulation of senescent

cells may exacerbate lung inflammation and epithelial injury, and

drive emphysema and fibrosis (150–155).

Mitochondria are major sites of oxidative damage in COPD

epithelial cells. Cigarette smoke alters mitochondrial morphology

and respiration in normal bronchial epithelial cells, whilst bronchial

epithelial cells from COPD patients show abnormal mitochondrial

morphology, possibly as a result of prolonged exposure to oxidative

stress (156, 157). Mitochondrial dysfunction leads to increased

production of ROS, which in turn cause further mitochondrial

damage. This creates a vicious cycle of oxidative stress and

mitochondrial dysfunction that drives pathology. Specifically,

mitochondrial ROS promote apoptosis, senescence and

inflammatory mediator release in airway epithelial cells, as well as

impaired cellular function manifesting as reduced mucociliary

clearance (158–161). Mitochondrial dysfunction also triggers

ROS-dependent activation of necroptosis, a lytic form of cell

death, that is accompanied with the release of immunogenic

damage-associated molecular patterns (DAMPs). DAMPs, which
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include mitochondrial molecules such as ATP and cardiolipin,

promote further inflammatory mediator release and result in

increased MUC5AC expression in the airway epithelium (162–164).

Autophagy is a cellular process that is pivotal in the adaptation

to oxidative stress. In this process, damaged molecules and

organelles are engulfed into double-membrane bound vesicles

called autophagosomes and fuse with lysosomes leading to their

degradation. Reduced autophagic activity in COPD lungs, resulting

from prolonged oxidative stress and ageing, may lead to insufficient

removal of damaged cellular components and premature airway

epithelial cell senescence (165–168). Specifically, impaired

autophagic removal of mitochondria (mitophagy) has been

reported in the airway epithelium of COPD patients, where it

leads to accumulation of damaged mitochondria and epithelial

cell senescence through ROS-mediated DNA damage (161, 169–

171). However, other studies show excessive autophagic activity in

COPD, leading to airway epithelial cell apoptosis, necroptosis and

inflammatory mediator release (172–174). Cigarette smoke-induced

autophagy has also been shown to cause degradation of ciliary

proteins, and to promotes MUC5AC expression through activation

of c-Jun N-terminal kinase (JNK) and activating protein (AP)-1

(175, 176). Therefore, dysregulated autophagy leads to the

abnormal adaptation of airway epithelial cells to injury and

contributes to airway remodelling.
6.6 Epigenetic and genetic determinants

Predisposing factors combined with exposures both in early life

and adulthood likely contribute to epithelial pathogenesis seen in

COPD. Gene polymorphisms, and epigenetic changes including

DNA methylation, histone modifications and non-coding RNAs,

may play a role in susceptibility and abnormal repair following

epithelial injury in COPD (152, 177).

DNA methylation at gene promoters, a modification associated

with reduced gene expression, is altered by cigarette smoking in

airway epithelial cells (178–180). In ALI cultures derived from

COPD bronchial epithelial cells, DNA hypomethylation at the

SPDEF gene promoter leads to increased MUC5AC expression

(178). In cigarette smoke extract-exposed COPD airway epithelial

cells, gene promoter hypomethylation triggers increased expression

of the aryl hydrocarbon receptor repressor (AHRR), an inhibitor of

the cytoprotective transcription factor aryl hydrocarbon receptor

(AHR). This leads to inhibition of AHR expression and increases

susceptibility to CS-induced epithelial cell apoptosis and

necroptosis (180). Conversely, reduced expression of the

antioxidant transcription factor nuclear factor E2-related factor 2

(Nrf2) due to DNA hypermethylation in COPD, may increase the

susceptibility of bronchial epithelial cells to oxidative stress-

dependent cell death (181).

Acetylation of lysine residues on histones, which is catalysed by

histone acetyltransferases and removed by histone deacetylases, is

usually associated with open chromatin configuration and active gene

transcription. Histone methylation on lysine and arginine residues,

regulated by histone methyltransferases and demethylases, can

activate or inhibit gene expression depending on the site and
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number of methyl groups added (182). An imbalance between

histone acetylation and deacetylation, favouring acetylation, has

also been observed in COPD lungs and has been associated with

increased inflammatory gene expression (167, 179). Reduced

expression of histone acetyltransferase binding to ORC1 (HBO1) in

COPD leads to downregulation of anti-apoptotic protein Bcl-2,

sensitising airway epithelial cells to oxidative stress-mediated

apoptosis (183). Furthermore, reduced expression of the arginine

methyltransferase coactivator-associated arginine methyltransferase 1

(CARM1) in COPD bronchial epithelial cells is associated with

increased senescence, and impaired club cell regeneration and

epithelial repair, possibly through altered histone methylation of

cell cycle and differentiation genes (184, 185).

miRNAs are small non-coding RNAs that regulate gene

expression through the induction of mRNA degradation and

inhibition of translation. A number of miRNAs have been shown

to be abnormally expressed in COPD airways where they are involved

in airway epithelial inflammation, mucous hypersecretion, EMT and

cellular senescence (152, 186–188).

Some of the gene polymorphisms identified by genome-wide

association studies to be associated with COPD may increase

susceptibility to epithelial injury. A gene variant of FAM13A, a

protein expressed mainly in club cells and alveolar type 2 cells, is

associated increased gene expression and reduced lung function in

COPD. FAM13A is an inhibitor of Wnt signalling, a regulator of

epithelial differentiation, therefore its upregulation may contribute

to impaired club cell differentiation in COPD airways (189).

Furthermore, FAM13A promotes fatty acid oxidation and

mitochondrial respiration by driving the expression of carnitine

palmitoyltransferase 1A (CPT1A), contributing to ROS-mediated

bronchial epithelial apoptosis (190). However, FAM13A inhibits

TGF-b-mediated EMT in airway epithelial cells, indicating it may

also have protective effects against airway remodelling (191).

Variants of the iron-regulatory protein 2 (IRP2) have also been

associated with COPD susceptibility. IRP2 is found in airway

epithelial cells, predominantly at the cilial surface. Increased IRP2

expression in COPD causes mitochondrial dysfunction due to iron

overload, leading to increased airway epithelial cell death,

inflammation and impaired mucociliary clearance (192, 193).
7 Discussion

The epithelium protects the airways against pathogens and

inhaled irritants. It achieves this by acting as a physical barrier

preventing them from entering into the submucosa, by trapping

them in mucous and expelling them through ciliary clearance, and

by orchestrating their clearance by the immune system. In asthma

and COPD, inherent defects in protective and repair mechanisms in

conjunction with repetitive injury, lead to significant structural and

functional abnormalities in the epithelium. Specifically, mucous

overproduction and ciliary dysfunction in COPD leads to defective

clearance and increased entry of pathogens into the airway wall,

triggering an immune response. In asthma, the disruption of tight

junctions and adherens junctions between epithelial cells, epithelial

shedding and deeper penetration of pathogens, again triggers a
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constant feedback of immune cell response. In both diseases, this

leads to a continuous cycle of injury and abnormal repair that drives

chronic airway inflammation and remodelling. Targeting the

mechanisms of damage susceptibility and abnormal repair in the

epithelium may lead to new and more effective therapies for asthma

and COPD. Future work studying the effects of biologic therapies in

asthma on barrier function needs to be explored. Studying how

removing certain key cytokines such as IL-5, IL-4 and alarmins

TSLP can alter the epithelial response to injury and how this could

potentially change the epithelial-immune cell interaction. Studying

key proteins and pathways that are altered in asthma and COPD

epithelial barrier, such as Notch signalling, Wnt signalling, and gap

junctions should be the future direction of studying epithelial

barrier integrity alterations.
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and sputum production are associated with frequent exacerbations and hospitalizations
in COPD subjects. Chest. (2009) 135(4):975–82. doi: 10.1378/chest.08-2062

100. Staudt MR, Buro-Auriemma LJ, Walters MS, Salit J, Vincent T, Shaykhiev R,
et al. Airway basal Stem/Progenitor cells have diminished capacity to regenerate airway
epithelium in chronic obstructive pulmonary disease. Am J Respir Crit Care Med (2014)
190(8):955–8. doi: 10.1164/rccm.201406-1167LE

101. Sisson JH, Papi A, Beckmann JD, Leise KL, Wisecarver J, Brodersen BW, et al.
Smoke and viral infection cause cilia loss detectable by bronchoalveolar lavage cytology
and dynein ELISA. Am J Respir Crit Care Med (1994) 149(1):205–13. doi: 10.1164/
ajrccm.149.1.8111584

102. Auerbach O, Stout AP, Hammond EC, Garfinkel L. Changes in bronchial
epithelium in relation to sex, age, residence, smoking and pneumonia. N Engl J Med
(1962) 267(3):111–9. doi: 10.1056/NEJM196207192670301

103. Lungarella G, Fonzi L, Ermini G. Abnormalities of bronchial cilia in patients
with chronic bronchitis. Lung. (1983) 161(1):147–56. doi: 10.1007/BF02713856

104. Verra F, Escudier E, Lebargy F, Bernaudin JF, de Crémoux H, Bignon J. Ciliary
abnormalities in bronchial epithelium of smokers, ex-smokers, and nonsmokers. Am J
Respir Crit Care Med (1995) 151(3_pt_1):630–4. doi: 10.1164/ajrccm/151.3_Pt_1.630

105. Stanley PJ, Wilson R, Greenstone MA, MacWilliam L, Cole PJ. Effect of
cigarette smoking on nasal mucociliary clearance and ciliary beat frequency. Thorax.
(1986) 41(7):519–23. doi: 10.1136/thx.41.7.519

106. Allen-Gipson DS, Romberger DJ, Forget MA, May KL, Sisson JH, Wyatt TA.
IL-8 inhibits isoproterenol-stimulated ciliary beat frequency in bovine bronchial
epithelial cells. J Aerosol Med (2004) 17(2):107–15. doi: 10.1089/0894268041457138
Frontiers in Immunology 12
107. Evans CM, Koo JS. Airway mucus: the good, the bad, the sticky. Pharmacol
Ther (2009) 121(3):332–48. doi: 10.1016/j.pharmthera.2008.11.001

108. Rusznak C, Mills PR, Devalia JL, Sapsford RJ, Davies RJ, Lozewicz S. Effect of
cigarette smoke on the permeability and IL-1 b and sICAM-1 release from cultured
human bronchial epithelial cells of never-smokers, smokers, and patients with chronic
obstructive pulmonary disease. Am J Respir Cell Mol Biol (2000) 23(4):530–6. doi:
10.1165/ajrcmb.23.4.3959

109. Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci
(2017) 131(13):1541–58. doi: 10.1042/CS20160487

110. Hulbert WC, Walker DC, Jackson A, Hogg JC. Airway permeability to
horseradish peroxidase in Guinea pigs: the repair phase after injury by cigarette
smoke. Am Rev Respir Dis (1981) 123(3):320–6. doi: 10.1164/arrd.1981.123.3.320

111. Sajjan U,Wang Q, Zhao Y, Gruenert DC, Hershenson MB. Rhinovirus disrupts
the barrier function of polarized airway epithelial cells. Am J Respir Crit Care Med
(2008) 178(12):1271–81. doi: 10.1164/rccm.200801-136OC

112. Innes AL, Woodruff PG, Ferrando RE, Donnelly S, Dolganov GM, Lazarus SC,
et al. Epithelial mucin stores are increased in the Large airways of smokers with airflow
obstruction. Chest. (2006) 130(4):1102–8. doi: 10.1378/chest.130.4.1102

113. Caramori G, Di Gregorio C, Carlstedt I, Casolari P, Guzzinati I, Adcock IM, et al.
Mucin expression in peripheral airways of patients with chronic obstructive pulmonary
disease. Histopathology. (2004) 45(5):477–84. doi: 10.1111/j.1365-2559.2004.01952.x

114. Thornton DJ, Rousseau K, McGuckin MA. Structure and function of the
polymeric mucins in airways mucus. Annu Rev Physiol (2008) 70:459–86. doi: 10.1146/
annurev.physiol.70.113006.100702

115. Wickström C, Davies JR, Eriksen GV, Veerman ECI, Carlstedt I. MUC5B is a
major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and
endocervix: identification of glycoforms and c-terminal cleavage. Biochem J (1998) 334
(3):685–93. doi: 10.1042/bj3340685

116. Gamez AS, Gras D, Petit A, Knabe L, Molinari N, Vachier I, et al.
Supplementing defect in club cell secretory protein attenuates airway inflammation
in COPD. Chest. (2015) 147(6):1467–76. doi: 10.1378/chest.14-1174

117. Lumsden AB, McLean A, Lamb D. Goblet and Clara cells of human distal
airways: evidence for smoking induced changes in their numbers. Thorax. (1984) 39
(11):844–9. doi: 10.1136/thx.39.11.844

118. Park HY, Churg A, Wright JL, Li Y, Tam S, Man SFP, et al. Club cell protein 16
and disease progression in chronic obstructive pulmonary disease. Am J Respir Crit
Care Med (2013) 188(12):1413–9. doi: 10.1164/rccm.201305-0892OC

119. Herr C, Beisswenger C, Hess C, Kandler K, Suttorp N, Welte T, et al.
Suppression of pulmonary innate host defence in smokers. Thorax. (2009) 64
(2):144–9. doi: 10.1136/thx.2008.102681

120. Ibrahim HR, Aoki T, Pellegrini A. Strategies for new antimicrobial proteins and
peptides: lysozyme and aprotinin as model molecules. Curr Pharm Des (2002) 8
(9):671–93. doi: 10.2174/1381612023395349

121. Ellison RT, Giehl TJ. Killing of gram-negative bacteria by lactoferrin and
lysozyme. J Clin Invest. (1991) 88(4):1080–91. doi: 10.1172/JCI115407

122. Hogg JC, TimensW. The pathology of chronic obstructive pulmonary disease.Annu
Rev Pathol Mech Dis (2009) 4(1):435–59. doi: 10.1146/annurev.pathol.4.110807.092145

123. Baraldo S, Turato G, Badin C, Bazzan E, Beghé B, Zuin R, et al. Neutrophilic
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