
PHYSICAL REVIEW B 104, L161106 (2021)
Letter

Dislocation non-Hermitian skin effect

Frank Schindler and Abhinav Prem
Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA

(Received 7 June 2021; revised 27 August 2021; accepted 28 September 2021; published 8 October 2021)

We demonstrate that crystal defects can act as a probe of intrinsic non-Hermitian topology. In particular, in
point-gapped systems with periodic boundary conditions, a pair of dislocations may induce a non-Hermitian skin
effect, where an extensive number of Hamiltonian eigenstates localize at only one of the two dislocations. An
example of such a phase are two-dimensional systems exhibiting weak non-Hermitian topology, which are adia-
batically related to a decoupled stack of Hatano-Nelson chains. Moreover, we show that strong two-dimensional
point-gap topology may also result in a dislocation response, even when there is no skin effect present with open
boundary conditions. For both cases, we directly relate their bulk topology to a stable dislocation non-Hermitian
skin effect. Finally, and in stark contrast to the Hermitian case, we find that gapless non-Hermitian systems
hosting bulk exceptional points also give rise to a well-localized dislocation response.
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Introduction. The tenfold way [1–3] enumerates all pos-
sible d-dimensional “strong” topological phases protected
by the ten Altland-Zirnbauer symmetry classes [4]. Strong
phases are characterized by a quantized topological invari-
ant and protected gapless surface states which are stable
against local symmetry-preserving perturbations and disorder
[5–7]. Besides strong phases, there exist “weak” topologi-
cal indices [8–11] which derive from invariants defined on
submanifolds of the Brillouin zone (BZ) and are sensitive
to disorder since they require lattice translation symmetry.
These phases, which can be adiabatically connected to stacks
of lower-dimensional topological phases, nevertheless display
robust topological features [12–14], including gapless edge
modes along symmetry-preserving boundaries. Strikingly, lat-
tice dislocations host symmetry-protected gapless states as a
consequence of weak indices [15–18].

Recently, interest has surged in non-Hermitian (nH)
topological phases [19,20], motivated by their realization
in photonic systems [21–29] and open quantum systems
[30–32]. The complex-valued spectra of nH systems permit
both line and point gaps: The former separates the spectrum
into two disconnected regions while the latter constitutes a
region centered around some reference energy E that contains
no eigenstates. Since only point-gapped systems may not be
continuously deformable to Hermitian systems without clos-
ing the gap [33,34], point-gap topology is intrinsically nH
and has a richer classification than its Hermitian counterpart
[34,35]. nH topological bands can exhibit distinctive phenom-
ena, including strong sensitivity to boundary conditions via
the nH skin effect [36–50], and topologically stable spectral
degeneracies at generic points in the BZ, known as excep-
tional points (EPs) where eigenstates coalesce [51–63]. nH
phenomena have been experimentally observed in a variety of
platforms [64–74].

While topological phases of nH crystal defect Hamilto-
nians have been classified [75], the response of topological
nH band structures to crystal defects—which themselves may

induce gap closings and serve as probes for distinguishing dis-
tinct Hermitian topological phases [15–18,76–78]—remains
largely unexplored (see, however, Refs. [79,80]). Here, we
show that lattice dislocations directly probe intrinsic point-
gap nH topology via a dislocation non-Hermitian skin effect
(DNHSE) in the presence of periodic boundary conditions
in all directions: Introducing a pair of dislocations results
in the accumulation of O(L) eigenmodes localized at one
(both) of the dislocations for nonreciprocal (reciprocal) nH
systems. We study systems with weak and strong nH topology
in two dimensions (2D) and identify bulk invariants predicting
the DNHSE. In stark contrast to Hermitian systems, we find
that gapless nH systems with bulk EPs can exhibit a robust
DNHSE. Hence, lattice dislocations provide crisp spectro-
scopic signatures of intrinsically nH bulk topology.

DNHSE from weak topology. Consider the 1 × 1 Bloch
Hamiltonian

H (k) = treikx + tl e
−ikx + tueiky + td e−iky , (1)

with tr = t∗
l , tu = t∗

d its Hermitian limit. This model is charac-
terized by weak winding number topological invariants:

w j (E ) =
∫

BZ

d2k
(2π )2i

Tr

{
[H (k) − E ]−1 ∂

∂k j
[H (k) − E ]

}
,

(2)

where BZ = [0, 2π ]×2, and E is a reference energy. The
pair w(E ) = [wx(E ),wy(E )] ∈ Z×2 is quantized for a point
gap at E , and indicates weak nH topology: A system with
nonzero w is adiabatically connected to a disconnected set of
1D Hatano-Nelson chains [81–83], stacked perpendicular to
w(E ). Importantly, systems with a line gap connecting to E
necessarily exhibit w(E ) = 0, implying that a nonzero w(E )
indicates intrinsically nH point-gap topology.

Let us discuss the case of decoupled chains along the x
direction (tu = td = 0). Adding hoppings along the y direction
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(a) (b)

FIG. 1. Correspondence of weak and dislocation non-Hermitian
skin effects. (a) A 2D system with nontrivial weak winding number
can be adiabatically related to a decoupled stack of Hatano-Nelson
chains. These exhibit a non-Hermitian skin effect in the presence of
open boundary conditions. (b) With periodic boundary conditions
(PBC), the same system gives rise to a dislocation non-Hermitian
skin effect when a pair of dislocations is introduced into the lattice.
The skin effect persists even when couplings along the stacking
direction are turned on.

will not affect our results as long as the point gap remains
open. For |tr | > |tl |, we find a point gap at E = 0 and w(0) =
(1, 0). Since a nonzero winding number corresponds to a nH
skin effect [44,45], extensively many eigenstates will accumu-
late on the right boundary of the sample in an open geometry
[see Fig. 1(a)]. We next study the effect of introducing (edge)
dislocations into the 2D bulk. These 0D crystal defects are
characterized by a Burgers vector B: Encircling a dislocation
counterclockwise, B equals the end point displacement result-
ing from sweeping out the same trajectory on a pristine lattice
[84]. In order to preserve PBC, the Burgers vectors of all
dislocations in the system must sum to zero: This is essential,
because open boundary conditions (OBC) induce a conven-
tional skin effect. Numerically, a single pair of dislocations
with Burgers vector B = ŷ is constructed by removing a line
of unit cells at constant y from the crystalline lattice (hereafter
called the defect line) and reintroducing hoppings between
sites on either side. These hoppings can be such that the defect
line becomes locally indistinguishable from the pristine lattice
except at the dislocations. For the choice tu = td = 0, a pair of
B = ŷ dislocations essentially implements OBC for one chain
at a fixed y coordinate, without affecting any remaining chains
of the stack [see Fig. 1(b)]. That is, the effective Hamiltonian
governing the dislocation response is the 1D Hatano Nelson
chain,

h(kx ) = treikx + tl e
−ikx , (3)

with OBC. Correspondingly, there is a 1D skin effect, and
most eigenstates accumulate at a dislocation (for |tr | > |tl |,
this is the dislocation at the left end of the defect line). Con-
comitantly, the energy spectrum of the full system—which
previously encircled the point gap at E = 0, see Fig. 2(a)—
undergoes a partial spectral collapse onto the real line, shown
in Fig. 2(b) [44,45]. The response at only one of the two dislo-
cations [Fig. 2(c)] characterizes the intrinsically nH topology.

DNHSE from strong topology. We next investigate the
dislocation response of point-gapped strong nH topological

(a)

(c)

(b)

FIG. 2. Tight-binding model exhibiting weak non-Hermitian
topology and a dislocation non-Hermitian skin effect. (a) PBC spec-
trum of the Bloch Hamiltonian in Eq. (1) for the parameter choice
tr = 3/2, tl = 1/2, tu = 1/2, td = 0. (b) PBC spectrum on a square
geometry of 60 × 60 sites in the presence of a pair of dislocations
separated by 30 sites. States are colored by their weight in the
dislocation region A [indicated in panel (c)]. We observe a partial
spectral collapse onto the real line, driven by dislocation-localized
states. (c) Local density of states. The accumulation at only one of
the two dislocations signals the non-Hermitian skin effect.

phases. Consulting the classification of nH insulators in the
38 Bernard-LeClair classes [34], most symmetry classes in
2D do not have intrinsic point-gap topology [44]. One excep-
tion is symmetry class AII†, characterized by the presence of
reciprocity: T H (k)TT † = H (−k) holds for a unitary operator
T [T T ∗ = −1] and Bloch Hamiltonian H (k). Point gaps in
this symmetry class have a Z2 classification. A Hamiltonian
realizing the nontrivial phase is [44]

H (k) = tx sin kxσx + ty sin kyσy + iγ (cos kx + cos ky)σ0,

(4)
where σi, i = 0, x, y, z, are the Pauli matrices, tx and ty are
hopping amplitudes, and γ characterizes the strength of non-
Hermiticity. H (k) is reciprocal for T = iσy. For nonzero γ ,
this model exhibits two point gaps situated at the complex
energies E± = ±iγ [see Fig. 3(a)]. Either can be used to
evaluate the strong Z2 topological invariant [34]

(−1)ν(E ) = vx(E , 0)vx(E , π ). (5)

Here, we have defined the ky-resolved Z2 winding number
[44] in the x direction as

vx(E , ky) = sgn

{
Pf[Q(π, ky)]

Pf[Q(0, ky)]

× exp

[
−1

2

∫ kx=π

kx=0
Tr

[
Q(k)−1 ∂

∂kx
Q(k)

]}
, (6)
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FIG. 3. Tight-binding model exhibiting strong non-Hermitian
topology and a dislocation non-Hermitian skin effect. (a) Periodic
boundary condition (PBC) spectrum of the Bloch Hamiltonian in
Eq. (4) for the parameter choice tx = ty = γ = 1. (b) PBC spectrum
on a square geometry of 60 × 60 sites in the presence of a pair of dis-
locations separated by 30 sites. States are colored by their weight in
the dislocation region A = Al ∪ Ar [see panel (c)]. Importantly, only
the ky = π point gap [indicated in red in panel (a)] participates in
the response to dislocations with Burgers vectors B = ±ŷ. (c) Local
density of states. The accumulation at both of the two dislocations
signals the non-Hermitian Z2 skin effect.

where Q(k) = [H (k) − E ]T , and Pf(M ) is the Pfaffian of
the antisymmetric matrix M. In 1D, a nontrivial Z2 winding
number indicates the presence of a Z2 skin effect protected
by reciprocity [44]. For a 2D system in symmetry class AII†

to exhibit strong point-gap topology, vx(E , 0) = −vx(E , π )
must hold. In particular, for H (k) in Eq. (4), we find ν(E+) =
ν(E−) = 1, implying that this model is topological with re-
spect to either point gap.

For Hermitian systems, dislocations with Burgers vector
B probe the topology of BZ submanifolds satisfying B · k
mod 2π = π . For instance, dislocations bind gapless states
in 2D topological insulators only when the 1D BZ line sat-
isfying B · k mod 2π = π carries a nonzero time-reversal
polarization [76,85]. Moreover, edge or screw dislocations
in 3D insulators bind gapless helical modes iff the 2D BZ
plane satisfying B · k mod 2π = π realizes a 2D topological
insulator [15]. The correspondence between the topology of
BZ submanifolds and dislocation responses was derived in
Refs. [15–17]. In the Supplemental Material [86], we show
that it also applies to nH insulators. For example, for the
weak-topological nH system in Eq. (1) exhibiting a weak
winding number wx = 1 for |tr | > |tl |, we demonstrated a
B = ±ŷ DNHSE, which can be attributed to the nontrivial
winding number of the 1D BZ line satisfying ky = π [as
modeled by the 1D Hamiltonian in Eq. (3)]. Interestingly, the

strong-topological system in Eq. (4) exhibits

vx(E+, 0) = −1, vx(E+, π ) = +1,

vx(E−, 0) = +1, vx(E−, π ) = −1.
(7)

This implies that the ky = π line has trivial (nontrivial) Z2

winding with respect to the point gap centered at E+ (E−).
Since dislocations with Burgers vector B = ±ŷ probe the ky =
π line, the point gap at E−, but not that at E+, contributes a Z2

DNHSE protected by reciprocity. Indeed, upon introducing a
pair of B = ±ŷ dislocations into the crystalline lattice, only
the point gap at E− undergoes a spectral deformation, while
the point gap at E+ remains essentially unaffected [Fig. 3(b)].
Moreover, extensively many eigenstates accumulate at both
dislocations in Fig. 3(c), as expected from reciprocity. Note
that the model in Eq. (4)—unlike the system in Eq. (1)—
does not exhibit a conventional skin effect with OBC in two
directions [44]. This can be understood intuitively by noting
that—in contrast to the Hatano-Nelson chain—there is no
anomalous charge accumulation in OBC, as edge modes can
circulate around the closed 1D boundary of the 2D sample
[44,48,87,88].

We emphasize that the nH dislocation response is distinct
from that of Hermitian insulators with strong topology: In that
case, B = ±ŷ dislocations only carry bound states if the band
inversion occurs within the ky = π line. On the other hand, for
the system in Eq. (4), both ky = 0, π lines carry nontrivial Z2

winding numbers but with respect to different point gaps. Since
the DNHSE is a property of the full complex band structure,
it is sensitive to both point gaps. To predict it in general nH
systems, we must therefore examine the topology of all point
gaps of the system.

Dislocation response in gapless systems. We study the
dislocation response of systems with EPs through:

H (k) =
∑
j=x,y

(t j sin k jσ j − t cos k jσz ) + iδσx + mσz (8)

with anisotropic non-Hermiticity δ and tx, ty, m, t, δ ∈ R
(we set tx = ty = 1). This model, which is point gapped
for δ ∈ (−|m − 2t |, |m + 2t |), is an example of a nH
Chern insulator [89,90]. Since Eq. (8) respects generalized
inversion [σxH (k)σx = −H†(−k)] and parity-particle-hole
[σyH (k)σy = H (−k)] symmetries, any band crossings neces-
sarily occur at E = 0 [91]. We fix m = 2t and δ ∈ [−2, 2]
such that for δ = 0, the point gap closes and a Dirac cone
develops at k = 0, while for δ �= 0, there exists a pair of
topologically stable EPs at ±kEP = (0,±�/2) with � =
cos−1[ 1

2 (2 − δ2)] [see Fig. 4(a)], and the spectrum remains
gapped elsewhere.

These EPs are characterized by a winding number topolog-
ical invariant ( j �= j′) [59]:

w j (E , k j′ ) =
∫

k j∈BZ

dk j

2π i
Tr[H (k) − E ]−1∂k j [H (k) − E ],

(9)

which probes whether the effective 1D Hamiltonian (gapped
away from the EPs at E = 0) with fixed k j′ winds along the
j cycle and is quantized for a point gap [92] at E . For the
Hamiltonian Eq. (8), wy(E , kx ) vanishes everywhere while
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FIG. 4. Tight-binding model exhibiting stable exceptional points (EPs) and a dislocation non-Hermitian skin effect. (a) EPs (red dots) are
located along kx = 0 for any δ �= 0. The winding number at ky = π is 1 (0) for the point gap at E = E∗ (E = 0) and vice versa for ky = 0.
(b) PBC spectrum for the Hamiltonian in Eq. (8) for the parameter choice tx = ty = t = 1, m = 2, δ = −1.2, with orange dots denoting ±E∗.
(c) PBC spectrum on a square geometry of 60 × 60 sites in the presence of a pair of dislocations separated by 30 sites. States are colored by
their weight in the dislocation region A [see panel (d)]. Importantly, only the ky = π point gaps [indicated in red in panel (b)] participate in the
response to a dislocation with Burgers vector B = ŷ. (d) Local density of states. The accumulation at only one of the dislocations signals the
non-Hermitian skin effect.

wx(E , ky) displays nontrivial behavior—since the EPs at E =
0 signal topological phase transitions in the BZ, wx(0, ky)
necessarily jumps whenever ky crosses an EP:

wx(0, ky) =
{

1, ky ∈ (−�/2,�/2)
0, ky ∈ (−π,−�/2) ∪ (�/2, π ). (10)

Consistent with this, as a function of ky the eigenvalues of
H (k) either trace out a single circle around E = 0 or two
circles around ±E∗ �= 0 in the complex plane, with transitions
at the EPs [see Fig. 4(b)].

Consider a pair of dislocations with Burgers vector B =
±ŷ, sensitive to the topology of the 1D BZ submanifold
specified by ky = π . While the trivial wx(0, π ) for any δ

suggests the absence of a DNHSE, we identify a nontrivial
winding of the ky = π line with respect to the point gaps at
±E∗: wx(±E∗, π ) = 1. The ky = π line displays a nontrivial
(trivial) Z winding with respect to the point gap at ±E∗ (0)
and so we expect that only the point gaps at ±E∗ contribute
a DNHSE for dislocations with B = ±ŷ. This prediction is
vindicated in Fig. 4(c): Only eigenstates in the point gaps at
ky = π and ±E∗ = ±3 become defect localized. Eigenstates
accumulate at only one dislocation [Fig. 4(e)] [for δ < 0 (>
0), the skin effect is present at the left (right) dislocation].
No skin effect appears for a pair of B = ±x̂ dislocations,
consistent with a trivial wy(E , kx ).

To verify the topological origin of the DNHSE, we study
the total spectral weight near the dislocation core as a function

of the distance between ky = π and the EPs at ky = ±�/2.
As shown in the Supplemental Material [92], the spectral
weight is largely independent of this distance when the EPs
are well separated, supporting the fact that only the region
around the ky = π line contributes to the DNHSE. Finally, we
test the stability of the DNHSE by turning on a random nH
perturbation (see Supplemental Material [92]). Since EPs are
generically stable [59], wx(Ẽ , π ) = 1 around some point gap
Ẽ �= 0 and the DNHSE persists even for an O(1) perturbation.
(We note that, while the conventional skin effect may exist in
gapless nH systems [50], arguments for its topological origin
do not generalize to the DNHSE.)

Conclusion. We have shown that an intrinsically nH
DNHSE is present as long as the BZ line satisfying B · k
mod 2π = π has a nontrivial (Z or Z2) winding around at
least one point gap of a nH system. Crucially, for the EP
system, the absence of a bulk gap precludes the usual argu-
ments predicting boundary or defect modes in both Hermitian
and nH systems. Nonetheless, we find that dislocations in nH
systems display the DNHSE even in the presence of EPs,
i.e., O(L) skin modes remain bound to the dislocation core.
Our work motivates further study of the topological origin of
the dislocation response of EPs and of the interplay between
multiple point gaps.
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[27] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L.
Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys.
10, 394 (2014).

[28] Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C.-K. Duan, X. Rong,
and J. Du, Science 364, 878 (2019).

[29] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Nat. Phys.
14, 11 (2018).

[30] M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, Nat.
Phys. 15, 1232 (2019).

[31] F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori,
Phys. Rev. A 100, 062131 (2019).

[32] B. Jaramillo Ávila, C. Ventura-Velázquez, R. d. J. León-
Montiel, Y. N. Joglekar, and B. M. Rodríguez-Lara, Sci. Rep.
10, 1761 (2020).

[33] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa,
and M. Ueda, Phys. Rev. X 8, 031079 (2018).

[34] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Phys. Rev. X
9, 041015 (2019).

[35] H. Zhou and J. Y. Lee, Phys. Rev. B 99, 235112 (2019).
[36] T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
[37] V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa

Torres, Phys. Rev. B 97, 121401(R) (2018).
[38] S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
[39] S. Longhi, Phys. Rev. Research 1, 023013 (2019).
[40] L. Jin and Z. Song, Phys. Rev. B 99, 081103(R) (2019).
[41] F. Song, S. Yao, and Z. Wang, Phys. Rev. Lett. 123, 170401

(2019).

[42] C. H. Lee and R. Thomale, Phys. Rev. B 99, 201103(R)
(2019).

[43] L. Herviou, J. H. Bardarson, and N. Regnault, Phys. Rev. A 99,
052118 (2019).

[44] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Phys. Rev.
Lett. 124, 086801 (2020).

[45] K. Zhang, Z. Yang, and C. Fang, Phys. Rev. Lett. 125, 126402
(2020).

[46] T. Yoshida, T. Mizoguchi, and Y. Hatsugai, Phys. Rev. Research
2, 022062(R) (2020).

[47] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Phys. Rev. Lett.
124, 056802 (2020).

[48] K. Kawabata, M. Sato, and K. Shiozaki, Phys. Rev. B 102,
205118 (2020).

[49] P. M. Vecsei, M. M. Denner, T. Neupert, and F. Schindler, Phys.
Rev. B 103, L201114 (2021).

[50] K. Zhang, Z. Yang, and C. Fang, arXiv:2102.05059.
[51] M. V. Berry, Czech. J. Phys. 54, 1039 (2004).
[52] W. D. Heiss, J. Phys. A: Math. Theor. 45, 444016 (2012).
[53] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori,

Phys. Rev. Lett. 118, 040401 (2017).
[54] Y. Xu, S.-T. Wang, and L.-M. Duan, Phys. Rev. Lett. 118,

045701 (2017).
[55] H. Shen, B. Zhen, and L. Fu, Phys. Rev. Lett. 120, 146402

(2018).
[56] J. Carlström and E. J. Bergholtz, Phys. Rev. A 98, 042114

(2018).
[57] K. Moors, A. A. Zyuzin, A. Y. Zyuzin, R. P. Tiwari, and T. L.

Schmidt, Phys. Rev. B 99, 041116(R) (2019).
[58] Z. Yang and J. Hu, Phys. Rev. B 99, 081102(R) (2019).
[59] K. Kawabata, T. Bessho, and M. Sato, Phys. Rev. Lett. 123,

066405 (2019).
[60] S. Lin, L. Jin, and Z. Song, Phys. Rev. B 99, 165148

(2019).
[61] H. Xue, Q. Wang, B. Zhang, and Y. D. Chong, Phys. Rev. Lett.

124, 236403 (2020).
[62] M. M. Denner, A. Skurativska, F. Schindler, M. H. Fischer, R.

Thomale, T. Bzdušek, and T. Neupert, Nat. Commun. 12, 5681
(2021).

[63] Z. Yang, A. P. Schnyder, J. Hu, and C.-K. Chiu, Phys. Rev. Lett.
126, 086401 (2021).

[64] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu,
J. D. Joannopoulos, M. Soljačić, and B. Zhen, Science 359,
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M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši,
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