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Exact quantum scars in the chiral nonlinear Luttinger liquid
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While the chiral linear Luttinger liquid is integrable via bosonization, its nonlinear counterpart does not admit
for an analytic solution. In this work, we find a subextensive number of exact eigenstates for a large family of
density-density interaction terms. These states are embedded in a continuum of strongly correlated excited states.
The real-space entanglement entropy of some exact states scales logarithmically with system size while that of
others has volume-law scaling. We introduce momentum-space entanglement as an unambiguous differentiator
between these exact states and the remaining excited states. With regard to momentum space, the exact states
behave as bona fide quantum many-body scars: they exhibit identically zero momentum-space entanglement,
while typical eigenstates behave thermally. We corroborate this finding by a level statistics analysis. Furthermore,
we detail the general formalism for systematically finding all interaction terms and associated exact states, and
present a number of infinite exact state sequences extending to arbitrarily high energies. Unlike many previous
examples of quantum many-body scars, the exact states uncovered here do not lie at equidistant energies and do
not follow from a special operator algebra. Instead, they are uniquely enabled by the interplay of Fermi statistics
and chirality.
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I. INTRODUCTION

A core tenet of statistical physics is that any isolated
many-body system that is sufficiently complex eventually
reaches thermodynamic equilibrium. In quantum physics, the
time evolution of Hamiltonian eigenstates is trivial in that it
merely consists in a phase factor. This assumption gives rise
to the eigenstate thermalization hypothesis (ETH): in the ther-
modynamic limit, generic eigenstates should become locally
indistinguishable from thermal density matrices [1–8]. How-
ever, the notion of what constitutes a “sufficiently complex”
many-body system is subtle. For instance, some integrable
classical and quantum many-body systems, which are char-
acterized by an extensive number of conserved quantities, fail
to thermalize. Moreover, thermalization may be inhibited even
in more realistic and less fine-tuned systems when strong dis-
order is present, as exemplified by Anderson localization [9].
This concept can be generalized to strongly correlated many-
body systems, giving rise to many-body localized (MBL)
phases [10–17], whose fate in the thermodynamic limit is still
under investigation [18–21]. These are similar to integrable
models in that they host an extensive number of approximately
conserved quantities, but do not require fine tuning.

Recently, the dichotomy between thermalizing many-body
systems satisfying the ETH and those with an extensive
number of exact or approximate conserved quantities has
been revised by the discovery of quantum many-body scars
(QMBS) [22–73], see also the reviews Refs. [74–76]. These
form a subextensive set of nonthermal eigenstates of a

Hamiltonian without conservation laws, or alternatively, of
a Hamiltonian restricted to a Hilbert space subsector that
resolves all existing conservation laws. In several cases, they
are exact eigenstates, i.e., their expression can be derived
analytically, whereas the vast majority of eigenstates—in the
thermodynamic limit—can only be obtained by the practi-
cally impossible diagonalization of a Hamiltonian matrix that
is exponentially large in the system size. Exact eigenstate
QMBS form an integrable subspace that is embedded in a
continuum of eigenstates which otherwise satisfy the ETH.
Previous mechanisms for obtaining QMBS involve spectrum-
generating algebras [24,41,43,45,77,78], or embedding exact
subspaces in thermalizing ensembles to construct bespoke
QMBS Hamiltonians [34,44,79,80].

Here, we employ a novel method of constructing QMBS
that is based on tuning a generically nonintegrable sys-
tem between two distinct integrable limits [71]. Specifically,
we study the chiral nonlinear Luttinger liquid (CNLLL)
[71,81–90], a model of interacting fermions in one spatial
dimension with nonlinear, yet uni-directional, dispersion. This
system has two celebrated integrable limits: (1) a free fermion
limit where the interaction is turned off and (2) a free boson
limit where the dispersion is linearized. Between these two
limits, we find a rich structure of exact eigenstates that sur-
vive away from full integrability. This structure comes about
due to a destructive interference of scattering processes in
Fock space. The surviving exact eigenstates are noninteract-
ing, Slater-determinant states that are energetically embedded
in a continuum of strongly correlated states. Interestingly,
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and in contrast to previous examples of QMBS, the exact
states discussed here always have a low momentum-space
entanglement entropy [91–97] in a sea of eigenstates hav-
ing a momentum-space entanglement entropy close to the
Page value [98–100]. On the other hand, their real-space
entanglement entropy scaling can range from subvolume to
volume law. This observation is consistent with the recent
finding that QMBS must not necessarily have low real-space
entanglement [101].

In Sec. II, we revisit the CNLLL Hamiltonian and discuss
its two integrable limits. Then, in Sec. III, we derive the
conditions on the interaction term that enable exact eigen-
states. In Sec. IV, we derive examples of infinite exact state
sequences that generalize to arbitrarily large Hilbert space
sectors. Section V explains the role of particle-hole symme-
try in the exact state solutions, and provides a systematic
method of constructing exact states. Entanglement properties
are discussed in Sec. VI. The Appendix contains ancillary
derivations, a level statistics analysis, and a comprehensive
tally of exact states arising from minimal constraints.

II. CHIRAL NONLINEAR LUTTINGER LIQUID

We begin by introducing the spinless CNLLL Hamiltonian
and exploring its two integrable limits. In the free fermion
limit, interactions are turned off. In the free boson limit,
the single-particle dispersion relation is linearized around the
Fermi energy, so that the system can be solved via bosoniza-
tion [81].

A. Hamiltonian

Consider the Hamiltonian

H = Hkin + Hint, (1)

where we have defined

Hkin =
∑

p

ε(p)c†
pcp,

Hint = 1

2

∫ L/2

−L/2
dx
∫ L/2

−L/2
dy V (x − y)c†

xcxc†
ycy. (2)

In Hkin, the single-particle dispersion relation ε(p) is assumed
to satisfy sgn ε(p) = sgn p. We impose this condition only for
a window of physically accessible momenta around the Fermi
momentum pF = 0. Here, all momenta |p| � � are called
physically accessible for some cutoff scale �, which might
for instance be given by a microscopic lattice spacing d via
� ∼ 1/d . Later on, we will Taylor expand ε(p) = vp + ap2

to second order for pedagogical reasons, so that the above
condition translates to v > 0 and |a|� � v.

In Eq. (2), the momentum p ∈ 2πZ/L is discrete and
unbounded [102], x ∈ (−L/2, L/2] is a continuous position
variable with periodic boundary conditions, and we have used
the spinless fermion creation and annihilation operators

c†
p = 1√

L

∫ L/2

−L/2
dx eipxc†

x , c†
x = 1√

L

∑
p

e−ipxc†
p. (3)

These satisfy the canonical anticommutation relations

{cx, c†
y} = δ(x − y), {cx, cy} = {c†

x , c†
y} = 0,

{cp, c†
q} = δpq, {cp, cq} = {c†

p, c†
q} = 0.

(4)

The Hamiltonian H preserves two symmetries: U(1) phase
rotations, implying a conserved total particle number

N̂ =
∑

p

c†
pcp, [N̂, H] = 0, (5)

and translational symmetry, implying a conserved total mo-
mentum

P̂ =
∑

p

pc†
pcp, [P̂, H] = 0. (6)

By the assumption that sgn ε(p) = sgn p, the noninteracting
ground state |�〉 of Hkin satisfies

c†
p |�〉 = 0 (p � 0), cp |�〉 = 0 (p > 0). (7)

In principle, these relations only hold rigorously for |p| � �,
however, we will assume that they extend to |p| → ∞: this
simplification does not affect the long-wavelength physics
[81]. We also note that |�〉 is doubly degenerate with c0 |�〉.
The normal-ordered version of an operator O is defined as

:O:≡ O − 〈�|O|�〉 , (8)

which corresponds to moving all cp>0 and c†
p�0 to the right

of all other operators in O while taking into account the
canonical anticommutation relations in Eq. (4). It follows that
:N̂ : |�〉 = 0 and :P̂: |�〉 = 0. From now on, we will work
in the 〈N̂〉 = 0 sector of Hilbert space, which is spanned by
Slater-determinant basis states of the form

|n, n̄〉 =
(∏

p>0

c
†np
p

)(∏
p�0

c
n̄p
p

)
|�〉 , (9)

where the particle and hole occupation vectors n and n̄ with
elements equal to 0 or 1 have an equal number of nonzero
entries. We may order these states by their total momentum
eigenvalue:

:P̂: |n, n̄〉 =
(∑

p>0

pnp +
∑
p�0

|p|n̄p

)
|n, n̄〉 , (10)

from which it follows that the Hilbert space at fixed total
particle number 〈N̂〉 = 0 and fixed total momentum 〈P̂〉 = Ptot

has dimension P (LPtot/2π ), where P (x) counts the integer
partitions of x [81,103].

The normal-ordered Hamiltonian in the 〈N̂〉 = 0 sector is
obtained from Eqs. (1) and (2) as

:H : = :Hkin: + :Hint:,

:Hkin: =
∑
p>0

ε(p)c†
pcp −

∑
p�0

ε(p)cpc†
p,

:Hint: =
∑
p>0

⎡
⎣V (p)

∑
qk

c†
q+pcqc†

k−pck

⎤
⎦, (11)
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where we have defined

V (p) = 1

L

∫ L/2

−L/2
dx eipxV (x), (12)

and assumed that V (x) = V (−x), implying that V (p) =
V (−p). In Eq. (11), normal-ordering Hint is required to restrict
the sum over momentum transfers p to positive p > 0 so
that 〈�| :Hint: |�〉 = 0. The Hamiltonian in Eq. (11) has two
integrable limits, which we discuss in the following.

B. Free fermion limit

The free fermion limit is defined by setting all interaction
potentials V (q) to zero in Eq. (11). :H |V (q)=0:=:Hkin: then
preserves not only the total particle number N̂ , but also the
individual particle numbers per momentum p as measured
by the particle number operators n̂p = c†

pcp. Concurrently, we
may define the hole number operators ˆ̄np = cpc†

p = 1 − n̂p.
The eigenstates of :H |V (q)=0: are the momentum-space Slater-
determinant states of Eq. (9) and satisfy

n̂p |n, n̄〉 = np |n, n̄〉 (p > 0),

ˆ̄np |n, n̄〉 = n̄p |n, n̄〉 (p � 0),
(13)

where np>0 ∈ {0, 1} and n̄p�0 ∈ {0, 1} are particle and hole
occupation numbers, respectively. In this basis, the Hamilto-
nian matrix

:H |V (q)=0: |n, n̄〉 =
[∑

p>0

ε(p)np −
∑
p�0

ε(p)n̄p

]
|n, n̄〉 (14)

is diagonal. The states |n, n̄〉 therefore represent the full solu-
tion of the free fermion limit.

C. Free boson limit

The free boson limit is defined by linearizing the dispersion
relation ε(p) ≡ vp in Eq. (11). It is then useful to introduce
the collective boson operators [81,102]

bp =
√

2π

Lp

∑
k

c†
k−pck, b†

p =
√

2π

Lp

∑
k

c†
k+pck, (15)

which are only defined for positive momenta p > 0. These
operators obey the commutation relations of boson creation
and annihilation operators

[bp, b†
q] = δpq,

[bp, bq] = [b†
p, b†

q] = 0,

[bp, N̂] = [b†
p, N̂] = 0.

(16)

Acting with b†
p, p > 0, on |�〉, or on any ground state of :Hkin:

at fixed total particle number, recovers all other states of the
many-body Hilbert space that share the same total particle
number [81]. In particular, the 〈N̂〉 = 0 sector is spanned by
the orthonormal basis

|m〉 =
∏
p>0

b
†mp
p√
mp!

|�〉 , (17)

where 0 � mp ∈ Z, p > 0, are boson occupation numbers. Let
us first find the eigenstates of :Hkin|ε(p)=vp: in the bosonic
basis. We use the commutators[∑

k

kc†
kck, bp

]
= −pbp,

[∑
k

kc†
kck, b†

p

]
= pb†

p, (18)

which have the form of a spectrum-generating algebra (SGA)
[24,41,43,45,77,78]. It then follows that

:Hkin|ε(p)=vp: |m〉 = v
∑
p>0

pmp |m〉 . (19)

This spectrum matches with that of Eq. (14) when restricting
to ε(p) = vp. Next, one can re-express the normal-ordered
interaction term of Eq. (11) as

:Hint:= L

2π

∑
p>0

V (p)pb†
pbp. (20)

Here, each term is proportional to the boson number opera-
tor b†

pbp, and hence the interaction becomes diagonal in the
bosonic representation:

:Hint: |m〉 = L

2π

∑
p>0

V (p)pmp |m〉 . (21)

Finally, the full Hamiltonian of Eq. (11) is diagonalized as

:H |ε(p)=vp: |m〉 =
∑
p>0

mp p

[
v + LV (p)

2π

]
|m〉 . (22)

Its ground state is given by |�〉 for repulsive V (p) > 0.
Attractive V (p) < 0 with |V (p)| > 2πv/L leads to boson
condensation and an instability. In this work, we focus on the
repulsive case. The states |m〉 represent the full solution of the
free boson limit. Since p ∈ 2πZ/L, the ground state becomes
gapless when L → ∞: a chiral mode cannot be gapped by
interactions. If V (p) = V̄ , then the interactions renormalize
the Fermi velocity. If V (p) is not a constant, Eq. (22) can
be thought of as a new gapless dispersion relation ε̃(p) =
p[v + LV (p)/2π ].

III. EXACT EIGENSTATE CONSTRAINTS

Away from the two integrable limits discussed in Secs. II B
and II C, we find a remarkably rich structure of exact
eigenstates of the CNLLL Hamiltonian in Eq. (11). These
are noninteracting, Slater-determinant states of the form of
Eq. (9). The existence of these exact eigenstates only as-
sumes that a subset of all V (p), p > 0, is set equal. Since
the transformation between the fermionic and bosonic basis is
unitary, we can analyze in both representations how the exact
Slater-determinant eigenstates of Eq. (11) come about.

For convenience, we will set L = 2π in the remainder of
the main text and in the Appendix, rendering all momenta
dimensionless. To obtain physical values, all energies and
momenta must then be multiplied by 2π/L.
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A. Fermionic basis

The interaction term in Eq. (11) can be rewritten as

:Hint: =
∑
q>k

∑
p>(k−q)/2

× [V (q − k + p) − δp�=0V (|p|)]c†
q+pcqckc†

k−p,

(23)

where q, k, and p are all momenta quantized to integers.
Here, δp�=0 is zero when p = 0, and otherwise unity. For the
derivation of Eq. (23), see Appendix A. The contribution from
p = 0 is a diagonal operator in the Fermi basis. Moreover,
for all fermionic basis states at fixed total momentum Ptot ,
the single-particle momenta smaller than −Ptot + 1 and larger
than Ptot are fully occupied and empty, respectively, as follows
from Eq. (10). Hence, all fermionic basis states with total mo-
mentum Ptot are annihilated by terms in Eq. (23) having q >

Ptot , k � −Ptot , or p > min(Ptot − q, Ptot − 1 + k). Therefore
:Hint: has an exact Fermi eigenstate |n, n̄〉 when, for any triple
q, k, p satisfying

Ptot � q > k > −Ptot, (24)

min(Ptot − q, Ptot − 1 + k) � p > (k − q)/2 (25)

(p �= 0), either of the following two conditions hold:

c†
q+pcqckc†

k−p |n, n̄〉 = 0 (26)

V (q − k + p) = V (|p|). (27)

Setting all potentials equal, so that V (p) ≡ V̄ is constant for
all 0 < p � Ptot , renders all states |n, n̄〉 of the Hilbert space
sector with total momentum Ptot exact, because in this limit
:Hint: becomes a diagonal matrix in this sector—equivalently,
Eq. (27) is always satisfied for q, k, p in the ranges of Eqs. (24)
and (25). Moreover, for the states |�〉 and c†

1 |�〉, Eq. (26) is
satisfied for all choices of q, k, p, so that these states remain
exact eigenstates for any choice of interaction potential. This
can be understood by noting that the total momentum of these
states is Ptot = 0 and Ptot = 1, respectively, which gives a one-
dimensional Hilbert space sector in both cases—the number
of integer partitions is P (0) = P (1) = 1, see the discussion
below Eq. (10) and recall that we have set L = 2π .

More interestingly, we find that there exist states in higher
Ptot sectors where Eq. (26) holds for all q and k in the range of
Eq. (24), but only for a subset of p’s in the range of Eq. (25).
This property is unique to chiral fermion states, which have
all momenta that are sufficiently small (p � −Ptot) or large
(p > Ptot) fully occupied and fully empty, respectively, so that
the Hamiltonian in Eq. (23) restricts to the ranges in Eqs. (24)
and (25). As a minimal example, consider the fermionic basis
states spanning the Hilbert space sector with Ptot = 3:

|φ1〉 = c†
3c0 |�〉 , |φ2〉 = c†

2c−1 |�〉 , |φ3〉 = c†
1c−2 |�〉 .

(28)

In this basis, the interaction term of Eq. (23) becomes the 3×3
matrix

〈φi| :Hint: |φ j〉 =

⎛
⎜⎝

V (1) + V (2) + V (3) V (1) − V (3) V (3) − V (2)

V (1) − V (3) 2V (1) + V (3) V (1) − V (3)

V (3) − V (2) V (1) − V (3) V (1) + V (2) + V (3)

⎞
⎟⎠

i j

, (29)

where we have used Eqs. (4) and (7). We see that |φ2〉 is
special, in that the scattering matrix elements in Eq. (29) that
act on this state only involve V (1) and V (3), but not V (2).
This is because, for this state, Eq. (26) is satisfied for p = 2
and irrespective of q, k in the whole range of Eq. (24). On
the other hand, Eq. (26) is not in general satisfied for p = 1,
because the scattering term with q = 2, k = 0, and p = 1 in
Eq. (23) fails to annihilate |φ2〉. Therefore, to retain |φ2〉 as an
exact eigenstate, we must enforce Eq. (27) for q = 2, k = 0,
and p = 1, which amounts to

V (3) = V (1). (30)

Indeed, this choice nullifies all off-diagonal matrix elements
that act on |φ2〉 in Eq. (29), rendering it an exact Slater-
determinant eigenstate. Concomitantly, V (2) can be chosen
freely and induces mixing between |φ1〉 and |φ3〉, giving rise
to two correlated eigenstates that are not of Slater-determinant
type. This minimal example elucidates how noninteract-
ing and correlated states can coexist away from the free
fermion/boson limits.

More generally, we define frugal exact states as fermionic
basis states satisfying Eqs. (26) or (27) for all triples q, k, p

in the ranges of Eqs. (24) and (25) and requiring a minimal
number of equal potentials V (p) (we do not know of an ana-
lytical expression for this minimal number). In Appendix B,
we solve this constraint numerically and list all frugal exact
states in all Hilbert space sectors up to Ptot = 40, which has
dimension P (40) = 37338. Importantly, a single consistent
choice of V (p) can nucleate exact states across a range of
total momentum sectors: fixing V (p) to obtain frugal states at
a given Ptot also induces further, generically nonfrugal exact
states in Hilbert space sectors at total momentum P < Ptot .
Their abundance per Hilbert space sector is further analyzed
in Appendix B.

As a concrete example, for Ptot = 20 with Hilbert space di-
mension P (20) = 627, Fig. 1(a) shows the 13 possible frugal
exact states (corresponding to different rows) that arise when
eight potentials V (p) are set equal. Tuning less potentials
does not yield any exact eigenstates. Figure 1(b) shows that
these states generically lie in the bulk of the energy spectrum
within a continuum of correlated states. For this panel, we
have chosen an interaction where the potentials highlighted
in the last row of Fig. 1(a) (left panel) are set equal, while the
others are randomly sampled from a uniform distribution. The
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(a) (b)

FIG. 1. Exact eigenstates in the Hilbert space sector with Ptot = 20. (a) Minimal V (p) tuning patterns [left panel, each row corresponds to
a V (p) configuration] giving rise to exact states [right panel, each row corresponds to a different Slater-determinant eigenstate enabled by the
V (p) configuration to its left]. All V (p)’s where p is indicated in red must be set equal for the respective states to become exact eigenstates
of the Hamiltonian in Eq. (11). The exact states are Slater-determinant states where the electronic modes at all momenta indicated in yellow
are occupied. All modes at momenta p < −9 or p > 10 are fully occupied or empty, respectively (not shown). For example, setting all V (p)
equal for p � 8 gives rise to two exact states, as shown by the first two rows of the right panel. Tuning less than eight potentials does not
yield any exact states, while tuning more than eight potentials gives rise to more states than are shown in the right panel (these are further
analyzed in Fig. 2). (b) Full energy spectrum of :H : in Eq. (11) when restricting to Ptot = 20, sorted by increasing energies. The horizontal axis
is the eigenstate index. For this plot, we have set ε(p) = vp + ap2 with v = 1 and a = 0.1/Ptot , and have chosen V (p) = 0.1 for all momenta
highlighted in red in the last row of a), while for all remaining momenta V (p) is sampled uniformly from the range [0.05,0.15]. The energies
of the two exact states, corresponding to the last two rows in a), are indicated by horizontal lines.

resulting energy level statistics [3,16,104–107] is of Wigner-
Dyson type and has a mean adjacent gap ratio r̄ ≈ 0.531,
indicating that most eigenstates indeed thermalize [107]. For
a more detailed level statistics analysis of the CNLLL Hamil-
tonian, see Appendix C.

In Fig. 2(a), we study how many potentials V (p) need to
be set equal to obtain any exact states (i.e., the frugal states)
as a function of Ptot . More exact states arise when tuning
a nonminimal number of potentials to be equal: Fig. 2(b)
shows how many fermionic basis states are retained as ex-
act eigenstates when all potentials V (p) with p � p̄ are set

equal, as a function of p̄ and for different values of Ptot .
Finally, Fig. 2(c) shows how many exact states arise in each
Ptot sector when a fixed fraction of potentials with respect
to Ptot is set equal (see caption of Fig. 2). From this fig-
ure, we can conclude that as Ptot, and therefore the Hilbert
space size, is increased, a smaller fraction of potentials must
be fine-tuned to obtain the same fraction of exact states.
When the fraction of fine-tuned potentials is held fixed as
Ptot increases, the system exhibits asymptotic freedom: in the
high-energy limit of large Ptot, almost all eigenstates become
noninteracting.

(a) (b) (c)

FIG. 2. Scaling behavior. (a) Minimal fraction of potentials that need to be set equal to obtain any exact states (blue, left vertical axis)
versus resulting number of frugal exact states, which is either 1 or 2 (orange, right vertical axis). (b) Abundance of exact states for homogeneous
potential tuning patterns where all V (p) with p � p̄ are set equal. We provide the ratio of the number of exact states over the Hilbert space
dimension P (Ptot ) as a function of the fraction p̄/Ptot for different total momenta Ptot , which range from 10 to 40. (c) Fraction of exact states
resulting from the tuning pattern where all V (p) with p � p̄ are set equal, where p̄ = Ptot/2�, p̄ = 2Ptot/3�, p̄ = 3Ptot/4�, or p̄ = 4Ptot/5�,
as a function of Ptot . The asymptotic approach to unity with increasing total momentum, present for all choices of p̄/Ptot , implies asymptotic
freedom, i.e., noninteracting physics at high energies.
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The rich structure of potential tuning patterns and exact
states presented here is inherent to chiral systems. As soon
as mixing with an antichiral mode is allowed, it becomes
possible to scatter the highest-momentum electron in the
right-moving branch (Fermi velocity vR > 0) with the lowest-
momentum electron in the left-moving branch (Fermi velocity
vL < 0) by transferring an arbitrary momentum p (−p),
p> 0, to the right-moving (left-moving) electron. Therefore
all eigenstates become at least weakly correlated as soon as
chirality is forfeited.

B. Bosonic basis

The bosonic basis provides an alternative point of view
on the physical origin of the exact eigenstates derived
in Sec. III A. For this, we rewrite the Hamiltonian of
Eq. (11) as

:H : =
∑
p>0

p

[
v + LV (p)

2π

]
b†

pbp

+
∑
p>0

ε̃(p)c†
pcp −

∑
p�0

ε̃(p)cpc†
p, (31)

where ε̃(p) = ε(p) − vp only contains the nonlinear contri-
butions to the dispersion relation. These nonlinearities act
as scattering terms between the bosonic eigenstates |m〉 of
Eq. (17), spoiling the integrability of the free boson limit.

The bosonic modes |m〉 are collective excitations built from
many fermionic basis states |n, n̄〉 in Eq. (9):

|m〉 =
∑
n,n̄

Um;n,n̄ |n, n̄〉 , |n, n̄〉 =
∑

m

U †
n,n̄;m |m〉 , (32)

where the unitary bosonization transformation U diagonalizes
:H : in the fermionic basis of Eq. (11) when no nonlinearities
are present, i.e., ε̃(p) = 0. Explicitly,

Um;n,n̄ = 〈�|
(∏

p�0

c
†n̄p
p

)(∏
p>0

c
np
p

)(∏
p>0

b
†mp
p√
mp!

)
|�〉 , (33)

which can be evaluated by using Eqs. (15) and (4). The trans-
formation U does not mix between Hilbert space sectors with
different total momenta, and so is a finite-dimensional unitary
matrix in each sector. Crucially, some fermionic basis states
|n, n̄〉 have exactly zero overlap with a subset M|n,n̄〉 of bosonic
basis states. That is, for these states,

Um;n,n̄ = 0 ∀ |m〉 ∈ M|n,n̄〉, (34)

Now, to ensure that |n, n̄〉 remains an eigenstate of the
Hamiltonian in Eq. (31) at nonzero V (p), we must enforce
the condition∑

p>0

V (p)pmp = V̄ ∀ |m〉 /∈ M|n,n̄〉. (35)

This is because Eqs. (34) and (35) imply that |n, n̄〉 is an
eigenstate of the interaction term :Hint: in Eq. (20), and there-

fore also of the full Hamiltonian in Eq. (31):

:Hint: |n, n̄〉 =
∑

m

∑
p>0

V (p)pmp |m〉 〈m|n, n̄〉

= V̄
∑

m

U †
n,n̄;m |m〉 = V̄ |n, n̄〉 . (36)

(Recall that we had set L/2π = 1.) Equation (35) is a set
of linear constraints on the potentials V (p). Together with
Eq. (34), it represents the exact eigenstate constraints of the
CNLLL in the bosonic basis. As a minimal example, for the
Hilbert space sector at Ptot = 3 that was also discussed in
Sec. III A, the first equation of Eq. (32) becomes⎛
⎜⎝

b†
3 |�〉

b†
2b†

1 |�〉
b†3

1 |�〉

⎞
⎟⎠ = 1√

6

⎛
⎜⎝

√
2

√
2

√
2

−√
3 0

√
3

1 −2 1

⎞
⎟⎠
⎛
⎜⎝

c†
1c−2 |�〉

c†
2c−1 |�〉
c†

3c0 |�〉

⎞
⎟⎠.

(37)
From this, we deduce that c†

2c−1 |�〉 has exactly zero overlap
with b†

2b†
1 |�〉, so that Eq. (34) is satisfied for

Mc†
2c−1|�〉 = {b†

2b†
1 |�〉}.

To ensure that c†
2c−1 |�〉 remains an exact eigenstate, we must

also enforce Eq. (35). For |m〉 = b†
3 |�〉, we have m3 = 1 as

the only nonvanishing entry of m, so that 3V (3) = V̄ . For
|m〉 = b†3

1 |�〉, we have m1 = 3 as the only nonvanishing entry
of m, so that 3V (1) = V̄ . Therefore

V (3) = V (1), (38)

which is indeed the same condition as we had found in
Eq. (30). We see that the presence of exact states away from
the free fermion and free boson limits is a direct consequence
of the fact that bosonization, viewed as a unitary transform
acting on the fermionic Hilbert space, does not relate all
fermionic states to all bosonic states and vice versa for a chiral
system. This should be contrasted with, for instance, phononic
collective modes in crystalline lattices, which have nonzero
overlap with all local harmonic oscillations of the lattice.

One might ask if, instead of the fermionic basis states
|n, n̄〉, it is also possible to retain some bosonic basis states
|m〉 as exact eigenstates of :H : away from the free boson limit.
This is not the case: as shown in Appendix D, tuning the con-
tinuous nonlinearity parameter a in ε(p) = vp + ap2 away
from zero, which breaks the free boson limit, induces a mixing
of all bosonic states in any given Hilbert space sector. Hence,
no bosonic basis states (permanents) remain exact eigenstates.
(See however Ref. [71], where it is shown that bosonic states
may persist as approximate eigenstates.) On the other hand,
the interaction potentials V (p), which break the free fermion
limit, form a discrete set of continuous parameters and can be
tuned independently from one another, giving rise to a discrete
set of exact fermionic states.

IV. SIMPLE EXACT STATE SEQUENCES

Our analysis in Sec. III was predominantly based on nu-
merically solving the constraints Eqs. (26) and (27). Due to
the asymptotically exponential scaling of the Hilbert space
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dimension [108],

P (Ptot ) ∼ 1

4
√

3Ptot

eπ

√
2Ptot

3 as Ptot → ∞, (39)

where P (x) is the number of partitions of the integer x, this
approach becomes cumbersome at large total momenta Ptot .
It is therefore desirable to develop an analytic understanding
of some simple exact state solutions that extend to arbitrary
total momenta. In this section, we derive three frugal exact
state sequences, as well as an infinite family of nonfrugal
sequences. Then, in Sec. V, we describe a more abstract
but general method of constructing exact state solutions that
includes all sequences discussed here as special cases.

As a first example of an analytical solution, we note that
the maximal possible momentum p̄ for which we must con-
strain V (p) to turn a generic fermionic basis state into an
exact eigenstate of :H : in Eq. (11) is set by the occupied
electron with the largest momentum pmax, and the occupied
hole with the lowest momentum pmin, via the relationship
p̄ = pmax − pmin. In the given Slater-determinant state, all
scattering processes with momentum transfers p > p̄ are guar-
anteed to annihilate the state and thereby satisfy Eq. (26).
Generically, p̄ < Ptot is smaller than the total momentum of
the state in question. Hence, a straightforward method to
obtain exact eigenstates is to set all potentials V (1) = V (2) =
V (3) = · · · = V ( p̄) equal in order to satisfy Eq. (27) for the
remaining allowed scattering processes. Such homogeneous
potential configurations may be frugal, see for instance the
first two rows of Fig. 1(a). Generically, they also give rise to
a large number of exact states at smaller total momenta than
Ptot (see Appendix B).

We next discuss nonhomogeneous potential configurations
that generalize to arbitrarily large total momenta. We focus
on the simplest types of configurations, for the sake of peda-
gogy and also because we explicitly study their entanglement
entropy in Sec. VI [Fig. 4(d)]. More intricate exact state so-
lutions, such as those appearing in Fig. 1(a), are analyzed in
Sec. V B.

A. Alternating-potential sequence

We begin by considering alternating V (p) configurations,
where every second potential V (1) = V (3) = · · · = V (2n +
1) is set equal. They give rise to an exact state at total mo-
mentum Ptot = (n + 1)(n + 2)/2 with n � 0. [Since Ptot = 20
is not of this form, there is no alternating V (p) configuration
in Fig. 1.] Consider the noninteracting ground state |�〉 in
Eq. (7), pictured in Fig. 3(a). We first assume n ≡ 2k̄ − 1
is odd. Then, moving the first k̄ occupied electrons at odd
negative momenta, located at p = −(2k − 1), k = 1 . . . k̄, to
the previously unoccupied positive momenta at −p + 1 = 2k,
we obtain the fermionic basis states

|�k̄〉 =
(

k̄∏
k′=1

c†
2k′

)(
k̄∏

k=1

c−(2k−1)

)
|�〉 , (40)

an example of which is depicted in Fig. 3(b) for k̄ = 2. These
states have a total momentum

Ptot =
k̄∑

k=1

(4k − 1) = k̄(2k̄ + 1) = 3, 10, 21, . . . (41)

(a)
(b)

(d)

(e)

(c)

FIG. 3. Exact state sequences arising from setting the potentials
V (1) = V (3) = · · · = V (2n + 1) equal. (a) We start with the filled
Fermi sea, given by |�〉 in Eq. (7). All higher and lower-lying
momenta are assumed fully empty and fully occupied, respectively.
(b) For odd n = 2k̄ − 1, we move occupied electrons at succes-
sive odd momenta q < 0 to the previously unoccupied momenta at
−q + 1. In the case depicted here, where two electrons are moved
(i.e., k̄ = 2), this results in a frugal exact state at total momentum
Ptot = 10. (c) For even n = 2(k̃ − 1), we move occupied electrons
at successive even momenta q < 0 to the previously unoccupied
momenta at −q + 1. In the case depicted here, where three electrons
are moved (i.e., k̃ = 3), this results in a frugal exact state at total mo-
mentum Ptot = 15. (d) When additionally V (2) and V (2(n + 1) + 1)
are set equal to V (1), we obtain a descendant state by shifting the
electron at the highest occupied momentum of (b) by an amount
	 = 2. (e) Another descendant state is obtained by shifting the hole
at the lowest unoccupied momentum of (b) by 	 = −2. As long as
V (2) = V (1) = V (3) = V (5) = · · · = V (2(n + 1) + 1), both states
in (d) and (e) are exact eigenstates. The same construction can be
applied to obtain descendants of (c).

We next assume n ≡ 2(k̃ − 1) is even. Then, moving the first
k̃ occupied electrons at even momenta, located at p = −2k,
k = 0, . . . ˜, k − 1, to the previously unoccupied momenta at
−p + 1 = 2k + 1, we obtain the fermionic basis states

|�k̃〉 =
⎛
⎝ k̃−1∏

k′=0

c†
2k′+1

⎞
⎠
⎛
⎝k̃−1∏

k=0

c−2k

⎞
⎠ |�〉 , (42)

an example of which is depicted in Fig. 3(c) for k̃ = 3. These
states have a total momentum

Ptot =
k̃−1∑
k=0

(4k + 1) = k̃(2k̃ − 1) = 1, 6, 15, . . . (43)

For either type of state, |�k̄〉 or |�k̃〉, scattering to empty
sites can only involve odd momentum transfers p in Eq. (23).
Hence, when all odd potentials V (1) = V (3) = · · · = V (2n +
1) are set equal, where n = 2k̄ − 1 or n = 2(k̃ − 1) depending
on whether n is odd or even, respectively, the states |�k̄/k̃〉
become exact eigenstates of :H : in Eq. (11). Indeed, for the
exact state pictured in Fig. 3(b), and assuming a potential
configuration V (1) = V (3) = V (5) = V (7), either Eq. (26) or
(27) are fulfilled for all q, k, p in the ranges of Eqs. (24) and
(25): for even momentum transfers p, Eq. (26) is satisfied,
while for odd momentum transfers p, Eq. (27) is satisfied. The
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FIG. 4. Real-space entanglement of exact eigenstates in the Ptot = 20 sector. (a) Potential tuning patterns giving rise to frugal exact
states, where the indices shown indicate the corresponding rows in the right panel of Fig. 1(a). As explained in the main text, the frugal
exact states originating from the same potential configuration are paired by particle-hole duality and have an identical entanglement entropy.
(b) Entanglement cut in a one-dimensional chiral wire with periodic boundary conditions. We calculate the von Neumann entanglement entropy
SA for subsystem A as a function of cut length LA (for details on how SA is calculated without lattice discretization, with is unavailable for
chiral systems, see Appendix F). For each exact state, we take the momenta highlighted in the respective line of the right panel of Fig. 1(a) to
be occupied, in addition to all lower-lying momenta in the range [−100, −10], implying a momentum cutoff � = 100. We observe that
occupying momenta below p = −100 shifts the entanglement entropies SA for LA/L � 1/100 by an equal amount and does not affect their
asymptotic scaling. This can be understood intuitively by noting that entanglement cuts of length LA predominantly resolve the momentum
scale p ∼ 1/LA, so that cuts with 1/LA � �/L are insensitive to occupying additional momenta at the cutoff scale, up to a universal ultraviolet
divergence contribution [109]. (c) Exponentiated entanglement entropy eSA as function of cut length for the exact states arising from the
potentials in (a). An approximately linear scaling of eSA indicates logarithmic (subvolume) entanglement growth, while exponential scaling
of eSA implies volume-law growth. For the potentials depicted in (a), we find examples of both kinds: the states with labels 1,2 exhibit a
pronounced subvolume scaling, while the states labeled by 6,7,8,9,12,13 are compatible with volume-law scaling. The dashed black line and
surrounding grey region indicate the exponentiated average entropy e〈Sfree

A 〉 and its standard deviation over all P (20) = 627 fermionic basis
states. Finally, the exponentiated entanglement entropy eSA[|�6〉] of the Fermi sea state |�6〉 (defined in Sec. VI A) at total particle number
N = 6, with Ptot = 21, is highlighted in red. (d) Entanglement entropy SA of the alternating-potential exact state sequence |�k̄〉 of Eq. (40) for
k̄ = 0, . . . , 20. For the largest k̄ we have considered, Ptot (k̄ = 20) = 820. We use a momentum cutoff � = 200. The linear scaling of SA at k̄
far from k̄ = 0 (|�k̄=0〉 corresponds to the filled Fermi sea state |�〉) implies volume-law entanglement growth.

same result holds for the exact state pictured in Fig. 3(c) when
we choose V (1) = V (3) = V (5) = V (7) = V (9).

B. Descendant sequences

We next show that there are two descendant exact state
sequences in all total momentum sectors with Ptot = 2 + (n +
1)(n + 2)/2 with n � 0. The first descendant series is given
by the states

|� (+2,1)
k̄

〉 = c†
2k̄+2

(
k̄−1∏
k′=1

c†
2k′

)(
k̄∏

k=1

c−(2k−1)

)
|�〉 ,

|� (+2,1)
k̃

〉 = c†
2k̃+1

⎛
⎝ k̃−2∏

k′=0

c†
2k′+1

⎞
⎠
⎛
⎝k̃−1∏

k=0

c−2k

⎞
⎠ |�〉 , (44)

which have total momentum Ptot = 2 + k̄(2k̄ + 1) and Ptot =
2 + k̃(2k̃ − 1), respectively. An example is shown in Fig. 3(d).
The second descendant series is given by

|� (+2,2)
k̄

〉 =
(

k̄∏
k′=1

c†
2k′

)(
k̄−1∏
k=1

c−(2k−1)

)
c−(2k̄+1) |�〉 ,

|� (+2,2)
k̃

〉 =
⎛
⎝ k̃−1∏

k′=0

c†
2k′+1

⎞
⎠
⎛
⎝k̃−2∏

k=0

c−2k

⎞
⎠c−2k̃ |�〉 , (45)

which have the same total momentum as the first descen-
dants. As an example, see Fig. 3(e). These states are related
to the states in Eq. (44) via the interaction potentials V (2)
and V (2(n + 1) + 1) in Eq. (23), while for all remaining
even momentum transfers p �= 2, Eq. (26) is still satisfied.
Correspondingly, if we set the potentials V (2) = V (1) =
V (3) = V (5) = · · · = V (2(n + 1) + 1) equal, both |� (+2,1)

k̄/k̃
〉

and |� (+2,2)
k̄/k̃

〉 become exact eigenstates of :H :. Then, for even
momentum transfers p except for p = 2, Eq. (26) is satisfied,
while for odd momentum transfers p as well as p = 2, Eq. (27)
is satisfied.

The states |�k̄/k̃〉 are frugal in all Hilbert space sectors
for which we numerically solved Eqs. (26) and (27) in Ap-
pendix B, while the states |� (+2,1)

k̄/k̃
〉 and |� (+2,2)

k̄/k̃
〉 are frugal

starting from Ptot = 12 onwards (but still exact for lower Ptot).
In Appendix E, we discuss higher-order descendants of |�k̄/k̃〉,
which form an infinite family of generically nonfrugal exact
eigenstates.

V. GENERAL PROPERTIES OF EXACT EIGENSTATES

We here generalize our analytical investigation of the exact
eigenstate constraints in Eqs. (26) and (27) beyond the study
of particular solutions. Analyzing the exhaustive set of frugal
exact states that was numerically found in Appendix B for
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Hilbert space sectors up to Ptot = 40, two regularities warrant
explanation.

(1) The majority of frugal states, but not all, comes
in pairs, in that the same set of potentials V (p) gives
rise to two different frugal states [see, e.g., rows
1, 2; 3, 4; 6, 7; 8, 9; 10, 11; 12, 13 in Fig. 1(a), the exception is
row 5 where only one exact state appears].

(2) The majority of frugal states, but not all, has an
electron or hole occupation that has the same structure as
their corresponding interaction potential V (p). Specifically,
the momenta p for which V (p) must be tuned align with
a subset of the occupied electron momenta up to a con-
stant shift, or alternatively with the occupied hole momenta
after a reflection p → 1 − p. For instance, the eight equal
potentials V (p) in row 3 of Fig. 1(a) align with the eight
highest occupied electron momenta of the corresponding ex-
act eigenstate. Conversely, in row 4 of Fig. 1(a), the same
eight equal potentials align with the eight lowest occupied
hole momenta of a different exact eigenstate that pertains
to the same potential configuration. [For more examples, see
rows 3,4,8,9,10,11,12,13 in Fig. 1(a), the exceptions are rows
1,2,5,6,7].

The explanation of these features will provide us with a
general method for constructing an infinite number of guaran-
teed exact eigenstate solutions, which includes all exact state
sequences found in Sec. IV as special cases.

A. Particle-hole duality

The presence of exact state pairs originating from the same
potential configuration comes about by a particle-hole duality
of the solution space of Eq. (26). Paired states are exchanged
by the duality transformation, while unpaired states are self-
dual. To derive the duality, we first state the quantities that
it leaves invariant. From Eq. (10), the total momentum of a
fermionic basis state |n, n̄〉 is given by

Ptot =
∑
p>0

p(np + n̄−p). (46)

In addition, our restriction to particle number 〈N̂〉 = 0 implies

Ntot =
∑
p>0

(np − n̄−p) − n̄0 = 0. (47)

Equation (46) and (47) specify the Hilbert space sector of
|n, n̄〉. Moreover, it follows from Eq. (26), restricted to the
ranges of Eqs. (24) and (25), that the interaction component
V (p), p > 0, must not be tuned if

n̄q+pnqnkn̄k−p = n̄q−pnqnkn̄k+p = 0 (48)

holds for all q, k in the range of Eq. (24), because this con-
dition guarantees Eq. (26) for p and −p. Here, the second
equation follows from noting that V (p) = V (−p). All of these
properties are left invariant under the duality transformation

PH : np ↔ n̄−p+1. (49)

Specifically, we have

PH : Ptot ↔ Ptot − Ntot,

Ntot ↔ −Ntot,

n̄q+pnqnkn̄k−p ↔ n̄q̃−pnq̃nk̃ n̄k̃+p,

n̄q−pnqnkn̄k+p ↔ n̄q̃+pnq̃nk̃ n̄k̃−p, (50)

where we have defined q̃ = 1 + p − k and k̃ = 1 − p − q.
Since p > 0 and q > k, these satisfy q̃ > k̃ and are thereby
compatible with Eq. (24). Hence, if Eqs. (46)–(48) hold for
|n, n̄〉, then they also hold for its dual. Correspondingly, if the
exact state |n, n̄〉 is not self-dual (if the duality transformation
in Eq. (49) does not recover the same state), then it must have
a partner exact state that is induced by the same potential
configuration.

We stress that the particle-hole duality in Eq. (49) is not a
particle-hole symmetry of the Hamiltonian in Eq. (11) itself:
for instance, the dispersion ε(p) need not be particle-hole
symmetric. Hence, exact eigenstates related by the duality
generically lie at different energies: examples are the states
in rows 12 and 13 of Fig. 1(a), whose energy difference in
presence of a quadratic kinetic energy perturbation is indi-
cated in Fig. 1(c). Unlike their energy, however, we shown in
Sec. VI that the entanglement entropy of duality-related states
is identical.

B. Self-consistent exact states

For special potential configurations V (p), we can sys-
tematically write down a subset of their associated exact
eigenstates. We call these self-consistent configurations.
Given a set of potentials V (p), let Qc be the set of momenta
p > 0 where the V (p) are set equal. For any total momentum,
we can always assume that Qc is finite, because Eq. (27) must
only be enforced in the range of Eq. (25) to yield exact states.
Then, there is a maximal momentum p̄ = max(Qc). We define
Q as the set of momenta p > 0 not in Qc, i.e., the momenta
where V (p) can be be chosen freely. Since Qc is finite, Q
is infinitely large and includes all p > p̄. Then, the potential
configuration V (p) is self-consistent if and only if

∀ p1, p2 ∈ Q → p1 + p2 ∈ Q, (51)

that is, Q forms a semigroup under addition. As an example,
for the potential configuration in row 3 of Fig. 1(a), we have
Qc = {1, 2, 4, 5, 7, 8, 10, 11} and Q = {3, 6, 9} ∪ {p ∈ Z|p �
12}. This choice is self-consistent because the elements of Q
smaller than p̄ = 11 exhaust all multiples of 3 that are smaller
than p̄. Now, given a momentum q̄ with 0 � q̄ � p̄, we define
the two finite sets

Q�q̄ = {p ∈ Q | 0 < p � q̄},
Qc

>q̄ = {p ∈ Qc | q̄ < p � p̄}. (52)

For instance, for the previously discussed potential config-
uration in row 3 of Fig. 1(a) and q̄ = 7, Q�7 = {3, 6} and
Qc

>7 = {8, 10, 11}. In general, for q̄ = 0, Q�0 is empty, and
Qc

>0 contains all momenta where V (p) is set equal. Succes-
sively increasing q̄ → q̄ + 1 either removes an element from
Qc

>q̄ (if q̄ + 1 ∈ Qc) or adds an element to Q�q̄ (if q̄ + 1 ∈ Q).
Finally, for q̄ = p̄, Q�p̄ contains all momenta in the range
[1, p̄] with V (p) unconstrained, and Qc

>p̄ is empty. Therefore
it is always possible to find a momentum q̄ such that

|Q�q̄| = |Qc
>q̄| − 1, (53)

where |X | denotes the number of elements in the finite set
X . As an example, for the previously discussed potential con-
figuration in row 3 of Fig. 1(a), this amounts to the choice
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q̄ = 7 because |Q�7| = 2 and |Qc
>7| = 3. Equation (53) im-

plies that there is one less free potential V (p) in the range
p � q̄ than there are constrained (equal) potentials V (p) in
the range p > q̄. A guaranteed exact eigenstate associated
with the self-consistent potential configuration V (p) is then
given by

|�V 〉 = c−q̄

∏
p∈Q�q̄

cp−q̄

∏
p∈Qc

>q̄

c†
p−q̄ |�〉 , (54)

which a has total momentum

PV = |q̄| +
∑

p∈Q�q̄

|p − q̄| +
∑

p∈Qc
>q̄

|p − q̄|. (55)

As an example, for the previously discussed potential config-
uration in row 3 of Fig. 1(a), this state is just the frugal state
shown in the same row. To see that the Slater-determinant state
|�V 〉 is an eigenstate of :H : in Eq. (11) in general, we first list
its unoccupied momenta:

holes[|�V 〉] = {−q̄} ∪ {−q̄ + p | p ∈ Q}. (56)

For p ∈ Q�q̄ ⊂ Q, the momentum −q̄ + p is manifestly un-
occupied, which follows from the presence of the annihilation
operators cp−q̄, one for every p ∈ Q�q̄, in the first product
of Eq. (54). For the remaining p ∈ Q, which must satisfy
p − q̄ > 0, the fact that −q̄ + p is unoccupied follows from
the absence of creation operators c†

p−q̄, p ∈ Q, in the second
product of Eq. (54)—recall that |�〉 has all positive momenta
unoccupied.

Next, we examine the scattering processes in Eq. (23) that
move an occupied electron to the lowest-momentum hole of
|�V 〉, located at −q̄. These scatterings cannot involve momen-
tum transfers p ∈ Q, because |�V 〉 has all momenta −q̄ + p,
p ∈ Q unoccupied.

Finally, we examine the scattering processes that move
an occupied electron to any of the remaining holes of |�V 〉,
which are located at −q̄ + p1, p1 ∈ Q. Due to the self-
consistency constraint in Eq. (51), we have for all momentum
transfers p2 ∈ Q that

(−q̄ + p1) + p2 ≡ −q̄ + p̃, p̃ ∈ Q, (57)

which, by Eq. (56), is the momentum of another hole. There-
fore all momenta that can be reached by momentum transfers
p ∈ Q from any hole of |�V 〉 are guaranteed to be unoccu-
pied, so that scattering cannot occur: for all p ∈ Q, Eq. (26)
is satisfied by |�V 〉. Moreover, V (p) satisfies Eq. (27) by
construction for all p /∈ Q. Hence, |�V 〉 is an exact eigenstate
of :H : in Eq. (11). Unless it is invariant under the particle-hole
duality of Eq. (49), another exact eigenstate can be obtained
by applying the duality transformation. For example, the state
in row 3 of Fig. 1(a) is the particle-hole dual of the state in
row 4.

Self-consistent potentials V (p) generically also yield ad-
ditional exact eigenstates that are not of the form of
Eq. (54), or related to a state of this form by a particle-hole
transformation. For instance, all potential configurations in
Fig. 1(a) (Ptot = 20) are self-consistent, however, only rows
3,4,8,9,10,11,12,13 have states corresponding to Eq. (54) and
its particle-hole dual. The states of the form of Eq. (54) that
are associated with rows 1,2,5,6,7 of Fig. 1(a) instead appear
as nonfrugal exact states in sectors with total momentum

PV < 20. However, as is evident from the data presented in
Appendix B, states of the form of Eq. (54) or their duals form
the majority of all frugal states, at least in the Hilbert space
sectors up to total momentum 40. They also include all simple
exact state sequences discussed in Sec. IV.

VI. ENTANGLEMENT PROPERTIES

We next investigate the entanglement properties of the
exact Slater-determinant eigenstates of the CNLLL. While
their real-space entanglement entropy can exhibit a variety
of scaling behaviors, ranging from subvolume to volume-law
scaling, their momentum-space entanglement is identically
zero. This finding is in stark contrast to the case of typical,
nonexact excited eigenstates of the Hamiltonian in Eq. (11),
whose momentum-space entanglement entropy behaves
thermally.

Therefore the exact states of the CNLLL share the core
feature of QMBS—anomalously low entanglement violating
the ETH—but with respect to partitions in momentum space
instead of real space. In contrast, generic excited states of
the CNLLL are thermalizing, as is confirmed by our level
statistics analysis in Appendix C.

A. Real space

Free fermion Slater-determinant states for nonchiral sys-
tems are known to exhibit a rich variety of entanglement
entropy scaling, ranging from an area law to a volume
law [24,110,111]. Hence, the real-space entanglement en-
tropy of the exact Slater-determinant eigenstates discussed in
Sec. III A is not restricted to be nonthermal, in contrast to
many kinds of QMBS that were previously discussed (see
reviews [74–76]). Indeed, as shown in Fig. 4 for Ptot = 20
and considering different V (q) distributions that each have
eight potentials set equal (yielding a total of 13 different
frugal exact states), we find that the exact states can have
both subvolume and volume-law entanglement scaling in real
space. Details on how the exact state entanglement entropy is
calculated in continuous real space are given in Appendix F.
To cleanly distinguish between the two regimes, we assume
that the average entanglement entropy of fermionic basis
states 〈Sfree

A 〉, plotted as the black dashed line in Fig. 4(c),
has a volume-law scaling. While this has only been rigor-
ously proven for nonchiral free fermions [112], we expect
it to also hold in the chiral case. Since the states with la-
bels 6,7,8,9,12,13 in Fig. 4(c) have an entanglement entropy
that is larger than 〈Sfree

A 〉 by more than a standard devia-
tion, we classify their scaling as volume-law. Similarly, since
the states with labels 1,2 in Fig. 4(c) have an entanglement
entropy that is lower than 〈Sfree

A 〉 by more than a standard
deviation (even for modest values of LA/L), we classify
their scaling as subvolume. As a reference, we have also
included in Fig. 4(c) the entanglement entropy of the filled
Fermi-sea state |�6〉 = c†

1c†
2c†

3c†
4c†

5c†
6 |�〉. We have chosen the

Fermi sea state with N = 6 because it has a comparable total
momentum of Ptot = 21 (in general, the total momentum of
|�N 〉 is given by N (N + 1)/2) and is known to have a sub-
volume entanglement scaling [113]. Furthermore, in Fig. 4(d),
we study the entanglement entropy of the alternating-potential
exact state sequence |�k̄〉 of Eq. (40) for all k̄ � 20, where
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Ptot (k̄ = 20) = 820. We find that the entropy of the states |�k̄〉
depends linearly on LA for large k̄, with a slope proportional
to k̄, implying volume-law scaling.

Although the particle-hole duality in Eq. (49) does not
in general leave the energy of a fermionic basis state |n, n̄〉
invariant, it does preserve its real-space entanglement entropy.
This is because, as shown in Appendix F, the entanglement
entropy of any given state is invariant under both momentum
reflection (effecting p → 1 − p) and particle hole conjugation
(effecting np → n̄p). This symmetry is only exact in the limit
where the momentum cutoff � is sent to infinity, whereas
in numerical calculations we must choose a finite cutoff.
Nevertheless, in Fig. 4(c) where � = 100, the entanglement
entropies of different exact states that are associated with the
same potential configuration V (p), and related by particle-
hole duality, are indistinguishable by the eye.

In Appendix G, we analytically derive a naive estimate of
the maximal possible real-space entanglement entropy Smax

A
for a subregion A, based on Hilbert space dimension. Unfor-
tunately, this estimate is much larger than the entanglement
entropy SA of any exact state at fixed total momentum Ptot, or
any other fermionic basis state. The discrepancy stems from
our difficulty in taking into account the effects of chirality
and total momentum conservation when estimating Smax

A (see
Appendix G for details). This prevents us from quantita-
tively assessing how similar the exact states are to thermal
states, which have near-maximal entanglement. Nevertheless,
we argue that the qualitative difference between volume and
subvolume scaling evident in Fig. 4 indicates a broad range of
possible real-space entanglement scaling.

B. Momentum space

Since the exact eigenstates of the CNLLL are Slater-
determinant states built from single-particle states labeled by
a momentum quantum number p, their entanglement entropy
for decompositions in momentum space [94–97] [Fig. 5(a)] is
identically zero. On the other hand, the remaining correlated
eigenstates of :H : in Eq. (11) generically have nonvanishing
momentum space entanglement, as shown in Fig. 5(b) for
the case Ptot = 30. In fact, as is evident from that figure, for
a V (q) configuration that is constrained to yield two frugal
exact states, most eigenstates of :H : are maximally mixed
in momentum space: their momentum-space entanglement
entropy is numerically comparable to the average entropy
of randomly sampled states in the same Hilbert space; i.e.,
the Page estimate [98], as indicated by the horizontal line
in Figs. 5(b) and 5(c). Now, as more potentials V (q) are set
equal, giving rise to a larger number of exact states with zero
momentum-space entanglement, the entropy of the remaining
states is only slightly lowered [Fig. 5(c)].

We stress that in momentum space, the Page estimate ap-
plies, as opposed to the real-space cut discussed previously.
This is because, for an entanglement cut separating subregions
A and B in momentum space, the Hilbert space H(Ptot ) at total
momentum Ptot factorizes after resolving the total subregion
momentum [94,96]:

H(Ptot ) =
Ptot⊕

PA=0

[HA(PA) ⊗ HB(Ptot − PA)], (58)

(a)

(b)

FIG. 5. Momentum-space entanglement. (a) We subdivide mo-
mentum space into two subregions, A and B, that have approximately
equal Hilbert space dimensions. Here, for Ptot = 30, which has a
total dimension of P (30) = 5604, we choose A = [−7, 3], and B as
its complement, yielding Hilbert space dimensions dim(A) = 1086
and dim(B) = 996. (b) Entanglement entropy calculated from the
eigenvalues of the reduced density matrix in subregion A for a system
with two exact states, which have exactly zero momentum-space en-
tanglement. The horizontal line indicates the Page estimate [98–100]
of the average entanglement entropy. We have set ε(p) = vp + ap2

with v = 1 and a = 0.1/Ptot , and have chosen V (q) = 0.1 for the
9 momenta indicated in red in the third row of the Ptot = 30 panel
of Fig. 6 in Appendix B, while for all remaining momenta V (q) is
sampled uniformly from [0.05,0.15]. (c) Entanglement entropy S(p)

A

for a system with 25 exact states, which follow from setting V (q) =
0.1 for q � 11, while for all remaining momenta V (q) is sampled
uniformly from [0.05,0.15] (other parameters left unchanged).

where Hα (Pα ) is the Hilbert space of momentum-space
subregion α = A, B at total subregion momentum Pα . This
decomposition property is required to compute the Page es-
timate in presence of total momentum conservation [99,100].
In contrast, the Hilbert space of chiral fermions does not
decompose as a tensor product in real space [114], which is
directly related to the impossibility of a lattice discretization
for chiral fermions [115]. To our knowledge, the global ther-
mal behavior of this interacting many-body quantum system
was never before studied in momentum space. Our findings
demonstrate that the exact states discussed here share the
core properties of QMBS—in being low-entanglement ex-
cited states embedded in a continuum of highly entangled
states—when analyzed with respect to their momentum-space
structure.

VII. SUMMARY AND DISCUSSION

We have shown that chirality and fermionic exchange
statistics imply the existence of exact eigenstates for a
large family of density-density interaction potentials in the
CNLLL. Since these eigenstates are of Slater-determinant
form, they remain exact eigenstates for any choice of
unidirectional single-particle dispersion relation, including
nonlinearities of arbitrary order. Their existence presupposes
certain constraints on the Fourier components V (p) of the in-
teraction potential, in that a subset of these components needs
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to be of equal strength. It is important to note that this poses
only light constraints when considering realistic systems:
short-range interactions, which are ubiquitous in metals due
to screening effects, are highly localized in position space.
Therefore their Fourier transform depends only weakly on
momentum. The complete set of interaction potentials giving
rise to exact states of the form discussed here could thus
contain a large subset of physically relevant short-range in-
teractions. We note that the scar states uncovered here have
further nonthermal features that go beyond their anomalous
(zero) momentum space entanglement entropy. Indeed, since
these states are simultaneous eigenstates of all single-particle
number operators n̂p, the expectation value 〈n̂p〉 only assumes
discrete values 〈n̂p〉 = 0, 1. On the other hand, 〈n̂p〉 follows
a continuous Fermi-Dirac distribution in states satisfying the
ETH [3]. Similarly, the spectrum of the scar state two-point
correlation matrix ρxy = 〈c†

xcy〉 exhibits a sharp discontinuity
between two discrete eigenvalues 1 and 0, which is absent for
thermal states [116].

We recall that scar states with equal energy level spacings
are usually not product states in either real or momentum
space (they are obtained by acting with raising or lower-
ing operators on such product states) [24,41,43,45,77,78].
Nevertheless, their equidistant energy spectrum gives rise to
periodic revivals in the time evolution of product states. Con-
versely, the scar states in the CNLLL—which do not have
equal energy spacing—are (momentum-space) product states
by themselves.

Finally, we note that while we have argued at the end of
Sec. III A that a uni-directional dispersion relation is essential

to stabilize exact eigenstates, our approach can be generalized
to multiple species of co-propagating chiral fermions.

Note added in proof. Recently, QMBS in the CNLLL were
also reported in Ref. [71], which discusses the persistence of
bosonic or fermionic states as approximate eigenstates away
from integrability, assuming a Coulomb interaction. Con-
versely, here we have shown that fermionic states can persist
as exact eigenstates of the CNLLL, assuming a fine-tuned
interaction.
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APPENDIX A: DERIVATION OF EQ. (23)

In order to derive Eq. (23), we start with Eq. (11):

:Hint: =
∑
p>0

V (p)
∑

qk

c†
q+pcqc†

k−pck

=
∑
p>0

V (p)
∑
q>k

(
c†

q+pcqc†
k−pck + c†

k+pckc†
q−pcq

)

=
∑
p>0

∑
q>k

[
V (p)c†

q+pcqc†
k−pck + V (q − k + p)c†

q+pckc†
k−pcq

]+
∑
q>k

∑
0<p�q−k

V (p)c†
k+pckc†

q−pcq. (A1)

In the second line, we have used that the term with q = k vanishes because p > 0, allowing us to decompose the sum
∑

qk =∑
q>k +∑

k>q, and have then exchanged the labels q ↔ k in the second sum. To obtain the third line, we have substituted
p → q − k + p only when p > q − k (which is non-negative) in the second term of the second line. For the remaining cases
where p � q − k, we keep the second term of the second line unchanged, giving rise to the third term in the third line. We
continue to manipulate

:Hint: =
∑
p>0

∑
q>k

[V (p) − V (q − k + p)]c†
q+pcqc†

k−pck +
∑
q>k

⎛
⎝ ∑

0<p<(q−k)/2

+
∑

(q−k)/2<p�q−k

⎞
⎠V (p)c†

k+pckc†
q−pcq

=
∑
p>0

∑
q>k

[V (p) − V (q − k + p)]c†
q+pcqc†

k−pck +
∑
q>k

V (q − k)c†
qckc†

kcq

+
∑
q>k

∑
0<p<(q−k)/2

[
V (p)c†

k+pckc†
q−pcq + V (q − k − p)c†

q−pckc†
k+pcq

]
, (A2)

where we have first further split up the second sum in Eq. (A1) into momenta p above and below (q − k)/2. Note that even if
(q − k)/2 is an integer and thereby a valid momentum (recall that 2π/L = 1), the term where p = (q − k)/2 does not contribute
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to the sum due to fermionic statistics. Then, in the second line, we have singled out the p = 0 contribution and substituted
p → q − k − p in the sum ranging over (q − k)/2 < p � q − k. Finally, we simplify:

:Hint: =
∑
p>0

∑
q>k

[V (p) − V (q − k + p)]c†
q+pcqc†

k−pck +
∑
q>k

V (q − k)c†
qckc†

kcq

+
∑
q>k

∑
0>p>(k−q)/2

[V (−p) − V (q − k + p)]c†
q+pcqc†

k−pck

=
∑
q>k

⎡
⎢⎢⎣V (q − k)c†

qcqckc†
k +

∑
p�=0

p>(k−q)/2

[V (q − k + p) − V (|p|)]c†
q+pcqckc†

k−p

⎤
⎥⎥⎦

=
∑
q>k

∑
p>(k−q)/2

[V (q − k + p) − δp�=0V (|p|)]c†
q+pcqckc†

k−p. (A3)

Here, we have substituted p → −p in the last sum of the first line, and then introduced

δp�=0 =
{

1 p �= 0
0 else , (A4)

to also absorb the p = 0 contribution into a single term. We have thus derived Eq. (23).

APPENDIX B: ALL FRUGAL EXACT
STATES UP TO Ptot = 40

In Fig. 6, we list the frugal exact states in all Hilbert space
sectors up to Ptot = 40. We use the same conventions as in
Fig. 1(a), except that the right panel shows the full momentum
range [−Ptot + 1, Ptot]. For a given choice of V (p) and a given
total momentum Ptot we find either 1 or 2 frugal states. Note
that while Figs. 1(a) and 6 show more than two frugal states
for some Ptot sectors, there are at most two frugal states per
choice of V (p): hence, in some sectors, there are multiple in-
equivalent frugal V (p) configurations, with each configuration
contributing at most two frugal states in the same sector.

Moreover, a given frugal choice of V (p) also gives rise
to further, not necessarily frugal, exact states in sectors with
lower total momentum. For instance, the V (p) configuration
shown in the first row of Fig. 1(a), which has eight potentials
set equal and is frugal for Ptot = 20, also gives rise to exact
states at Ptot = 19. These do not show up in the Ptot = 19 panel
of Fig. 6 because they are not frugal: the single frugal state at
Ptot = 19 requires 7 instead of eight equal potentials. In Fig. 7,
we show all Ptot sectors containing exact states as a result of
tuning V (p) to one of the frugal patterns shown in Fig. 6, as
well as the total number of resulting exact states across all
total momentum sectors.

Given a choice of V (p) that is frugal in the sector with
total momentum Ptot , let M(P) denote the number of resulting
exact states at total momentum P, where 1 � P � Ptot. While
for P = Ptot, M(Ptot ) ∈ {1, 2} as noted previously, for P � Ptot ,
M(P) can be much larger. Based on Fig. 7, we make several
observations:

(1) Homogeneous V (p) configurations that have a whole
range of potentials V (1) = V (2) = · · · = V (n) set equal lead
to smooth M(P) distributions that assume a maximum at P̄,
where n < P̄ < Ptot . Naively, one might expect that P̄ = n,
which is the largest Hilbert space sector that has all fermionic
basis states rendered exact by setting V (1) = V (2) = · · · =
V (n). However, the smaller fraction of exact states in sectors

at P > n is balanced by the larger Hilbert space dimension
P (P) of these sectors [recall that P (x) counts the integer
partitions of x]. As an example, see the first rows of Ptot = 20
and 29, respectively, in Fig. 7.

(2) Alternating V (p) configurations that have every sec-
ond potential V (1) = V (3) = · · · = V (2n + 1) set equal lead
to a single frugal state in all total momentum sectors with
P = (m + 1)(m + 2)/2, m = 0 . . . n, and no further nonfru-
gal exact states in other sectors. These potential distributions
were discussed in Sec. IV A of the main text. As an ex-
ample, see Ptot = 21 and 28 in Fig. 7, which respectively
realize the case n = 5 and n = 6. For instance, the alternating
V (p) configuration that is frugal at Ptot = 21 also renders the
five frugal states at P = 3, 6, 10, 15 exact (Fig. 6), in addi-
tion to the trivial exact state at P = 1. This is because the
choice V (1) = V (3) = · · · = V (2n + 1) implies the choice
V (1) = V (3) = · · · = V (2(n − 1) + 1). Therefore we obtain
M = ∑21

P=1 M(P) = 6. (3) Intermediate V (p) configurations
that consist of disconnected islands of equal potentials have
an M(P) distribution that interpolates between the two cases
(1) and (2). See for example Ptot = 31 and 35 in Fig. 7.

APPENDIX C: LEVEL STATISTICS ANALYSIS

To access thermalization properties, we study the en-
ergy level statistics of :H : in Eq. (11) for various potential
distributions containing exact states, while fixing the dis-
persion to ε(p) = vp + ap2 with v = 1 and a = 0.1/Ptot .
More precisely, we use the adjacent gap ratio, introduced in
Ref. [106]:

rn = min(sn, sn−1)

max(sn, sn−1)
, sn = en+1 − en, (C1)

where en are the sorted eigenvalues of the Hamiltonian
(en+1 � en). The probability distribution P(r) is known for in-
tegrable systems, where it follows Poisson level statistics, and
various random matrix ensembles, where it follows Wigner-
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FIG. 6. Frugal exact state overview. We use the same conventions as in Fig. 1(a), except that the right panel shows the full momentum
range [−Ptot + 1, Ptot]. For each Ptot , we show (1) the value of Ptot . (2) The minimal V (p) tuning patterns giving rise to exact states. All V (p)
where p is indicated in red need to be set equal for the states shown in (3) to be exact. Tuning a smaller number of potentials does not give rise
to exact states. (3) Frugal states resulting from the respective tuning patterns. These are Slater-determinant states where the electronic modes
at momenta indicated in yellow are occupied. All modes at momenta p > Ptot or p < 1 − Ptot are fully empty or fully occupied, respectively,
and are therefore not shown.
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FIG. 7. Frugal state potential tuning patterns and symmetry sectors containing exact states as a consequence. We use the same conventions
as in Fig. 1(a). For each total momentum Ptot , we show (1) the value of Ptot . (2) The V (q) tuning patterns giving rise to frugal exact states,
also shown in Fig. 6. (3) The list of total momentum sectors P containing exact states as a result of the given V (p) configuration. Each box
corresponds to a choice of P, ranging from P = 1 to P = Ptot . The gray scale indicates the ratio M(P)/ max({M(P)|1 � P � Ptot}). The list of
participating sectors contains P = Ptot as its largest element, but also captures (potentially nonfrugal) exact states in sectors with smaller total
momentum P < Ptot that arise from truncating V (q) at q = P. (4) The total number M = ∑Ptot

P=1 M(P) of resulting exact states across all Ptot

sectors.
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(a) (b) (c) (d)

FIG. 8. Level statistics for a maximally random pattern of potentials V (p) that allows for a nonzero number of exact states in the Hilbert
space sector with Ptot = 30. We have set L = 2π for convenience. (a) To ensure the presence of exact eigenstates, we set to 0.1 all potentials
highlighted in red in the first row of the Ptot = 30 panel (left-hand side) of Fig. 6 (indicated in red). The remaining potentials are drawn
uniformly from the range [0.05,0.15]. (b) Since the momentum space structure of V (p) is nonanalytic, the resulting real-space potential V (x)
does not decay with distance—although it is prominently peaked at x = 0, it features small disorder contributions at finite x. (c) Full energy
spectrum of :H : in Eq. (11). We have set ε(p) = vp + ap2 with v = 1 and a = 0.1/Ptot . The energies of the two exact states, corresponding to
the first two rows of the Ptot = 30 panel (right-hand side) of Fig. 6, are indicated by horizontal bars. (d) Probability of the adjacent gap ratio r,
defined in Eq. (C1). The orange line shows the exact result for the Gaussian orthogonal random matrix ensemble [107]. We obtain an average
adjacent gap ratio of r̄ ≈ 0.534.

Dyson level statistics [107]. In particular, integrable systems
exhibit an average adjacent gap ratio r̄ ≈ 0.386, while ma-
trices drawn from the Gaussian orthogonal ensemble (GOE)
exhibit r̄ ≈ 0.536. Noting that :H : is purely real, GOE is the
appropriate ensemble for our purposes, as it corresponds to a
uniform distribution over symmetric real matrices. Comparing
the P(r) of :H : in various parameter regimes with these known
cases then allows us to deduce to what extent the system is
integrable or ergodic.

We study the level statistics of :H : with a quadratic per-
turbation, ε(p) = vp + ap2, for different interactions V (p) in
Figs. 8–10. Figure 8 shows the spectrum and level statistics
for a potential V (x) that is sharply peaked at x = 0 but has
long-range disorder. The resulting level statistics is of Wigner-
Dyson type, indicating thermalization. Figure 9 shows the

spectrum and level statistics for a potential V (x) that is peaked
at x = 0 but slowly decaying. The resulting level statistics
is also of Wigner-Dyson type. Finally, Fig. 10 shows the
spectrum and level statistics for a potential V (x) that is peaked
at x = 0, and decaying very fast away from its maximum.
The resulting level statistics is of Poisson type, which can
be understood by noting that this system is close to the in-
tegrable limit where V (x − y) = δ(x − y). Nevertheless, we
expect that even when V (x) is only slightly detuned from
the integrable limit, sufficiently large Hilbert space sectors
will show thermalization (for the parameter choice in Fig. 10,
these are not accessible in our numerics). For all cases, we
have chosen interaction potentials that are tuned to give rise
to frugal exact states, whose presence does not affect level
statistics considerations. Moreover, we have set a ∼ L〈V 〉/Ptot

(a) (b) (c) (d)

FIG. 9. Level statistics for a nonrandom pattern of potentials V (p), corresponding to a slowly exponentially decaying interaction in real
space, that gives rise to two exact states in the Hilbert space sector with Ptot = 30. We have set L = 2π for convenience. (a) To ensure the
presence of exact eigenstates we set to 0.1 all potentials V (p) with |p| � 10 (indicated in red). For the remaining momenta, V (p) decays
as a Gaussian, with its functional form indicated in the figure. (b) Since the momentum space structure of V (p) is continuous, the resulting
real-space potential V (x) decays only slowly as a result of the abrupt drop in V (p). Since the decay of V (x) is slow, however, V (x) is not well
approximated by a delta-function or strictly local potential. (c) Full energy spectrum of :H : in Eq. (11). We have set ε(p) = vp + ap2 with
v = 1 and a = 0.1/Ptot . The energies of the two exact states are indicated by horizontal bars. (d) Probability of the adjacent gap ratio r, defined
in Eq. (C1). The orange line shows the exact result for the Gaussian orthogonal random matrix ensemble [107]. We obtain an average adjacent
gap ratio of r̄ ≈ 0.53.
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(a) (b) (c) (d)

FIG. 10. Level statistics for a nonrandom pattern of potentials V (p), corresponding to a short-range interaction in real space, that gives
rise to two exact states in the Hilbert space sector with Ptot = 30. We have set L = 2π for convenience. (a) To ensure the presence of exact
eigenstates we set to 0.1 all potentials V (p) with |p| � 10 (indicated in red). For the remaining momenta, V (p) decays as a Gaussian, with its
functional form indicated in the figure. (b) Since the momentum space structure of V (p) is smooth, the resulting real-space potential V (x) is
short-range. (c) Full energy spectrum of :H : in Eq. (11). We have set ε(p) = vp + ap2 with v = 1 and a = 0.1/Ptot . The energies of the two
exact states are indicated by horizontal bars. (d) Probability of the adjacent gap ratio r, defined in Eq. (C1). The red line shows the result for
integrable systems satisfying Poisson level statistics [107]. We obtain an average adjacent gap ratio of r̄ ≈ 0.372.

for the quadratic part of the dispersion relation, which here
is given by ε(p) = vp + ap2. This choice is made so that
the nonlinearity a competes with the interaction V (p): for
a � L〈V 〉/Ptot , the system approaches the free fermion in-
tegrable limit; for a � L〈V 〉/Ptot , the system approaches the
free boson limit. In either case, the level statistics approaches
Poisson statistics unless a ∼ L〈V 〉/Ptot .

APPENDIX D: NONLINEARITY IN THE BOSONIC BASIS

Here, we derive the Hamiltonian of the CNLLL in the
bosonic basis (see also Sec. III B). We focus on the quadratic
perturbation to the dispersion relation and neglect all higher-
order terms in Eq. (2). Restricting to a quadratic perturbation
gives rise to a special algebraic structure [Eq. (D5) below]
that speeds up the numerical generation of Hamiltonian matrix
elements for large Hilbert space sectors. For the sake of gen-
erality, in this Appendix section only, we do not set L = 2π ,
but instead keep 2π/L ≡ 	 as a variable. We then consider
the Hamiltonian

H =
∑

p

(vp + ap2)c†
pcp + Hint

≡ Hlin + Hquad + Hint, Hlin = v
∑

p

pc†
pcp,

Hquad = a
∑

p

p2c†
pcp, (D1)

where we assume ap2 � vp. We begin by calculating

[Hquad, b†
q] = aq2b†

q + 2a
√

	q
∑

p

pc†
p+qcp, (D2)

implying that the spectrum-generating algebra of Eq. (18)
does not generalize to Hquad. However, we furthermore have
that

[[Hquad, b†
q], b†

k] = 2a
√

	
√

k2q + kq2b†
k+q, (D3)

and therefore the algebra closes:

[[[Hquad, b†
q], b†

k], b†
l ] = 0. (D4)

For the complete Hamiltonian H , we obtain

[H, b†
q] = q[v + aq + V (q)]b†

q + 2a
√

	q
∑

p

pc†
p+qcp,

(D5)

[[H, b†
q], b†

k] = 2a
√

	
√

k2q + kq2b†
k+q, (D6)

[[[H, b†
q], b†

k], b†
l ] = 0. (D7)

Now, consider the noninteracting ground state |�〉, which is
also still an eigenstate of the full Hamiltonian in that it satisfies

:H : |�〉 = 0. (D8)

Because [Hquad, b†
q] is not proportional to b†

q, we cannot any-
more write down the full spectrum as we did in Eq. (22). This
breakdown of integrability is also implied by the commutator

[Hquad, Hint] �= 0 (D9)

being nonzero, so that we cannot find a common diagonal
basis for the kinetic and interacting parts of the Hamiltonian.
To obtain the Hamiltonian in all Hilbert space sectors, labeled
by total momentum and the total particle number in Eq. (5),
we now introduce |�N 〉 as the ground state of Hlin at particle
number :N̂ : |�N 〉 = N |�N 〉, so that (recall 	 = 2π/L)

c†
p |�N 〉 = 0 (p � 	N ),

cp |�N 〉 = 0 (p > 	N ).
(D10)

With respect to |�〉, it has an energy

:Hlin: |�N 〉 = 	v

2
N (N + 1) |�N 〉 , (D11)

which is zero for N = −1 and otherwise positive. Then, all
other states at particle number N are spanned by the orthonor-
mal basis

|N, m〉 ≡
∏
q>0

b
†mq
q√
mq!

|�N 〉 , (D12)

where 0 � mq ∈ Z, q > 0, are boson occupation numbers (we
have that b†

qbq |�N 〉 = 0 for all N). We need to systematically
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express also the second term of [H, b†
q], Eq. (D5), in terms

of the bosonic and particle number operators. Such a rep-
resentation must be possible because that term preserves N̂ ,
and the bosonic operators span the full Hilbert space at fixed
:N̂ := N , see for example Eq. (37). In fact, we only need to
find a representation of∑

p

pc†
p+qcp |�N 〉 ≡

∑
∑

l lml =q

γqNm |N, m〉

=
∑

∑
l lml =q

γqNm

∏
l>0

b†ml
l√
ml !

|�N 〉 , (D13)

where q = 	q̂, and
∑

l lml = q̂ is a partition of q̂ into positive
integers l̂ml . The contributions of all other boson occupations
m vanish because the total momentum is fixed to q—we there-
fore treat m as an q̂-dimensional vector, because its nonzero
components may range from m1 to mq̂. The expansion coeffi-
cients γqNm are obtained as

γqNm = 〈�N |
∏
l>0

bml
l√
ml !

∑
p

pc†
p+qcp |�N 〉 . (D14)

To evaluate them, we need the commutator[
bl ,

∑
p

pc†
p+qcp

]

=
√

2π

Ll

∑
p

p
(
c†

p+q−l cp − c†
p+qcp+l

)

=
√

2π

Ll

∑
p

(
p :c†

p+q−l cp: +p 〈�N |c†
p+q−l cp|�N 〉)

−p :c†
p+qcp+l : −(p 〈�N |c†

p+qcp+l |�N 〉)
=
√

2π

Ll

∑
p

[
p :c†

p+q−l cp: −(p − l ) :c†
p+q−l cp:]

[+pδlq(δp̂�N − δp̂�−q̂+N )]

=
√

2π l

L

∑
p

:c†
p+q−l cp: +δlq	√

q̂

∑
−q̂+N<p̂�N

p̂

=
√

l (q − l )b†
q−l + δlq	

√
q̂

[
N − 1

2
(q̂ − 1)

]
, (D15)

where we have taken care to only shift summation vari-
ables in normal-ordered expressions, and have used that
〈�N |c†

pcq|�N 〉 = δpqδp̂�N . Here, δp̂�N is equal to 1 when p̂ �
N and zero otherwise. Because of [bl , b†

p] = δl p and bl |�N 〉 =
0 for all N , only three distinct kinds of partitions contribute.

(1) The trivial partition m = (0 . . . , 1), with mk = δkq,
comes with the coefficient

γqNδkq = 〈�N | bq

∑
p

pc†
p+qcp |�N 〉

= 〈�N |
[

bq,
∑

p

pc†
p+qcp

]
|�N 〉

= 	
√

q̂

[
N − 1

2
(q̂ − 1)

]
. (D16)

(2) The bipartitions m = (0 . . . , 1, 0 . . . , 1, 0 . . . ), with mk =
δkl + δk,q−l , l < q, l �= q/2, come with the coefficients

γqN,δkl +δk,q−l = 〈�N | bq−l bl

∑
p

pc†
p+qcp |�N 〉

= 〈�N | bq−l

[
bl ,

∑
p

pc†
p+qcp

]
|�N 〉

= 〈�N | bq−l

√
l (q − l )b†

q−l |�N 〉 =
√

l (q − l ).

(D17)

(3) In the case where q̂ is even, there is a symmetric bipartition
that needs to be treated separately: m = (0 . . . , 2, 0 . . . ), with
mk = 2δ2k,q, has coefficient

γqN,2δ2k,q = 〈�N | b2
q/2√
2!

∑
p

pc†
p+qcp |�N 〉

=
√

(q/2)(q/2)

2
= q√

8
. (D18)

In summary, we have derived that

∑
p

pc†
p+qcp |�N 〉 = 	

√
q̂

[
N − 1

2
(q̂ − 1)

]
b†

q |�N 〉

+
∑

1�l̂<q̂/2

√
l (q − l )b†

l b†
q−l |�N 〉

+ q√
8

b†2
q/2√
2!

|�N 〉 , (D19)

where the last term is only to be included when q̂ is even. We
also need

:H : |�N 〉 = (:Hlin: + :Hquad:) |�N 〉

= 	

2

[
v + 	a

3
(2N + 1)

]
N (N + 1) |�N 〉

≡ E0N |�N 〉 , (D20)

so that the N-particle ground states |�N 〉 already provide us
with an exact tower of eigenstates at energies E0N . We are
now also in a position to write down the full Hamiltonian in
the bosonic basis. We begin with

:H : b†
q |�N 〉

= (
[:H :, b†

q] + E0N b†
q

) |�N 〉
= (E0N + Eq̂)b†

q |�N 〉 + 2a
√

	q
∑

p

pc†
p+qcp |�N 〉

≡ ENqb†
q |�N 〉 + 2a

√
	q

{
	
√

q̂

[
N − 1

2
(q̂ − 1)

]
b†

q

+
∑

1�l̂<q̂/2

√
l (q − l )b†

l b†
q−l + q√

8

b†2
q/2√
2!

}
|�N 〉 (D21)
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For closure, we need to complement this with the set of
equations

:H : b†
l b†

q−l |�N 〉
= {

[[:H :, b†
l ], b†

q−l ] + b†
q−l [:H :, b†

l ]

+ b†
l [:H :, b†

q−l ] + E0N b†
l b†

q−l

} |�N 〉 . (D22)

Plugging in the commutators from Eq. (D5), using Eq. (D19),
and iterating, we find that :H : explores the space of all
partitions, because we can write every partition in terms of
successive bipartitions. Now, first note that Eqs. (D20) and
(D21) can be rewritten as

:H : |�N 〉 = E (N, 0) |�N 〉 ,

:H : b†
q |�N 〉=

⎡
⎣E (N, q)b†

q +
∑

l<q/2

G(l, q)b†
l b†

q−l + B(q)
b†2

q/2√
2!

⎤
⎦

× |�N 〉 , (D23)

where we have introduced the functions

E (N, q) = v	
N (N + 1)

2
+ a	2 N (N + 1)(2N + 1)

6
+ q[v + V (q) + a	(2N + 1)],

G(l, q) = 2a
√

lq(q − l )	,

B(q) = 2a

√
q3	

8
. (D24)

Furthermore, all higher-order terms can be obtained by com-
mutator iteration (recursion relation):

:H : b†
qn+2

b†
qn+1

b†
qn

. . . b†
	 |�N 〉

= 2a
√

qn+2qn+1(qn+2 + qn+1)	b†
qn+2+qn+1

b†
qn

. . . b†
	 |�N 〉

+(b†
qn+2

Hb†
qn+1

+ b†
qn+1

Hb†
qn+2

)b†
qn

. . . b†
	 |�N 〉

−b†
qn+2

b†
qn+1

Hb†
qn

. . . b†
	 |�N 〉 . (D25)

The Hamiltonian matrix is now fully specified and can be
generated using a computer algebra system.

APPENDIX E: EXAMPLE OF AN INFINITE FAMILY
OF NONFRUGAL SEQUENCES

In generalization to the analysis in Sec. IV, we here write
down an infinite family of exact states that are nonfrugal in
general, given by

|� (+2m,1)
k̄

〉 = c†
2k̄+2m

(
k̄−1∏
k′=1

c†
2k′

)(
k̄∏

k=1

c−(2k−1)

)
|�〉 ,

|� (+2m,1)
k̃

〉 = c†
2k̃−1+2m

⎛
⎝ k̃−2∏

k′=0

c†
2k′+1

⎞
⎠
⎛
⎝k̃−1∏

k=0

c−2k

⎞
⎠ |�〉 .

(E1)

These states are the generalization of Eq. (44), where we
increase the momentum of the highest occupied state by 2m
rather than 2. Similarly, we can build the analog of the eigen-
states in Eq. (45) by reducing the momentum of the lowest

unoccupied state by 2m rather than 2:

|� (+2m,2)
k̄

〉 =
(

k̄∏
k′=1

c†
2k′

)(
k̄−1∏
k=1

c−(2k−1)

)
c−(2k̄−1)−2m |�〉 ,

|� (+2m,2)
k̃

〉 =
⎛
⎝ k̃−1∏

k′=0

c†
2k′+1

⎞
⎠
⎛
⎝k̃−2∏

k=0

c−2k

⎞
⎠c−2(k̃−1)−2m |�〉 .

(E2)

These states are defined for any m ∈ N, where m = 0 cor-
responds to Eqs. (40) and (42), while m = 1 corresponds
to Eqs. (44) and (45). They have total momentum P =
2m + k̄(2k̄ + 1) and P = 2m + k̃(2k̃ − 1), respectively, and
are exact eigenstates of :H : in Eq. (11) as long as the poten-
tials V (2) = V (4) = · · · = V (2m) = V (1) = V (3) = V (5) =
· · · = V (2(n + m) + 1) are set equal. We note that this is a
self-consistent potential configuration (Sec. V B), and indeed
the states in Eqs. (E1) and (E2) are of the form of Eq. (54) and
its particle-hole dual. From the data presented in Appendix B,
we find that there are no frugal examples for m > 1 in the total
momentum sectors with Ptot � 40.

APPENDIX F: EXACT STATE ENTANGLEMENT
IN REAL SPACE

In this Appendix, we explain how to calculate the entangle-
ment entropy of momentum-space Slater-determinant states
in continuous real space by diagonalizing a finite-dimensional
matrix. This method was used to plot Fig. 4(c) and is based
on Refs. [117,118] and on the formula for the entanglement
entropy for Gaussian states [119].

1. Single-particle states

We assume periodic boundary conditions on a one-
dimensional ring of circumference L (in the main text, we
have set L = 2π ). The momentum-space orbitals are given by

|�p〉 = 1√
L

∫ L/2

−L/2
dx eipx |x〉 , (F1)

where p ∈ 2πZ/L, and |x〉 = c†
x |0〉 is a basis state at posi-

tion x where 〈x|y〉 = δ(x − y) (see Eqs. (3) and (4)), while
|0〉 is the fermionic vacuum. Then, the momentum-space or-
bitals satisfy 〈�p|�q〉 = δpq. For a real-space decomposition
[−L/2, L/2] = A ∪ B without overlap between A and B, we
introduce |a〉 and |b〉 as orthonormal orbitals with exclusive
support in subregions A and B, respectively:

PA |a〉 = |a〉 , PB |a〉 = 0, 〈a|a′〉 = δaa′ ,

PB |b〉 = |b〉 , PA |b〉 = 0,

〈b|b′〉 = δbb′ , 〈a|b〉 = 0, (F2)

where

PA,B =
∫

A,B
dx |x〉 〈x| (F3)
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is the projector onto subregion A or B. Now, we may decom-
pose each momentum-space orbital as

|�p〉 =
∑

a

T A
pa |a〉 +

∑
b

T B
pb |b〉 ,

T A
pa = 〈a|�p〉 , T B

pb = 〈b|�p〉 . (F4)

To fully capture |p| plane waves |�p〉, we must at most con-
sider a total of |a|, |b| � |p| orbitals in either subregion. Since
in continuous space, no finite number |p| of plane waves spans
the full space of single-particle states, there is no complete-
ness constraint, i.e., |a| + |b| is not necessarily equal to |p|,
so that the T matrix only acts unitarily in the Hilbert sub-
space spanned by the |p| plane waves. We now introduce the
Hermitian |p| × |p| matrix of plane-wave overlaps restricted
to subregion A,

(OA)pq = 〈�p|PA|�q〉 ≡
∑

i

λivipv̄iq, (F5)

where in the last equation we introduced the spectral de-
composition of OA, using its eigenvalues λi � 0, i = 1 . . . |p|,
and eigenvectors vip. For the subregion A = [−LA/2, LA/2],
we find

(OA)pq = 1

L

∫ LA/2

−LA/2
dx
∫ LA/2

−LA/2
dy e−i(px−qy) 〈x|y〉

= 2

L(p − q)
sin

[
LA(p − q)

2

]
, (F6)

where p and q only range over occupied momenta. In practice,
we diagonalize OA numerically to find λi and vip.

Making use of the spectral decomposition of OA in
Eq. (F5), a convenient choice of orbitals for subregion A
satisfying all requirements of Eq. (F2) is then given by

|a〉 =
∑

p

vap√
λa

PA |�p〉 , PA |�p〉 =
∑

a

√
λav̄ap |a〉 ,

→ T A
pa =

√
λav̄ap, (F7)

where a only ranges over the nonzero eigenvalues λa > 0 of
OA. Therefore, if OA has zero modes because the restricted
orbitals PA |�p〉 are not linearly independent in subregion
A, then |a| is strictly smaller than |p|. To derive the second
equation in (F7), we have used that

∑
p v j pPA |�p〉 = 0 holds

when λ j = 0, that is, for all zero modes of OA. Now, because∑
i

(√
λiv̄pi

)†(√
λiv̄iq

) = (OA)pq, (F8)

we can identify (√
λiv̄iq

) = (
UO1/2

A

)
iq, (F9)

where U is a unitary matrix and O1/2
A denotes the unique

Hermitian square root of the Hermitian positive-semidefinite
matrix OA. We will see that U does not enter in the calculation
of the entanglement entropy. In conclusion, we have derived

PA |�p〉 =
∑

a

(
UO1/2

A

)
ap |a〉 , (F10)

where |a〉 forms an orthonormal basis for subregion A. A
similar construction applies to the orbitals in subregion B.

2. Slater-determinant state entanglement

For a given set of occupied momenta p ∈ occ, the restricted
correlation matrix, which is used to calculate the entanglement
entropy of Slater-determinant states [119], is given by

PAPoccPA =
∑
p∈occ

PA |�p〉 〈�p|PA =
∑
aa′

C̃occ
aa′ |a〉 〈a′| ,

(F11)
where we have defined

C̃occ
aa′ =

∑
p∈occ

(
UO1/2

A

)
ap

(
O1/2

A U †)
pa′ . (F12)

Now, because |a〉 is an orthonormal basis in subregion A,
we can diagonalize the |a| × |a| matrix C̃occ, |a| � |occ|, to
find all nonzero entanglement eigenvalues. Specifically, let λα ,
α = 1 . . . |a|, be the eigenvalues of C̃occ. Since U is unitary,
they are equal to the eigenvalues of the matrix

Cocc
aa′ =

∑
p∈occ

(
O1/2

A

)
ap

(
O1/2

A

)
pa′ , (F13)

so that U drops out and only knowledge of O1/2
A is required.

Then, the entanglement entropy is given by [119]

SA = −
∑

α

[λα ln λα + (1 − λα ) ln(1 − λα )]. (F14)

This implies that SA can be calculated using the OA matrix
itself, even if it has zero modes that in principle reduce the
number of orbitals |a〉 needed in subregion A.

Note that we are dealing with a chiral one-dimensional
system, thus precluding a lattice representation. Moreover,
working directly with PAPoccPA in real space would in princi-
ple require diagonalizing an infinite-dimensional matrix. This
difficulty is circumvented by the introduction of an orthonor-
mal basis in subregion A encoding the chiral momentum
constraint.

3. Symmetries of the entanglement entropy

Remarkably, the entanglement entropy of the exact eigen-
states discussed in the main text is invariant under the
particle-hole duality defined in Sec. V A, even when their en-
ergy is not. In Eq. (49), the duality transformation is obtained
by first reflecting all momenta p → 1 − p, and then imple-
menting a particle-hole conjugation np → n̄p. We now recall
that the entanglement entropy of a Slater-determinant state is
calculated from the eigenvalues of its restricted correlation
matrix [119], Eq. (F11),

C = PAPoccPA. (F15)

The reflection p → 1 − p is composed of two parts: (1) a
spinless time-reversal symmetry sending p → −p, and rep-
resented in Hilbert space by an antiunitary operator T , and (2)
a momentum shift sending p → p + 1, which can be absorbed
by a re-definition of the momentum coordinate origin as long
as the momentum-space cutoff � (defined in Sec. II A) is
sent to infinity. Using that time-reversal symmetry leaves the
real-space projector PA invariant, we have

PA
(
TPoccT †

)
PA = TCT †, (F16)
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which has the same spectrum as C because T is antiunitary (C
is Hermitian and hence has a real spectrum). Thus the reflec-
tion p → 1 − p leaves the entanglement entropy unaffected as
long as the momentum-space cutoff � is sent to infinity. Next,
it was shown in Ref. [111] that the spectrum of C is identical
to the spectrum of the matrix

C̃occ = PoccPAPocc. (F17)

This momentum-space–real-space duality implies that the fol-
lowing two entanglement entropies are identical.

(1) The entanglement entropy of a Slater-determinant state
with projection operator Pocc, in presence of an entanglement
cut separating subregion A from its complement in real space,
and

(2) The entanglement entropy of a Slater-determinant state
with projection operator PA, in presence of an entanglement
cut separating the occupied subspace of Pocc from its comple-
ment in momentum space.

The particle-hole conjugation np → n̄p implies a substi-
tution Pocc → Pemp, where Pemp = 1 − Pocc is the projector
onto the empty subspace. Hence, the particle-hole conjugated
entanglement entropy may be obtained from

C̃emp = PempPAPemp. (F18)

Since PA projects onto the occupied subspace of a pure quan-
tum state—the Slater-determinant state that has all real-space
orbitals in subregion A occupied—the entanglement entropy
is actually independent of whether the empty or occupied
subspace is traced out. Hence, the entanglement entropy cal-
culated from C̃emp is identical to the entanglement entropy
calculated from C̃occ.

In conclusion, we find that the transformation in Eq. (49)
does not change the entanglement entropy of a chiral Slater-
determinant state, as long as the momentum-space cutoff � is
sent to infinity. We note, however, that numerical calculations
necessitate a finite cutoff, and so a small mismatch remains
at any finite cutoff. This mismatch is invisible to the eye in
Fig. 4, which uses � = 100.

APPENDIX G: NAIVE ESTIMATE FOR THE MAXIMAL
REAL-SPACE ENTANGLEMENT ENTROPY

IN CHIRAL SYSTEMS

To estimate the maximal real-space entanglement entropy
of excited states, we first note that the states of a chiral
system in principle involve an infinite number of occupied
orbitals at negative momenta. In practice, we introduce a
cutoff −� � −Ptot � 0, � > 0, and occupy by default all
momenta at −� < p � −Ptot , so that each fermionic state of
the Hilbert space sector at Ptot, given in Eq. (9), contains a total

of � electrons. Assuming a homogeneous charge distribution
and a subregion length LA, A will host NA = �lA electrons on
average, where lA = LA/L. At the same time, the fermionic
basis states of a given Ptot sector may access all momentum
orbitals in the range (−�, Ptot]. Since real space is continuous,
any subregion A—independent of its size—can in principle
accommodate all (Ptot + �) orbitals without linear depen-
dencies. Taking into account that a real-space cut preserves
particle number, this observation yields an entanglement en-
tropy bound

Smax
A = ln

(
Ptot + �

�lA

)
≈ �[−lA ln lA − (1 − lA) ln(1 − lA)], (G1)

which grows linearly with �. In the second line, we have
assumed that � � Ptot , as well as � � 1 and �lA � 1. Note
that Smax

A is closely related to the Page estimate [98–100,112]
of the average entanglement entropy.

However, the entanglement entropy of an exact Slater-
determinant eigenstate of the Hamiltonian in Eq. (11) grows
only logarithmically with �, in contrast to the linear growth
of Smax

A in Eq. (G1): this is because any additional momentum
orbitals at −� � p � −Ptot are completely filled by default,
and hence—employing the position-momentum duality of
Ref. [111]—yield logarithmic contributions to the entangle-
ment entropy at fixed lA.

We exemplify our previous discussion by considering
� = 100 and the frugal state No. 12 in the Ptot = 20 sec-
tor [Figs. 4(a) and 1(a)]. We find SA ≈ 4 at lA = 1/4, while
Smax

A ≈ 59. The discrepancy between Smax
A and the actual exact

state entanglement can be understood by noting that our naive
estimate does not properly take into account the effect of
chirality. Indeed, combined with total momentum conserva-
tion, chirality leads to a finite Hilbert space at a given total
momentum. However, any real space entanglement cut breaks
translational symmetry—hence, we lose total momentum as a
good subregion quantum number, and cannot use it to further
constrain Eq. (G1). Nevertheless, the constraints of chirality
and total momentum conservation, not properly reflected in
Eq. (G1), are expected to greatly reduce the average entan-
glement entropy. This is because, in chiral states, the vast
majority of momenta (all momenta p with −� < p � −Ptot)
is occupied homogeneously. To our knowledge, there is so far
no analytic understanding of these effects on the typical be-
havior of the real-space entanglement entropy, which makes it
difficult to assess how similar the exact states are to featureless
thermal states. This situation should be put in contrast with the
entanglement entropy of nonchiral free fermions, for which
bounds based on lattice discretization (unavailable for chiral
fermions) were established in Ref. [112].
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[15] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett. 110,

260601 (2013).
[16] R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter

Phys. 6, 15 (2015).
[17] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod.

Phys. 91, 021001 (2019).
[18] W. De Roeck and F. Huveneers, Phys. Rev. B 95, 155129

(2017).
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Vuletić, and M. D. Lukin, Nature (London) 551, 579 (2017).

[23] C. Turner, A. Michailidis, D. Abanin, M. Serbyn, and Z. Papic,
Nat. Phys. 14, 745 (2018).

[24] O. Vafek, N. Regnault, and B. A. Bernevig, SciPost Phys. 3,
043 (2017).

[25] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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