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The strong-coupling phase diagram of magic-angle twisted bilayer graphene (TBG) predicts a series of exact
one-particle charge ±1 gapped excitations on top of the integer-filled ferromagnetic ground states. Finite-size
exact diagonalization studies showed that these are the lowest charge ±1 excitations in the system (for 10 nm
screening length), with the exception of charge +1 at filling −1 in the chiral limit. In the current paper we show
that this “trion bound state,” a 3-particle, charge 1 excitation of the insulating ferromagnetic ground state of the
projected Hamiltonian of TBG, is the lowest charge +1 overall excitation at ν = −1, and also for some large
(≈20 nm) screening lengths at ν = −2 in the chiral limit and with very small binding energy. At other fillings, we
show that trion bound states do exist, but only for momentum ranges that do not cover the entire moiré Brillouin
zone. The trion bound states (at different momenta) exist for finite parameter range w0/w1 but they all disappear
in the continuum far below the realistic values of w0/w1 = 0.8. We find the conditions for the existence of the
trion bound state, a good variational wave function for it, and investigate its behavior for different screening
lengths, at all integer fillings, on both the electron and hole sides.
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I. INTRODUCTION

Cascades of transitions observed at integer fillings of the
narrow bands of the magic-angle twisted bilayer graphene
(TBG) in scanning tunneling spectroscopy (STM) [1–6] as
well as in electronic compressibility [7–11] experiments have
demonstrated the strongly correlated nature of this remarkable
physical system [12–66]. The spectroscopic shifts observed at
integer fillings in the narrow band’s tunneling density of states
observed in STM are comparable to, or larger than, the narrow
bandwidth. Moreover, there are clear spectral signatures of a
high density of states approaching the Fermi level as a nonzero
integer filling ν is reached from the charge neutrality point
(CNP) side, but then a rapid resetting to ∼20 meV above the
Fermi level is observed as the same ν is approached from the
remote band side [5]. This phenomenology is naturally un-
derstood as a cascade between light and heavy fermions [67],
where the electron (hole) excitations at a positive (negative)
integer ν are light fermions with a minimum at the center of
the moiré Brillouin zone (mBZ), while the hole (electron) ex-
citations at a positive (negative) integer ν are heavy fermions
[68,69].

In this paper, we extend the analysis of the strong-coupling
limit of TBG [70–114] at integer filling by studying a further
set of excitations, trions, i.e., composite charge ±1 excita-
tions, consisting of two electrons and one hole, or two holes
and one electron [115,116]. We specifically look for bound
states below the 2 electron–1 hole (or vice versa) continuum.

On the light-mass side, we find that trion bound states are
at a higher energy than the lowest single-particle excitations
for a range of momenta near the minimum of the disper-
sion, but can become lower than single-particle excitations
for larger momenta and higher energies. On the heavy-mass
side, the trion bound state energy can be very close to the
lowest-energy single-particle charge excitation for a range
of momenta. Although we never find the trion bound state
to be the absolute lowest energy excitation for realistic val-
ues of TBG parameters at any integer ν, in the idealized
chiral limit trion bound states are lower in energy at all mo-
menta with a small binding energy on the heavy-mass side
of ν = ±1, where single-particle excitations form an almost
perfectly flat band (Fig. 6(b) of Ref. [68]) [67,69]. The ab-
sence of a lower energy excitation than the single-particle
excitation (recently also pointed out in Ref. [117] for realistic
TBG parameters) for |ν| = 2 (for screening length ξ = 10
nm at all w0/w1 = 0) has negative implications for asso-
ciating this excitation with the superconducting mechanism
[118–141]. In particular, the existence of trion bound states
is a necessary requirement for the formation of skyrmions,
which have been hypothesized as a pairing glue for TBG
[117,142,143]. While skyrmions may be stabilized in Chern
bands [144–147]—such as the flat bands of TBG in the
chiral limit, w0/w1 = 0—the absence of trion bound states
at realistic parameter values implies that they do not per-
sist away from the chiral limit (see also our added note in
Sec. VI).
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Our results are consistent with the previous exact di-
agonalization (ED) study [148] with ξ = 10 nm in which
single-particle excitations were found to have the lowest ab-
solute energy, except in the chiral limit at |ν| = 1 and filling
toward the CNP, i.e., on the heavy-mass side. In Fig. 14(b) of
Ref. [148], a trion bound state composed of 2 electrons and 1
hole, all in the same Chern sector, is shown to have a lower
energy than the single (heavy) electron excitation at ν = −1
by about 1 meV. At ν = −1, but for opposite charge—and
in both charge sectors of all the other integer fillings—the ED
study [148] shows that the one-particle excitation is the lowest
excitation of the system. Reference [148] did not, however,
investigate the existence of trion bound states at specific mo-
menta or away from the chiral limit, nor did it obtain analytic
variational solutions for these states, which we now perform
here. By performing momentum-resolved calculations, here
we show that at ν = 0,−1,−2,−3 and in the charge −1
sector, there is no 2 hole–1 electron trion bound state at, or
close to, k = 0 (i.e., the light 1-particle minimum) below the 2
hole–1 electron continuum, but a bound state develops at finite
momenta and higher energy for w0/w1 < 0.6 [see panels (b),
(d), and (f) of Fig. 3 below]; it disappears for larger w0/w1.
Here charge +1 is taken to be the charge of the electron. At
ν = 0,−2 (for ξ = 10 nm), −3, and in the charge +1 sector,
there is no trion bound state at, or close to, k = K, M (i.e.,
the heavy 1-particle minimum) below the 2 electron–1 hole
continuum, but a bound state at finite momenta away from
K, M develops for w0/w1 < 0.6 [see Figs. 2 and 4(b) below],
disappearing for larger w0/w1. In the chiral limit, the ν = −1
charge +1 sector is the only one exhibiting a clear trion bound
state with a significant gap over the entire BZ [see Fig. 4(a)
below], in agreement with Ref. [148].

We provide analytic arguments for the nonexistence of a
full trion bound state when the quasiparticle mass is signif-
icantly lighter than that of the Goldstone, which we test by
artificially tuning the ν = −1, charge +1 excitation lower and
seeing the bound state disappear. We also provide a variational
wave function (with large overlap) of the trion bound states.

II. TRION EIGENVALUE PROBLEM IN TBG

When projected into magic-angle flat bands, the interacting
Hamiltonian of TBG becomes a positive-semidefinite Hamil-
tonian [149–151]:

H = 1

2�

∑
q,G

O†
q,GOq,G, (1)

Oq,G =
√

V (q + G)
∑

k,m,n,η,s

M (η)
m,n(k, q + G)

×
(

c†
k+q,m,η,sck,n,η,s − 1

2
δq,0δm,n

)
. (2)

Here, q ranges over the mBZ, and G ranges over the moiré
reciprocal lattice Q0 defined in Ref. [152]. c†

k,n,η,s creates
an electron at moiré momentum k in the eigenstate n =
± of the Bistritzer-MacDonald (BM) continuum Hamilto-
nian [153,154] for graphene valley η = ± and spin s = ±.
V (q) is the double gate screened Coulomb interaction [150].
The form factors are M (η)

m,n(k, q + G) = ∑
α,Q u∗

Q−G,α;m,η(k +
q)uQ,α;n,η(k), where α ranges over the two graphene sublat-
tices A and B, Q ranges over the hexagonal momentum lattice
Q± defined in Ref. [152], and uQ,α;n,η(k) are the BM Bloch
states. Since H is positive-semidefinite, it is possible to find
exact ground states, in certain limits at integer filling, which
are U(4) ferromagnets [149,151,155–157]. Specifically, while
these states are always exact ground states at filling ν = 0,
they become exact ground states at ν = ±2 when the bands
satisfy certain quantum geometry, and at ν = ±1, 3 in the
chiral limit w0 = 0 [152,157]. For simplicity, we first focus
on this limit here, and then analyze the far interpolation to the
realistic situation. Then, the form factors become diagonal in
the Chern basis d†

k,eY ,η,s = (c†
k,+,η,s + ieY c†

k,−,η,s)/
√

2 and are
independent of the valley index, so that we denote them by
M (eY )(k, q + G).

Since the ground state is a U(4) ferromagnet, the Hamilto-
nian H preserves not only the charge Q and total momentum
p of excitations, but also the total number of electron
creation/annihilation operators N . The N = 3 trion scattering
matrix for charge Q = +1 follows from acting with H on the
excitation d†

k3,e′′
Y ,η3,s3

d†
k2,e′

Y ,η2,s2
dk23,eY ,η1,s1 |�〉, and we define

k23 = k2 + k3 − p as H preserves total momentum:

Hd†
k3,e′′

Y ,η3,s3
d†

k2,e′
Y ,η2,s2

dk23,eY ,η1,s1 |�〉

=
∑
k̃3,k̃2

W (e′′
Y ,e′

Y ,eY )

k̃3,k̃2;k3,k2
(p)d†

k̃3,e′′
Y ,η3,s3

d†
k̃2,e′

Y ,η2,s2
dk̃23,eY ,η1,s1

|�〉 .

(3)

For |�〉 = |�0〉, the ground state at ν = 0 [150], we find the
N2
M × N2

M scattering matrix

W (e′′
Y ,e′

Y ,eY )

k̃3,k̃2;k3,k2
(p) = δk3,k̃3

δk2,k̃2
[R(k3) + R(k2) + R(k2 + k3 − p)] − 2δk̃3,k3

S(e′
Y ,eY )

k̃2+k3−p;k3+k2−p
(p − k3)

+ 2δk̃2+k̃3,k2+k3
S(e′′

Y ,e′
Y )∗

k2+k3−k̃2;k3
(k̃2 − k3) − 2δk̃2,k2

S(e′′
Y ,eY )

k̃3+k2−p;k3+k2−p
(p − k2). (4)

We have used the chiral limit N = 1, Q = 1 dispersion

R(k) = 1

2�

∑
q,G

V (q + G)|M (eY )(k, q + G)|2, (5)

and N = 2, Q = 0 scattering matrix [68,69]

S(eY ,e′
Y )

k̃;k
(p) = 1

2�

∑
G

V (k − k̃ + G)

M (eY )∗(k̃ + p, k − k̃ + G)M (e′
Y )(k̃, k − k̃ + G).

(6)
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FIG. 1. Quasiparticle-Goldstone excitations and projected trion
Hamiltonian in the chiral limit and at ν = 0. (a) Single-particle
(N = 1, Q = 1) energy. (b) Goldstone mode (N = 2, Q = 0) en-
ergy. (c) Comparison of exact (blue; bound state in red) and
quasiparticle-Goldstone projected (yellow) N = 3, Q = 1 spectra
[Fig. 2(a), zoomed-in] for a fixed mBZ. (d) Quasiparticle-Goldstone
projected N = 3, Q = 1 spectrum for a finer mBZ.

The appearance of these terms in the N = 3, Q = 1 trion
scattering matrix can be understood as follows: at charge neu-
trality, electrons and holes follow the same dispersion relation,
and so both the two electrons and the hole each contribute
one R-matrix term to W that captures their kinetic energy.
Moreover, each of the two electrons may interact with the
hole via the Coulomb attraction that is encapsulated in the
two S-matrix terms. Finally, the two electrons may interact
with each other via the Coulomb repulsion effected by the
S∗-matrix term. Similar expressions can be derived for general
ground states |�〉 [68]. Numerically, we find the lowest trion
bound states in the Hilbert space sectors where all chiralities
are equal in Eq. (3): e′′

Y = e′
Y = eY . Furthermore, we must

choose the spin-valley flavors (η3, s3) and (η2, s2) so that they
are unoccupied in |�〉, and (η1, s1) so that it is occupied
in |�〉. We have checked that the choice (η3, s3) = (η2, s2)
yields the same bound states as (η3, s3) �= (η2, s2), which we
focus on in the following.

III. QUASIPARTICLE-GOLDSTONE APPROXIMATION

The low-energy part of the N = 3, Q = 1 Hilbert space
is dominated by the combination of charge +1 (N = 1, Q =
1) quasiparticles and Goldstone (N = 2, Q = 0) excitations,
which are plotted in Figs. 1(a) and 1(b), respectively, for ν =
0. In Fig. 2, these form the quasiparticle-Goldstone continuum
(shown above the black line). The quasiparticle-Goldstone
product states read∣∣	(e′

Y ,eY )
p;q,1

〉 =
∑

k

G(eY )
p−q,kd†

q,e′
Y ,η3,s3

d†
k,eY ,η2,s2

dq+k−p,eY ,η1,s1 |�〉 ,∣∣	(e′
Y ,eY )

p;q,2

〉 =
∑

k

G(eY )
p−q,kd†

k,e′
Y ,η3,s3

d†
q,eY ,η2,s2

dq+k−p,eY ,η1,s1 |�〉 ,

(7)
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(c) (d)

(e) (f)
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=

0
w

0
/
w

1
=

0.
4

w
0
/
w

1
=

0.
8

meV meV

meV meV

meV meV

FIG. 2. Exact N = 3, Q = 1 spectra with minimum of
quasiparticle-Goldstone continuum highlighted (black) for fillings
ν = 0, −2 and different values of w0/w1 (only the lowest 100
states are shown). For ν = 0, where Q = 1 implies doping away
from charge neutrality, a trion bound state develops away from
(but not at) 
 close to the chiral limit (w0/w1 < 0.6). For ν = −2,
where Q = 1 implies doping toward charge neutrality, a trion bound
state develops at 
. It has weak binding energy at the band edge
only extremely close to the chiral limit. We note that exact ground
states at fillings ν = −1, −3 are not known for finite values of
w0/w1 [157]; however, the corresponding exact spectra in the chiral
limit w0/w1 = 0 can be computed and are shown in Fig. 4. Our
model parameters are defined in Ref. [68] and given by θ = 1.05◦,
vF = 5.944 eV Å, |K| = 1.703 Å−1, w1 = 110 meV, Uξ = 26 meV,
and ξ = 20 nm.

where G(eY )
p−q,k is the Goldstone wave function at total momen-

tum p − q [68]. While |	(e′
Y ,eY )

p;q,1 〉 diagonalizes the first line of

the trion scattering matrix in Eq. (4), and |	(e′
Y ,eY )

p;q,2 〉 diagonal-
izes the first and last term of Eq. (4), both states are mixed
by the respectively remaining terms. Nevertheless, since the
combination of charge −1 (Ntot = 1, Qtot = −1) and charge
+2 (Ntot = 2, Qtot = 2) excitations is relatively costly, and the
lowest Goldstone mode is fully gapped from all higher (in-
cluding neutral bound state) excitations [Fig. 1(b)], it is a good
low-energy approximation to project the Ntot = 3, Qtot = 1
scattering matrix into the variational particle-Goldstone basis
of Eq. (7). Here, we must take into account that this basis is
not orthogonal (although it is complete), so that the projected
trion Hamiltonian reads

H̃(p,e′
Y ,eY ) = [O(p,e′

Y ,eY )]−1H(p,e′
Y ,eY ),

O(p,e′
Y ,eY )

q,α;q′,β = 〈
	

(e′
Y ,eY )

p;q,α

∣∣	(e′
Y ,eY )

p;q,β

〉
, (8)

H(p,e′
Y ,eY )

q,α;q′,β = 〈
	

(e′
Y ,eY )

p;q,α

∣∣H ∣∣	(e′
Y ,eY )

p;q,β

〉
,
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where α = 1, 2 runs over the two sets of variational states in
Eq. (7). This matrix is not Hermitian but its spectrum is real
and coincides with the variational energies. Moreover, its right
eigenvectors are the variational states in the nonorthogonal
basis of Eq. (7). We have decided to use the orthonormaliza-
tion in Eq. (8), rather than the more standard orthonormaliza-
tion

[O(p,e′
Y ,eY )]−1/2H(p,e′

Y ,eY )[O(p,e′
Y ,eY )]−1/2,

because the eigenstates of the latter do not correspond to
coefficients in the basis of Eq. (7). Instead, they corre-
spond to an appropriately orthonormalized basis, which we
cannot compute analytically and which is therefore more dif-
ficult to interpret. Nevertheless, the physical consequences
derived from either orthonormalization prescription are iden-
tical. We note that to obtain physical results, all overlaps in
the nonorthonormal basis must be computed with the metric
O(p,e′

Y ,eY ) instead of the identity matrix [158–161].
The quasiparticle-Goldstone projection has the numerical

advantage that it brings down the computational cost from
diagonalizing the N2

M × N2
M matrix in Eq. (4), where NM is

the number of momenta in the discretized mBZ, to diagonal-
izing a NM × NM matrix [the 2NM × 2NM matrix of Eq. (8)
can be further block-diagonalized into NM × NM blocks; see
below]. Figure 1(c) shows perfect alignment between the con-
tinuum parts of exact and projected spectra, while the exact
trion bound state appears slightly below the projected bound
state in energy. Hence, this approximation is very good in
the continuum, while the projected trion bound state binding
energy is slightly decreased.

IV. ABSENCE OF BOUND STATE CLOSE TO THE
PARTICLE-HOLE MINIMUM FOR DISPERSIVE

QUASIPARTICLES

In Figs. 2 and 3, the minimum of the trion spectrum is
indicated in red, while the minimum of the quasiparticle-
Goldstone continuum is indicated in black. Notably, in most
cases, the two curves merge at a common minimal energy.
Hence, for most choices of ν and Q—where there is sizable
quasiparticle dispersion larger than that of the Goldstone—
trion bound states only exist away from the absolute minimum
of the quasiparticle-Goldstone continuum. The notable excep-
tion is the flat quasiparticle case ν = −1, Q = 1 [Fig. 3(a)]
where a trion bound state persists at all momenta.

To give an intuition for this, we first note that the
states |	(e′

Y ,eY )
p;p,α 〉 [Eq. (7)] are always eigenstates of H

with energy R(p), because the Goldstone operator at 
,∑
k G(eY )

0,k d†
k,eY ,η,sdk,eY ,η,s, G(eY )

0,k = 1/
√

NM, is a symmetry of
the Hamiltonian [68]. Hence, the momentum at which the
quasiparticle-Goldstone continuum assumes its minimum is
the same as that of the Q = 1 dispersion. Without loss of
generality, let us here take this minimum to occur at 
, as
is the case when doping away from charge neutrality. We now
make the assumption that the quasiparticle effective mass is
considerably lighter than the Goldstone mass. Then a good
basis of states, for small q, should be the quasiparticle at 
 and
the Goldstone at q. Hence, we perform perturbation theory in
the states |	(e′

Y ,eY )
p;0,α 〉, which are eigenstates at 
 but not away

ν
=

−

(a) (b)

(c) (d)

(e) (f)

1
ν

=
−2

ν
=

−3

Q = +1 Q = −1meV meV

meV meV

meV meV

FIG. 3. Chiral limit trion spectra obtained after projecting the
N = 3 scattering matrix into low-energy quasiparticle-Goldstone
states, with minimum of quasiparticle-Goldstone continuum high-
lighted (black). See Fig. 2 for model parameters. For ν = −1, Q = 1
[panel (a)], the trion bound state persists at all momenta (but due to
its small binding energy likely disappears outside the chiral limit).

from it. Furthermore, we approximate the Goldstone modes
entering Eq. (7) by their form at 
, that is, G(eY )

p−q,k ≈ 1/
√

NM,
to obtain the approximation

H̃(p,e′
Y ,eY )

± = A(p,e′
Y ,eY )

0,0 ± δeY ,e′
Y
B(p,eY )

0,0

1 ± δeY ,e′
Y
/NM

,

A(p,e′
Y ,eY )

0,0 = R(0) + ε(p),

B(p,eY )
0,0 = 1

NM

{
2R(0) + R(−p)

+ 2
∑

k

[
S(eY ,eY )∗

k;0 (0) − S(eY ,eY )
k−p;−p(p) − S(eY ,eY )

−p;k−p(p)
]}

.

(9)

Here, we have also used that the Hamiltonian in
Eq. (8) becomes block-diagonal in the basis (|	(e′

Y ,eY )
p;q,1 〉 ±

|	(e′
Y ,eY )

p;q,2 〉)/
√

2, corresponding to the two blocks H̃(p,e′
Y ,eY )

±
in Eq. (9). Importantly, the norm of the matrix NMB(p,eY )

does not grow with NM. Hence, in the thermodynamic limit

we obtain H̃(p,e′
Y ,eY )

±
NM→∞= R(0) + ε(p), which is part of the

particle-Goldstone continuum and so there is no bound state
at 
. For the special case ν = −1, Q = 1 [Fig. 3(a)], this
argument fails because the Q = 1 dispersion is anomalously
flat [68,69,162] (observation explained by the heavy-fermion
model of TBG in [162]) and so the basis of states is not
justified.

Figure 4(c) shows that the trion binding energy increases
monotonically with the ratio m∗

qp/m∗
G of the quasiparticle ef-
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ΔE (meV)ΔE (meV)

ν = −1meV meV ν = −3

m∗
qp/m∗

G m∗
qp/m∗

G

(a) (b)

(c)

FIG. 4. Exact N = 3, Q = 1 spectra with minimum of
quasiparticle-Goldstone continuum highlighted (black) for fillings
ν = −1, −3 in the chiral limit. See Fig. 2 for model parameters.
(a) For ν = −1, Q = 1, the trion bound state persists at all momenta
(for the chiral limit). (b) For ν = −3, Q = 1, a bound state is only
present away from the K point. (c) Dependence of the binding
energy �E on the ratio of quasiparticle and Goldstone masses (see
also Table I). For this plot, we have artificially tuned the ν = −1,
N = Q = 1 quasiparticle dispersion away from its flat-band limit,
thereby gradually reducing m∗

qp. The transition mass ratio above
which a bound state exists is estimated as m∗

qp/m∗
G ≈ 3.5. We have

restricted our binding energy analysis to ν = −1 because no other
filling exhibits a well-separated bound state at all momenta (Fig. 2).

fective mass and the Goldstone mass m∗
G. Hence, the trion

binding energy follows directly from this ratio, which is
tabulated in Table I for all choices of ν and Q. Only for
m∗

qp/m∗
G > 3.5 is there a trion bound state across the en-

tire moiré BZ, which is satisfied for (ν, Q) = (−1, 1) and
(ν, Q) = (−2, 1). Moreover, since the mass ratio m∗

qp/m∗
G =

4.28 for (ν, Q) = (−2, 1) is rather close to the critical value,
the corresponding bound state has a very small binding energy
(∼0.5 meV) and we expect it to become unbound away from
the chiral limit. In fact, and in contrast to the bound state
at (ν, Q) = (−1, 1), this bound state is absent for screening

TABLE I. Effective masses for quasiparticles (m∗
qp) and Gold-

stone modes (m∗
G) in the chiral limit, measured in units of the bare

electron mass me. See Fig. 2 for model parameters. For doping away
from charge neutrality, we calculate m∗

qp from the quasiparticle en-
ergy minimum 
. For doping toward charge neutrality, we calculate
m∗

qp from the quasiparticle energy minimum at K .

(ν, Q) (0,1) (0, −1) (−1, 1) (−1, −1)

m∗
qp/me 0.098 0.098 13.06 0.048

m∗
G/me 0.085 0.085 0.088 0.088

m∗
qp/m∗

G 1.15 1.15 148 0.54

(ν, Q) (−2, 1) (−2, −1) (−3, 1) (−3, −1)

m∗
qp/me 0.416 0.031 0.211 0.023

m∗
G/me 0.097 0.097 0.117 0.117

m∗
qp/m∗

G 4.28 0.32 1.80 0.20

length ξ = 10 nm, consistent with a (ν, Q) = (−2, 1) mass
ratio m∗

qp/m∗
G = 3.3 at this screening length.

V. PRESENCE OF BOUND STATE AWAY FROM THE
PARTICLE-HOLE MINIMUM AND VARIATIONAL WAVE

FUNCTION

The presence of a trion bound state is intimately tied to
the lowest band of the inverse overlap matrix [O(p,e′

Y ,eY )]−1 in
Eq. (8). This band is approximately flat; for ν = 0 it appears
at eigenvalue ∼0.77 and yields a H(p,e′

Y ,eY ) expectation value
∼35.8 meV, explaining the presence of a flat trion bound state
at energy ∼0.77 × 35.8 meV = 27.6 meV in the physical
spectrum of H̃(p,e′

Y ,eY ) [Fig. 1(d)] (the quasiparticle-Goldstone
continuum begins at ∼30 meV). In fact, the actual bound
state energy is slightly lower (26.1 meV), because the low
[O(p,e′

Y ,eY )]−1 band is not an exact eigenstate of H̃(p,e′
Y ,eY ).

The resulting flat bound state merges with the continuum
when the quasiparticle energy dips below 26.1 meV close to

. Conversely, the bound state at ν = −1, Q = 1 is already
present at low energies in H(p,e′

Y ,eY ), and has >99% overlap
with the low [O(p,e′

Y ,eY )]−1 flat band, which only reduces its
binding energy in the physical spectrum of H̃(p,e′

Y ,eY ). We
find that for all choices of ν, Q, the lowest trion bound state
always has very high overlap with a low-eigenvalue flat band
of [O(p,e′

Y ,eY )]−1, and so capitalizes on the nonorthogonality
between the variational states of Eq. (7).

For the ν = 0, Q = 1 trion bound state that develops away
from 
 in Fig. 1(d), we find good (�90%) overlap with the
variational state

|TBSp〉 = 1√
2

∑
q

φp
q

(∣∣	(eY ,eY )
p;q,1

〉 − ∣∣	(eY ,eY )
p;q,2

〉)
, (10)

	p
q = e−i arg Gp−q,p

Zp

∑
G∈Q0

[
exp

(
−2

|q|2 + |p − q + G|2
|p|2

)

× exp (i∠[p − q + G])

]
, (11)

where ∠[p − q + G] denotes the angle of the vector p −
q + G to the horizontal, Zp is a normalization factor, and
arg Gp−q,p is the phase of the Goldstone wave function Gp−q,p.
Note that a phase factor of the form e−i arg Gp−q,q′ must enter
in 	

p
q to account for gauge invariance under multiplying the

individual Goldstone eigenstates G(eY )
p−q,k by a phase in Eq. (7).

However, the choice q′ = p is particular to the trion bound
state.

VI. CONCLUSIONS

The present analysis allows us to study the relative stability
of the single-particle excitations found in [67–69,96] and the
bound trion excitations whose first example was shown to
exist in TBG in [148]. On the light-mass side bound trions
do not compete with the lowest-energy single-particle excita-
tions (they only become competitive at large momenta away
from the band minimum), reinforcing the notion of the light
Fermi liquid advanced in Ref. [67]. On the heavy-mass side
the bound trion states can be energetically competitive, and
even if they are not the absolute lowest energy excitations

155135-5



SCHINDLER, VAFEK, AND BERNEVIG PHYSICAL REVIEW B 105, 155135 (2022)

(except on the heavy-mass side of the idealized chiral limit
at |ν| = 1), for a range of their total momentum, they can
form below the quasiparticle-Goldstone continuum, further
reinforcing the heavy-light dichotomy [67].

Despite not being the lowest-energy charged excitations,
even on the light-mass side the bound trion states can appear
as higher-energy isolated states below the quasiparticle-
Goldstone continuum. We expect this to have an imprint in
the STM spectroscopy at a fixed filling, which we plan to
elucidate in a future publication.

Note added. Recently, trion bound states were predicted
[163] for all fillings ν � −1 at screening length ξ = 100 nm
[164], Fig. 3(a) of Ref. [163], using an approximate model
of TBG, which neglects the mixing between different Chern
number sectors away from the chiral limit. Instead, our model,
which takes the mixing of Chern number sectors into account,
and for which we use realistic screening lengths of ξ � 20 nm
[12,26,49], predicts a gapped trion bound state only near the
chiral limit and at ν = −1.
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APPENDIX A: REVIEW OF NOTATION

We begin the appendices by reviewing our notation, which
follows that of Ref. [68].

1. Units and conventions

Using the graphene Fermi velocity vF = 5.944 eV Å and
Bistritzer-MacDonald (BM) [153] continuum model hopping
strength w1 = 110 meV [152], we find w1/vFkθ = 0.593,
where kθ = 2|K| sin θ

2 is the separation of the Dirac cones
of the two twisted bilayer graphene (TBG) layers. Here, K
is a high-symmetry momentum (the K point) in the Bril-
louin zone of the graphene monolayer, and θ is the twist
angle of TBG. The unit cell area AUC and the Brillouin zone
area ABZ = k2

θ 3
√

3/2 of the TBG moiré lattice are related by
AUC = 4π2/ABZ. Hence, the total sample area � of TBG is
related to the number of momenta NM in the moiré Brillouin
zone by

� = 8π2NM

3
√

3k2
θ

. (A1)

In practice, we use |K| = 1.703 Å−1 and θ = 1.05◦. In all
plots, we use the double gate screened Coulomb potential
unless otherwise stated [150]:

V (q) = πξ 2Uξ

tanh(ξ |q|/2)

ξ |q|/2
, (A2)

where the screening length ξ and the associated energy scale
Uξ are defined in Ref. [150]. In practice, we consider two
regimes: (1) ξ = 10 nm, Uξ = 26 meV; and (2) ξ = 20 nm,
Uξ = 13 meV.

2. Flat-band-projected Hamiltonian

We assume a perfectly flat dispersion (nonchiral-flat limit),
so that the full Hamiltonian of twisted bilayer graphene
(TBG) is a flat-band-projected positive-semidefinite Hamilto-
nian (PSDH) [149–151]:

H = 1

2�

∑
q,G

O†
q,GOq,G,

Oq,G =
√

V (q + G)
∑

k,m,n,η,s

M (η)
m,n(k, q + G)

×
(

c†
k+q,m,η,sck,n,η,s − 1

2
δq,0δm,n

)
. (A3)

Here, q ranges over the moiré Brillouin zone (mBZ), whose
number of discrete elements is fixed by the total area � of the
TBG sample via Eq. (A1), and G ranges over the moiré re-
ciprocal lattice Q0 defined in Ref. [152]. Furthermore, c†

k,n,η,s
creates an electron at moiré momentum k in the eigenstate
n = ± of the BM continuum Hamiltonian for graphene valley
η = ± and spin s = ±. We thereby restrict ourselves to the 8
BM bands closest to the Fermi level; these are anomalously
flat at the first magic angle, justifying the absence of a ki-
netic term in H . V (q) is the Fourier-transformed Coulomb
interaction, given in Eq. (A2). Moreover, the form factors are
defined as

M (η)
m,n(k, q + G) =

∑
α,Q

u∗
Q−G,α;m,η(k + q)uQ,α;n,η(k), (A4)

where α ranges over the two graphene sublattices A and B, Q
ranges over the hexagonal lattice Q± defined in Ref. [152],
and uQ,α;n,η(k) are the BM Bloch states. Due to moiré period-
icity, these satisfy

uQ,α;n,η(k + G) = uQ−G,α;n,η(k). (A5)

Moreover, the form factors satisfy

M (η)∗
m,n (k, q + G) = M (η)

n,m(k + q,−q − G). (A6)

3. Ground states

We next derive the ground state (candidates) of TBG at
even-integer filling. The Hamiltonian H in Eq. (A3) is mani-
festly positive-semidefinite. At half filling (charge neutrality,
ν = 0), one possible ground state is the intervalley-coherent
Slater determinant state [149,151,157]

|�0〉 =
∏

k

(c†
k,+,+,+c†

k,−,+,+c†
k,+,−,−c†

k,−,−,−) |0〉 ,

Oq,G |�0〉 = 0, (A7)
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where we have used that the form factors M (η)
m,n(k, q + G) do

not depend on spin in order to derive the second equality.
This state is a U(4) ferromagnet [149,151,157] and therefore
supports gapless Goldstone modes. Further degenerate ground
states can be obtained by changing the valley-spin occupation
in Eq. (A7) to other configurations involving opposite valley
indices. Without loss of generality, we will fix |�0〉 as ground
state at charge neutrality in the following. At filling ν = −2,
one ground state candidate is the intervalley-coherent Slater
determinant state [149,151,157]

|�−2〉 =
∏

k

(c†
k,+,+,+c†

k,−,+,+) |0〉 ,

Oq,G |�−2〉 = δq,0EG |�−2〉 ,

EG = −
√

V (G)
∑
k,m

M (−)
m,m(k, G). (A8)

Similar to |�0〉, the state |�−2〉 is a U(4)-ferromagnetic
state and supports Goldstone mode excitations. References
[149,157] showed that |�−2〉 is an exact ground state of
H − μN , with suitably chosen chemical potential μ, when the
flat metric condition is fulfilled, which posits that the form
factors [Eq. (A4)] are independent of k at q = 0. Here, the
operator N measures the particle number from the point of
charge neutrality. Without the flat metric condition—which
does not hold exactly for TBG—there is no guarantee that
|�−2〉 is a ground state; however, it is always an exact eigen-
state [149,151,157]. A necessary condition for |�−2〉 to be

a ground state is that we can find a chemical potential μ so
that both the charge +1 and −1 gaps are finite. In the chiral
limit only, we can furthermore derive ground states for fillings
ν = −1 and ν = −3 [56,69,150,151].

4. General excitation spectra

We next describe the general method [68,69,149] to find
the spectra of excitations above the ground state (candidates)
of the TBG PSDH that were derived in Appendix A 3. The
ground state |�0〉 at half filling, Eq. (A7), satisfies

Oq,G |�0〉 = 0. (A9)

For an excitation operator E , we then find that

HE |�〉 = 1

2�

∑
q,G

[O−q,−G, [Oq,G, E]] |�〉 , (A10)

so that we only need to evaluate the (double) commutator
[O−q,−G, [Oq,G, E]] in order to find the scattering matrix for
all excitations mixing with E |�0〉. In general, these will be
all states E ′ |�0〉 where E ′ has the same charge and total
momentum quantum numbers as E . Ground state (candidates)
|�〉 at finite filling satisfy

Oq,G |�〉 = δq,0EG |�〉 ; (A11)

see for example Eq. (A8) for filling ν = −2. For an excitation
operator E , we then find that

(H − μN )E |�〉 =
{

1

2�

∑
q,G

[O−q,−G, [Oq,G, E]] + 1

�

∑
G

E−G[O0,G, E] +
[

1

2�

(∑
G

E−GEG

)
− μN

]
E
}

|�〉 . (A12)

Here, the first term is the same as in Eq. (A10). The sec-
ond “Hartree” term modifies the single-particle dispersion
away from charge neutrality. In particular, and unlike for ν =
0, it yields different single-particle and single-hole spectra.
The third term represents a particle-number-dependent energy
shift, where μ must be tuned to stabilize |�〉 as a ground state,
so that both the charge +1 and −1 gaps are finite.

APPENDIX B: SCATTERING MATRICES

We next derive the excitation scattering matrix in different
quantum number sectors, where we denote the total number of
particles by N and the total charge by Q. We define N so that
it counts the number of creation and annihilation operators
of a given excitation. This operator is not associated with
a symmetry of the PSDH in Eq. (A3). Instead, N emerges
as a conserved quantity of excited state scattering matrices
because the TBG ground states are U(4) ferromagnets: these

states have a given set of valley-spin flavors fully occupied,
and so do not support particle-hole excitations that would
change N while preserving Q as well as valley and spin
quantum numbers. On the other hand, the conservation of Q
follows from the global U(1) gauge symmetry of the PSDH
in Eq. (A3). As a result of N conservation in this Krylov sub-
space, the scattering equation maintains the particle number
subspace.

1. N = 1, Q = 1

We begin by deriving the single-particle excitations above
the ground states of Appendix A 3. At each total momentum k,
these can be obtained by diagonalizing a 2 × 2 matrix [68,69].
For the charge +1 operator E = c†

k,m,η,s, we obtain

Hc†
k,m,η,s |�0〉 =

∑
n

R(η)
n,m(k)c†

k,n,η,s |�0〉 . (B1)

Here, we have defined the matrices

R(η)
n,m(k) = 1

2�

∑
q,G

V (q + G)
∑

l

M (η)∗
l,n (k, q + G)M (η)

l,m(k, q + G), (B2)
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(a) (b) (c)

FIG. 5. Single-particle and Goldstone spectra in the chiral limit. (a) The spectrum of the matrix R(k) of Eq. (C3). (b) Spectrum of the
chiral limit N = 2, Q = 2 scattering matrix (Appendix B 3) for equal chiral sectors (e′

Y = eY ). (c) Spectrum of the chiral limit N = 2, Q = 0
scattering matrix of Eq. (C2) for equal chiral sectors (e′

Y = eY ). The Goldstone mode is gapless at the 
 point of the mBZ.

whose spectrum yields the single-particle dispersion. For a ground state |�〉 at finite filling, we find by using Eq. (A12) that

[H, c†
k,m,η,s] |�〉 =

∑
n

[
R(η)

n,m(k) + 1

�

∑
G

E−G

√
V (G)M (η)

n,m(k, G)

]
c†

k,n,η,s |�〉 . (B3)

For simplicity, here we only give the commutator. The full expression follows from adding the third term of Eq. (A12). For
future reference, we define

R̃(η,+)
n,m (k, EG ) = R(η)

n,m(k) + 1

�

∑
G

E−G

√
V (G)M (η)

n,m(k, G), (B4)

which is a functional of EG as defined by Eq. (A11).

2. N = 1, Q = −1

Correspondingly, for the charge −1 operator E = ck,m,η,s, we obtain [68,69]

Hck,m,η,s |�0〉 =
∑

n

R(η)
m,n(k)ck,n,η,s |�0〉 . (B5)

We hence find that the single-particle charge +1 and charge −1 excitation spectra are identical at charge neutrality. For a ground
state candidate |�〉 at finite filling, we find by using Eq. (A12) that

[H, ck,m,η,s] |�〉 =
∑

n

[
R(η)

m,n(k) − 1

�

∑
G

E−G

√
V (G)M (η)

m,n(k, G)

]
ck,n,η,s |�〉 , (B6)

again up to a total energy shift [third term of Eq. (A12)] that can be offset by a suitable choice of chemical potential μ. For future
reference, we define

R̃(η,−)
m,n (k, EG ) = R(η)

m,n(k) − 1

�

∑
G

E−G

√
V (G)M (η)

m,n(k, G). (B7)

(a) (b) (c)

FIG. 6. Quasiparticle-Goldstone and trion spectra. (a) Free quasiparticle-Goldstone continuum. (b) Spectrum of the chiral limit trion
scattering matrix in Eq. (C13) for equal chiral sectors (e′′

Y = e′
Y = eY ), with minimum of the quasiparticle-Goldstone continuum highlighted.

(c) Enlarged trion spectrum. A trion bound state develops away from the 
 point of the mBZ.
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(a) (b) (c) (d)

FIG. 7. Overlap matrix and trion bound states. (a) Spectrum of the inverse overlap matrix [1NM×NM − �(p,eY )]−1 [Eq. (C10)] for ν = 0
and double gate screening with ξ = 20 nm. (b) Zoomed-in spectrum below eigenvalue 1. (c) Spectrum of the projected trion Hamiltonian
H̃(p,eY ,eY ) in Eq. (C13). (d) Spectrum of the matrix [1 − P(p)]H̃(p,eY ,eY )[1 − P(p)].

3. N = 2, Q = 2

We next derive the two-particle excitations above |�0〉, first presented in [68]. At each total momentum p, these can be
obtained by diagonalizing a 4NM × 4NM matrix, where NM is the number of momenta in the moiré Brillouin zone as set by
the total sample area � via Eq. (A1). For the charge +2 operator E = c†

k+p,m1,η1,s1
c†
−k,m2,η2,s2

, we obtain

Hc†
k+p,m1,η1,s1

c†
−k,m2,η2,s2

|�0〉 =
∑

k̃,m̃1,m̃2

{
δk,k̃

[
R(η1 )

m̃1,m1
(k + p)δm̃2,m2 + R(η2 )

m̃2,m2
(−k)δm̃1,m1

]
+ 2T (η1,η2 )

k̃,m̃1,m̃2;k,m1,m2
(p)

}
c†

k̃+p,m̃1,η1,s1
c†
−k̃,m̃2,η2,s2

|�0〉 , (B8)

eY = eY = eY eY = eY = eY

FIG. 8. Exact spectrum comparison between equal and opposite Chern sector trion modes [Eq. (C7)]. All bound modes in the sectors with
e′′

Y �= e′
Y = eY have consistently higher energy than the corresponding modes in the sectors with e′′

Y = e′
Y = eY .
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FIG. 9. Numerical spectra for a double gate screened Coulomb potential at screening length ξ = 10 nm. For the trion spectra, we have
used the quasiparticle-Goldstone projection method [Eq. (C13)].

where we have defined the electron-electron scattering matrix

T (η1,η2 )
k̃,m̃1,m̃2;k,m1,m2

(p) = 1

2�

∑
G

V (k − k̃ + G)M (η1 )∗
m1,m̃1

(k̃ + p, k − k̃ + G)M (η2 )
m̃2,m2

(−k, k − k̃ + G). (B9)

In this expression, the momentum (k − k̃) must be treated as an element of the first moiré Brillouin zone, dropping any offsets
by reciprocal lattice vectors. For an infinite Q0 lattice, this convention has no effect; however, it is required for numerical
consistency when doing simulations on a finite Q0 lattice. The corresponding scattering matrix for finite filling—modulo the
third, diagonal term in Eq. (A12)—is obtained from Eq. (B8) via the replacement

R(η)
n,m(k) → R̃(η,+)

n,m (k, EG ), (B10)

where R̃(η,+)
n,m (k, EG) is defined in Eq. (B4).

4. N = 2, Q = 0

For the charge 0 operator E = c†
k+p,m1,η1,s1

ck,m2,η2,s2 , Refs. [68,69] obtained

Hc†
k+p,m1,η1,s1

ck,m2,η2,s2 |�0〉 =
∑

k̃,m̃1,m̃2

{
δk,k̃

[
R(η1 )

m̃1,m1
(k + p)δm̃2,m2 + R(η2 )

m2,m̃2
(k)δm̃1,m1

]

− 2S(η1,η2 )
k̃,m̃1,m̃2;k,m1,m2

(p)
}
c†

k̃+p,m̃1,η1,s1
ck̃,m̃2,η2,s2

|�0〉 , (B11)
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FIG. 10. Numerical spectra for a double gate screened Coulomb potential at screening length ξ = 10 nm. For the trion spectra, we have
used the quasiparticle-Goldstone projection method [Eq. (C13)].

where we have defined the electron-hole scattering matrix

S(η1,η2 )
k̃,m̃1,m̃2;k,m1,m2

(p) = 1

2�

∑
G

V (k − k̃ + G)M (η1 )∗
m1,m̃1

(k̃ + p, k − k̃ + G)M (η2 )
m2,m̃2

(k̃, k − k̃ + G). (B12)

In this expression, the momentum (k − k̃) must again be treated as an element of the first moiré Brillouin zone. The correspond-
ing scattering matrix for finite filling—except for the third, diagonal term in Eq. (A12)—is obtained from Eq. (B11) via the
replacements

R(η1 )
m̃1,m1

(k + p) → R̃(η1,+)
m̃1,m1

(k + p, EG ), R(η2 )
m2,m̃2

(k) → R(η2,−)
m2,m̃2

(k, EG ), (B13)

where R̃(η,+)
n,m (k, EG) and R̃(η,−)

n,m (k, EG ) are defined in Eqs. (B4) and (B7), respectively. Finally, we note that the charge 0 scattering

matrix S(η1,η2 )
k̃,m̃1,m̃2;k,m1,m2

(p) of Eq. (B12) and the charge +2 scattering matrix T (η1,η2 )
k̃,m̃1,m̃2;k,m1,m2

(p) of Eq. (B9) are related by

T (η1,η2 )
k̃,m̃1,m̃2;k,m1,m2

(p) = S(η1,η2 )∗
k̃+p,m2,m̃1;k+p,m̃2,m1

(−p − k − k̃), (B14)

so that only one of them must be computed when performing numerical calculations. It follows from Eqs. (B2) and (B12) that
the charge 0 scattering matrix at charge neutrality (filling ν = 0) in Eq. (B11) has exact zero modes at total momentum p = 0:

H
∑
k,m

c†
k,m,η,s1

ck,m,η,s2 |�0〉 = 0. (B15)

Here, η, s1, and s2 can be freely chosen as long as they do not annihilate |�0〉.

5. N = 3, Q = 1

We next move beyond [68,69] to study trion excitations with charge +1. These were first studied in [148] by exact
diagonalization in a restricted subspace. Here we further obtain their momentum structure. We begin by deriving the scattering
matrix. At each total momentum p, the charge +1 trions can be obtained by diagonalizing an 8N2

M × 8N2
M matrix. For the trion
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FIG. 11. Numerical spectra for a double gate screened Coulomb potential at screening length ξ = 20 nm. For the trion spectra, we have
used the quasiparticle-Goldstone projection method [Eq. (C13)].

excitation E = c†
k3,m3,η3,s3

c†
k2,m2,η2,s2

ck2+k3−p,m1,η1,s1 , we obtain

Hc†
k3,m3,η3,s3

c†
k2,m2,η2,s2

ck2+k3−p,m1,η1,s1 |�0〉
=

∑
k̃3,k̃2,m̃3,m̃2,m̃1

{
δk3,k̃3

δk2,k̃2

[
R(η3 )

m̃3,m3
(k3)δm̃2,m2δm̃1,m1 + R(η2 )

m̃2,m2
(k2)δm̃3,m3δm̃1,m1

+ R(η1 )
m1,m̃1

(k2 + k3 − p)δm̃2,m2δm̃3,m3

] + 2δm̃1,m1δk̃2+k̃3,k2+k3
T (η3,η2 )

−k̃2,m̃3,m̃2;−k2,m3,m2
(k3 + k2)

− 2δm̃2,m2δk̃2,k2
S(η3,η1 )

k̃3+k2−p,m̃3,m̃1;k3+k2−p,m3,m1
(p − k2) − 2δm̃3,m3δk̃3,k3

S(η2,η1 )
k̃2+k3−p,m̃2,m̃1;k3+k2−p,m2,m1

(p − k3)
}

c†
k̃3,m̃3,η3,s3

c†
k̃2,m̃2,η2,s2

ck̃2+k̃3−p,m1,η1,s1
|�0〉

≡
∑

k̃3,k̃2,m̃3,m̃2,m̃1

W (η3,η2,η1 )
k̃3,k̃2,m̃3,m̃2,m̃1;k3,k2,m3,m2,m1

(p)c†
k̃3,m̃3,η3,s3

c†
k̃2,m̃2,η2,s2

ck̃2+k̃3−p,m1,η1,s1
|�0〉 ,

(B16)

so that the trion spectrum follows from diagonalizing the 8N2
M × 8N2

M matrix W (η3,η2,η1 )
k̃3,k̃2,m̃3,m̃2,m̃1;k3,k2,m3,m2,m1

(p). The corresponding
scattering matrix for finite filling—except for the third, diagonal term in Eq. (A12)—is obtained from Eq. (B16) via the
replacements

R(η3 )
m̃3,m3

(k3) → R(η3,+)
m̃3,m3

(k3, EG ), R(η2 )
m̃2,m2

(k2) → R(η2,+)
m̃2,m2

(k2, EG), R(η1 )
m1,m̃1

(k2 + k3 − p) → R(η1,−)
m1,m̃1

(k2 + k3 − p, EG ), (B17)

where R̃(η,+)
n,m (k, EG) and R̃(η,−)

n,m (k, EG ) are defined in Eqs. (B4) and (B7), respectively.
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FIG. 12. Numerical spectra for a double gate screened Coulomb potential at screening length ξ = 20 nm. For the trion spectra, we have
used the quasiparticle-Goldstone projection method [Eq. (C13)].

APPENDIX C: CHIRAL LIMIT

To obtain the (first) chiral limit, we set w0 = 0 for the BM model AA and BB hopping amplitude, where A and B are the two
sublattices of the graphene honeycomb unit cell. In this limit, the form factors of Eq. (A4) become diagonal in the Chern basis
[152], which is defined by the choice of creation operators

d†
k,eY ,η,s =

c†
k,+,η,s + ieY c†

k,−,η,s√
2

. (C1)

Moreover, in the chiral limit, the form factors become independent of the valley index. Hence, we follow the notation of [68]
and we denote them by M (eY )(k, q + G).

1. Goldstone modes

In the chiral limit, the N = 2, Q = 0 scattering equation at charge neutrality (Appendix B 4) becomes

Hd†
k+p,eY ,η1,s1

dk,e′
Y ,η2,s2 |�0〉 =

∑
k̃

{
δk,k̃[R(k + p) + R(k)] − 2S(eY ,e′

Y )

k̃;k
(p)

}
d†

k̃+p,eY ,η1,s1
dk̃,e′

Y ,η2,s2
|�0〉 . (C2)

Here, we have used the chiral limit one- and two-particle scattering matrices

R(k) = 1

2�

∑
q,G

V (q + G)|M (eY )(k, q + G)|2,

S(eY ,e′
Y )

k̃;k
(p) = 1

2�

∑
G

V (k − k̃ + G)M (eY )∗(k̃ + p, k − k̃ + G)M (e′
Y )(k̃, k − k̃ + G). (C3)

Note that the scalar R(k) is independent of the Chern basis label eY [150]. At total momentum p = 0 (the 
 point
of the mBZ), we can explicitly find the Goldstone modes [see Eq. (B15) for the expression away from the chiral
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FIG. 13. Numerical spectra for a single gate screened Coulomb potential at screening length ξ = 10 nm. For the trion spectra, we have
used the quasiparticle-Goldstone projection method [Eq. (C13)].

limit]

∣∣G(eY ,η2,s2,η1,s1 )
p=0

〉 = 1√
NM

∑
k

c†
k,eY ,η2,s2

ck−p,eY ,η1,s1 |�0〉 . (C4)

Away from 
, the Goldstone modes have the general form

∣∣G(eY ,η2,s2,η1,s1 )
p

〉 =
∑

k

G(eY )
p,k c†

k,eY ,η2,s2
ck−p,eY ,η1,s1 |�0〉 , (C5)

where we have introduced the Goldstone wave function G(eY )
p,k that can be found numerically. For the parameters given in

Appendix A 1, we obtain the Goldstone dispersion in Fig. 5(c).

2. Full trion matrix

In the chiral limit, the trion matrix simplifies to an N2
M × N2

M matrix:

Hd†
k3,e′′

Y ,η3,s3
d†

k2,e′
Y ,η2,s2

dk2+k3−p,eY ,η1,s1 |�0〉 =
∑
k̃3,k̃2

W (e′′
Y ,e′

Y ,eY )

k̃3,k̃2;k3,k2
(p)d†

k̃3,e′′
Y ,η3,s3

d†
k̃2,e′

Y ,η2,s2
dk̃2+k̃3−p,eY ,η1,s1

|�0〉 , (C6)
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FIG. 14. Numerical spectra for a single gate screened Coulomb potential at screening length ξ = 10 nm. For the trion spectra, we have
used the quasiparticle-Goldstone projection method [Eq. (C13)].

where we have defined

W (e′′
Y ,e′

Y ,eY )

k̃3,k̃2;k3,k2
(p) = δk3,k̃3

δk2,k̃2
[R(k3) + R(k2) + R(k2 + k3 − p)] + 2δk̃2+k̃3,k2+k3

T (e′′
Y ,e′

Y )

−k̃2;−k2
(k3 + k2)

− 2δk̃2,k2
S(e′′

Y ,eY )

k̃3+k2−p;k3+k2−p
(p − k2) − 2δk̃3,k3

S(e′
Y ,eY )

k̃2+k3−p;k3+k2−p
(p − k3). (C7)

Here, we have used the chiral limit one- and two-particle scattering matrices

R(k) = 1

2�

∑
q,G

V (q + G)|M (eY )(k, q + G)|2,

T (eY ,e′
Y )

k̃;k
(p) = 1

2�

∑
G

V (k − k̃ + G)M (eY )∗(k̃ + p, k − k̃ + G)M (e′
Y )(−k, k − k̃ + G),

S(eY ,e′
Y )

k̃;k
(p) = 1

2�

∑
G

V (k − k̃ + G)M (eY )∗(k̃ + p, k − k̃ + G)M (e′
Y )(k̃, k − k̃ + G). (C8)

3. Goldstone-projected trion matrix

From Fig. 5, we see that the low-energy part of the N = 3, Q = 1 Hilbert space is dominated by the combination of charge
+1 (N = 1, Q = 1) and Goldstone (N = 2, Q = 0) excitations, hereafter called quasiparticle-Goldstone excitations. Conversely,
the combination of charge −1 (N = 1, Q = −1) and two-electron (N = 2, Q = 2) excitations is relatively costly as the charge
excitation is gapped. Moreover, the lowest Goldstone mode is fully gapped from all higher Goldstone excitations, as is evident
from Fig. 5(c). Away from the chiral limit, however, this mode crosses an exciton mode (N = 2, Q = 0) that lies in a different
chiral sector than the Goldstone modes (eY �= e′

Y , not shown in figure). Therefore, in the chiral limit, it is a good low-energy

155135-15



SCHINDLER, VAFEK, AND BERNEVIG PHYSICAL REVIEW B 105, 155135 (2022)

FIG. 15. Artificially tuning the quasiparticle dispersion at ν = −1, Q = 1 by hand to unbind the trion bound state. We assume double gate
screening and use the quasiparticle-Goldstone projection method [Eq. (C13)]. To obtain this series of plots and Fig. 2(c) in the main text, we
gradually add some dispersion from the Q = +1 quasiparticle at ν = −3 to the Q = +1 quasiparticle at ν = −1 (Fig. 12, first row), thereby
reducing the mass ratio m∗

qp/m∗
G.

approximation to project the N = 3, Q = 1 scattering matrix into the variational quasiparticle-Goldstone basis

∣∣	(e′
Y ,eY )

p;q,1

〉 = 1√
2

∑
k

G(eY )
p−q,k

(
d†

q,e′
Y ,η3,s3

d†
k,eY ,η2,s2

+ d†
k,eY ,η3,s3

d†
q,e′

Y ,η2,s2

)
dq+k−p,eY ,η1,s1 |�0〉

= 1√
2

(
d†

q,e′
Y ,η3,s3

∣∣G(eY ,η2,s2,η1,s1 )
p−q

〉 − d†
q,e′

Y ,η2,s2

∣∣G(eY ,η3,s3,η1,s1 )
p−q

〉)
,

∣∣	(e′
Y ,eY )

p;q,2

〉 = 1√
2

∑
k

G(eY )
p−q,k

(
d†

q,e′
Y ,η3,s3

d†
k,eY ,η2,s2

− d†
k,eY ,η3,s3

d†
q,e′

Y ,η2,s2

)
dq+k−p,eY ,η1,s1 |�0〉

= 1√
2

(
d†

q,e′
Y ,η3,s3

∣∣G(eY ,η2,s2,η1,s1 )
p−q

〉 + d†
q,e′

Y ,η2,s2

∣∣G(eY ,η3,s3,η1,s1 )
p−q

〉)
.

(C9)

Here, we assume that the valley-spin flavors (η3, s3) �= (η2, s2) �= (η1, s1) are chosen such that (η1, s1) is occupied and (η3, s3),
(η2, s2) are empty in |�0〉, and we have dropped the valley-spin labels on the left-hand side to minimize clutter. Importantly, this
basis is not orthonormal: the overlap matrix reads (α, β = 1, 2)

O(p,e′
Y ,eY )

q,α;q′,β = 〈
	

(e′
Y ,eY )

p;q,α

∣∣	(e′
Y ,eY )

p;q′,β

〉 =
(

δq,q′ + δeY ,e′
Y
G(eY )∗

p−q,q′G
(eY )
p−q′,q 0

0 δq,q′ − δeY ,e′
Y
G(eY )∗

p−q,q′G
(eY )
p−q′,q

)
α,β

≡ [
1NM×NM ⊗ σ0 + δeY ,e′

Y
�(p,eY ) ⊗ σz

]
q,α;q′,β , (C10)

where �(p,eY ) is a NM × NM matrix with entries

�
(p,eY )
q,q′ = G(eY )∗

p−q,q′G
(eY )
p−q′,q,

the σi, i = 0, x, y, z, are the 2 × 2 Pauli matrices, and ⊗ denotes the Kronecker product. When e′
Y = eY , the overlap matrix in

Eq. (C10) is not equal to the 2NM × 2NM identity matrix, and this must be taken into account when calculating expectation
values in the basis of Eq. (C9). Specifically, the naive Hamiltonian matrix elements are given by

H(p,e′
Y ,eY )

q,α;q′,β = 〈
	

(e′
Y ,eY )

p;q,α

∣∣H ∣∣	(e′
Y ,eY )

p;q′,β

〉
=

∑
k,k′

G(eY )∗
p−q,kG(eY )

p−q′,k′

(
W (e′

Y ,eY ,eY )
q,k;q′,k′ (p) + δeY ,e′

Y
W (eY ,eY ,eY )

k,q;q′,k′ (p) 0

0 W (e′
Y ,eY ,eY )

q,k;q′,k′ (p) − δeY ,e′
Y
W (eY ,eY ,eY )

k,q;q′,k′ (p)

)
α,β

≡ [
A(p,e′

Y ,eY ) ⊗ σ0 + δeY ,e′
Y
B(p,eY ) ⊗ σz

]
q,α;q′,β ,

(C11)
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FIG. 16. Exact spectra in the chiral limit (w0/w1 = 0) for double gate screening with ξ = 10 nm and ξ = 20 nm, obtained without
further resolving different Chern basis (eY ) sectors [Eq. (B16)]. For the N = 3, Q = 1 trion plots, the minimum of the quasiparticle-Goldstone
continuum is highlighted (purple).

where we have defined the two NM × NM matrices A(p,e′
Y ,eY ) and B(p,eY ). However, the Hamiltonian acts as

H
∣∣	(e′

Y ,eY )
p;q,α

〉 =
∑
q′,β

H̃(p,e′
Y ,eY )

q′,β;q,α

∣∣	(e′
Y ,eY )

p;q′,β

〉 + · · · , (C12)

where the dots · · · abbreviate states lying outside of the variational space of Eq. (C9) and we have defined the 2NM × 2NM
matrix

H̃(p,e′
Y ,eY ) = [O(p,e′

Y ,eY )]−1H(p,e′
Y ,eY ). (C13)

This matrix is not Hermitian but its spectrum is real and coincides with the variational energies. Moreover, its right eigenvectors
are the variational states in the nonorthogonal basis of Eq. (C9). We proceed by evaluating the individual terms of Eq. (C11):

A(p,e′
Y ,eY )

q,q′ =
∑
k,k′

G(eY )∗
p−q,kG(eY )

p−q′,k′W
(e′

Y ,eY ,eY )
q,k;q′,k′ (p) = δq,q′[R(q) + ε(p − q)]

+ 2
∑

k

(
G(eY )∗

p−q,q′−kG(eY )
p−q′,q−k − G(eY )∗

p−q,p−kG(eY )
p−q′,p−k

)
S(e′

Y ,eY )
q−k;q′−k(k). (C14)

155135-17



SCHINDLER, VAFEK, AND BERNEVIG PHYSICAL REVIEW B 105, 155135 (2022)

FIG. 17. Exact spectra [Eq. (B16)] for w0/w1 = 0.4 for double gate screening with ξ = 10 nm and ξ = 20 nm. For the N = 3, Q = 1 trion
plots, the minimum of the quasiparticle-Goldstone continuum is highlighted (purple).

Here, ε(p) is the energy of the Goldstone mode at total momentum p [plotted in Fig. 5(c)]. Furthermore, we have

B(p,eY )
q,q′ =

∑
k,k′

G(eY )∗
p−q,kG(eY )

p−q′,k′W
(eY ,eY ,eY )

k,q;q′,k′ (p)

= G(eY )∗
p−q,q′G

(eY )
p−q′,q[R(q′) + R(q) + R(q′ + q − p)] + 2

∑
k

[
G(eY )∗

p−q,k−qG(eY )
p−q′,k−q′T

(eY ,eY )
−q;q′−k(k)

− G(eY )∗
p−q,kG(eY )

p−q′,qS(eY ,eY )
k+q−p;q′+q−p(p − q) − G(eY )∗

p−q,q′G
(eY )
p−q′,kS(eY ,eY )

q+q′−p;k+q′−p(p − q′)
]
. (C15)

The Goldstone-projected trion spectrum is plotted in Fig. 6.

4. Analysis of the overlap matrix

Numerically, we find that the trion bound states lie in the
Chern basis sector e′

Y = eY (see however Fig. 8 for spectra
in the sector e′

Y �= eY ). This suggests that the bound states
capitalize on the nonorthogonality of the variational states
|	(eY ,eY )

p;q,1 〉 in this sector (in the sector e′
Y �= eY , the variational

states form an orthonormal basis). To prove this, we proceed
to analyze the overlap matrix. The spectrum of the α = β = 2

block of the inverse overlap matrix [O(p,eY ,eY )]−1 is plotted in
Figs. 7(a) and 7(b). Recall that for an orthogonal basis, this
spectrum would consist of a single band at eigenvalue 1. In the
present case, there are two notable deviations: (1) a dispersive
gapped band at eigenvalue ∼8 . . . 14, and (2) a flat gapped
band at eigenvalue ∼0.77.

The presence of the band (1) can be understood by taking
the limit where all Goldstone modes are constant G(eY )

p,k ≈
G(eY )

0,k = 1/
√

NM. In this limit, the matrix �
(p,eY )
q,q′ = 1/NM has

a single eigenstate at eigenvalue 1, which is projected out
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FIG. 18. Exact spectra [Eq. (B16)] for w0/w1 = 0.8 for double gate screening with ξ = 10 nm and ξ = 20 nm. For the N = 3, Q = 1
trion plots, the minimum of the quasiparticle-Goldstone continuum is highlighted (purple). For ξ = 10 nm at ν = −2, some excitations have
negative energy and the ground state is unstable.

by [O(p,eY ,eY )]−1 to infinite energy in the α = β = 2 sector
of Eq. (C10). This is equivalent to the statement that in this
limit the state

∑
q |	(eY ,eY )

p;q,2 〉 = 0 is unphysical and must be
projected out to obtain an orthonormal basis. When restoring
the k dependence of the Goldstone wave function G(eY )

p,k , this
state becomes admissible and corresponds to the high overlap
matrix band.

The band (2) directly implies the presence of a trion bound
state. To see this, we compare the trion spectrum of H̃(p,eY ,eY )

in Eq. (C13) with the spectrum of the matrix

[1 − P(p)]H̃(p,eY ,eY )[1 − P(p)], (C16)

where P(p) is the projector onto the low overlap band at
eigenvalue ∼0.77. These spectra are plotted in Figs. 7(c) and
7(d). We see that projecting out the flat overlap band amounts
to projecting out the trion bound state, without much change to
the rest of the spectrum. Hence, the presence of a trion bound
state is tied to the lowest band of the inverse overlap matrix. In
fact, this band has an H(p,e′

Y ,eY ) expectation value ∼35.8 meV,
explaining the presence of a flat trion bound state at energy
∼0.77 × 35.8 meV = 27.6 meV in the physical spectrum of
H̃(p,e′

Y ,eY ). The actual bound state energy is slightly lower

(26.1 meV), because the low [O(p,e′
Y ,eY )]−1 band is not an exact

eigenstate of H̃(p,e′
Y ,eY ). The resulting flat bound state merges

with the continuum when the quasiparticle energy dips below
26.1 meV close to 
.

APPENDIX D: NUMERICAL SPECTRA

Since most of our numerical trion spectra in the chiral limit
are for the Chern sector e′′

Y = e′
Y = eY in Eq. (C6), we provide

spectra for e′′
Y �= e′

Y = eY in Fig. 8 to show that there are no
lower-energy bound states in those sectors.

Furthermore, we provide spectra for chiral limit N =
1, 2, 3 excitations at all fillings and for a double gate screened
Coulomb potential with screening length ξ = 10 and ξ = 20
in Figs. 9–12.

Next to the double gate screened Coulomb interaction
defined in Eq. (A2), we investigate the presence of trion
bound states for the single gate screened Coulomb interaction
potential

V (q) = 2πξ 2Uξ

1 − e−2ξ |q|

ξ |q| . (D1)
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FIG. 19. Finite-size analysis showing the scaling of the trion binding energy �E with mBZ size NM in the chiral limit (w0/w1 = 0). We
use a mBZ with NM = 3n2 = 27, 48, 75, 108 sites that contains the K point and preserves C3 rotational symmetry. For all screening lengths,
the binding energy difference between the largest and second-largest mBZ is smaller than 0.05 meV.

Importantly, here ξ denotes the distance from the TBG sample
to the single gate, whereas previously ξ was the difference
between the two gates, with the TBG sample located halfway
in between. Hence, we compare the double gate ξ = 20 nm
results with the single gate ξ = 10 nm results in Figs. 11–14.

In Fig. 15, we show how the ν = −1, Q = 1 trion bound
state becomes unbound at 
 when the Q = 1 quasiparticle
effective mass is gradually lowered.

In Figs. 16–18 we present N = 1, Q = ±1, N = 2, Q =
0, 2, and N = 3, Q = 1 spectra at fillings ν = 0,−2 and tun-
neling ratios w0/w1 = 0, 0.4, 0.8 for double gate screening
with ξ = 10 nm and ξ = 20 nm.

We find that the lowest trion bound states exclusively
appear in the chiral sector e′′

Y = e′
Y = eY [Eq. (C7)], as

expected from our overlap matrix analysis in Appendix C 4.
Quite generally, we also find that larger screening lengths ξ

and single gate screening lead to larger trion binding energies
than shorter ξ and double gate screening. Moreover, all bound
states vanish into the continuum as the tunneling ratio w0/w1

is increased to the realistic value w0/w1 = 0.8.
Finally, in Fig. 19 we perform a finite-size analysis to show

that our trion binding energies obtained from exact diagonal-
ization in the chiral limit have converged to an error of within
0.05 meV for accessible mBZ sizes.
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