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Abstract
Contracting tensor networks is often computationally demanding. Well-designed contraction
sequences can dramatically reduce the contraction cost. We explore the performance of simulated
annealing and genetic algorithms, two common discrete optimization techniques, to this ordering
problem. We benchmark their performance as well as that of the commonly-used greedy search on
physically relevant tensor networks. Where computationally feasible, we also compare them with
the optimal contraction sequence obtained by an exhaustive search. Furthermore, we present a
systematic comparison with state-of-the-art tree decomposition and graph partitioning algorithms
in the context of random regular graph tensor networks. We find that the algorithms we consider
consistently outperform a greedy search given equal computational resources, with an advantage
that scales with tensor network size. We compare the obtained contraction sequences and identify
signs of highly non-local optimization, with the more sophisticated algorithms sacrificing
run-time early in the contraction for better overall performance.

1. Introduction

Tensor networks are a convenient language for studying the statistics of discrete systems with local
interactions. The partition function and correlation functions of many lattice models may be written as
tensor networks. Similarly, typical states of quantum systems often admit an efficient representation as a
tensor network, either in the form of matrix product states (MPS) [1, 2] or more general states such as tree
tensor networks [3, 4] and projected entangled pair states (PEPS) [5]. Tensor networks have also been used
as machine learning classifiers [6, 7].

At the core of these applications is the problem of tensor network contraction, in which all intermediate
bonds in a tensor network are summed to evaluate the network. Because these sums are performed
simultaneously, a naive tensor network contraction uses computational resources which are exponential in
system size, and so better approaches are needed.

Unfortunately, contracting tensor networks requires exponential resources in general [8]. Nonetheless, it
is often possible to approximate tensor network contraction, resulting in efficiently-computable answers with
controllable errors [9, 5, 11–14]. Moreover, many useful tensor networks, including MPS networks [1], can
be contracted exactly in polynomial time by taking advantage of the property that the computational cost of
contracting a tensor network depends strongly on the order of summation while the result does not. Hence
while the worst cases may be intractable, there is still room to improve in typical or special cases.

To that end, we examine two algorithms which are widely used in discrete optimization. Our aim is to see
if these algorithms provide any improvement over standard methods and hand-crafted contraction
sequences. These are Genetic Algorithms [15–17] and Simulated Annealing [18, 19]. We begin in section 2 by
reviewing the structure of tensor networks, Penrose notation, and the computational cost of contracting
sequences. In section 3 we then describe the algorithms in more detail, along with the commonly-used
Greedy Search algorithm [20] and the reference Exhaustive Search method [21–24]. We then perform
numerical experiments in section 4, testing these methods on both two-dimensional square tensor networks
and Erdös-Rényi random networks, and find that both algorithms outperform the Greedy Search in most of
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our experiments, often by many orders of magnitude. We examine specific contraction sequences in section 5
to understand how these algorithms craft such efficient sequences. In section 6 we apply our methods to
random regular graphs, which enables a direct comparison with recent state-of-the-art approaches to tensor
network contraction. We then conclude with a discussion of our results in section 7.

2. Tensor network contraction

A tensor network is a list of tensors along with a specification of which pairs of their indices are meant to be
contracted. So for instance,

Nklmn =
∑
ij

TijklXiYjmn (1)

specifies a network N formed of three tensors T, X and Y, with two contracted pairs of indices, namely i and
j. The network itself is tensor-valued, with the four indices k, l,m and n, which correspond to the indices of
the constituent tensors which were not contracted.

A key feature of tensor network contraction is that individual summations commute. That is, the sums in
equation (1) may be done simultaneously, but we could also perform first the sum over i, producing the
intermediate tensor

Qjkl =
∑
i

TijklXi, (2)

and only then perform the sum over j to evaluate

Nklmn =
∑
j

QjklYjmn. (3)

Likewise, we could first sum over j, producing

Q′
iklmn =

∑
j

TijklYjmn, (4)

and then sum over i to obtain

Nklmn =
∑
i

Q′
iklmnXi. (5)

Both pathways arrive at the same answer, but they may have very different computational costs. For instance,
the intermediate Q′ has a higher rank (number of indices) than the intermediate Q, and so if all bonds have
the same dimension, Q′ requires more memory to store and more computation time to evaluate. It is often
convenient to write small tensor networks explicitly, as in equation (1), but for large ones this quickly
becomes cumbersome. Instead we depict larger networks graphically using Penrose notation, with squares
representing tensors and lines representing indices [25]. So, for instance, the network specified by the
right-hand side of equation (1) is shown graphically in figure 1.

In this notation, performing a single sum amounts to combining two nodes in the graph into one. Hence,
summing over j in equation (1) produces the network shown in figure 2. Then, summing over i finally yields
the evaluated network shown in figure 3.

We call the order in which we contract pairs of indices a contraction sequence. To calculate the
computational cost of a given contraction sequence, we count the number of floating-point multiplications
that have to be performed [21]. This is equal to the number of floating-point additions, and so counts the
number of operations required and the run-time up to a constant factor. Our cost function thus reads

cost({E}) =
∑
e∈{E}

∏
m∈{ve}

χ(m), (6)

where {E} denotes the ordered set of edges to be contracted, {ve} denotes the set of edges adjoining the two
vertices connected by the edge e (including e itself) at a given contraction step, and χ(m) is the bond
dimension of edgem, i.e. the number of different values that the index associated withm can assume.
Holding coordination number fixed, the computational complexity of evaluating this cost function isO(E)
where E is the number of edges in the network.

As an example, consider the contraction in equation (1). Contracting the index i first amounts to
χ(i)χ(j)χ(k)χ(l) elementary operations. Following up with the sum over the index j then adds another
χ(j)χ(k)χ(l)χ(m)χ(n) operations. The total cost of this contraction ordering is therefore
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T Y

X

Figure 1. The tensor network specified by equation (1) in Penrose notation.

Q Y

Figure 2. The tensor network specified by equation (3) in Penrose notation.

N

Figure 3. The tensor N appearing in equation (1) in Penrose notation.
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costij = χ(i)χ( j)χ(k)χ(l)+χ( j)χ(k)χ(l)χ(m)χ(n). (7)

By contrast, the cost of contracting first j then i is

costji = χ(i)χ( j)χ(k)χ(l)χ(m)χ(n)+χ(i)χ(k)χ(l)χ(m)χ(n). (8)

These are clearly different, and so there is a room to optimize by picking the lower-cost option.

3. Algorithms

We have tested four algorithms. Two of these, namely Exhaustive Search and Greedy Search, are in common
use for obtaining tensor network contraction sequences. So far as we are aware, the other two have not
previously been used to this end.

The other algorithms, namely Simulated Annealing and the Genetic Algorithm, share a common
structure which will aid in their comparison. Each consists of a procedure for generating batches of
contraction sequences. Only one batch is considered at a time. The cost of contracting the given tensor
network with each sequence in the batch is then computed. If any sequence in the proposal has a lower cost
than the previous lowest-cost sequence it is stored in place of the previous best sequence. The algorithm then
proceeds to propose a new batch, possibly using the results of the previous batches. This process iterates until
either all possible orderings have been considered or a time limit is reached. Where these methods differ is in
the rule for producing new batches.

Because of this structure both methods may be run for as long as desired and can at any point return the
best ordering found so far. We will take advantage of this to restrict each method to a fixed number of
evaluations of the cost function. This limitation is a proxy for a runtime limit that is insensitive to details of
the implementation of the algorithm or the underlying hardware, which makes it a useful means of
comparison.

We now detail the four algorithms. Implementations for the Greedy Search, the Genetic Algorithm, and
Simulated Annealing can be found at github.com/frankschindler/OptimizedTensorContraction.

3.1. Exhaustive search
Exhaustive Search comes in several varieties. In its most basic version every possible contraction ordering is
considered exactly once. The cost of each is evaluated and the ordering with the lowest cost is returned.

This algorithm is deterministic and always returns the optimal contraction sequence. Because the
number of contraction sequences to consider scales likeO(eE), where again E is the number of edges in the
network, the run-time of this algorithm is exponential. More advanced variants of this algorithm incorporate
tree pruning [21] to avoid considering sequences which can be proven to have higher cost than others, but in
the worst case the cost is still exponential.

For the numerical results we present for the Exhaustive Search, we adapted the MATLAB version of the
Netcon algorithm from Reference [21] to also output the accumulated number of cost function evaluations.
We then ran it with the parameter choice costType= 1, muCap= 1, allowOPs= false. We used the MATLAB
version R2019a and Netcon version 2.01.

3.2. Greedy search
Greedy Search begins by considering the cost of performing just one step in the contraction. Evaluating this
incremental cost takes time which isO(1). Each possible first step is considered, and the one with the lowest
cost is taken. The method proceeds recursively, considering next all possible second steps.

Alternate variants of Greedy Search have been used which consider multiple steps
simultaneously [20, 21]. For instance one could consider all possibilities for the next two steps, or more
generally for the next k steps. The cost of this algorithm considering k steps simultaneously isO(Ek)
incremental cost function evaluations, which is equivalent toO(Ek−1) evaluations of the full cost function.
Because the cost grows rapidly with k we only consider the commonly-used [20] case of k= 2 in the
following.

For the numerical results we present for the Greedy Search and the remaining algorithms, we made use of
Python 3.7.4, with the libraries Numpy 1.17.2, Scipy 1.3.1, itertools, and copy. We implemented the k-step
Greedy Search as a standalone Python function built on these tools.

3.3. Genetic algorithm
The Genetic Algorithm begins by evaluating the fitness (the negative cost) of each contraction in a starting
population of randomly generated sequences [15, 16]. It then samples a new population, drawing from the
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starting population with replacement and with probabilities that are proportional to the fitness of the
individual contraction sequences. This models the extinction of unfit specimen. Furthermore, the
contractions in the new population are subject to mutation, in that there is a finite chance that the ordering
of two randomly selected edges is exchanged in the respective sequence (the fittest individual of the
population is always kept unchanged). This process is then iterated.

We implemented the Genetic Algorithm in Python. We chose a population size of 20 and a mutation rate
of 60%. For the fitness function, we used

fitness({E}) = exp

[
logcost({Emax})− logcost({E})

logcost({Emax})− logcost({Emin})

]
− 0.99, (9)

where {Emin} and {Emax} are the contraction sequences with the lowest and highest cost in the population,
respectively. This fitness function was chosen heuristically to return natural values in the range (0, 10−1)
while retaining the hierarchy of scales resolved by the original cost function (up to a power). Note that the
subtraction of 0.99 matters because we generate probabilities from a population’s fitness distribution after
normalization. We checked that the performance of the Genetic Algorithm is not sensitive to the precise
choice of fitness function.

3.4. Simulated annealing
Simulated Annealing works with an alternative representation of contraction sequences, where we encode
permutations of edge labels by arrays of real numbers taken from the interval [0, 1]. A contraction can then
be obtained from the permutation that orders the numbers in the respective array by magnitude. This
representation has the advantage that it allows for a continuous deformation of the arrays while the
constraint that each element represent a valid permutation is implicitly taken into account. This allows us to
use the dual annealing [26] variant, which combines the standard classical annealing algorithm with a local
optimizing search.

For the numerical results we present for Simulated Annealing, we employed the implementation of the
dual_annealing algorithm that is available from the optimize package of the Scipy library. We used the default
settings of the algorithm, which are local_search_options= {}, initial_temp= 5230.0, restart_temp_ratio=
2 ∗ 10−5, visit= 2.62, accept=−5.0, seed= None, no_local_search= False, callback= None, x0= None.

4. Numerical experiments

We perform our numerical experiments on two classes of tensor networks. The first are two-dimensional
square lattices, shown in figure 4(a). We choose two-dimensional networks because in one-dimension the
optimal contraction sequence is already known, so this provides one of the simplest non-trivial test cases.

The second class of network we consider is that of Erdös-Rényi random graphs. These consist of a
collection of nodes with edges distributed amongst them at random, such that all pairs of nodes have the
same probability of having an edge, and such that edges are placed independently of one another. In our tests
we let this probability be 80%. An example of a tensor network generated in this way is shown in figure 4(b).
Such networks are analogous to spin glasses, and represent some of the most difficult tensor networks to
contract due to their large connectivity and high variance in tensor rank.

4.1. Variable run-time
In our first experiment we consider the square network shown in figure 4(a), with a bond dimension of
χ= 2. We use each of Simulated Annealing, the Genetic Algorithm, and Greedy Search to produce
contraction sequences for this network. The results are shown in figure 5(a). For Simulated Annealing and
the Genetic Algorithm we show the contraction cost given by equation (6) of the best contraction sequence
found as a function of the number of cost function evaluations used. The Greedy Search requires a fixed
number of evaluations, and so we just show its output with that number of evaluations.

From this experiment we see that Simulated Annealing significantly outperforms the Genetic Algorithm
when given the same number of function evaluations. This is not universally true, but we see the same in
almost every case. We also see that the Greedy Search performs better than the Genetic Algorithm, but worse
than Simulated Annealing at the same number of function evaluations.

Figure 4(b) shows the same experiment but with an increased bond dimension of χ= 10. Increasing the
bond dimension dramatically raises the contraction cost for each algorithm. The change in cost is of order
(χnew/χold)

2L, where L is the linear size of the network. This may be seen by noting that each tensor at an
intermediate stage represents a contiguous subset of the original network. Eventually those subsets come to
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a b
Figure 4. Examples of the test tensor networks used to compare the different algorithms in Penrose notation. (a) Square tensor
network with 102 nodes. (b) Random tensor network with 16 nodes.

a

c

b

d

Figure 5. Performance comparison by number of cost function evaluations, a platform-independent measure of algorithm
runtime. Results for (a) a square tensor network with 102 nodes connected by edges with χ= 2, (b) a square tensor network with
102 nodes connected by edges with χ= 10, (c) a random tensor network with 16 nodes, where each edge (with χ= 2) had a 80%
chance of being realized, and (d) a random tensor network with 16 nodes, where each edge (with χ= 10) had a 80% chance of
being realized.

be extensive in size and so come to have perimeter length of order L. Hence at some point each algorithm
must contract two tensors with of order L bonds, with cost of order χ2L.

Interestingly, with larger bond dimension Greedy Search performs worse relative to the other algorithms.
We understand this as follows: for small bond dimensions it is possible for many contraction steps to matter
in the total cost, because the difference between contractions of different ranks is small. As the bond
dimension increases the cost of a contraction sequence comes to be dominated by the cost of the few most
expensive contraction step(s). Optimizing a contraction sequence then becomes mostly a matter of avoiding
the worst cases. Because the appearance of very expensive contraction steps is a function of the entire
contraction sequence up to that point, this is a non-local optimization problem that Simulated Annealing
and the Genetic Algorithm are better suited to.
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a

b

Figure 6. Performance comparison for a contraction of square tensor networks of different size. (a) χ= 2. (b) χ= 10. ‘Linear
system size’ denotes here the square root of the total number of nodes in the tensor network. The black horizontal line in the
lower left panel indicates the ‘desktop limit’ (see text) of about 1016 addition and multiplication operations. For each algorithm,
we show the median run out of 20 runs, with the log-normal standard deviation (relative standard deviation) indicated in the
center panels. The right panels show the number of cost function evaluations, where Simulated Annealing and the Genetic
Algorithms were allowed the same number of evaluations as used by the Greedy search.

We next repeat these experiments for the Erdös-Rényi random graph shown in figure 4(b). The results
are shown for bond dimensions χ= 2 and χ= 10 in figure 5(c), (d) respectively. Both Simulated Annealing
and the Genetic Algorithm significantly outperform Greedy Search with a similar number of cost function
evaluations. Moreover, they do so even with significantly fewer cost function evaluations. Intuitively, these
non-local optimization methods are able to perform comparatively better with higher connectivity and less
local structure.

Common to all of the panels of figure 5, we see that Simulated Annealing and the Genetic Algorithm
improve in bursts, separated by long plateaus. This makes it difficult to arrive at strong statements about the
correct number of function evaluations to use with these algorithms, as there is no clear indication of
whether the search will continue improving or not.

The large, order-of-magnitude nature of the bursts, however, suggests a heuristic to use in practice, which
is that the search for better contraction sequences should be conducted for a time comparable to the run-time
of the current best contraction sequence. We call this the ‘time-remaining’ heuristic. In that way the search at
most doubles the run-time if it yields no improvement, while still offering a chance of dramatic gains.

4.2. Equal run-time
For comparison purposes we do not adopt the time-remaining heuristic here. Rather we now fix the number
of cost function evaluations used by each algorithm to be equal to that of the Greedy Search. This enables
meaningful comparisons between algorithms with similar runtime contraints.

Figure 6(a) shows the performance of Simulated Annealing, the Genetic Algorithm and Greedy Search on
two-dimensional square tensor networks of varying sizes with bond dimension χ= 2. The left-most panel
shows the median performance across 20 runs of each non-deterministic algorithm, along with the global
optimal result provided by Exhaustive Search. The middle-panel shows the relative standard deviation in
performance for the same. Finally, the right-most panel shows the number of cost function evaluations used
by the Exhaustive Search and Greedy Search. Simulated Annealing and the Genetic Algorithm were both
allowed the same number of evaluations as Greedy Search.

We see relatively little variation in performance across these four algorithms, and to the point where we
were able to use the Exhaustive Search the algorithms perform close to the global optimum. To the extent
that there is a difference, it is for larger systems, for which Simulated Annealing significantly outperforms the
other algorithms.

Interestingly, the relative standard deviation in cost is much larger with both Greedy Search and the
Genetic Algorithm. We are not sure why the Genetic Algorithm has a high relative standard deviation. The
high relative standard deviation of the Greedy Search is understandable, however: many choices are
degenerate for the Greedy Search. Often a tensor network has many different contractions with the same
immediate cost, and the same is true at higher search depths. Even though the immediate cost is degenerate,
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a

b

Figure 7. Performance comparison for the contraction of Erdös-Rényi random tensor networks of different size, where, for each
network, every possible edge had a 80% chance of being realized. (a) χ= 2. (b) χ= 10. The black horizontal line in the lower left
panel indicates the ‘desktop limit’ (see text) of about 1016 addition and multiplication operations. For each algorithm, we show
the median run out of 20 runs, with the log-normal standard deviation (relative standard deviation) indicated in the center
panels. The right panels show the number of cost function evaluations, where Simulated Annealing and the Genetic Algorithm
were allowed the same number of evaluations as used by the Greedy search.

the long-term consequences of these choices on the network may be radically different, causing significant
variance in total cost.

Figure 6(b) shows the same experiment but with bond dimension χ= 10. We now see a larger spread
between the algorithms. Here we have highlighted the so-called ‘desktop limit’ of cost= 1016, which provides
a rough bound on the cost of contractions that can reasonably be performed on a modern desktop computer
limited to a day of runtime. (Note that if the cost is dominated by a single expensive contraction step the
practical limit is somewhat lower, as tensors with 1016 elements are unlikely to fit into memory.) In
particular, the gap between Greedy Search and Simulated Annealing is such that the former hits the desktop
limit on systems roughly 10% smaller than the latter, suggesting that with the improvements offered by
Simulated Annealing it should be possible to contract larger tensor networks than were previously possible.

The larger bond dimension also brings about an increased relative standard deviation in their
performance. The increased relative standard deviation comes about because the cost is now more sensitive
to the few most expensive contraction steps, and so becomes more sensitive to the (discrete) ranks of tensors
as the contraction proceeds.

We next repeated these experiments with Erdös-Rényi random graphs of varying size. The results are
shown in figure 7. For small systems the algorithms all find nearly-optimal contraction sequences. As the
system size increases above 10− 11 nodes a large difference emerges which grows until the Greedy Search
performs a factor of 10− 100 worse than Simulated Annealing, which in turn performs a factor of 10 or so
worse than optimal. The relative standard deviation in performance across runs is generally larger than in the
square network cases, particularly for Simulated Annealing. The overall increase can be understood as being
due to increased variance in tensor ranks making the cost more sensitive to the precise contraction sequence.
We are not sure why this affects Simulated Annealing more than the other algorithms, though it may indicate
that with random graphs the dual annealing implementation is less able to exploit the structure of the
network in its local search steps.

5. Contraction sequences

To understand how Simulated Annealing comes to outperform the Greedy Search it is useful to examine a
typical contraction sequence produced by each algorithm. In figure 8 we show the median best contraction
sequence of each algorithm taken across 40 runs for a square network with linear size L= 6 and bond
dimension χ= 10. We depict the contraction sequence by showing the tensor graph before each contraction
step. The colors of individual bonds are proportional to the fourth root of the contraction cost, with red
indicating higher cost and blue indicating lower cost.

The Simulated Annealing sequence is roughly 100 times less expensive than that of the Greedy Search. As
expected for this large bond dimension, both algorithms have costs which are dominated by three or fewer
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Figure 8. Typical contraction sequences obtained for a square tensor network with 62 nodes connected by edges with χ= 10. We
show the median sequence produced by 40 runs, where the median is taken with respect to the cost of the best sequence found in
each run. The color of individual bonds indicates the cost of contracting them; we chose a color scale that is proportional to the
fourth root of the contraction cost in order to enhance contrast. The color scale is the same for both algorithms. (a) Greedy
Search. (b) Simulated Annealing. (c) Comparison of the (accumulated) cost per contraction step.

steps (figure 8(c)). From figure 8(a)-(b) we see that Simulated Annealing always leaves itself a comparatively
low-cost option, while Greedy Search exhausts all such options and is forced into costly contraction steps.

Arranging to retain lower-cost options is inherently a global optimization process, because the cost of
contracting an edge is strongly dependent on the stage at which it is contracted and on the contraction order
leading up to that point. This explains why Simulated Annealing is able to achieve this task while Greedy
Search is not: the early costlier contractions that Simulated Annealing performs act to reduce the cost of the
most expensive steps towards the end.

A hint is provided by the Simulated Annealing sequence between steps 26 and 29, and again between
steps 32 and 43. In both cases, one or more bonds emerge which involve expensive contractions. In the first
instance Simulated Annealing performs the expensive contraction, which enables lower-cost options
afterwards. In the second instance it merges nearby nodes into those adjacent to the expensive bond (for
instance, 35 - 36). In doing so it produces self-loops on the adjacent nodes which, upon elimination, reduce
the cost of the deferred expensive step.

We next turn to the best contraction sequence produced by each algorithm. In figure 9(a)–(c) we show
the best contraction sequence of each algorithm taken across 40 runs for the same network as in figure 8. We
also show for comparison a typical hand-crafted contraction sequence similar to the corner transfer matrix
method commonly used with PEPS. In this sequence rows are contracted together repeatedly until just one
remains, at which point that row is contracted down to a point. We see that both Greedy Search and
Simulated Annealing significantly outperform the hand-crafted sequence. Both algorithms manage this by
producing fewer high-rank tensors, which is enabled by ‘contracting inwards’ from the perimeter rather than
working with a single edge the whole time. Doing so reduces the number of extra bonds accumulated by each
tensor on the edge, which holds the rank down.

In figure 9(d) we see that, like in the median case, there are just a few steps which together dominate the
cost of the best contraction sequence for each algorithm. However, unlike in the median case, in the best case
the costs of the different contraction sequences are of the same order of magnitude, which is a factor of 10 or
so better than the median case for the Simulated Annealing algorithm. This suggests that the best case for the
Greedy Search is a bigger improvement over the median case than the best case for the Simulated Annealing
algorithm is over its median case.

9
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Figure 9. Optimal contraction sequences obtained for a square tensor network with 62 nodes connected by edges with χ= 10. We
show the minimum cost sequence produced by 40 runs. The color of individual bonds indicates the cost of contracting them; we
chose a color scale that is proportional to the fourth root of the contraction cost in order to enhance contrast. The color scale is
the same for all algorithms. (a) Hand-crafted Sequence, (b) Greedy Search. (c) Simulated Annealing. (d) Comparison of the
(accumulated) cost per contraction step.

Figure 10. Optimal contraction sequences obtained for a random tensor network with 10 nodes connected by edges with χ= 10
(and a connectivity of 80%). We show the minimum cost sequence produced by 40 runs. The color of individual bonds indicates
the cost of contracting them, we chose a color scale that is proportional to the eighth root of the contraction cost in order to
enhance contrast. The color scale is the same for both algorithms. (a) Greedy Search. (b) Simulated Annealing. (c) Comparison of
the (accumulated) cost per contraction step.

We can understand this improvement by noting that in the early stages of the Greedy contraction
sequence there is significant degeneracy between the various least-expensive contractions. This results in a
wide variety of different possible states following the first 10 or so contraction steps. The typical such state is
evidently much harder to continue contracting than the best such state. This conclusion highlights the
importance of optimizing globally over the whole contraction sequence, and not just locally as Greedy Search
does.

Finally, in figure 10 we show the best contraction sequence of Greedy Search and Simulated Annealing
across 40 runs for an Erdös-Rényi random graph. We see again that Simulated Annealing does a much better
job of preserving comparatively good options throughout the contraction, while Greedy Search exhausts its
cheap contraction options early on and is forced into a run of very expensive contraction steps.
Unfortunately the random structure of this graph exacerbates our earlier challenge interpreting the
Simulated Annealing contraction sequence, and it is not clear exactly what choices it is making that enable
such good long-run performance. Nevertheless, the performance is remarkable: Simulated Annealing finds a
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Figure 11. Performance comparison for the contraction of random regular graphs of different size, where every node is connected
to 5 other randomly chosen nodes, and all bonds have a bond dimension χ= 2. For each algorithm, we limited the total number
of allowed cost function evaluations at 106. The black horizontal line indicates the ‘desktop limit’ (see text) of about 1016 addition
and multiplication operations. For each algorithm, we show the obtained contraction cost average over 100 different random
regular graph instantiations in the left panel, while the right panel indicates the log-normal standard deviation (relative standard
deviation). [Compare with figure 4 (f) of Reference [27].].

contraction sequence that is 100 times faster than that of Greedy Search, and does so with the same number
of cost function evaluations.

6. Random regular networks

Up to this point, we have focused on applying our algorithms to either sparse tensor networks that have
significant spatial structure [the two-dimensional square networks, figure 4(a)], or dense tensor networks
that have no spatial structure [the Erdös-Rényi random graphs, figure 4(b)]. We now consider random
regular graphs as intermediary benchmark networks that allow us to compare our methods directly with the
very recently introduced ‘hyper-optimized’ contraction algorithms of Gray and Kourtis, Reference [27].
These represent a collection of algorithms that rely on, among other techniques, tree decompositions of the
line graph corresponding to a given tensor network, detection of dense node communities in the network,
and top-down graph partitioning. They are thereby significantly more sophisticated and domain-specific
than the combinatorial optimization algorithms we consider. In addition, the authors of Reference [27]
employ a hyperparameter optimization scheme that aims to find the best numerical values of the free
parameters entering the individual algorithms for each tensor network separately. By contrast, for simplicity
and computational efficiency in our algorithms we use the same fixed parameters (listed in section 3) for all
tensor networks. This comes at the expense of not being able to adapt optimization strategies, and even the
choice of algorithm itself, to the specific type of tensor network under consideration, and we believe a
promising path forward is to employ hyperparameter optimization with the combinatorial optimization
algorithms we have discussed here.

In random k-regular graphs of size L, each node is connected to k other randomly chosen nodes. There
are therefore a total of kL/2 bonds. This linear-in-L scaling of the number of bonds allows us to reach far
larger system sizes than for Erdös-Rényi random graphs (for which the scaling of bond number is quadratic
in system size). To compare with Reference [27], we sample a total of 100 5-regular graphs for each system
size, ranging up to L= 100, and average the contraction costs of the best solutions obtained by the Greedy,
Simulated Annealing, and Genetic algorithms. The results are shown in figure 11. Interestingly, we find that
the Genetic Algorithm consistently outperforms Simulated Annealing in finding good contraction paths for
random regular graphs, while the situation was reversed in the case of large square tensor networks (figure 6).
This finding highlights that the choice of algorithm should be made on a problem dependent basis.

Comparing with the results of Reference [27], we find that the performance of Simulated Annealing and
Genetic algorithms is similar to that of the QuickBB (line-graph tree decomposition) and BGreedy
(Boltzmann-sampled Greedy paths) algorithms described in the reference, with the Genetic Algorithm
achieving slightly better results than both. However, the GN (community detection) and KaHyPar (graph
partitioning) algorithms of Reference [27] outperform our methods on average in finding efficient
contraction paths for random regular graphs. This finding suggests that it might be advantageous to replace
the BGreedy subroutine entering the KaHyPar algorithm by our Genetic Algorithm for even better
performance. Because we have seen that algorithm performance heavily depends on the kind of tensor
network considered, we also believe it will be useful to incorporate the Simulated Annealing and Genetic
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algorithms themselves into future hyperparameter-optimized tensor network contraction frameworks,
especially because they are conceptually simple and straightforward to implement.

The advantage our algorithms have over other state-of-the-art techniques for tensor network contraction
is that: (1) They impose no assumptions on the structure of the tensor network. This suggests that they are
good baseline algorithms against which other, more sophisticated methods should be compared. This role
has been traditionally occupied by the Greedy algorithm which is, however, more specialized than our
approaches, since it assumes that the global cost function decomposes into local factors across the
contraction history. (2) They impose no assumptions on the format of the input data, depending only
implicitly on the contraction cost of a given tensor ordering [equation (6)]. Hence they can run on any
faithful ordering representation. In the present work, we have chosen to represent a contraction ordering by
its permutation vector (Genetic Algorithm) or by a vector of real numbers (Simulated Annealing). However,
there are many more choices of input data, such as inversion tables [28] or graphical representations.
Input-ignorant algorithms such as these allow for a clean separation of whether performance gains are due to
data pre-processing, or due to the method of optimization itself. (3) They are subject to proven convergence
bounds. This provides quantitative guarantees on the convergence of both annealing [29] and genetic [30]
algorithms to the desired optimal contraction path, which are at this point absent for the hyper-optimized
algorithms discussed above. These advantages are of a structural nature, independent of the performance of
the algorithms.

7. Conclusions

We have optimized tensor network contraction sequences using four different algorithms, namely Exhaustive
Search, Greedy Search, Simulated Annealing, and a Genetic Algorithm. The first two of these are commonly
used in contracting tensor networks, while to our knowledge the latter two have not been used in this
domain. We find that Simulated Annealing significantly outperforms Greedy Search, both in the best case
and on average. In many cases the cost of the contraction sequence found by Simulated Annealing is orders
of magnitude lower than that of Greedy Search with a comparable amount of search time. This advantage
grows larger with network size, and is most notable on networks with structure such as the square lattice.

With additional search time Simulated Annealing performs even better, often by a large enough margin
to justify the extra time spent optimizing the contraction sequence. This suggests a potential strategy to use
in practice, our ‘time-remaining’ heuristic, in which one optimizes the contraction sequence until the time
spent optimizing is comparable to the cost of the current best known contraction sequence.

Unfortunately we have been unable to extract any further intuition from these contraction sequences.
They do not appear to lead to design principles we may use to craft custom sequences for particular classes of
networks. In practice, however, this may not matter: algorithmically-generated contraction sequences may
well suffice, particularly if they are more efficient than hand-crafted or heuristically-guided ones.

The contraction sequence optimization methods we have discussed should prove practically useful in all
fields where tensor networks provide good variational models, such as condensed matter and statistical
physics (where tensor networks are realistic ground states of gapped local Hamiltonians), high energy theory
(where large and unstructured tensor networks of the kind considered by us are explicit realizations of the
holographic duality) [31], computational quantum chemistry [32], and even machine learning [6].
Whenever a variational model does not have some special structure (such as being one-dimensional or
representable by a tree graph), the computations required for its exact contraction will scale exponentially
with size, making algorithms that find efficient contraction paths highly desirable because the human time
spent on optimizing contraction sequences can be substantial.

While it is true that the exact contraction of larger tensor networks than previously possible is an
interesting application in itself, for instance to compare classical computing performance with that of
near-term quantum computers [27, 33], the exponential scaling that applies even to optimal contraction
paths fundamentally limits the scope of full exact contractions. Thus we expect our methods to be most
useful as part of approximate contraction methods such as Tensor Network Renormalization, which often
rely on repeatedly and exactly contracting moderate-sized networks to produce inputs into the
approximation scheme [34]. These and other methods built on top of exact tensor network contraction
require fast and reliable contraction machinery, and we believe that this is where the chief advantages of
optimized contraction sequences lie.
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