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Hermitian Bulk – Non-Hermitian Boundary Correspondence

Frank Schindler ,1,2,* Kaiyuan Gu,3 Biao Lian,3 and Kohei Kawabata3,4

1
Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA

2
Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
3
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

4
Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

 (Received 14 April 2023; revised 11 June 2023; accepted 6 July 2023; published 2 August 2023)

Non-Hermitian band theory distinguishes between line gaps and point gaps. While point gaps can give
rise to intrinsic non-Hermitian band topology without Hermitian counterparts, line-gapped systems can
always be adiabatically deformed to a Hermitian limit. Here, we show that line-gap topology and point-gap
topology can be intricately connected: topological line-gapped systems in d dimensions induce nontrivial
point-gap topology on their (d − 1)-dimensional boundaries when suitable internal and spatial symmetries
are present. Since line-gapped systems essentially realize Hermitian topological phases, this establishes
a correspondence between Hermitian bulk topology and intrinsic non-Hermitian boundary topology. For
the correspondence to hold, no non-Hermitian perturbations are required in the bulk itself, so that the bulk
can be purely Hermitian. Concomitantly, the presence of non-Hermitian perturbations in the bulk does
not affect any results as long as they do not close the bulk line gap. On the other hand, non-Hermitian
perturbations are essential on the boundary to open a point gap. The non-Hermitian boundary topology
then further leads to higher-order skin modes, as well as chiral and helical hinge modes, that are protected
by point gaps and hence unique to non-Hermitian systems. We identify all the internal symmetry classes
where bulk line-gap topology induces boundary point-gap topology as long as an additional spatial sym-
metry is present and establish the correspondence between their topological invariants. There also exist
some symmetry classes where the Hermitian edge states remain stable, in the sense that even a point gap
cannot open on the boundary.
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I. INTRODUCTION

Hermitian topological insulators and superconductors
in the ten Altland-Zirnbauer (AZ) symmetry classes [1]
are gapped in their d-dimensional bulk but exhibit gap-
less edge states on (d − 1)-dimensional boundaries [2–
4]. These edge states are protected by the bulk gap and
symmetries and cannot be removed by local symmetry-
preserving perturbations without a phase transition. In
non-Hermitian (NH) systems, two notions of gap, line gaps
and point gaps, are fundamental for topological phases [5–
7]. While line-gapped systems are always deformable to
either a Hermitian (real line gap) or anti-Hermitian (imag-
inary line gap) gapped limit, point-gapped systems may
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not have any gapped Hermitian or anti-Hermitian coun-
terparts. Correspondingly, point-gapped systems, as well
as line-gapped systems that only have an anti-Hermitian
limit, may realize a radically different kind of topology
that is intrinsic to NH systems. In the following, we use
the term NH topology for these new topological equiva-
lence classes that arise when a point gap or imaginary line
gap is kept open. At the same time, we refer to real-line-
gap topology as Hermitian topology, as it can be obtained
by perturbing around gapped Hermitian systems. Similar
to Hermitian topological phases, nontrivial NH topology
in d dimensions is reflected by a gap closing on (d − 1)-
dimensional boundaries. In many cases, this gap closing
induces a NH skin effect [8,9], where a macroscopic num-
ber of eigenstates are localized at the system boundaries
[10–16]. Some NH systems in two dimensions (2D) and
three dimensions (3D) may furthermore avoid a skin effect
on (almost all) boundaries and instead exhibit anoma-
lous NH boundary dispersion such as unpaired exceptional
points [17–21].

Here, we uncover an intricate connection between Her-
mitian topology in d dimensions and NH topology on
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TABLE I. The correspondence between 2D bulk line-gap
topology and 1D boundary point-gap topology. For each Her-
mitian symmetry class (H class), we show the topological clas-
sification for the 2D bulk in parentheses and the corresponding
topological invariant in the second column (Chern number C ∈
Z and Z2 invariant ν ∈ {0, 1}). For each NH symmetry class,
we show the point-gap topological classification [7] for the 1D
boundaries in parentheses and the corresponding topological
invariant in the fourth column [complex-spectral winding num-
ber W(E) ∈ Z and its Z2 analogue ν(E) ∈ {0, 1}, both of which
depend on a reference energy E in the complex plane]. The
boundary NH invariants are expressed in terms of the respective
bulk Hermitian invariants for a slab geometry preserving pseu-
doinversion symmetry I† [Eq. (4)]. “. . .” indicates that there is
no correspondence.

d = 2 d = 1
Line-gap topology Point-gap topology

H class Invariant NH class Invariant (with I†)

A (Z) C ∈ Z A (Z) W(EF) = C (mod 2)
D (Z) C ∈ Z D (Z2) . . .

D† (Z) W(0) = C (mod 2)
DIII (Z2) ν ∈ {0, 1} DIII† (Z2) ν(0) = ν

AII (Z2) ν ∈ {0, 1} AII (2Z) W(EF) = 2ν (mod 4)
AII† (Z2) ν(EF) = ν

C (2Z) C ∈ 2Z C† (2Z) W(0) = C (mod 4)

their (d − 1)-dimensional boundaries that is guaranteed
by spatial symmetry. We consider Hermitian topological
insulators and superconductors in the presence of small
NH perturbations. The perturbations are chosen such that
they preserve a given NH symmetry that reduces to the
appropriate AZ symmetry in the Hermitian limit. This
requirement ensures that the edge states of the original
phase cannot acquire a real line gap. Conversely, the per-
turbations generically open either a point gap or an imag-
inary line gap on the boundary. In a geometry with open
boundary conditions (OBCs) in one direction and peri-
odic boundary conditions (PBCs) in the (d − 1) remaining
directions (the “slab geometry”), the NH perturbed sys-
tem can therefore in principle realize the intrinsic NH
topological phase of a (d − 1)-dimensional bulk NH sys-
tem. We solidify this possibility by proving that in the
presence of pseudoinversion symmetry (a simple spatial
symmetry that is compatible with nontrivial NH topol-
ogy [22–24]), nontrivial NH topology is guaranteed on
the boundaries of certain Hermitian topological phases.
This statement holds irrespective of the choice of spe-
cific model parameters or boundary terminations and only
relies on the presence of a point gap in the slab geom-
etry. Thus, while the mere opening of a point gap does
not necessarily lead to NH topology, we demonstrate that
the combination of a point gap and Hermitian topology
in the bulk must give rise to boundary NH topology, as
long as pseudoinversion symmetry is preserved. We derive

TABLE II. The correspondence between 3D bulk line-gap
topology and 2D boundary point-gap topology. For each Her-
mitian symmetry class (H class), we show the topological clas-
sification for the 3D bulk in parentheses and the corresponding
topological invariant in the second column (winding number
W ∈ Z and Z2 invariant ν ∈ {0, 1}). For each NH symmetry
class, we show the point-gap topological classification [7] for the
2D boundaries in parentheses and the corresponding topologi-
cal invariant in the fourth column [point-gap invariant C(E) ∈
Z and its Z2 analogue ν(E) ∈ {0, 1}, both of which depend
on a reference energy E in the complex plane]. The bound-
ary NH invariants are expressed in terms of the respective bulk
Hermitian invariants for a slab geometry preserving pseudoin-
version symmetry I† [Eq. (4)]. “. . .” indicates that there is no
correspondence.

d = 3 d = 2
Line-gap topology Point-gap topology

H class Invariant NH class Invariant (with I†)

AIII (Z) W ∈ Z AIII (Z) C(0) = W (mod 2)
DIII (Z) W ∈ Z DIII (Z2) . . .

DIII† (Z) C(0) = W (mod 2)
AII (Z2) ν ∈ {0, 1} AII† (Z2) ν(EF) = ν

CII (Z2) ν ∈ {0, 1} CII (2Z) C(0) = 2ν (mod 4)
CII† (Z2) ν(0) = ν

CI (2Z) W ∈ 2Z CI† (2Z) C(0) = W (mod 4)

the resulting mapping between NH boundary topological
invariants and Hermitian bulk invariants in all AZ sym-
metry classes and their NH extensions (Tables I and II).
We also show that d-dimensional Hermitian topological
phases in the presence of small NH perturbations host, via
their boundary-induced (d − 1)-dimensional NH topology,
(d − 2)-dimensional higher-order NH gapless states such
as higher-order skin modes and chiral or hinge modes pro-
tected by a point gap and pseudoinversion symmetry. This
phenomenon constitutes a novel kind of Hermitian-NH
hybrid higher-order topology. Unlike previous Hermitian
and NH examples of higher-order corner and hinge states
[25–33], the higher-order skin modes arising from this
mechanism do not appear on opposite boundaries.

We note that Ref. [34] has recently discussed NH topo-
logical phases at the boundaries of 2D systems. However,
the nontrivial point-gap topology discussed in Ref. [34]
does not rely on the presence of a 2D bulk but can instead
be viewed as that of an independent one-dimensional (1D)
NH system. This is not the case for our work, where each
boundary carries an anomalous half [35] of a (d − 1)-
dimensional NH system that is stabilized by the presence
of a d-dimensional bulk with Hermitian topology. Fur-
thermore, Refs. [36–38] have recently studied the corner
skin effect of NH Chern insulators. However, Refs. [36–
38] have not found a connection between the Hermitian
topology in the 2D bulk and the NH topology in the 1D
boundaries. Here, we clarify this connection and further
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generalize it to arbitrary AZ symmetry classes and spa-
tial dimensions. Notably, the NH topology in 2D surfaces
can lead to chiral and helical hinge modes protected by
point-gap topology, rather than the skin modes. We clas-
sify the correspondence between Hermitian and NH topo-
logical invariants that is guaranteed by pseudoinversion
symmetry, as summarized in Table I for 2D and Table II
for 3D.

II. 2D CHERN INSULATOR (CLASS A)

We begin with the simplest case: the Hermitian AZ class
A (no symmetry) in 2D. This class of systems is character-
ized by an integer-valued topological invariant, given by
the Chern number C ∈ Z. As a consequence of this Chern
number in the bulk, chiral edge modes appear under OBCs.
Below, for both continuum and lattice systems, we show
that these chiral edge modes exhibit point-gap topology in
the presence of certain NH perturbations, leading to the
second-order skin effect at corners (Fig. 1).

A. Continuum theory

The elementary topological phase in class A has |C|
= 1. In a Hermitian Chern insulator under PBCs in the
x direction and OBCs in the y direction (the “slab geom-
etry”), each boundary hosts a single gapless chiral mode
with dispersion E(kx) = ±vkx, where v is the Fermi veloc-
ity and the sign choice + (−) applies to the top (bottom)
edge. The low-energy continuum Hamiltonian for the full
slab geometry is then given by

H0(kx) = vkxτz, (1)

where we use 2 × 2 Pauli matrices τi (i = 0, x, y, z) such
that τz = +1 (−1) corresponds to the top (bottom) edge.
We assume that the two edges are sufficiently separated
so that terms multiplying τx and τy in the Hamiltonian are
forbidden by the requirement of locality. We also fix the
Fermi level to lie at EF = 0 for simplicity.

We next add local NH perturbations. In general, we
obtain the perturbed Hamiltonian

H(kx) = iaτ0 + (vkx + ib)τz, (2)

with a, b ∈ R. Depending on the values of a and b, this
Hamiltonian may or may not have a nontrivial spectral
winding number [6,7],

W(E) =
∫ ∞

−∞

dkx

2π i
d

dkx
log det [H (kx) − E] , (3)

where E = EF is chosen as the real Fermi energy of the
Chern insulator (EF = 0 in our Dirac theory). Notably,
Eq. (2) coincides with the continuum limit of the Hatano-
Nelson model [39,40], in which b denotes the asymmetry

(a) (b) (c)

(d)

C
2D

= 1 W
1D

= 1

W
1D

= 1 + = W
1D

= −1

OBC

FIG. 1. The skin effect at the boundaries of a non-Hermitian
Chern insulator. (a) A Chern insulator with PBCs is character-
ized by a 2D Hermitian topological invariant, the Chern number
C. Here, we consider the case for C = 1. (b) With OBCs in the
vertical direction (slab geometry), the Chern insulator hosts two
counterpropagating edge modes, one for each edge. In the pres-
ence of small non-Hermitian perturbations and pseudoinversion
symmetry, these edge modes acquire opposite lifetimes (i.e., their
energies develop opposite imaginary parts), here indicated in
blue and yellow. Viewing the Chern insulator slab as an effective
1D system extending along the horizontal, this induces a nontriv-
ial 1D non-Hermitian topological invariant, the complex-spectral
winding number W = 1. (c) In OBCs along both directions, W =
1 induces a skin effect that manifests at two corners of the system,
here indicated in red. (d) Gluing a Hatano-Nelson chain (shown
in black with unidirectional hopping indicated by the arrows) to
each of the two edges reduces the non-Hermitian winding num-
ber W by 2. Hence, W = C holds only modulo 2. This illustrates
the importance of pseudoinversion symmetry (with the inversion
center indicated by the gray cross in the center panel): without
pseudoinversion symmetry, it would be possible to couple a sin-
gle Hatano-Nelson chain to the boundary and thereby trivialize
the non-Hermitian winding number W and skin effect.

of the hopping amplitudes. While the Pauli matrices τi
in the Hatano-Nelson model describe the valley degrees
of freedom, the τi in our model describe the different fla-
vors of chiral edge modes at the different boundaries. We
also note that this definition involves integration bounds at
kx → ±∞ that are appropriate for the low-energy contin-
uum theory in Eq. (2). For a microscopic lattice model,
we should instead integrate over the 1D Brillouin zone
kx ∈ [0, 2π) and include the contributions from the bulk
modes. In such a case, the chiral edge modes connect
with the bulk modes, making the complex-spectral wind-
ing number W(E) well defined and consistent with the
continuum description.

While the complex-spectral winding number W(E) can
be nonzero in general, we now show that additional spa-
tial symmetry can guarantee W(E) �= 0. In particular, we
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require pseudoinversion symmetry,

IH(k)I† = H(−k)†, (4)

which exchanges the top and bottom edges. In the partic-
ular Dirac model in Eq. (2), we have I = τx. Inversion
symmetry is fundamental for topological phases by yield-
ing symmetry indicators [41] and protecting topological
crystalline phases [42]. Pseudoinversion symmetry is a
generalization of inversion symmetry in NH systems and
similarly relevant to NH topological phases [22–24]. Pseu-
doinversion symmetry is respected by the NH chiral edge
modes as long as it is respected by the NH Chern insulator
in the 2D bulk and is compatible with other internal and
spatial symmetries, as well as with the nontrivial Chern
number. In the presence of pseudoinversion symmetry, we
must have a = 0, while b can be arbitrary. In this case, the
winding number W(0) is always nonzero and is given by
W(0) = −sign(vb), as long as there is a point gap at E = 0
(i.e., as long as b �= 0). While we cannot predict the sign of
the winding number, we have thereby shown |W(0)| = 1 as
long as pseudoinversion-symmetric NH perturbations are
present. We also note that the complex-spectral winding
number vanishes in the presence of conventional inversion
symmetry IH(k)I† = H(−k) [7,23].

By the bulk-boundary correspondence of NH topologi-
cal systems, the complex-spectral winding number W(E)

in Eq. (3) leads to the skin effect under OBCs [8,9]. Con-
sequently, W(E) �= 0 for the NH chiral edge modes results
in second-order skin modes localized at the corners. Impor-
tantly, this corner skin effect is guaranteed by the NH topol-
ogy in the 2D bulk—the intricate combination between
the line-gap topology (i.e., the Chern number) and the NH
perturbation that opens the point gap, supplemented with
pseudoinversion symmetry (see also Appendix A). Hence,
it is stable against, e.g., symmetry-preserving continuous
deformations at boundaries. It should also be noted that the
corner skin effect manifests itself in a semi-infinite system
that is concerned solely with one boundary. In other words,
the corner skin effect can be captured by pseudospectra
instead of spectra [43], as is also the case for the conven-
tional (i.e., first-order) skin effect [9]. In a finite system
with open boundaries, by contrast, the two NH chiral edge
modes can be coupled with each other and the skin modes
may appear in arbitrary boundary segments, as shown with
a lattice model shortly. Still, when the sample is cut into a
rectangular geometry of linear extent L, O(L) chiral modes
generically accumulate at corners rather than edges in the
absence of fine tuning, analogous to 2D higher-order topo-
logical insulators that feature gapless 1D edges only for
certain fine-tuned edge alignments [44].

Let us now turn to a system with C = 2. The unper-
turbed low-energy Hamiltonian is given by

H0(kx) = vkxτzσ0, (5)

where σi (i = 0, x, y, z) is another set of Pauli matrices that
acts on the two chiral modes of each edge. Preserving pseu-
doinversion symmetry I = τxσ0, NH perturbations may,
for instance, result in the NH Hamiltonian

H(kx) = vkxτzσ0 + iaτzσ0 + ibτzσz, (6)

with a, b ∈ R. For a > 0 and b = 0, we now obtain
W(0) = 2, while for a = 0 and b > 0, we obtain W(0) = 0,
realizing a counter-example to the naive conjecture that the
boundary NH winding number may be fully determined by
the bulk Chern number. This example is sufficient to estab-
lish that pseudoinversion symmetry only fixes the slab
geometry winding number modulo 2, consistent with the
topological classification [7]. The same observation may
also be understood as follows [Fig. 1(d)]. Without under-
going a bulk phase transition, we can glue a Hatano-Nelson
chain with W(0) = ±1 to the top boundary of the sam-
ple (y > 0). Pseudoinversion symmetry then implies that
we should also glue another Hatano-Nelson chain with the
same winding number to the bottom boundary (y < 0).
This adiabatic process changes the net winding number
of the slab geometry by ±2. Correspondingly, W(0) can
be determined only modulo 2 from a bulk topological
invariant in the presence of pseudoinversion symmetry.

As a consequence, the 1D NH winding number W(E) of
the slab geometry satisfies

W(EF) = C (mod 2) (7)

for a NH insulator in class A that is point gapped at
the Fermi level EF and preserves pseudoinversion sym-
metry (Table I). Correspondingly, each edge of a Chern
insulator realizes an anomalous half of a Hatano-Nelson
chain. Around the Fermi level Re E = EF , the Hatano-
Nelson chain gives rise to two valley degrees of freedom
(i.e., right and left movers), the imbalance in lifetime of
which is caused by non-Hermiticity. Notably, the NH chi-
ral edge modes in Eq. (2) have the same complex spectrum
and topological features as the Hatano-Nelson chain in
the long-wavelength limit. Specifically, in the slab geom-
etry, each of the NH chiral edge modes, as well as each
of the valley degrees of freedom in the Hatano-Nelson
chain, gives rise to the complex-spectral winding number
|W(EF)| = 1/2, the sum of which yields |W(EF)| = 1/2 ×
2 = 1. An important difference is, however, that the NH
chiral edge modes appear only at the boundaries, leading
to a new type of NH boundary phenomena—a higher-order
skin effect.

B. Lattice model

We confirm the above continuum description by
a NH Chern insulator on a square lattice, described by
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[5,13,45–47]:

H(k) = (
m + t cos kx + t cos ky

)
σx

+ (t sin kx + iγ ) σy + (
t sin ky

)
σz, (8)

with t, m, γ ∈ R. Under PBCs, the complex spectrum is
obtained as [Fig. 2(a)]

E(k) = ±
[(

m + t cos kx + t cos ky
)2

+ (iγ + t sin kx)
2 + (

t sin ky
)2

]1/2
. (9)

This NH lattice model indeed respects pseudoinversion
symmetry in Eq. (4) with I = σx. Furthermore, it is also
invariant under the combination of time reversal† and
reflection along the x direction:

MyH(kx, ky)M†
y = H(kx, −ky)

†, (10)

where My = σxK is an antiunitary operator with complex
conjugation K . Notably, this symmetry forbids the skin
effect along the y direction in the bulk [7]. On the other
hand, no such constraints are present along the x direction.
Later, we will discuss the effect of relaxing this symmetry,
which is not necessary for Eq. (7) but convenient for our
numerics, since it allows us to clearly separate bulk and
boundary skin effects.

In the absence of the NH perturbation (i.e., γ = 0), this
model is characterized by the nontrivial Chern number
C = sgn (m/t) for |m/t| < 2 and no Chern number C = 0
for |m/t| > 2. Also, in the presence of the NH perturba-
tion, the topologically nontrivial phase persists as long as
the real line gap is open. Consequently, a pair of chiral edge
modes appears under PBCs along the x direction and OBCs
along the y direction [Fig. 2(b)], the energy dispersion of
which is exactly obtained as [46]

E(kx) = ± (t sin kx + iγ ) . (11)

Here, the sign ± changes depending on the different
boundaries, and the momentum cutoff |cos kx + m/t| < 1
is imposed. These chiral edge modes on a lattice reduce
to Eq. (2) in the continuum limit kx → 0, where t and γ

correspond to v and b, respectively. Consistent with the
continuum description, one of the chiral edge modes has
a positive imaginary part of the eigenenergy and the other
has a negative imaginary part, leading to the opening of a
point gap around E = 0. The combined system of the bulk
and chiral edge modes contributes to the complex-spectral
winding number |W| = 1 in Eq. (3). We note that no skin
effect occurs for the bulk modes under PBCs along the x
direction and OBCs along the y direction due to the extra
symmetry My in Eq. (10).

(a) (b)

(c) (d)

FIG. 2. The non-Hermitian boundary topology in a Chern
insulator [Lx = Ly = 40, t = 1.0, m = 1.0, and γ = 0.2 in
Eq. (8)]. (a) Complex spectrum for PBC in both the x and y direc-
tions. (b) Complex spectrum for the slab geometry: PBCs in the x
direction and OBCs in the y direction. (c) Complex spectrum for
OBCs in both the x and y directions. The color bar in (c) shows
inverse participation ratio (IPR)

∑
x |φn (x)|4 /

(∑
x |φn (x)|2)2

for each eigenmode φn (x). (d) The average spatial profile of the
eigenmodes under OBCs in both the x and y directions, where nL
denotes the set of in-gap states with energy Re E ∈ (−1, 1).

As a consequence of the complex-spectral winding, the
skin effect occurs in full OBCs (i.e., OBCs along both
the x and y directions). We obtain the complex spec-
trum for full OBCs [Fig. 2(c)]. An extensive number of
eigenstates in the bulk are subject to the skin effect but
localized only in the x direction and delocalized in the
y direction. This skin effect of bulk modes originates
from the 1D weak point-gap topology [9,48]. In fact, the
bulk complex spectrum with fixed ky forms loops in the
complex-energy plane, leading to the nontrivial complex-
spectral winding as a function of kx for each fixed ky . By
contrast, the 1D weak point-gap topology is trivial along
the y direction. This is due to the spatial symmetry in
Eq. (10), which forbids the skin effect along the y direc-
tion in the bulk. The different localization properties can
be distinguished by, e.g., the inverse participation ratios∑

x,y |φn (x, y)|4 /
(∑

x,y |φn (x, y)|2
)2

, where the bulk skin

modes (corner skin modes) have O
(
1/Ly

)
[O (1)] inverse

participation ratios. Some special eigenmodes at the edges
of the bulk spectrum are localized at the corners. Since they
are intermediate eigenmodes between the bulk modes and
chiral edge modes, they are not expected to exhibit general
or universal behavior.

On the other hand, the NH chiral edge modes also
exhibit the skin effect. While their spectrum is complex in
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the slab geometry, it becomes entirely real in full OBCs
[compare Fig. 2(c) with Fig. 2(b)]. All of these gapless
modes that cross the real line gap are localized along the
x direction as a consequence of the nontrivial complex-
spectral winding number in the slab geometry [Fig. 2(d)].
By contrast, they can be delocalized along the y direction
in our model. As also discussed above, this is not a gen-
eral feature but is due to the symmetry in Eq. (10) that is
not necessary to establish the correspondence in Eq. (7).
The NH chiral edge modes exhibit the corner skin effect if
further generic perturbation terms that break this symme-
try are added to the Hamiltonian. In fact, if a term +iγ2σz
is added to Eq. (8), which respects pseudoinversion sym-
metry and is the only constant NH perturbation other than
the existing term multiplying γ , the reflection-type sym-
metry in Eq. (10) is broken. In this case, a generic NH
skin effect appears when open boundaries are introduced
in the y direction. Importantly, however, the point gap of
the slab spectrum remains open and its nontrivial wind-
ing number |W| = 1 remains quantized. Correspondingly,
when OBCs are also introduced in the x direction, a topo-
logically protected higher-order NH skin effect occurs for
which almost all bulk modes are localized at a corner.
Notably, such an anomalous localization only at a sin-
gle corner is compatible with pseudoinversion symmetry,
because this symmetry maps not between right eigenvec-
tors of the NH Hamiltonian but, rather, between right and
left eigenvectors.

The skin effects of bulk modes and chiral edge modes
arise from different topological origins and hence can be
compatible with each other in a single system. While the
former originates from the 1D weak point-gap topology,
the latter originates from our correspondence between the
Hermitian bulk and NH boundary. Below, we show that
this correspondence is generally applicable and yields sev-
eral different types of NH boundary phenomena. Owing
to the different topological origins, the two types of skin
effect can be clearly separated. One convenient way is to
add the NH perturbations only at boundaries, while we
have hitherto focused on homogeneous NH perturbations
throughout the system. In such a case, a point gap can
be open only at the boundaries and hence only the corner
skin effect arises. This procedure generally applies to the
subsequent examples in this work, for arbitrary symmetry
classes and arbitrary spatial dimensions.

III. 2D Z2-CLASSIFIED TOPOLOGICAL
INSULATOR (CLASS AII)

While time-reversal symmetry renders the Chern num-
ber trivial, C = 0, it can instead give rise to a Z2-valued
topological invariant ν ∈ {0, 1} [2–4,49–51]. This Z2 topo-
logical invariant, protected by time-reversal symmetry,
physically induces the quantum spin Hall effect accom-
panied by the emergence of helical edge modes. Here,

we study 2D time-reversal-invariant Hermitian systems in
class AII and the corresponding NH boundary phenomena.

At low energy, the Hermitian slab Hamiltonian hosts a
pair of helical edge modes at each boundary, described by

H0(kx) = vkxτzσx. (12)

Here, the Pauli matrix σi describes the spin degree of
freedom, and time-reversal symmetry is represented by

T H0(k)T † = H0(−k), (13)

with T = iτ0σyK and complex conjugation K . Similarly
to the previous case, τz = +1 (τz = −1) describes a pair
of the helical edge modes at the top (bottom) boundary.
We again set the Fermi energy at EF = 0.

Time-reversal symmetry in Eq. (13) is generalized to
NH systems in two manners [7]. One is time-reversal sym-
metry in Eq. (13), which corresponds to class AII in NH
systems. The other is time-reversal symmetry†,

T H(k)T † = H(−k)†, (14)

which corresponds to class AII† in NH systems. While Eqs.
(13) and (14) are equivalent to each other for Hermitian
Hamiltonians, this is not the case for NH Hamiltonians.
Notably, different topological invariants apply to the two
different symmetry classes. Consequently, the helical edge
modes induce different types of NH skin effect in classes
AII and AII†, as shown below.

A. NH class AII

NH Hamiltonians in class AII are defined to respect
time-reversal symmetry in Eq. (13). The general NH per-
turbation in this symmetry class is

H(kx) = vkxτzσx + i
∑

i=x,y,z

(aiτ0 + biτz)σi, (15)

with ai, bi ∈ R. This Hamiltonian has a spectrum

Eμν(kx) = μ
[
(vkx + iνax + ibx)

2

− (νay + by)
2 − (νaz + bz)

2]1/2
, (16)

where μ = ±1 and ν = ±1 cycle through the four dif-
ferent eigenvalues. For ax �= 0 and bx = 0, the point gap
at E = 0 is open but the complex-spectral winding num-
ber in Eq. (3) vanishes: W(0) = 0. Here, we note that the
complex-spectral winding number W(0) can be trivial even
in the presence of a point gap [8,9], as is also the case
for our Dirac Hamiltonian with ax �= 0 and bx = 0. On
the other hand, for ax = 0 and bx �= 0, we find W(0) =
−2 sign(vbx). Correspondingly, imposing pseudoinversion
symmetry with I = τxσ0 leads to ai = 0 for all i = x, y, z
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and protects the nontrivial spectral winding. The result
|W(0)| = 2 is compatible with the 2Z classification of 1D
NH systems in class AII, where the odd winding numbers
are forbidden [7].

As a consequence, the 1D complex-spectral winding
number W(E) of the helical edge states in the slab geome-
try satisfies

W(EF) = 2ν (mod 4) (17)

for a NH system in class AII that is point gapped at the
Fermi level EF and preserves pseudoinversion symmetry
(Table I).

B. NH class AII†

NH Hamiltonians in class AII† are defined to respect
time-reversal symmetry† in Eq. (14). The general NH per-
turbations in class AII† now result in the low-energy slab
Hamiltonian

H(kx) = vkxτzσx + iaτ0σ0 + ibτzσ0, (18)

with a, b ∈ R. Because of time-reversal symmetry† in
Eq. (14), the complex-spectral winding number in Eq. (3)
always vanishes, which is compatible with the Z2 topologi-
cal classification in terms of point gaps [7]. In fact, we have
W(EF) = 0 for Eq. (18) and instead have the nontrivial Z2
topological invariant:

(−1)ν(E) = sgn
{

Pf [H (kx = π)T ]
Pf [H (kx = 0)T ]

× exp
[
−1

2

∫ kx=π

kx=0
d log det [H (kx)T ]

]}
.

(19)

Depending on the values of a and b, the Z2 topologi-
cal invariant may be trivial or nontrivial. This ambiguity
is again resolved by imposing pseudoinversion symmetry
I = τxσ0, which sets a = 0. We then find ν(0) = 1 as long
as the point gap at E = 0 is open (i.e., as long as b �= 0).

As a consequence, the 1D Z2 topological invariant ν(E)

of the helical edge states in the slab geometry satisfies

ν(EF) = ν (20)

for a NH system in class AII† that is point gapped at
the Fermi level EF and preserves pseudoinversion sym-
metry (Table I). This relationship is guaranteed also by
K-theory [7].

Notably, as a consequence of the different topological
invariants, different types of corner skin effect appear. In
class AII, the NH helical edge states are characterized by
the complex-spectral winding number in Eq. (3), similarly
to the chiral edge states in a NH Chern insulator in Sec. II.

Hence, the skin modes are localized at the same side of
the sample in full OBCs. In class AII†, on the other hand,
the NH helical edge states are no longer characterized by
the winding number in Eq. (3) but exhibit the Z2 topolog-
ical invariant in Eq. (19). An important feature of the skin
effect induced by this Z2 topological invariant is the pres-
ence of skin modes at both boundaries, depending on the
spin degree of freedom [9]. Consequently, in contrast to
class AII, the skin effect occurs at all the corners in full
OBCs. Below, we confirm these different types of corner
skin effect in a NH lattice model.

C. Lattice model

As a lattice model for the above continuum description,
we study the Bernevig-Hughes-Zhang (BHZ) model [52],

H0(k) = (
m + t cos kx + t cos ky

)
τxσ0

+ (t sin kx) τyσ0 + (
t sin ky

)
τzσx, (21)

with t, m ∈ R. The BHZ model respects time-reversal
symmetry in Eq. (13) with T = iτ0σyK and exhibits the
Z2-nontrivial (Z2-trivial) topological invariant ν = 1 (ν =
0) for |m/t| < 2 (|m/t| > 2). Consequently, under PBCs
along the x direction and OBCs along the y direction,
a pair of helical edge states appears at each boundary,
which reduce to the energy dispersion in Eq. (12) in the
low-energy limit kx → 0. The BHZ model also respects
inversion symmetry in Eq. (4) with I = τxσ0.

Now, we add NH perturbations to the BHZ model that
preserve certain symmetries. First, we consider the NH
perturbations

�HAII = iγy0τyσ0 + iγzyτzσy , (22)

with γy0, γzy ∈ R. The combined NH system H0 (k) +
�HAII respects time-reversal symmetry in Eq. (13) with
T = iτ0σyK and hence belongs to class AII. It also
respects pseudoinversion symmetry in Eq. (4) with I =
τxσ0, as well as the spatial symmetry in Eq. (10) with
My = τxK . Under OBCs only along the y direction, a pair
of helical edge modes appears and a point gap is open, fur-
ther leading to the skin effect under full OBCs (Fig. 3).
Similarly to the NH Chern insulator in 2D class A, the NH
helical edge modes are generically localized at an edge,
instead of the corners. As also discussed above, this is due
to the additional spatial symmetry; under further generic
perturbations, the NH helical edge modes are localized at
the corner and exhibit the second-order skin effect.

Next, we consider the NH perturbations that preserve
different symmetry,

�HAII† = iγyxτyσx + iγyzτyσz, (23)

with γyx, γyz ∈ R. Instead of time-reversal symmetry in
Eq. (13), this NH generalization of the BHZ model,
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(a) (b)

(c) (d)

FIG. 3. The non-Hermitian Bernevig-Hughes-Zhang model in
class AII [t = 1.0, m = 1.0, γy0 = 0.2, and γzy = 0.2 in Eqs. (21)
and (22)]. (a),(b) Complex spectra under the PBCs along both the
x and y directions (gray regions), slab geometry (PBCs along the
x direction and OBCs along the y direction) [red dots in (a)],
and OBCs along both the x and y directions [red dots in (b)].
(c),(d) Spatial profiles of eigenstates for (c) E = −0.115 and (d)
E = −1.00 + 0.06i. The system sizes are chosen as (a) 200 × 30
sites and (b)–(d) 30 × 30 sites.

H0 (k) + �HAII† , respects time-reversal symmetry† with
T = iτ0σyK and hence belongs to class AII†. It also
respects pseudoinversion symmetry in Eq. (4) and the spa-
tial symmetry in Eq. (10). Similarly to the previous cases,
a point gap is open under OBCs only along the y direc-
tion and the skin effect occurs in full OBCs (Fig. 4).
A unique feature of this symmetry class and the Z2 topo-
logical invariant manifests itself in the locations at which
the skin modes are localized. In fact, depending on the spin
degree of freedom, the skin modes appear at both edges. In
the semi-infinite boundary conditions, a reciprocal pair of
second-order skin modes appears at different corners.

IV. 3D Z-CLASSIFIED TOPOLOGICAL
INSULATOR (CLASS AIII)

Similarly to the 2D case, the boundary modes of a 3D
topological insulator or superconductor generally exhibit
point-gap topology in the presence of NH perturbations.
In general, 3D Hermitian systems can host Z topological
phases in AZ symmetry classes AIII, DIII, and CI and Z2
topological phases in symmetry classes AII and CII (see
Table II). As a prototypical example of the Z topologi-
cal phase, here we study the Dirac surface modes of a 3D
topological insulator protected by chiral symmetry in class

(a) (b)

(c) (d)

FIG. 4. The non-Hermitian Bernevig-Hughes-Zhang model in
class AII† [t = 1.0, m = 1.0, γyx = 0.2, and γyz = 0.2 in Eqs.
(21) and (23)]. (a),(b) Complex spectra under the PBCs along
both the x and y directions (gray regions), slab geometry (PBCs
along the x direction and OBCs along the y direction) [red dots
in (a)], and OBCs along both the x and y directions [red dots
in (b)]. (c),(d) Spatial profiles of Kramers-degenerate eigenstates
for E = −0.028. The system sizes are chosen as (a) 200 × 30
sites and (b)–(d) 30 × 30 sites.

AIII (Fig. 5). In contrast to the 2D case, the NH bound-
ary modes do not exhibit the skin effect but form chiral
hinge modes. These chiral hinge modes are stabilized by
a point gap, rather than the line gap of second-order Her-
mitian topological insulators, and are hence unique to NH
systems. In Sec. V, we separately explore non-Hermiticity
in Z2-classified topological phases in 3D for symmetry
class AII.

A. Continuum theory

The topological invariant of 3D Hermitian systems in
class AIII is the 3D winding number W ∈ Z [2–4,53].
Here, Hermitian Hamiltonians in class AIII are defined to
respect chiral symmetry

CH0(k)C† = −H 0(k), (24)

with a unitary matrix C. For the simplest nontrivial case
W = 1, the low-energy continuum Hamiltonian in the slab
geometry [Fig. 5(b)] is given by the Dirac surface modes,

H0(k) = vkxτzσx + vkyτ0σy , (25)

where the Pauli matrices σi describe the internal degree
of freedom at each surface and τz = +1 (−1) corresponds
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W3D = 1

(a) (b) (c)

C2D = 1 OBC

(d)

C2D = 1 C2D = –1

+ =×

C2D = –1

C2D = –1

FIG. 5. The chiral hinge modes of a 3D non-Hermitian topo-
logical insulator with chiral symmetry (class AIII). (a) In PBCs,
a 3D topological insulator protected by chiral symmetry is char-
acterized by the Hermitian 3D winding number W. Here, we
consider the case for W = 1. (b) With OBCs along the z direc-
tion, the 3D topological insulator hosts two Dirac surface modes,
one for each surface (indicated in purple). In the presence of non-
Hermitian perturbations, the two surface modes together possess
a point gap and exhibit the nontrivial 2D non-Hermitian topo-
logical invariant, C = 1 [7]. (c) In OBCs along both the z and y
directions, C = 1 leads to the emergence of chiral hinge modes,
here indicated in blue and yellow. (d) Gluing a 2D point-gapped
non-Hermitian model (shown in black) to each of the two sur-
faces reduces the non-Hermitian topological invariant C by 2.
Hence, C = W holds only modulo 2. This illustrates the impor-
tance of pseudoinversion symmetry (with the inversion center
indicated by the gray cross in the center panel): without pseu-
doinversion symmetry, it would be possible to couple a single
2D point-gapped non-Hermitian model to one of the surfaces and
thereby trivialize C and the chiral hinge modes.

to the top (bottom) surface. These surface modes indeed
respect chiral symmetry in Eq. (24) with C = τ0σz.

We now consider NH perturbations in class AIII, which
respect [7]

CH(k)C†=−H(k)†. (26)

As in the 2D phases considered before, we again impose
pseudoinversion symmetry in Eq. (4) with I = τyσx. As
an example of NH perturbations that preserve both chiral
and pseudoinversion symmetries, we study

H(k) = vkxτzσx + vkyτ0σy + δτ0σx + iv′kxτ0σ0, (27)

with δ, v′ ∈ R. Here, the Hermitian perturbation δτ0σx
shifts the Dirac point at each surface and the NH pertur-
bation iv′kxτ0σ0 results in an imaginary-valued energy dis-
persion. As a combination of these perturbations, a point
gap opens around E = 0. In fact, the complex spectrum is

obtained as

E(k) = ±v

√
(kxτ + δ/v)2 + k2

y + iv′kx, (28)

where τ = +1 (τ = −1) corresponds to the top (bottom)
surface [Fig. 6(a)]. Importantly, the NH Dirac surface
modes exhibit the nontrivial topology in terms of the point
gap around E = 0. In general, 2D point-gapped NH Hamil-
tonians H(k) with chiral symmetry are characterized by the
Chern number of the Hermitian matrix iH(k)C [7]. For our
NH Dirac surface Hamiltonian, we have

iH(k)C = vkxτzσy − vkyτ0σx + δτ0σy − v′kxτ0σz, (29)

which reduces to a continuum limit of a Hermitian Chern
insulator and hence yields C (0) = −sgn

(
δvv′). More-

over, the only local and k-independent NH perturbations to
Eq. (25) allowed by symmetry read +im1τ0σz, which does
not open a gap in iH(k)C, and +im2τzσ0, again resulting in
|C| = 1. Correspondingly, we find the general relation

C(0) = W (mod 2) (30)

between the 3D Hermitian topological invariant W in class
AIII and the 2D NH topological invariant C(0) in class
AIII, evaluated at the reference energy E = 0 within the
point gap as fixed by chiral symmetry (Table II).

In contrast to the complex-spectral winding number in
Eq. (3) and its Z2 counterpart in Eq. (19), this point-gap
topological invariant has an analogue in the line-gap topol-
ogy and does not lead to the skin effect. In fact, under the
OBCs along the y direction, the boundaries host the chiral
hinge states with the imaginary-valued dispersion,

E(kx) = iv′kx, (31)

which are protected by the point gap and chiral symmetry
[Figs. 5(c) and 6(b)]. We note that while chiral symmetry
can also be generalized to NH Hamiltonians by Eq. (24),
which corresponds to class AIII†, Eq. (24) cannot give rise
to any point-gap topology in 2D [7].

B. Lattice model

We also confirm the above continuum theory by the NH
lattice model in 3D,

H(k) = [
m + t1

(
cos kx + cos ky + cos kz

)]
τyσ0

+ t2τx
[
(sin kx) σx + (

sin ky
)
σy + (sin kz) σz

]
+ δ

(
cos kx + cos ky

)
τyσy + iγ (sin kx) τ0σ0,

(32)

with t1, t2, m, δ, γ ∈ R. This NH lattice model respects
chiral symmetry in Eq. (26) with C = τzσ0 and pseudoin-
version symmetry in Eq. (4) with I = τyσ0. The complex
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(a) (b)

(c) (d)

FIG. 6. The non-Hermitian boundary topology in a 3D topo-
logical insulator with chiral symmetry (class AIII). (a),(b) Com-
plex spectra of non-Hermitian Dirac surface modes under the
OBCs along (a) the z direction and (b) the y and z directions
[v = v′ = δ = 1.0 in Eq. (27)]. The orange and purple regions
denote the complex spectra of the Dirac surface modes at the dif-
ferent boundaries along the z direction and the blue line denotes
the spectrum of the chiral hinge modes E (kx) = iv′kx. (c),(d)
Complex spectra of the non-Hermitian lattice model in 3D under
the PBCs (gray regions) and the OBCs (blue dots) along (c) the
z direction and (d) the y and z directions [t1 = 1.0, t2 = 0.5,
m = 2.0, δ = 0.2, and γ = 0.4 in Eq. (32)]. The system sizes are
chosen as (c) 200 × 200 × 30 sites and (d) 200 × 30 × 30 sites.

spectrum for PBCs is obtained as

E(k) = ±
√[

�(k) ± δ
(
cos kx + cos ky

)]2 + t22 sin2 ky

+ iγ sin kx, (33)

with �(k) := [(m + t1(cos kx + cos ky + cos kz))
2 + t22

(sin2 kx + sin2 kz)]1/2. The real line gap at Re E = 0 is open
for δ = γ = 0 and remains open for small δ and γ . For
δ = γ = 0, the 3D winding number is obtained as |W| = 2
for |m| < |t1|, |W| = 1 for |t1| < |m| < 3 |t1|, and |W| = 0
for 3 |t1| < |m| [53]. Consequently, for |t1| < |m| < 3 |t1|
(|m| < |t1|), one flavor (two flavors) of Dirac surface
modes appears under OBCs, which reduce to Eq. (25)
around Re E = 0.

We obtain the complex spectrum under OBCs along the
z direction [Fig. 6(c)]. We note that no skin effect occurs
in this model. As a consequence of the nonzero 3D wind-
ing number in the bulk, the Dirac surface states appear
at each boundary along the z direction. Here, an exten-
sive number of eigenstates are delocalized through the bulk
and the Dirac surface modes are generally delocalized in
the x-y plane but localized at the boundaries along the z

direction. Owing to the NH perturbations for δ �= 0 and
γ �= 0, the line-gapless points of the two Dirac surface
modes at the different boundaries are shifted and a point
gap is open around E = 0, consistent with the continuum
theory. Furthermore, these NH Dirac surface modes exhibit
the nontrivial point-gap topology, i.e., a nonzero Chern
number |C(0)| = 1 of iH(k)C. Consequently, chiral hinge
modes appear under OBCs along both y and z directions
[Fig. 6(d)]. The chiral hinge modes due to the NH point-
gap topology are delocalized only along the x direction and
are localized in the y-z plane.

C. Dimensional reduction

The imaginary-valued dispersion of chiral hinge modes
in Eq. (31) is closely related to the anomalous dispersion
of an isolated exceptional point [17–20] via dimensional
reduction. To see this, let us consider a four-dimensional
(4D) Chern insulator [54,55] with non-Hermiticity in a
similar manner to the previous cases for 2D and 3D topo-
logical phases. Under OBCs along one direction, each
boundary hosts a single Weyl mode,

H0(k) = v
(
kxτzσx + kyτ0σy + kzτ0σz

)
, (34)

where τz = +1 (τz = −1) denotes the top (bottom) bound-
ary.

As a possible choice of NH perturbations that preserve
locality and pseudoinversion symmetry with I = τyσx, we
consider

H(k) = v
(
kxτzσx + kyτ0σy + kzτ0σz

) + δτ0σx + iv′kxτ0σ0.
(35)

These perturbations shift the Weyl points and open a point
gap around E = 0, akin to the 2D NH Dirac surface modes
considered in Eq. (27). In general, 3D NH systems are
characterized by the 3D winding number W3 of the com-
plex spectrum [7]. Around the reference energy E = 0,
the above NH Weyl Hamiltonian indeed realizes W3 �= 0,
which leads to the emergence of the anomalous boundary
modes [17–20]

E (k) = ikx + kz (36)

under OBCs along the y direction. This complex-valued
energy dispersion coincides with that of an exceptional
point. Importantly, if we perform a dimensional reduc-
tion by setting kz = 0 in the 4D Chern insulator and
3D NH Weyl modes and further impose chiral symme-
try in Eq. (26), the complex-valued dispersion in Eq. (36)
reduces to the imaginary-valued dispersion in Eq. (31). In
this manner, the higher-order boundary modes protected
by the boundary point-gap topology in different spatial
dimensions are related to each other via dimensional reduc-
tion. While such a dimensional hierarchy is similar to
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that in Hermitian topological phases [2–4,53,55–57], the
interplay of point gaps and line gaps, as well as the bifur-
cation of symmetry, enriches the boundary physics of NH
topological phases.

V. 3D Z2-CLASSIFIED TOPOLOGICAL
INSULATOR (CLASS AII)

3D Hermitian systems can generally host Z2 topological
phases in classes AII and CII, in which time-reversal sym-
metry in Eq. (13) with T 2 = −1 is respected. Similarly
to the Z topological phase protected by chiral symmetry
in Sec. IV, Dirac surface modes appear on each bound-
ary for OBCs along the z direction, so that the low-energy
Hamiltonian is Eq. (25) with time-reversal symmetry T =
iτ0σyK . In contrast to the previous case, the Dirac point is
fixed at the time-reversal-invariant momentum and cannot
be shifted by symmetry-preserving perturbations, consis-
tent with the Z2 topological phase. In particular, the per-
turbation δτ0σx in Eq. (27) breaks time-reversal symmetry
and is forbidden in the presence of time-reversal symmetry.

Note that no point-gap topology is well defined in 2D
class AII, in contrast to 2D class AII† [7]. We therefore
consider NH perturbations in class AII†, in which time-
reversal symmetry† in Eq. (14) is respected. The generic
perturbed NH Hamiltonian in class AII† that preserves
locality and pseudoinversion symmetry reads

H(k) = vkxτzσx + vkyτ0σy + iγ τzσ0, (37)

with γ ∈ R. The NH perturbation iγ τzσ0 opens a point
gap for E = 0, around which the Z2 topological invari-
ant takes a nontrivial value, ν(0) = 1 [7]. Since this is the
only symmetry-allowed constant NH perturbation, the 2D
Z2 topological invariant ν(E) of the Dirac surface states in
the slab geometry (OBCs only in one direction) satisfies

ν(EF) = ν (38)

for a NH system in class AII† that is point gapped at EF
and preserves pseudoinversion symmetry (Table II).

Importantly, this Z2 topological invariant is intrinsic to
NH systems and leads to the skin effect, in contrast to the Z

topological invariant protected by chiral symmetry that has
a counterpart in anti-Hermitian systems and hence leads
to the emergence of chiral hinge modes. The skin effect
is unique to 2D systems and can be probed by adding a
magnetic flux [9,58]. Here, when we reduce the spatial
dimension along the y direction, the NH Dirac surface
modes in Eq. (37) reduce to the NH helical edge modes
in Eq. (18). Correspondingly, the skin effect can also be
understood by dimensional reduction.

VI. GENERAL CLASSIFICATION

While we have so far studied some prototypical models,
our discussions can be generalized to arbitrary symmetry

classes and spatial dimensions. For Hermitian systems in
each dimension, Z and Z2 topological phases appear in
five symmetry classes out of the ten AZ symmetry classes
[2–4,53,56,57]. As also discussed before, each AZ sym-
metry in Hermitian systems has different generalizations
in NH systems, which culminate in the 38-fold symmetry
classification [7,59,60]. Notably, boundary modes in Her-
mitian topological insulators and superconductors always
exhibit nontrivial point-gap topology in the presence of
NH perturbations in the AZ† symmetry classes, in which
time-reversal and chiral symmetries are defined by Eqs.
(14) and (26), respectively. This general correspondence
exists because the classification of point-gap topology in
(d − 1) dimensions for an AZ† symmetry class coincides
with that of Hermitian topology in d dimensions for the
corresponding AZ symmetry class [7]. This relationship
was previously applied to dynamical phenomena of NH
systems [61,62]. On the other hand, in the presence of NH
perturbations in the AZ symmetry classes, in which time-
reversal and chiral symmetries are, respectively, defined by
Eqs. (13) and (26), three out of the five classes can exhibit
nontrivial point-gap topology.

Here, using continuum Dirac Hamiltonians, we explic-
itly derive the mapping between the Hermitian bulk topol-
ogy and NH boundary topology in 2D and 3D for all the
remaining AZ symmetry classes, as summarized in Tables
I and II. Some symmetry classes exhibit NH topology dif-
ferent from the models studied in Secs. II–V. For example,
in 2D class D and 3D class DIII, no point gap is allowed
to be open because of the Hermitian topology in the bulk.
In addition, in 3D class CII†, NH boundary topology can
lead to the emergence of helical hinge modes protected by
point-gap topology. It is also notable that the classification
in arbitrary dimensions is related to each other via dimen-
sional reduction; the generalization to higher dimensions
is also straightforward.

A. 2D class D

The topological invariant of 2D Hermitian systems in
class D is the Chern number C ∈ Z, similar to 2D class A
(see Sec. II). For the simplest nontrivial case C = 1, the
low-energy continuum Hamiltonian in the slab geometry
is therefore given by

H0(kx) = vkxτz, (39)

which satisfies particle-hole symmetry:

PH0(k)P† = −H0(−k), (40)

with P = τ0K . We choose τ0 rather than τz in the definition
of P because particle-hole symmetry is an internal sym-
metry that is unaffected by spatial transformations such as
those that exchange the two edges.
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1. NH class D

NH systems in class D are defined to respect

PH0(k)P† = −H †
0 (−k), (41)

with an antiunitary operation P that satisfies P2 = 1.
Notably, Eq. (39), which describes one chiral mode per
edge, cannot become real line gapped under any perturba-
tions that preserve locality. In fact, for the case with C =
1, even a point gap cannot open. Keeping the definition
P = τ0K , the only NH mass term for Eq. (39) that satis-
fies Eq. (41) is imτy , which couples the two edges and is
therefore nonlocal.

For C = 2, on the other hand, two pairs of chiral edge
modes appear in the slab geometry, which read

H0(kx) = vkxτzσ0. (42)

Here, the Pauli matrices σi describe the two flavors of
chiral modes at each edge. In this case, the generic NH
perturbations that preserve particle-hole symmetry, pseu-
doinversion symmetry, and locality are

H(kx) = vkxτzσ0 + ibτzσy , (43)

with b ∈ R. The complex spectrum is obtained as

E(kx) = τ (vkx + ibσ) , (44)

where τ = +1 (τ = −1) denotes the chiral edge modes at
the top (bottom) boundary and σ = +1 (σ = −1) denotes
the different flavors of the chiral edge modes at each
boundary. Notably, a point gap is open around E = 0 for
b �= 0, which contrasts with the previous case for C = 1.
This should be related to the Z2 classification of both
point-gap and line-gap topology in 1D class D [7].

2. NH class D†

We now consider NH perturbations in class D†. This
symmetry class is characterized by the particle-hole con-
straint in Eq. (40), and the allowed NH perturbations
are

H(kx) = iaτ0 + (vkx + ib)τz, (45)

with a, b ∈ R. In contrast to class D, a point gap is open in
class D†. Again, pseudoinversion symmetry I = τx results
in a = 0 and protects a nonzero winding number |W(0)| =
1 for b �= 0. In a similar manner to 2D class A in Sec. II, we
find that the 1D winding number W(E) of the chiral edge
states in the slab geometry (OBCs only in one direction)
satisfies

W(0) = C (mod 2), (46)

this time for a NH system in class D† that is point gapped
at E = 0 and preserves pseudoinversion symmetry.

B. 2D class DIII

We have seen in Sec. VI A that the addition of particle-
hole symmetry P to class A, which results in Hermitian
class D and NH class D†, does not change the derivation
of the boundary spectral winding in Sec. II. Similarly, the
derivation in Sec. III is fully compatible with additional
particle-hole symmetry P = τ0σ0K that upgrades Hermi-
tian class AII to Hermitian class DIII and NH class AII† to
NH class DIII†, respectively. As a consequence, we again
find that the 1D Z2 topological invariant ν(E) of the helical
edge states in the slab geometry satisfies

ν(0) = ν, (47)

this time for a NH system in class DIII† that is point gapped
at E = 0 and preserves pseudoinversion symmetry.

C. 2D class C

The minimal nontrivial topological phase of 2D Her-
mitian systems in class C is an insulator or a gapped
superconductor with the Chern number C = 2, which has
two copropagating chiral edge modes in the slab geometry
described by [cf. Eq. (5)]

H0(kx) = vkxτzσ0. (48)

This Hamiltonian satisfies particle-hole symmetry in
Eq. (40) with P = τ0σyK . In contrast to class D, the
particle-hole operation in class C satisfies P2 = −1.

We now consider NH perturbations in class C†, because
this is the only NH generalization of Hermitian class C
that allows for nontrivial point-gap topology in 1D [7].
This symmetry class is characterized by the particle-hole
constraint in Eq. (40) and the allowed NH perturbations
are

H(kx) = iaτ0σ0 + (vkx + ib)τzσ0, (49)

with a, b ∈ R. Again, pseudoinversion symmetry I = τxσ0
results in a = 0 and protects the nonzero winding number
|W(0)| = 2 for b �= 0.

We next study a system with the Chern number C = 4.
At low energies and in the slab geometry, the system hosts
two pairs of the chiral edge states described by

H0(kx) = vkxτzσ0ρ0, (50)

where ρi (i = 0, x, y, z) is another set of Pauli matrices
that acts on the different flavors of the chiral modes at
each edge. Particle-hole symmetry is now represented by
P = τ0σyρ0K . One example of NH perturbations in class
C† is given by

H0(kx) = vkxτzσ0ρ0 + iaτzσ0ρ0 + ibτzσ0ρz, (51)

with a, b ∈ R. For a > 0 and b = 0, we now obtain
W(0) = 4, while for a = 0 and b > 0, we obtain W(0) = 0.
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Hence, pseudoinversion symmetry allows us to fix the
boundary winding number only modulo 4.

As a consequence, the 1D NH winding number W(E)

of the pairs of the chiral edge modes in the slab geometry
(OBCs only in one direction) satisfies

W(0) = C (mod 4) (52)

for a NH system in class C† that is point gapped at E = 0
and preserves pseudoinversion symmetry.

D. 3D class DIII

Similarly to class AIII, the topological invariant of 3D
Hermitian systems in class DIII is the 3D winding num-
ber W ∈ Z. Correspondingly, for the simplest nontrivial
case W = 1, the low-energy continuum Hamiltonian in
the slab geometry is given as the Dirac surface modes in
Eq. (25), which respect time-reversal symmetry in Eq. (13)
with T = iτ0σyK and chiral symmetry in Eq. (24) with
C = τ0σz. Class DIII in Hermitian systems can be general-
ized to NH systems in two manners, classes DIII and DIII†

[7]. As shown below, while the topological invariant W in
the 3D bulk leads to point-gap ingappability in class DIII,
it induces a skin effect or the emergence of chiral hinge
modes in class DIII†.

1. NH class DIII

NH systems in class DIII are defined to respect time-
reversal symmetry in Eq. (13) and chiral symmetry in
Eq. (26). Similar to the NH chiral edge modes in 2D class
D, no point gap can open in the NH Dirac surface modes
in class DIII with W = 1. More specifically, the generic
NH Dirac surface modes that preserve time-reversal and
chiral symmetries, as well as locality and pseudoinversion
symmetry with I = τyσx, are of the form

H(k) = vkxτzσx + vkyτ0σy + iγ τ0σz, (53)

with γ ∈ R. The spectrum is obtained as

E(k) = ±
√

v2k2
x + v2k2

y − γ 2, (54)

which exhibits a loop of exceptional points at k2
x + k2

y =
(γ /v)2 in momentum space and possesses no point or line
gaps.

2. NH class DIII†

In class DIII†, NH systems are defined to respect time-
reversal symmetry† in Eq. (14) and chiral symmetry in
Eq. (26). In general, such systems are characterized by a
Z topological invariant [i.e., the Chern number C(0) of the
Hermitian Hamiltonian iH(k)C evaluated for the reference
energy E = 0] in the presence of a point gap [7]. If C(0)

is odd, the skin effect occurs [9,20]. On the other hand,
even C(0) does not lead to the skin effect but the appear-
ance of chiral hinge modes. Consequently, the surface
Dirac cone in Eq. (25) in class DIII†, which corresponds
to C(0) = ±1, only exhibits the skin effect rather than chi-
ral hinge modes. Specifically, the only NH perturbation
in class DIII† preserving pseudoinversion symmetry with
I = τyσx is

H(k) = vkxτzσx + vkyτ0σy + iγ τzσ0, (55)

with γ ∈ R. Notably, this NH Dirac surface Hamiltonian
has a net nonzero Chern number of C(0) = 1. This leads
to the skin effect that is unique to 2D systems and can be
probed by a magnetic flux [9,58].

On the other hand, when the original 3D topological
insulator exhibits the 3D winding number W = 2, two dif-
ferent flavors of the Dirac surface modes appear at each
boundary. These Dirac surface modes could in principle
yield a Chern number of C(0) = 2 protected by chiral sym-
metry, which would result in two flavors of chiral hinge
modes under OBCs. However, such an even number of
the Chern number cannot be fixed solely by pseudoin-
version symmetry—there are other symmetry-preserving
perturbations that lead to C(0) = 0—so that we can only
deduce

C(0) = W (mod 2) (56)

in general.

E. 3D class CI

The minimal nontrivial topological phase of 3D Hermi-
tian systems in class CI is a gapped superconductor with
the winding number W = 2 that hosts two Dirac surface
modes, so that the low-energy slab Hamiltonian reads

H0(k) = v
(
kxτzσx + kyτ0σy

)
ρ0. (57)

This Dirac Hamiltonian satisfies particle-hole symmetry
in Eq. (40) with P = iτ0σxρyK and chiral symmetry in
Eq. (24) with C = τ0σzρ0. Notably, this is a pair of the
Dirac surface modes in Eq. (25) with the same chirality.

We now consider NH perturbations in class CI†, because
this is the only NH generalization of class CI that allows
for nontrivial point-gap topology in 2D [7]. One possible
choice of NH perturbations that preserve time-reversal and
chiral symmetries, as well as locality and pseudoinversion
symmetry with I = τyσxρ0, is

H(k) = v
(
kxτzσx + kyτ0σy

)
ρ0 + τ0

(
δσx + iv′kxσ0

)
ρz,
(58)

with δ, v′ ∈ R. This NH Dirac surface Hamiltonian pos-
sesses a point gap around E = 0, for which the Chern
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number of iH(k)C is nontrivial, i.e., |C(0)| = 2. As a con-
sequence, it hosts the two flavors of chiral hinge modes
with the imaginary-valued dispersion in Eq. (31). More-
over, the only local and k-independent NH perturbations to
Eq. (57) allowed by symmetry are of the form +im1,iτ0σzρi
(i = x, y, z), which do not open a gap in iH(k)C (i.e., they
are not Dirac mass terms), and +im2τzσ0ρ0, which again
results in |C(0)| = 2. In conclusion, the 2D Chern number
C(0) of the NH Dirac surface modes in the slab geometry
(OBCs only in one direction) must satisfy

C(0) = W (mod 4) (59)

for a NH system in class CI† that is point gapped at E = 0
and preserves pseudoinversion symmetry.

F. 3D class CII

The nontrivial topological phase of 3D Hermitian sys-
tems in class CII is characterized by a Z2 invariant ν = 1.
The low-energy Dirac Hamiltonian at the boundaries of
such a system is

H0(k) = v
(
kxτzσx + kyτ0σy

)
ρx, (60)

which respects chiral symmetry in Eq. (24) with C =
τ0σ0ρz and time-reversal symmetry in Eq. (13) with T =
iτ0σyρ0K . While 2D NH point-gapped systems in class
CII are classified by a 2Z topological invariant, those in
class CII† are classified only by a Z2 topological invari-
ant. Owing to this difference, an even number of chiral
hinge modes appear in class CII, while helical hinge modes
appear in class CII†, as shown below.

1. NH class CII

We first consider NH perturbations in class CII, which
are defined to respect time-reversal symmetry in Eq. (13)
and chiral symmetry in Eq. (26). One possible choice
of NH perturbations that preserve time-reversal and chi-
ral symmetries, as well as locality and pseudoinversion
symmetry with I = τyσxρx, is

H(k) = v
(
kxτzσx + kyτ0σy

)
ρx + τ0

(
δσyρy + iv′kxσ0ρ0

)
,

(61)

with δ, v′ ∈ R. This NH Dirac surface Hamiltonian pos-
sesses a point gap for E = 0, around which the Chern
number of iH(k)C is nontrivial, i.e., |C(0)| = 2. As a con-
sequence, it hosts two flavors of chiral hinge modes with
the imaginary-valued dispersion in Eq. (31).

Moreover, the only local and k-independent NH pertur-
bations to Eq. (60) allowed by symmetry are of the form
im1τ0σxρz, im2τ0σyρ0, im3τ0σzρ0, im4τzσxρ0, im5τzσyρz,
and im6τzσzρz. Of these, only the last serves as a Dirac

mass in iH(k)C and leads to C(0) = ±2 and the remain-
ing terms do not open a gap. In conclusion, the 2D Chern
number C(0) of the NH Dirac surface modes in the slab
geometry (OBCs only in one direction) must satisfy

C(0) = 2ν (mod 4) (62)

for a NH system in class CII that is point gapped at E = 0
and preserves pseudoinversion symmetry.

2. NH class CII†

We next consider NH perturbations in class CII†, which
are defined to respect time-reversal symmetry† in Eq. (14)
and chiral symmetry in Eq. (26). Because of time-reversal
symmetry† for the NH Hamiltonian H(k), the Hermitian
matrix iH(k)C also respects time-reversal symmetry and
hence must have the vanishing Chern number. Instead,
iH(k)C hosts the well-defined Z2 topological invariant
protected by time-reversal symmetry† [7]. In fact, one pos-
sible choice of NH perturbations in class CII† for I =
τyσxρx reads

H(k) = v
(
kxτzσx + kyτ0σy

)
ρx + τ0

(
δσyρy + iv′kxσzρz

)
.

(63)

This NH Dirac surface Hamiltonian possesses a point gap
around E = 0 and we have

iH(k)C = vkxτzσxρy + vkyτ0σyρy − δτ0σyρx − v′kxτ0σzρ0,
(64)

which exhibits the nontrivial Z2 invariant ν(0) = 1 eval-
uated for the reference energy E = 0 as fixed by chiral
symmetry. Correspondingly, under OBCs along both y and
z directions, the NH Dirac surface modes host the helical
hinge modes

H(kx) = iv′kxτ0σz. (65)

Moreover, the only local and k-independent NH perturba-
tions to Eq. (60) allowed by symmetry are now of the form
im1τ0σ0ρz and im2τzσ0ρ0. Of these, the first one does not
open a gap in iH(k)C, while the second term again results
in ν(0) = 1. In conclusion, the 2D Z2 topological invariant
ν(0) of the NH Dirac surface modes in the slab geometry
(OBCs only in one direction) must satisfy

ν(0) = ν (66)

for a NH system in class CII† that is point gapped at E = 0
and preserves pseudoinversion symmetry.
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VII. DISCUSSION AND CONCLUSIONS

The perturbation of a gapped Hermitian system with
small NH terms generally results in a line-gapped spectrum
that can be adiabatically deformed back to the Hermitian
limit. To realize intrinsic NH topology, one must there-
fore perturb a gapless system or make sure that the NH
terms are significantly larger than the gap energy scale.
We have found that Hermitian topological phases allow us
to avoid such fine tuning because they are guaranteed to
host gapless states on their boundaries. Moreover, we have
shown that the resulting boundary NH topological invari-
ants are determined by the bulk Hermitian invariants in the
presence of pseudoinversion symmetry.

Besides generalizing our framework to other spatial
symmetries beyond pseudoinversion symmetry, a natural
follow-up question is to consider the effect of NH pertur-
bations on the gapless boundary states of topological crys-
talline insulators. For instance, NH perturbations should
transform the gapless hinge states of second-order 3D
topological insulators and superconductors into third-order
skin effects appearing at the corners of samples terminated
in all three directions. It is also worthwhile to study NH
boundary topology in Floquet topological insulators [63].

Another natural question is to investigate boundary NH
topology from a field-theoretic perspective. For instance,
each edge of a Chern insulator in the presence of NH
perturbations (Sec. II) realizes half of a Hatano-Nelson
chain [39,40] and cannot be regularized in a 1D lattice
system. Here, the presence of the chiral edge states is sup-
ported by the quantum anomaly of the Hermitian bulk
system in 2D. On the other hand, the complex-spectral
winding number and the concomitant skin effect are rel-
evant to another quantum anomaly that is unique to NH
systems and formulated in terms of spatial, rather than spa-
tiotemporal, degrees of freedom [19]. It is of interest to
study the interplay of these two types of quantum anomaly.

The corner skin effect of chiral edge modes in a NH
Chern insulator has recently been experimentally observed
in a lossy gyromagnetic photonic crystal [64]. Other NH
models in our work, such as the 3D model studied in
Sec. IV, should also be realizable in similar open clas-
sical and quantum synthetic materials. Furthermore, our
work is also relevant to topological insulators and super-
conductors in solid-state materials. In this respect, it is
noteworthy that the NH topology and concomitant skin
effect have recently been demonstrated in the conductance
matrix for the mesoscopic edge transport of a quantum Hall
device [65].
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Note added.—We have recently become aware of a
related work [66] that investigates the skin effect of a chi-
ral edge mode in a NH Chern insulator, which is consistent
with our discussions in Sec. II. We also note another recent
related work [67]: our results are consistent where they
overlap.

APPENDIX: RELATION BETWEEN CHERN
HIGHER-ORDER NH SKIN EFFECT AND

HERMITIAN FRAGILE TOPOLOGY

Here, we give an equivalent proof of the higher-order
skin effect in NH Chern insulators that only relies on bulk
topology and does not make use of the slab geometry. Con-
sider a Chern insulator with C �= 0 (mod 2) that is gapped
at the Fermi energy EF . We now show that taking into
account pseudoinversion symmetry

IH(k)I†=H(−k)†, I2 = 1, (A1)

implies that a second-order skin effect must occur as long
as the point gap at EF is open. For this, we note that the
extended Hermitian Hamiltonian

H̄(k) =
(

0 H(k)

H(k)† 0

)
(A2)

inherits conventional inversion symmetry

Ī =
(

0 I
I 0

)
, ĪH̄(k)Ī† = H̄(−k). (A3)

Moreover, H̄(k) always enjoys chiral (sublattice) symme-
try

�̄ =
(
1 0
0 −1

)
, �̄H̄(k)�̄† = −H̄(k), (A4)

by construction.
Ī symmetry gives rise to a Z4-valued symmetry indica-

tor topological invariant [68],

κ̄ =
[

2n̄occ + 1
2

∑
k∈HSMs

∑
n∈occ

λ̄n(k)

]
(mod 4), (A5)

where n̄occ is the number of occupied bands, HSMs are the
four inversion-symmetric (“high-symmetry”) momenta of
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the 2D Brillouin zone, and λ̄n(k) are the Ī eigenvalues
of the occupied (negative-energy) eigenstates of H̄(k). All
trivial (atomic insulator) band structures satisfy κ̄ = 0. It
is also known that the Chern number C̄ of the extended
Hamiltonian H̄(k) satisfies

C̄ = κ̄ (mod 2), (A6)

so that the odd values κ̄ = 1, 3 must correspond to Chern
insulators. Moreover, if an insulator has κ̄ = 2 but C̄ = 0,
it must belong to an inversion-protected fragile topologi-
cal phase, which hosts 2 + 4l (l ∈ Z) corner states for full
OBCs [35,69]. Due to Ī symmetry, they appear at oppo-
site corners, and due to chiral symmetry [Eq. (A4)], they
are pinned to zero energy.

We now compute κ̄ in the situation where H(k) [but not
H̄(k)] realizes a Chern insulator with C �= 0 (mod 2). For
simplicity, we first adiabatically deform H(k) to its Her-
mitian limit H(k)† = H(k). We may then rotate to a basis
where

H̄(k) =
(

H(k) 0
0 −H(k)

)
, Ī =

(
I 0
0 −I

)
. (A7)

We see that the occupied subspace of H̄(k) is formed by
the “occupied” subspace of H(k) (the states below EF =
0), together with the “empty” subspace of H(k) (the states
above EF = 0). Importantly, for the latter set of states, the
sign of inversion is flipped. Since the sum of occupied and
empty subspaces of any lattice model has vanishing Chern
number, we deduce C̄ = 0. Moreover, we compute

κ̄ = 2κ = 2 (mod 4) , (A8)

where we use the fact that the symmetry indicator κ of
H(k) must satisfy κ = 1 (mod 2) due to Eq. (A6).

Correspondingly, a model H(k) with C �= 0 (mod 2)
and in the presence of pseudoinversion symmetry has an
extended Hermitian Hamiltonian H̄(k) that realizes an
inversion-symmetry-protected fragile phase with two sta-
ble corner-localized zero modes. Since zero modes in H̄(k)

induce a skin effect in H(k) [9], we deduce that H(k) has
a higher-order skin effect due to its first-order boundary-
induced point gap topology. It is worthwhile to further
study the relevance of this discussion to the second-order
skin effects in Refs. [26,30,31].
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