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Neuromorphic Decoding of Spinal Motor Neuron
Behaviour During Natural Hand Movements for a
New Generation of Wearable Neural Interfaces
Simone Tanzarella , Massimiliano Iacono, Elisa Donati , Member, IEEE, Dario Farina , Fellow, IEEE,

and Chiara Bartolozzi , Member, IEEE

Abstract— We propose a neuromorphic framework to
process the activity of human spinal motor neurons for
movement intention recognition. This framework is inte-
grated into a non-invasive interface that decodes the activ-
ity of motor neurons innervating intrinsic and extrinsic
hand muscles. One of the main limitations of current
neural interfaces is that machine learning models cannot
exploit the efficiency of the spike encoding operated by the
nervous system. Spiking-based pattern recognition would
detect the spatio-temporal sparse activity of a neuronal
pool and lead to adaptive and compact implementations,
eventually running locally in embedded systems. Emergent
Spiking Neural Networks (SNN) have not yet been used
for processing the activity of in-vivo human neurons. Here
we developed a convolutional SNN to process a total of
467 spinal motor neurons whose activity was identified in
5 participants while executing 10 hand movements. The
classification accuracy approached 0.95 ± 0.14 for both
isometric and non-isometric contractions. These results
show for the first time the potential of highly accurate
motion intent detection by combining non-invasive neural
interfaces and SNN.

Index Terms— Neural interfaces, neuromorphic, spiking
neural networks, spinal motor neurons, wearable.
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I. INTRODUCTION

NEXT generation of Human Machine Interfaces (HMIs)
aims at fast, safe, touchless, and intuitive control of

digital devices, based on the prediction of human intention
obtained by decoding neural activity, through neural interfaces.
Applications range from the control of smart devices (smart-
phones, home, virtual and augmented reality) to the control of
assistive devices and robots.

Neural interfaces extract information from different regions
of the nervous system and differ in the degree of
their invasiveness. Implanted electrodes directly measure
the activity of neurons (e.g., electroneuronography (ENG),
electrocorticography (ECoG), Microelectrode arrays (MEAs)),
while non-invasive measures (Electroencephalography (EEG),
surface electromyography (sEMG), etc.) provide global infor-
mation on neural activity [20], [39]. The source of these neural
recordings, i.e. the activity of many neurons, has a natural
spiking nature, since information in neural systems is encoded
at the population level (spatial) in the precise temporal pattern
of spikes, as demonstrated in somatosensory [29], [42] and
visual and audio [4] cortex for sensory stimuli and decision
making [46].

When establishing a neural interface by decoding spiking
biopotentials, the extracted spiking activity of neurons is
usually transformed into non-spiking features, moving from a
binary discrete domain to a continuous one. In particular, the
use of a set of kernels enables to extract richer information
from spike trains in terms of neural recruitment strategies, such
as identification of neurons encoding for a specific function,
spike train similarity, and probability distribution of spiking
neuronal behaviour [43]. However, during all these types
of transformations, some original information of the spiking
neural activity could be lost, and in general we would always
need to interpose this feature extraction from a discrete to a
continuous domain, to then process these features with state-
of-the-art machine learning [9], [44]. Also, some works focus
on the waveforms of the action potentials in the neural signals
instead of on their firing pattern [33].

Therefore, only a Spiking Neural Network (SNN)-based
machine learning can unleash the full information potential of
the intrinsic spiking nature of a pool of neurons, exploiting the
complexity of their spatio-temporal sparse activity. Moreover,
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Fig. 1. Experimental protocol and High-Density-sEMG (HD-sEMG) electrode placement. a) The protocol included single-finger flexion (5 gestures),
3 different grips with 5, 3 and 2 fingers, and thumb abduction and opposition (10 gestures in total). b) 6 HD-sEMG grids each with 64-channels
recorded the activity of 14 muscles. Two large grids (8mm Intra-Electrode Distance (IED)) were placed over the forearm and four small grids were
placed over intrinsic muscles (4mm IED).

the study of neuromorphic algorithms, implemented in this
work with traditional computing, would lead to adaptive,
extremely efficient, and compact implementations on neuro-
morphic hardware. Thus, we here hypothesize that SNN-based
architectures have the potential to efficiently decode the sparse
activity of a large number of spinal motor neurons involved
in the generation of complex hand motion patterns across
different tasks.

Despite their intrinsic spiking nature, only a few attempts
have been proposed to process natural spiking information
from biological neurons, either from in-vitro neuronal cul-
tures obtained by animal cortical tissues [6], [7], [30] or
in-vivo from anesthetized animals [5]. We emphasize here the
terminology natural spiking information since several works
performed an artificial spike-encoding of neural biopotentials
from human in-vivo recordings, like in [8], [16], and [31]
and used SNNs to extract movement intentions. This artificial
spike-encoding is performed by thresholding the signal with an
asynchronous delta modulator approach [13], [35]. However,
in those cases, the original biological spiking information of
each recorded neuron was not preserved, because there was
no previous identification of the activity of single neurons in
the recordings. Thus, this is why we address here the direct
processing of natural neural spiking information received by
motor neurons from the Central Nervous Systems (CNSs) with
SNNs.

In this study, we present the case of a non-invasive neural
interface based on spinal motor neuron activity. We show
for the first time the processing of human in-vivo natural
spiking activity of individual spinal motor neurons with a SNN
during the execution of daily-life gestures. With this approach,

we show the detection of natural finger movements from pools
of motor neurons innervating 14 hand muscles. We identify
the activity of single motor neurons from Electromyography
(EMG) by decomposition [24], [34], [40], [41], by using
muscles as a peripheral gate to extract central neural infor-
mation, generated at the spinal cord level. In this way,
we decouple the information sent by the CNS to muscles
from the muscle fibers action potentials, de-facto access-
ing information about the CNS through the muscular sys-
tem [10], [19], [21], [38], [47], [53]. This type of wearable
neural interfaces have been already implemented and exten-
sively evaluated [3], [15], [25], [52]. This proposed SNN-based
architecture provides the basis for the development of non-
invasive, wearable neural interfaces for the next generation of
intuitive HMIs for a broad range of daily-life conditions, such
as touchless control of devices, gaming and controlling virtual
reality, as well as for control of prostheses and rehabilitation.

II. METHODS

A. Subjects
Five healthy male individuals (age: 27.2 ± 3.3 yrs; weight:

74.6 ± 7.1 kg; height: 179 ± 6.7 cm) participated in the
experiments after having signed an informed consent form
approved by the Imperial College London Research Ethics
Committee (approval no. 18IC4685), in conformity with the
Declaration of Helsinki.

B. Targeted Muscles and Experimental Protocol
The electrode configuration of the HD-sEMG represented

in Fig. 1.b maps the activity of 14 of the most important
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muscles actuating the finger and the wrist [50]. The recorded
muscles were first dorsal interosseous (FDI), the three other
dorsal interossei (II-IV DI), abductor digiti minimi (ADM),
flexor pollicis brevis (FPB), abductor pollicis brevis (APB),
opponens pollicis (OPP), extensor carpi ulnaris (ECU), exten-
sor digitorum communis (EDC), extensor carpi radialis (ECR),
flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS)
and flexor carpi radialis (FCR).

To record the HD-sEMG dataset, we asked the subjects to
perform different types of gestures by flexing each individual
finger in three different wrist postures – neutral, flexed, and
extended – and also thumb abduction and opposition, since
these degrees of freedom of the thumb are involved in grips
and object manipulation. For the same reason, we asked
to simulate three different grips, i.e. two-finger, three-finger,
and five-finger grips. Grips were asked without contact with
objects to maintain consistency in terms of interaction with
the environment, i.e. action of external forces, with respect
to the other 7 gestures. Among these 10 natural gestures,
represented in Fig. 1.a, the ones involving a single finger
were considered across different wrist postures, respectively in
neutral, extended, and flexed positions (15 recordings overall).

Each gesture lasted 6 seconds, for 4 repetitions. A pause
of 1 minute between each recording of the 4 repetitions per
gesture was interposed, to avoid the presence of fatigue effects.
These 6 s were divided in 2 s for reaching the required finger
posture (with an excursion of the interested joint angle result-
ing in an increase in the contraction), 2 s to block the finger
posture (isometric part, with a plateau in the contraction), and
2 s to come back to the neutral position. We indicate later in
the text the first 2 of these 3 phases, used in the analysis,
as increasing (I), plateau (P), by indicating their concurrent
selection with I+P.

To indicate to the participants the movements to be executed
and the timing of the phases, visual feedback in terms of the
type of gesture and an animated cue were provided during the
execution of the tasks.

C. Experimental Setup
Six 64-channel grids with equidistant electrodes covered

the forearm and the hand: two grids (8 mm inter-electrode
distance (IED)) over the extrinsic (into the forearm) extensor
and flexor muscles, four grids (4 mm IED) over the intrinsic
muscles (into the hand). The grids were made of plastic with
electrodes printed in gold. HD-sEMG signals were recorded
with a monopolar recording configuration by a 400-channels
amplifier (Quattrocento, OT Bioelettronica, Torino, Italy).
Signals were amplified with a gain of 150, band-pass filtered
between 10 and 900 Hz, sampled at 2048 Hz, and A/D
converted to 16 bits. A laptop received the digitized data to
store and visualise it in real-time. A monitor was placed in
front of each participant to represent a picture indicating the
gesture to execute and the timings of the execution. This visual
feedback was represented with a custom-made application
developed in Matlab (The Mathworks, Natick, US), which also
visualized and saved the HD-sEMG signals. In Discussions,
we speculate about the adaptation of this instrumentation to
the wearable case.

D. Signal Processing
The spiking activity of individual spinal motor neurons

innervating muscles in the hand (intrinsic) and in the forearm
(extrinsic) actuating fingers and wrist was directly interfaced
with a convolutional SNN composed by two layers of LIF
neurons (Fig. 2) to identify the performed hand gesture.
Decomposition extracts spiking information of single motor
neurons non-invasively from HD-sEMG signals. It consists
in separating the firing occurrences from the motor unit
action potential waveforms (Fig. 2.b). These waveforms do
not correspond to neural information and depend only on the
volume conduction, i.e. properties of the recording system,
interposed tissues, and the relative distance between active
motor units and electrodes [18]. The output of the decomposi-
tion is a collection of time-varying IPTs, the sequence of firing
occurrences for each identified motor unit (Fig. 2.b). Each
identified waveform for a motor unit corresponds to a spike
in the IPTs and the relative firing occurrences are extracted
by thresholding [26]. It is worth remembering that the spiking
information of single motor neurons is the net product of the
integration at the spinal level between the central supraspinal
commands and the peripheral afferent commands performed
by modules of interneurons. Thus, the input of the SNN is the
natural neural binary information of a pool of spinal motor
neurons, decoupled from their action potential waveforms, and
it provides information about the exertion commands from
spine modules to each recorded muscle.

To identify the motor neurons firing patterns of the inves-
tigated muscles and track the same motor neurons across
multiple tasks, we concatenated the HD-sEMG signals of
the recordings relative to each gesture and then decom-
posed the concatenated HD-sEMG as in [51]. Each group
of 64 concatenated HD-sEMG signals corresponding to a
recording grid of 64 electrodes was decomposed sepa-
rately with the Convolution Kernel Compensation (CKC)
algorithm [27] (Fig. 3.a). Since the amount of HD-sEMG
data to decompose for all the gestures exceeded the computa-
tional capacity of the decomposition algorithm (approximately
100MB of data for the 100 decomposition runs executed),
HD-sEMG data were divided in 4 different concatenations.
The order of concatenation of the HD-sEMG recordings
was:

• Grips: Five-finger grips, Three-finger grip, Two-finger
grip

• Neutral wrist: Index, Little, Middle, Ring, Thumb flex-
ion, Thumb Abduction, Thumb Opposition

• Extended wrist: Index, Little, Middle, Ring, Thumb
flexion

• Flexed wrist: Index, Little, Middle, Ring, Thumb flexion
The concatenated HD-sEMG signals were digitally filtered

between 20 and 500 Hz with a 4th-order Butterworth filter and
then decomposed by the CKC algorithm [27]. The accuracy
of this motor unit identification from HD-sEMG was assessed
by pulse-to-noise ratio (PNR) [23]. The final output of the
decomposition was manually inspected by expert operators
according to the consensus study published in [14] and [36].
We discarded a spike train when it presented an average
firing rate lower than 2 Hz, or when the corresponding
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Fig. 2. Non-invasive neural interfaces for neuromorphic implementation. a) Human spinal motor neurons spike trains, are interfaced with an artificial
Spiking Neural Network (SNN) of Leaky Integrate-and-Fire (LIF) neurons with local learning rules. The input to motor neurons is the net output of
the integration performed by spinal interneurons of supraspinal and afferent neurons, encoded in the spiking activity of the motor neuron. The SNN
main hyperparameters are α and β, the neuron’s membrane and synaptic time constants, respectively. b) Spinal motor neuron spiking activity
can be non-invasively identified with HD-sEMG decomposition. Decomposition uses blind source separation to distinguish similar motor unit action
potential waveforms (2 motor units in the example) from HD-sEMG signals. These waveforms, maximally different among different motor units, are
then separated from the interpulse spike trains inter-pulse train (IPT). The thresholding of the IPT provides the binary spiking information which is
the input of the Spiking Neural Network (SNN).

spike-triggered averaged MUAP waveform did not presented
a physiological shape but only noise. The latter condition was
assessed by identifying shapes with several phases which are
not typical of physiological MUAPs.

To complete the motor neuron tracking across all the
observed recordings, after having decomposed separately
the four HD-sEMG concatenations, the spiking activity of
the identified spinal motor neurons for each concatenation
was matched across all the other concatenations. To do so,
we paired similar action potential waveforms of the respective
motor units across the four concatenations, by ordering similar
motor unit pairings from the most similar to the least similar
until the termination of the pairings. Waveform similarity was
assessed with a 2D-cross-correlation between the matched
motor unit action potential templates. The average action
potential waveforms for each electrode were obtained by
spike-triggered average (STA) [37]. In the case of unpaired
motor units in this last process based on action potential wave-
forms, also these unpaired motor units were included in the
analysis, since they were already assessed to be accurate when
decomposed in their EMG concatenated signals, as described
above.

As shown in [51], for electrode grids covering more than
one muscle, motor unit location was assessed by computing
the root mean square (RMS) of spike-triggered averaged motor
unit action potentials per each channel, having a 64-electrode
matrix per grid. Then, the grids were divided arbitrarily into
three bands as shown in [51] and motor units were assigned
according to the most active band and the expected position
of each muscle with respect to the band. The methodological
aspects of this method are discussed in the cited paper.

The spike trains of all the considered motor neurons
of all muscles for each subject, segmented with windows of
200 ms [45] (Fig. 3.b), were sent to the 1-D input array of
the network. This segmentation did not imply any smoothing
operations, as our SNN works directly with spikes without any
imposed continuous transformation. In this way, the minimum
firing rate detectable with such a window is 5 Hz, and lower
firing rates are de-facto clipped to 0.

E. Structure of the Network, Hyperparameter
Optimization and Network Calibration

The proposed convolutional SNN is based on the Deep
Continuous Local Learning (DECOLLE) framework [28]
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Fig. 3. Signal processing and motor neuron identification. a) High-Density-sEMG (HD-sEMG) recordings, concatenated across tasks, are
decomposed in the corresponding trains of motor unit action potentials, to obtain the relative motor neuron spike trains tracked across different
tasks. b) The identified spike trains for one task are segmented in 200 ms-width windows and used as inputs to the convolutional Spiking Neural
Network (SNN).

Fig. 4. Structure of the convolutional Spiking Neural Network (SNN) adopted in the study and its application. a) The overall structure of the network
comprises two convolutional spiking layers (Conv), and two pool layers (Pool). Two fully connected (FC) layers are appended each at the end of
each Conv-Pool structure, to implement the local learning. The dimension of their output is the number of classes. The number of neurons (N) in the
input layer corresponds to the number of motor neurons identified for each subject, varying for each subject, as reported in Table I. b) This network
is designed to be used online by calibrating the decomposition and the network in a calibration phase on a remote server and then using the mixing
matrix for online decomposition and the trained optimized network for online classification. This remains a future perspective for this paper since we
would need online decomposition, and the part implemented here is the one for the calibration part.

(Fig. 4.b). The hyperparameters which have the greatest
impact on the performance are the dimension of the input

window, the number and size of the layers and the time
constants of neurons and synapses.
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We chose the minimum number of layers (two) in the
convolutional architecture (Fig. 4.a), to optimize the trade-off
between accuracy and power consumption. The first convo-
lutional layer has an input size equal to the number of the
processed motor neurons, which is different for each subject
(Table I), and an output of 64 (set empirically after preliminary
tests); the second has an input of 64 and an output of 128. Each
layer is trained locally, using the classification of the gestures
in a fully connected readout layer as the objective function.
Each of these readout layers produced a number of outputs
equal to the number of classes to discriminate.

The spiking activity of individual spinal motor neurons
innervating the targeted muscles was directly interfaced with
a convolutional SNN composed of two layers of LIF neurons
(Fig. 2). Each of the two convolutional layers was trained
autonomously, by surrogate gradient and local learning. The
network is mainly ruled by the time constant of the neurons’
membrane, and of the synapses, represented by the α and β

hyperparameters, respectively. α and β were tuned specifically
for each subject during network training.

The time constants of the synapses τsyn and membrane
potential τmem of the LIF neurons are encoded in the α =

e
−δt

τmem and β = e
−δt
τsyn hyperparameters.

The two convolutional layers were tuned for each subject
separately by testing the network on all the 10 classes,
by considering the contraction phase I+P and a window width
of 200 ms with no overlap. This hyperparameter tuning was
run on 40 % of the available dataset. The remaining 60 %
was used for network training and testing. To divide these
two parts of the dataset, 200-ms windows were randomly
reshuffled after segmentation making sure that the windows
used in the first and second parts were distinct, ensuring
the independence of the two subsets. This division simulates
two different sessions in a subject-centered network training
scenario, first for hyperparameter optimization and then for
training the optimal network, as represented in Fig. 4.b. For
both parameters, the tested values were 0.75, 0.8, 0.85, 0.9,
0.95, and 0.97, corresponding to time constants of 8.0, 10.3,
14.2, 21.9, 44.9, 75.6 ms.

F. Intra-User Hand Gesture Classification

Fixed the optimal hyperparameters, the optimized network
was trained and tested for each subject by selecting different
dataset portions of the remaining 60% of the dataset not used
for the hyperparameter optimization. Two different sets of
classes were discriminated: 5 classes (with only the single-
finger flexion), and 10 classes, adding the 3 grips and the
2 thumb opposition gestures. Different parts of the dataset
were separately used for classification: increasing (I), plateau
contractions (P), and both together (I+P), obtained by segment-
ing each repetition for each task in the corresponding 2 s-long
phases. Also, different recording conditions were simulated
by considering different selections of muscles (only intrinsic,
only extrinsic or both groups), classes (only single finger
flexion or also thumb abduction, opposition and 3 different
grips) and phases of contractions. The SNN training was run

for 100 epochs, by grouping different classes, muscles and
contraction phases.

G. Inter-User Classification
In different recording sessions and for different subjects, the

number of identified neurons by HD-sEMG decomposition is
highly variable. This is because motor neuron identification
is based on identifying the action potential waveforms of the
most superficial motor units discriminable in the measured
HD-sEMG signals. These waveforms depend on the con-
duction volume, which varies due to electrode displacement
across different subjects and sessions. A further explanation is
formulated in Discussions. To have the same number of motor
neurons per muscle for all the subjects, we selected a subset
of the most active motor neurons (ordered by the number of
spikes in each muscle) in a number equal to the minimum
number of motor neurons identified for each muscle across
the 5 subjects, reported in Table I (10, 3, 5, 4, 7, 0, 0, 3, 4,
5, 0, 6, 10, 0).

The firing rate for each MU was averaged across all the tasks
for each subject, to then sort the motor neurons per overall
firing rate and then select the first ones, having the same
number of motor neurons per muscle across subjects. This
procedure of inter-subject concatenation was implemented for
4 subjects for the training phase, to then test the trained
network on the remaining subject. We repeated this procedure
for each subject, so testing the network on the data of each
subject after having trained the network on the data of the
other 4.

From the dataset different portions were considered, i.e. the
conditions of 5 classes and 10 classes, and all phases I+P,
I, and P, with a window width of 200 ms with no overlap.
We chose a value of α and β as those corresponding to
the best average across all subjects of the results obtained
for each subject in the phase of hyperparameter optimization,
corresponding to 0.97 for α and 0.75 for β.

H. Support vector machines (SVM) as Classification
Benchmark

In the perspective of comparing our network with a tra-
ditional widely used machine learning model, SVM was
evaluated to classify the data for each subject described above.
The spike train firing timings of all motor neurons were
segmented into 200-ms-width windows, and the spikes in each
window were summed for each motor neuron. So each data
point was constituted by the number of spikes in the window
for each motor neuron. The same subdivision between the
training and test set used for the SNN was adopted. SVM
classification was cross-validated 5 times, by reshuffling the
windows selected for the training and test dataset.

I. Optimisation of the Network Structure for Minimizing
Computational Resources

The network architecture and hyperparameters used in the
analysis above were selected empirically after testing a dif-
ferent number of layers and number of neurons per layer.
To test the trade-off between network size and accuracy,
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TABLE I
NUMBER OF IDENTIFIED MOTOR NEURONS FOR EACH

MUSCLE FOR THE 5 SUBJECTS

we implemented a single-layer convolutional network and a
single-layer fully connected network. In both cases, the input
size was equal to the number of motor neurons and the output
size, respectively equal to 128, 64, 32, 16. The readout layer
had an output equal to the number of classes to discriminate.
We trained and tested these networks for all the subjects
separately (intra-user), for all the 10 classes, only for the
plateau phase, and for all muscles.

J. Power Consumption
To compute the energy consumption and inference time

of the convolutional SNN, we deployed the network onto
the NVIDIA Jetson Nano, an embedded system with a
128-Core Maxwell GPU with 4GB 64-bit LPDDR4 mem-
ory 25.6 GB/s (https://developer.nvidia.com/embedded/jetson-
nano-developer-kit). The energy consumption performance is
presented as Energy-Delay Product (EDP), a metric suitable
for most modern processor platforms, defined as the average
energy consumption multiplied by the average inference time.
The inference time is defined as the time elapsed between
the end of the presented sample and the classification. The
EDP was calculated using the dynamic power consumption,
measured as the difference of total power consumed by the
network and the static power, when the GPU is idle, which
corresponds to 50 mW.

III. RESULTS

A. Human Neural Spiking Activity Processed With
Spiking Neural Networks

The number of identified motor neurons analyzed in this
study is reported in Table I. Their activity was tracked across
all the 10 tasks (as shown in Fig. 3.a) for each of the 5 sub-
jects. On average, 93.4±13.8 motor neurons per subject were
identified (467 in total) and the accuracy of this identification
was quantified by a PNR [23] equal to 32.2 ± 5.0 d B across
all motor neurons. As explained in [23], this value of the
PNR corresponded to an average decomposition accuracy
of > 90% (see Section II). The identified motor neurons for

TABLE II
CHOSEN VALUES OF α AND β FOR THE 5 SUBJECTS

all subjects, across all their activities, presented a mean firing
rate of 13.2 ± 7.9 Hz. In the table, motor neurons are grouped
by the 14 targeted muscles represented in Fig. 1.b and covered
by 64-channels HD-sEMG electrode grids placed as explained
in detail in [50]. More than ten of the most important muscles
actuating the finger and the wrist were targeted, both to map
more completely the biomechanics of hand movements and
to simulate the usage of a high-density myoelectric glove for
intrinsic muscles or a more traditional high-density myoelec-
tric band around the forearm, over extrinsic muscles.

B. Optimal Hyperparameters
The results for the user-specific hyperparameter optimiza-

tion, to find the combination of α and β that maximizes the
classification accuracy in the test phase, are shown in Fig. 5.
The results are provided for one representative subject, for
the two layers of the network. Based on this grid search,
we chose for each subject the best hyperparameter values,
reported in Table II. On average, across all layers, subjects,
and α-β combinations, the accuracy was 0.95 ± 0.07.

C. Intra-User Hand Gesture Classification
Fig. 6 shows the median (yellow line) and interquartile

range (box) of test accuracy across subjects for each layer
for three muscle groupings: all muscles (dark violet), intrinsic
muscles (magenta), and extrinsic muscles (cyan), and for the
three contraction phases. These values are reported both in the
case of classifying 5 and 10 classes. We obtained an overall
test accuracy of 0.92 ± 0.10 for all muscles, 0.83 ± 0.23 for
only intrinsic and 0.86 ± 0.19 for only extrinsic, across all
subjects, the two class selections (5 and 10), and the two layers
respectively. The accuracy was 0.86±0.20 for plateau (steady
and isometric) contractions, while for increasing contractions
(non-isometric) was 0.81±0.20, and for both the contractions
considered together was 0.95 ± 0.14.

The test accuracy performance of the second layer – across
all subjects and the two class selections – was overall higher
than for the first: 0.94 ± 0.1 (versus 0.91 ± 0.11) for all
muscles, 0.91 ± 0.13 (versus 0.75 ± 0.28) for intrinsic, and
0.91 ± 0.14 (versus 0.81 ± 0.22) for extrinsic, with overall
lower standard deviation in all cases. This applies also when
analyzing the different phases (I, P, I+P) of the movement:
respectively the second versus the first layer presented an
accuracy of 1.0 ± 0 versus 0.9 ± 0.18 for I+P, 0.86 ± 0.15 vs
0.75 ± 0.22 for I, and 0.9 ± 0.12 vs 0.82 ± 0.25 for P.
Adding further layers did not improve these figures of merit,
we therefore optimized the accuracy/resources trade-off using
only two layers, in order to apply this structure for on-
chip implementation. Sec. II-I presents the optimization of
computational resources, by analyzing the test accuracy when
progressively reducing the number of neurons.
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Fig. 5. Grid search for the optimisation of the hyperparameters α and β, respectively related to the membrane and synaptic constants. Mean
and standard deviation across subjects and network layers of the maximal test accuracy across 100 epochs of training are reported, normalized
between 0 and 1.

D. Inter-Subject Hand Gesture Classification
In the case of a multi-subject dataset (4 subjects), to then

classify data of a new subject, we found a test accuracy aver-
agely smaller than in the case of the intra-subject classification.
Fig. 7 the median and interquartile range of test accuracy
across subjects for each layer for three muscle groupings,
represented as in Fig. 6. We obtained an overall test accuracy
of 0.54 ± 0.21 for all muscles, 0.50 ± 0.18 for only intrinsic
and 0.42 ± 0.16 for only extrinsic, across all subjects, type
of contractions, the two class selections (5 and 10), and
the two layers respectively. However, by considering only
5 classes, we obtained slightly higher average values of test
accuracy equal to 0.63 ± 0.20 for all muscles, 0.61 ± 0.16 for
only intrinsic and 0.49 ± 0.16. Remarkably, across 3 out
5 subjects, they could be classified averagely 0.78 ± 0.05,
0.73±0.04, 0.61±0.05 respectively for each muscle grouping,
for 5 classes. Averagely, higher values of test accuracy were
found in this analysis for intrinsic than for extrinsic muscles.

E. Classification of Motor Neurons With SVM
In the case of applying SVM on the same motor neuron data

by training the model for each individual subject, values for
different muscle grouping, different selections of contraction
phase, and different selections of the classes look on average
smaller than the ones of the network. Fig. 8 the median and
interquartile range of test accuracy across subjects for each
layer for three muscle groupings, represented as in Fig. 6.
With SVM we obtained an overall test accuracy, across all
subjects, all contraction phases and classes, respectively of
0.83 ± 0.10 for all muscles, 0.72 ± 0.14 for only intrinsic and
0.61 ± 0.19 for only extrinsic. Across all muscle grouping
and number of classes, for P contractions the accuracy was
0.70 ± 0.19, while for I contractions and for I+P contractions
was respectively 0.70 ± 0.17 and 0.75 ± 0.13. By comparing
these values with the ones obtained with SNN, we can observe

that mean values for the SNN were greater than the respective
ones for SVM.

F. Power Consumption
The dynamic power of the network was 100 mW for a total

consumed energy of 0.97 mJ and inference time of 9.7 ms,
resulting in EDP at 9.4 uJ*s.

G. Optimisation of the Network Structure for Minimizing
Computational Resources

Fig. 9 shows the mean and standard deviation of the test
accuracy across subjects, for varying the size of the single-
layer networks. While for the fully connected network we
found a progressive decrease in accuracy by decreasing the
size, for the convolutional network we found the same test
accuracy for a size greater than or equal to 32 neurons,
on average over 0.8 and similar to the value obtained with
the fully connected layer with 64 neurons.

IV. DISCUSSIONS

We propose a neuromorphic framework for processing the
spiking activity of human motor neurons, toward the design of
wearable neural interfaces. Motor neuron activity was recorded
in-vivo, during the execution of natural hand gestures. Move-
ment intention was inferred from the spike trains of almost
one hundred motor neurons for each subject (thus almost
500 motor neuron spike trains were processed in total). This
framework unleashes the full potential of interfacing biological
neurons with artificial spiking neurons, solely using spike-
based encoding. The use of LIF neurons and local spike-driven
plasticity rules opens up the possibility of implementing such
architecture on neuromorphic chips, leading to an even more
efficient online and wearable implementation. We consid-
ered muscles in the forearm (extrinsic), to target the use
of myoelectric armbands and bracelets for monitoring users’
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Fig. 6. Intra-user hand gesture classification. Median (yellow line) and
interquartile range (box) for the test accuracy of the Spiking Neural
Network (SNN), for layer 1 (L1) and layer 2 (L2), by grouping muscles in
three different ways: all (dark violet), intrinsic (magenta), extrinsic (cyan),
and by selecting three different periods of contraction: increasing plus
plateau (I+P), increasing (I) and plateau (P). Each network is trained
individually for each subject, test accuracy values are averaged across
subjects.

activity [22], [48], and in the hand (intrinsic), so far considered
mainly in neurophysiology [50], [51], [54].

We here processed an unprecedentedly complex dataset,
with around 500 hundred motor neurons innervating 14 hand
muscles, and including gestures like single-finger flexion
(5 classes), thumb movements, and three different grip types
(for a total of 10 classes), to include more natural gestures.
To identify this great number of motor neurons, we used
the largest HD-sEMG montage currently attempted, presented
in [50] and [51] and involving 384 channels, to decompose
spinal motor neuron spike trains from motor unit action
potential waveforms. The dataset presented in this paper also
contains non-isometric contractions, implying an increase of
the contraction to perform one of the 10 gestures, followed by
a plateau isometric phase for each gesture. We processed these
contraction phases both separately and together, to understand
during which phase of the motion the network can extract
more information about the hand gesture. We studied the
network performance when trained separately for each subject
and when trained for all subjects, to validate its use in a
user-centered approach whereby a pre-trained network can be
adapted to a single user for best performance.

When using optimized hyperparameters to train the network
with data of each individual user, we got a high accuracy of
0.95 ± 0.14 (across subjects and layers) considering all the
muscles and both isometric and non-isometric contractions in
the same training. This is an important result, enabling high
classification accuracy of daily-life gestures, which can be
non-isometric or pseudo-isometric in a variable way. At the
second layer of the network, we found less difference in clas-
sification accuracy among the three muscle groupings and an
average higher classification performance (Fig.6). This means
that adding a second layer can increase and stabilize the pattern
recognition of neural spiking information encoding different
gestures. Finally, we showed how to optimize the network with

Fig. 7. Inter-user hand gesture classification. Median and interquartile
range for the test accuracy of the Spiking Neural Network (SNN) are
represented like in Fig. 6.Each network is trained on four subject and
tested for the remaining subject, repeating this process for each subject.
Then, test accuracy values are averaged across subjects.

Fig. 8. Intra-user hand gesture classification with SVM. Median and
interquartile range for the test accuracy of the Spiking Neural Network
(SNN) are represented like in Fig. 6, except for the fact that there are
not different layers to represent here. Test accuracy values are averaged
across subjects.

a different combination of hyperparameters representing the
neuron and the synapse time constants (respectively α and β).
After an initial tuning, which could be performed by the user
as a calibration phase to update periodically, the network can
be fine-tuned with data from the user through local learning at
each layer. The results obtained for the best hyperparameters
is empirical and must be repeated per each subject, eventually
leading every time to a different result, since the data to train
the model will change and different stability point could be
found for the hyperparameters.

We also investigated the case of recognizing neural spiking
patterns from a dataset containing information collected from
many users, to create a general model of human neural patterns
associated with gestures. This raises the problem of variability
in the number of identified motor neurons across different
subjects, as shown in Table I. In fact, the identification of
motor unit action potentials associated with a single motor
unit (thus a motor neuron) depends on the specific volume
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conduction of a certain session (position of the electrodes
with respect to the muscles) and even more from the anatomic
aspects of one subject (interposed tissues between electrodes
and muscles, the shape of the muscles and body metric).
This could hinder the successful deployment of the system
in myoelectric control whether the network would need to
be trained on multiple subjects. Although it is reasonable
for many applications to train the network specifically for
one subject, leading to high accuracy as shown, developing
universal models of human neural patterns could be useful
for instance to avoid training the model for each specific
user, saving time during the usage. The solution that we
proposed consists in extracting subsets of an equal number of
motor neurons for each muscle for all the subjects and for all
sessions, by selecting the most active motor neurons from each
subject. As shown in [51], by selecting a representative subset
of MUs, we still preserve the majority of neural commands
sent from the spinal cord to the muscles. It is clear that
concatenating motor neurons of different subjects generates
a dataset that does not correspond to a physiological grouping
of motor units since it groups together motor units of different
subjects. However, this is an example of a first attempt to reach
a universal multi-subject motor neuron dataset by finding a
way to keep consistency in the number of channels, i.e. motor
neurons, across subjects. Nevertheless, we observe lower clas-
sification accuracy in this case, than when classifying patterns
separately for each user. Further options in this direction could
be the implementation of a customized input layer that adapts
to the number of identified motor neurons with an arbitrary
number of outputs, concatenated with the following layers
trained on many subjects. Also, training on a larger population
of users and mapping more conditions and gestures would
be necessary for an inter-user classification model of human
motor intentions from motor neuron spiking activity.

Few examples of SNN processing biological neural infor-
mation can be found in the literature. A first common
approach is an artificial spike encoding of in-vivo neural
biopotentials, like EEG and EMG. This spike encoding of the
recorded signal is performed by thresholding the signal values
exceeding a baseline, with an asynchronous delta modulator
approach [13], [16], [35]. Differently, in this study, we did not
use an artificial spike encoding to extract spiking information
from biopotentials, i.e. EMG, but we identified the natural
spike encoding received by each single motor neuron from
spinal neuronal circuitries or super-spinal structures [32]. This
spiking neural information is inherent in the recorded EMG
signals and coupled with volume conduction information [17].
Through decomposition, we decoupled this neural spiking
information from the conduction volume information (motor
unit action potential waveforms). Thus, we did not feed a
SNN with an artificial spike encoding from biopotentials, but
with the true natural neural activity of human in-vivo neurons,
e.g. spinal motor neurons. A second approach for SNN pro-
cessing of biological neural information is processing in-vitro
spiking information from a population of neurons plated onto
a substrate-integrated multi-electrode array [6], [7], [30] by
recording from in-vitro neurons obtained from rat neocortex.
Finally, a third approach is to record neuronal spikes from

Fig. 9. Minimisation of computational resources. Mean and standard
deviation across subjects of the test accuracy for the different network
layers (convolutional or fully connected) by testing 4 different sizes, 128,
64, 32, and 16 neurons in the hidden layer (the input size was equal
to the number of motor neurons to classify and the output equal to the
10 classes).

anesthetized animals while stimulating the nervous tissues to
be processed with neuromorphic devices [5]. However, so far
nobody attempted to process the activity of in-vivo human
individual neurons receiving their spiking information from
the CNS, i.e spinal and supraspinal structures, during daily-life
gesture execution [55].

We are aware of the small pool of subjects involved in this
experiment. However, we were focused in showing the novel
application of a SNN on in-vivo motor neuron spike trains and
such a dataset was sufficient to train and test the networks.
As stated above, this dataset is already unprecedentedly rich,
with around 500 hundred motor neurons innervating 14 hand
muscles processed concurrently. After this first proof of con-
cept, we aim to extend this framework in the next studies by
validating more complex SNN structures with more subjects,
both males and females.

This framework has been developed with the goal of
implementation for wearable neural interfaces. A wearable
adaptation of the instrumentation used in this work would
require a) a more flexible and compliant material for the
electrode grids, b) a miniaturized chip implementing the signal
conditioning for each 64-channel grid, and c) a wireless
solution, as discussed in [49]. Sensing and decoding the
neural drive using a sleeve array was already demonstrated
successful for a person with tetraplegia targeting paralyzed
muscles during attempted movements [52]. Regarding the high
number of EMG electrodes required, in the order of tens
for covering one muscle and hundreds to cover muscular
groups, this is at the moment a fundamental requisite for
motor neuron identification from myoelectric activiy. In fact,
the state-of-the-art blind source separation methods for EMG
decomposition still rely on montages guaranteeing high spatial
resolution and redundant information shared across the chan-
nels [12], [23], [27]. Devices like 8-channel armbands like the
one used in [16] would not be suitable to extract spinal motor
neuron information.
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Also, this framework is designed to be used in daily-life
contexts to control external devices, like gaming, control VR
or mechatronic devices. The required online adaptation of the
framework has been mentioned in Methods II and described
in Fig. 4.b. An online implementation of the decomposition
would provide a very convenient way to access non-invasively
to spinal neural drive [3] and the hyperparameter optimization
and the training of the network would be added in this
calibration phase.

In the particular case of rehabilitation, we recommend our
framework to control hybrid orthoses based on FES and
mechatronic exoskeletons, which are usually triggered by the
residual myoelectric activity [1], [2]. In fact, hemiplegic stroke
survivors can still generate residual myoelectric activity even
if they are severely impaired in coordinating movements and
controlling muscle exertion with proficiency [11]. In the case
of amputees, we in our work specifically record the activity
from motor neurons innervating the proximal part of the
forearm, like in the case of trans-radial amputees, to then
compare this information with the one from motor neuron
innervating intrinsic muscles (inside the hand).

Finally, we aim to implement this framework on neuro-
morphic chips in the next future. This is a fundamental step
for wearable implementation and online control. In fact, the
power consumption of the overall system is very high, due
to the inherent limits of the current state-of-the-art technolo-
gies used in this framework. Besides the necessity of online
decomposition, the translation of our networks on in-silico
chips will speed up significantly the processing and enable
great efficiency in power consumption. To minimize the time
of computation and the energy consumption needed for edge
computing on neuromorphic chips, the first requirement is
minimizing the network size and number of operations (num-
ber of connections, neurons, layers, etc.), while maintaining
reasonable levels of accuracy. For the shown results, we used
64 neurons and 128 neurons for the two convolutional layers,
respectively, which leads to tens of thousands of synaptic
connections (for a convolutional kernel size of 3). We observed
that both for a convolutional and a fully connected layer with
at least 32 neurons the test accuracy can be kept averagely
over 0.8, although the convolutional layer shows slightly more
stable performance by decreasing the number of neurons
between 128 and 32. To this aim, technological aspects to map
this architecture on neuromorphic chips need to be solved.

Although we here accessed motor neuron spiking informa-
tion via a non-invasive neural interface using blind source
separation, motor neuron activity could be as well extracted
using implantable devices targeting nerves or the cortex. This
would open the scenario of extending biological neuronal
circuitry with artificial silicon neurons.

V. CONCLUSION

We propose a neuromorphic framework for processing the
spiking activity of human motor neurons to be used in the
next generation of neural interfaces. This framework could be
used for a broad range of purposes and adapted to the case of
implanted neural devices.
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