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A B S T R A C T

Computer-aided molecular design (CAMD) methods can be used to generate promising solvents with enhanced
reaction kinetics, given a reliable model of solvent effects on reaction rates. Herein, we use a surrogate
model parameterised from computer experiments, more specifically, quantum-mechanical (QM) data on rate
constants. The choice of solvents in which these computer experiments are performed is critical, considering
the cost and difficulty of these QM calculations. We investigate the use of model-based design of experiments
(MBDoE) to identify an information-rich solvent set and integrate this within a QM-CAMD framework. We
find it beneficial to consider a wide range of solvents in designing the solvent set, using group contribution
techniques to predict missing solvent properties. We demonstrate, via three case studies, that the use of MBDoE
yields surrogate models with good statistics and leads to the identification of solvents with enhanced predicted
performance with few iterations and at low computational cost.
1. Introduction

Reaction kinetics is a key factor in the manufacture of chemical
products. For instance, in the pharmaceutical industry, reaction kinetics
affect productivity, yield and product purity in the production of active
pharmaceutical ingredients and synthetic intermediates, which in turn
influence the cost and complexity of downstream separations (Grom
t al., 2016). When producing functional polymers, such as polysilox-

anes for the manufacture of adhesives and lubricants (Hill, 2005), the
reaction kinetics at the different stages of polymerisation determine the
properties of the final product and its suitability for application (Issa
and Luyt, 2019). Likewise, in the food industry, controlling the kinet-
ics of reactions involved in food processing, such as the well-known
Maillard reaction, can produce desired aromas and colours in processed
food (Martins et al., 2000). It can be seen from these examples that
an ability to control the reaction kinetics of a system is important
for achieving high product quality, low process cost and high atom
efficiency (Song et al., 2017).

In this context, the factors that affect the reaction kinetics, such as
temperature, pH, catalysts and solvents, are of interest. In particular,

∗ Corresponding author.
E-mail address: c.adjiman@imperial.ac.uk (C.S. Adjiman).

the choice of solvent is especially important for liquid-phase reactions
as the reaction medium alters the free energy landscape of the system.
The Menschutkin reaction (Menschutkin, 1890a,b), for example, is
well-known for its sensitivity to solvent effects as the rate constant
of the reaction can vary by several orders of magnitude in different
solvents. Usually solvents with larger dielectric constants favour the
Menshutkin reaction due to the formation of charged products from
neutral reactants (Reinheimer et al., 1963). In a more recent example,
in the coupling of amino acids, changing the reaction solvent was
found to not only accelerate the coupling reaction but also to sup-
press the side reaction between two amino-acid activation reagents,
ethyl cyano(hydroxyimino)acetate (Oxyma) and diisopropylcarbodi-
imide (DIC), which produces hydrogen cyanide (HCN) (Erny et al.,
2020). Solvent selection can therefore be a very rewarding, albeit by
no means trivial, task in many situations where reaction kinetics play
an important role. Despite its central role, the investigation of solvent
effects on reaction kinetics and selectivity, and the use of the knowledge
gained from this for solvent selection still often relies heavily on
vailable online 8 July 2023
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experimental trial-and-error approaches, as has been the case in the
two examples cited.

Although performing experiments is often seen as the most straight-
forward way to test reaction and solvent performance, this requires
time and resources to purchase or synthesise the necessary materials,
to set up and run the experiments, and to perform characterisation and
analysis. The emergence of high-throughput experimentation technol-
ogy (Potyrailo et al., 2011; Coley et al., 2020a,b) can greatly reduce
the time needed by making it possible to conduct a large number of
experiments in parallel, but it still requires the availability of materials
and specialised equipment that may not be easily accessed. For certain
classes of reactions involving highly energetic or toxic compounds, the
associated safety and health risks need to be minimised (Cao et al.,
2020; Erny et al., 2020), even when high-throughput techniques are
available.

One approach to reduce the experimental effort is to resort to
computer simulation. With the development of advanced modelling
techniques for the calculation of liquid-phase rate constants such as
density functional theory (DFT) (Jalan et al., 2013; Diamanti et al.,
2021) along with appropriate solvation models (Miertus et al., 1981;
Miertus and Tomasi, 1982; Marenich et al., 2009) and reactive molecu-
lar dynamics (Meuwly, 2019), in-silico ‘‘experiments’’ can be performed
with more readily available resources. However, the accuracy and
reliability of such models are also affected by a number of factors
and cannot always be guaranteed (Harvey et al., 2019). Furthermore,
while more sophisticated computational methods may provide better
accuracy for certain systems, they usually incur large computational
expense which requires many CPUs or even GPUs to work in parallel,
with large associated operating and energy costs. These complex calcu-
lations can be prone to failure, requiring human intervention or running
the risk of missing promising solvents. Simply transferring experimental
trial-and-error approaches to a computer and applying a brute-force
method to identify good reaction solvents offers limited scope.

In view of this, computer-aided molecular design (CAMD) has
emerged as a novel computational tool for efficient solvent selection
and design by taking advantage of powerful modelling and optimisation
techniques. CAMD has been successfully applied to solvent selection
and design for various applications, such as crystallisation (Karunanithi
et al., 2006; Watson et al., 2021), liquid–liquid extraction (Schef-
fczyk et al., 2017) and reactions (Folić et al., 2008; Struebing et al.,
2013; Zhou et al., 2015b; Austin et al., 2016; Gertig et al., 2019;
Liu et al., 2019; Gertig et al., 2020). When CAMD is applied to
solvent design for chemical reactions, a kinetic metric, such as rate
constant or selectivity, is often selected as the objective function to be
optimised. Folić et al. (2008) formulated a CAMD problem to maximise
the rate constant of a Menschutkin reaction. In their formulation, rate
constants were predicted from several solvent descriptors (Abraham’s
hydrogen bond acidity, Abraham’s hydrogen bond basicity, polar-
ity/dipolarisability (Abraham, 1993), Hildebrand’s solubility parameter
and a correction parameter denoting whether a solvent molecule is
aromatic and/or halogenated) using a linear free-energy relationship
(solvatochromic equation) (Abraham et al., 1987a,b) regressed to a
small set of experimental rate constants in different solvents. The
multivariate linear regression (MLR) formalism of the solvatochromic
equation facilitates its incorporation into a CAMD framework. Strue-
bing et al. (2013) built on the work of Folić et al. (2008) and developed
a quantum-mechanical computer-aided molecular design (QM-CAMD)
method in which the experimental rate constants for model training
are replaced with computed rate constants that are calculated via DFT
combined with a continuum solvation model. In the work of Folić et al.
(2008) and Struebing et al. (2013), the solvatochromic descriptors can
be calculated using group contribution (GC) methods (Sheldon et al.,
2005; Folić et al., 2008).

In the same spirit, Zhou et al. (2015a,b) constructed another type
of quantitative structure–activity relationship (QSPR) model that uses
2

a set of quantum mechanical descriptors derived from so-called 𝜎-
rofiles (Klamt, 1995) generated by the conductor-like screening model
COSMO) approach, a type of continuum solvation model in which an
nfinite dielectric is used; GC methods were also developed to calculate
he 𝜎-profile-based descriptors. Similar to the solvatochromic equation,
he 𝜎-profile-based QSPR model was also regressed via MLR using a
mall number of experimental rate constants and incorporated into
mixed-integer nonlinear programming (MINLP) formulation where

he rate constant is maximised. The approach was applied to a Diels–
lder reaction. As an alternative to the QSPR model of Zhou et al.

2015a,b), Liu et al. (2019) identified a set of solvent descriptors
rom thermodynamic derivations within conventional transition state
heory (CSTS) in combination with additional knowledge-based solvent
escriptors which can be calculated using GC methods. Austin et al.
2017, 2018) used COSMO-RS, a COSMO post-processing method that
stimates mixture thermodynamics from 𝜎-profiles and cavity volumes
f species of interest, so as to calculate rate constants in solvent
ixtures. In their work, 𝜎-profiles and cavity volumes were also cal-

culated using GC methods to circumvent the direct evaluation using
expensive QM methods. They decomposed the mixture design problem
into (1) single-molecule design problems solved by a derivative-free
optimisation algorithm over a lower-dimensional space of so-called
𝜎-moments which are also calculated using GC methods and (2) a sim-
plified mixture-design problem for optimal mixture composition with
molecular identities fixed to be the best molecules generated by the
single-molecule design problems. Gertig et al. (2019) proposed another
COSMO-based solvent design method that does not use a surrogate
model but may incur higher computational expense to explore a large
design space.

Most CAMD approaches directed at reaction solvents thus fit within
a general solvent design framework that utilises a surrogate model to
replace more expensive experimental or computational evaluations of
reaction rate constants. The solvent descriptors used in these surrogate
models are often linked to molecular structure through GC methods.
It is beneficial to use such a model-based approach since the discrete
design space of solvent molecular structures can be projected onto
the continuous (latent) space of solvent descriptors. In addition, the
simple MLR formalism of the surrogate models facilitates the use
of optimisation algorithms to solve the CAMD problem efficiently.
Bayesian optimisation, in which Gaussian processes are often adopted
as a type of non-parametric surrogate models, has also attracted at-
tention for optimising chemical properties of molecules/materials in
recent years as it can guide the sampling process and quantify pre-
diction uncertainty (Pollice et al., 2021; Aldeghi and Coley, 2022;
Wang and Dowling, 2022). Beyond surrogate models, the use of chemo-
metric techniques, such as principal component analysis (PCA) and
partial least squares regressions (PLS) (Wold, 1995), and other machine
learning methods, such as artificial neural network (ANN) and its
derivatives, have also been gaining popularity for the prediction of
properties including rate constants (Komp and Valleau, 2020; Lu et al.,
2021; Komp et al., 2022). However, these chemometric and machine
learning methods often require large amount of training data to achieve
good accuracy.

In a data-poor context, it becomes important to choose an opti-
mal set of conditions at which a limited number of experimental or
computational training data are collected such that the performance
of the surrogate model obtained is maximised based on some metric.
The relevant experimental conditions in the context of CAMD for
reaction solvents include the identities of the initial solvents used to
regress the surrogate model, assuming that the reaction temperature
is fixed. In this setting, model-based design of experiments (MBDoE),
in which a statistical criterion that represents the information content
of an initial solvent set is maximised, can be a useful tool. Wicaksono
et al. (2014) used the condition number criterion to maximise the
diversity of an initial set of solvents in which the experimental rate

constants of the solvolysis reaction of tert -butyl chloride were obtained.
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To facilitate their study, they considered a large set of solvents for
which experimental rate constants had been reported in the literature.
These experimental rate constants were used to train a solvatochromic
equation in order to predict the rate constants of the solvolysis reaction
for computer-aided solvent screening. A similar approach using the con-
dition number criterion was taken by Tsichla et al. (2019) to build the
solvatochromic equation for predicting the rate constants of the amina-
tion reaction of ethyl trichloroacetate with liquefied ammonia. Through
experimental verification, it was found that despite some mismatch
between the experimental and predicted solvent rankings, the predicted
best solvent by the solvatochromic equation indeed maximises the rate
constant of the amination reaction. Oliyide (2014) investigated the
condition number criterion as well as two other statistical criteria: the
A-optimality criterion and the D-optimality criterion. She found that
the D-optimality criterion consistently led to the best-performing sol-
vatochromic equation for the solvolysis reaction of tert-butyl chloride
and the Menschutkin reaction of tripropylamine and methyl iodide.

Recently, we reported an enhanced version of the QM-CAMD
method of Struebing et al. (2013) which we called DoE-QM-CAMD (Gui
et al., 2022). In the QM-CAMD approach and in the experimental
analogue (Folić et al., 2007, 2008; Grant et al., 2018), an initial set
of 6–8 solvents was selected to construct a dataset that was used to
build the first surrogate model, which was then refined iteratively
through the acquisition of additional data. The initial solvent set was
hitherto selected by chemical intuition (Struebing et al., 2017). In our
more recent work (Gui et al., 2022), the initial solvents used for model
regression were chosen such that the D-optimality criterion value (John
and Draper, 1975), which measures the information content of an ex-
perimental design, is maximised. The solvatochromic equation resulting
from the MBDoE-selected solvents leads to improved performance over
that from the solvents selected by chemical intuition in the original
QM-CAMD work (Struebing et al., 2013).

In the current paper, we expand the results of our previous work
on DoE-QM-CAMD for reaction solvent design (Gui et al., 2022). We
explore two formulations of the MBDoE problem which differ in the
way that the solvent design space is constructed, one using a pre-
defined list of solvents for which experimental values of the (latent)
properties are available and the other using an extended solvent list
with both predefined molecules and additional molecules represented
by atom groups so that the (solvent) properties can be predicted by
GC methods. The two formulations result in different sizes of the
design space and thus different D-optimality criterion values. The more
appropriate formulation is then chosen for the generation of the initial
solvent set (denoted as the ‘‘MBDoE set’’) to be used in the DoE-QM-
CAMD framework. Three case studies are investigated (Fig. 1). In the
first case study, solvents are designed to accelerate the Menschutkin
reaction of phenacyl bromide and pyridine. Menschutkin reactions
are a classic type of SN2 reaction that have been used many times
as a solvent design case study (Folić et al., 2008; Struebing et al.,
2013; Austin et al., 2018; Liu et al., 2019; Gertig et al., 2019) due to
their sensitivity to solvent effects. The second case study focuses on
the reagent combination of ethyl cyano(hydroxyimino)acetate (Oxyma)
and diisopropylcarbodiimide (DIC) for amino acid activation in peptide
synthesis, which has recently been shown to generate harmful HCN via
a side reaction (McFarland et al., 2019). Erny et al. (2020) have shown
that solvent effects can affect the amount of HCN produced but only
a small number of solvents/solvent mixtures has been tested to date.
The third case study involves the Williamson ether synthesis reaction
(O-alkylation) of sodium 𝛽-naphthoxide and benzyl bromide and its
competition with a side reaction (C-alkylation) (Diamanti et al., 2021).
The selectivity of the Williamson ether synthesis reaction changes
drastically in different solvents. In this case study, the rate constant of
the O-alkylation is maximised and the rate constant of the C-alkylation
is minimised.

We calculate the rate constants of the reactions using different
3

quantum mechanical levels of theory and the SMD model (Marenich
Fig. 1. The case studies in this work, (a) the Menschutkin reaction of phenacyl bromide
with pyridine, (b) The cyclisation reaction of the Oxyma/DIC adduct, (c) the O-
alkylation (the Williamson ether synthesis reaction) and the C-alkylation of sodium
𝛽-naphthoxide with benzyl bromide.

et al., 2009) and use the calculated values as the training data to regress
a solvatochromic equation. The performance of the solvatochromic
equations generated with MBDoE set of solvents is compared to that
of the solvatochromic equations generated with solvents selected by
chemical intuition in the original work of QM-CAMD of Struebing
et al. (2013), denoted as the ‘‘Div’’ set, i.e., the MBDoE approach is
benchmarked against an expert chemist’s intuition. Finally, the sol-
vatochromic equations are incorporated into a mixed-integer linear
programming (MILP) problem to optimise the reaction kinetics in each
case study (with one or two objectives as appropriate). The results of
the CAMD problem obtained at each iteration when using the MBDoE
set and the Div set are compared.

The remainder of this paper is organised as follows: in Section 2,
the components of the methodology are introduced including the prin-
ciples of the MBDoE technique using the D-optimality criterion, the
formulations of the MBDoE problem, the approach used to calculate
liquid-phase rate constants, the formulation of the CAMD problem
and the workflow of the DoE-QM-CAMD method. Results are pre-
sented and discussed in Section 3, wherein the two formulations of
the MBDoE problem are compared, the regression and validation of the
solvatochromic equations are presented and the application of the DoE-
QM-CAMD method to the three case studies is explored. In Section 4,
the conclusions are summarised and perspectives for the future work
are discussed.

2. Methodology

The target problem that we aim to address in our work is defined
as follows: ‘‘Given a selection space of 𝑙 solvents in which computer
experiments can be performed, identify an information-rich set of 𝑝
experiments, i.e., solvents, such that a multivariate linear regression
model regressed from rate constants calculated in the 𝑝 solvents is more
likely to show good performance’’. Due to the discrete nature of the

𝑙
selection space, there are 𝐶𝑝 possible combinations of design choices,
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a number that can become unmanageable when the selection space
is large. To overcome this, we project the discrete space of solvents
into the continuous (latent) space of solvent properties. This projection
makes it possible to use the D-optimality criterion value to quantify the
information content of a selected set of solvents. We nevertheless retain
the chemical identity of the solvents through mixed-integer constraints
to ensure that only combinations of latent variables that correspond
to allowable solvent molecules are considered. Thus, the problem of
computer experiment design can be formulated as an MINLP problem
solved using a state-of-the-art optimisation solver.

2.1. Model-based design of experiments

2.1.1. D-optimality criterion
Consider a set of 𝑞 descriptors, one output variable that has been

easured in 𝑝 experiments, and an associated multivariate linear re-
ression (MLR) model,

= 𝑭 ∗𝜷 + 𝝐, (1)

where 𝒀 is a 𝑝-dimensional vector of response variables at each mea-
surement, 𝑭 ∗ is a 𝑝×𝑞 matrix in which all elements in the first column,
𝐹 ∗
𝑖,1, 𝑖 = 1,… , 𝑝, are equal to 1 and the element in the 𝑖th row and the

𝑗th column (𝑗 ≥ 2), 𝐹 ∗
𝑖,𝑗 , is equal to the value of the (𝑗 − 1)th descriptor

at the 𝑖th measurement, 𝜷 is a 𝑞-dimensional vector of coefficients that
need to be estimated, and 𝝐 is a 𝑝-dimensional vector of random errors.

iven the 𝑝 measurements of the response variables 𝑌𝑖, 𝑖 = 1,… , 𝑝, and
he descriptor values at every measurement, 𝐹 ∗

𝑖,𝑗 , 𝑖 = 1,… , 𝑝; 𝑗 = 2,… , 𝑞,
he least-square estimator of the coefficients 𝜷̂ is

̂ = (𝑭 ∗𝑇𝑭 ∗)−1𝑭 ∗𝑇 𝒀 = −1𝑭 ∗𝑇 𝒀 , (2)

here  = 𝑭 ∗𝑇𝑭 ∗ is defined as the Fisher information matrix (Atkin-
on et al., 2007). The variance–covariance matrix associated with the
oefficients 𝜷̂ is

𝐨𝐯(𝜷̂) = 𝜎2−1, (3)

here 𝜎2 is variance of the random errors 𝝐. The D-optimality criterion
inimises det −1 or equivalently maximises det . The determinant of

he information matrix can be interpreted geometrically as the volume
f the ellipsoid describing the joint confidence region of the estimated
oefficients 𝜷̂. It should be noted that in our work, the measured
esponses are reaction rate constants evaluated via QM calculations.
he random errors 𝝐 can be viewed as the inherent errors caused by the
ncertainties in the GC methods that are employed and the inadequacy
f the solvatochromic equation for the prediction of rate constants. Al-
hough these errors may violate the assumption of normally distributed
andom errors, the D-optimality criterion can nevertheless be used to
etermine an experimental design, and as we will show, this increases
he likelihood of obtaining reliable models.

.1.2. MINLP formulation of the MBDoE problem
The MBDoE problem for the selection of an initial solvent set is

ormulated as an MINLP problem. The formulation is introduced in
his section. Two formulations are presented corresponding to different
olvent design spaces: a list of candidate solvents with known exper-
mental property values, and an extended list with both experimental
nd GC-predicted property values for the solvents, i.e., in which solvent
olecules are represented by atom groups.

ormulation 1: list of candidate solvents. First, the user provides a list
f 𝑙 solvents and their associated descriptors, which are stored in the
× 𝑞 matrix 𝑭 . In each row 𝑘 of 𝑭 , the elements in columns 2 to 𝑞 are
he descriptor values of the 𝑘th candidate solvent and column 1 is the
dentity vector. The model matrix 𝑭 ∗ is then constructed by selecting
rows from matrix 𝑭 . Element (𝑖, 𝑗) of the model matrix is given by:

∗
𝑖,𝑗 =

𝑙
∑

𝑧𝑖,𝑘𝐹𝑘,𝑗 , 𝑖 = 1,… , 𝑝, 𝑗 = 2,… , 𝑞, (4)
4

𝑘=1
here 𝑧𝑖,𝑘 is a binary variable denoting whether candidate solvent 𝑘
s selected as experiment 𝑖 (𝑧𝑖,𝑘 = 1) or not (𝑧𝑖,𝑘 = 0). To express the
odel matrix more explicitly,

∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 𝐴1 𝐵1 𝑆1 𝛿1 𝛿2𝐻,1
1 𝐴2 𝐵2 𝑆2 𝛿2 𝛿2𝐻,2
1 𝐴3 𝐵3 𝑆3 𝛿3 𝛿2𝐻,3
⋮ ⋮ ⋮ ⋮ ⋮
1 𝐴𝑝 𝐵𝑝 𝑆𝑝 𝛿𝑝 𝛿2𝐻,𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (5)

where 𝑞 = 6 and 𝐴𝑖, 𝐵𝑖, 𝑆𝑖, 𝛿2𝐻,𝑖 are Abraham’s hydrogen bond acidity,
Abraham’s hydrogen bond basicity, dipolarity/dipolarisability (Abra-
ham, 1993) and the squared Hildebrand solubility parameter of the
selected initial solvent 𝑖, respectively. 𝛿𝑖 is an additional correction
parameter denoting whether the solvent molecule 𝑖 is aromatic (𝛿𝑖 =
1), halogenated aliphatic (𝛿𝑖 = 0.5) or neither (𝛿𝑖 = 0). Then, the
information matrix  can be calculated as

𝑗,𝑗∗ =
𝑝
∑

𝑖=1
𝐹 ∗
𝑖,𝑗𝐹

∗
𝑖,𝑗∗, 𝑗 = 1,… , 𝑞; 𝑗∗ = 1,… , 𝑞. (6)

The D-optimality criterion requires the calculation of the determinant
of the information matrix  which is difficult to formulate directly.
Instead, the LDL decomposition of the information matrix  = 𝑳𝑫𝑳𝑇

is used. 𝑳 is a lower unit triangular matrix and 𝑫 is a diagonal matrix.
𝑳 and 𝑫 can be calculated as below (Watkins, 1991):

𝐷𝑗 = 𝑗,𝑗 −
𝑗∗<𝑗
∑

𝑗∗=1
𝐿2
𝑗,𝑗∗𝐷𝑗∗ , 𝑗 = 1,… , 𝑞,

𝐿𝑗,𝑗∗𝐷𝑗∗ = 𝑗,𝑗∗ −
𝑗∗∗<𝑗∗
∑

𝑗∗∗=1
𝐿𝑗,𝑗∗∗𝐿𝑗∗ ,𝑗∗∗𝐷𝑗∗∗ , for 𝑗 > 𝑗∗;

𝑗 = 2,… , 𝑞; 𝑗∗ = 1,… , 𝑞 − 1.

(7)

Then the determinant of the information matrix , as well as the
objective function of the MINLP problem, OF, can be expressed as

OF = det  =
𝑞
∏

𝑗=1
𝐷𝑗 . (8)

Several logical constraints are required to complete the exposition of
the MINLP problem and are presented in the following. One solvent
vacancy in the model matrix can be taken up by one candidate solvent
only,
𝑙

∑

𝑘=1
𝑧𝑖,𝑘 = 1, 𝑖 = 1,… , 𝑝. (9)

Each candidate solvent can be selected at most once,
𝑝
∑

𝑖=1
𝑧𝑖,𝑘 ≤ 1, 𝑘 = 1,… , 𝑙. (10)

Finally, the initial solvents should be selected in the same order as
they are (arbitrarily) arranged in the candidate solvent list to avoid
degeneracy:

𝑧𝑖,𝑘 + 𝑧𝑖∗ ,𝑘∗ ≤ 1, ∀𝑖 < 𝑖∗,∀𝑘 > 𝑘∗, 𝑖∗ = 1,… , 𝑝; 𝑘∗ = 1,… , 𝑙 − 1. (11)

Eqs. (4)–(11) complete the formulation of the MBDoE problem where
solvents are selected from a predefined candidate list with given exper-
imental property values (Formulation 1).

Formulation 2: an extended list of candidate solvents with both experimental
and GC-predicted property values. Formulation 2 is constructed by incor-
porating additional solvents with missing solvent descriptor values to
extend the predefined list in Formulation 1 as shown by the workflow
in Fig. 2. These missing solvent descriptor values are predicted by
GC methods based on fragmenting molecules into atom groups. A set
𝐺 of 46 groups is considered in our work, which are appropriately
partitioned into subsets (e.g., the set 𝐺𝐴 of aromatic groups). The list

of atom groups in set 𝐺 as well as the lists of atom groups in the
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Fig. 2. Workflow for developing Formulation 2. ∗The solvent list in Formulation 2
is that used in Folić et al. (2007) in which not all the experimental property values
are available. Therefore, those solvents with complete property values constitute the
solvent list in Formulation 1, and the solvents with missing property values are used
as the additional solvents in Formulation 2.

subsets of set 𝐺 defined in the remainder of the paper are provided
in the corresponding GAMS code in the Zenodo open repository (see
Data availability).

Firstly, Abraham’s hydrogen bond acidity (Abraham, 1993) for sol-
vent 𝑖 defined by vector 𝑛𝑖,𝑔 of group occurrences can be calculated as
below (Folić et al., 2007):

𝐴𝑖 =

⎧

⎪

⎨

⎪

⎩

0.010641 +
∑

𝑔∈𝐺
𝑛𝑖,𝑔𝑎𝑔 if 0.010641 +

∑

𝑔∈𝐺
𝑛𝑖,𝑔𝑎𝑔 > 0.029

0 otherwise,
(12)

where 𝑛𝑖,𝑔 denotes the number of atom group 𝑔 present in molecule 𝑖,
𝑔 belongs to the set 𝐺 and 𝑎𝑔 is the contribution of atom group 𝑔 to
ydrogen bond acidity. Hydrogen bond basicity (Abraham, 1993) can
e similarly calculated as below (Folić et al., 2007):

𝑖 =

⎧

⎪

⎨

⎪

⎩

0.12371 +
∑

𝑔∈𝐺
𝑛𝑖,𝑔𝑏𝑔 if 0.12371 +

∑

𝑔∈𝐺
𝑛𝑖,𝑔𝑏𝑔 > 0.124

0 otherwise,
(13)

where 𝑏𝑔 is the contribution of atom group 𝑔 to hydrogen bond basicity.
The dipolarity/polarisability (Abraham, 1993) of initial solvent 𝑖 is
determined by Folić et al. (2007):

𝑆𝑖 = 0.325675 +
∑

𝑔∈𝐺
𝑛𝑖,𝑔𝑠𝑔 , (14)

where 𝑠𝑔 is the contribution of atom group 𝑔 to dipolarity/
polarisability. The Hildebrand solubility parameter 𝛿2𝐻,𝑖 (Hildebrand,
1929) of solvent 𝑖 can be related to the enthalpy of vaporisation
of solvent 𝑖 at 298 K in kJ mol-1, 𝛥𝐻𝑣,𝑖, and the liquid molar vol-
ume of solvent 𝑖 at 298 K in m3 kmol-1, 𝑉𝑚,𝑖, using the following
equation (Sheldon et al., 2005):

𝛿2𝐻,𝑖 = 0.238846
𝛥𝐻𝑣,𝑖 − 10−3𝑅𝑇

𝑉𝑚,𝑖
, (15)

where 𝑅 is the ideal gas constant in J mol-1 K-1 and 𝑇 is the temperature
in K. 𝛥𝐻𝑣,𝑖 and 𝑉𝑚,𝑖 can be calculated using the group contribution
methods below (Hukkerikar et al., 2012b),

𝛥𝐻𝑣,𝑖 =
∑

𝑔∈𝐺
𝑛𝑖,𝑔ℎ𝑣,𝑔 + 10.4327, (16)

𝛥𝑉𝑚,𝑖 =
∑

𝑔∈𝐺
𝑛𝑖,𝑔𝑣𝑚,𝑔 + 0.0123, (17)

where ℎ𝑣,𝑔 and 𝑣𝑚,𝑔 are the contributions to the enthalpy of vaporisation
and the liquid molar volume of group 𝑔, respectively.

These structure–property relationships are applied to calculate all
the missing values to complete the expanded candidate matrix 𝑭 in
the prepossessing stage instead of being activated as constraints in the
process of optimisation. Therefore, Formulation 2 has the same level
5

e

of complexity as Formulation 1 but the size of the design space in
Formulation 2 is larger. In addition, design constraints on the melting
points and boiling points of solvents can be included in Formulation
2. A dimensionless melting point of solvent 𝑖, 𝑇𝑚𝑒,𝑖, can be calculated
by Hukkerikar et al. (2012b)

𝑇𝑚𝑒,𝑖 = exp
( 𝑇𝑚,𝑖
𝑇𝑚,0

)

=
∑

𝑔∈𝐺
𝑛𝑖,𝑔𝑡𝑚𝑒,𝑔 , (18)

where 𝑇𝑚,𝑖 is the melting point of solvent 𝑖 in K, 𝑇𝑚,0 = 144.0977 K is
a constant and 𝑡𝑚𝑒,𝑔 is the contribution of group 𝑔 to the dimensionless
melting point. Similarly, a dimensionless boiling point, 𝑇𝑏𝑒,𝑖, is defined
as (Hukkerikar et al., 2012b)

𝑇𝑏𝑒,𝑖 = exp
( 𝑇𝑏,𝑖
𝑇𝑏,0

)

=
∑

𝑔∈𝐺
𝑛𝑖,𝑔𝑡𝑏𝑒,𝑔 , (19)

where 𝑇𝑏,𝑖 is the boiling point in K, 𝑇𝑏,0 = 244.7889 K is a constant
and 𝑡𝑏𝑒,𝑔 is the contribution to the dimensionless boiling point. Two
associated design constraints are imposed on the melting point and the
boiling point of solvent 𝑖:

𝑇𝑚,𝑖 ≤ 318.15, (20)

𝑇𝑏,𝑖 ≥ 278.15. (21)

It should be noted that in this formulation the two bounds are more
relaxed than what is needed to ensure that the solvents designed are
in the liquid phase at room temperature. This is in recognition of the
uncertainties in melting and boiling point predictions of Eqs. (18) and
(19) and also allows more flexibility in the operating temperature.
The relaxed bounds also result in a larger design space, increasing the
chance of achieving greater D-optimality criterion values.

Finally, it is possible to exclude specific groups that may react with
reactants or products by removing solvents containing these groups
from the matrix 𝑭 .

2.2. Quantum mechanical calculation of the reaction rate constants using
the thermodynamic cycle approach

In this section, the quantum mechanical methods used in our work
for the generation of rate constant data are introduced. The liquid-
phase rate constant 𝑘L,QM can be expressed via transition-state the-
ory (Eyring, 1935; Laidler and King, 1983) as:

𝑘L,QM = 𝜅
𝑘𝐵𝑇
ℎ

(

𝑐◦,L
)1−

∑

𝑟∈𝐷 𝜐𝑟 exp
(

−𝛥≠𝐺◦,L

𝑅𝑇

)

, (22)

where 𝛥≠𝐺◦,L is the liquid-phase activation Gibbs free energy, 𝜅 is
he transmission coefficient for which the Wigner tunnelling correction
actor (Wigner, 1937) is used, 𝑘𝐵 is the Boltzmann constant, 𝑇 is
he temperature (298.15 K in our work), ℎ is the Planck constant,
◦,L is the molar concentration at the standard state, 𝐷 is the set of
eactant(s) and 𝜐𝑟 is the stoichiometric coefficient of reactant 𝑟. We
ote that due to the exponential dependence of the rate constant on
he activation free energy, 𝑘L is very sensitive to small errors in the
ree energies. In our work, the solution environment is simulated by
he SMD continuum solvation model (Marenich et al., 2009). The mean
nsigned errors in solvation free energies of the SMD model were
eported by Marenich et al. (2009) to be 2.5–4.2 kJ mol-1 for neutral
pecies and 16.7 kJ mol-1 for ionic species on average in terms of
eproducing experimental solvation energies. Moreover, 𝑘L can vary by
everal orders of magnitude from solvent to solvent. For these reasons,
og 𝑘L or ln 𝑘L (used in our work) is normally considered in developing
ata-driven models and in comparisons with experimental data. The
alculation of liquid-phase activation free energy 𝛥≠𝐺◦,L is detailed for
ach case study in the remainder of this section.
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2.2.1. The Menschutkin reaction and the HCN reaction
For the Menschutkin reaction and the HCN reaction, the liquid-

phase activation Gibbs free energy 𝛥≠𝐺◦,L for the conversion from the
reactant(s) to the transition state is calculated using the thermodynamic
cycle (TC) method (Ho and Ertem, 2016),

𝛥≠𝐺◦,L = 𝛥≠𝐺◦,IG + 𝛥𝐺◦,solv
TS +

∑

𝑟∈𝐷
𝜐𝑟𝛥𝐺

◦,solv
𝑟 + (1 +

∑

𝑟∈𝐷
𝜐𝑟)𝑅𝑇 ln 𝑅𝑇

𝑃0
, (23)

where 𝛥≠𝐺◦,IG is the ideal gas activation Gibbs free energy, 𝛥𝐺◦,solv
TS is

the solvation free energy of the transition state, 𝛥𝐺◦,solv
𝑟 is the solvation

free energy of reactant 𝑟 and 𝑃0 is the reference pressure. The last
term is the standard-state correction from the gas-phase standard state
defined by 𝑇 = 298.15 K and 𝑃0 = 1 atm to the solution-phase standard
tate of 1 mol L-1. 𝛥≠𝐺◦,IG can be calculated as follows

𝛥≠𝐺◦,IG = 𝐺◦,IG
TS +

∑

𝑟∈𝐷
𝜐𝑟𝐺

◦,IG
𝑟 = (𝐸el,IG

TS +𝐺therm,IG
TS )+

∑

𝑟∈𝐷
𝜐𝑟(𝐸el,IG

𝑟 +𝐺therm,IG
𝑟 ),

(24)

here 𝐺◦,IG
TS and 𝐺◦,IG

𝑟 are the ideal gas Gibbs free energies of the
ransition state and reactant 𝑟, respectively, 𝐸el,IG

TS and 𝐸el,IG
𝑟 are the

ingle-point energies of the transition state and reactant 𝑟, respectively,
alculated using the G3MP2 method (Curtiss et al., 1999), and 𝐺therm,IG

TS
nd 𝐺therm,IG

𝑟 are the thermal corrections to the free energies of the
ransition state and species 𝑟, respectively. In the calculation of 𝛥≠𝐺◦,IG,
he structures of the transition state and reactant 𝑟 are optimised at the
062X/6-31+G(d) level of theory (Zhao and Truhlar, 2008) in the ideal

as phase using the Gaussian 16 software (Frisch et al., 2016). After
ach calculation, we verify that each of the reactants has no imaginary
requency, and the transition state has only one imaginary frequency.
he same verification is applied to all liquid-phase optimised structures

n this work.
The solvation energy 𝛥𝐺◦,solv

𝑟 is calculated by applying the SMD
olvation model (Marenich et al., 2009) in the Gaussian 16 software
nd is given as:

𝐺◦,solv
𝑟 = 𝐸el,L

𝑟 − 𝐸el,IG
𝑟 , 𝑟 ∈ 𝐷,

𝐺◦,solv
TS = 𝐸el,L

TS − 𝐸el,IG
TS .

(25)

here 𝐸el,L
𝑟 and 𝐸el,IG

𝑟 are the single-point energies of reactant 𝑟 cal-
ulated using M062X/6-31+G(d) in the liquid phase (with the SMD
olvation model) and in the ideal gas phase, respectively, and 𝐸el,L

TS and
el,IG
TS are the single-point energies of the transition state calculated at

he same level of theory in the liquid phase and in the ideal gas phase,
espectively. The liquid-phase energies, 𝐸el,L

𝑟 and 𝐸el,L
TS , are calculated

t geometries optimised in the liquid phase.
In calculating the transition states for the two reactions, we use the

N2 mechanism with the transition state structure reported by Strue-
ing et al. (2013) for the Menschutkin reaction. For the HCN reaction,
e use the mechanism recently elucidated by Gui et al. (2023) and the

orresponding transition state.

.2.2. The Williamson ether synthesis reaction
For the study of the Williamson ether synthesis reaction, the liquid-

hase activation Gibbs free energy is directly calculated within the
MD solvation model at one level of theory, B3LYP/6-31+G(d), as this
pproach was found to perform well for this specific reaction (Diamanti
t al., 2021). The liquid-phase activation free energy, 𝛥≠𝐺◦,L

direct , cal-
ulated by this direct method, without recourse to a thermodynamic
ycle, can be expressed as:

≠𝐺◦,L
direct = 𝐺◦,L

TS +
∑

𝑟∈𝐷
𝜐𝑟𝐺

◦,L
𝑟 = (𝐸el,L

TS +𝐺therm,L
TS ) +

∑

𝑟∈𝐷
𝜐𝑟(𝐸el,L

𝑟 +𝐺therm,L
𝑟 ),

(26)

here 𝐺◦,L
TS and 𝐺◦,L

𝑟 are the liquid-phase Gibbs free energies of the
el,L el,L
6

ransition state and reactant 𝑟, respectively, 𝐸TS and 𝐸𝑟 are the
single-point energies of the transition state and reactant 𝑟, respectively
(calculated using B3LYP/6-31+G(d)), and 𝐺therm,L

TS and 𝐺therm,L
𝑟 are the

thermal corrections to the free energies of the transition state and
species 𝑟, respectively, obtained directly in the liquid phase. The struc-
tures of the transition state and reactants 𝑟 ∈ 𝐷 are also optimised at
the B3LYP/6-31+G(d) level of theory in the liquid phase.

2.3. Formulation of the computer-aided molecular design problem to opti-
mise reaction kinetics

In this section, the MILP formulation of the CAMD problem wherein
solvents are constructed from atom groups to design novel solvents to
optimise reaction kinetics, is detailed. As in the work of Struebing et al.
(2013) and Grant et al. (2018), we introduce single-molecule groups to
represent common solvents that are too small to be represented by atom
groups (e.g., DMSO) and we set the relevant properties to be equal to
measured values. In the MILP formulation, the index 𝑖 is dropped as
only one solvent is designed each time the CAMD problem is solved.

The objective function of the MILP problem to be maximised or
minimised, depending on whether the chemical reaction of interest is
a main reaction or a side reaction, is the rate constant of the reaction,
which is represented by the solvatochromic equation (Abraham et al.,
1987a,b),

ln 𝑘L = 𝑐0 + 𝑐𝐴𝐴 + 𝑐𝐵𝐵 + 𝑐𝑆𝑆 + 𝑐𝛿𝛿 + 𝑐𝐻𝛿2𝐻 , (27)

where 𝑘L is the liquid-phase rate constant of the studied reaction in the
designed solvent and 𝑐0, 𝑐𝐴, 𝑐𝐵 , 𝑐𝑆 , 𝑐𝛿 and 𝑐𝐻 are the coefficients that
need to be estimated via MLR.

Specifically for the CAMD problem, constraints representing structure

property relationships, solvent properties, chemical feasibility and molec
ular complexity are taken from Grant et al. (2018). The constraints
that are considered in our work are briefly described in this section,
although not all auxiliary constraints are shown here for conciseness.
The complete formulation of these constraints can be consulted in the
work of Grant et al. (2018) and in the GAMS files provided in the
Zenodo repository (see Data availability).

Firstly, constraints to calculate solvent properties using group con-
tribution methods are included. We use the same group contribution
methods as in the work of Grant et al. (2018) for the calculations
of 𝐴, 𝐵, 𝑆, 𝛿2𝐻 , 𝛥𝐻𝑣, 𝛥𝑉𝑚, 𝑇𝑚𝑒 and 𝑇𝑏𝑒, i.e., Eqs. (12)–(19). The
associated bounds imposed on the melting point and the boiling point
of the designed solvent are tightened in comparison with the bounds
in constrained Formulation 2 of the MBDoE problem in order to ensure
that the solvents are liquid at room temperature:

𝑇𝑚 ≤ 298.15, (28)

𝑇𝑏 ≥ 323.15. (29)

Apart from these design constraints on the melting and boiling
point, additional design constraints on the flash point 𝐹𝑝, octanol/water
partition coefficient 𝐾OW and the oral rat median lethal dose LD50
of the designed solvent are added to take into account the factors
of health, safety and environmental impact. The flash point of the
designed molecule can be calculated by (Hukkerikar et al., 2012a)

𝐹p =
∑

𝑔∈𝐺
𝑛𝑔𝐹p,𝑔 + 150.0218, (30)

where 𝐹p,𝑔 is the contribution of atom group 𝑔 to the flash point. It is
bounded by

𝐹p ≥ 252. (31)

The octanol/water partition coefficient 𝐾OW is given by (Hukkerikar
et al., 2012b)

log𝐾OW =
∑

𝑛𝑔𝐾OW,𝑔 + 0.752, (32)

𝑔∈𝐺
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where 𝐾OW,𝑔 is the contribution of group 𝑔 to the logarithm of the
ctanol/water partition coefficient. It is constrained by

og𝐾OW ≥ 3. (33)

he oral rat LD50 is calculated by (Hukkerikar et al., 2012a),

log LD50 =
∑

𝑔∈𝐺
𝑛𝑔LD50,𝑔 + 1.9372 + 0.0016𝑀, (34)

here LD50,𝑔 is the contribution of group 𝑔 to the negative logarithm
f LD50, and 𝑀 is the molecular weight of the designed molecule. 𝑀
s simply calculated by

=
∑

𝑔∈𝐺
𝑛𝑔𝑚𝑔 , (35)

here 𝑚𝑔 is the molecular weight of group 𝑔. The oral rat LD50 is
onstrained by

log LD50 ≤ 3. (36)

A set of chemical feasibility constraints is introduced to ensure
hat the solvent molecules generated are valid chemical structures.
hree binary variables, 𝑦ac, 𝑦bi and 𝑦mo, denote whether the designed
olecule is acyclic, bicyclic or monocyclic, respectively. Only one of

hese three binary variables can be 1 for the designed solvent, i.e., only
ne of the three types of molecules can be designed for one solvent
acancy, and this can be expressed by:

ac + 𝑦bi + 𝑦mo = 1. (37)

ased on these three binary variables above, auxiliary variable 𝑚 (Odele
nd Macchietto, 1993) can be defined as

= 𝑦ac − 𝑦bi, (38)

here 𝑚 is equal to 1 for an acyclic molecule, 0 for a monocyclic
olecule and −1 for a bicyclic molecule. The number of aromatic

ragments is set to 6 for a monocyclic molecule and 10 for a bicyclic
olecule. This is implemented with the equation below:

∑

∈𝐺𝐴

𝑛𝑔 − 6𝑦mo − 10𝑦bi = 0, (39)

here 𝐺𝐴 is the set of all aromatic atom groups (excluding aromatic
ingle-molecule groups). The octet rule (Odele and Macchietto, 1993)
eeds to be satisfied to design structurally-feasible molecules. It is given
y:
∑

∈𝐺
(2 − 𝑣𝑔)𝑛𝑔 − 2𝑚 = 0, (40)

here 𝑣𝑔 is the valence of structural group 𝑔. The correct bonding be-
ween groups and the feasibility of single-molecule groups are ensured
sing the following bonding rule (Buxton et al., 1999; Struebing et al.,
013):

𝑔(𝑣𝑔 − 1) + 2(𝑚 −
∑

𝑔∗∈𝐺1

𝑛𝑔∗ ) −
∑

𝑔∗∈𝐺
𝑛𝑔∗ ≤ 0, ∀𝑔 ∈ 𝐺, (41)

here 𝐺1 is the set of single-molecule groups. Also, in the case of
olvent design from a single-molecule group, to ensure that for each
acancy, only one molecule is designed, the following constraints are
mposed:
∑

∈𝐺1

𝑛𝑔 ≤ 1, (42)

∑

∈𝐺
𝑛𝑔 −

∑

𝑔∗∈𝐺1

𝑛𝑔∗ ≤ (1 −
∑

𝑔∗∈𝐺1

𝑛𝑔∗ )𝑛𝐺,max, 𝑔∗ ∈ 𝐺1 (43)

here 𝑛𝐺,max is the maximum number of atom groups allowed in
molecule. Alternative ways of representing chemical feasibility are

vailable, and the reader is referred to Sahinidis et al. (2003) and Samu-
ra and Sahinidis (2013) for other possible formulations.

Next, molecule complexity constraints are defined to limit the size
7

nd the complexity of designed molecules. First, the number of atom E
roups in each designed molecule should be larger than the minimum
umber of groups allowed, 𝑛𝐺,min (taken as 1 in this work), and smaller
han the maximum number of groups, 𝑛𝐺,max (taken as 7 in this work):

∑

∈𝐺
𝑛𝑔 ≥ 𝑛𝐺,min, (44)

∑

∈𝐺
𝑛𝑔 ≤ 𝑛𝐺,max. (45)

or each atom group 𝑔, an upper limit, 𝑛𝑈𝑔 , is also set, based on

𝑔 ≤ 𝑛𝑈𝑔 , ∀𝑔 ∈ 𝐺. (46)

he values of 𝑛𝑈𝑔 can be found in the GAMS code provided. The number
f ‘‘main’’ groups, i.e., groups that contain C and H atoms only, is
onstrained depending on whether the solvent molecule is acyclic or
onocyclic:
∑

∈𝐺𝑀

𝑛𝑔 ≤ 2𝑦mo + 𝑛𝐺,max𝑦ac, (47)

here 𝐺𝑀 is the set of main groups. The number of functional groups
n the designed molecule, i.e., groups that contain at least one atom
ther than C or H, is also constrained with
∑

∈𝐺𝐹

𝑛𝑔
𝑛𝑈𝑔

≤ 𝑦mo + 𝑦ac, (48)

here 𝐺𝐹 is the set of functional groups. In addition, only one double
ond is allowed in the designed solvent to ensure the solvent has
ufficient chemical stability:
∑

∈𝐺𝐷

𝑛𝑔 ≤ 1, (49)

here 𝐺𝐷 is the set of groups that contain a double bond. For the
emaining constraints, new binary variables, 𝑦𝑔 , are defined to denote
hether atom group 𝑔 occurs in the designed molecule:

𝑔 =
{

1 if group 𝑔 is present in the designed molecule
0 otherwise. (50)

nother binary, 𝑦M, is defined to denote whether the molecule is
romatic and monocyclic:

M =
{

1 if 𝑦aC + 𝑦mo = 2
0 otherwise. (51)

Then, the following constraint can be imposed to allow a monocyclic
molecule to have side chains but prevent a bicyclic molecule from
having any side chains:

2𝑦bi + 𝑦M − 𝑛aC = 0. (52)

To further reduce the molecular complexity, at most one type of side-
chain forming aromatic groups (here, aC, aCCH or aCCH2) can appear
n a monocyclic molecule:

M + 𝑦aCCH + 𝑦aCCH2
≤ 1. (53)

For the aCCH group, one of the side chains is constrained to be a CH3
group:

𝑦aCCH ≤ 𝑛CH3
. (54)

Chain-ending groups can occur at most three times in an aliphatic
molecule and once in an aromatic molecule:
∑

𝑔∈𝐺CE

𝑛𝑔 ≤ 3𝑦ac + 𝑦M + 𝑦aCCH + 𝑦aCCH2
, (55)

here 𝐺CE is the set of chain-ending groups. The number of non-chain-
nding groups in the designed molecule is constrained by:
∑

𝑔∈𝐺NCE

𝑛𝑔 ≤ 3𝑦ac + 𝑦M + 𝑦aCCH2
, (56)

here 𝐺NCE is the set of non-chain-ending groups. Eqs. (12)–(19) and

qs. (27)–(56) complete the MILP formulation of the CAMD problem.
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Fig. 3. Workflow of the DoE-QM-CAMD method for reaction solvent design.
.4. The DoE-QM-CAMD workflow

The complete workflow for the DoE-QM-CAMD method is shown
n Fig. 3. First (step 1), the design problem, including the objective
unction and all the design constraints, is defined and an initial solvent
et is created using the MBDoE technique by solving an MINLP problem,
here the determinant of the information matrix (D-optimality crite-

ion) is maximised. Second (step 2), the rate constants of the reaction(s)
f interest in the selected initial solvents are computed with the QM
ethod. In the next step (step 3), the computed rate constants are used

o regress a surrogate model, the solvatochromic equation. Once the
egressed solvatochromic equation is obtained, it is incorporated into
n MILP problem (step 4) where the objective function to be optimised
s the rate constant of the reaction or other metrics derived from the
ate constant. In step 5, the optimal solvent identified is checked against
he training set used to build the solvatochromic equation. If it was
ot previously included in the set, then steps 2–4 are repeated with
he optimal solvent added to the training set for the solvatochromic
quation. The iterations end when the latest optimal solvent is found to
ave already been included in the training set. The last CAMD problem
ith the latest solvatochromic equation is then (step 6) solved repeat-
dly with integer cuts applied to generate a ranked list of candidate
olvents. In the final step, (step 7) the best solvents generated are
ssessed against criteria not yet considered (e.g., cost or stability) and
ested experimentally.

. Results and discussion

.1. Comparing the two MBDoE formulations

The two MBDoE formulations introduced in Section 2.1.2 are com-
pared by generating two D-optimal designs for the initial solvent set.
The solvents are characterised by five descriptors 𝐴𝑖, 𝐵𝑖, 𝑆𝑖, 𝛿 and 𝛿2𝐻,𝑖.
In Formulation 1, 240 solvents are considered in the predefined list. In
Formulation 2, the design space is extended from 240 solvents to 391
solvents; the missing solvent descriptor values are predicted using the
GC methods for the additional 151 solvents, i.e., Formulation 2 uses
a mix of experimental values and GC methods. These additional 151
solvents were also in the training data for the GC methods of Sheldon
8

et al. (2005) and Folić et al. (2007), but not all the solvatochromic
parameters are available for them. The lists in Formulation 1 and 2
as well as the list of atom groups used in this work can be found
in the GAMS code provided in the Zenodo open repository (see Data
availability).

These formulations are solved using the DICOPT solver (Kocis and
Grossmann, 1989) in General Algebraic Modelling System (GAMS)
Release 37.1 (https://www.gams.com/) with multiple randomly gener-
ated initial guesses. In Fig. 4, all the feasible solutions obtained from the
solver for each formulation are shown in descending order of objective
function values (D-optimality criterion). It can be seen that most of the
solutions generated are only feasible solutions that are not certified as
global optima. The largest objective function (OF = 10.85) is achieved
with Formulation 2. For Formulation 1, the best solution gives an
objective function of 8.42. It is not surprising that the best possible
solution of Formulation 1 cannot exceed that of Formulation 2 as the
design space of Formulation 2 is expanded relative to Formulation
1. For the same reason, all the feasible solutions in Formulation 1
are also feasible solutions of Formulation 2. Based on the calculated
D-optimality criterion values, Formulation 2 is the better-performing
formulation.

To enhance the feasibility of the selected solvents, extra constraints
on the melting points and the boiling points of the solvents, Eqs. (20)
and (21), are added to Formulation 2 (‘‘constrained Formulation 2’’) to
ensure that the selected solvents are liquid at room temperature. This
is especially important for real experiments but may be also helpful
for computational experiments as the solvation model may not work
well with solid or gas phase ‘‘solvents’’ even if they are represented
as a continuum. Specific groups (see the GAMS code provided in the
Zenodo open repository in Data availability) are excluded in order to
avoid the selection of amines, carboxylic acids and pyridine and its
derivatives due to their potential reactivity with the key species in the
case studies. As shown in Fig. 4, adding these constraints greatly lowers
the objective function values; the largest objective function achieved is
2.27. However, this is still larger than the D-optimality criterion value
of the empirically chosen set (denoted as ‘‘Div’’) used in Struebing et al.
(2013) (OF = 1.62 × 10−7).

To further evaluate the diversity of the solvents in the D-optimal
solvent sets, four radar charts corresponding to four continuous-valued

https://www.gams.com/
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Table 1
Initial sets of solvents generated by MBDoE and used in Struebing et al. (‘‘Div’’) and the corresponding rate
constants for the Menschutkin reaction, as computed by the QM thermodynamic cycle method. The solvents
are listed in order of increasing rate constant in L mol-1 s-1.
MBDoE (constrained Formulation 2) Div

No Solvent 𝑘L,QM No Solvent 𝑘L,QM

1 2,2,4-Trimethylpentane 4.99 × 10−7 1 Toluene 1.71 × 10−6

2 1-Phenyl-1-propanol 1.40 × 10−4 2 Chlorobenzene 3.80 × 10−5

3 3-Fluorophenol 1.50 × 10−4 3 Ethyl acetate 4.88 × 10−5

4 Nitrobenzene 5.15 × 10−4 4 Tetrahydrofuran 8.77 × 10−5

5 2-Methoxyethanol 7.06 × 10−4 5 Acetone 2.99 × 10−4

6 Adiponitrile 8.50 × 10−4 6 Acetonitrile 5.02 × 10−4

7 N-Methylformamide 2.68 × 10−3 7 Nitromethane 6.50 × 10−4

D-optimality value 2.27 D-optimality value 1.62 × 10−7
Fig. 4. The D-optimality criterion values of the solvent sets generated by the three
MBDoE formulations and the Div set (blue circles: Formulation 1; red squares:
Formulation 2; green triangles: constrained Formulation 2; yellow cross: the Div set).
The solutions reported to be locally optimal by the solver are circled.

solvent descriptors (𝐴𝑖, 𝐵𝑖, 𝑆𝑖 and 𝛿2𝐻,𝑖) are plotted for the top D-optimal
solvent set (with the highest D-optimality criterion value) generated by
each of Formulation 1, Formulation 2 and constrained Formulation 2,
as well as for the Div set (Fig. 5).

The Div set is the least diverse among all the solvent sets as the
solvent descriptors span relatively small ranges and do not vary much
compared to the MBDoE-generated solvent sets. Similarly, it can be
seen that the sets generated by the formulations without the design con-
straints (Formulation 1, Formulation 2) perform better than constrained
Formulation 2, which is consistent with the D-optimality criterion
values of these sets. The set generated from constrained Formulation
2 generally shows similar variability to those from Formulation 1 and
Formulation 2, except that the value ranges they span are slightly
smaller. Thus, constrained Formulation 2 is still reasonably good. In
this work, constrained Formulation 2 is chosen for the remaining steps
in the DoE-QM-CAMD workflow to avoid possible poor performance of
the SMD model when applied to non-liquid ‘‘solvents’’.

3.2. Case study 1: Menschutkin reaction - rate constant maximisation

3.2.1. Regression and validation of the solvatochromic equations
The identities of the selected solvents and the computed rate con-

stants for the Menschutkin reaction in these solvents are listed in
Table 1 along with those of the Div set for comparison. Two sol-
vatochromic equations are regressed using the computed QM rate
constants in the solvents of the MBDoE set (denoted by the superscript
9

‘‘MBDoE’’) and those in the solvents of the Div set (denoted by the
superscript ‘‘Div’’), respectively:

ln 𝑘L,MBDoE-1 = −16.30 − 3.52𝐴 + 4.62𝐵 + 0.21𝑆 + 1.64𝛿 + 4.26𝛿2𝐻 , (57)

ln 𝑘L,Div-1 = −18.18 − 12.09𝐴 + 5.09𝐵 + 12.05𝑆 − 0.48𝛿 − 0.78𝛿2𝐻 . (58)

The superscript ‘‘1’’ denotes the iteration number in the QM-CAMD
procedure. The MBDoE model shows better statistics (adjusted 𝑅2 =
0.83) than the Div model (adjusted 𝑅2 = 0.16) and covers a wider range
of rate constant values, with four orders of magnitude for MBDoE vs
two orders of magnitude for Div.

To examine the accuracy of these two solvatochromic equations
further, the rate constants of the Menschutkin reaction in the 326
solvents in the solvent design space are computed using the MBDoE
model, the Div model and the QM method. With the QM model as the
benchmark, the MBDoE model has a mean absolute deviation (MAD)
of 1.90 log units, outperforming the Div model, which has a MAD of
3.51 log units (Fig. 6). While model accuracy is low, as can be expected
from the small size of the data set used in building the model, the
MBDoE-based model provides a better assessment of ‘‘good’’ solvents,
that accelerate the Menschutkin reaction, and ‘‘poor’’ solvents, that
slow it down.

3.2.2. Solution to the computer-aided molecular design problem
The two solvatochromic equations are incorporated into two CAMD

problems, the MBDoE CAMD problem and the Div CAMD problem,
which are then solved using the CPLEX solver (CPLEX, IBM ILOG,
2009) in GAMS. The objective function is the maximisation of the
rate constant, while the constraints are introduced in Section 2.3. The
progress of the QM-CAMD iterations is shown in Table 2. In contrast,
at the first iteration of the Div CAMD problem, the rate constant for the
optimal solvent identified, Dimethyl sulfoxide, is predicted by the sol-
vatochromic equation to be 3.88 × 102 L mol-1 s-1 which is greater than
the QM prediction (1.09×10−3 L mol-1 s-1) by five orders of magnitude,
a behaviour consistent with that observed in Struebing et al. (2013). At
the first iteration of the MBDoE QM-CAMD problem, nitromethanol is
identified as the optimal solution with the rate constant predicted to be
2.28 × 10−1 L mol-1 s-1. The prediction is much closer to the QM value
(1.56 × 10−3 L mol-1 s-1) with a deviation of two orders of magnitude.

At the second iteration, the optimal solutions of the MBDoE CAMD
problem and the Div CAMD problem in the first iteration are added into
the respective solvent sets, to update the solvatochromic equations. The
following MBDoE model is obtained:

ln 𝑘L,MBDoE-2 = −14.57 + 0.21𝐴 + 4.61𝐵 + 1.53𝑆 + 1.16𝛿 + 1.34𝛿2𝐻 , (59)

and the updated Div model is:

ln 𝑘L,Div-2 = −8.44 + 9.68𝐴 − 5.79𝐵 + 5.95𝑆 − 4.35𝛿 − 2.14𝛿2𝐻 . (60)

The two CAMD problems are then solved again using these updated
models. In this specific case, the MBDoE CAMD problem generates
the same optimal solution as in the previous iteration and terminates,
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Fig. 5. Radar charts of the four normalised solvent properties for the seven D-optimal solvents identified by each formulation: (a) hydrogen bond acidity, (b) hydrogen bond
basicity, (c) dipolarity/polarisability and (d) Hildebrand solubility parameter (blue: Formulation 1, red: Formulation 2, green: Constrained Formulation 2, yellow: the Div set).
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while the Div CAMD problem generates a new solution. It takes another
four iterations for the Div CAMD problem to reach convergence and
generate the same optimal solution, nitromethanol, as the MBDoE
CAMD problem. The converged Div model is:

ln 𝑘L,Div-5 = −10.32 + 0.32𝐴 − 2.69𝐵 + 2.53𝑆 − 3.32𝛿 + 0.84𝛿2𝐻 . (61)

It is noted that the quality of the predictions from the Div model
has greatly improved. In addition to the best solvents, the top 10
solvents generated by the converged MBDoE (Eq. (59)) and the Div
(Eq. (61)) models are presented in Table 3. It can be seen that most of
the solvents identified contain nitro group and hydroxyl group which
greatly contribute to the polarity of a molecule. These solvents are not
typically used in chemical reactions but it is reasonable for them to
be identified as solvents that can accelerate the Menschutkin reaction,
since as a rule of thumb, a reaction involving a charged transition state
proceeds faster in polar protic solvents, as the transition state can be
stabilised in such solvents. Despite deviations between the MLR models
and QM data, almost all the top 10 solvents of the MBDoE model and
the Div model (except 2-methyl-1-nitropropan-2-ol from the MBDoE
model) are found to be in the top 10 solvents predicted by the QM
model. It should be noted that the top solvent, nitromethanol, in which
the nitro group and the hydroxyl group connect to the same carbon
atom, is chemically unstable (Winey and Gupta, 1997). Therefore,
nitromethanol would be excluded in a further examination of chemical
stability. Consequently, dimethyl sulfoxide and N-methylformamide are
the best solvents suitable for experimental tests from the MBDoE CAMD
problem and the Div CAMD problem, respectively.
10
3.3. Case study 2: HCN formation minimisation in peptide synthesis

The same procedures are repeated for the HCN formation reaction.
Firstly, the solvatochromic equations are regressed using the MBDoE set
and the Div set in Table 1 with the rate constants recalculated for the
HCN formation reaction. As with the Menschutkin reaction, the MBDoE
model shows better statistics (adjusted 𝑅2 = 0.85) than the Div model
(adjusted 𝑅2 = 0.26). The QM rate constants of the HCN formation in
eight solvents (1,4-dioxane, chloroform, dichloromethane, benzyl alco-
hol, methyl isobutyl ketone, ethanol, dimethylformamide and dimethyl
sulfoxide) commonly found in chemistry labs are computed and used
as a validation set to assess the MBDoE model and the Div model. The
model coefficients of the solvatochromic equation and the QM data
used for regression and validation can be found in the Excel spread
sheet provided in the Zenodo open repository (see Data availability).
The MBDoE model yields a MAD of 2.55 log units while the Div model
yields a larger MAD of 6.97 log units on the validation set.

In the design problem, the rate constant is minimised to suppress
HCN formation. In the first iteration of the MBDoE CAMD problem,
2,3,4-trimethyl-2-pentene is identified as the optimal solution with
the rate constant predicted to be 3.09 × 10−6 s-1 which is close to
the QM value of 1.34 × 10−5 s-1, with a deviation of only one order
f magnitude. In the Div CAMD problem, the rate constant for the
ptimal solvent identified, 2,3-dimethylpentane, is predicted by the
orresponding solvatochromic equation to be 1.16 × 10−8 s-1 which is
hree orders of magnitude smaller than the QM prediction (2.26 × 10−5
-1).

In the second iteration, both CAMD problems generate the same
ptimal solutions as in the respective previous iterations and reach con-
ergence. However, according to the QM predictions, 2,3,4-trimethyl-
-pentene, which is identified by the MBDoE CAMD problem is a better
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Fig. 6. Parity plots for the logarithm of the rate constant of the Menschutkin reaction in the 326 solvents in the design space (the dashed line is 𝑦 = 𝑥 line), (a) Div model
q. (58) vs. the QM model, (b) the MBDoE model Eq. (57) vs. the QM model, (c) converged Div model Eq. (61) vs. the QM model, (d) converged MBDoE model Eq. (59) vs. the
M model.
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olvent compared to 2,3-dimethylpentane identified by the Div CAMD
roblem as it leads to a smaller rate constant, by nearly one order of
agnitude, which enables better suppression of HCN formation. In both
AMD problems, most of the solvents identified are either alkenes or
lkanes which are non-polar solvents. These solvents are not typically
sed in peptide synthesis but it is reasonable for them to be identified as
olvents that can suppress HCN formation, since in general, a reaction
nvolving a charged transition state proceeds more slowly in non-polar
olvents. The main reactions of peptide synthesis need to be taken into
onsideration to identify more suitable solvents for suppressing the side
eaction as well as supporting amino acid activation and amidation. It
s necessary for the reaction solvents not only to promote the kinetics
f the main reactions but also to provide adequate solubility of the
eacting species.

.4. Case study 3: Williamson ether synthesis reaction – investigation of the
rade-offs between the main reaction rate and selectivity

In case study 3, a solvent is designed to accelerate the Williamson
ther synthesis reaction, i.e., the O-alkylation of sodium 𝛽-naphthoxide
nd benzyl bromide, as well as to suppress its accompanying side reac-
ion, the C-alkylation reaction. Thus, the trade-offs between two objec-
ives, the reaction rate of the main reaction and reaction selectivity, are
nvestigated. Similar to the previous two case studies, solvatochromic
quations are regressed to the computed QM rate constants of the O-
lkylation reaction and the C-alkylation reaction. Statistics consistent
ith the two previous case studies are obtained for the C-alkylation

eaction as the MBDoE set leads to a higher adjusted 𝑅2 of 0.89 while
he Div set leads to negative adjusted 𝑅2 of −0.40. However, better
11

o

egression statistics are obtained for the O-alkylation reaction using
he Div set. The adjusted 𝑅2 resulting from the MBDoE set and the
iv set for the O-alkylation reaction are −0.38 and 0.70, respectively.

Despite the poor adjusted 𝑅2, the MBDoE model is still found to have
better accuracy for both the O-alkylation (MAD: 1.18 log units) and
the C-alkylation (MAD: 0.92 log units) reactions than the Div model
(O-alkylation MAD: 2.11 log units, C-alkylation MAD: 2.88 log units)
based on the MAD calculated using the same validation set as that used
in case study 2.

Before investigating the trade-offs between the reaction rate of the
main reaction and reaction selectivity, we consider two single-objective
CAMD problems. A MBDoE CAMD problem and a Div CAMD problem
are formulated for each of the objectives, i.e., maximising the rate
constant of the O-alkylation reaction and minimising the rate constant
of the C-alkylation reaction. Similarly to the previous two case studies,
the MBDoE models provide more reliable predictions of the QM rate
constants for both the O-alkylation and C-alkylation reactions. The use
of these more accurate MLR models in the first iterations reduces the
total number of total iterations required for the QM CAMD procedures
to terminate; both the MBDoE CAMD problems for the O-alkylation
and C-alkylation reactions reach convergence in three iterations. Four
iterations are needed for the Div CAMD problems of these two objec-
tives. After completion of the QM-CAMD procedures, nitromethanol is
identified by the MBDoE CAMD problem as the optimal solution to
maximise the O-alkylation rate with a QM rate constant of 𝑘L,QM =
7.13 × 10−2 L mol-1 s-1 while the Div CAMD problem identifies the
ptimal solvent to be DMSO, which provides a slightly larger rate
onstant (𝑘L,QM = 7.53×10−2 L mol-1 s-1) than nitromethanol. In the case
f C-alkylation, where the reaction rate is minimised, chlorostyrene is
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Table 2
Design results of the MBDoE CAMD problem and Div CAMD problem for the Menschutkin reaction. The rate constants are in
the unit of L mol-1 s-1. The mean absolute deviations (MAD), in log units, are calculated for the 326 solvents in the design
space. †Multiple isomers exist for the same group combination.
First iteration DoE CAMD Div CAMD

Optimal solvent name Nitromethanol Dimethyl sulfoxide
Optimal solvent structure OH × 1 CH2NO2 × 1 C2H6SO × 1
𝑘L,MLR-1 2.28 × 10−1 3.88 × 102

𝑘L,QM 1.56 × 10−3 1.09 × 10−3

MAD 1.90 3.51

Second iteration DoE CAMD Div CAMD

Optimal solvent name Nitromethanol 4-Methyl-3-nitromethylpent-3-en-1-ol†

Optimal solvent structure OH × 1 CH2NO2 × 1 CH3 × 2 CH2 × 2 C=C × 1
OH × 1 CH2NO2 × 1

𝑘L,MLR-2 4.13 × 10−3 1.50 × 10−2

𝑘L,QM 1.56 × 10−3 4.77 × 10−4

MAD 1.43 1.62

Third iteration DoE CAMD Div CAMD

Optimal solvent name

Converged

2,3-Dimethyl-1-nitro-but-2-ene

Optimal solvent structure CH3 × 3 C=C × 1
CH2NO2 × 1

𝑘L,MLR-3 3.33 × 10−3

𝑘L,QM 1.76 × 10−4

MAD 2.05

Fourth iteration DoE CAMD Div CAMD

Optimal solvent name

Converged

Nitromethanol
Optimal solvent structure OH × 1 CH2NO2 × 1
𝑘L,MLR-4 7.68 × 10−3

𝑘L,QM 1.56 × 10−3

MAD 0.79

Fifth iteration DoE CAMD Div CAMD

Optimal solvent name

Converged

Nitromethanol
Optimal solvent structure OH × 1 CH2NO2 × 1
𝑘L,MLR-5 1.93 × 10−3

𝑘L,QM 1.56 × 10−3

MAD 0.94
Table 3
The top 10 ranked solvents generated by the converged MBDoE and Div models for the Menschutkin reaction. †Solvents that do not appear in both lists.
Ranking Solvent name Solvent structure ln 𝑘L,MBDoE-2 ln 𝑘L,QM

1 Nitromethanol OH × 1 CH2NO2 × 1 −5.49 −6.46
2 Dimethyl sulfoxide C2H6SO × 1 −5.57 −6.82
3 2-Nitroethanol CH2 × 1 OH × 1 CH2NO2 × 1 −6.26 −6.72
4 3-Nitroprop-1-en-2-ol CH2=C × 1 OH × 1 CH2NO2 × 1 −6.65 −6.98
5 3-Nitropropanol CH2 × 2 OH × 1 CH2NO2 × 1 −6.73 −6.93
6 1-Nitropropan-2-ol CH3 × 1 CH × 1 OH × 1 CH2NO2 × 1 −6.87 −6.96
7 2-Methyl-1-nitropropan-2-ol† CH3 × 2 C × 1 OH × 1 CH2NO2 × 1 −6.90 −7.23
8 3-Nitroprop-1-en-1-ol CH=CH × 1 OH × 1 CH2NO2 × 1 −6.91 −7.00
9 2-Nitromethyl-prop-2-en-1-ol CH2 × 1 CH2=C × 1 OH × 1 CH2NO2 × 1 −6.97 −7.15
10 N-Methylformamide C2H5NO × 1 −6.99 −5.92

Ranking Solvent name Solvent structure ln 𝑘L,Div-5 ln 𝑘L,QM

1 Nitromethanol OH × 1 CH2NO2 × 1 −6.25 −6.46
2 N-Methylformamide C2H5NO × 1 −6.51 −5.92
3 2-Nitroethanol CH2 × 1 OH × 1 CH2NO2 × 1 −6.74 −6.72
4 Dimethyl sulfoxide C2H6SO × 1 −6.85 −6.82
5 3-Nitroprop-1-en-2-ol CH2=C × 1 OH × 1 CH2NO2 × 1 −7.02 −6.98
6 3-Nitropropanol CH2 × 2 OH × 1 CH2NO2 × 1 −7.04 −6.93
7 3-Nitroprop-1-en-1-ol CH=CH × 1 OH × 1 CH2NO2 × 1 −7.14 −7.00
8 1-Nitropropan-2-ol CH3 × 1 CH × 1 OH × 1 CH2NO2 × 1 −7.21 −6.96
9 2-Nitromethyl-prop-2-en-1-ol CH2 × 1 CH2=C × 1 OH × 1 CH2NO2 × 1 −7.23 −7.15
10 4-Nitrobutanol† CH2 × 3 OH × 1 CH2NO2 × 1 −7.25 −7.10
generated by the MBDoE CAMD problem with a QM rate constant of
𝑘L,QM = 1.02×10−4 L mol-1 s-1. This is larger than the QM rate constant
f 2,3,4-trimethyl-2-pentene (𝑘L,QM = 8.32 × 10−5 L mol-1 s-1) which is

the optimal solvent identified by the Div CAMD problem. It can be seen
from these results that in this case the MBDoE problems do not identify
better solvents than those identified by the Div problems though the
rate constants are similar in each scenario.

The trade-offs between the rate constant of the main reaction (O-
12

alkylation) and reaction selectivity are investigated as shown in Fig. 7.
To gain insights into the trade-offs, the full space of solutions is ex-
plored. The reaction selectivity of the designed solvent, 𝛼, is calculated
as

ln 𝛼 = ln 𝑘L,MBDoE
O − ln 𝑘L,MBDoE

C (62)

where 𝑘L,MBDoE
O and 𝑘L,MBDoE

C are the rate constants predicted by the
converged MBDoE models for the O-alkylation reaction and the C-
alkylation reaction, respectively. All the feasible molecules in the de-

sign space are generated using the MILP formulation of CAMD with
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Fig. 7. Workflow for generating the Pareto front in case study 3.
Fig. 8. Natural logarithm of selectivity vs logarithm of the O-alkylation rate constant
for all the feasible solvent molecules in the design space. The Pareto front is highlighted
with a red dashed line connecting all the Pareto optimal solutions (red squares), the
blue triangles represent the dominated solutions and the purple cross represents an
ideal solution that achieves both high selectivity and large rate constant.

integer cuts. The calculated rate constant of the main reaction and
reaction selectivity of the 326 solvents are shown in Fig. 8, where
the trade-offs between the two objectives, i.e., the molecules on the
Pareto front, are highlighted. Chlorobenzene is found to be the solvent
that maximises the selectivity but shows low rate constant for the
O-alkylation while nitromethanol gives the largest rate constant for
the O-alkylation but leads to low selectivity. As the rate of the O-
alkylation reaction increases, selectivity drops rapidly until ln 𝑘L,MBDoE

O
reaches −4.10 and then it decreases gradually. It is also observed that
the data points in Fig. 8 form clusters separated by gaps where the
associated combinations of selectivity and ln 𝑘L,MBDoE

O are infeasible.
After careful examination of the solvent molecules in each cluster, it
is found that each cluster corresponds to a family of molecules that
share one or more atom group(s). For example, the cluster in the
region (ln 𝑘L,MBDoE

O ∈ [−4.3,−3.6], 𝛼 ∈ [2.4, 3.1]) corresponds to the
alcohol family. This phenomenon reflects the discrete nature of CAMD
problems. These infeasible regions between the clusters in Fig. 8 could
potentially be reached by taking into account more types of solvents or
atom groups or by considering solvent mixtures.

4. Conclusions and future work

An enhanced CAMD method for reaction solvent design, DoE-QM-
CAMD, has been developed. Two MBDoE formulations have been pro-
posed and tested, either using a list of solvents with known (measured)
13
properties or a (larger) list of solvents with known or predicted prop-
erties, to expand the design space of candidate solvents. This latter
approach has been found to be effective in identifying a set of initial
solvents with a large degree of diversity, as evidenced by a high D-
optimality value. Using the initial solvent set thus identified, an MLR
surrogate model, the solvatochromic equation, can be parameterised
based on QM-computed reaction rate constants and used within a
QM-CAMD framework to identify solvents that improve reaction per-
formance. The integration of MBDoE and QM-CAMD was applied to
three case studies and compared with the original QM-CAMD approach
in which the initial solvent set is based on chemical intuition (the Div
set). The MBDoE-derived model was found to offer consistently higher
predictive accuracy in the first iteration of the QM-CAMD design loop
than the Div-derived model. As a result, the MBDoE CAMD problem
was generally found to converge within fewer steps than the Div CAMD
problem. Regardless of the model used, both approaches have been
shown to lead to the identification of solvents that can considerably
improve reaction performance, whether based on a single objective
(reaction rate) or two objectives (reaction rate and selectivity). Given
that the computational expense of implementing the MBDoE method is
small compared to that of QM calculations, the use of the proposed
systematic MBDoE methodology for initial solvent set design is pre-
ferred over the ad hoc selection of such a set on the basis of perceived
diversity. Overall, the integration of the MBDoE technique into the
QM-CAMD framework improves the performance of the surrogate ki-
netic model without introducing extra complexity in the simple MLR
formalism.

Given the promising results obtained with MBDoE relative to the use
of solvents selected based on expert intuition, more work needs to be
done to understand the relationship between the D-optimality criterion
values and model performance. One of the underlying assumptions
in our work is that the model errors can be viewed as random and
normally distributed. Errors in physics-based computer experiments
are often systematic. Therefore, it would be interesting to take this
behaviour into account more formally.

We anticipate that the developed method can be applied to optimise
the rates of many other chemical reactions and other properties that can
be predicted using a linear free energy relationship, such as solubility
or octanol-water partition coefficients. Further improvements to the
surrogate model will also be investigated using MBDoE formulations
in which solvents are designed from atom groups rather than selected
from a list or in which hypothetical or alchemical solvents are de-
fined by the values of the continuous descriptors without reference
to a specific molecular structure. The impact of using different types
of surrogate model, other sets of solvent properties/descriptors, and
alternative strategies to update the surrogate model will be examined

with the aim to achieve even greater reliability.
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