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On the Generalized Langevin Equation for Simulated Annealing*

Martin Chak\dagger , Nikolas Kantas\dagger , and Grigorios A. Pavliotis\dagger 

Abstract. In this paper, we consider the generalized (higher order) Langevin equation for the purpose of simu-
lated annealing and optimization of nonconvex functions. Our approach modifies the underdamped
Langevin equation by replacing the Brownian noise with an appropriate Ornstein--Uhlenbeck process
to account for memory in the system. Under reasonable conditions on the loss function and the an-
nealing schedule, we establish convergence of the continuous time dynamics to a global minimum.
In addition, we investigate the performance numerically and show better performance and higher
exploration of the state space compared to the underdamped Langevin dynamics with the same
annealing schedule.
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1. Introduction. Algorithms for optimization have gained significant interest in recent
years due to applications in machine learning, data science, and molecular dynamics. Models
in machine learning are formulated to have some loss function and parameters with respect to
which it is to be minimized, where use of optimization techniques is heavily relied upon. We
refer the reader to [8, 67] for related discussions. Many models, such as neural networks, use
parameters that vary over a continuous space, where gradient-based optimization methods can
be used to find good parameters that generate effective predictive ability. As such, the design
and analysis of such algorithms for global optimization has been the subject of considerable
research [65], and it has proved useful to study algorithms for global optimization using
tools from the theory of stochastic processes and dynamical systems. A paradigm of the
use of stochastic dynamics for the design of algorithms for global optimization is simulated
annealing, where overdamped Langevin dynamics with a time-dependent temperature (1.1)
that decreases with an appropriate cooling schedule is used to guarantee the global minimum
of a nonconvex loss function U : \BbbR n \rightarrow \BbbR :

dXt =  - \nabla U(Xt) dt+
\sqrt{} 

2Tt dWt.(1.1)
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140 M. CHAK, N. KANTAS, AND G. A. PAVLIOTIS

Here Wt is a standard n-dimensional Wiener process, and T\cdot : (0,\infty ) \rightarrow (0,\infty ) is an appro-
priate deterministic function of time often referred to as the annealing or cooling schedule.
For fixed Tt = T > 0, this is the dynamics used for the related problem of sampling from a
possibly high dimensional probability measure, for example, in the unadjusted Langevin algo-
rithm [21]. Gradually decreasing Tt to zero balances the exploration-exploitation trade-off by
allowing, at early times, larger noise to drive Xt and hence sufficient mixing to escape local
minima. Designing an appropriate annealing schedule is wellunderstood. We briefly mention
classical references [16, 29, 30, 32--35, 39], as well as the more recent [38, 46, 61], where one
can find details and convergence results. In this paper we aim to consider generalized versions
of (1.1) for the same purpose.

Using dynamics such as (1.1) has clear connections with sampling. When Tt = T is a

constant function, the invariant distribution of X is proportional to exp( - U(x)
T )dx. In addi-

tion, when Tt decreases with time, the probability measure given by \nu t(dx) \propto exp( - U(x)
Tt

)dx
converges weakly to the set of global minima based on the Laplace principle [37]. If one
replaces (1.1) with a stochastic process that mixes faster and maintains the same invariant
distribution for constant temperatures, then one can expect the superior speed of conver-
gence to improve performance in optimization due to the increased exploration of the state
space. Indeed, it is well known that many different dynamics can be used in order to sample
from a given probability distribution or to find the minima of a function when the dynam-
ics is combined with an appropriate cooling schedule for the temperature. Different kinds
of dynamics have already been considered for sampling, e.g., nonreversible dynamics, pre-
conditioned unadjusted Langevin dynamics [2, 4, 44, 58], as well as for optimization, e.g.,
interacting Langevin dynamics [69] and consensus based optimization [10, 11, 62] to name a
few.

A natural candidate in this direction is the underdamped Langevin dynamics:

dXt = Yt dt,(1.2a)

dYt =  - \nabla U(Xt) dt - T - 1
t \mu Yt dt+

\sqrt{} 
2\mu dWt.(1.2b)

Here the reversibility property of (1.1) has been lost; the improvement from breaking re-
versibility in the context of both sampling and optimization is investigated in [19, 43] and
[26], respectively. When Tt = T , (1.2) can converge faster than (1.1) to its invariant distribu-
tion

\rho (dx, dy) \propto exp

\biggl( 
 - 1

T

\biggl( 
U(x) +

| y| 2

2

\biggr) \biggr) 
dx dy;

see [22] or section 6.3 of [59] for particular comparisons and see also [5, 6] for more applications
using variants of (1.2). In the context of simulated annealing, using this set of dynamics has
recently been studied rigorously in [51], where the author established convergence to global
minima using the generalized \Gamma -calculus [52] framework that is based on Bakry--Emery theory.
Note that (1.2) uses the temperature in the drift rather than the diffusion constant in the
noise as in (1.1). Both formulations admit the same invariant measure when Tt = T . In the
remainder of the paper, we adopt this formulation to be closer to that of [51].
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ON THE GLE FOR SIMULATED ANNEALING 141

In this paper we will consider an extension of the kinetic Langevin equation by adding
an additional auxiliary variable that accounts for the memory in the system. To the best
of the authors' knowledge, this has not been attempted before in the context of simulated
annealing and global optimization. In particular, we consider the Markovian approximation
to the generalized Langevin equation,

dXt = Yt dt,(1.3a)

dYt =  - \nabla U(Xt) dt+ \lambda \top Zt dt,(1.3b)

dZt =  - \lambda Yt dt - T - 1
t AZt dt+\Sigma dWt,(1.3c)

where A \in \BbbR m\times m is a symmetric positive definite matrix, meaning that there exists a constant
Ac > 0 such that z\top Az \geq Ac| z| 2 for all z \in \BbbR m, \Sigma \in \BbbR m\times m satisfies \Sigma \Sigma \top = 2A, and Wt is
now m-dimensional. Here Xt, Yt \in \BbbR n and Zt \in \BbbR m (with m \geq n), M\top denotes the transpose
of a matrix M , and \lambda \in \BbbR m\times n is a rank n matrix with a left inverse \lambda  - 1 \in \BbbR n\times m.

Our aim is to establish convergence using techniques similar to those in [51] and investigate
the improvements in performance. Equation (1.3) is related to the generalized Langevin
equation, where memory is added to (1.2) by integrating over past velocities with a kernel
\Gamma : (0,\infty ) \rightarrow \BbbR n\times n,

\"x =  - \nabla U(x) - 
\int t

0
\Gamma (t - s) \.x(s) ds+ Ft,(1.4)

with Ft being a zero mean stationary Gaussian process with an autocorrelation matrix given
by the fluctuation-dissipation theorem \BbbE (FtF

\top 
s ) = Tt\Gamma (t - s). When1 Tt = T , (1.4) is equiv-

alent to (1.3), with Z0 \sim \scrN (0, T I) for identity matrix I when setting \Gamma (t) = \lambda \top e - At\lambda ; see
Proposition 8.1 in [59]. In this case, the invariant distribution becomes

\rho (dx, dy, dz) \propto exp

\biggl( 
 - 1

T

\biggl( 
U(x) +

| y| 2

2
+

| z| 2

2

\biggr) \biggr) 
dx dy dz.

In the spirit of adding a momentum variable in (1.1) to get (1.2), (1.3) adds an additional
auxiliary variable to the Langevin system while preserving the invariant distribution in the
x marginal. In the constant temperature context, (1.4) is natural from the point of view of
statistical mechanics and has already been considered as a sampling tool in [12, 13, 54] with
considerable success. We will demonstrate numerically that the additional tuning parameters
can improve performance; see also [53] for recent work demonstrating advantages of using
(1.4) compared to using (1.2) when sampling from a log concave density. A detailed study
of the Markovian approximation (1.3) of the generalized Langevin dynamics in (1.4) can be
found in [56].

To motivate the use of (1.3), we consider the quadratic case where U = \alpha x2 and 0<\alpha < 1.
By Theorem 3.1 in [49], the calculation of the spectral gaps of the generators in (1.1)--
(1.3) reduces in this case to finding roots of quadratic and cubic polynomials, respectively.

1To the best of our knowledge, there is no known direct translation between (1.4) and (1.3) for a nonconstant
Tt; at the very least the intuition here is useful.
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142 M. CHAK, N. KANTAS, AND G. A. PAVLIOTIS

Straightforward numerical comparisons show that for these quadratic cases, the best choices
of \lambda ,A yield an improvement in terms of the spectral gap compared to (1.2) with the best
choice of \mu .

Use of (1.4) is also motivated by parallels with accelerated gradient descent algorithms.
When the noise is removed from (1.2), the second order differential equation can be loosely
considered as a continuous time version of Nesterov's algorithm [68]. The latter is commonly
preferred to discretizing the first order differential equation given by the noiseless version of
(1.1) because in the high dimensional and low iterations setting it achieves the optimal rate of
convergence for convex optimization; see Chapter 2 in [55] and also see [31] for a nonconvex
setting. Here we would like to investigate the effect of adding another auxiliary variable,
which would correspond to a third order differential equation when noise is removed. When
noise is added for the fixed temperature case, [25] has studied the long time behavior and
stability for different choices of a memory kernel as in (1.4). Finally, we note that generalized
Langevin dynamics in (1.4) have additionally been studied in related areas such as sampling
problems in molecular dynamics from chemical modeling [1, 12, 13, 54, 71], see also [40] for
work determining the kernel \Gamma in the generalised system (1.4) from data.

Our theoretical results will focus only on the continuous time dynamics and follow the
approach in [51]. The main requirements in terms of assumptions are quadratic upper and
lower bounds on U and bounded second derivatives. This is different from classical references
such as [30], [32], or [35]. These works also rely on the Poincar\'e inequality, an approach
which will be mirrored here (and is used in [51] for the underdamped case) using a log-
Sobolev inequality; see also [34] for the relationship between such functional inequalities and
the annealing schedule in the finite state space case. We will also present detailed numerical
results for different choices of U . There are many possibilities for the method of discretization
of (1.3); we will use a time discretization scheme that appeared in [3], but we will not present
theoretical results on the time discretized dynamics; this is beyond the scope of this article.
We refer the interested reader to [66] for a study on discretization schemes for the system
(1.3), to [15] for a recent consideration on (1.2) and its time discretization, and to [27, 28] for
linking discrete time Markov chains with the overdamped Langevin system in (1.1).

1.1. Contributions and organization of the paper. Here we summarize the main contri-
butions of the paper.

\bullet We provide a complete theoretical analysis of the simulated annealing algorithm for
the generalized Langevin equation (1.3). The main theoretical contribution consists
of Theorem 2.7 which establishes convergence in probability of Xt in the higher order
Markovian dynamics (1.3) to a global minimizer of U . For the optimal cooling schedule
Tt, the rate of convergence is set as the known rate for the Langevin system (1.2)
presented in [51].

\bullet The initially non-Markovian property and pronounced degeneracy, in the sense of
requiring a second commutator bracket for hypoellipticity by way of H\"ormander, in-
troduces additional difficulties that are overcome using techniques from [51]. As such,
we use a different form of the distorted entropy that stated formally in (4.19). Addi-
tional technical improvements include a different truncation argument and a limiting
sequence of nondegenerate SDEs for establishing dissipation of this distorted entropy.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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ON THE GLE FOR SIMULATED ANNEALING 143

These extensions also address certain technical issues in [51]; see Remarks 2.2, 4.2,
and 4.11 for more details. Also we make an effort to emphasize the role of the critical
factor of the cooling schedule in the rate of convergence in Theorem 2.7. This can be
seen in our assumptions for Tt and U .

\bullet Numerical experiments are provided to illustrate the performance of our approach. We
also discuss tuning issues. In particular, we investigate numerically the role of matrix
A and how it can be chosen to increase exploration of the state space. In regard to
time discretization of (1.3) we use the leapfrog scheme of [3]. We compare this with a
similar time discretization of (1.2) and observe that exploration of the state space is
increased considerably.

The paper is organized as follows. Section 2 will present the assumptions and main theoretical
results. Proofs can be found in section 4. Section 3 presents numerical results demonstrating
the effectiveness of our approach in terms of reaching the global minimum. In section 5, we
provide some concluding remarks.

2. Main result. Let Lt denote the infinitesimal generator of the associated semigroup to
(1.3) at t > 0 and temperature Tt. This is formally given by

Lt = (y \cdot \nabla x  - \nabla xU(x) \cdot \nabla y) + (z\top \lambda \nabla y  - y\top \lambda \top \nabla z) - T - 1
t z\top A\nabla z +A : D2

z ,(2.1)

where we denote the gradient vector by \nabla x = (\partial x1
, . . . , \partial xn

)\top , the Hessian by D2
x, and the

respective operators for the y and z variables similarly. For matrices M,N \in \BbbR r\times r we denote

M : N =
\sum 

i,j MijNij for all 1 \leq i, j \leq r and denote the operator norm as | M | = sup
\Bigl\{ 

| Mv| 
| v| :

v \in \BbbR r with v \not = 0
\Bigr\} 
. We will also use | v| to denote Euclidean distance for a vector v. Let mt

be the law of (Xt, Yt, Zt) in (1.3), and, with slight abuse of notation, we will also denote as mt

the corresponding Lebesgue density. Similarly, we define \mu Tt
as the instantaneous invariant

law of the process

\mu Tt
(dx, dy, dz) =

1

ZTt

exp

\biggl( 
 - 1

Tt

\biggl( 
U(x) +

| y| 2

2
+

| z| 2

2

\biggr) \biggr) 
dx dy dz(2.2)

with ZTt
=
\int 
exp ( - 1

Tt
(U(x) + | y| 2

2 + | z| 2
2 ))dx dy dz. Finally, denote the density between the

two laws as ht =
dmt

d\mu Tt
. We proceed by stating our assumptions on the potential U .

Assumption 1. The function U belongs in \scrC \infty (\BbbR n), and its second derivatives satisfy

| D2
xU | \infty := sup

x\in \BbbR n

max

\biggl( 
sup
ij

| \partial i\partial jU(x)| , | D2
xU(x)| 

\biggr) 
<\infty .(2.3)

Its first derivatives satisfy
\nabla xU(x) \cdot x \geq r1| x| 2  - Ug,(2.4)

| \nabla xU(x)| 2 \leq r2| x| 2 + Ug(2.5)

for some constants r1, r2 \in \BbbR , Ug > 0. Moreover, either

(a)
| \=a \circ x| 2 + Um \leq U(x) \leq | \=a \circ x| 2 + UM(2.6)

for some Um, UM \in \BbbR , \=a \in (0,\infty )n, where \circ denotes the Hadamard product; or

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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144 M. CHAK, N. KANTAS, AND G. A. PAVLIOTIS

(b)
\bullet U is a nonnegative Morse function, in the sense that there exists 1 \leq CH < \infty such

that if x \in \BbbR n satisfies \nabla xU(x) = 0, then

1

CH
\leq \| D2

xU(x)\| \leq CH ;

\bullet U is nondegenerate in the sense that

-- For any two local minima mi,mj \in \BbbR n, there exists a unique (communicating saddle)
point si,j \in \BbbR n such that

* \nabla xU(si,j) = 0,
* U(si,j) = inf\{ maxs\in [0,1] U(\gamma (s)) : \gamma \in C([0, 1],\BbbR n), \gamma (0) = mi, \gamma (1) = mj\} ,
* the dimension of the unstable subspace of D2

xU(si,j) is equal to 1.
-- Setting m1 to be the global minimum of U , we see there exists \delta > 0 and an ordering
of the local minima \{ m2,m3, . . . \} such that U(s1,2) - U(m2) \geq U(s1,i) - U(mi)+ \delta for
all i \geq 3.

Note that (2.4) and (2.5) imply

am| x| 2 + Um \leq U(x) \leq aM | x| 2 + UM(2.7)

for some am, aM > 0, Um, UM \in \BbbR . In the rest of the paper, if (2.6) holds, then the smallest
and largest elements of \=a are denoted am = mini \=ai and aM = maxi \=ai, respectively, where
\=a = (\=a1, . . . , \=an).

Assumption 2. The temperature Tt satisfies limt\rightarrow \infty Tt = 0.

Before we proceed with further assumptions on the annealing schedule Tt and on the initial
distribution, note that under Assumptions 1 and 2, a log-Sobolev inequality holds.

Proposition 2.1. Under Assumptions 1 and 2, there exist constants t
(0)
ls , \^E, and A

(0)
\ast > 0

and a finite order polynomial r(0) : (0,\infty ) \rightarrow (0,\infty ) with coefficients depending on U such
that for all 0 < h \in C\infty (\BbbR 2n+m), satisfying

\int 
hd\mu Tt

= 1, it holds that\int 
h lnhd\mu Tt

\leq C
(0)
t

\int 
| \nabla h| 2

h
d\mu Tt

,(2.8)

where for t > t
(0)
ls ,

C
(0)
t = r(0)

\Bigl( 
T
 - 1

2

t

\Bigr) 
e
\^ET - 1

t .(2.9)

The proof is deferred to section SM5 of the supplementary material, and the constant \^E
from the above proposition will be used not only in stating the following assumption about
Tt but also in what follows. In the case of Assumption 1(a), \^E can be taken as UM  - Um;
otherwise, for Assumption 1(b) it is the critical depth [48] of U .

Assumption 3. The cooling schedule T\cdot : [0,\infty ) \rightarrow (0,\infty ) is continuously differentiable
and bounded above, and there exists some constant t0 > 1 such that Tt satisfies, for all t > t0,

(i) Tt \geq E(ln t) - 1 for some constant E > \^E \geq 0, where \^E is the constant in Proposi-
tion 2.1;

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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ON THE GLE FOR SIMULATED ANNEALING 145

(ii) | Tt\prime | \leq \widetilde Tt - 1 for some constant \widetilde T > 0.

Assumption 4. The initial law m0 admits a bounded density with respect to the Lebesgue
measure on \BbbR 2n+m, also denoted m0, satisfying

(i) m0 \in \scrC \infty (\BbbR 2n+m),

(ii)
\int | \nabla m0| 2

m0
dxdydz <\infty ,

(iii)
\int 
(| x| 2 + | y| 2 + | z| 2)m0 dxdydz <\infty .

Remark 2.2. Note that (2.5) and (2.6) deviate from [51]. Condition (2.6) is useful for a
self-contained exposition of the log-Sobolev constant in (4.28); it is satisfied, for instance, by
a multivariate Gaussian after a rotation of the x coordinates. The alternative condition that
U is a nondegenerate Morse function allows us to conveniently apply the results of [48], in
which case \^E is given as the critical depth of U .

We present two key propositions.

Proposition 2.3. Under Assumptions 1 and 3, for all t > 0, denote by (XTt , Y Tt , ZTt) a
random variable with distribution \mu Tt

. For any \delta , \alpha > 0, there exists a constant \^A > 0 such
that

\BbbP (U(XTt) > minU + \delta ) \leq \^Ae
 - \delta  - \alpha 

Tt

holds for all t > 0.

Proof. The result follows exactly as in Lemma 3 in [51].

Proposition 2.4. Under Assumptions 1, 3, and 4, for all t > 0, (Xt, Yt, Zt) are well defined
as the unique strong solution to (1.3), \BbbE [| Xt| 2 + | Yt| 2 + | Zt| 2] <\infty , and the law mt admits an
everywhere positive density with respect to the Lebesgue measure on \BbbR 2n+m.

For the proof of Proposition 2.4, see Proposition 4.1 in section 4.
Proposition 2.3 can be thought of as a Laplace principle; Proposition 2.4 asserts that the

process (1.3) does not blow up in finite time and that the noise in the dynamics (1.3) for Zt

spreads throughout the system, that is to Xt and Yt.

Proposition 2.5. Under Assumptions 1, 3, and 4, for any 0 < \alpha \leq 1
2  - \^E

2E , there exists
some constant B > 0 such that for all t \geq 0,\int 

ht lnhtd\mu Tt
\leq B

\biggl( 
1

t

\biggr) 1 - \^E

E
 - 2\alpha 

.(2.10)

The full proof is contained in section 4 and follows from Proposition 4.12. It uses an
approximating sequence of SDEs, in which all of the elements have nondegenerate noise. The
problem is split into the partial time and partial temperature derivatives where, among other
tools, (4.23) and a log-Sobolev inequality are used as in [51] to arrive at a bound that allows
a Gr\"onwall-type argument.

Remark 2.6. Proposition 4.12 is a statement about the distorted entropy H(t), which
bounds the entropy

\int 
ht lnhtd\mu Tt

. In fact, this is achieved in such a way that the bound

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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146 M. CHAK, N. KANTAS, AND G. A. PAVLIOTIS

becomes less sharp as t becomes large but without consequences for our main theorem,
Theorem 2.7.

We proceed with the statement of our main result, using th from Proposition 2.5.

Theorem 2.7. Under Assumptions 1, 2, 3, and 4, for any \delta > 0, as t\rightarrow \infty ,

\BbbP (U(Xt) \leq minU + \delta ) \rightarrow 1.

If in addition Tt = E(ln t) - 1, then for any 0 < \alpha \leq min

\biggl( 
1
2  - \^E

2E , \delta 

\biggr) 
, there exists a

constant C > 0 such that for all t \geq 0,

\BbbP (U(Xt)> minU + \delta ) \leq C

\biggl( 
1

t

\biggr) re(E)

,

where the rate re : ( \^E,\infty ) \rightarrow \BbbR is defined by

re(E) := min

\biggl( 
1 - \^E

E  - 2\alpha 

2
,
\delta  - \alpha 

E

\biggr) 
=

\Biggl\{ 
1
2

\Bigl( 
1 - \^E

E  - 2\alpha 
\Bigr) 

if E <
\^E+2(\delta  - \alpha )
1 - 2\alpha ,

\delta  - \alpha 
E otherwise.

Proof. For all t > 0, denote by (XTt , Y Tt , ZTt) a random variable with distribution \mu Tt
.

For all \delta > 0, with the definition of ht and the triangle inequality, we have

\BbbP (U(Xt) > minU + \delta ) \leq \BbbP (U(XTt) > minU + \delta ) +

\int 
| ht  - 1| d\mu Tt

.

Pinsker's inequality gives \int 
| ht  - 1| d\mu Tt

\leq 
\biggl( 
2

\int 
ht lnhtd\mu Tt

\biggr) 1

2

,(2.11)

which, by Proposition 2.5 together with Proposition 2.3 gives the result.

The cooling schedule Tt = E(ln t) - 1 is optimal with respect to the method of proof for
Proposition 4.12; see Proposition SM8.2. This is consistent with works in simulated annealing,
e.g., [16, 29, 30, 32, 33, 34, 35, 39].

The `mountain-like` shape of re indicates the bottleneck for the rate of convergence at low
and high values of E: a small E means the convergence to the instantaneous equilibrium \mu Tt

is slow, and a large E means the convergence of \mu Tt
to the global minima of U is slow.

Although the focus in Theorem 2.7 is on decaying Tt, it is only for convergence to the global
minimum where Assumption 2 is used. In particular, the convergence result in Proposition 2.5
is valid for temperature schedules that are not converging to zero. This includes the instance
of using a variable temperature in order to tackle the problem of metastability in the sampling
problem.
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ON THE GLE FOR SIMULATED ANNEALING 147

3. Numerical results. Here we investigate the numerical performance of (1.3) in terms of
convergence to a global optimum and of exploration capabilities and make comparisons with
(1.2). The details of the discretizations we use for both sets of dynamics and some details
related to the annealing schedule and parameters can be found in supplementary section
SM7.1. Rates of transition between different regions of the state space can also be found in
supplementary section SM7.2. In section 3.1, for different parameters and cost functions, we
present results for the probability of convergence to the global minimum. We investigate the
effect of E appearing in the annealing schedule and also study the effect of the parameters
in the dynamics (1.2) and (1.3). In particular, we consider different \lambda = \=\lambda \lambda i and A = \mu Ai

in the generalized Langevin dynamics for \=\lambda , \mu > 0; the specific forms of \lambda i and Ai are given
in supplementary section SM7.1. Note that \mu is used also as the friction parameter in (1.2),
which makes notational sense because \mu determines the relative strength of the Ornstein--
Uhlenbeck part of the respective dynamics. In addition, we introduce a coefficient \gamma > 0 in
front of the terms in (1.2) and (1.3) corresponding to the part in the respective generators
given by y \cdot \nabla x  - \nabla xU(x) \cdot \nabla y (see supplementary section SM7.1 for details); unless otherwise
stated, we keep \gamma = 1.

3.1. Performance and tuning. As expected, the tuning parameters E, \=\lambda , and \mu play
significant roles in the performance of the discretizations. As E is common to both (1.2) and
(1.3), we wish to demonstrate that the additional tuning variable for the generalized Langevin
dynamics will improve performance.

We first comment on relative scaling of \=\lambda and \mu based on earlier work for quadratic U
and Tt = T being constant. A quadratic U satisfies the bounds in Assumption 1 and is
of particular interest because analytical calculations are possible for the spectral gap of Lt,
which in turn gives the (exponential) rate of convergence to the equilibrium distribution. It is
observed numerically in [57] that in this case, (1.3) has a spectral gap that is approximately

a function of
\=\lambda 2

\mu . On the other hand, the spectral gap of (1.2) with quadratic U is a function

of \mu thanks to Theorem 3.1 in [49]. For the rest of the comparison, we will use
\=\lambda 2

\mu and \mu 
as variables for the respective discretizations as these quantities appear to have a distinct
effect on the mixing in each case. We mention that these choices of variables also allow
one to adjust the global Lipschitz constant of the drift coefficient for free in the generalized
Langevin equation (1.3) up to that of \nabla U and 1, while in (1.2), this grows as \mu grows.
Therefore one can expect to be able to take a stepsize in the simplest (Euler--Maruyama)
discretization of (1.3) that is at least that of (1.2); note, however, that such benefits related to
the stepsize and the Lipschitz constant disappear for more commonly used schemes as in [41].
A detailed stability analysis is beyond the scope of this paper and in the following comparisons
we do not mention any influence from the numerical discretizations on the continuous time
dynamics.

We will mainly consider the popular Alpine function in 12 dimensions (see supplementary
Table SM2; \nabla U1 here is a subgradient), with additional cases presented in supplementary
section SM7.3, setting \Delta t = 0.02 (see supplementary section SM7.1). Note the Alpine function
does not strictly satisfy Assumption 1, but since drift conditions for Lyapunov functions are
typically available even for weakly growing potentials [18] for the dynamics considered here, the
trajectories are expected (and are observed) to remain, in a loose sense, close to 0. Therefore
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148 M. CHAK, N. KANTAS, AND G. A. PAVLIOTIS

Figure 3.1. Proportion of simulations close to the global minimum for the Alpine function as U . Panels
from top to bottom: Langevin (SM7.2); generalized Langevin (SM7.1) with A = A1, A2, A3, A4. Left: Final
position. Right: time average of last 5000 iterations. We use \gamma = 3 for improving visualisation; similar
comparisons hold for \gamma = 1.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

9/
23

 to
 1

55
.1

98
.3

0.
86

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ON THE GLE FOR SIMULATED ANNEALING 149

we may mollify or modify the behavior at infinity of U to satisfy Assumption 1 with no real
observable consequence.

We will initialize at a point well separated from the global minimum and consider each
method to be successful if, at the end of the simulation, either the endpoint or an average of
the last points is contained within a tolerance region around the global minimum.

In Figure 3.1 we present proportions of 20 independent simulations converging at the
region near the global minimum for U = U1 (see supplementary Table SM2) depending on

E and \mu for the discretization of the Langevin dynamics and on E and
\=\lambda 2

\mu for that of the
generalized Langevin dynamics based on the discussion above. Each simulation is run for
k = 5 \cdot 104 iterations. The left panels of Figure 3.1 are based on the final state, and the
right panels are based on an average of the positions (of X) over the last 5000 iterations.
In this example it is clear empirically that the generalized Langevin dynamics results in a
higher probability of reaching the global minimum. Another interesting observation is that
for the generalized Langevin dynamics, good performance is more robust to the chosen value
of E. In this example, this means that adding an additional tuning variable and scaling \mu 
proportional to \=\lambda 2 make it easier to find a configuration of the parameters E,\mu , \=\lambda that lead to
good performance, compared to using the Langevin dynamics and tuning E,\mu . It's also worth
noting the cases of small E where the generalized Langevin dynamics performs significantly
better than the Langevin dynamics in the top plots and even better than the case of the
same dynamics and larger E. This is an improvement that is not completely encapsulated
by the analytic results here; it indicates that the deterministic dynamics (E = 0) can be
inherently much more successful at climbing out of local minima, which translates into better
convergence rates in the E > 0 cases.

The selectionA = A2, shown as the third row in each column of Figure 3.1 and Figures SM3
and SM4 in the supplementary material, does not satisfy the, probably superfluous, symmetry
assumption as stated in the introduction, but it is noteworthy that the performance varies to
such a large extent for different U and that any optimality of A, which we leave for future
work, could change depending on whether or not the symmetry assumption is in place.

4. Proofs.

4.1. Notation and preliminaries. Unless stated otherwise, \partial t is used to denote the partial
derivative with respect to t with Tt fixed (whenever its operand depends on Tt), whereas

d
dt

denotes the full derivative in t. In addition, \nabla denotes the gradient in \BbbR 2n+m space, and
d\zeta will be used for the Lebesgue measure on \BbbR 2n+m. The notation 1S will be used for the
indicator function on the set S.

For all k > 0, recall the standard mollifier \varphi : \BbbR \rightarrow \BbbR and the associated \varphi k : \BbbR \rightarrow \BbbR to
be given by

\varphi k(x) :=
1

k
\varphi 

\biggl( 
x

k

\biggr) 
, \varphi (x) :=

\left\{     e
1

x2 - 1

\biggl( \int 1
 - 1 e

1

y2 - 1dy

\biggr)  - 1

if  - 1 < x \leq 1,

0 otherwise.

(4.1)

For existence and uniqueness of (1.3), we will use the setting in [63]. Let (\Omega ,\scrF ,\BbbP ) be a
complete probability space, and let \scrF t, t \in [0,\infty ) be a normal filtration. Here (Wt)t\geq 0 is a
standard Wiener process on \BbbR m with respect to \scrF t, t \in [0,\infty ).
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150 M. CHAK, N. KANTAS, AND G. A. PAVLIOTIS

The formal2 L2(\mu Tt
)-adjoint L\ast 

t of Lt is given by

L\ast 
t =  - (y \cdot \nabla x  - \nabla xU(x) \cdot \nabla y) - (z\top \lambda \nabla y  - y\top \lambda \top \nabla z) - T - 1

t z\top A\nabla z +A : D2
z .(4.2)

Let \epsilon \geq 0, and consider the perturbed system

dX\epsilon 
t = Y \epsilon 

t dt+ \epsilon ( - T - 1
t \nabla xU(X\epsilon 

t ) dt+ dW 1
t ),(4.3a)

dY \epsilon 
t =  - \nabla xU(X\epsilon 

t ) dt+ \lambda \top Z\epsilon 
t dt+ \epsilon ( - T - 1

t Y \epsilon 
t dt+ dW 2

t ),(4.3b)

dZ\epsilon 
t =  - \lambda Y \epsilon 

t dt - T - 1
t AZ\epsilon 

t dt+\Sigma dW 3
t ,(4.3c)

with (X\epsilon 
0, Y

\epsilon 
0 , Z

\epsilon 
0) = (X0, Y0, Z0) restricted as in Assumption 4, where W 1

t ,W
2
t ,W

3
t are inde-

pendent n-dimensional and m-dimensional Wiener processes. As before, the law and density
of (4.3a) will be denoted by m\epsilon 

t along with h\epsilon t =
dm\epsilon 

t

d\mu Tt
. Let the linear differential operators Sx

t ,

Sy
t and their respective formal L2-adjoints Sx\top 

t and Sy\top 
t be given by

Sx
t =  - T - 1

t \nabla xU \cdot \nabla x +\Delta x, Sy
t =  - T - 1

t y \cdot \nabla y +\Delta y,

Sx\top 
t = T - 1

t \nabla xU \cdot \nabla x + T - 1
t \Delta xU +\Delta x, Sy\top 

t = T - 1
t y \cdot \nabla y + T - 1

t n+\Delta y.

Note that the formal L2(\mu Tt
)-adjoints of Sx

t and Sy
t coincide with Sx

t and Sy
t , so that the

generator, denoted L\epsilon 
t, associated to (4.3a) and its formal L2(\mu Tt

)-adjoint are given by the
formal operators

L\epsilon 
t = Lt + \epsilon (Sx

t + Sy
t ), L\epsilon \ast 

t = L\ast 
t + \epsilon (Sx

t + Sy
t ).

For any \phi \in \scrC \infty and f : \BbbR 2n+m \rightarrow \BbbR smooth enough,

L\epsilon 
t(\phi (f)) = \phi \prime (f)L\epsilon 

t(f) + \phi \prime \prime (f)\Gamma \epsilon 
t(f),(4.4)

where \Gamma \epsilon 
t is the carr\'e du champ operator for L\epsilon 

t given by

\Gamma \epsilon 
t(f) =

1

2
L\epsilon 
t(f

2) - fL\epsilon 
t(f) = \nabla f \cdot (A\epsilon \nabla f),(4.5)

A\epsilon \in \BbbR (2n+m)\times (2n+m) denotes the matrix with entries

A\epsilon 
ij :=

\left\{     
\epsilon if 1 \leq i = j \leq 2n,

Ai - 2n,j - 2n if 2n+ 1 \leq i, j \leq 2n+m,

0 otherwise,

and Ai,j denotes the (i, j)th entry of A. Let \scrC \infty 
+ = \{ f \in \scrC \infty : f > 0\} . For \Phi : \scrC \infty 

+ \rightarrow \scrC \infty 

differentiable in the sense that for any f \in \scrC \infty 
+ , g \in \scrC \infty ,

(d\Phi (f).g)(\zeta ) := lim
s\rightarrow 0

(\Phi (f + sg))(\zeta ) - (\Phi (f))(\zeta )

s

2See, for instance, Appendix B in [23]. In the present paper the infinitesimal generators and their adjoints
are considered as honest differential operators acting on smooth functions.
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ON THE GLE FOR SIMULATED ANNEALING 151

exists for all \zeta \in \BbbR 2n+m, the \Gamma \Phi operator for L\epsilon \ast 
t is defined by

\Gamma L\epsilon \ast 
t ,\Phi (h) :=

1

2
(L\epsilon \ast 

t \Phi (h) - d\Phi (h).(L\epsilon \ast 
t h)).(4.6)

As is well known, L\epsilon \ast 
t does not satisfy the standard chain and product rules due to the

additional term from the second derivatives in L\epsilon \ast 
t ; straightforward calculations give

L\epsilon \ast 
t (\psi (f)) = \psi \prime (f)L\epsilon \ast 

t f + \psi \prime \prime (f)\nabla f \cdot (A\epsilon \nabla f)(4.7)

L\epsilon \ast 
t (fg) = fL\epsilon \ast 

t (g) + gL\epsilon \ast 
t (f) +\nabla f \cdot (2A\epsilon \nabla g)(4.8)

for all f, g \in \scrC \infty and \psi \in \scrC \infty . Note \nabla f \cdot (A\epsilon \nabla f) and \nabla f \cdot (2A\epsilon \nabla g) are, respectively, the carr\'e
du champ and its symmetric bilinear operator via polarization for L\epsilon \ast 

t .
In addition, for a scalar-valued D1 and a vector-valued operator D2 both acting on scalar-

valued functions, denote the commutator bracket as follows:

[D1, D2]h = (D1(D2h)1  - (D2D1h)1, . . . , D1(D2h)dD2
 - (D2D1h)dD2

)(4.9)

for h \in \scrC \infty , where dD2
\in \BbbN is the number of elements in the output of D2.

4.2. Auxiliary results. For the next result, the space of smooth functions to be used is
that from [14]: let \scrC \infty 

b,c = \scrC \infty 
b,c((0,\infty )\times \BbbR 2n+m) be the space of real-valued functions f : (0,\infty )\times 

\BbbR 2n+m \rightarrow \BbbR such that

1. f is measurable with respect to \scrB ((0,\infty ))\otimes \scrB (\BbbR 2n+m),
2. for all t > 0, f(t, \cdot ) is smooth and f is bounded on compact subsets of \BbbR >0 \times \BbbR 2n+m.

Proposition 4.1. Under Assumptions 1, 3, and 4, for all t > 0 and \epsilon \geq 0, the unique strong
solution (X\epsilon 

t , Y
\epsilon 
t , Z

\epsilon 
t ) to (4.3) is well defined and there exists some constant \kappa > 0 such that

\BbbE [| X\epsilon 
t | 
2 + | Y \epsilon 

t | 
2 + | Z\epsilon 

t | 
2] \leq e\kappa t\BbbE [| X0| 2 + | Y0| 2 + | Z0| 2] <\infty .(4.10)

Furthermore, for all time t > 0, the law of the process (X\epsilon 
t , Y

\epsilon 
t , Z

\epsilon 
t )

\bullet admits an almost-everywhere finite strictly positive density, also denoted m\epsilon 
t, with

respect to the Lebesgue measure on \BbbR 2n+m;
\bullet is the unique integrable distributional solution to\Biggl\{ 

\partial tm
\epsilon 
t = (L\top 

t + \epsilon (Sx\top 
t + Sy\top 

t ))m\epsilon 
t,

m\epsilon 
0 = m0,

(4.11)

where L\top 
t is the formal L2-adjoint of Lt.

Finally, when \epsilon > 0, m\bullet and its partial derivative in time belong in \scrC \infty 
b,c.

For the notion of integrable distributional solutions, see page 338 in [7].

Proof. Existence and uniqueness of an almost surely continuous \scrF t-adapted processes
follows by conditions (2.3) and (2.5) using Theorem 3.1.1 in [63]; in addition, (4.10) holds by
the same theorem. For the claim that the law admits a density, we will apply Theorem 1 in
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152 M. CHAK, N. KANTAS, AND G. A. PAVLIOTIS

[36] for the case of an arbitrary deterministic starting point. First, condition (H1) in the same
article is verified. Take the sets `Kn' to be

Kp =

2n+m\prod 
i=1

[ - p, p]

for all p \in \BbbN . The unique solution to (4.3a) with a deterministic starting point (X0, Y0, Z0) =
(x0, y0, z0) \in \BbbR 2n+m satisfies the same bound (4.10) as before when initializing from m0.
Moreover, for the random sets

\Xi p = \{ s > 0 : (X\epsilon 
u, X

\epsilon 
u, X

\epsilon 
u) \in Kp, 0 \leq u \leq s\} ,

for p \in \BbbN , the solution ( \^X\epsilon 
t ,

\^Y \epsilon 
t ,

\^Z\epsilon 
t ) to the stopped stochastic differential equation

d \^X\epsilon ,p
t = 1\Xi p

(t)( \^Y \epsilon ,p
t dt+ \epsilon ( - T - 1

t \nabla xU( \^X\epsilon ,p
t ) dt+ dW 1

t )),(4.12a)

d \^Y \epsilon ,p
t = 1\Xi p

(t)( - \nabla xU( \^X\epsilon ,p
t ) dt+ \lambda \top \^Z\epsilon ,p

t dt+ \epsilon ( - T - 1
t

\^Y \epsilon ,p
t dt+ dW 2

t )),(4.12b)

d \^Z\epsilon ,p
t = 1\Xi p

(t)( - \lambda \^Y \epsilon ,p
t dt - T - 1

t A \^Z\epsilon ,p
t dt+\Sigma dW 3

t ),(4.12c)

is well defined by Theorem 3.1.1 in [63], and the corresponding bound

\BbbE [| \^X\epsilon ,p
t | 2 + | \^Y \epsilon ,p

t | 2 + | \^Z\epsilon ,p
t | 2] \leq e\kappa t(| x0| 2 + | y0| 2 + | z0| 2) <\infty 

holds. Identifying ( \^X\epsilon ,p
t , \^Y \epsilon ,p

t , \^Z\epsilon ,p
t ) = (X\epsilon 

t\wedge \mathrm{s}\mathrm{u}\mathrm{p}\Xi p
, Y \epsilon 

t\wedge \mathrm{s}\mathrm{u}\mathrm{p}\Xi p
, Z\epsilon 

t\wedge \mathrm{s}\mathrm{u}\mathrm{p}\Xi p
) almost surely yields that3

for any \tau > 0,

\BbbP (inf\{ t \geq 0 : (X\epsilon 
t , Y

\epsilon 
t , Z

\epsilon 
t ) /\in Kp\} \leq \tau ) \leq 1

p2
\BbbE [| X\epsilon 

\tau \wedge \mathrm{s}\mathrm{u}\mathrm{p}\Xi p
| 2 + | Y \epsilon 

\tau \wedge \mathrm{s}\mathrm{u}\mathrm{p}\Xi p
| 2 + | Z\epsilon 

\tau \wedge \mathrm{s}\mathrm{u}\mathrm{p}\Xi p
| 2]

\leq e\kappa \tau 

p2
(| x0| 2 + | y0| 2 + | z0| 2)

and, in particular, that for any \tau > 0,

\BbbP (inf\{ t \geq 0 : (X\epsilon 
t , Y

\epsilon 
t , Z

\epsilon 
t ) /\in Kp\} \leq \tau ) \rightarrow 0 as p\rightarrow \infty .(4.13)

Suppose for contradiction that with nonzero probability, the increasing-in-p random variable
inf\{ t \geq 0 : (X\epsilon 

t , Y
\epsilon 
t , Z

\epsilon 
t ) /\in Kp\} converges to a real value as p \rightarrow \infty . Then there exists a time

\^\tau > 0 such that with nonzero probability,

inf\{ t \geq 0 : (X\epsilon 
t , Y

\epsilon 
t , Z

\epsilon 
t ) /\in Kp\} \leq \^\tau \forall p \in \BbbN ,

which contradicts (4.13). Therefore condition (H1) in [36] holds for (4.3a). Condition (H2)
in the same article holds due to the Kp being compact and to the smoothness assumption
on U . It can be readily checked that the local weak H\"ormander condition (LWH) in [36] also

3Alternatively, Corollary 1.2 of section 5 in [24] can be used.
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ON THE GLE FOR SIMULATED ANNEALING 153

holds at any (t, y0) for any r \in (0, t) and R > 0. Therefore by Theorem 1 in [36], due to our
Assumptions 1 and 3, the solution to (4.3a) with a deterministic starting point \zeta 0 \in \BbbR 2n+m

admits a smooth density p\zeta 0t \in \scrC \infty (\BbbR 2n+m) for all t > 0. Moreover by Theorem 2 in [36], for

any fixed \zeta \in \BbbR 2n+m, \BbbR 2n+m \ni \zeta 0 \mapsto \rightarrow p\zeta 0t (\zeta ) is lower semicontinuous and hence measurable, so
that the \BbbR \cup \{ \pm \infty \} -valued function on \BbbR 2n+m,\int 

\BbbR 2n+m

p\zeta 0t m0(d\zeta 0),(4.14)

is integrable by Fubini's theorem and so is almost-everywhere \BbbR -valued on \BbbR 2n+m. By It\^o's
rule, (4.14) solves (4.11) in the distributional sense. In addition, (4.11) is the unique integrable
solution by Theorem 9.6.3 in [7], which requires for any T > 0 that there exist V \in C2(\BbbR 2n+m)
such that

1. V (x) \rightarrow \infty as | x| \rightarrow \infty , and
2. for some constant CV > 0 and all (x, t) \in \BbbR 2n+m \times (0, T ), it holds that L\epsilon 

tV \geq  - CV V
and | \nabla V | \leq CV V .

Setting V (x, y, z) = 1 + U(x) - Um + | y| 2
2 + | z| 2

2 and calculating

L\epsilon 
t

\biggl( 
U(x) +

| y| 2

2
+

| z| 2

2

\biggr) 
= \epsilon 

\biggl( 
 - 1

Tt
| \nabla xU | 2 +\Delta xU  - 1

Tt
| y| 2 + n

\biggr) 
 - 1

Tt
z\top Az +TrA,(4.15)

it is clear from assumptions (2.3) and (2.5) and either (2.6) or (2.7) on U that these conditions
are satisfied since T is finite; therefore there is a unique integrable solution to (4.11) in the
sense of the definition on page 338 in [7]. The expression in (4.14) is thus the density for the
law of the solution to (4.3a) with initial law m0 at time t.

For \epsilon > 0, the time-dependent law of (X\epsilon 
t , Y

\epsilon 
t , Z

\epsilon 
t ) and its partial derivative with respect

to time belongs in \scrC \infty 
b,c by Theorem 1.1 in [14] because (4.14) satisfies (4.11).

For positivity of the density where \epsilon = 0, the steps in Lemma 3.4 of [47] involving the
solution to an associated control problem can be followed. A detailed proof can be found in
section SM1 of the supplementary material.

Remark 4.2. For smoothness of the density, the results in [70] can also be considered, but
there the assumptions are slightly mismatched. First, the statement assumes boundedness of
\partial \alpha V for any multi-index \alpha , where V would in this case be any of the coefficients appearing in
(1.3), which fails for | \alpha | = 0. Second in case of (A.1) in [70], condition (i) fails, and in the case
of (A.2), condition (i) fails due to V0. Both of these assumptions seem possibly unnecessary
in the proofs, but we avoid this in favor of the more recent work [36].

The results below up to Proposition 4.12 are directed towards showing dissipation of a
distorted entropy as required in the proof of Theorem 2.7.

4.3. Lyapunov function.

Lemma 4.3. Under Assumptions 1, 3, and 4, there exist constants a, b, c, d, \delta > 0 indepen-
dent of \epsilon such that R : \BbbR 2n+m+1 \rightarrow \BbbR defined as

R(x, y, z, Tt) := U(x) +
| y| 2

2
+

| z| 2

2
+ \delta Tt

\biggl( 
y\top \lambda  - 1z +

1

2
x \cdot y

\biggr) 
(4.16)
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154 M. CHAK, N. KANTAS, AND G. A. PAVLIOTIS

satisfies
a(| x| 2 + | y| 2 + | z| 2) - d \leq R(x, y, z, Tt) \leq b(| x| 2 + | y| 2 + | z| 2) + d,(4.17)

and there exists 0 < \epsilon \prime \leq 1 for which \epsilon \leq \epsilon \prime implies

L\epsilon 
tR \leq  - cTtR+

d

Tt
.(4.18)

Proof. By the quadratic assumption (2.7) on U and boundedness Assumption 3 on Tt, it is
clear that there exists \^\delta > 0 such that the first statement (4.17) holds with d = max(| Um| , | UM | )
for all \delta \in (0, \^\delta ]. Inequality (4.18) follows by a calculation using our assumptions on U , Tt
and applications of Young's inequality. A detailed proof can be found in section SM2 of the
supplementary material.

Lemma 4.4. Under Assumptions 1, 3, and 4 and for 0 \leq \epsilon \leq \epsilon \prime , the solution (X\epsilon 
t , Y

\epsilon 
t , Z

\epsilon 
t )

to (4.3) is such that \BbbE [R(X\epsilon 
t ,Y

\epsilon 
t ,Z

\epsilon 
t ,Tt)]

(\mathrm{l}\mathrm{n}(e+t))2 is bounded uniformly in time t and in \epsilon .

Proof. See section SM3 in the supplementary material.

Corollary 4.5. Under Assumptions 1, 3, and 4 and for 0 \leq \epsilon \leq \epsilon \prime , the solution (X\epsilon 
t , Y

\epsilon 
t , Z

\epsilon 
t )

to (4.3) is such that \BbbE [| X\epsilon 
t | 

2+| Y \epsilon 
t | 

2+| Z\epsilon 
t | 

2]
(\mathrm{l}\mathrm{n}(e+t))2 is bounded uniformly in time and in \epsilon .

Proof. By the lower bound on R in (4.17),

\BbbE [| X\epsilon 
t | 
2 + | Y \epsilon 

t | 
2 + | Z\epsilon 

t | 
2] \leq \BbbE 

\biggl[ 
R(X\epsilon 

t , Y
\epsilon 
t , Z

\epsilon 
t , Tt) + d

a

\biggr] 
,

which concludes the proof by Lemma 4.4.

4.4. Form of distorted entropy. For \epsilon \geq 0, let H\epsilon (t) be the distorted entropy

H\epsilon (t) =

\int \biggl( 
| 2\nabla xh

\epsilon 
t + 8S0(\nabla yh

\epsilon 
t + \lambda  - 1\nabla zh

\epsilon 
t)| 

2

h\epsilon t
+

| \nabla yh
\epsilon 
t + S1\lambda 

 - 1\nabla zh
\epsilon 
t| 
2

h\epsilon t

+ \beta (T - 1
t )h\epsilon t ln(h

\epsilon 
t)

\biggr) 
d\mu Tt

,(4.19)

where S0, S1 > 0 are the constants

S0 := (1 + | D2
xU | 2\infty )

1

2 , S1 := 2 + 28S2
0 + 1024S4

0 ,(4.20)

and \beta is a second order polynomial (see (4.21) and the end of the proof for Proposition 4.7)
to be determined by Proposition 4.7 and independent of \epsilon .

Remark 4.6. This particular expression for H is not necessarily the best possible choice.
However, the above is a working expression, and optimality is left as future work; see also [60].

Using Lemma SM4.1 from the supplementary material, the following proposition shows
that the distorted entropy (4.19) is useful .

Proposition 4.7. There exist \beta 0, \beta 1, \beta 2 > 0 independent of \epsilon such that for \beta : \BbbR \rightarrow \BbbR given
by

\beta (x) := 1 + \beta 0 + \beta 1x+ \beta 2x
2,(4.21)
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ON THE GLE FOR SIMULATED ANNEALING 155

the operator \Psi Tt
,

\Psi Tt
(h) :=

| 2\nabla xh+ 8S0(\nabla yh+ \lambda  - 1\nabla zh)| 
2

h
+

| \nabla yh+ S1\lambda 
 - 1\nabla zh| 

2

h
+ \beta (T - 1

t )h ln(h),(4.22)

for h \in \scrC \infty 
+ satisfies

\Gamma L\epsilon \ast 
t ,\Psi Tt

(h) \geq | \nabla h| 2

h
(4.23)

for all 0 \leq \epsilon \leq 1.

Remark 4.8. \beta 0, \beta 1, \beta 2 depend on \^\lambda 2 := max(| \lambda | 2, | \lambda \top | 2, | \lambda  - 1| 2, | \lambda  - 1| | \lambda \top | ), | D2
xU | \infty , and

| A| . H satisfying property (4.23) is crucial for proving dissipation in Proposition 4.12.

Proof. Let \Phi 1,\Phi 2,\Phi 3 be the terms in \Psi Tt
,

\Phi 1(h) :=
| 2\nabla xh+ 8S0(\nabla yh+ \lambda  - 1\nabla zh)| 

2

h
, \Phi 2(h) :=

| \nabla yh+ S1\lambda 
 - 1\nabla zh| 

2

h
, \Phi 2(h) := h ln(h).

(4.24)

Note that the \Gamma \Phi operator is linear in the \Phi argument by linearity of L\epsilon \ast 
t , so that (4.23)

can be written as \Gamma L\epsilon \ast 
t ,\Phi 1

(h) + \Gamma L\epsilon \ast 
t ,\Phi 2

(h) + \beta (T - 1
t )\Gamma L\epsilon \ast 

t ,\Phi 3
(h) \geq | \nabla h| 2

h . Consider \Gamma L\epsilon \ast 
t ,\Phi 3

first.
Using the definition (4.6) of \Gamma L\epsilon \ast 

t ,\Phi , the product and chain rule (4.8) and (4.7) for L\epsilon \ast 
t , and

the coercivity property of A, we get

\Gamma L\epsilon \ast 
t ,\Phi 3

(h) =
1

2

\biggl( 
(lnh+ 1)L\epsilon \ast 

t h+
1

h
\nabla h \cdot (A\epsilon \nabla h) - (1 + lnh)L\epsilon \ast 

t h

\biggr) 
=

1

2h
\nabla h \cdot (A\epsilon \nabla h) \geq 1

2h
(\epsilon | \nabla xh| 2 + \epsilon | \nabla yh| 2 +Ac| \nabla zh| 2).(4.25)

Since the goal is to show (4.23), the availability of (4.25) counteracts any negative con-
tributions in the z-derivative term, and any order \epsilon contributions in the x- and y-derivatives,
from \Gamma L\epsilon \ast 

t ,\Phi 1
and \Gamma L\epsilon \ast 

t ,\Phi 2
; this counterweight materializes as \beta .

For \Gamma L\epsilon \ast 
t ,\Phi 1

and \Gamma L\epsilon \ast 
t ,\Phi 2

, S0 > 0 and S1 > 0 as in (4.20) are used. Detailed derivations for
the following inequalities are explicitly stated in section SM4 of the supplementary material;
by use of Lemma SM4.1, repeated applications of Young's inequality, and the definition of \^\lambda 
(see Remark 4.8), it holds that

h\Gamma L\epsilon \ast 
t ,\Phi 2

(h) >  - | \nabla xh| 2 + (1 + 28S2
0 + 1024S4

0)| \nabla yh| 2

 - 1

2
\^\lambda 2
\biggl( 
3 + 2S1 + S2

1 + 3S4
1 + S2

1T
 - 1
t

\biggl( 
| A| + \epsilon 

2

\biggr) 
+ 3S2

1T
 - 2
t | A| 2

\biggr) 
| \nabla zh| 2.(4.26)

The last term \Gamma L\epsilon \ast 
t ,\Phi 1

compensates for the negative x-derivative:

h\Gamma L\epsilon \ast 
t ,\Phi 1

(h) \geq 
\Bigl( 
2 - 4(2 + (1 + 4S2

0)S0)\epsilon T
 - 1
t

\Bigr) 
| \nabla xh| 2 +

\Bigl( 
S2
0( - 28 - 1024S2

0)

 - 8S0(1 + 5S0)\epsilon T
 - 1
t

\Bigr) 
| \nabla yh| 2  - 

\Bigl( 
S2
0
\^\lambda 2(160 + 128T - 2

t | A| 2 + 1024S2
0)

+ 8S0\^\lambda 
2(1 + 4S0)\epsilon T

 - 1
t

\Bigr) 
| \nabla zh| 2.
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156 M. CHAK, N. KANTAS, AND G. A. PAVLIOTIS

Matching powers in T - 1
t to take

\beta 0 =
1

Ac

\biggl( 
S2
0
\^\lambda 2(160 + 1024S2

0) +
1

2
\^\lambda 2(3 + 2S1 + S2

1 + 3S4
1)

\biggr) 
,

\beta 1 =
1

Ac

\biggl( 
4(2 + (1 + 4S2

0)S0) + 8S0(1 + 5S0) + 8S0\^\lambda 
2(1 + 4S0) +

1

2
\^\lambda 2
\biggl( 
S2
1

\biggl( 
| A| + 1

2

\biggr) \biggr) \biggr) 
,

\beta 2 =
1

Ac

\biggl( 
128S2

0
\^\lambda 2| A| 2 + 3

2
\^\lambda 2S2

1 | A| 
2

\biggr) 
,

using \epsilon \leq 1 and putting together the bounds for \Gamma L\epsilon \ast 
t ,\Phi 3

,\Gamma L\epsilon \ast 
t ,\Phi 2

,\Gamma L\epsilon \ast 
t ,\Phi 1

gives (4.23).

4.5. Log-Sobolev inequality.

Proposition 4.9. Under Assumptions 1 and 2 and for \epsilon \geq 0, there exist constants tls, A\ast > 0
and a finite order polynomial r : (0,\infty ) \rightarrow (0,\infty ) with coefficients depending on U and \lambda but
independent of \epsilon such that the distorted entropy (4.19) satisfies

H\epsilon (t) \leq Ct

\int 
| \nabla h\epsilon t| 

2

h\epsilon t
d\mu Tt

,(4.27)

where for t > tls,

Ct = A\ast + r
\Bigl( 
T
 - 1

2

t

\Bigr) 
e
\^ET - 1

t .(4.28)

Proof. Given Proposition 2.1, only the first two terms in the integrand of H\epsilon (t) are left,
which leads directly to the inequality corresponding to A\ast .

4.6. Proof of dissipation. Lemma 4.10 constructs a sequence of compactly supported
functions that are multiplied with the integrand in H(t). It gives sufficient properties for
retrieving a bound on \partial tH(t) after passing the derviative under the integral sign and passing
the limit in the sequence of approximating initial densities. The key sufficient property turns
out to be (4.29).

Let \varphi k be given as in (4.1), and let \nu k := \varphi k \ast 1( - \infty ,k2] \leq 1 for k > 0.

Lemma 4.10. For k > 0, define the smooth functions \eta k : \BbbR 2n+m+1 \rightarrow \BbbR ,

\eta k = \nu k( - ln(R+ 2d)),

where d > 0 is the same as in (4.17). The following properties hold:

1. \eta k is compactly supported;
2. \eta k converges to 1 pointwise as k \rightarrow \infty ;
3. for some constant C > 0 independent of k, t, and 0 \leq \epsilon \leq min(1, \epsilon \prime ),

L\epsilon 
t\eta k \leq CT - 1

t

k
.(4.29)

Proof. By the quadratic assumption (2.7) on U and the bound (4.17) on R, R grows
quadratically, and in particular for an arbitrarily large constant R(0) > 0, a compact set K

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

9/
23

 to
 1

55
.1

98
.3

0.
86

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ON THE GLE FOR SIMULATED ANNEALING 157

can be chosen such that R > R(0) in \BbbR 2n+m \setminus K; along with the support of \nu m being bounded
below, the first statement is clear. The second statement is also trivial to check. The third
statement is an application of (4.4), (4.5), and (4.18); detailed calculations can be found in
section SM2 in the supplementary material.

Remark 4.11. Lemma 4.10 is different from Lemma 16 in [51]. We believe the first few
equations in the proof of Lemma 16 in [51] contain a sign error; as a consequence the proofs
in [51] beyond that point require significant modifications. Here we address this by modifying
the truncation arguments we require, proving (4.29) instead of Lemma 17 of [51]. In addition,
the finiteness of the distorted entropy is required. This is the reason for using the perturbed
dynamics in (4.3a), so that Theorem 7.4.1 in [7] can be used.

The proof of Proposition 4.12 follows in the direction of Lemma 19 of [51].

Proposition 4.12. Under Assumption 1, 2, 3, and 4 and for 0 < \epsilon \leq min(1, \epsilon \prime ), it holds

that for any 0 < \alpha \leq 1
2(1  - \^E

E ), there exists some constant B > 0 and some tH > 0 both
independent of \epsilon , such that for all t > tH ,

H\epsilon (t) \leq B

\biggl( 
1

t

\biggr) 1 - \^E

E
 - 2\alpha 

.(4.30)

Proof. Consider for t \geq 0 the auxiliary distorted entropies

H\epsilon 
k(t) =

\int 
\eta k

\biggl( 
| 2\nabla xh

\epsilon 
t + 8S0(\nabla yh

\epsilon 
t + \lambda  - 1\nabla zh

\epsilon 
t)| 

2

h\epsilon t
+

| \nabla yh
\epsilon 
t + S1\lambda 

 - 1\nabla zh
\epsilon 
t| 
2

h\epsilon t

+ \beta (T - 1
t )h\epsilon t ln(h

\epsilon 
t)

\biggr) 
d\mu Tt

=

\int 
\eta k(\Phi 1(h

\epsilon 
t) + \Phi 2(h

\epsilon 
t) + \beta (T - 1

t )\Phi 3(h
\epsilon 
t))d\mu Tt

=

\int 
\eta k\Psi Tt

(h\epsilon t)d\mu Tt
,(4.31)

where we recall that h\epsilon t = m\epsilon 
t\mu 

 - 1
Tt

, \Phi 1, \Phi 2, \Phi 3 are as in (4.24), and \eta k is as in Lemma 4.10.
Due to the appearance of \eta k, the function H

\epsilon 
k is differentiable, and the order between the time

derivative and the integral can be exchanged:

d

dt
H\epsilon 

k(t) =

\int 
\eta k\partial t(\Psi Tt

(h\epsilon t))d\mu Tt
+ Tt

\prime 
\int 
\eta k\partial Tt

(\Psi Tt
(h\epsilon t)\mu Tt

)dxdydz.(4.32)

The terms will be considered separately. Since m\epsilon 
t is the density of the law of (4.3a) and L\epsilon \ast 

t

is the L2(\mu Tt
)-adjoint of L\epsilon 

t, by It\^o's rule for smooth compactly supported f on \BbbR 2n+m,\int 
f\partial tm

\epsilon 
t = \partial t

\int 
fm\epsilon 

t =

\int 
L\epsilon 
tfm

\epsilon 
t =

\int 
L\epsilon 
tf
m\epsilon 

t

\mu Tt

\mu Tt
=

\int 
fL\epsilon \ast 

t

\biggl( 
m\epsilon 

t

\mu Tt

\biggr) 
\mu Tt

.(4.33)

The first term in (4.32) is then bounded as\int 
\eta k\partial t(\Psi Tt

(h\epsilon t))d\mu Tt
=

\int 
\eta kd\Psi Tt

(h\epsilon t).\partial th
\epsilon 
td\mu Tt

=

\int 
\eta kd\Psi Tt

(h\epsilon t).
\partial tm

\epsilon 
t

\mu Tt

d\mu Tt

=

\int 
\eta kd\Psi Tt

(h\epsilon t).L
\epsilon \ast 
t h

\epsilon 
td\mu Tt
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158 M. CHAK, N. KANTAS, AND G. A. PAVLIOTIS

=  - 
\int 

2\eta k\Gamma L\epsilon \ast 
t ,\Psi Tt

(h\epsilon t)d\mu Tt
+

\int 
\eta kL

\epsilon \ast 
t (\Psi Tt

(h\epsilon t))d\mu Tt

=  - 
\int 

2\eta k\Gamma L\epsilon \ast 
t ,\Psi Tt

(h\epsilon t)d\mu Tt
+

\int 
L\epsilon 
t\eta k

\Bigl( 
\Psi Tt

(h\epsilon t) + \beta (T - 1
t )e - 1

\Bigr) 
d\mu Tt

\leq  - 2

\int 
\eta k

| \nabla h\epsilon t| 
2

h\epsilon t
d\mu Tt

+
CT - 1

t

k

\int \Bigl( 
\Psi Tt

(h\epsilon t) + \beta (T - 1
t )e - 1

\Bigr) 
d\mu Tt

(4.34)

using Proposition 4.7 and Lemma 4.10, where \beta (T - 1
t )e - 1

\int 
L\epsilon \ast 
t \eta kd\mu Tt

= 0 is added to enforce

\beta (T - 1
t )(h\epsilon t lnh

\epsilon 
t + e - 1) \geq 0, so that \Psi Tt

(h\epsilon t) + \beta (T - 1
t )e - 1 \geq 0.

For the second term in (4.32), consider the \Phi 1 and \Phi 2 terms in the integrand \eta k\partial Tt
(\Psi Tt

\mu Tt
) =

\eta k\partial Tt
((\Phi 1 +\Phi 2 + \beta (T - 1

t )\Phi 3)\mu Tt
) of Hk(t) with the forms

\partial Tt
(\Phi i(h

\epsilon 
t)\mu Tt

) = \partial Tt
| Mi\nabla ln

\biggl( 
m\epsilon 

t

\mu Tt

\biggr) 
| 
2

m\epsilon 
t, i = 1, 2,

for the corresponding matrices M1 and M2 depending on S0, S1, and \lambda . Applying the partial
derivative in Tt,

\partial Tt
(\Phi i(h

\epsilon 
t)\mu Tt

) =  - 2(Mi\nabla lnh\epsilon t \cdot Mi\nabla \partial Tt
ln\mu Tt

)m\epsilon 
t,(4.35)

and using definition (2.2) for \mu Tt
and ZTt

=
\int 
\BbbR 2n+m e

 - 1

Tt
(U(x)+ | y| 2

2
+ | z| 2

2
)
dxdydz, gives

\partial Tt
ln\mu Tt

= \mu  - 1
Tt
\partial Tt

\biggl( 
Z - 1
Tt
e
 - 1

Tt
(U(x)+ | y| 2

2
+ | z| 2

2
)
\biggr) 

= \mu  - 1
Tt

\Biggl( 
 - Z - 2

Tt
\partial Tt

ZTt
+
Z - 1
Tt

T 2
t

\Biggl( 
U(x) +

| y| 2

2
+

| z| 2

2

\Biggr) \Biggr) 
e
 - 1

Tt
(U(x)+ | y| 2

2
+ | z| 2

2
)

= \mu  - 1
Tt

\Biggl( 
 - \mu Tt

Z - 1
Tt
\partial Tt

ZTt
+
\mu Tt

T 2
t

\Biggl( 
U(x) +

| y| 2

2
+

| z| 2

2

\Biggr) \Biggr) 

=  - 
\int 

1

T 2
t

\Biggl( 
U(x) +

| y| 2

2
+

| z| 2

2

\Biggr) 
d\mu Tt

+
1

T 2
t

\Biggl( 
U(x) +

| y| 2

2
+

| z| 2

2

\Biggr) 
.(4.36)

Note that the exchange in differentiation and integration is justified by the quadratic bounds
(2.7) on U . Integrating by parts in y and z (or simply using formulae for second moments)
gives n+m

2Tt
for the | y| 2 and | z| 2 terms in the first integral. The integral over U can be dealt

with using assumptions (2.4) and (2.5); more specifically,\int 
Ud\mu Tt

\leq 
\int 

(a2M | x| 2 + UM )d\mu Tt
\leq 
\int \biggl( 

a2M
r1

(\nabla U \cdot x+ Ug) + UM

\biggr) 
d\mu Tt

=
a2M
r1

(nTt + Ug) + UM\int 
Ud\mu Tt

\geq 
\int 

(a2m| x| 2 + Um)d\mu Tt
\geq 
\int \biggl( 

a2m
r2 + 1

(| \nabla U | 2  - Ug + | x| 2) + Um

\biggr) 
d\mu Tt

\geq 
\int \biggl( 

a2m
r2 + 1

(2\nabla U \cdot x - Ug) + Um

\biggr) 
d\mu Tt

=
a2m

r2 + 1
(2nTt  - Ug) + Um.
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ON THE GLE FOR SIMULATED ANNEALING 159

Plugging into (4.36) gives

p1

\Bigl( 
T - 1
t

\Bigr) 
\leq \partial Tt

ln\mu Tt
 - 1

T 2
t

\Biggl( 
U(x) +

| y| 2

2
+

| z| 2

2
 - n+m

2
Tt

\Biggr) 
\leq p2

\Bigl( 
T - 1
t

\Bigr) 
,(4.37)

where p1(x) =  - a2
Mn
r1
x - 

\Bigl( 
a2
MUg

r1
+UM

\Bigr) 
x2 and p2(x) =  - 2a2

mn
r2+1 x+

\Bigl( 
a2
mUg

r2+1  - Um

\Bigr) 
x2.Substituting

(4.36) back into (4.35), we get

\partial Tt
(\Phi i(h

\epsilon 
t)\mu Tt

) \leq 

\Biggl( 
| Mi\nabla lnh\epsilon t| 

2 + T - 4
t | Mi\nabla 

\biggl( 
U(x) +

| y| 2

2
+

| z| 2

2

\biggr) 
| 
2
\Biggr) 
m\epsilon 

t

\leq \Phi i(h
\epsilon 
t)\mu Tt

+ \widetilde CT - 4
t

\Bigl( 
1 + | x| 2 + | y| 2 + | z| 2

\Bigr) 
m\epsilon 

t(4.38)

for a constant \widetilde C \geq 0 independent of k and \epsilon by the quadratic assumption (2.5) on | \nabla xU | 2 and
\eta m \leq 1.

For the last integrand in the last term of the right-hand side of (4.32), namely the derivative
over \Phi 3(h

\epsilon 
t)\mu Tt

= m\epsilon 
t

\mu Tt
ln m\epsilon 

t

\mu Tt
\mu Tt

, the left inequality of (4.37) gives

\partial Tt
(\beta (T - 1

t )\Phi 3(h
\epsilon 
t)\mu Tt

)

(4.39)

=  - T - 2
t \beta \prime (T - 1

t )\Phi 3(h
\epsilon 
t)\mu Tt

+ \beta (T - 1
t )\partial Tt

ln
m\epsilon 

t

\mu Tt

m\epsilon 
t

=  - T - 2
t \beta \prime (T - 1

t )(\Phi 3(h
\epsilon 
t) + e - 1)\mu Tt

+ T - 2
t \beta \prime (T - 1

t )e - 1\mu Tt
 - \beta (T - 1

t )\partial Tt
ln\mu Tt

m\epsilon 
t

\leq T - 2
t \beta \prime (T - 1

t )e - 1\mu Tt
+ \beta (T - 1

t )| p1
\Bigl( 
T - 1
t

\Bigr) 
+

1

T 2
t

\biggl( 
 - n+m

2
Tt+ UM+ aM | x| 2+ | y| 2

2
+
| z| 2

2

\biggr) 
| m\epsilon 

t,

where in the last step \Phi 3 + e - 1 \geq 0, \beta 1, \beta 2 > 0, and (2.7) have been used. Putting together
the bounds (4.38) and (4.39) and applying Corollary 4.5 yields\int 

\eta k\partial Tt
(\Psi Tt

(h\epsilon t)\mu Tt
)d\zeta \leq q

\Bigl( 
T - 1
t

\Bigr) \Bigl( 
H\epsilon 

k(t) + \BbbE 
\Bigl[ 
1 + | X\epsilon 

t | 
2 + | Y \epsilon 

t | 
2 + | Z\epsilon 

t | 
2
\Bigr] \Bigr) 

\leq p
\Bigl( 
T - 1
t

\Bigr) \Bigl( 
H\epsilon 

k(t) +
\^C
\Bigr) 
,(4.40)

where p and q are some finite order polynomials with nonnegative coefficients, \^C > 0, both
independent of k and \epsilon .

Returning to (4.32), collecting (4.34) and (4.40), and then integrating from any s \geq 0 to
t > s gives

H\epsilon 
k(t) - H\epsilon 

k(s) \leq 2

\int t

s

\biggl( 
 - 
\int 
\eta k

| \nabla h\epsilon u| 
2

hu
d\mu Tu

+
CT - 1

u

k
(H\epsilon (u) + \beta (T - 1

u )e - 1)

+ | Tu\prime | p
\Bigl( 
T - 1
u

\Bigr) \Bigl( 
H\epsilon 

k(u) +
\^C
\Bigr) \biggr) 

du.(4.41)
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160 M. CHAK, N. KANTAS, AND G. A. PAVLIOTIS

Fix an arbitrary S > 0. By the square integrability theorem, Theorem 7.4.1 in [7], the
log-Sobolev inequality (4.27), (2.5), and the finiteness of second moments (4.10), it holds that\int S

0
H\epsilon (u)du \leq 

\int S

0
Cu

\int 
| \nabla h\epsilon u| 

2

h\epsilon u
d\mu Tu

du

=

\int S

0
Cu

\int 
| \nabla m\epsilon 

u + T - 1
u m\epsilon 

u(\nabla xU + y + z)| 2

m\epsilon 
u

dxdydzdu <\infty .(4.42)

Then in (4.41) the k \rightarrow \infty limit can be taken. Due to (4.42), the term denominated by k
goes to zero. Applying Fatou's lemma (adding and subtracting \beta (T - 1

t )e - 1
\int 
\eta md\mu Tt

wherever
necessary for positivity) and using \eta m \leq 1, it holds that for s < t,

H\epsilon (t) - H\epsilon (s) \leq  - 2

\int t

s

\int 
| \nabla h\epsilon u| 

2

h\epsilon u
d\mu Tu

du+

\int t

s
| Tu\prime | p

\Bigl( 
T - 1
u

\Bigr) \Bigl( 
H\epsilon (u) + \^C

\Bigr) 
du,(4.43)

and for4 tls < s < t,

H\epsilon (t) - H\epsilon (s) \leq 
\int t

s

\biggl( \Bigl( 
| Tu\prime | p

\Bigl( 
T - 1
u

\Bigr) 
 - 2C - 1

u

\Bigr) 
H\epsilon (u) + \^C| Tu\prime | p

\Bigl( 
T - 1
u

\Bigr) \biggr) 
du.(4.44)

Since t\alpha \gg (ln t)
\rho 

2 for any \rho , \alpha > 0 and large enough t > 0, for any \alpha > 0, there exists
t1 > max(tls, t0), where t0 is as in Assumption 3, and c1, c2 > 0 are independent of k, \epsilon such
that for all t \geq t1,

| Tt\prime | p
\Bigl( 
T - 1
t

\Bigr) 
\leq c1

\biggl( 
1

t

\biggr) 1 - \alpha 

,(4.45)

 - 2C - 1
t \leq  - c2

\biggl( 
1

t

\biggr) \^E

E
+\alpha 

,(4.46)

where the assumption Tt \geq E
\mathrm{l}\mathrm{n} t and (4.28) have been used. Using further that E > \^E by

Assumption 3, then taking \alpha < 1
2(1 - 

\^E
E ), there exists t2 \geq t1 independent of \epsilon such that for

t \geq t2,

| Tt\prime | p
\Bigl( 
T - 1
t

\Bigr) 
 - 2C - 1

t \leq  - c3
\biggl( 
1

t

\biggr) \^E

E
+\alpha 

,(4.47)

and from (4.44), for t2 < s < t,

H\epsilon (t) - H\epsilon (s) \leq 
\int t

s

\biggl( 
 - c3

\biggl( 
1

u

\biggr) \^E

E
+\alpha 

H\epsilon (u) + \^Cc1

\biggl( 
1

u

\biggr) 1 - \alpha \biggr) 
du.(4.48)

To obtain the corresponding differential inequality for all time, (4.48) can be divided by t - s
and mollified with (4.1) for 0 < k < 1, and the limit s\rightarrow t can be taken:

lim
\^\epsilon \rightarrow 0

1

2\^\epsilon 

\int t+1

t - 1
\varphi k(t - u)(H\epsilon (u+ \^\epsilon ) - H\epsilon (u - \^\epsilon ))du

\leq lim
\^\epsilon \rightarrow 0

1

2\^\epsilon 

\int t+1

t - 1
\varphi k(t - u)

\int u+\^\epsilon 

u - \^\epsilon 

\biggl( 
 - c3

\biggl( 
1

u\prime 

\biggr) \^E

E
+\alpha 

H\epsilon (u\prime ) + \^Cc1

\biggl( 
1

u\prime 

\biggr) 1 - \alpha \biggr) 
du\prime du

4tls from Proposition 4.9.
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ON THE GLE FOR SIMULATED ANNEALING 161

\leq 
\int t+1

t - 1
\varphi k(t - u) lim

\^\epsilon \rightarrow 0

1

2\^\epsilon 

\int u+\^\epsilon 

u - \^\epsilon 

\biggl( 
 - c3

\biggl( 
1

u\prime 

\biggr) \^E

E
+\alpha 

H\epsilon (u\prime ) + \^Cc1

\biggl( 
1

u\prime 

\biggr) 1 - \alpha \biggr) 
du\prime du

=

\int t+1

t - 1
\varphi k(t - u)

\biggl( 
 - c3

\biggl( 
1

u

\biggr) \^E

E
+\alpha 

H\epsilon (u) + \^Cc1

\biggl( 
1

u

\biggr) 1 - \alpha \biggr) 
du

for t \geq t2 + 2, where the second-to-last line follows from Fatou's lemma and dominated
convergence (adding and subtracting \beta (T - 1

u\prime 
)e - 1 to/from H\epsilon for Fatou); the last equality

follows by the Lebesgue differentiation theorem. Therefore

d

dt
(\varphi k\ast H\epsilon )(t) \leq  - c3

\biggl( 
1

t+ 1

\biggr) \^E

E
+\alpha 

(\varphi k\ast H\epsilon )(t) + \^C \prime 
\biggl( 

1

t - 1

\biggr) 1 - \alpha 

for some constant \^C \prime > 0 independent of k, \epsilon . Setting

\gamma 1(t) := c3

\biggl( 
1

t+ 1

\biggr) \^E

E
+\alpha 

, \gamma 2(t) := \^C \prime 
\biggl( 

1

t - 1

\biggr) 1 - \alpha 

and following the argument as per [51] from Lemma 6 in [50], there exists t3 \geq t2 + 2,
c4, c5, c6 > 0 independent of k and \epsilon such that for t \geq t3,

d

dt

\biggl( 
\gamma 2
\gamma 1

\biggr) 
(t) =

(t+ 1)
\^E

E
+\alpha 

(t - 1)1 - \alpha 

\biggl( 
c4
t+ 1

 - c5
t - 1

\biggr) 
\geq  - c6t - 1,

so that there exists t4 \geq t3 independent of k and \epsilon such that for t \geq t4,

d

dt

\biggl( 
\varphi k\ast H\epsilon  - 2\gamma 2

\gamma 1

\biggr) 
(t) \leq  - \gamma 1(t)

\biggl( 
\varphi k\ast H\epsilon (t) - 2\gamma 2(t)

\gamma 1(t)

\biggr) 
,

and consequently,

\varphi k\ast H\epsilon (t) \leq 2\gamma 2(t)

\gamma 1(t)
+ \varphi k\ast H\epsilon (t4)e

 - 
\int t

t4
\gamma 1(u)du.(4.49)

Finally, from (4.48) (adding and subtracting \beta (T - 1

u\prime 
)e - 1 to/from H\epsilon ), it holds that for t \geq 

t4 + 2,

H\epsilon (t) =

\int t

t - 2k
\varphi k(t - k  - s)dsH\epsilon (t) \leq 

\int t

t - 2k
\varphi k(t - k  - s)H\epsilon (s)ds+ \~g(2k)(4.50)

for some \~g : \BbbR \rightarrow \BbbR satisfying \~g(k\prime ) \rightarrow 0 as k\prime \rightarrow 0, so that (4.49) yields

H\epsilon (t) \leq 2\gamma 2(t - k)

\gamma 1(t - k)
+ \varphi k\ast H\epsilon (t4)e

 - 
\int t - k

t4
\gamma 1(u)du + \~g(2k),

where \varphi k\ast H\epsilon (t4) can be bounded independently of k in a similar spirit to (4.50), and taking
k \rightarrow 0 concludes the proof.

Remark 4.13. The annealing schedule Tt is chosen to satisfy the relationship (4.47)
between C - 1

t and | Tt\prime | p(T - 1
t ).
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162 M. CHAK, N. KANTAS, AND G. A. PAVLIOTIS

4.7. Degenerate noise limit. After taking advantage of the square integrability theorem,
Theorem 7.4.1 in [7], we see that for the case with a nondegenerate diffusion term in the proof
of Proposition 4.12, the \epsilon \rightarrow 0 limit is taken to obtain the same dissipation inequality in this
section.

Proof of Proposition 2.5. From (4.43), for any 0 \leq s < t and 0 < \epsilon \leq min(1, \epsilon \prime ), it holds
that

H\epsilon (t) - H\epsilon (s) \leq 
\int t

s
| Tu\prime | p

\Bigl( 
T - 1
u

\Bigr) \Bigl( 
H\epsilon (u) + \^C

\Bigr) 
du,

where p is a finite order polynomial with nonnegative coefficients, \^C > 0 is a constant, and
both are independent of \epsilon . Therefore, mollifying in time and taking s\rightarrow t as in the end of the
proof of Proposition 4.12, it is straightforward that H\epsilon is uniformly bounded in5 0 \leq t \leq tH
and 0 < \epsilon \leq min(1, \epsilon \prime ). Moreover, by Proposition 4.12 the entropy

\int 
h\epsilon t lnh

\epsilon 
td\mu Tt

is bounded
uniformly in t > tH and 0 < \epsilon \leq min(1, \epsilon \prime ). Therefore for any t \geq 0 by the de la Vall\'ee-Poussin
criterion (see, for example, [17]), the subset \{ h\epsilon t : 0 < \epsilon \leq min(1, \epsilon \prime )\} \subset L1(\mu Tt

) is uniformly
integrable, and consequently the Dunford--Pettis theorem imposes the existence of a weak
limit gt \in L1(\mu Tt

) for a (sub)sequence (\epsilon i)i\in \BbbN such that \epsilon i \rightarrow 0:

h\epsilon it \rightharpoonup gt, in L1(\mu Tt
) as i\rightarrow \infty .

For any S > 0 and any compactly supported smooth test function \phi : [0, S) \times \BbbR 2n+m \rightarrow \BbbR ,
omitting the dependence on the space variable \zeta = (x, y, z) wherever convenient, denoting
DS := (0, S)\times \BbbR 2n+m, and using It\^o's rule, we get

0 = lim
i\rightarrow \infty 

\int 
DS

(m\epsilon i
t  - gt\mu Tt

)( - \partial t  - Lt)\phi dtd\zeta 

= lim
i\rightarrow \infty 

\int 
DS

\epsilon im
\epsilon i
t (S

x
t + Sy

t )\phi dtd\zeta +

\int 
DS

gt\mu Tt
(\partial t + Lt)\phi dtd\zeta +

\int 
\BbbR 2n+m

m0\phi (0, \zeta )dtd\zeta 

=

\int 
DS

gt\mu Tt
(\partial t + Lt)\phi dtd\zeta +

\int 
\BbbR 2n+m

m0\phi (0, \zeta )dtd\zeta ,(4.51)

so that in the distributional sense of [7],\Biggl\{ 
\partial t(gt\mu Tt

) = L\top 
t (gt\mu Tt

) on \BbbR 2n+m \forall t > 0,

(g0\mu T0
) = m0.

(4.52)

By Proposition 4.1, the solution to (4.52) is unique in the class of integrable solutions, and
since mt belongs in this same class, it holds that

gt\mu Tt
= mt

for all t \in [0, S], that is,

m\epsilon i
t \rightharpoonup mt, in L1(\mu Tt

) as i\rightarrow \infty 

5tH from Proposition 4.12.
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ON THE GLE FOR SIMULATED ANNEALING 163

for all 0 \leq t < S. By Corollary 3.8 in [9], there exists a sequence ( \^mi
t)i\in \BbbN made up of convex

combinations ofm\epsilon i
t that converge strongly tomt in L

1; hence we have a subsequence ( \^m
ij
t )j\in \BbbN 

that converges pointwise almost everywhere. By Fatou's lemma, convexity of f(x) = x lnx \geq 
e - 1 for x > 0, and Proposition 4.12, for t > tH , we get

\int 
ht lnhtd\mu Tt

=

\int 
mt ln

\biggl( 
mt

\mu Tt

\biggr) 
\leq lim inf

j\rightarrow \infty 

\int 
\^m
ij
t ln

\biggl( 
\^m
ij
t

\mu Tt

\biggr) 
\leq B

\biggl( 
1

t

\biggr) 1 - \^E

E
 - 2\alpha 

.

5. Conclusions. We explored the possibility of using the generalized Langevin equations
in the context of simulated annealing. Our main purpose was to establish convergence for
the underdamped Langevin equation and provide a proof of concept in terms of performance
improvement. Although the theoretical results hold for any scaling matrix A given the stated
restrictions, we saw in our numerical results that its choice has great impact on the perfor-
mance. In section 3, A2, A3, or A4 seemed to improve the exploration on the state space
and/or the success of the algorithm. There is plenty of work still required in terms of pro-
viding a more complete methodology for choosing A. This is left as future work and is also
closely linked with time discretization issues as a poor choice for A could lead to numerical
integration stiffness. This motivates the development and study of improved numerical in-
tegration schemes, in particular the extension of the conception and analysis on numerical
schemes such as BAOAB [41] for the Langevin equation for (1.3) and the extension of the
work in [53] for nonidentity matrices \lambda and A. See [42] for work in this direction.

In addition, the system in (1.3) is not the only way to add an auxiliary variable to the
underdamped Langevin equations in (1.2) while retaining the appropriate equilibrium distri-
bution. Our choice was motivated by a clear connection to the generalized Langevin equation
(1.4) and a link with accelerated gradient descent, but it could be the case that a different
third or higher order equation could be used with possibly improved performance. Along
these lines, one could consider adding skew-symmetric terms as in [20]. In regard to theory,
an interesting extension could involve establishing how the results here can be extended to
establish a comparison of optimization and sampling in a nonconvex setting for an arbitrary
number of dimensions similar to [45]. We leave for future work finding optimal constants in
the convergence results and investigating dependence on parameters and how the limits of
these parameters and constants relate to existing results for the Langevin equation in (1.2)
in [51, 60]. Finally, one could also aim to extend large deviation results in [38, 46, 64] for the
overdamped Langevin dynamics to the underdamped and generalized case.

Acknowledgments. The authors would like to thank Tony Lelievre, Gabriel Stoltz, Urbain
Vaes and the anonymous referees for their helpful remarks.
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