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Abstract

The synthesis of high quality simulated data from event generators is essential in the search

for new physics at collider experiments. Modern event generator algorithms use Monte Carlo

processes to simulate the evolution of an event from the collision of high energy particles to

the formation of long-lived particles. One of the major building blocks of the event generation

process is the QCD parton shower. However, despite being a key aspect of modern event

generation, the core algorithms which simulate the showering process have remained unchanged

since the 1980s, and will become a limiting factor as we move to an era of higher energy and

higher luminosity experiments.

With the rapid development of quantum computation, dedicated algorithms are required

which exploit the potential that quantum computing provides to address problems in high energy

physics. In this thesis, we present three novel quantum algorithms for the simulation of a

QCD parton shower. The first algorithm provides a proof-of-principle, classical Monte Carlo

inspired approach with the ability to simulate two shower steps of a collinear QCD model. By

exploiting the compact circuit architecture of the quantum walk, one can drastically reduce

the quantum resources required to simulate a shower step. The second algorithm shows that,

in this framework, the quantum parton shower can be extended to simulate realistic shower

depths whilst using fewer quantum resources. Finally, the third algorithm utilises a discrete

QCD approach to parton showering to include kinematics in the shower, simulating a dipole

cascade. In this construction, the algorithm has achieved the first data comparison between
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synthetic data produced using a Noisy Intermediate-Scale Quantum (NISQ) device, and “real-

life” archival collider data from the Large Electron Positron collider. The three algorithms

represent the development of quantum algorithms for the simulation of parton showers, acting

as a first step towards a fully quantum simulation of a high energy collision event.
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“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d

better make it quantum mechanical, and by golly it’s a wonderful problem, because it

doesn’t look so easy.”

- Richard P. Feynman, 1981 [4]
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Preface

The focus of this thesis outlines the development of parton shower algorithms which can be

simulated using a quantum device. The shower algorithms have progressed from a simple,

classically inspired, quantum Monte Carlo parton shower with the ability to simulate a simplified

QCD model, to a sophisticated dipole shower, implemented using an elegant method to discretise

QCD. The thesis takes a phenomenological approach to simulating the evolution of a particle

cascade, as a proof of principle and the first step in creating a fully quantum event generator

algorithm in the future.

In addition to the work presented in this thesis, the author would like to highlight previous

work which has contributed to the development of the parton shower algorithms. Reference [1]

presents a quantum computing approach to calculating the hard process by exploiting the re-

markable equivalence between a helicity spinor |p⟩ȧ,

|p⟩ȧ =
√
2E




cos θ
2

eiϕ sin θ
2


 ,

representing a massless state with momentum pµ and energy E, and a qubit
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|ψ⟩ =




cos θ
2

eiϕ sin θ
2


 .

parameterised by θ and ϕ∗. The two objects are identical, modulo an overall normalisation

factor
√
2E. Furthermore, helicity amplitude calculations proceed in the same way as a quantum

algorithm: unitary operations applied to a set of initialised states, culminating in a measurement

which projects information onto a classical basis. Therefore, as a faithful representation of

a helicity spinor, the qubit model is a natural platform to calculate helicity amplitudes. In

Reference [1], this has been demonstrated by exploring two simple examples: a 1 → 2 process

corresponding to a gqq̄ process, and a 2 → 2 scattering process, corresponding to qq̄ → qq̄. The

two examples were shown to have good agreement with classically calculated amplitudes, and a

discussion about extending the approach to a 2 → n process is given in Reference [1].

∗This form is described fully in Chapter 3.
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Chapter 1

Introduction

Particle physics is the study of the fundamental building blocks of the Universe, and has culmi-

nated in the formulation of the Standard Model of Particle Physics, our best description of the

elementary constituents of Nature and their interactions. Despite its success, it is known that

the Standard Model is an incomplete theory of Nature, and is missing vital building blocks of

the universe. For that reason, there is a world-wide research initiative to search for new physics

beyond the Standard Model and to build a description of the Universe, both in the experimental

and theoretical communities. This is not an easy task, and experimentally has seen some of the

largest experiments ever built, reaching unprecedented energies and producing unprecedented

amounts of data.

With the High-Luminosity Large Hadron Collider around the corner, and new colliders

such as the Future Circular Collider on the horizon, particle physics is on the brink of a new

computational frontier. To deal with the sheer amount of data produced by these machines,

and to accurately generate simulations of high energy processes which occur inside the collider

experiments, new computational techniques must be explored. With its rapid and continuous

development, quantum computation offers a paradigm shift in information science, and promises

to revolutionise modern computational techniques. Particle physics is set to benefit not only

18



Introduction 19

from any speedup provided by quantum computing, but also, and perhaps more fundamentally,

from the devices’ ability to form highly entangled quantum systems, performing calculations in a

regime never before accessible. Furthermore, all processes in high energy physics are inherently

quantum mechanical, thus particle physics is an excellent test bed for the quantum algorithmic

design.

Already, there has been a quickly developing research effort which is beginning to use quan-

tum devices for applications in particle physics, ranging from the simulation of quantum field

theories [5–9], and collision events [1–3,10,11], to event classification and analysis [12–16]. So far

these algorithms have been proof-of-principle, demonstrating that practical quantum algorithms

are within reach. The aim is to test the limits of the rapidly progressing Noisy Intermediate

Scale Quantum (NISQ) devices. Although quantum supremacy is currently over the horizon,

now is the time to begin to understand the potential that these devices provide, and learn how

best to deploy the resources on offer to tackle troubling problems in fundamental physics.

In this thesis, we take a phenomenological approach, presenting novel quantum computing

algorithms to combat the growing challenge of producing synthetic data for high energy collisions.

One of the major building blocks of data synthesis in event generator programs is the parton

shower. Here we concentrate on quantum computing approaches for the simulation of parton

showers in high energy hadronic colliders. Chapters 2 and 3 provide the theoretical groundings in

both particle physics and quantum computation needed for the reading of this thesis. Chapter 4

outlines the implementation of a simple, two-step collinear parton shower using a Monte Carlo

inspired quantum algorithm. A quantum walk framework is used in Chapter 5 to dramatically

increase the efficiency of the quantum parton shower, allowing for 31 shower steps to be simulated

on a quantum simulator. These simple shower algorithms are entirely collinear and do not include

kinematics. Chapter 6 shows that kinematics can be included in the shower by using a discrete

QCD model, leading to the first data comparison between synthetic scattering data produced by
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a quantum device and “real-life” archival collider data from experiments on the Large Electron

Positron collider. Finally, Chapter 7 discusses the future of quantum parton shower algorithms

and outlines steps towards a fully quantum simulation of the event generation process.



Chapter 2

Theory and Motivations

For over half a century the Standard Model of particle physics has been subject to rigorous

experimental investigation, and so far has continued to be robust against scrutiny, remaining

consistent with all experimental observations. Augmented by the neutrino masses, the Stan-

dard Model provides a remarkably successful description of the elementary particles and their

interactions. However, in spite of its success, the Standard Model is not a complete theory

of Nature and has several important missing features. The model does not have a mechanism

for gravity and it is not compatible with the classical field theory of General Relativity. Nor

does it provide a candidate for Dark Matter or explain the apparent presence of Dark Energy,

both of which have been experimentally inferred from the rotation curves of galaxies and the

Cosmic Microwave Background. The Standard Model does not explain the excess of matter over

anti-matter in the Universe, and it does not explain why Quantum Chromodynamics preserves

charge-parity (CP), the so-called strong-CP problem.

It is therefore expected that the Standard Model is a low-energy effective field theory, and

that new physics will exist at a higher energy scale. One can postulate that new physics must be

present at the reduced Planck scale, MP = 2.4× 1018 GeV, where quantum gravitational effects

will equal the strength of gauge interactions. However, the Standard Model Higgs boson has a

21
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troubling dependence on new physics at large energy scales, which is the root of the so-called

gauge hierarchy problem. Extending the Standard Model is therefore a major research effort,

and many potential extensions have been suggested. References [17, 18] provide a review of

potential Beyond the Standard Model physics. A popular extension of the Standard Model is

supersymmetry, which predicts each particle in the Standard Model has a superpartner particle.

This method provides an efficient mechanism to solve the hierarchy problem and has been the

subject of numerous experimental searches. Reference [19] provides a detailed review of the

current status of supersymmetry.

Modern collider experiments, such as the Large Hadron Collider (LHC) at CERN, are push-

ing the energy frontier in search for physics beyond the Standard Model. In order to examine

physics processes in high energy experiments, accurate modelling of particle collisions and sim-

ulations of the subsequent detector response are needed. These are then used in the analysis

of data from the detector to extract information about the underlying physics process. Conse-

quently, accurate generation of synthetic data is crucial to modern particle physics, and efficient

event generator programs are being actively developed. Typically these event generators are

based on Monte Carlo approaches, such as Pythia [20], Herwig [21] and Sherpa [22].

The LHC collides protons at a centre of mass energy up to ECM = 14 TeV, producing

hundreds of subsequent particles as a result of the evolution from the proton-proton collision to

the formation of long lived hadrons, leptons and photons, which are captured by the detector.

The corresponding theoretical description can therefore be highly complex. This process can be

broken down into several main parts. A proton consists of many partons, each of which carries a

fraction of the proton’s total energy. The momentum distribution of partons within the proton

is conventionally described by the Parton Distribution Function (PDF). Colliding protons can

result in two partons interacting with a large momentum transfer in the hard process. At high

energy, this process has the ability to probe new physics. Colour-charged particles produced
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Figure 1: Schematic of the structure of a pp ! tt event, as modelled by PYTHIA. To
keep the layout relatively clean, a few minor simplifications have been made: 1) shower
branchings and final-state hadrons are slightly less numerous than in real PYTHIA events,
2) recoil effects are not depicted accurately, 3) weak decays of light-flavour hadrons are
not included (thus, e.g. a K0

S meson would be depicted as stable in this figure), and 4)
incoming momenta are depicted as crossed (p! �p). The latter means that the beam
remnants and the pre- and post-branching incoming lines for ISR branchings should be
interpreted with “reversed” momentum, directed outwards towards the periphery of the
figure; this avoids beam remnants and outgoing ISR emissions having to criss-cross the
central part of the diagram.

9

Figure 2.1: Schematic of a pp→ tt event from Reference [20]. The schematic has been simplified
from a real Pythia event, such that 1) shower branchings and final-state hadrons are less
numerous, 2) the effect of recoil is not correctly illustrated, 3) weak decays of light hadrons are
not included, and 4) incoming momenta are depicted as crossed (p→ −p).

as a result of the hard process will likely radiate other colour-charged particles in the so-called

parton shower. The parton shower process evolves the system from the high energy process of

the hard interaction, down to the relatively low energy hadronisation scale, O(ΛQCD). During

hadronisation, non-perturbative processes rearrange partons into colour-neutral hadrons. These

hadrons are then measured in the detector. Figure 2.1 shows a schematic of a Pythia event for

a pp→ tt process, highlighting the complexity of event generation.

Due to the factorisation theorem [23–25], which separates the short and long-distance physics

in QCD, the parton shower is an entirely perturbative process. Therefore, parton shower cal-
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culations can be computationally expensive. Nevertheless, parton showers are a major building

block of event generators and therefore there is much appetite for efficient parton shower al-

gorithms. It is possible that quantum computers can provide an advantage for the calculation

of parton showers, and this is discussed in detail in Chapters 4, 5 and 6. In this chapter, we

lay the theoretical groundwork for the rest of the thesis. In Section 2.1 we discuss Abelian and

non-Abelian gauge theories as a preliminary for understanding the Standard Model, which is

reviewed in Section 2.2, leading to a review of the parton shower in Section 2.3. A detailed re-

view of QFT and the Standard Model is available in References [26–28], and References [29–33]

provide an overview of modern event generation methods and parton showers.

2.1 Gauge Theory

The theoretical understanding of modern particle physics is founded on gauge field theories: a

type of field theory for which the Lagrangian is invariant under a set of local transformations

described by a Lie group. In fact, these invariances, often called gauge symmetries, have fun-

damental implications on the form of the Lagrangian. In this section we briefly discuss the two

types of gauge theories, Abelian and non-Abelian field theories. Here we take a more modern

geometric approach, which is discussed in detail in Reference [27,28].

2.1.1 Abelian Gauge Symmetries

The principal step when building a Lagrangian is to enforce invariance under a set of transfor-

mations, regulating the redundant degrees of freedom in the Lagrangian. Consider the simple

case where we demand that the theory is invariant under a local transformation of the Dirac

field,

ψ(x) → eiα(x)ψ(x), (2.1.1)
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where ψ(x) is rotated through an angle α(x), which depends on the position x. This is a simple

phase transformation called a local transformation, as α(x) can differ arbitrarily from point to

point. For this transformation to be a symmetry of the theory, all terms in the Lagrangian

must be invariant under this transformation. Renormalisable terms which can be present in the

Lagrangian include bilinear terms of ψ and derivatives of ψ. It is clear that bilinear terms, ψψ,

are allowed under the local transformation, as

ψ(x) → ψ(x)e−iα(x), (2.1.2)

where ψ = ψ†γ0 is the Dirac adjoint of the field ψ. The effect is equivalent to the global

transformation case [27,28].

However, in the local case, terms involving a derivative of ψ are not invariant under the

transformation∗. To illustrate this, consider the derivative of ψ in the direction of the vector nµ,

nµ∂µψ(x) = lim
ϵ→0

[
1

ϵ

(
ψ(x+ ϵn)− ψ(x)

)]
, (2.1.3)

where the field at position x is subtracted from the field at position x + ϵn. The two fields

ψ(x) and ψ(x + ϵn) transform differently under the local transformation from Equation 2.1.1.

To correctly define the derivative, these two fields must be subtracted from each other. Conse-

quently, the derivative ∂µψ(x) does not have a simple transformation law and thus has no useful

geometric interpretation [28].

Therefore, to construct a local transformation for Equation 2.1.3, we must first define a scalar

quantity which accounts for the difference in local transformations from one point to the next,

ensuring that the subtraction of the two fields ψ(x) and ψ(x+ ϵn) can be performed. Following

the procedure from Reference [28], we define a pure phase,

∗In the global case, derivatives are straightforward as α does not depend on x.
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U(y, x) = eiϕ(y,x), (2.1.4)

which depends on two points, y and x. This object is often called a comparator or a Wilson

Line [27, 28]. We construct the comparator such that its transformation takes the form

U(y, x) → eiα(y)U(y, x)e−iα(x). (2.1.5)

Consequently, from Equation 2.1.1, ψ(x) and U(y, x)ψ(x) now have the same form under the

local transformation, if we stipulate that the scalar value defined at the same position, U(x, x) =

1. Using this result, we can now define the derivative

nµDµψ(x) = lim
ϵ→0

[
1

ϵ

(
ψ(x+ ϵn)− U(x+ ϵn, x)ψ(x)

)]
, (2.1.6)

which is called the covariant derivative. Assuming that U(y, x) is a continuous function, we can

expand the comparator in ϵn, the separation between two points, such that

U(x+ ϵn, x) = U(x, x) + ϵnµ∂µU(x, x) +
ϵ2nµnν

2!
∂µ∂νU(x, x) +O(ϵ3),

= 1− ieϵnµAµ(x)− ie
ϵ2nµnν

2!
∂µAν(x) +O(ϵ3), (2.1.7)

where, as per convention, e has been extracted as an arbitrary constant and the coefficient of

displacement has been identified as a new vector field, Aµ(x) = i
e∂µU(x, x). This new vector

field is called the connection and occurs as the infinitesimal limit of the comparator [27,28].

Using this expansion, we can now examine the derivative in Equation 2.1.6,
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nµDµψ(x) = lim
ϵ→0

[
1

ϵ

(
ψ(x+ ϵn)− (1− ieϵnµAµ(x))ψ(x) +O(ϵ2)

)]
, (2.1.8)

and therefore one can define the covariant derivative,

Dµψ(x) = ∂µψ(x) + ieAµψ(x), (2.1.9)

which now has a term involving the connection.

To determine how the covariant derivative transforms under the local transformation, we

must examine the effect of substituting Equation 2.1.7 into Equation 2.1.5. The transformation

of Aµ is then found to be

Aµ(x) → Aµ(x)−
1

e
∂µα(x). (2.1.10)

From this transformation, we can now examine how the covariant derivative transforms,

Dµψ(x) → ∂µ
(
eiα(x)ψ(x)

)
+ ie

(
Aµ(x)−

1

e
∂µα(x)

)
eiα(x)ψ(x),

= eiα(x)
(
∂µψ(x) + ieAµψ(x)

)
. (2.1.11)

The covariant derivative therefore transforms as desired, ensuring locally invariant kinetic terms

for ψ in the Lagrangian. Consequently, demanding that the Lagrangian is locally invariant comes

at the price of introducing a new vector field into the theory. The final step in building the most

general Lagrangian that is invariant under the local transformation is to construct a kinetic

term for the new field Aµ. This can be done by inspecting the commutator of the covariant

derivative, and this method is discussed in Section 2.1.2 for the non-Abelian case, and also in
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Figure 2.2: Pictorial representation of the construction of the field tensor from four consecutive
compactors forming an infinitesimal square loop in the (n̂1, n̂2) plane. Figure adapted from
Reference [28].

Reference [27]. To fully highlight the geometric origin of the kinetic terms for Aµ, we follow the

approach outlined in Reference [28] and construct a series of four comparators defining a square

loop in space time,

U(x) = U(x,x+ ϵn̂2)U(x+ ϵn̂2, x+ ϵn̂1 + ϵn̂2)

× U(x+ ϵn̂1 + ϵn̂2, x+ ϵn̂1)U(x+ ϵn̂1, x). (2.1.12)

This loop is shown pictorially in Figure 2.2. From Equation 2.1.5, it is clear that U(x) is

invariant under the local transformation.

To proceed, we revisit the expansion from Equation 2.1.7. If we consider the terms up to

and including factors of ϵ2, we can rewrite the comparator as

U(x+ ϵn, x) = exp

[
− ieϵnµAµ

(
x+

ϵ

2
n

)
+O(ϵ3)

]
, (2.1.13)

under the restriction that (U(x, y))† = U(y, x) [28]. Using this expression in Equation 2.1.12,

we obtain
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U(x) = exp

[
− iϵe

(
−A2

(
x+

ϵ

2
n̂2

)
−A1

(
x+

ϵ

2
n̂1 + ϵn̂2

)

+A2

(
x+ ϵn̂1 +

ϵ

2
n̂2

)
+A1

(
x+

ϵ

2
n̂1

))
+O(ϵ3)

]
, (2.1.14)

where we have used A1,2 = n̂1,2Aµ, and the sign of each term depends on the direction the

comparator is pointing. If the Aµ fields are then expanded in powers of ϵ, we find

U(x) = exp

[
− iϵe

(
ϵn̂1∂µA2(x)− ϵn̂2∂µA1(x)

)
+O(ϵ3)

]
,

= 1− iϵ2e

(
∂1A2(x)− ∂2A1(x)

)
+O(ϵ3),

= 1− iϵ2e nµ1n
ν
2

(
∂µAν(x)− ∂νAµ(x)

)
+O(ϵ3). (2.1.15)

Therefore, as U(x) is locally invariant, then the form

Fµν = ∂µAν(x)− ∂νAµ(x), (2.1.16)

is also invariant under the local transformation defined in Equation 2.1.1. We can identify this

as the field tensor for electrodynamics, and the connection Aµ as the photon field. We can now

write down the most general, renormalisable Lagrangian that is invariant under a local phase

transformation,

L = −1

4
FµνFµν + ψ(i /D −m)ψ, (2.1.17)

where standard normalisations have been used, and terms that violate the simultaneous discrete
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symmetries of charge (C), parity (P) and time reversal (T) have been omitted†. This Lagrangian

is the standard Lagrangian for Quantum Electrodynamics (QED). Therefore, and remarkably,

using the geometric approach and demanding that a Lagrangian is invariant under a local phase

transformation, we have recovered QED by obtaining the field tensor, ultimately showing that

the presence of an additional vector field Aµ is a direct consequence of the phase transformation.

This transformation is defined by the U(1) group, which is an Abelian group, sometimes called a

commutative group. In addition to the Abelian case, the geometric approach outlined here allows

for the construction of a general Lagrangian for more complicated geometric transformations.

Such transformations will be the subject of Section 2.1.2.

2.1.2 Non-Abelian Gauge Symmetries

In the previous section, the physical implications of demanding invariance under the local phase

transformation defined by the U(1) Abelian group was examined, and QED was recovered. In

this section, we extend the argument to include continuous Lie groups. This was first proposed

by Yang and Mills for the special unitary group SU(N) [34]. Here we will consider a general

symmetry group with the local transformation

ψ(x) → eiα
a(x)taψ(x), (2.1.18)

where ψ(x) is a Dirac field, αa(x) is an arbitrary function of x, and ta are the generators of the

group‡. The procedure to construct the Lagrangian, under the stipulation that it is invariant

under the local transformation, is the same as for the Abelian case, however we now have

orthogonal symmetry motions which do not commute with one another [28]. Therefore, these

symmetry groups gain the name non-Abelian, or non-commuting groups. It will be shown that

†For a detailed discussion of such terms, exempli gratia cϵαβµνFαβFµν , see References [26–28].
‡Note that for different symmetry groups, ψ and ta take on different forms. For example, for SU(2), ψ is a

doublet of Dirac fields, ψ =
(
ψ1(x), ψ2(x)

)T
and the generators are the Pauli matrices, ta = σa/2.
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the non-commuting aspects of the theory lead to additional terms in the field strength tensor.

Analogously to the Abelian case, bilinear terms, ψψ, are clearly invariant for non-Abelian

symmetries, however terms containing derivatives do not have a straightforward transformation

law. Following the procedure outlined in Section 2.1.1 and References [27, 28], we start by

defining a comparator U(y, x) and construct a covariant derivative of the form in Equation 2.1.6.

Unlike the Abelian case, ψ is now an N component vector in the fundamental representation,

and thus the comparator must be a N ×N matrix, with the transformation law

U(y, x) → eiα
a(y)taU(y, x)e−iαa(x)ta ,

≡ V (y)U(y, x)V †(x), (2.1.19)

where, for clarity in later calculations, we define V (x) = exp(iαa(x)ta). Once again, by requiring

U(x, x) = 1 and restricting the comparator to be unitary, we can expand in separation such that

U(x+ ϵn, x) = 1 + igϵnµAa
µt

a +O(ϵ2), (2.1.20)

where, like the Abelian case, we extract the arbitrary constant g and use the convention that

the expansion has positive terms. Following the steps outlined in Equations 2.1.7 to 2.1.9, we

define the covariant derivative for the non-Abelian case,

Dµψ(x) = ∂µψ(x)− igAa
µt

aψ(x). (2.1.21)

As the index, a, is summed over, it is clear that for the non-Abelian case we require a additional

vector fields to make the derivative invariant under the local gauge transformation. For example,

for SU(2), there are three generators and therefore three additional vector fields are introduced
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into the theory.

The next step is to define the transformation of the additional vector fields. It is possible

to follow the procedure prescribed by the Abelian case, expanding the transformation of the

comparator in Equation 2.1.19, and this is discussed in Reference [28]. Instead, here we use the

fact that we require the covariant derivative to transform in the same way as the Dirac field,

such that Dµψ → V (x)Dµψ. Therefore,

Aa
µ(x)t

a → V (x)
(
Aa

µ(x)t
a +

i

g
∂µ

)
V †(x), (2.1.22)

where the derivative now acts on V †. This is not straightforward, as the derivative does not

necessarily commute with the generators in the exponent. Expanding to first order in α, the

infinitesimal transformation has the form

Aa
µ(x)t

a → Aa
µ(x)t

a +
1

g
∂µ(α

a(x))ta + i
[
αa(x)ta, Ab

µ(x)t
b
]
+O(α2). (2.1.23)

Comparing to the Abelian case in Equation 2.1.10, in the non-Abelian case there is an extra

term. This additional commutator is a consequence of the non-commutativity of the local

transformation.

To finish the construction of the most general Lagrangian that is invariant under a non-

Abelian symmetry, we must now build the field tensor. The approach is analogous to the

construction of the Abelian field tensor shown in Equation 2.1.16, and therefore allows for the

inclusion of a kinetic term for the additional vector fields. It is possible to construct the field

tensor for the non-Abelian case by considering a loop of comparators, as shown in Figure 2.2.

This approach is discussed in detail in Reference [35]. For brevity, here we can make an argument

to show the invariance of the field tensor by using the commutator of two covariant derivatives,
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as outlined in References [27,28]. Since we have shown that the covariant derivative transforms

in the same way as the Dirac field, then the second covariant derivative will also transform in

this way. Therefore, one can define the commutator of covariant derivatives as

[
Dµ, Dν

]
ψ(x) → V (x)

[
Dµ, Dν

]
ψ(x). (2.1.24)

Note that this is equivalent to the geometric approach using comparators, outlined in Sec-

tion 2.1.1, and this equivalence is discussed in detail in References [27, 28]. If we now write the

commutator explicitly,

[
Dµ, Dν

]
ψ =

[
∂µ, ∂ν

]
ψ − ig

([
∂µ, A

b
νt

b
]
−
[
∂ν , A

a
µt

a
])
ψ − g2

[
Aa

µt
a, Ab

νt
b
]
ψ,

= −ig
(
∂µA

a
νt

a − ∂νA
a
µt

a − ig
[
Aa

µt
a, Ab

νt
b
])
ψ, (2.1.25)

we see that the commutator
[
Dµ, Dν

]
is a multiplicative factor acting on ψ. In the Abelian

case, since ψ accounts for the entire transformation in Equation 2.1.24, then the commutator

of covariant derivatives must be invariant under the local transformation. However, in the

non-Abelian case, there remains an extra term in the field tensor, such that

F a
µνt

a = ∂µA
a
νt

a − ∂νA
a
µt

a − ig
[
Aa

µt
a, Ab

νt
b
]
. (2.1.26)

This can be simplified using the conventional form for the generators,

[
ta, tb

]
= ifabctc, (2.1.27)

where fabc represents the structure constants, such that fabc is completely asymmetric. Using
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this definition, Equation 2.1.26 simplifies to the standard form

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (2.1.28)

Examining the infinitesimal transformation of F a
µν ,

F a
µν → F a

µν − fabcαbF c
µν , (2.1.29)

we see that the non-Abelian field tensor is not a gauge-invariant, as it contains a fields, which are

associated with a different transformations, and therefore F a
µν does not have a trivial transfor-

mation law. However, it is possible to write an invariant form by combining the a field strength

tensors in the trace

−1

2
Tr
[(
F a
µνt

a
)2]

= −1

4
F a
µνF

a,µν . (2.1.30)

We can now write down the general, renormalisable Lagrangian for a non-Abelian gauge

symmetry, including all terms that do not violate C, P and T symmetries,

L = −1

4
F a
µνF

a,µν + ψ(i /D −m)ψ. (2.1.31)

This Lagrangian looks strikingly similar to the Abelian case in Equation 2.1.17, however there

are now non-linear terms present in the field tensor, proportional to the structure constants, fabc.

As a consequence, the non-Abelian symmetry allows for interactions between gauge bosons. In

the Standard Model, there are two non-Abelian gauge groups and one Abelian group. These can

all be derived from the general approach defined above, with the Abelian case being recovered

if fabc = 0.
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2.2 The Standard Model of Particle Physics

The Standard Model of particle physics is a Quantum Field Theory (QFT) with the gauge

structure

SU(3)c × SU(2)L ×U(1)Y , (2.2.1)

where the subscripts c, L and Y correspond to colour, left-chirality and hypercharge respectively

and can be split into two main parts: the Quantum Chromodynamic (QCD) sector and the Elec-

troweak (EW) sector. The SU(3)c group is the gauge group of QCD [36–38] with a corresponding

coupling gs and eight gauge bosons, Ga where a = 1, . . . , 8, called gluons, which mediate the

strong force. Quantum Chromodynamics is not chiral and acts on colour-charged particles, the

quarks, q i
c, where i denotes the flavour and c = 1, 2, 3 is the colour index. The gauge group

SU(3)c is a non-Abelian group and therefore, as shown in Section 2.1.2 and discussed further in

Section 2.2.1, this leads to self interactions between the gluons.

The SU(2)L × U(1)Y part is the gauge group of the EW sector [39–41]. The SU(2)L group

has coupling g and gauge bosons, W i where i = 1, 2, 3. The U(1)Y group has corresponding

coupling g′ and has a single gauge boson, B. The SU(2)L×U(1)Y is a chiral theory, and therefore

acts on left and right-chiral particles differently: SU(2)L acts upon flavour indices of left-chiral

particles only, and U(1)Y acts on left and right-chiral particles with different charges. Similarly

to QCD, SU(2)L is a non-Abelian group and therefore includes self interactions between gauge

bosons, however, U(1)Y is an Abelian group and thus we do not have self-interaction terms from

U(1)Y in the Lagrangian.

Under the gauge structure from Equation 2.2.1, the matter content of the Standard Model,

the fermions, take the form
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q i
L =



uL

dL


 ,



cL

sL


 ,



tL

bL


 ,

u i
R = uR, cR, tR,

d i
R = dR, sR, bR, (2.2.2)

l iL =



νeL

eL


 ,



νµL

µL


 ,



ντL

τL


 ,

e i
R = eR, µR, τR.

where the index i represents the flavour of the fermion. Due to the chiral nature of the SU(2)L

gauge group, the left-chiral states (subscript L) transform as doublets under SU(2)L, and right-

chiral states (subscript R) transform as singlets. In Section 2.2.3, we will see that the symmetry

group of the Standard Model spontaneously breaks to

SU(3)c × SU(2)L ×U(1)Y → SU(3)c ×UQ(1), (2.2.3)

and the photon, Z and W± bosons will be resolved from the gauge bosons W i and B. Here,

the EW sector, SU(2)L×U(1)Y , breaks to U(1)Q, the gauge group of Quantum Electrodynamics

(QED). Quantum Chromodynamics is not spontaneously broken. This spontaneous symme-

try breaking gives rise to a massive scalar boson, the Higgs boson, which in turn provides a

mechanism that gives mass to the W± and Z bosons and the fermions.

With the discovery of the Higgs boson in 2012 [44, 45], the particle content of the Standard

Model has been experimentally confirmed and the latest observations from the Particle Data

Group (PDG) [43] are displayed pictorially in Figure 2.3. The dynamics of any QFT are encoded

into the Lagrangian density. Imposing Poincaré and the gauge symmetries from Equation 2.2.1,
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Figure 2.3: The Standard Model of particle physics consists of three generations of fermions
and the gauge bosons. Displayed in the white coloured boxes are the six quarks, which interact
via the strong and electroweak forces. In the light blue boxes are the leptons, the first row
includes the charged leptons which interact via the electroweak force, and the second row shows
the neutrinos, which interact via the weak force only. The gauge bosons are the gluons (red),
which mediate the strong force, the photon (green), which mediates the electromagnetic force,
and the weak bosons (orange), which mediate the weak force. Finally, the Higgs boson, which
provides a mechanism to generate the masses of the particles, is shown in grey. The Figure has
been adapted from Reference [42] to include the latest observed values from the Particle Data
Group [43].
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we can write the Standard Model Lagrangian in four main terms,

L = Lgauge + Lfermion + LHiggs + LYukawa. (2.2.4)

To fully understand the dynamics of the Standard Model, in this section, we review each part

of the Lagrangian in the following sections.

2.2.1 The Gauge Sector

The first part of the Standard Model is the gauge sector, which describes the dynamics of the

gauge fields. The most general formulation§ of the gauge sector is

Lgauge = −1

4
Ga

µνG
a,µν − 1

4
W i

µνW
i,µν − 1

4
BµνB

µν , (2.2.5)

where Ga
µν and W i

µν are the field tensors of the non-Abelian gauge groups SU(3)c and SU(2)L

respectively, and Bµν is the field tensor of the Abelian gauge group U(1)Y . The field tensors are

defined in the standard form

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν , a, b, c = 1, . . . , 8, (2.2.6)

W i
µν = ∂µW

i
ν − ∂νW

i
µ − gϵijkW j

µW
k
ν , i, j, k = 1, 2, 3, (2.2.7)

Bµν = ∂µBν − ∂νBµ, (2.2.8)

where fabc and ϵijk are the structure constants of SU(3)c and SU(2)L respectively, and the indices

of SU(N) groups grow as N2 − 1. As discussed in Section 2.1, the non-commutative nature of

§Note that terms which violate discrete symmetries such as T and P are not included. These are discussed
in detail in References [26–28].
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non-Abelian symmetries leads to the non-linear terms in the field tensors. From Equation 2.2.5,

we see that this leads to three-point and four-point self-interactions between the gauge bosons

for the non-Abelian groups, whereas there are no self-interactions for the Abelian group.

Performing an infinitesimal gauge transformation of the respective gauge groups on the field

tensors, we find

Ga
µ → Ga

µ − 1

gs
∂µα

a + fabcαbGc
µ, (2.2.9)

W i
µ →W i

µ − 1

g
∂µα

i + ϵijkαjW k
µ , (2.2.10)

Bµ → Bµ − 1

g′
∂µα, (2.2.11)

where the fields have associated couplings gs, g and g′. These transformations follow from the

discussion of gauge invariance in Section 2.1 and are required if we demand the Lagrangian to

be invariant under the gauge structure in Equation 2.2.1. Furthermore, from Equations 2.2.9

to 2.2.11 we can see that mass terms of the form Ga
µG

a,µ, W i
µW

i,µ and BµB
µ are not gauge

invariant, and without a symmetry breaking mechanism, the gauge bosons remain massless.

2.2.2 The Fermionic Sector

The fermionic sector of the Standard Model considers the interactions of the fermions, spin-12

fields which make up the matter content of the Standard Model. As shown in Equation 2.2.2,

the fermionic sector is constructed from three families of quarks and leptons, which couple to

the gauge fields through the covariant derivative

Dµ = ∂µ + ig′BµY + igW j
µI

j + igsG
a
µT

a, (2.2.12)
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where Y , Ii, and T a are the generators of the U(1)Y , SU(2)L, and SU(3)c groups respectively.

The form of the generators depends on which field the covariant derivative is acting on. The

generators of SU(3)c act only on colour-charged particles, the quarks, and take the form T a =

λ2/2, where λa are the Gell-Mann matrices. The quarks transform as SU(3)c triplets, such that

the up quark has the form

uL =




urL

ubL

ugL



, (2.2.13)

where r, g and b are the colours of QCD.

The SU(2)L group is chiral and therefore is dependent on the chirality of the fermion. When

acting on left-chiral particles, the generators Ii = σi/2, where σi are the Pauli matrices, and

when acting on right-chiral particles the generators Ii = 0. Therefore, as shown in Equa-

tion 2.2.2, left-chiral fields transform as SU(2)L doublets, and right-chiral fields transform as

singlets, introducing parity breaking in SU(2)L. As SU(2)L does not commute with SU(3)c,

there are no flavour-changing interactions in QCD.

For U(1)Y , the weak hypercharge Y is related to the electric charge of the fermion via the

Gell-Mann-Nishijima relation,

Q = I3 +
1

2
Y, (2.2.14)

where I3 is the third generator of the SU(2)L group. The U(1)Y group commutes with SU(3)c

and SU(2)L, and therefore each component of the SU(3)c×SU(2)L multiplets has the same weak

hypercharge. Table 2.1 shows the relative charges of the particles under the Standard Model

gauge group.
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Names Spin (SU(3)c, SU(2)L, U(1)Y )

Quarks, q i
L

1
2 (3, 2, 1

6)

u i
R

1
2 (3, 1, 2

3)

d i
R

1
2 (3, 1, -13)

Leptons, l iL
1
2 (1, 2, -12)

e i
R

1
2 (1, 1, -1)

Gluon g 1 (8, 1, 0)

W bosons W i 1 (1, 3, 0)

B boson B 1 (1, 1, 0)

Higgs ϕ 0 (1, 2, 1
2)

Table 2.1: Transformation properties of the chiral multiplets of the Standard Model in the
fundamental representation, under the gauge group SU(3)c×SU(2)L×U(1)Y .

Using the fields defined in Equation 2.2.2 and the form of the covariant derivative in Equa-

tion 2.2.12, we can write down the Lagrangian for the fermionic sector of the Standard Model,

Lfermion = q i
Liγ

µDµq
i
L + u i

Riγ
µDµu

i
R

+ d
i
Riγ

µDµd
i
R + l

i
Liγ

µDµl
i
L + e i

Riγ
µDµe

i
R, (2.2.15)

where the index i is summed over all fermion flavours. Note that a mass cannot be explicitly

written in the Lagrangian for the fermions, due to the fact that the SU(2)L and U(1)Y repre-

sentations are chiral. Therefore, a fermion mass term of the form mψψ is not invariant. The

fermion sector therefore consists only of gauge covariant kinetic terms.

2.2.3 The Higgs Sector

We saw in Sections 2.2.1 and 2.2.2 that simple bilinear mass terms of the form Ai
µA

i,µ and mψψ

are not gauge invariant and therefore are not allowed in the Standard Model. In order to describe
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the experimentally observed masses of the particles, a mechanism is required to generate the

masses in the theory by breaking the gauge symmetry. The Higgs mechanism [46–48] provides

a procedure of spontaneous symmetry breaking to generate the masses of the massive vector

bosons, the W± and Z. The Lagrangian of the Higgs sector takes the form

LHiggs =
(
Dµϕ

)†
Dµϕ− V (ϕ), (2.2.16)

where the field ϕ = (ϕ+, ϕ0)T, is a complex scalar field, which transforms as (1,2, 12) under

SU(3)c×SU(2)L×U(1)Y , transforming trivially under SU(3)c. Therefore the covariant derivative

takes the form

Dµϕ =
(
∂µ + ig′BµY + igW i

µI
i
)
ϕ, (2.2.17)

which, from Equation 2.2.16, leads to three and four point interactions with the vector bosons.

The potential term

V (ϕ) = −µ2ϕ†ϕ+ λ(ϕ†ϕ)2, (2.2.18)

is symmetric under U(1) transformations, and has a steady ground state if λ > 0. For the Higgs

mechanism to provide the masses of the particles, we require µ2 < 0, thus allowing for symmetry

breaking¶.

It is convenient to write the scalar field in Hermitian form

ϕ =
1√
2



ϕ1 + iϕ2

ϕ3 + iϕ4


 , (2.2.19)

¶If µ2 > 0, then the minimum of the potential would be at |ϕ| = 0, thus SU(2)L×U(1)Y is unbroken at the
minimum
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where ϕi= ϕ†i are four real scalar fields. Due to the symmetry of the potential, we are free to

choose a vacuum expectation value for ϕ such that ⟨0|ϕi |0⟩ = 0 for i = 1, 2, 4 and ⟨0|ϕ3 |0⟩ = v,

where v ≥ 0 [26,27]. The vacuum expectation value of the scalar field is therefore ϕ0 =
1
2(0, v)

T.

Expanding the potential in ϕ0, we find

V (ϕ0) = −1

2
µ2v2 +

1

4
λv4. (2.2.20)

If we require that µ2 < 0, then the v = 0 case is unstable and thus we require the vacuum

expectation value to be non-zero, v ̸= 0, therefore breaking the SU(2)L×U(1)Y symmetry. We

can find the value of the vacuum expectation value by minimising the potential,

∂V (ϕ)

∂ϕ

∣∣∣∣∣
ϕ0

= v(−µ2 + λv2) = 0, (2.2.21)

which, at the minimum, has the solution

v =

√
µ2

λ
. (2.2.22)

As the vacuum is electrically neutral, the symmetry breaking pattern follows

SU(2)L ×U(1)Y → U(1)Q, (2.2.23)

retrieving the QED gauge group, U(1)Q, associated with the unbroken generator Q, defined in

Equation 2.2.14. Consequently, we expect a massless boson associated with the unbroken QED,

which is identified as the photon field, Aµ. Furthermore, as SU(3)c also remains unbroken, the

eight gluons, Ga
µ, remain massless. However, as a result of the symmetry breaking, we see that

the remaining vector bosons gain a mass.
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We can examine the generation of the masses by parameterising the scalar field in the unitary

gauge [28]

ϕ(x) = U(x)
1√
2




0

v +H(x)


 , (2.2.24)

where v is the vacuum expectation value of ϕ from Equation 2.2.22, and H(x) is an Hermitian

scalar field with vacuum expectation value ⟨0|H(x) |0⟩ = 0. In this parameterisation, the

most general complex-valued two-component spinor is achieved by applying an SU(2)L gauge

transformation U(x). We can reduce the field ϕ to only one physical degree of freedom by

applying a gauge transformation to eliminate U(x) from the Lagrangian [28].

We can now rewrite the Lagrangian from Equation 2.2.16 in the unitary gauge. First,

consider the kinetic energy part,

(Dµϕ)
†Dµϕ =

1

2

(
0 v +H(x)

)[
∂µ + ig′BµY + igW i

µI
i

]2



0

v +H(x)


 , (2.2.25)

which will yield kinetic and gauge interactions terms for the H(x) field, as well as terms that

depend only on v. Expressing the covariant derivative in matrix form

Dµ = ∂µ + i
g

2



Bµ 0

0 Bµ


+ i

g

2




W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ


 ,

= ∂µ +
i

2



g′Bµ + gW 3

µ g(W 1
µ − iW 2

µ)

g(W 1
µ + iW 2

µ) g′Bµ − gW 3
µ


 , (2.2.26)

we can consider the terms from Equation 2.2.25 that depend only on v,
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(Dµϕ)
†Dµϕ =

v2

8

(
g2(W 1

µ−iW 2
µ)(W

1,µ + iW 2,µ)

+ (g′Bµ − gW 3
µ)(g

′Bµ − gW 3,µ)
)
+O(H(x)). (2.2.27)

Here we can identify the three massive bosons

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), with mass mW =

gv

2
, (2.2.28)

Zµ =
1√

g2 + g′2
(gW 3

µ − g′Bµ), with mass mZ =
√
g2 + g′2

v

2
, (2.2.29)

which correspond to the W± and Z bosons. The final boson, orthogonal to the Zµ, remains

massless and is identified as the photon,

Aµ =
1√

g2 + g′2
(gW 3

µ + g′Bµ), with mass mA = 0. (2.2.30)

These masses have been experimentally observed to be mW = 80.38 GeV, mZ = 91.19 GeV and

mA < 1 × 10−18 eV [43]. The mixing between the Z and photon can be expressed by defining

the weak mixing angle



Zµ

Aµ


 =



cos θw − sin θw

sin θw cos θw






W 3

µ

Bµ


 , (2.2.31)

where we can identify
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cos θw =
g√

g2 + g′2
, and sin θw =

g′√
g + g′2

. (2.2.32)

By rewriting the covariant derivative in terms of the mass eigenstates, one can identify electron

charge,

e =
gg′√
g2 + g′2

, (2.2.33)

and consequently show that the coupling g = e/ sin θw. Therefore, we see that the masses of the

W and Z bosons are not independent, and are related by

mW = mZ cos θw, (2.2.34)

and as a result all processes involving an exchange of a W or Z boson can be written in terms

of e, θw and mW
‖.

Returning to the kinetic terms in Equation 2.2.25, we can now consider all terms by express-

ing the fields in the mass eigenstate form,

(Dµϕ)
†Dµϕ =

1

2
∂µH∂

µH +
[
m2

WW
+
µ W

µ− +
1

2
m2

ZZµZ
µ
](

1 +
H

v

)2
, (2.2.35)

from which we can see that the gauge bosons couple to the H(x) field proportionally to their

mass.

Finally, one can resolve the dynamics of the H(x) field by examining the potential of the

Higgs Lagrangian, expanded in the unitary gauge,

‖This is certainly true for tree level processes. See References [27,28] for a discussion of higher level processes.
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V (ϕ) = +
µ4

4λ
+ µ2H2 + λvH3 +

1

4
λH4. (2.2.36)

We see that the H(x) field is a scalar with mass

mH =
√
2µ =

√
2λv, (2.2.37)

which we identify as the Higgs boson∗∗. Furthermore, from the potential terms we see that the

Higgs has three and four point self interaction terms. These dynamics are key to determining

whether the Higgs-like particle discovered in 2012 is indeed the Standard Model Higgs boson.

In summary, we have generated the masses of the gauge bosons by breaking the symmetry

from SU(2)L×U(1)Y →U(1)Q, driven by the potential V (ϕ) taking on a non-zero vacuum expec-

tation value. The SU(2)Y generators are broken, and are associated with massive gauge bosons,

whilst a remaining unbroken generator is associated with a massless boson. As a byproduct of

this symmetry breaking, we gain a massive scalar, the Higgs boson. The Higgs boson was ob-

served in 2012 by the ATLAS [44] and CMS [45] experiments, which are situated at interaction

points along the beamline of the Large Hadron Collider at CERN.

2.2.4 The Yukawa Sector

In the Standard Model, ordinary bilinear mass terms are not allowed for the fermions as the

left and right-chiral parts transform differently under SU(2)L. Using the mechanism outlined in

Section 2.2.3, it is possible to write gauge invariant terms which couple the left and right-chiral

parts of the fermions, via the scalar field ϕ. This is written in the Yukawa part of the Standard

Model Lagrangian,

∗∗Note that this is a tree level mass, and the Higgs is sensitive to mass corrections from new physics at high
energies. References [26,28] discuss this further.
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LYukawa = −λ ij
l l

i
L ϕ e

j
R − λ ij

u q i
L ϕ̃ u

j
R − λ ij

d q i
L ϕd

j
R + h.c., (2.2.38)

where the scalar field ϕ̃ = iσ2ϕ† has been defined to obtain an invariant term for the up-type

quarks. The Yukawa couplings, λ ij
f , are complex-valued elements of the 3 × 3 matrices, Λf ,

where i, j ∈ 1, 2, 3. The Λf matrices have 18 free parameters, however these can be reduced by

diagonalising the Λf matrices,

Λf = VfLΛ̂fV
†
fR, (2.2.39)

where VfL and VfR are unitary matrices and Λ̂f = diag(λ1f , λ
2
f , λ

3
f ) is a real valued, diagonal

matrix. The fermion fields are therefore redefined:

u i
L → V ij

uL u
j
L, u i

R → V ij
uR u

i
R, (2.2.40)

d i
L → V ij

dL d
j
L, d i

R → V ij
dR d

i
R, (2.2.41)

l iL → V ij
lL l

j
L, e i

R → V ij
eR e

i
R. (2.2.42)

The matrices VfL and VfR do not affect the lepton kinetic terms as they are unitary matrices.

This is not entirely true for the quarks. As left and right-chiral quark fields interact with

identical couplings under SU(3)c, then the matrices Vu and Vd will commute with the covariant

derivative, therefore the kinetic terms corresponding to QCD remain unchanged. However, in

the EW sector, quarks are mixed by weak interactions involving the charged W bosons, and

flavour-changing terms, such as u i
Lγ

µd i
L, are present in the Lagrangian††. Applying the field

††Note that, in the Standard Model, there are no weak neutral flavour-changing currents. This is an area that
is being searched for at modern collider experiments.
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redefinition to this flavour-changing current term we see

1√
2
u i
Lγ

µd i
L → u i

Lγ
µ(V †

uVd)d
i
L, (2.2.43)

where the unitary matrices Vu and Vd do not cancel each other. Therefore, the charged weak

flavour-changing current links the up-type quarks with the down-type quarks via a rotation

described by the unitary matrix,

VCKM = V †
uVd. (2.2.44)

This matrix is the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix [49, 50], which allows

for the parameterisation of the quark flavour mixing. The CKM matrix has nine free parameters:

three rotation angles, and six phases. By redefining the quark fields using a global phase

transformation, one can remove five of the phases from the CKM matrix, leaving three angles

and one phase. This remaining phase makes some couplings to the W+ matrix complex, and is

the only CP violating parameter in the Standard Model [28].

Returning to Equations 2.2.40 to 2.2.42, these field redefinitions only have the effect of

reducing the number of free parameters in Λf to three real valued parameters for each type of

fermion, λif . The Yukawa part of the Standard Model Lagrangian can now be written as

LYukawa = −λ i
l l

i
L ϕ e

i
R − λ i

u q
i
L ϕ̃ u

i
R − λ i

d q
i
L ϕd

i
R + h.c.. (2.2.45)

The particle spectrum for the fermions of the Standard Model can be retrieved by expanding

LYukawa using the definition of the scalar field in the unitary gauge from Equation 2.2.24,
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LYukawa = − 1√
2

[
λil v l

i
L e

i
R + λiu v u

i
L u

i
R + λid v d

i
L d

i
R

+ λil l
i
LH e i

R + λiu u
i
LH u i

R + λid d
i
LH d i

R

]
+ h.c., (2.2.46)

where we obtain mass terms of the form

−
λifv√
2

(
f

i
Lf

i
R + f

i
Rf

i
L

)
, (2.2.47)

and thus, the masses of the up and down type quarks, and the leptons can be identified as

m i
u =

λiuv√
2
, m i

d =
λidv√
2
, m i

l =
λilv√
2
, (2.2.48)

respectively. We see that the Higgs boson interacts with the fermions, with a coupling propor-

tional to the mass of the fermion.

Note, that in the Standard Model, there is no right-chiral field for the neutrinos and therefore

a mass is not generated in this way. If a right-chiral neutrino field, νR, was introduced to the

theory, then a Yukawa term for the neutrino could be written as

−λ i
ν l

i
L ϕ̃ ν

i
R + h.c., (2.2.49)

and the neutrino would acquire a mass, which, following the symmetry from the quark sector,

should be comparable to the electron’s mass. However, neutrinos have been observed to have

extremely small masses. Following arguments of naturalness, it is therefore assumed that a

right-chiral neutrino field does not exist, and that neutrinos must gain their mass from another
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mechanism.

2.3 The Parton Shower

With the ability to accelerate protons to higher energies than leptons, modern collider experi-

ments are preferentially hadron colliders. Heralded as discovery machines, hadron colliders have

a significant energy advantage, however the collision environment in hadron colliders is much

more complex than their lepton counterparts. Collision events can result in many particles be-

ing produced, and are accompanied by large Standard Model backgrounds due to the composite

nature of the colliding hadrons. For this reason, the theoretical description of such processes

can become highly challenging, and since the 1980s sophisticated computational methods have

been developed to combat this challenge. The most successful approach to simulating high

energy collision events in hadron colliders has been the development of Monte-Carlo event gen-

erators [29, 30]. These algorithms exploit the ability to factorise QCD cross sections, allowing

for the separation of perturbative and non-perturbative parts [23–25]. In this section, we give a

brief overview of one of the cornerstones of modern event generation, the perturbative process of

the QCD parton shower. A detailed review of event generation for high energy hadron colliders

can be found in References [29–33].

2.3.1 Collinear Factorisation

The QCD parton shower process evolves the system from a high energy, low multiplicity state

(the outcome of the hard process) down to a low energy, high multiplicity state (where hadro-

nisation occurs) by successively radiating additional partons. The shower process is dominated

by soft and collinear emissions: soft emission occurs when a virtual particle moves on-shell by

radiating a particle with vanishing four momentum, k ≈ 0, and collinear emission occurs when

an incoming massless particle, i, splits into two massless particles, j and k, which have parallel
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Figure 2.4: A process producing n-partons in the final state, where one parton, i, splits to
partons j and k.

four momenta, such that the total momentum of the original particle, P , is distributed between

the final state particles as

pj = zP, pk = (1− z)P. (2.3.1)

To illustrate the enhancement of the shower process in the collinear and soft limits, consider a

process where radiation occurs from a final state parton, such that the momentum distribution

goes like Equation 2.3.1, as shown in Figure 2.4. In the limit that partons j and k are collinear,

and utilising the factorisation theorem [23–25], the partonic differential cross section for the

(n+1)-parton process is

dσ̂n+1 = dσ̂n
∑

i

∫ kmax

kmin

d|k⊥|2
|k⊥|2

∫ zmax

zmin

dz

z

αs

2π
Pji(z), (2.3.2)

where dσ̂n is the cross section for the n-parton process, and thus the (n + 1)-parton pro-

cess factorises in the collinear limit [29]. The integration measures k⊥ and z are the trans-
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verse momentum of the parton k with respect to parton j, and the fraction of parton i’s

momentum carried away by j from the splitting, i → jk. The Pji(z) functions are the Dok-

shitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) splitting kernels [51–53], which have the form

Pgq(z) = CF

[
1 + (1− z)2

z

]
, (2.3.3)

for the splitting of a quark into a gluon and quark, and

Pgg(z) = CA

[
2
1− z

z
+ z(1− z)

]
, Pqg(z) = nfTR

[
z2 + (1− z)2

]
, (2.3.4)

for the processes of a gluon splitting to two gluons and a gluon splitting to quark-antiquark pair,

respectively [31]. Here, the splitting kernels‡‡ are multiplied by a diagonal colour-charge factor

Cii, such that CF = (N2
c −1)/(2Nc), CA = Nc and TR = 1/2, and for QCD, which has the gauge

structure SU(3)c, the number of colours is Nc = 3. Equation 2.3.2 exhibits a collinear divergence

as k⊥ → 0, and therefore is regularised by a lower limit on the transverse momentum. The upper

limit of the transverse momentum integral depends on the physical energy scale of the given

process. The limits on the momentum fraction, z, depend on the kinematics and resolution of

the system [29]. We note that the splitting kernels from Equations 2.3.3 and 2.3.4 exhibit a

singularity as the emitted parton becomes soft, z → 0. The splitting kernels are derived in the

collinear limit, and therefore describe the hard-collinear contribution for values of z > 0.

In Equation 2.3.2, we saw that the (n+ 1)-parton process can be factorised in terms of the

n-parton cross section, suggesting that the additional parton k is independent of the rest of the

process. This argument can be iterated in the limit that the emissions are collinear, consequently

all subsequent emissions will be mutually independent. Therefore, using collinear factorisation,

‡‡Note that these splitting kernels are not regularised. For information on the regularised splitting kernels, see
References [29,32,33].
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we can approximate the cross section for a final state with many particles, given a scattering

process that gives well separated partons in the final state. In reality, there will be emission

which has a non-zero angle separating partons j and k in Figure 2.4, however, as we have seen,

emission is enhanced in the collinear limit, and therefore collinear factorisation provides a good

approximation of the cross section [29,33].

The cross section is proportional to the square of the amplitude of a specific process, thus

the cross section is related to probability. We can therefore interpret the factor

dP =
∑

i

d|k⊥|2
|k⊥|2

∫ zmax

zmin

dz

z

αs

2π
Pji(z), (2.3.5)

as the probability for the emission of a parton with transverse momentum k⊥, and momentum

fraction z. Note that this is the probability of resolvable emission, and in reality non-resolvable

emission is possible, where the final state radiation is not observable due to the resolution of

the detector. Preserving unitarity, we can define the probability that no emission occurred in a

defined interval as

∆i(t0, t+ δt) = ∆i(t0, t)

[
1−

∑

j

∫ t+δt

t

dt

t

∫
dz

αs

2π
Pji(z)

]
, (2.3.6)

where here we have written the transverse momentum integral in terms of the virtuality§§ of

parton i, t = p2i , such that

∫
d|k⊥|2
|k⊥|

=

∫
dt

t
. (2.3.7)

The quantity ∆i(t0, t+ δt) from Equation 2.3.6, therefore, is the probability that no resolvable

§§Note that the shower may be ordered with respect to other variables that are linear in virtuality. For example,
angle ordering is a commonly used approach for including soft emissions, and such approaches are discussed in
References [29,33].
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Figure 2.5: A parton of species i1, with virtuality t1 and momentum fraction z1 = 1, emerges
from the hard process and showers, emitting n partons of species {jn}. The shower is categorised
by a set of virtualities and momentum fractions, ({tn}, {zn}), and the emitting parton’s species
at each step is denoted by in. Figure has been adapted from Reference [29].

emission occurred in the virtuality interval t0 to t + δt. By making δt small, it is possible to

allow for only one emission per virtuality step. Therefore, one can Taylor expand Equation 2.3.6

to solve for ∆i(t0, t) [29], such that

∆i(t0, t) = exp

[
−
∑

j

∫ t

t0

dt′

t′

∫ zmax

zmin

dz
αs

2π
Pji(z)

]
. (2.3.8)

This quantity is the Sudakov factor, and describes the probability that parton i traverses the

virtuality interval t0 to t without emitting any partons. Note that the Sudakov factor describes

the probability that no emission of any kind occurs in the virtuality interval. Although we have

only considered resolvable emissions, in fact, the Sudakov factor also sums virtual contributions

to all orders. This is a result of preserving unitarity, as the sum of the emission and non-

emission probabilities must be unity. Also, via unitarity, the resolvable emission probability

gives information on the sum of the virtual and unresolvable real contributions, both of which

are divergent on their own, but their sum is finite [33].

Having defined the Sudakov factor and resolvable emission probability, we are now in a
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position to define the parton shower. Consider the shower from Figure 2.5, if the parton emerging

from the hard process showers, radiating off partons of species ji, then before each emission it

will have a specific virtuality ti and momentum fraction zi. We can therefore characterise a

parton shower with a set of virtualities and momentum fractions, ({zi}, {ti}), such that we can

write down the probability for the parton shower that emits at each virtuality step δt,

P j1,j2,...,jn
i1,i2,...,in

({zi}, {ti}) =
[

n∏

m=1

∆i(tm, tm+1)

∫
dz̃m+1

αs

2π
Pim+1im(z̃m+1)

]
, (2.3.9)

where z̃m+1 = zm+1/zm is the momentum fraction carried away by the (m + 1)th parton. The

Sudakov factor, ∆i(tm, tm+1), gives the probability that no resolvable partons have been emitted

between each branching, and the integral includes the probability for each resolvable emission

with momentum fraction z̃.

The Standard Model forbids the existence of free colour-charged particles, and colour-

confinement in QCD restricts all long lived particles to exist in colour-neutral states, called

hadrons. Consequently, final state particles produced by the parton shower in Equation 2.3.9

will never reach being completely on-shell, and at a specific energy scale, ΛQCD, these partons

hadronise. Monte Carlo approaches to simulating parton showers therefore include a cutoff to

the parton cascade, running the algorithm from the hard process to the cutoff energy scale.

2.3.2 Monte Carlo Method

The main iterative step in a Monte Carlo parton shower algorithm is: given an initial virtuality

and momentum fraction (ti, zi), generate the values (ti+1, zi+1), for each step i in the evolution

of the parton shower. Here we outline the Monte Carlo approach to simulating parton showers,

summarising References [20,29,33].

The shower begins with a parton of virtuality t1 and momentum fraction z1 = 1 coming

from the hard process. We then wish to generate t2, such that the shower evolves through the
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virtuality step t1 to t2 without emission. Utilising the Sudakov factor, t2 can be generated by

solving

∆i(t2, t1) = R1, (2.3.10)

where R1 is a random number that is distributed uniformly in [0, 1]. If t2 is less than the shower

cutoff t0, then no further branching occurs and the shower is terminated.

If the generated virtuality t2 passes the cutoff test, then, after the species of the emitted

parton has been chosen, we must generate the momentum fraction z̃m+1 = zm+1/zm by solving

∫ z̃m+1

ϵ
dz′

αs

2π
Pim+1im(z

′) = R2

∫ 1−ϵ

ϵ
dz′

αs

2π
Pim+1im(z

′), (2.3.11)

where R2 is a second random number uniformly distributed in [0, 1], ϵ is the infra-red cutoff for

resolvable emission, and the subscripts im and im+1 denote the emitting parton’s species before

and after the emission, as per the splitting functions in Equation 2.3.3 and 2.3.4. The integral

on the right hand side of Equation 2.3.11 ensures that the splitting probabilities are normalised

to unity.

To complete the shower step, the azimuthal angle ϕ for the emitted parton (m+1) must be

generated by sampling from uniformly distributed angles in [0, 2π]. When a gluon is emitted,

the generation of the azimuthal angle must take into account polarisation correlations, and these

are discussed in detail in References [20,33].

The above process is then repeated for all partons, including emitted partons, until no

further emissions occur in the parton shower. Once the algorithm is complete, and momentum

conservation at each branching has been applied, one obtains a list of four-momenta of the

emitted partons and therefore a simulated scattering event [29, 33]. Here, we have considered

evolving down in virtuality for a final state parton from a scattering event. In principle, this
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algorithm can be used for incoming partons by evolving backwards from the hard process. Such

initial-state parton showers are discussed in detail in References [29,32,33].

The parton shower algorithm outlined here is entirely in the collinear limit, and will be

used in Chapters 4 and 5 to simulate a simple QCD collinear parton shower with nf = 1 on a

quantum computer. This approach has been justified by utilising the fact that the cross section

from Equation 2.3.2 is enhanced in the collinear limit. However, it can be shown that emission

is also enhanced in the soft limit when the emitted parton is not collinear with any outgoing

partons. Such emission is called wide-angle soft emission [29]. Due to this enhancement, it is

not sufficient to neglect the terms from soft emission, and one must construct a method that

allows for the inclusion of soft emission. One technique is the dipole shower.

2.3.3 The Dipole Shower

One method to augment the collinear parton shower to include the correct soft emission be-

haviour is to model the decay of a high energy state as a series of successive decays of colour-

anticolour dipoles into lower energy dipoles [20, 54, 55]. Interpreting the showering process as

a dipole shower addresses momentum conservation by considering only emissions which recoil

against a pair of partons, rather than a single parton. Individual on-shell particles cannot de-

cay into on-shell decay products that have non-vanishing angles or energies without violating

momentum conservation. However, if we consider the final state qq, where q and q are both

on-shell¶¶, then this dipole will readily decay to three on-shell particles without violating mo-

mentum conservation [20]. In the limit that Nc → ∞, the qq dipole decays to form two decay

product dipoles. Therefore, the dipole shower model allows for the simulation of realistic parton

showers with emissions that are not entirely collinear or soft. Furthermore, the dipole model

allows for the straightforward treatment of interference patterns in soft gluon emissions, which

¶¶A quark, q, and antiquark, q, emerging as a final state from a hard process carry opposite and compensating
colours, forming a colour dipole, hence the term dipole shower.
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is discussed in detail in References [20,29,30,33].

To illustrate the dipole shower, we consider the emission of a (soft) gluon from a colour

dipole, qq → qgq, as described in Reference [3]. The inclusive decay probability for this process

is given by the eikonal interference pattern,

dP(q(pI)p(pK) → q(pi)g(pj)q(pk)) ≃
dsij
sIK

dsjk
sIK

C
αs

2π

2sik
sijsjk

dϕ

2π
,

≃ dsij
sIK

dsjk
sIK

C
αs

2π

2sIK
sijsjk

, (2.3.12)

where the dipole invariant mass is given by sab = 2paṗb, C is a colour-charge factor, and

momentum conservation pI +pK = pi+pj+pk implies the relation sIK = sik+sij+sjk between

pre- and post-branching momenta. This decay can therefore be interpreted as the decay of

a dipole with invariant mass sIK into two dipoles of invariant masses sij and sjk, which are

linked by a soft gluon. Using the inclusive probability, the whole parton shower can therefore

be written in terms of a generating functional Fn [56], where we define Fn in the recursive way,

Fn(Φn, t0, tn;O) = ∆(t0, tn)O(Φn)

+

∫ tn

t0

dt dξ
dϕ

2π
C
αs

2π

2sik(t, ξ)

sij(t, ξ)sjk(t, ξ)
∆(t, tn)Fn(Φn+1, tc, t;O), (2.3.13)

describing the contribution of exclusive, fixed particle multiplicity states Φ to an observable

O(Φ). Here we can rewrite the non-emission probability from Equation 2.3.8 in terms of the

dipole invariant masses,

∆(t0, t) = exp

(
−
∫ t

t0

dtdξ
dϕ

2π
C
αs

2π

2sik(t, ξ)

sij(t, ξ)sjk(t, ξ)

)
. (2.3.14)
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The particular choice of t and ξ is the phase space parameterisation or momentum mapping,

where t is the evolution variable of the parton shower, as before. In current, classical implemen-

tations of the parton shower, t and ξ are typically treated as continuous variables.

The first term in Equation 2.3.13 corresponds to the probability that the n-parton state

does not emit any further partons above the virtuality cutoff, t0 ≈ Λ2
QCD. The second term

describes the probability that one or more emission occurred and is related to Equation 2.3.9.

The approach to calculating the parton shower therefore depends on the choice of inclusive decay

probabilities, the choice of evolution variable, and the momentum mapping between pre- and

post-decay momenta, sij , sjk ↔ t, ξ.

The dipole shower that is dominated by the emission of a soft gluon, described here, has been

used in Chapter 6 for the simulation of the first realistic parton shower on a quantum device,

producing synthetic data comparable to real data from experiments on the Large Electron-

Positron collider. The approach uses a method of discretising the phase space available to

subsequent gluon emissions, allowing for the simulation of the parton shower on a real quantum

device on the ibm cloud.



Chapter 3

Introduction to Quantum Computing

Alluding to the quote by Richard Feynman at the start of this thesis: Nature is quantum,

therefore, if we want to simulate its intricacies and phenomena accurately, then we are going

to have to do this using a quantum device, which contains all of the peculiarities of quantum

mechanics inherently. Feynman made this observation in the early 1980s [4], and since then

there has been great progress and success in Quantum Information Science (QIS); recently

culminating in Peter W. Shor [57] and David Deutsch [58] being awarded the 2023 Breakthrough

Prize in Fundamental Physics for their foundational work in the field of QIS, and the 2022 Nobel

Prize in Physics being awarded to Alain Aspect, John F. Clauser and Anton Zeilinger for their

pioneering work in QIS, conducting experiments establishing the violation of Bell inequalities in

the Einstein-Podolsky-Rosen paradox [59–63].

Currently, there are several shortfalls in our ability to simulate high energy physics pro-

cesses using conventional techniques. Despite impressive improvements in modern computa-

tional methods such as Lattice QCD, it is expected that classical devices, even highly advanced

digital devices, will not be able to simulate the real time behaviour of particles in high energy

collisions [64]. Quantum computers, with their inherent ability to retain the quantum nature

of the system, offer an exciting window into the study of highly entangled hadronic matter.

61
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Although a full simulation of a Quantum Field Theory (QFT) is currently over the horizon,

even in its infancy quantum computing can provide a unique insight into quantum systems in a

regime that has never been accessible before. In this Chapter a brief introduction to quantum

computation is given, building up to the Quantum Walk framework in Section 3.2, which is

used in Chapters 4 and 6 for the simulation of a QCD parton shower on a quantum device. In

this thesis, we will concentrate on controllable superconducting qubit based devices, however

promising alternative quantum computation methods are becoming available, such as photonic

devices. An in depth review of quantum computation is available in References [65–68] and ref-

erences therein. Appendix A provides a short guide on how to read quantum circuit diagrams,

and includes a glossary of commonly used quantum gate operations. Supplementary material

on quantum measurements and quantum errors is given in Appendices B and C.

3.1 Quantum Computation

3.1.1 The Qubit

Quantum computation is founded on the quantum bit, the qubit : the quantum analogue of the

classical bit. The bit is a binary system which obeys Boolean logic and therefore can take on the

value of 0 or 1. A collection of bits can then hold information, such as a number, in the binary

basis. This information can be extracted at any point in time on a classical device by examining

the exact state of each of the bits at that time. In contrast to the classical bit, the qubit is

not restricted to a binary basis. Instead, the qubit is a two body quantum system, which in

general can be represented in the computational basis such that the qubit state |ψ⟩ is a linear

superposition of the two basis states |0⟩ and |1⟩,

|ψ⟩ = α |0⟩+ β |1⟩ , (3.1.1)
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where α and β are complex amplitudes of the states |0⟩ and |1⟩ respectively. The qubit cannot

be easily examined like a classical bit to retrieve α and β. Instead, one must measure the qubit,

projecting the state |ψ⟩ onto a classical bit, such that one obtains the 0 result with probability

|α|2 and the 1 result with probability |β|2. The qubit state |ψ⟩ can be manipulated by single

qubit gate operations to alter the outcome of the measurement. It will be shown that a series

of gate operations can be applied to a set of qubits to create quantum algorithms.

To preserve unitarity, the complex amplitudes α and β must obey |α|2 + |β|2 = 1. Conse-

quently, Equation 3.1.1 can be rewritten as

|ψ⟩ = eiλ
(
cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)
, (3.1.2)

where θ, φ and λ are real numbers∗. Only the relative phase between the two coefficients of the

basis states has a physical meaning, and therefore the overall phase eiλ has no observable effect

and can thus be omitted to give

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ , (3.1.3)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π now define a point on a three-dimensional unit sphere: the

Bloch sphere. The Bloch sphere, shown in Figure 3.1, is a geometric representation of a single

qubit only, and no generalisation to multiple qubits is known. Nevertheless, the Bloch sphere is a

useful visualisation of qubit states and how they behave under single qubit gate operations [65].

Interpreting the qubit state |ψ⟩ in the Bloch sphere representation elucidates the potential

information that can be held by the qubit. There are infinitely many points that exist on the

Bloch sphere, and thus infinitely many states that the qubit can be in. However, in order to

∗See the definition of the U3 operation in Appendix A. The values of θ, ϕ and λ correspond directly with
Equation 3.1.2.
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Figure 3.1: Bloch sphere representation of a qubit

retrieve information from the qubit, the qubit must be measured, collapsing the superposition

to obtain either a 0 or 1 result and leaving the qubit in the |0⟩ or |1⟩ state respectively. If the

qubit state |ψ⟩ was measured once, then one bit of information about the state of the qubit

would be obtained. One can only fully determine α and β from Equation 3.1.1 if infinitely many

qubits, each in the identical state |ψ⟩, were measured. Consequently, the qubit contains a lot

of information which is practically hidden. How to utilise this hidden information is the key

question in quantum algorithmic design. The true power of this hidden information is realised

as the number of qubits increases.

3.1.2 Multiple Qubits

The state space of a quantum computer grows exponentially with the number of qubits, such

that an n-qubit system has 2n basis states in the computational basis. These basis states take

the form |q1q2, . . . , qn⟩, where qi ∈ {0, 1}. For example, consider a two qubit system: there are

four basis states, such that a general state of the system can be written as



Introduction to Quantum Computing 65

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ , (3.1.4)

where αij are complex amplitudes of the state |ij⟩, for i, j ∈ {0, 1} [65]. As for the single qubit

case, unitarity is preserved such that
∑

i,j∈{0,1} |αij |2 = 1. With multiple qubit systems, mea-

surements can be carried out in several ways. One can measure the entire system or individual

subsets of qubits. Different measurements have different effects on the state of the system after

measurement, and can lead to interesting results. Quantum measurement is discussed in detail

in Appendix B.

To illustrate the power of quantum states with multiple qubits, here we can construct the

important two qubit state,

1√
2

(
|00⟩+ |11⟩

)
, (3.1.5)

and consider the famous thought experiment outlined by Albert Einstein, Boris Podolsky and

Nathan Rosen (EPR) [69]. Consider the scenario where the entangled state from Equation 3.1.5

is prepared, and then the first and second qubit are separated to positions A and B respectively,

such that they are an arbitrary distance from each other. A measurement on the first qubit, at

position A, would yield the 0 result with 50% probability, or the 1 result with 50% probability. If

a measurement was subsequently performed on the second qubit, at position B, the outcome of

the measurement will always be the same as the result from position A. Seemingly, information

is being passed from one qubit to another instantaneously, violating relativity. It was therefore

postulated that quantum mechanics was not a complete theory, and local hidden variables must

be introduced to restore the causality and locality of the theory [69].

In response to the EPR thought experiment, John Bell proposed a test to determine whether

there could be a local hidden variable description of quantum mechanics by applying a constraint
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on the correlation between two measurements using the Bell inequality [70]. Recently, the 2022

Nobel Prize in Physics was awarded for the experimental proof that the EPR scenario violates the

Bell inequality [59–63], confirming that there is no local hidden variable explanation of quantum

mechanics. As a result, quantum computers have the ability to access highly entangled states

which can be used for quantum algorithmic design. This result is a milestone in the formulation

of quantum mechanics, and as a result the state from Equation 3.1.5 is often called a Bell

state. In fact, the Bell state is at the heart of many quantum algorithms, including quantum

teleportation and superdense coding.

3.1.3 Quantum Algorithms and Advantage

Quantum algorithms are constructed from unitary operations, gates, applied to a series of qubits.

The qubits can be arranged into subsets called registers, and registers can be used to separate

encoded information on the quantum device. As an example of a quantum algorithm, consider

encoding the Bell state from Equation 3.1.5 onto a two qubit quantum device. The algorithm

is constructed from two gates in series: a Hadamard gate applied to the first qubit, and a cnot

gate controlled from the first qubit and applied to the second qubit. Analytically, the effect of

these gates on an initial state of |00⟩ is

|00⟩ H−−−→ 1√
2

(
|00⟩+ |10⟩

)
,

cnot−−−→ 1√
2

(
|00⟩+ |11⟩

)
. (3.1.6)

This algorithm can be schematically illustrated using a quantum circuit, as shown in Figure 3.2,

where the two qubits are represented by horizontal lines, and quantum gate operations are

represented by boxes, controls and targets on the qubits. Appendix A gives an introduction

to reading circuit diagrams. To retrieve information from the device, a measurement must be
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Figure 3.2: Schematic of the quantum circuit for encoding the Bell state on a quantum device.

performed, projecting onto a classical basis.

Although the encoding of the Bell state is a simple example, it demonstrates that a quantum

device has the ability to access highly entangled states. Quantum computing consequently offers

a potential paradigm shift in computational science, allowing for calculations to be performed

in a regime that has never been accessible before. The potential of a quantum advantage

over classical approaches is a driving force in algorithmic design, with examples of quantum

advantage already being identified [57, 58]. One of the most famous examples is the Grover

algorithm [71]. Based on Quantum Amplitude Amplification, the Grover algorithm is an optimal

quantum algorithm [67] which can achieve a polynomial speedup for database search algorithms.

In comparison to the classical case, which requires O(N) queries of the database, the Grover

algorithm requires O(
√
N) queries to successfully identify the marked state. A detailed overview

of the Grover algorithm can be found in References [65, 67, 68, 71]. The Grover algorithm is a

staple of quantum computing architecture, and can be formulated in many ways. Of particular

interest for this thesis, the Grover algorithm can be formulated as an oracle-based quantum

walk, and can be implemented on current quantum hardware and simulators.

3.2 The Quantum Walk

The quantum walk was first developed as the quantum analogue of the classical random walk,

which describes the movement of a walker through some position space, HP . The classical

random walk is based on flipping a coin such that the subsequent movement of the walker is

determined by the outcome of the coin flip. The evolution of the quantum walk is fundamentally
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different due to the unitary evolution of the isolated quantum system. In contrast to the random

motion of the classical random walk, the evolution of the quantum walk is entirely determinis-

tic† [72]. As a consequence, the term quantum random walk implies intermediate measurement.

In this thesis, the quantum walks discussed do not involve intermediate measurements or deco-

herence effects during the running of the algorithm.

Quantum walks are a powerful technique which have been shown to achieve quantum ad-

vantage for certain cases such as search algorithms [73, 74] and simulated annealing [75, 76].

These algorithms are based on Markov Chain Monte Carlo (MCMC) algorithms. In classical

computation, MCMC algorithms are the heart of modern computational methods‡. The speed

of these algorithms is based on the so-called Markov chain mixing time, the time it takes for

the algorithm to approach the equilibrium distribution. An interesting example of this quantum

advantage is the quantisation of ergodic Markov chains§ using Szegedy quantisation [73], which

has been proven to achieve a quadratic speed up using the quantum walk model [77,78].

With their potential quantum advantage and simple implementation, the quantum walk is a

useful tool for quantum algorithmic design. Furthermore, their circuit architecture is compact,

making the quantum walk model well suited to NISQ devices. In this section, we review the

coined quantum walk in discrete time and quantum walks with memory. A detailed review of

quantum walks is given in References [72,79] and quantum walks with memory in Reference [80].

3.2.1 Discrete-Time Coined Quantum Walk

One can construct a classical random walk on a line such that the movement of the walker is

dictated by a coin. If the coin lands on heads the walker moves in one direction, and if the coin

lands on tails the walker moves in the opposite direction. The walk then proceeds by iteratively

†When a measurement is performed, the wavefunction collapses in a non-deterministic way and the outcome
is probabilistic.

‡Though extensively used, it should be noted that classical MCMC algorithms are not optimal in general.
§A Markov chain is said to be ergodic if it is aperiodic and irreducible, consequently the Markov chain has a

unique equilibrium distribution
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flipping the coin and then moving the walker accordingly until the number of desired steps is

reached. This type of random walk is called a coined walk. A detailed discussion on classical

random walks is given in Reference [72]. Here, we consider the quantum analogue, the so-called

discrete-time coined quantum walk [81–83].

The evolution of the coined quantum walk in discrete-time describes the movement of a

walker in a Hilbert space, H, comprising a position space, HP , augmented by a coin space, HC ,

such that

H = HC ⊗HP . (3.2.1)

It will become clear that, in analogy to the coined classical random walk, it is this additional

coin space which defines the diffusion characteristics of the discrete-time quantum walk. The

quantum walk proceeds in individual time steps constructed from two unitary operations. The

first is the coin operation, C, which encodes the coin state in HC and is analogous to flipping

a coin in the classical case. The subsequent shift operation, S, then moves the walker in HP

depending on the state of the coin register, the outcome of the coin flip in the classical example.

Combining the two operations, one can define a unitary operation which describes a single step

of the quantum walk,

U = S · (C ⊗ I), (3.2.2)

where I is the identity in HP . Applying this unitary operation iteratively without intermediate

measurement describes the evolutionary dynamics of the quantum walk, such that an N -step

quantum walk is described by UN . It should be noted that, in the quantum case, from now on we

describe the evolution of a set of states on a finite Hilbert space under unitary transformations,

therefore the walker is only an intuitive representation of the diffusion characteristics within the
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quantum walk [79].

To illustrate the diffusive characteristics of the quantum walk, we consider the simple example

of a discrete-time coined quantum walk on a line¶. The position space HP is spanned by integer

values on a one-dimensional lattice, such that

HP = {|i⟩ : i ∈ Z}, (3.2.3)

where the basis states |i⟩ correspond to the walker being located at position i. The walker can

move along the number line in both the left and right directions, therefore the coin space HC

takes the form

HC = {|0⟩ , |1⟩}. (3.2.4)

The coin register in this case can therefore be constructed from a single qubit. We require the

shift operation S to be a unitary operation on the computational basis, controlling from the

state of the coin. Therefore, we can define S as

S = |0⟩ ⟨0| ⊗
∞∑

i=−∞
|i− 1⟩ ⟨i| + |1⟩ ⟨1| ⊗

∞∑

i=−∞
|i+ 1⟩ ⟨i| , (3.2.5)

such that, if the coin register is in the |0⟩ state, the walker will move to the left, and if the

coin register is in the |1⟩ state, the walker will move to the right. By construction, the walker

moves position every step and cannot remain stationary‖. A schematic of a single step of the

¶It is easy to extend the quantum walk to higher dimensions by increasing the size of the Hilbert space
available to the walker. See Chapters 5 and 6 for examples of higher dimensional quantum walks, used for the
simulation of parton showers in high energy collisions.

‖This is not a general requirement for a quantum walk. An example of a so-called lackadaisical quantum
walk, where the walker can remain in the same position, is provided in Reference [84].



Introduction to Quantum Computing 71

'

✓

|0i�i|1ip
2

|0i+|1ip
2

|0i

|1i

| i

Figure 1: Bloch sphere representation of a qubit

|0i |1i

i = 0 i = 1 i = 2i = �1i = �2

|pi
|0i
|0i
|0i

1

Figure 3.3: Schematic of discrete-time coined quantum walk on a line. The walker at position
i = 0 can move left or right depending on the coin state |0⟩ or |1⟩ respectively. Figure modified
from Reference [2].

discrete-time coined quantum walk on a line is shown in Figure 3.3.

In order to elucidate the difference between the coined classical random walk and the discrete-

time coined quantum walk, it is useful to consider the dynamics of the classical case first. As

described above, the evolution of the classical case is defined by the outcome of a classical coin,

which gives either heads or tails with certainty at each coin flip. Following the framework of the

quantum walk on a line, here we equate heads with the |0⟩ state and tails with the |1⟩ state,

such that the walker moves left and right for heads and tails respectively. Here we assume that

an equal coin is used, and therefore the walker will move to the left 50% of the time, and to the

right 50% of the time. Consequently, after N steps, one would expect to find the walker close

to where it began the walk∗∗.

In contrast, the discrete-time quantum walk is based on a quantum coin. A commonly

used quantum coin is the Hadamard coin, which puts a qubit in an equal superposition of the

computational basis, such that, when applied to the coin qubit for the one-dimensional quantum

walk, the coin state becomes

C |c⟩ = H |0⟩ = 1√
2

(
|0⟩+ |1⟩

)
, (3.2.6)

with the coin qubit initialised in the ground state, |c⟩ = |0⟩. The shift operation S from

Equation 3.2.5 is then applied and the walker moves into a superposition of the position states,

∗∗This is a well known result, and the coined classical random walk can be modelled well with a Galton board.
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Figure 3.4: Quantum circuit diagram for the discrete-time quantum walk on a line with a
Hadamard coin.

such that the state of the system after the coin and shift operations is

U |0⟩ ⊗ |0⟩ = 1√
2

(
|0⟩ ⊗ |i = −1⟩ + |1⟩ ⊗ |i = +1⟩

)
. (3.2.7)

After the operation, the state is in a superposition of positions i = −1 and i = 1. One can now

see that the coin introduces the dynamics of the walker by constructing a superposition on the

coin qubit, causing a superposition of positions in the position space [72]. If a measurement

is carried out after the step, the walker would be identified in either the |i = −1⟩ or |i = +1⟩

state with equal probability, regaining the classical distribution. This process can be repeated,

performing a measurement after every step. In this case, the classical distribution is retrieved

from the quantum walk. However, if a measurement is not performed after each step, the

correlations between different position states will propagate and cause interference. Figure 3.4

shows a schematic circuit diagram for the quantum walk algorithm.

Figure 3.5 shows a simulation of an N = 100 step discrete-time coined quantum walk,

compared to an N = 100 step discrete coined classical random walk. For N = 100 steps,

every odd position will have a zero probability, by construction. For clarity, the zero-valued
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Figure 3.5: Simulation of a 100-step discrete-time quantum walk for a Hadamard coin with the
coin state initialised in (a) a symmetric initial state |c⟩ = 1√

2
(|0⟩ + i |1⟩), (b) the ground state

|c⟩ = |0⟩, and (c) the excited state |c⟩ = − |1⟩, compared to a 100-step discrete classical random
walk. The simulations have been run for 106 shots on the 32-qubit ibmq qasm simulator, and
the classical distribution has been achieved by measuring the system at each step. Note that
only non-zero values are shown. Figure (a) has been adapted from Reference [2].
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probabilities have been removed from the distributions. As expected from before, the classical

distribution approaches a Gaussian centred around the initial position of the walker (the origin in

this case), with variance σ2 = N . In stark contrast, the quantum walk distributions demonstrate

visible interference patters introduced by the correlations between the walker’s positions. It is

clear that the coin initialisation is a key aspect of the quantum walk algorithm, and directly

affects the diffusive characteristics of the walk.

The quantum walk from Figure 3.5b initialises the coin in the |0⟩ state, therefore the coin

operation is defined by Equation 3.2.6. The distribution is asymmetric and is shifted to the left,

such that the walker is more likely to be measured in the negative |i⟩ region. Initially, the cause

of this asymmetry is not obvious, as Equation 3.2.7 shows that the state after one step of the

quantum walk is equivalent to the classical walk, after a measurement is performed. However,

in the subsequent steps, the coin operation will also be applied to the |c⟩ = |1⟩ state. Applying

the Hadamard coin to the |1⟩ state, one obtains

H |1⟩ = 1√
2

(
|0⟩ − |1⟩

)
. (3.2.8)

From this we can now see that a negative phase has been introduced on the |1⟩ state after the

coin operation. Consequently, there will be more cancellations when the coin state is in the

|1⟩ position, and thus the walker is moving to the right, than in the |0⟩ position, when the

walker is moving to the left. As a result, we see constructive interference on the left side of the

distribution, and destructive on the right side. This becomes clear in the analytical calculation

of the first three steps of the quantum walk,
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|c⟩ ⊗ |i⟩ = |0⟩ ⊗ |0⟩ U−−→ 1√
2

(
|0⟩ ⊗ |−1⟩+ |1⟩ ⊗ |1⟩

)
,

U−−→ 1

2

(
|0⟩ ⊗ |−2⟩+ (|0⟩+ |1⟩)⊗ |0⟩ − |1⟩ ⊗ |2⟩

)
,

U−−→ 1

2
√
2

(
|0⟩ ⊗ |−3⟩+ (2 |0⟩+ |1⟩)⊗ |−1⟩

− |0⟩ ⊗ |1⟩+ |1⟩ ⊗ |3⟩
)
. (3.2.9)

Figure 3.5c shows the distribution for the opposite coin initialisation, |c⟩ = − |1⟩. Here there

will be more negative phase states than positive phase states. Consequently, the right moving

walkers interfere constructively and the left moving walkers interfere destructively, leading to the

asymmetric distribution shifted to the right, the mirror image of Figure 3.5b. One can confirm

this by calculating the first three steps of the quantum walk,

|c⟩ ⊗ |i⟩ = − |1⟩ ⊗ |0⟩ U−−→ 1√
2

(
− |0⟩ ⊗ |−1⟩+ |1⟩ ⊗ |1⟩

)
,

U−−→ 1

2

(
− |0⟩ ⊗ |−2⟩+ (|0⟩ − |1⟩)⊗ |0⟩ − |1⟩ ⊗ |2⟩

)
,

U−−→ 1

2
√
2

(
− |0⟩ ⊗ |−3⟩ − |1⟩ ⊗ |−1⟩

+ (− |0⟩+ 2 |1⟩)⊗ |1⟩+ |1⟩ ⊗ |3⟩
)
. (3.2.10)

For both the quantum walks in Figures 3.5b and 3.5c, the walker appears to move away

from the initial position, such that the distribution has a large peak at
∣∣N/

√
2
∣∣ and a small

probability at the origin. Such a distribution suggests that the walker’s motion is ballistic [72],

id est uniform motion away from the origin. Whether the walker’s motion is ballistic or not can

be determined in the symmetric case.

It is possible, and often desired, to remove the asymmetry of the Hadamard coin quantum
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walk to obtain a symmetric distribution of the quantum walk. To do this, one must combine

the two asymmetric walks in Figures 3.5b and 3.5c. This can be done by initialising the coin in

a state such that the final state of the walker is a superposition of the two asymmetric quantum

walks. We can define

|c⟩ = 1√
2

(
|0⟩ − i |1⟩

)
, (3.2.11)

where the complex phase −i has been applied to the |1⟩ state [72, 79, 85]. As the Hadamard

gate does not introduce any complex amplitudes, applying the coin to this state will result in

the quantum walk from Figure 3.5b propagating in the real amplitudes, and the walk from

Figure 3.5b propagating in the imaginary amplitudes. Therefore, the two asymmetric quantum

walks will not interfere with each other. At the end of the algorithm, the position of the walker

is measured, which adds the two asymmetric distributions. The result is shown in Figure 3.5a.

The distribution is spread in the range
[
−N/

√
2, N/

√
2
]
, with high probability peaks at

∣∣N/
√
2
∣∣,

and a uniform distribution around the origin, with small probability. It can be shown that the

standard deviation of the discrete-time coined quantum walk on a line is approximately σ2 ≈ N2,

up to a numerical factor†† [82, 85, 86]. We see that the quantum walk propagates quadratically

faster through the position space than the classical Gaussian distribution, which has a standard

deviation σ2 = N .

Numerical calculations from Reference [72] show that the standard deviation of the discrete-

time quantum walk on a line, with a Hadamard coin, is approximately σ = 0.54N . Returning to

the discussion of ballistic motion, by comparing this result to the ballistic case, σ = N , we see

that the Hadamard coined quantum walk’s motion is ballistic, but runs at almost half the speed

of a free particle [72]. However, in the symmetric case, the quantum walker has the ability to be

††A detailed analytical derivation of the standard deviation for a Hadamard coined quantum walk on an infinite
line is provided in Chapter 5 of Reference [72].
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measured in either the negative or positive directions with a large probability. This is strictly

not possible in the classical case.

3.2.2 Quantum Walks with Memory

An interesting extension of the quantum walk is the quantum walk with memory. Analogous to

classical random walks with memory, the quantum walk with memory allows for the simulation

of arbitrary dynamics by augmenting the Hilbert space of the coined, discrete-time case with an

additional memory space, such that the walk now exists in

H = HC ⊗HP ⊗HM . (3.2.12)

This additional memory space allows for the diffusive characteristics of the quantum walker

to be modified depending on “memory” of the previous walker positions [87] and coin opera-

tions [80,88]. It should be noted that the term memory here relates to information available to

the quantum walk within the unitary evolution of the algorithm. This information cannot be

accessed at a later time outside of the algorithm, or preloaded onto the device. Therefore, when

referring to memory, we are not referring to the concept of qRAM [89].

The amount of memory the walker has affects the diffusive characteristics of the walk. If

the walker has no memory, the quantum distribution from Figure 3.5 is retained, id est the

ideal quantum limit. If the walker has full memory, id est the walker has information about all

the previous positions or coin operations, then the classical distribution is obtained. One could

make the connection between obtaining the classical distribution and performing a measurement

at each step, however this is not the case. Importantly, in the quantum walk with memory, the

evolution is entirely unitary, and no decoherence effects, including measurements, are present.

Moreover, one can prove this by reversing time to regain the initial state, something that is not

possible for a genuinely classical system. This has been shown, and is discussed in more detail,
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in References [80,88].

3.2.3 Quantum Walks for Simulation

Discrete-time quantum walks provide an interesting framework for quantum circuit design. The

model is compact, with the circuit depth of the algorithm growing linearly with the number of

steps in the walk. The quantum walk architecture is therefore well suited to designing algorithms

for NISQ devices, which require shallow circuit depths to limit noise on the device. Furthermore,

as illustrated in Section 3.2, quantum walks provide a potential quadratic speedup over classical

random walks. Consequently, quantum walks offer an exciting opportunity for high energy

physics, where computation time is becoming a limiting factor for simulations.

In this thesis, we present three novel quantum algorithms for the simulation of the parton

shower process as a first step towards a fully quantum simulation of high energy collision events.

It will be shown in Chapters 5 and 6 that the compact architecture of the quantum walk

framework can be used to efficiently encode the QCD parton shower on a quantum device.

Furthermore, these algorithms exploit the ability of the quantum walk with memory to simulate

arbitrary dynamics through the population of a memory Hilbert space, HM , to successfully

generate realistic parton showers on a quantum device [2, 3].



Chapter 4

Quantum Monte Carlo Parton

Shower

The collision of hadrons at high energy colliders can result in the production of high multiplicity

final states, the theoretical description of which can become highly complex. As outlined in

Section 2.3, the calculation of multi-particle processes in QCD can be factorised such that

short and long distant effects can be separated, allowing for the individual treatment of the

perturbative and non-perturbative parts of the calculation [23–25]. A collision event of two

protons can therefore be split into four main parts: the determination of the parton content

of the proton using the parton density functions (PDFs), the calculation of the hard process,

the parton shower, and hadronisation. Of the four main parts, the parton shower is entirely

perturbative and, along with the hard process and the phase space integral, presents a bottleneck

in the production of synthetic data for collider experiments.

As we move to an era of higher energy and higher luminosity collider experiments, new

and innovative techniques must be developed to continue to produce accurate and efficient

simulated collider data, which is crucial for the discovery of new physics. Quantum computing

offers a powerful tool to combat this computational challenge, and has already demonstrated

79
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an advantage over classical computational methods under certain conditions [57,58,71]. In this

chapter, we present the first implementation of a QCD parton shower algorithm on a quantum

device, summarising the findings of Reference [1]. The algorithm constructs a collinear QCD

model with one gluon and one quark. The theoretical framework of the simple QCD model

is outlined in Section 4.1. The quantum implementation of a general and extendable parton

shower algorithm is outlined in Section 4.2, and the results from the simulation of two shower

steps on the ibmq qasm simulator device are presented in Section 4.3.

4.1 Collinear Parton Shower on a Quantum Device

The simulation of parton showers with conventional classical methods can quickly become highly

complex when describing collision events at high energy hadron colliders, such as the Large

Hadron Collider at CERN. Event generators are crucial to the study of physics processes in

high energy physics experiments, thus new methods are required to improve the accuracy and

efficiency of parton shower algorithms, and to cope with the growing computational challenge

presented by higher energy and higher luminosity colliders. In this section, we present the

theoretical framework for a simple, collinear QCD model based on the Monte Carlo approach

from Section 2.3.2. This simple framework allows for the implementation of a proof-of-principle

shower algorithm on a quantum device, outlined in Section 4.2.

The algorithm has been designed to run on the ibmq qasm simulator, available on the

ibm cloud, which has the ability to simulate 32 qubits. To meet the qubit limitation, we

consider a toy model of QCD consisting of one quark flavour and one gluon. We restrict the

model to massless particles and collinear splittings only, where the DGLAP splitting kernels

from Equations 2.3.3 and 2.3.4 have been used. Taking nf = 1 and Nc = 3, the splitting kernels

become
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Pgq(z) =
4

3

[
1 + (1− z)2

z

]
, (4.1.1)

Pgg(z) = 3

[
2
1− z

z
+ z(1− z)

]
, (4.1.2)

Pqg(z) =
1

2

[
z2 + (1− z)2

]
, (4.1.3)

where z is the fraction of parton i’s momentum carried away from the splitting i→ jk by parton

j. As a further simplification, we discretise the shower into individual shower steps and only

evolve the variable z, removing the need to keep track of individual particle kinematics. We can

therefore write the Sudakov factor from Equation 2.3.8 in the simplified form

∆j(z1, z2) = exp

[
− α2

s

∫ z2

z1

dz Pji(z)

]
, (4.1.4)

such that the total non-emission probability at step N is defined as

∆tot(z1, z2) = ∆
ng
g (z1, z2)∆

nq
q (z1, z2)∆

nq̄

q̄ (z1, z2), (4.1.5)

where ng, nq and nq̄ are the number of gluons, quarks, and antiquarks present in the shower

at step N respectively. The parton shower allows for only one emission per shower step, thus

(ng+nq+nq̄) ≤ N . To simplify the shower further we neglect the running of the strong coupling

and set αs = 1.

Current state of the art event generators aim to solve the showering process numerically,

treating the evolution variable as a continuous degree of freedom. This approach is unsuitable

for (current) quantum devices, which are intrinsically discretised into qubits. Therefore, to
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Figure 4.1: Naive decomposition of an n-controlled gate operation using (n-1) ancillary qubits.

implement a quantum parton shower algorithm, we discretise the evolution variable, evolving

the system down in discrete steps of the momentum fraction z.

4.2 Quantum Circuit Implementation

Having outlined the theoretical framework of the parton shower, we can now build a quantum

circuit implementation of a quantum parton shower algorithm, inspired by the classical Monte

Carlo approach [1]. The quantum circuit is constructed from four registers: the parton register,

counting register, emission register, and history register. The algorithm is discretised into

individual shower steps, with each step operation consisting of four operations: the counting

operation, emission operation, history operation, and update operations. Each of the operations

is derived from the naive decomposition of a multi-controlled rotation in Figure 4.1, which is

supported by (n− 1) ancillary qubits for an n-control rotation.

The step operation is applied iteratively to achieve the parton shower, reflecting the conven-

tional Monte Carlo algorithm method from Section 2.3.2. A measurement is performed at the

end of the algorithm only, projecting the final state of the system onto a register of classical bits,
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Figure 4.2: Schematic circuit diagram for the quantum parton shower algorithm, with the
ability to simulate a collinear, toy QCD model. The circuit is constructed from four registers:
the parton register pi, the counting register n, the emission register e, and the history register hi.
The algorithm proceeds in individual steps comprised of four unitary operations: the counting
operations Cf , the emission operations Ef , the history operations Hf , and the update operations
Uf . The subscript f is used here to denote that these operations are applied for each parton
in the shower, and differ at each step. After N steps, the parton register is measured and the
particle content of the shower is obtained.
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retrieving information about a single final state configuration. The algorithm is then repeated

to achieve a probability distribution of shower histories. A schematic of the quantum parton

shower circuit is shown in Figure 4.2. Below, we define each of the operations in the algorithm

and explain how the evolution of the parton shower is handled.

The parton shower starts with a single initial parton, which can be either a gluon or a

(anti)quark, and showers the parton according to the theoretical outline above. The species of

the parton is encoded on the parton register using a three qubit basis, such that the states |100⟩,

|001⟩ and |011⟩ describe a gluon, quark and antiquark respectively. The absence of a parton is

represented by the null state, |000⟩. The initial parton is encoded on the p0 sub-register, with

subsequent emissions populating the pi sub-register, for i > 0. With a three qubit basis, it is

easy to extend the model to include more flavours of quarks; one has the ability to encode seven

parton species and one null state using three qubits.

4.2.1 Counting Operation

The first operation in the algorithm is the counting operation, Cf , which seeks to determine the

parton content of the shower at the start of each step. The operation is constructed from three

individual counting mechanisms, one for each species of parton, and is individually applied to

each parton sub-register. The counting operation controls from the state of the parton sub-

registers pi and populates the counting register n to record the number of partons in the shower.

Figure 4.3 shows a schematic of the count operation applied to the parton sub-register pi.

Note that here we divide the counting register into three sub-registers ng, nq, and nq̄, each of

which contains a set of qubits sufficient to encode the number of each parton species in the

computational basis. The number of qubits required for the counting register therefore scales as

ncountqubits = 3
⌈
log2(N + 1)

⌉
, (4.2.1)
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Figure 4.3: The count operation controls from the parton sub-register pi and updates the count-
ing registers ni according to the particle content of the shower.

id est each sub-register grows logarithmically. It should be noted that this is the most general

scaling. In fact, due to the nature of the parton splittings, one can streamline this scaling and

remove redundant qubits. For a two-step parton shower, the counting register requires only

four qubits: two qubits for the gluon counting sub-register, and one for the quark and antiquark

sub-registers. This is because there cannot be more than one (anti)quark after the first step, but

there can be two gluons. The streamlining of the counting register reduces the overall number

of qubits needed to simulate a two-step shower, allowing for the algorithm to be run on the

ibmq qasm simulator.

The count operation is constructed from a series of multi-controlled gate operations: ccnot

and cnot gates. For each particle sub-register, 15 gates are required at each step to implement

the count operation. However, as we only allow for one emission per step, we know the maximum

amount of partons allowed at any point in the parton shower. Thus, we require 15N operations

at step N of the algorithm, as only N partons can be present in the shower at this time. The

number of gate operations required to implement the count operation therefore scales as

ncountgates = 15
N(N + 1)

2
. (4.2.2)
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4.2.2 Emission Operation

Following the Monte Carlo shower process from Section 2.3.2, the next step for the quantum

shower algorithm is to deal with the Sudakov factors and determine whether an emission occurs

in a momentum interval z1 to z2
∗. The non-emission probability is encoded onto the device

using the rotation

Ef =




√
∆tot(z1, z2) −

√
1−∆tot(z1, z2)

√
1−∆tot(z1, z2)

√
∆tot(z1, z2)


 , (4.2.3)

where ∆tot is defined in Equation 4.1.5. The emission operation controls from the counting

registers and acts on the emission register e with the Ef rotation.

Consider the first step in the shower, the emission register is constructed from a single qubit.

The state of the qubit after the emission operation gives information about whether the parton

emits a further parton or not. The emission operation for the first step in the shower is shown

schematically in Figure 4.4. For each species of parton, the emission operation is applied such

that the controlled rotation Ef constructs a superposition of states |0⟩ and |1⟩ on the emission

qubit, e, which correspond to the non-emission and emission outcomes with probability ∆tot

and (1−∆tot) respectively. If the parton register pi is initialised in a superposition of the three

states corresponding to a gluon, quark and antiquark, then the state of the emission register after

the count and emission operations will contain information about each of the species’ emission

probabilities, in superposition.

As the shower proceeds, the emission operation becomes more complicated. After the first

step, the parton content of the shower can increase. Therefore, the emission operation must

control from all possible combinations of the partons in the shower, controlling from multiple

∗Note, for the quantum shower we do not include an automatic cutoff as in the Monte Carlo approach in
Section 2.3.2. Instead, we “hardcode” the shower termination, which is constrained by the quantum resources
available.
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Figure 4.4: Controlling from the number of partons present in the shower, the emission gate
encodes the Sudakov factor onto the device by rotating the emission qubit e by the Ef rotation.

counting sub-registers nf at once in order to implement Equation 4.1.5 correctly. We have

defined the shower model such that only one emission occurs per step, hence the quantum

shower algorithm needs to select which parton is allowed to emit. This choice will be dealt with

by the update operation. However, to allow for the choice to be made, the emission probabilities

for each parton must be recorded. For a shower with N steps, there are a maximum of N

possible partons before the final emission, therefore the emission register scales as

nemission
qubits = N, (4.2.4)

such that the emission probabilities of the parton in sub-register pi are encoded onto the emission

register qubit ei.

The emission operation is constructed from a series of ccnot gates and a controlled rotation,

following the form shown in Figure 4.1. The number of ccnot gates required to decompose a

multi-controlled rotation is 2(n− 1), where n is the number of controls. Therefore, the number

of gates required to implement the emission operation is

nemission
gate = 12

(
3
⌈
log2(N + 1)

⌉
− 1
)
+ 6N. (4.2.5)

Once again, this can be streamlined when tailoring the algorithm to simulate only two steps.

Since we know that only one parton is present in the first step of the algorithm, then only



88 Quantum Monte Carlo Parton Shower

three controlled rotations are needed to correctly implement the emission operation for the first

step, thus removing the need for computationally costly ccnot gates. Furthermore, due to the

streamlining of the number of qubits needed in the counting register, the emission operation for

the second step has less controls, four qubit controls instead of six. Therefore, fewer ccnot

gates are needed to implement the multi-controlled unitary rotation. Although we use the

ibmq qasm simulator for this example, which can simulate a fully fault tolerant device, shallow

circuit depths are crucial in order to obtain practical results from NISQ devices. Any reduction

in the number of gate operations will have a direct affect on the fidelity of the results. This will

be discussed in further detail in Chapter 6 and Appendix C.

4.2.3 History Operation

Having established whether an emission has occurred or not, and encoded this information onto

the emission register, the next step of the algorithm is to determine which species the emitting

parton will split to. This is handled by the history operation, which encodes the splitting

probabilities onto the device through the history rotation,

Hf =




√
1− P̂ (z) −

√
P̂ (z)

√
P̂ (z)

√
1− P̂ (z)


 , (4.2.6)

where P̂ (z) = (Pji(z)/Ptot(z)) and we have defined

Ptot = ng (Pqg + Pgg) + nq Pgq + nq̄ Pgq. (4.2.7)

From this equation, we see that the two possible gluon splittings, g → gg and g → qq̄, lead

to an added complication in the implementation of the history operation. To accommodate for

splittings, the history register is partitioned into three sub-registers, the gluon histories, quark
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histories, and antiquark histories, where the gluon history sub-register requires twice the amount

of qubits as the (anti)quark sub-register. The history register is directly needed as a control in

the update operation, therefore we will be required to extend the history register at each step.

The scaling of the history register with respect to the number of steps N is given by

nhistoryqubits = 4
N(N + 1)

2
. (4.2.8)

The general form of the history operation is schematically shown in Figure 4.5. The operation

controls from the parton sub-registers, pi, and the emission register, e, and applies the Hf

rotation from Equation 4.2.6 to the history sub-registers, hfi , encoding the splitting information

onto the device. For example, consider a gluon in the first parton sub-register, p0. If the emission

operation determines that an emission has occurred, then the history operation will be applied

to the hg sub-register for this parton. The probability for the gluon to spit to two gluons is

encoded onto the hg0 sub-register by the Hgg operation. A superposition of the states |0⟩ and |1⟩

with probability (1 − P̂ (z)) and P̂ (z) respectively is constructed on the device, corresponding

to the splitting probabilities for the gluon in the p0 sub-register. This will then be repeated for

the second gluon splitting kernel, and for all other partons in the shower with the corresponding

splitting kernels and Hf operation.

Once again, we can streamline this operation by tailoring the circuit for the two-step shower.

Exploiting the symmetry in the splitting function for a quark and an antiquark, we require only

one history sub-register for the quark and antiquark species. We will see how this is practical in

the update operation. Furthermore, Figure 4.5 shows the two gluon history rotations controlled

and applied separately. To reduce the number of ccnot gates, in practice the Hgg and Hqg

rotations can be applied to hg0 and hg1 at the same time, without the need to control twice from

the same state on the parton register pi.
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Figure 4.5: The history operation controls from the parton sub-registers, pi, and the emission
register, e, and acts on the history sub-registers, hfi , with the Hf rotation. The Hf rotation
encodes the information about which species the emitting parton will split to onto the history
register. Note that the two gluon history rotations Hgg and Hqg can be applied at the same time
to reduce the number of ccnot gates, but here they have been displayed separately for clarity.

Similarly to the emission operation, the history operation is constructed from a series of

ccnot gates and a controlled-rotation†, following the decomposition of the multi-controlled

unitary rotation in Figure 4.1. The number of gates required to implement the history gate at

step N is given by

nhistorygates = 16
N(N + 1)

2
. (4.2.9)

Due to the quadratic scaling in both the number of gates and the number of qubits required in the

history register, the history operation is the most costly operation in the quantum parton shower

algorithm. Although the scaling in qubits is important, and is the focus of the implementation in

Reference [1], the scaling of the number of gates is arguably more dangerous for NISQ devices,

which have low coherence times and large environmental errors. For the proof-of-principle

†The streamlined version of the Hgg and Hqg operations follows the routine in Figure 4.1, but instead of one
controlled rotation, there are two.
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quantum parton shower outlined here, coherence times and cnot errors are not a prevalent error,

as the algorithm is designed to be run on the ibmq qasm simulator device, which simulates a

fully fault tolerant device.

4.2.4 Resetting the Emission and Counting Registers

Now that the full splitting probability has been encoded onto the device, the history register

holds all the information needed to propagate the shower to the next step, inheriting the Sudakov

factor information from the emission operation. Before updating the particle content of the

shower, one can now return the counting and emission registers back to the ground state in the

computation basis. This can be achieved by applying the emission and then counting operations

in reverse. It should be noted that, although referred to as resetting here, returning the counting

and emission registers to the ground state is an entirely unitary operation. No decoherence has

been introduced to the circuit, nor has a measurement been performed at this intermediate stage

of the algorithm.

Resetting the emission and counting registers to the ground state allows for the reuse of

the registers without having to introduce new qubits, and reduces the scaling of the number of

required qubits to those shown in Equations 4.2.1 and 4.2.4.

4.2.5 Update Operation

The final operation in a shower step is to update the particle content of the shower, depending on

the splitting probabilities encoded on the history registers. The update operation is an iterative

application of the circuit routine shown in Figure 4.6 to all populated parton sub-registers, pi.

The first gate group populates the pj sub-register with a gluon, simulating the emission of a

gluon from a (anti)quark‡.

‡We can group the splittings q → gq and q̄ → gq̄ together for the update operation due to the symmetry in
the splitting kernels from Equation 2.3.3 for the quark and antiquark.
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Figure 4.6: Update operation sub-routine applied to all populated parton sub-registers pi. The
first gate group shows the creation of a gluon from the q → gq splitting. Note that this can also
be for a q̄ → gq̄ splitting. The centre gate group shows the splitting g → qq̄ and the final gate
group shows the splitting g → gg. The |0⟩-control on the hg1 history qubit gives preference to
g → qq̄ splittings. The parton registers are then passed to the next step.
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The second gate group deals with the splitting of a gluon to a quark-antiquark pair. We

see from Figure 4.6 that the first step is to return the pi sub-register to the null state, before

populating pi and pj with a quark state. In this unconstrained evolution, we do not have an

ordering to the quark-antiquark pair, therefore either of the parton sub-registers, pi or pj , can

take on the antiquark state. To simulate this on the device, we construct a superposition of the

quark and antiquark states on both the pi and pj sub-registers using a controlled-Hadamard

gate and subsequent ccnot gate. If the controlled-Hadamard gate yields a |0⟩ state on the

middle qubit of pj , id est pj stays in the quark state, then the ccnot gate creates an antiquark

state in pi. Otherwise, if the controlled-Hadamard gate yields a |1⟩ state on the middle qubit

of pj , id est an antiquark state on pj , then the ccnot gate has no effect, and pi remains in the

quark state. Since the Hadamard gate constructs an equal superposition, the quark-antiquark

and antiquark-quark states on the pi and pj sub-registers are constructed in equal superposition.

The final gate group in the update operation shown in Figure 4.6 corresponds to the splitting

of a gluon into two gluons. Similarly to the emission of a gluon from a (anti)quark, this is a

simple population of the pj sub-register with the gluon state. However, here we introduce a

distinct feature of the shower model: the preferential treatment of the splitting g → qq̄ over

g → gg. This is encoded onto the device by using a |0⟩-control on the hg1 qubit when populating

pj . Without tracking the kinematics of the parton shower, this preference is a practical method

of implementing the splittings. However, this may be detrimental to the fidelity of the results

obtained from the quantum parton shower algorithm. Nevertheless, we will see in Section 4.3

that this is a reasonable approximation for the shower model, as collinear radiation from gluons

is dominated by the emission of further gluons. Therefore, there is only a small crossover when

hg0 and hg1 are both in the |1⟩ state after the history operation, having minimal affect on the two-

step shower. We will see that this preference is removed/replaced in more realistic algorithms

shown in Chapters 5 and 6.



94 Quantum Monte Carlo Parton Shower

The update sub-routine shown in Figure 4.6 is then applied iteratively to all parton sub-

registers, pi. The shower model has been defined to allow for only one emission per step,

therefore, if more than one parton has been calculated to emit in the emission and history

operations, then the algorithm must “choose” which parton is allowed to emit. Here, we accom-

modate this choice by allowing for the “oldest” partons in the shower to emit first, id est the

update operation will allow for parton i to emit over parton j if i > j. The number of operations

to implement the update operation is

nupdategates = 7
N(N + 1)

2
. (4.2.10)

Once again, we see quadratic scaling in the number of required gates. However, it should be

noted that the update gate is constructed mainly from single controlled gates, which are not as

computationally expensive as multi-controlled gates, such as the ccnot. Therefore, the update

operation is not as costly as the counting and history operations, which grow quadratically in

the number of required ccnot gates.

After the update operation has been completed, the step is then repeated for the desired

number of steps, constructing a highly entangled final state that holds the information of all

possible shower histories. Measurement of the parton register then projects out a single final

state configuration.The shower is then repeated to build a probability distribution for the shower

process.

4.3 Results

The collinear QCD quantum parton shower has been run for two shower steps on the ibmq qasm simulator

device for 10,000 shots of the algorithm. For ease of implementation, each shower step has been

run with a fixed interval 0.3 ≤ z ≤ 0.5, where z is the fraction of parton i’s momentum carried
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Figure 4.7: Comparison between the ibmq qasm simulator and analytical calculations for a
two-step quantum parton shower with momentum interval 0.3 ≤ z ≤ 0.5. The algorithm has
been run for an initial particle of a gluon (left) and a quark (right). Note that the distribution
of the antiquark initial state will be identical to the quark initial state. The algorithm has
been run for 104 shots on the quantum simulator, without a noise profile. Figure adapted from
Reference [1].

away from the splitting i → jk by parton j, and is the evolution variable of the shower. The

ibmq qasm simulator device has been run without a noise profile, therefore representing a fully

fault tolerant device. The results are displayed in Figure 4.7 and show good agreement with

the expected final state configuration rates calculated analytically using the collinear splitting

functions and Sudakov factors. The antiquark distribution is equivalent to the quark distribu-

tion due to the symmetry of the (anti)quark splitting kernel in Equation 2.3.3, and therefore

has been omitted.

For both distributions in Figure 4.7, there is an excess in the shower histories that involve a

g → qq̄ splitting, which is likely due to the preference given to this splitting over g → gg in the

update operation. This preference allows for a practical implementation of the splittings onto

the device, ensuring that the splitting of g → qq̄ occur in the shower for the momentum interval

chosen here. This therefore allows for the validity of the algorithm to be tested, demonstrating
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that the g → qq̄ splittings are implemented correctly as a proof of principle. However, in

improved algorithms this preference has been removed/replaced to increase the realism of the

shower. For the two-step shower, the splittings involving g → qq̄ have a small contribution to

the final probability density and therefore the approximation is acceptable for the comparison

in Figure 4.7.

Here we have presented a general and extendable algorithm for the simulation of a collinear

QCD parton shower on a quantum device, inspired by the classical Monte Carlo method. From

now on, we will refer to this shower algorithm as the quantum Monte Carlo parton shower.

Designed to run on the 32-qubit ibmq qasm simulator, the shower algorithm has the ability

to simulate two shower steps and is constructed from 31 qubits and 444 gate operations (169

single qubit gates, 217 ccnot gates and 58 cnot gates§). The scaling of the algorithm has

been shown to be quadratic in the number of qubits and the number of gates required. This

quadratic scaling makes an implementation on a NISQ device unfeasible due to the large circuit

depth and the many multi-controlled qubit gates. In order to obtain high fidelity results from a

NISQ device, the circuit depth of the parton shower simulation must be dramatically reduced.

Chapter 5 shows that exploiting the quantum walk framework, the collinear parton shower can

be implemented efficiently on the ibmq qasm simulator, achieving shower depths comparable

to a realistic parton shower at a high energy hadron collider.

§Note these qubit and gate numbers are for the streamlined version of the algorithm



Chapter 5

Quantum Walk Approach to Shower

Algorithms

In Chapter 4, we have seen the implementation of a quantum parton shower algorithm inspired

by the classical Monte Carlo approach to parton showers, outlined in Section 2.3.2. This quan-

tum Monte Carlo parton shower is the first quantum implementation of a parton shower with

the ability to simulate a toy QCD model and is a proof-of-principle use case for quantum com-

putation for high energy physics purposes. However, it was shown that the algorithm scales

quadratically in both the number of required qubits and circuit depth. This scaling makes a

practical implementation on a NISQ device unfeasible due to the low qubit limit and decoherence

times. Even when running on the ibmq qasm simulator, which simulates a full fault tolerant

device∗, the quadratic scaling in the number of qubits required is a limiting factor, restricting

the simulation to a maximum of two shower steps. This is relatively shallow when compared to

shower depths that result from a high energy hadron collision, such as those which occur at the

Large Hadron Collider. Therefore, to simulate realistic showers, we must find a way to reduce

∗Note that the ibmq qasm simulator device simulates a fully fault tolerant quantum computer by calculating
the state vector of the system analytically. Therefore, the simulation of large circuits can quickly become highly
computationally expensive.

97
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the amount of quantum resources needed to implement each step of the shower.

In this chapter, we present a novel quantum parton shower algorithm which utilises the com-

pact circuit architecture of the quantum walk described in Section 3.2, summarising the findings

of Reference [2]. Section 5.1 extends the theoretical framework from Section 4.1, abstracting

the parton shower to the quantum walk framework. In Section 5.2 we give a simple example of

a scalar shower to illustrate how the movement of a walker on a one-dimensional number line

can model a shower algorithm, leading to the simulation of a collinear QCD parton shower in

Section 5.3. In Section 5.4, we will see that the paradigm shift from a classical Monte Carlo

inspired algorithm to a quantum architectural circuit design will provide a significant improve-

ment in the realism of the parton shower, achieving realistic shower depths and reducing the

quantum resources required.

5.1 The Parton Shower as a Quantum Walk

The quantum walk parton shower follows the same theoretical framework as the quantum Monte

Carlo parton shower, presented in Section 4.1. The shower is discretised into individual steps

and we allow for only one emission per step. In the quantum walk regime it it useful to com-

bine the Sudakov factor, ∆, defined in Equation 4.1.5, and the splitting kernel, P , defined in

Equation 4.2.7, to express the overall probability for emission at a step as

P̂ ′
ji = (1−∆tot)× P tot. (5.1.1)

We will see that this probability will be directly encoded onto the device through the coin

operation in the quantum walk.

The quantum walk framework allows for a greater number of steps to be simulated, thus

the evolution of the shower is important. We handle this by evolving the evolution variable



Quantum Walk Approach to Shower Algorithms 99

z to lower and lower momenta, exponentially with the number of steps. Once again, we do

not include an automatic cutoff mechanism in the quantum walk parton shower, and instead

“hardcode” the shower termination at a desired number of steps. Furthermore, it will be shown

that the individual treatment of the quark and antiquark is removed to streamline the algorithm,

without reducing its generality.

5.2 Scalar Quantum Walk Shower

To implement a shower algorithm as a quantum walk (with memory), we use the framework

outlined in Section 3.2. The quantum walk is constructed from the tensor product of two Hilbert

spaces: the position space HP and the coin space HC . The architecture can be augmented by a

further Hilbert space, HM , allowing for the walker to have memory of previous occupied positions

and/or previous coin operations. The quantum walk framework is discretised into individual

steps constructed from the coin operation, which acts on HC , and the shift operation, which

controls from the HC and acts on HP . To introduce memory to the walk, the memory operation

is applied as desired in the step†. For the quantum walk parton shower, each step operation is

entirely unitary and no decoherence effects are introduced during the algorithm.

Analogously to the quantum walk, the shower model presented in Section 4.1 is discretised

into individual steps. Therefore, the quantum walk framework appears to be a natural framework

for the simulation of showers. In this section we will outline the simulation process using a

simple scalar shower example. Consider a toy model with one particle, ϕ, that can split via the

mechanism ϕ→ ϕϕ according to the probability

P̂ ′
ϕϕ = (1−∆ϕ)× Pϕϕ. (5.2.1)

†The memory operation can be tailored, however it must be unitary to retain quantum diffusive effects.
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We can therefore define a rotation which can encode this probability onto the device, such that

Cϕϕ =




√
1− P̂ ′

ϕϕ −
√
P̂ ′
ϕϕ√

P̂ ′
ϕϕ

√
1− P̂ ′

ϕϕ


 . (5.2.2)

We can make a direct connection between this rotation and the coin operation from the quantum

walk, such that the characteristics of the coin are encoded using Cϕϕ. Acting on a single qubit,

Cϕϕ yields the states |0⟩ and |1⟩ corresponding to the non-emission, (1−P̂ ′
ϕϕ), and emission, P̂ ′

ϕϕ,

probabilities respectively. Therefore, we can use this rotation as the coin operation to encode

the splitting probabilities on the coin space, HC , which, because we only have one splitting,

spans {|0⟩ , |1⟩}.

Having defined a tailored coin operation to reflect the splitting probabilities, we can now

utilise the position space HP to encode the number of particles in the shower. For the case of

the scalar shower, the number of particles in the shower can only increase through the ϕ→ ϕϕ

splitting, and there is no mechanism to diminish the number of scalars. Therefore, we can restrict

HP to span only zero and positive integers, {|i⟩ : i ∈ N0}, where |i⟩ represents i particles in

the computational basis. Using this position space, and the coin operation from Equation 5.2.2,

a circuit for a simple one-dimensional quantum walk can be constructed, schematically shown

in Figure 5.1. The circuit is constructed from three registers: the position register, x, which

encodes the number of particles in the shower using the computational basis, the coin register, c,

and memory register, m, which can be used to store previous coin operations or walker positions.

The circuit is supported by an ancillary qubit, a. The number of particles that can be simulated

by the quantum walk shower scales exponentially with the number of qubits in the position

register, nx, such that

Maximum number of particles = 2nx − 1. (5.2.3)
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Figure 5.1: Schematic circuit diagram for a quantum walk with the ability to simulate a scalar
particle cascade. Each step of the algorithm is constructed from three main operations: the coin
operation, which encodes the splitting probabilities onto the device, the shift operation, which
updates the particle content of the shower, and the memory operation, which can be used to
store previous coin outcomes. The coin operation is supported by a position check operation,
which ensures the correct implementation of the splitting probabilities. The step operation is
then repeated for N steps, before measuring the number of particles in the final state, encoded
in the position register.
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The algorithm is discretised into individual steps, corresponding to steps in a parton shower.

Each step is split into three main operations: the coin operation, the shift operation, and the

memory operation, which are described below. We will see that to implement the splittings

properly, the coin operation needs to be supported by the position check operations, resulting

in a position dependent coin operation.

5.2.1 Coin Operation

Following the framework of the one-dimensional, discrete-time quantum walk from Section 3.2,

the first operation in each step is the coin operation. To simulate the shower algorithm, we

require this coin operation to encode the splitting probabilities on the coin space, HC , such that,

after applying the coin rotation from Equation 5.2.2, the coin register, c, is in a superposition of

the states |0⟩ and |1⟩ with probabilities corresponding to non-emission and emission respectively.

From Equation 5.2.1, we see that the coin operation includes the Sudakov factor and the

splitting kernels, which depend on the shower content and shower evolution variable, z, at each

step. Consequently, to correctly implement the splitting probabilities in the coin operation, the

particle content of the shower must be known. The coin operation is therefore supported by

the position check operation, shown in the first gate group of Figure 5.1. The position check

operation is constructed from a series of ccnot operations which control from the position of the

walker, and by construction the number of particles in the shower, and update an ancillary qubit

accordingly. The coin operation, shown in the second gate group of Figure 5.1, can then control

from the ancillary qubit and act on the coin register, c, with the correct splitting probability,

P̂ ′. After applying the coin operation, the ancillary qubit can be returned to the ground state

by applying the position check operation in reverse. This therefore allows for the same ancillary

qubit to be used for each position check. Together, the position check and the coin operation,

followed by the position check in reverse, form a multi-controlled rotation of the form shown in

Figure 4.1. Introducing a memory operation to the quantum walk complicates this equivalence,
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as will become clear when outlining the memory operation below.

The coin and the position check operations are then applied for each combination of inter-

mediate shower states. The number of qubits required for the coin register, c, is equal to the

number of splitting kernels, which in this case is one. Similarly, the number of qubits required

for the ancillary register, a, is equal to the number of species in the shower, which again is one

for this case. The particles are encoded in the position register, x, for which the number of

required qubits grows logarithmically with the maximum number of shower steps (id est the

number of particles which can be simulated). Therefore, the number of gates needed for the

position check and coin operations after N steps is

ncoingates = N
(
2
⌈
log2(Nmax + 1)

⌉
− 1
)
, (5.2.4)

where Nmax is the maximum number of steps in the shower, corresponding to the maximum

number of particles which could be produced in the process.

5.2.2 Shift Operation

From Section 3.2, we see that the outcome of the coin dictates the dynamics of the walker.

For the scalar shower, the splitting probabilities have been encoded as a coin operation onto

the coin space, HC . The next task is to control from the coin register, c, and apply the shift

operation accordingly. We have defined the simple model to include only the splitting ϕ→ ϕϕ,

and constructed the shower model such that only one emission can occur per shower step. Thus,

there is no mechanism that can diminish the number of scalars in the shower. Consequently,

the shift operation will only require a routine that either increments the position of the walker

at each step, corresponding to an emission, or leaves the position of the walker unchanged,

when there is no emission. A schematic of the shift operation for the scalar shower is shown

in Figure 5.2. We construct the circuit to increment the walker’s position if the coin operation
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Figure 5.2: Schematic of the circuit implementation for the shift operation in the scalar shower
model. If, after the coin operation, the coin is in the |1⟩ state and a splitting has occurred, then
the position of the walker is incremented using a series of ccnot gates. Otherwise, if a splitting
has not occurred and the coin is in the |0⟩ state, then the walker remains stationary.

from Equation 5.2.2 yields a |1⟩ state on the coin register. Note that, although not needed

here, a decrement operation can be constructed from either controlling from |0⟩ states and not

|1⟩ states, or applying the increment gate in reverse. This will be useful in Section 5.3 when

discussing the QCD shower, which has splittings that can diminish the number of partons.

The number of gates required to implement the shift operation is the same for each step,

therefore the circuit depth of the shift operation for an N -step shower grows linearly with N ,

such that

nshiftgates = N
(⌈

log2(Nmax)
⌉)2

. (5.2.5)

whereNmax is the maximum number of steps in the shower, corresponding to the maximum num-

ber of particles that can be simulated. The shift operation for each step requires
(⌈

log2(Nmax)
⌉)2

gates to increment the position of the walker, which is equivalent to the number of qubits in the

position register squared.
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5.2.3 Memory Operation

Having defined a coin and shift operation, a conventional quantum walk can be constructed

for our example. However, due to the definition of the coin operation in Equation 5.2.2, we

require that Cϕϕ is applied to a |0⟩ state on the coin register to correctly encode the splitting

probabilities onto the device. After a shower step has been implemented, it is possible that the

coin register is in the |1⟩ state. If we apply Cϕϕ to a qubit in the |1⟩ state, then we encode the

emission probability onto the |0⟩ state and the non-emission probability onto the |1⟩ state; the

opposite of what is required to encode the splitting probabilities correctly. This mislabelling

can be dealt with by allowing the quantum walk to have memory of previous coin operations

through the use of the memory operation.

The memory operation is constructed from a series of ccnot gates, which populates the

memory register with the state of the coin after the coin operation has been applied. This can

then be used in subsequent steps to ensure that the correct splitting functions are encoded onto

the device. There is some freedom in the circuit design of the memory operation, however the

operation is required to be unitary. The simplest memory operation can be thought of as a

series of additional coins, and using this model one can introduce arbitrary dynamics into the

algorithm [88]. If we required full memory, as described in Section 3.2.2, this additional coins

memory model would require a coin qubit for each step, with the memory and coin registers

being synonymous. In the full memory regime, the classical limit is obtained, however, and very

importantly, no decoherence effects are introduced during the algorithm. The additional coin

memory operation scales linearly with the number of steps in the shower, such that

nmemory
gates = 2N, (5.2.6)

where the number of required qubits is equal to the number of steps in the algorithm. For
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simplicity, we describe the quantum walk parton shower with an additional coin memory model‡.

The memory operation is not needed in the shower algorithm until after the second step,

as the memory operation can be replicated using the position check operation. Therefore, the

walker retains quantum diffusive effects. With this streamlining, the gate requirement of the

memory operation reduces to nmemory
gates = 2(N − 2).

With the definition of the memory operation, the scalar shower can now be modelled as a

quantum walk with memory, as outlined in Section 3.2.2. The algorithm is fully extendable to an

N step shower. The qubit requirement grows at most linearly with the number of steps§, and the

circuit depth grows linearly with the number of steps. Furthermore, by examining the quantum

walk’s Hilbert space, the model can be extended to include more complicated branchings and

model a QCD parton shower.

5.3 Quantum Walk Parton Shower

Following on from the scalar shower outlined in Section 5.2, it is possible to build a quantum walk

with memory that can simulate the discrete, collinear QCD model from Section 4.1. This can

be achieved by examining the position space, HP , and coin space, HC , of the one-dimensional

quantum walk. Previously, we have seen that the number of particles of a single species can

be encoded onto a one-dimensional position register, for which HP spans {|i⟩ : i ∈ N0}. The

single-splitting kernel for the scalar has been encoded onto the coin register through the rotation

in Equation 5.2.2, such that the coin space spans {0, 1}.

To extend the model to include more particle species and their corresponding splitting ker-

nels, we must increase the dimension of HP to the number of particle species, and HC to the

number of splitting kernels. For the toy model of QCD presented in Section 4.1, there are

‡One should note that it is possible to reset the coin qubit at each step, essentially measuring the coin register
at each step and enforcing that the coin is in the |0⟩ state at the start of every step.

§With a more sophisticated memory operation, this linear scaling can be reduced to logarithmic scaling.
However, to reduce the circuit depth, the linear scaling has been retained
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two parton species: one gluon and one quark flavour. We can therefore extend the dimension

of HP to two dimensions, allowing for the number of gluons to be encoded in one dimension,

which we denote as the x position register, and the number of quarks to be encoded in the

second dimension, which we will call the y position register. The position space, HP , now spans

{|i⟩ , |j⟩ ; i, j ∈ N0}. Note that the branchings that are possible for the gluon and quark, shown

in Equations 4.1.1 to 4.1.3, can only produce quarks in quark-antiquark pairs. Therefore, we

can use the y position register to encode the number of quark-antiquark pairs, removing the

need for an extra register for the antiquark.

We must now extend the coin space, HC , to incorporate the three splitting kernels for

the gluon and quarks. This is achieved by increasing the number of coins to three, therefore

increasing the Hilbert space available to the walker, such that HC spans {0, 1}3. A schematic

of the quantum walk with memory for the simulation of the QCD model is shown in Figure 5.3.

With the redefinition of HP and HC we can now extend the quantum walk with mem-

ory framework from Section 5.2 to simulate a discrete, QCD parton shower. The shower fol-

lows the same procedure as the scalar shower example and has been designed and run on the

ibmq qasm simulator device, allowing for the simulation of 31 shower steps. Below, we outline

how the coin and shift operations are adapted to incorporate the additional parton species and

splittings. Section 5.4 discusses the results of the algorithm compared to a like-for-like classical

implementation. The possible advantage given by the quantum walk for the parton shower is

then discussed in Chapter 7.

5.3.1 Coin Operation

For the QCD parton shower, there are three splitting kernels which are encoded onto three coin

qubits using controlled rotations of the form shown in Equation 5.2.2. Similarly to the quantum

walk shower from Section 5.2, the coin operation is supported by the position check operation.

Having extended the position space to two-dimensions, the position check needs to control from
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Figure 5.3: Schematic circuit diagram for the quantum walk parton shower with the ability
to simulate a discrete, collinear QCD parton shower. The algorithm is built from a quantum
walk with memory framework in two-dimensions and is constructed from three main operations:
the coin operation, which encodes the splitting functions on the device, the shift operation,
which moves the walker along a two-dimensional lattice to update the shower content, and the
memory operation, which allows for previous coin operations to be retained for later use in the
algorithm. The coin operation is supported by a position check operation to ensure the splittings
are implemented correctly.
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Figure 5.4: A schematic circuit diagram of the position check and coin operation for the quantum
walk parton shower algorithm. The position check operation allows for the correct application
of the splitting probabilities by controlling from the position of the walker and populating an
ancillary register. The coin operation then controls from this ancillary register and applies the
correct splitting probabilities which corresponds to the shower content. The ancillary register
can then be returned to the ground state by applying the position check in reverse.

both the x and y registers to populate the ancillary register. The number of gates needed to

successfully apply the position check and coin operations for the two-dimensional quantum walk

parton shower is therefore

ncoingates = N
(
4
⌈
log2(Nmax + 1)

⌉
+ 1
)
, (5.3.1)

where Nmax is the maximum number of steps that the algorithm can simulate. The ancillary

register can then be returned to the ground state by applying the position check in reverse.

Figure 5.4 shows a schematic of the position check and coin operations for the QCD parton

shower algorithm. Each of the splitting probabilities corresponding to the processes g → qq̄,

g → gg and q → qg are therefore encoded onto one of the coin qubits.
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5.3.2 Shift Operation

Having encoded the correct splitting probabilities onto the device using the coin operation, the

shift operation can now update the shower content accordingly. There are three processes that

need to be implemented for the quantum walk parton shower: g → qq̄, g → gg and q → qg. The

splitting of a gluon to a quark-antiquark pair is the most complicated process to implement due

to the reduction in the number of gluons, a process which was not encountered in the previous

example. Here we will describe how the shower content is updated for the g → qq̄ splitting, with

the remaining splittings following on simply from the shift operation described in Section 5.2,

incrementing the number of gluons by applying the circuit from Figure 5.2 to the x register.

To correctly implement the g → qq̄ splitting, we need to decrease the number of gluons by

one and then increase the number of quark-antiquark pairs by one. Figure 5.5 shows how this

is done in the quantum circuit architecture. Controlling from the coin register, a decrement

operation is applied to the x register, which contains information on the number of gluons in

the shower. A controlled increment operation is then applied to the y position register, which

contains information on the number of quark-antiquark pairs. Consequently, we can visualise

the simulation of the splitting of a gluon into a quark-antiquark pair as the movement of the

walker in the two-dimensional lattice. After N steps have been applied, the x and y registers

are measured, and the position of the walker corresponds to the shower content after N steps.

The movement of the walker in the 2D lattice is shown visually in Figure 5.6, where Figure 5.6a

shows the results from a two-step parton shower with the splitting kernels from Equations 4.1.1

to 4.1.3. To demonstrate how the walker moves through the entire lattice, Figure 5.6b shows the

result of a two-step parton shower where the splitting functions have been enhanced to increase

the probability of emission.

The number of gates required to implement the g → qq̄ operation at each step is 2
⌈
log2(Nmax)

⌉2
,

and therefore the number of gates to implement the shift operation for the quantum walk parton
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Figure 5.5: Quantum circuit implementation for the g → qq̄ shift operation. The first gate group,
“Remove g”, decrements the number of gluons encoded on the x position register, reflecting
the gluon splitting. The second gate group, “Add qq̄ pair”, increments the position of the
walker in the y position register, corresponding to adding a quark-antiquark pair to the shower
content. The g → qq̄ controls from a |1⟩ state on the first coin qubit, which encodes the splitting
probability P̂ ′

qg, and a |0⟩ state on the second and third coin qubits, which correspond to the

P̂ ′
gg and P̂ ′

gq splitting probabilities respectively.
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Figure 5.6: Visualisation of the quantum walk parton shower algorithm. The walker’s position
on the two-dimensional lattice constructed from the x and y positions corresponds to the particle
content of the parton shower. Figure (a) shows the result from a two-dimensional parton shower
using the DGLAP splitting kernels, (b) shows modified splitting kernels to show how the walker
spreads through the lattice. Figure from Reference [2].

shower scales with the number of steps N as

nshiftgates = 4N
(⌈

log2(Nmax)
⌉)2

, (5.3.2)

where Nmax is the maximum number of steps in the shower.

The shift operation for the quantum walk parton shower implements the splitting proba-

bilities differently from the quantum Monte Carlo parton shower outlined in Chapter 4, which

allows for a preference to be given to the splitting g → qq̄ over g → gg. Furthermore, the quan-

tum Monte Carlo parton shower gives preference to the order in which the partons in the shower

were produced, allowing for the first parton to split at each step before considering subsequent

partons. In the quantum walk parton shower, no preference is given to any branching process.

Figure 5.5 shows that the shift operation controls from the |1⟩ state on only one of the coin

qubits, and |0⟩ otherwise. This means that the only coin operation that yielded a |1⟩ state on
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the coin register is the coin operation corresponding to the splitting implemented in the shift. If

two coin operations yield a |1⟩ state on the coin register, then there is an ambiguity as to which

splitting should be applied, and therefore the walker remains stationary.

The quantum walk parton shower also calculates the splittings without having any knowledge

of which parton was produced at which step. Therefore, no preference can be given to any

of the partons in the shower, and only the splitting which yields a |1⟩ state on one of the

coin qubits is applied. This reflects the process used in the Monte Carlo approach outlined

in Section 2.3.2 more closely. The quantum walk framework consequently provides a natural

approach to simulating a parton shower.

5.3.3 Memory Operation

There is an amount of freedom in how the memory operation for the collinear, QCD quantum

walk parton shower can be implemented. It is logical to consider the simple method of additional

coins, used in the memory operation from Section 5.2. Similarly to the scalar shower, the memory

operation is only required after the second step for the quantum walk parton shower, retaining

quantum diffusive effects. With this approach, the scaling of the gates and qubits is equivalent

to the scalar shower.

More sophisticated memory operations can be designed to reduce the quantum resources

needed to implement the routine, or to gain some circuit architecture design advantage. For

example, the state before splitting can be encoded onto a memory register and then used in

subsequent operations as a control for the coin operation. It should be noted that a method of

resetting the qubits without the need for a measurement or additional computational qubits may

be achievable in the future. For now, however, one must use computational qubits to implement

operations of this type.
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5.4 Results

A 31-step quantum walk parton shower has been run on the ibmq qasm simulator device for

500,000 shots of the algorithm, with a gluon as the initial shower particle. The results obtained

from the quantum device are shown in Figure 5.7 and have been compared to a like-for-like

classical algorithm. Figures 5.7a and 5.7b show the number of gluons measured in the final state

in association with zero or one quark-antiquark pairs. We see that the quantum walk parton

shower shows good agreement with the like-for-like classical algorithm. A final state containing

one or more quark-antiquark pairs is unlikely, producing low statistics. A further validation of

the algorithm has therefore been conducted with splitting functions that enhance the g → qq̄ and

the q → qg splittings to achieve more final states with one or more quark-antiquark pairs. The

results from this test are shown in Figure 5.8, and once again the results show a good agreement

with the classical algorithm, confirming that the quantum walk parton shower can replicate a

discrete, collinear parton shower successfully. Even with the enhanced splitting functions, the

probability of producing a final state with two or more quark-antiquark pairs is less than 10−5.

The quantum walk framework provides a distinct increase in the number of shower steps

that can be simulated on the quantum device, reducing the number of qubits and the number

of gate operations required to implement each shower step. The quantum walk parton shower

has the ability to simulate over 15 times the number of shower steps than the quantum Monte

Carlo parton shower from Chapter 4, allowing for a more realistic parton shower depth to be

simulated.

In order to construct a fair comparison between the quantum walk parton shower and the

quantum Monte Carlo parton shower, we can consider the quantum resources required to simu-

late a two-step shower in the discrete, collinear QCD toy model comprising one gluon and one

quark flavour. The quantum walk parton shower can recreate the results shown in Figure 4.7

with a circuit that requires 9 qubits and 203 gate operations (59 single qubit gates, 98 ccnot
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Figure 5.7: Comparison between the probability distributions for the number of gluons in the
final state in association with zero quark-antiquark pairs (left) and exactly one quark-antiquark
pair(right) for classical and quantum algorithms. The quantum algorithm has been run on the
ibmq qasm simulator for 5× 105 shots on the device, and the classical algorithm has been run
for 106 shots. Figure adapted from Reference [2].

gates and 46 cnot gates) [2], compared to the 31 qubits and 444 gate operations (169 single

qubit gates, 217 ccnot gates and 58 cnot gates) [1] required to implement the Monte Carlo

quantum shower¶. This increase in qubit efficiency is a result of the logarithmic scaling of the

position registers, and by extension the number of final state partons that can be simulated, in

the quantum walk parton shower, compared to the linear scaling of the quantum Monte Carlo

parton shower. Furthermore, the circuit depth of the quantum walk parton shower grows lin-

early with the number of steps in the shower, compared to the quadratic scaling of the quantum

Monte Carlo parton shower.

¶Any implementation of a controlled unitary rotation has been counted as a cnot gate.
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Figure 5.8: Comparison between the probability distributions for the number of gluons in the
final state in association with zero quark-antiquark pairs (left) and exactly one quark-antiquark
pair(right) for classical and quantum algorithms, using modified splitting kernels. The quantum
algorithm has been run on the ibmq qasm simulator for 105 shots on the device, and the classical
algorithm has been run for 106 shots. Figure adapted from Reference [2].



Chapter 6

Discrete QCD Parton Shower

The shower algorithms presented in Chapters 4 and 5 have calculated the shower evolution in

the collinear limit only. In this limit, successive decay steps factorise into independent quasi-

classical steps, which can be implemented on the quantum device using the Sudakov factor and

the collinear DGLAP splitting kernels to simulate parton cascades. From Equation 2.3.2 we see

that the cross section is enhanced as emission becomes collinear, therefore one can argue that the

collinear limit is a good approximation of the cross section. However, as discussed in Section 2.3,

the cross section is also enhanced by soft radiation, kµ → 0, which is not necessarily collinear.

In the soft limit, interference contributions only allow for partial factorisation, therefore one

must construct a new scheme to deal with the interference patterns. Interestingly, the leading

order contributions to the decay rate in the collinear limit are included in the soft decay rate.

Therefore, we can utilise the soft limit as a starting point for the simulation of a parton cascade

from a high energy collision. In this limit, the decay of a high energy state proceeds as a

colour-anitcolour dipole cascade, as outlined in Section 2.3.3.

To improve the realism of the quantum shower algorithms presented so far, one must devise

a method which allows for the inclusion of soft emission in the quantum shower algorithm.

In this chapter, we outline a quantum parton shower algorithm with the ability to simulate

117
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a colour dipole cascade and produce synthetic data which is comparable to real data from an

experiment. In Section 6.1 we describe a method that discretises QCD and allows for the dipole

shower to be implemented on a NISQ device. The implementation of a quantum circuit for this

shower is outlined in Section 6.2, and the first comparison between synthetic data generated by

the ibm algiers device and real data from a high energy collider experiment is presented in

Sections 6.3 and 6.4.

6.1 Discretising QCD

In this section we perform several abstractions of the dipole shower presented in Section 2.3.3,

leading to the discrete QCD model presented in Reference [90]. Through this discretisation, we

will find that the shower can be described by creating and sampling from a set of primitive fractal

structures, followed by a translation of the chosen primitive into scattering event momenta. It

will be shown that the generation of the fractal structures has an elegant quantum circuit

implementation, suitable for NISQ devices [3].

Following the method outlined in References [3, 90], we start by removing the independent

treatment of the decay probability and the momentum space integration. This is achieved

by absorbing the non-uniform probability density from Equation 2.3.12 into the integration

measure; parameterising the phase space in terms of the gluon’s transverse momentum,

k2⊥ =
sijsjk
sIK

, (6.1.1)

and rapidity,

y =
1

2
ln

(
sij
sjk

)
. (6.1.2)
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Figure 6.1: Parameterising the phase space in terms of the gluon’s transverse momentum, k⊥,
and rapidity, y, allowed dipole decays are constrained to a triangular region of phase space.
The phase space of effective gluon emission is discretised since 1 the running-coupling effects
dictate that gluons emitted within a rapidity gap of δyg are reabsorbed, acting coherently as
single effective gluon. The κ (proportional to k2⊥) dimension is consequently quantised due to
2 the additional phase space folds opening as a result of gluon emission also being discretised
in units of δyg. Figure from Reference [3]. See the main text and Reference [3] for more details.

This choice of phase space parameterisation allows for the simplification of the inclusive proba-

bility, such that Equation 2.3.12 becomes

dP(q(pI)q̄(pK) → q(pi)g(pj)q̄(pk)) ≃
Cαs

π
dκdy, (6.1.3)

where we have defined κ = ln(k2⊥/Λ
2), introducing the arbitrary mass scale Λ2. As a result, al-

lowed dipole decays are constrained to a triangular region of height and baseline L = ln(sIK/Λ
2)

in the (y, κ) phase space. The left hand section of Figure 6.1 illustrates this phase space region

centred around y = 0.

An emission of a gluon from the dipole increases the phase space available to subsequent

emissions. This increase in rapidity span is a direct consequence of the colour charge of the

emitted gluon, and is described in detail in Reference [90]. The extra phase space can be

conveniently added through a method called folding out, where the initial phase space triangle

is extended in the positive y direction by an additional (folded) triangular phase space, called
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a fold. Since the folds are themselves additional phase space regions which may contribute to

subsequent decays, the process of folding out may repeat on the folds, leading to the construction

of a fractal structure. An example of such a fractal structure is shown in the top left panel of

Figure 6.2. Each fold from the parent triangle occurs at a height κ which is lower than the

parent fold’s highest κ value. Therefore, eventually the folds will be small enough to terminate

the shower. This fractal structure is the basis of successful classical dipole shower algorithms

such as Ariadne [91, 92].

Through the phase space parameterisation and the folding out method, we already see the

simplification of the shower process. Complicated splitting kernels are subsummed into the

phase space parameterisation, and importantly, for fixed coupling αs, the inclusive decay rate

is uniformly distributed in the (y, κ)-plane. This approach therefore allows for straightforward

sampling algorithms. However, κ and y are still treated as continuous variables, thus the dipole

shower is not yet suited for quantum circuit implementations on current quantum devices.

The shower model can be simplified even further by examining the effect of the transverse

momentum dependent running coupling. Changing from a constant coupling to a running cou-

pling allows for higher order corrections, which stem from vertex and self-energy corrections,

to be accounted for in the shower calculation. In other words, one is able to take into account

the polarisability properties of the vacuum, id est newly emitted gluons are surrounded by a

set of virtual partons, which can be emitted and/or absorbed [90]. Therefore, the vacuum can

influence the dynamics of emitted gluons.

We can write the transverse momentum dependent running coupling as

αs(k
2
⊥) =

12π

33− 2nf

1

ln(k2⊥/Λ
2
QCD)

, (6.1.4)

where the nf -dependent term arises from the g → qq̄ splitting. Neglecting the splitting of a gluon
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Figure 6.2: The discrete QCD parton shower produces a fractal structure of folds extending
from an original triangular phase space region. The algorithm can be reinterpreted as a one-
dimensional random walk since 3 the baseline of the fractal encodes all necessary information.
The grove structure can be A generated by a heavily constrained two-dimensional random
walk that moves through a lattice with spacing δyg. Due to the low fractal dimension of the
baseline, B the grove structure can be constructed from a one-dimensional random walk. For
the one-dimensional walk B , the notation n/nslicetiles indicates that tile n at height h = nδyg has
been selected. The dipole invariants (ln(sij)) can be read directly from the grove by following
the baseline from particle i to particle j, and skipping segments whose colour was created and
reabsorbed along the way (exempli gratia skipping the pink segments when calculating the
invariant mass of the green and blue gluon tips.). Figure from Reference [3].
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to quarks, and identifying the arbitrary mass scale in κ as Λ2
QCD, we can write Equation 6.1.3

as

dP(q(pI)q̄(pK) → q(pi)g(pj)q̄(pk)) ≃
dκ

κ

dy

δyg
, (6.1.5)

where δyg = 11/6, and in the leading-colour limit C → CA/2 = 3/2 for any dipole decay.

As argued in detail in Reference [90], one can interpret the running coupling renormalisation

group equation as a gain-loss equation. Through this interpretation, one finds that gluons that

are within a rapidity range δyg reabsorb and act coherently as one single effective gluon, as

illustrated by 1 in Figure 6.1. Therefore, the baseline of each rapidity region is discretised into

slices of width δyg, corresponding to a “distance” between two effective gluons which will not be

reabsorbed again. The rapidity span has now been discretised, however κ is still a continuous

variable. Returning to the folding out mechanism, we see that the additional fold extends into

positive y by l/2, where l is the “height” in phase space that the new fold is produced from, id

est the κ value of the emitted effective gluon. The rapidity span of this additional fold is also

discretised into slices of width δyg. Consequently, through the relation l/2 = nδyg, the κ range

is discretised into steps of 2δyg. Thus, the dipole shower can be modelled by generating effective

gluons at the centre of tiles of dimension δyg × 2δyg, which cover the phase space triangle, and

subsequent folds. The right panel of Figure 6.1 shows the quantised triangular phase space

available to dipole decays. The abstractions that brought us to this discretised phase space are

the basis of the discrete QCD model presented in Reference [90].

Each rapidity slice is now made up of a number of tiles, nslicetiles , and each slice can be treated

separately. The exclusive decay rate can now be calculated by substituting Equation 6.1.5 into

the second term of Equation 2.3.13, achieving the simple form
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dt dξ
dϕ

2π
C
αs

2π

2sik(t, ξ)

sij(t, ξ)sjk(t, ξ)
∆(tn, t) =

dκ

κ
exp

(
−
∫ κmax

κ

dκ̄

κ̄

)
=

dκ

κmax
. (6.1.6)

Therefore, the κ-value of the emitted effective gluon from each rapidity slice is simply (number

of tiles)−1, corresponding to the probability of selecting a specific tile at height κ. This is

remarkably straightforward in comparison to conventional parton shower approaches, which

sample the non-emission probability, ∆, using the so called veto algorithm [32,33,93,94].

The discrete QCD method can then be applied for each slice in the initial triangular phase

space region. Once the effective gluons have been selected, the new triangles can be folded out

from the initial triangle. These will also be discretised into tiles of dimension δyg × 2δyg, and

the algorithm can be applied recursively for all subsequent folds. A fractal structure will then

be constructed, as shown in the top left of Figure 6.2. However, the algorithm can be simplified

even further by recognising that the height and y-range of each fold is redundant. All the

information that is needed to calculate the momentum invariants, sij , can be read directly from

the baseline of the fractal structure, represented by 3 in Figure 6.2. The shortest distance along

the baseline between two “turning points” i and j can be shown to equal ln(sij/Λ
2) [3]. From

now on we will call this baseline a grove. Together with knowledge of the overall centre-of-mass

energy, and uniformly sampled azimuthal decay angles ϕ, the grove is sufficient to reconstruct

post-decay kinematics of the shower.

Examining the algorithm further, we see that the grove structures are confined to a triangular

region which is smaller than the original triangle, and that points on the baseline are separated

from their nearest neighbours by δyg, as shown in the bottom right of Figure 6.2. Therefore, one

can construct a lattice of points within the area of the original triangle, through which a two-

dimensional random walk can move to generate a grove structure. The horizontal movement of
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the walker through the lattice shown in the bottom right of Figure 6.2 represents the algorithm

moving to the next rapidity slice in the original fold. Any vertical movement of the walker

then represents folding out an additional phase space triangle from the original triangle, and

by extension the emission of an effective gluon. However, the dynamics of this two-dimensional

walk are heavily constrained since it cannot extend beyond arbitrarily small or large κ values,

and the y-value of each step cannot decrease. Therefore, the simplest algorithm to generate the

grove structures is a one-dimensional random walk with variable step length, represented by the

schematic shown in the top right of Figure 6.2.

The one-dimensional random walk proceeds by starting at the left most part of the grove.

This initial position corresponds to the quark of the quark-antiquark dipole, and is marked as

such. A single recursive step of the algorithm then starts; moving along the baseline by δyg

with unit probability, representing moving to the next rapidity slice in the original phase space

triangle. The number of tiles in the slice, nslicetiles , is calculated, and a tile is selected such that the

effective gluon is emitted at height h = nδyg, with n ∈ {0, 1, . . . , nslicetiles − 1}. The probability of

selecting a specific tile in the slice is P = 1/nslicetiles . If the tile at h = 0 has been selected, then

the walker remains stationary. If the tile at height h = nδyg, for n ̸= 0, then the walker “steps

into the fold”, representing the folding out of an additional phase space, shown by a change of

colour in Figure 6.2. This is simulated by the walker taking n steps to represent the new fold.

The position is marked as an effective gluon. The walker then “steps out of the fold”, moving

back to the baseline of the original triangle by taking a further n steps. This recursive step is

then repeated for all rapidity slices in the original fold, until the walker reaches the right most

part of the grove structure, when this position is marked as the antiquark from the dipole.

The algorithm described above simulates all folds from the original phase space triangle,

however it currently neglects emission from the secondary folds, extended from the initial phase

space triangle. To remedy this, when stepping into and out of the fold, the algorithm is applied in
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the same way, allowing for the emission of effective gluons from subsequent folds. As a result all

possible grove structures allowed for the dipole shower can be generated using this random walk

approach. This very compact algorithm is inspired by considering the constraints for a quantum

implementation, which will be outlined in Section 6.2. The moderate resources available from

NISQ devices favour compact algorithms, which require shallow circuit depths and only have a

small number of computational qubits. The simplification of the classical algorithm as a result

of these considerations is an excellent example of the synergy between classical and quantum

algorithmic design, and is a major result of Reference [3].

6.1.1 Generating Scattering Events from Groves

Once the grove has been constructed, the event data for the scattering event can be generated

from the information encoded in the structure of the grove. The post-decay momenta are created

iteratively from the grove, starting with the highest-κ effective gluons first∗. For every effective

gluon j emitted from a dipole IK, we can read off the invariant dipole masses sij , sjk, and

sIK from the grove. The post-branching momenta are then produced by generating a uniformly

distributed azimuthal angle, ϕ, and employing the momentum mapping from Reference [95],

which provides a scheme that does not distinguish between individual partons, thus matching

the dipole shower well.

To alleviate some of the most prominent effects of the phase space discretisation, we follow

the strategy of Reference [90] and distribute the y and κ-values of the effective gluons in the

highest and second highest tiles of each rapidity slice. This ensures that we are sampling from

a good model for the highest κ gluons. The method relies on the fact that the (y, κ)-plane is

uniformly covered as a result of Equation 6.1.3, thus the selection probability for each of the tiles

is proportional to their area. If a tile protrudes outside of the allowed triangular phase space

region, then the probability of selecting that tile would be less than a tile which is fully inside

∗Going from top to bottom in the triangular phase space region.
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the allowed phase space region. In the random walk algorithm, this caveat is neglected, and all

tiles have the same probability of being selected. This difference is corrected in post-processing

by weighting each event with a factor

w =
∏

is

(area of tile picked in slice is)/(area of slice is)

(number of tiles in slice is)−1
. (6.1.7)

To truly appreciate the improvement provided by the quantum-inspired algorithm, we note

that all possible grove structures can be enumerated for a fixed centre-of-mass energy as a result

of the discretisation of the (y, κ) plane. Therefore, one can use the random walk algorithm

outlined above to “pre-compute” all grove structures and their rates before simulating event data.

Event generation then becomes the simple and efficient process of selecting a grove structure

according to its probability, and then setting up the particle momentum vectors defined by the

grove. Furthermore, the event generation step does not need to know “how” the groves and

their rates have been generated. Consequently, we can use an elegant quantum algorithm to

generate the groves, outlined in Section 6.2.

6.2 Quantum Circuit Implementation

The discrete QCD parton shower presented in Section 6.1 has been shown to have a compact one-

dimensional random walk implementation that improves the efficiency of the approach outlined

in Reference [90]. Utilising the quantum walk with memory framework from Section 3.2.2,

the discrete QCD model has an elegant implementation on a quantum device. In this section

we outline a general and extendable circuit implementation of the discrete QCD model on a

quantum device, laying the groundwork for a quantum algorithm with the ability to generate

synthetic data comparable to real data from the Large Electron Positron collider, presented in

Section 6.3. This is the first quantum assisted event generator that can produce realistic collider
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Figure 6.3: Schematic circuit of the quantum discrete QCD algorithm constructed from four
registers: the grove-baseline register, λ, the gluon register, g, the coin register, c, and the
memory register, m. The algorithm is based on a quantum walk with memory framework and
is discretised into individual steps comprising three main operations: the coin operation, which
encodes the probability of selecting a specific tile in the rapidity slice, the shift operation, which
moves the walker according to the outcome of the coin operation, and the memory operation,
which can be used to record previous coin outcomes. The step is then applied iteratively for all
rapidity slices in the phase space before a measurement of the λ and g registers is performed. See
the main text for more details on each operation. Figure has been adapted from Reference [3].

pseudo-data, and examines the possibility of a new paradigm in event generation.

The circuit is constructed from a quantum walk with one-dimensional memory (id est the

memory register consists of one qubit.), where the Hilbert space of the walker is of the form

shown in Equation 3.2.12. Here, we separate the position space, HP , into two separate sub-

spaces: the grove-baseline space, Hλ, in which information of the grove structure is encoded,

and the effective gluon space, Hg, which records the emission of an effective gluon. The position

space is augmented by the coin space, HC , and the memory space, HM . The quantum circuit

is constructed from four registers which correspond to each of the Hilbert spaces: the grove-

baseline register, λ, the gluon register, g, the coin register, c, and the memory register, m. A

schematic of the quantum circuit is shown in Figure 6.3.

The algorithm follows the framework of the quantum walk with memory, and is discretised
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Figure 6.4: Coin operations for (left) n = 2 and (right) n = 3 tiles in a rapidity slice. Figure
adapted from Reference [3].

into individual steps comprising three main operations: the coin operation, the shift operation

and the memory operation. Following the structure of the one-dimensional random walk from

Section 6.1, the algorithm is initialised in the left-most position of the phase space region, shown

in Figure 6.2, and will propagate through each rapidity slice to simulate the shower procress.

6.2.1 Coin operation

A step begins with the coin operation, C, which constructs an equal superposition of n states

on the coin register of m qubits, such that

C |0⟩⊗m =
1√
n

(
|0⟩+ |1⟩+ . . .+ |n− 1⟩

)
, (6.2.1)

where n = nslicetiles for each rapidity slice, and the states |i⟩ are represented in the computational

basis, |q1q2 . . . qm⟩ with qi ∈ {0, 1}. At each step, the coin register now holds the probabilities

for selecting a tile in the slice.

Note that, for each slice, only log2

(
nslicetiles

)
qubits are required to build an equal superposition

of nslicetiles states. Consider a slice which has two tiles, exempli gratia the second slice from the left

in Figure 6.1. Only one qubit is required to construct the state
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1√
2

(
|0⟩+ |1⟩

)
, (6.2.2)

on the coin register, such that |0⟩ corresponds to picking the slice at h = 0, and |1⟩ corresponds

to picking the tile at h = δyg. This is constructed using a single Hadamard gate operation on

the first qubit of the coin register, as shown in the left-hand gate group of Figure 6.4.

As shown in Figure 6.1, as the walker moves along the baseline to rapidity slices with more

than two tiles, a more complicated coin operation is going to be needed. Consider a slice with

three tiles, the required coin operation yields the state

1√
3

(
|00⟩+ |10⟩+ |01⟩

)
, (6.2.3)

which is constructed on a two qubit basis. This can be achieved using the right-hand gate group

of Figure 6.4. A similar approach can be used to construct the superposition with n states from

Equation 6.2.1 on m qubits.

For a centre-of-mass energy, ECM = 91.2 GeV, typical of collisions at the Large Electron

Positron collider, the initial triangular phase region has only five slices, with a maximum of three

tiles in the centre slice. Therefore, to construct the algorithm to produce synthetic data for the

Large Electron Positron collider, the coin operation can be constructed from the circuits shown

in Figure 6.4. To implement the shower correctly, the coin can be controlled by a memory

register. For ECM = 91.2 GeV, the memory operation is needed only once, and this will be

described in detail below.

6.2.2 Shift Operation

Following the framework of the quantum walk with memory, having implemented the coin op-

eration, the next task is to implement the shift operation depending on the outcome of the
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coin. To simulate the discrete QCD parton shower, we divide the shift operation into three sub-

operations, two of which act on the sub-space Hλ, and the final operation acts on the sub-space

Hg.

The first of the sub-operations is the baseline operation, B, which increments the walker’s

position in Hλ, corresponding to moving the walker along the baseline of the initial phase space

triangle, to the next rapidity slice. This happens at each step of the algorithm, as the walker must

always move to the next slice in the initial triangle. The implementation of this in the quantum

algorithm is evident from the circuit diagram shown in Figure 6.3, where the B operation is

applied irrespective of the outcome of the coin.

The second sub-operation is the λ-shift, S, which propagates the walker in Hλ depending on

the outcome of the coin operation. The λ-shift corresponds to folding out from the initial phase

space triangle, shifting the walker by 2nδyg when the coin operation yields the |n⟩ state. The

third sub-operation, the gluon shift, S′, is then applied to encode the emission of an effective

gluon in Hg.

It is possible that subsequent emissions can occur from the additional folded out phase

spaces. To calculate these correctly, the quantum discrete QCD parton shower algorithm is

applied recursively to the subsequent folds, but without the baseline sub-operation to avoid

double counting in the λ-measure. The shift operation therefore encodes information about the

grove structures in full superposition on the quantum device. This information can be retrieved

by measuring the λ and g registers to reconstruct the scattering events.

All three sub-operations can implemented using a circuitry scheme to increment the position

of the walker in the computational basis, such as the one shown in Figure 5.2. The circuit depth

of the shift operation at each step depends on the number of tiles in the slice being examined.

Therefore, the circuit depth of each shift operation differs at each step: first increasing, until the

walker reaches the centre rapidity slice, and then decreasing, after. Therefore, the total circuit
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depth of the algorithm does not scale with each step, like the algorithms shown in Chapters 4

and 5, but instead scales as a function of the centre-of-mass energy†. This will be discussed in

Section 6.3, when implementing the shower algorithm for a centre-of-mass scale ECM = 91.2 GeV

to generate synthetic data comparable to experimental data from the Large Electron Positron

collider.

6.2.3 Memory Operation

The final operation of the step is then the memory operation, M , which can be optionally

applied at each step to record the previous outcome of the coin operation. Memory of the

previous coin outcomes allows for conditional coin operations to be applied, ensuring that the

state in Equation 6.2.1 can be correctly implemented onto the coin register.

Once again, there is an amount of freedom available in how the memory operation can be

implemented. For ECM = 91.2GeV , the memory operation need only be applied once. Therefore,

the simplest implementation is to use the additional coins method described in Chapter 5.

Combing the coin, shift, and memory operations, the step operation can then be applied

iteratively for all rapidity slices in the original phase space region, until the walker reaches the

right-most position on the grove. At the end of the algorithm, information about the generated

grove structure can be retrieved from the device by measuring the grove-baseline register, λ,

and the gluon register, g. This can then be passed to the event generation process described in

Section 6.1 to produce synthetic data from the information stored within the grove structure.

6.3 Generating Collider Events on a Quantum Computer

The general quantum algorithm shown in Section 6.2 is the first of its kind to be comparable to

real, archival collider data. In this section we will demonstrate this by designing the algorithm

†The rapidity span available to gluon emission is proportional to the dipole centre-of-mass, as shown in
Equation 6.1.2
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Figure 6.5: Set of all possible primitive grove structures for ECM = 91.2 GeV. The groves
progress from (A) minimal emission, to (X) maximal emission. Figure from Reference [3].

to simulate the evolution of a quark-antiquark final state produced at ECM = 91.2 GeV, typical

of events observed at experiments on the Large Electron Positron collider. As described in

Section 6.1, a side-effect of the discrete QCD method is that all possible grove structures can

be enumerated and sampled from. For ECM = 91.2 GeV, there are a total of 24 primitive grove

structures which can be generated‡, with a tertiary fold being the maximum fractal depth. The

24 unique grove structures are shown in Figure 6.5 and labelled A-X, with A having no effective

gluon emission, and X having maximal effective gluon emission.

To simulate collision data from the Large Electron Positron collider, the circuit requires 15

qubits (Five qubits for the λ register, six qubits for the g register, three qubits for the c register,

and one qubit for the m register), and 116 gate operations (102 multi-qubit and 14 single qubit

gate operations). For ECM = 91.2 GeV, the algorithm requires memory of dimension one, id est

the memory register consists of only one qubit. In fact, the memory operation is only required

once during the algorithm, after the first step, to return the coin register back to the ground

state. Therefore, quantum diffusive effects are retained.

‡The number of unique grove structures that can be generated depends on the cutoff. Here, we have chosen
ΛQCD ∈ [0.1, 1] GeV.
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The circuit is compact, requiring only a small number of qubits and it has a shallow circuit

depth. The circuit is well within the capabilities of the ibmq qasm simulator device, which

simulates a fully fault tolerant quantum computer. However, despite the efficient implementation

of the quantum discrete QCD algorithm, the circuit presented in Figure 6.3 is still beyond the

reach of NISQ devices, such as the ibm algiers 27-qubit quantum computer, introducing large

noise effects and producing low fidelity data. Therefore, the circuit must be streamlined in order

to retrieve practical results from the quantum computer.

6.3.1 Tailoring the Quantum Circuit

For the specific example of ECM = 91.2 GeV, the circuit implementation from Figure 6.3 can be

streamlined at the expense of generality and extendability, but at the benefit of a dramatic reduc-

tion in the quantum resources required. Knowing the pre-determined primitive grove structures

from Figure 6.5, it is possible to remove the calculation of the baseline of the grove structure

from the quantum circuit. The specific grove structure generated can then be interpolated from

the gluon emission information encoded in Hg, using the primitive grove structures, A-X. There-

fore, reducing the position space, HP , by removing the Hλ space, restricts the quantum walker

to

H′ = Hg ⊗HC ⊗HM , (6.3.1)

and allows for the equivalent simulation of a parton shower from a quark-antiquark dipole with

ECM = 91.2 GeV, whilst dramatically reducing the required circuit resources to 10 qubits and

21 gate operations (12 multi-qubit, and nine single qubit gate operations) only.

Crucially, the number of multi-qubit gate operations, which are decomposed into a series

of cnot gates, is decreased by a factor of five. The cnot gate is associated with higher error

rates than single qubit operations, therefore they are one of the major sources of quantum
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Figure 6.6: Schematic of the tailored circuit for generating grove structures for ECM = 91.2 GeV.
Each step of the quantum walk with memory is constructed from three operations: the coin
operation, which encodes the probabilities to selecting tile n from the rapidity slice, the shift
operation, which adjusts the position of the walker if a gluon has been emitted, and the memory
operation, which is used once to record the state of the coin after the first coin operation. Figure
adapted from Reference [3].

error§. Reducing these operations, and the depth of the circuit, will improve coherence within

the device, and allow for practical results to be retrieved from the quantum computer. The

streamlined circuit is shown schematically in Figure 6.6.

6.3.2 Generating Grove Structures on a Quantum Device

Having streamlined the quantum circuit to dramatically reduce the circuit depth of the al-

gorithm, the quantum discrete QCD model is now viable for implementation on a NISQ de-

vice. Figure 6.7 shows the results of the grove generation step, obtained from the 32-qubit

ibmq qasm simulator¶ and the 27-qubit ibm algiers quantum computer. The quantum re-

sults have been directly compared to an analytically calculated grove generation rates.

The ibmq qasm simulator has been run for 100,000 shots of the algorithm and shows good

agreement with the analytically calculated grove rates, as expected from a fully fault tolerant

§Appendix C discusses the main sources of error on quantum devices.
¶Note that the ibmq qasm simulator has been run using the full algorithm presented in Section 6.2 as a proof

of principle.
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Figure 6.7: Generation of the primitive grove structures for a centre-of-mass energy of ECM =
91.2 GeV using the ibmq qasm simulator and ibm algiers devices. The results from the
simulator and quantum computer have been compared to analytically calculated classical dis-
tribution. Figure from Reference [3].

simulation of a quantum device. As a proof of principle test, the grove structures generated by

the ibmq qasm simulator have been fed into the event generation step from Section 6.1 and

compared to the classical discrete QCD algorithm. The results are shown in Figure 6.8. We see

an exact agreement between the classical algorithm and quantum simulation, demonstrating the

ability of the quantum algorithm to successfully simulate the discrete QCD model.

The 27-qubit ibm algiers device has been run for 20,000 shots using the ibm cloud platform

to generate grove structures for a centre-of-mass energy ECM = 91.2 GeV. From the comparison

in Figure 6.7, it is clear that the ibm algiers device returns noisy results, differing greatly from

the simulator and analytical rates for the grove structures. The main source of error is likely due

to the number of cnot gate operations in the algorithm. The cnot gate is associated with a
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Figure 6.8: Comparison between the results obtained from the classical discrete QCD algo-
rithm, and the quantum discrete QCD algorithm. The quantum algorithm has been run on the
ibmq qasm simulator device, which simulates a fully fault tolerant device. Thus, as expected,
we see exact agreement between the two algorithms. Figure from Reference [3].

higher implementation error than single qubit gate operations, and can introduce environmental

noise into the system, resulting in decoherence. Consequently, the number of cnot gates needed

in the circuit directly impacts the fidelity of the results.

Furthermore, an interesting artefact of the ibm algiers results in Figure 6.7 is the tendency

to emit too few gluons. This propensity towards groves with fewer gluons is likely due to the

relaxation time of the qubits in the gluon register, g. The relaxation time, called the T1 time,

is the time it takes for an excited qubit to decay back down to the ground state, |0⟩. For the

tailored circuit in Figure 6.6, the |0⟩ state in the gluon register, g, is associated with an absence

of emission. It is therefore likely that this preference towards groves with few emissions is due

to the circuit architecture, and that the T1 time of some of the gluon register qubits is less than

the algorithm run time.

A detailed discussion of quantum errors relating to this algorithm is given in Reference [3]

and Appendix C. It should be noted that is possible to employ error mitigation schemes to

suppress common errors such as readout and cnot errors, and there are many examples in the
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literature [96–98]. However, it will be shown below that, remarkably, error mitigation is not

needed for the quantum discrete QCD algorithm.

6.3.3 Event Generation using the Quantum Device

Having generated the grove structures using the ibm algiers device, we can now use the re-

sults to generate scattering data and compare measurements of selected kinematic distributions

performed on these simulated data with archival collider data. We will highlight and examine

different aspects of the simulation by comparing both the event shape and jet observables. To

demonstrate the capability of the quantum discrete QCD shower algorithm, we will consider

four main measurements: thrust [99],energy-energy correlation (EEC) [100], Durham 2-jet rate,

y23 [101], and jet mass difference, MD [99].

The event shape variable thrust, T , characterises the “shape” of an event, for example

giving a measure of whether the distributions of hadrons is “pencil-like” (T ≈ 1) or “planar-

circular” (T ≈ 0.5) [33]. Therefore, studying thrust values as T → 1 is an excellent probe of the

modelling of soft and collinear emission in the parton shower, and more moderate T values give

a measure of the high-energy gluon emissions. Another event shape variable that can be used

to probe the QCD evolution is the EEC, which measures the correlation of hadronic energy flow

in an event [33]. If primary partons mostly retain their direction, as would be the case for the

asymptotically free limit of QCD, then one would expect a particle at angle χ to be accompanied

by another particle at angle χ+π. The parton shower then proceeds through collinear emission,

one then would expect a cloud of collimated particles around the primary particle χ. As well as

collinear radiation, we expect soft radiation and strong-coupling QCD effects, which contribute

to intermediate EEC values, −0.5 ≲ cosχ ≲ 0.5 [3, 33].

The Durham 2-jet rate, y23, is a jet observable that defines the “closeness” of the second

and third-hardest jets in a collision event. Jets with high energy and large angular separation

are said to be well separated, and have high y23 values. At such values of y23, the spectrum is
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dominated by higher order, real emission corrections. At intermediate values of y23, the jets will

start to coalesce, and the spectrum will become susceptible to parton shower evolution. For low

values of the 2-jet rate, the jets will no longer be separated, and the distribution is dominated

by non-perturbative effects [3]. The jet mass difference, MD, is another jet observable that can

be used to study the dynamics of the parton shower algorithm. The variable MD measures

the difference between the invariant mass of particles in the left and right hemispheres of the

detector. If MD ≈ 0, the two hemispheres of the detector are equally populated, and thus

MD = 0 describes perfectly balanced jets. Values of MD ≲ 1
3 probe the modelling of hard and

multiple soft gluon emission, while large MD probes multiple hard gluon emission [3].

We can now use these event shape and jet observables to determine the performance of the

quantum discrete QCD parton shower algorithm run on the ibm algiers quantum computer.

To facilitate the generation of the scattering data, we embed the quantum algorithm into a

classical toolchain. First, the momentum distribution of the quark-antiquark pair in the process

e+e− → Z/γ∗ → qq̄ is determined classically for a centre-of-mass energy ECM = 91.2 GeV. The

27-qubit ibm algiers device then generates the parton shower evolution of the quark-antiquark

dipole, generating the groves with the rates shown in Figure 6.7. These groves are then used to

generate the kinematics of the system, and are stored in a Les Houches Event (LHE) file. This

can then be passed to Pythia, which performs the parton-to-hadron conversion using the Lund

string model [102]. Finally, Rivet [103] is then used to compare the synthetic data produced by

the ibm algiers quantum device to data taken by experiments at the Large Electron Positron

collider.

Figure 6.9 shows sample comparisons for the thrust, EEC, Durham 2-jet rate, and jet mass

difference. To produce these comparisons, the parton shower mass scale, Λ, has been chosen as

Λ = 0.4 GeV, the parameters of the Lund symmetric fragmentation function [102] have been

set to a = 2 and b = 3/5, and the width of the non-perturbative string-p⊥ has been set to



Discrete QCD Parton Shower 139

b

b

b

b

b
b

b
b

b
b

b
b

b
b

b
b

b

b
b

b

b

b Aleph data (EPJC 35 (2004) 457ff)
Dqcd shower
Quantum shower (ibm_algiers)

10−2

10−1

1

10 1

Thrust (ECMS = 91.2 GeV)

1/
σ

d
σ

/
d

T

b b b b b b b b b b b b b b b b b b b b b

0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

T

M
C

/D
at

a

b

b

b

b

b

b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b
b
b
b
b
b

b

b

b

b

b Delphi data (Z.Phys C73 : 11ff (1996))
Dqcd shower
Quantum shower (ibm_algiers)

10−1

1

Energy-energy correlation, EEC

E
E

C

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

-1 -0.5 0 0.5 1
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

cos χ

M
C

/D
at

a

b b
b

b

b

b

b

b

b
b

b b b
b

b
b

b

b
b

b
b

b
b

b
b

b

b

b

b

b

b

b

b Opal data (EPJC 17 (2000) 19ff)
Dqcd shower
Quantum shower (ibm_algiers)10−1

1

10 1

10 2

Differential 2-jet rate with Durham algorithm (91.2 GeV)

d
σ

/
d

y 2
3

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

10−4 10−3 10−2 10−1
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

yDurham
23

M
C

/D
at

a

b

b

b
b

b
b

b
b

b

b

b

b

b

b Aleph data (EPJC 35 (2004) 457ff)
Dqcd shower
Quantum shower (ibm_algiers)

10−4

10−3

10−2

10−1

1

10 1

Jet mass difference (ECMS = 91.2 GeV)

1/
σ

d
σ

/
d

M
D

b b b b b b b b b b b b b

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

MD

M
C

/D
at

a

Figure 6.9: Sample comparisons of synthetic data produced by the discrete QCD model (Dqcd)
and the quantum algorithm run on the ibm algiers device to data taken at the Large Electron
Positron collider. The quantum parton shower results form the ibm algiers device have not
been corrected for quantum errors. Figure from Reference [3].
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σ = 0.1 GeV [3].

First, we compare the classical discrete QCD parton shower, Dqcd, presented in Section 6.1

to data from the Large Electron Positron collider‖. We see that the Dqcd approach gives very

satisfactory agreement with the archival data, especially given then simple implementation of

algorithm. From the jet mass difference and Durham 2-jet rate plots, we see that the Dqcd

algorithm obtains an excess for states with multiple high-energy gluons. This is expected, as the

rate of soft-gluon emission in the hard region is greater than the true matrix element calculation.

Improving the description of the shower outside of the soft limit will improve the agreement in

these areas. Furthermore, a better description outside the soft limit will also improve the

thrust range 0.75 ≲ T ≲ 0.9. We see from large T values, and moderate EEC values, that the

description of soft gluon emission is well modelled.

Having examined the agreement between the Dqcd model and the collider data, we can

now examine the agreement between the Dqcd model, the collider data and the synthetic data

produced using the ibm algiers device. We see that, once again, the agreement between the

ibm algiers device and the data is encouraging, even without error correction on the device.

An interesting factor of the quantum results is that the tendency to generate grove structures

with “too few” emissions actually slightly improves the overall data description. Although this

would be removed with error mitigation, the agreement of uncorrected quantum data may hint

at possible improvements of the classical algorithm, once again highlighting the synergy between

quantum and classical algorithmic design.

6.3.4 Tuning Simulation Parameters

To avoid giving an artificially positive impression of the capabilities of the Dqcd and quantum

showers, so far no dedicated program to tune the parameters of the simulation has been de-

‖Note that the data description of the Dqcd model is equivalent to the data description of the quantum
simulation, as shown by the agreement in Figure 6.8.
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Figure 6.10: Sample comparisons of synthetic data produced by the discrete QCD (Dqcd)
model for various values of the mass scale, Λ. Variations of the mass scale have non-negligible
uncertainties for observables that are dominated by perturbative QCD effects. Figure from
Reference [3].
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signed to improve the overall data description shown in Figure 6.9. This is the first quantum

algorithm to be compared to “real-life” particle physics data [3], and even without tuning, the

data comparison is very encouraging. However, it is interesting to examine the effects of tuning

on the distributions from Figure 6.9.

The discrete QCD method models the entirely perturbative aspects of the showering pro-

cess, with all non-perturbative parts of the evolution dealt with by the Lund string model in

Pythia. As a result, the only tuneable parameter in the perturbative part is the mass scale Λ.

Figure 6.10 shows that variations of this mass scale have non-negligible uncertainties. This is

entirely expected from a leading-logarithm model.

We can examine the tuning of the non-perturbative model by applying changes to the Pythia

tune. We see that these lead to small variations in the model, best seen in observables which

are dominated by non-perturbative dynamics. Examples of such observables are shown in Fig-

ure 6.11, and present mild dependence on the perturbative mass scale Λ, but are sensitive to

changes in the Pythia tune. We see that both the Monash [104] and Dire [105] parton shower

tunes yield a better data agreement than the nominal parameters outlined above. Therefore,

and as expected, it is confirmed that a dedicated tuning of the Dqcd shower can improve the

description of the data [3].

6.4 Results and Overview

Here, we have presented a general and extendable approach to simulating realistic collider event

data using a quantum device. To achieve this, we have re-interpreted the conventional par-

ton shower framework, which relies on an intricate method of rejection sampling, as a one-

dimensional random walk through the mutli-gluon phase space. The novel algorithm is a re-

formulation of the discrete QCD model presented in Reference [90], and it has lead to the

development of an elegant quantum shower implementation, utilising the quantum walk frame-
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Figure 6.11: A comparative study on the affect of varying the tune for observables dominated
by non-perturbative QCD effects. It is clear that applying the default Pythia Monash tune, or
the Dire tune leads to better data description. Figure from Reference [3].
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work.

The algorithm provides a remarkable improvement on the realism of the parton shower

in comparison to previously discussed shower algorithms in Chapters 4 and 5. It is the first

quantum algorithm to produce a result comparable to “real life” particle physics data, and

Figure 6.9 shows the encouraging data comparison achieved. Furthermore, it is the first time

a realistic parton shower algorithm has been simulated using a real, quantum computer. The

ibm algiers device is a 27-qubit platform which uses an IBM Falcon r5.11 processor and is

categorised as a NISQ device. Therefore, in order to obtain practical results from the device,

the quantum shower algorithm has been streamlined; tailoring the implementation to data from

the Large Electron Positron collider. Disagreement with the classical discrete QCD model,

Dqcd, has been identified as errors within the device, primarily from cnot errors and the T1

time of the qubits. This is explained in detail in Reference [3] and Appendix C.



Chapter 7

Quantum Advantage and the Future

of Quantum Parton Showers

When developing a quantum algorithm, it is interesting to consider what benefits one can gain

from using the quantum device. With the ability to form highly entangled systems, quantum

computers provide an opportunity to perform calculations in a regime never before accessible.

Utilising this unique feature is the goal of any quantum algorithmic architecture, and can be used

to achieve a speed up of classical approaches [57,58,71], or, and perhaps more fundamentally, to

exploit the quantum nature of the system and improve the understanding of quantum mechanical

systems [4,64].

In this chapter, we consider the potential quantum advantage of the parton shower algorithms

outlined in Chapters 4, 5 and 6. Sections 7.1 discusses the potential speedup that quantum walks

can provide under certain conditions, and how this applies to the quantum walk parton shower

from Chapter 5. Section 7.2 discusses the reduction in the need for error correction to achieve

practical results from a quantum device, highlighted by the success of the quantum discrete

QCD algorithm from Chapter 6. Finally, Section 7.3 looks to the future of event generation on

a quantum computer.
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7.1 Speedup via Quantum Walks

As has been shown in Section 2.3, conventional parton shower algorithms proceed via a Markov

Chain Monte Carlo (MCMC) process to sample from the probability distribution of shower

final states. Beyond high energy particle physics applications, MCMC algorithms are also the

heart of modern computation and have a wide variety of applications in many fields∗. As a

result, a speedup of MCMC approaches using a quantum device would be invaluable, and has

been the subject of intense research [106–108]. Of particular interest to this thesis, quantum

walks have been shown to provide a quadratic speedup of Monte Carlo methods, under certain

conditions [73–78].

The mechanism underlying the speedup of MCMC approaches using quantum walks is the

so-called Markov chain mixing time, defined as the time it takes for the algorithm to approach

the equilibrium distribution [109, 110]. To understand the speedup from quantum walks, we

will first consider the mixing time of a classical random walk described by the stochastic matrix

M . The mixing time is directly related to the difference, δ, between the largest and second

largest eigenvalues of M , the so-called spectral-gap of the matrix [78,79,83]. For minimal δ, the

mixing time of the a classical random walk is proportional to δ−1. If we now examine a quantum

walk described by the matrix M ′, it can be shown that the spectral-gap, δ′, of the quantum

walk is quadratically larger than its classical counterpart [73, 78]. As a result, the quantum

walk therefore has the potential to provide a quadratic speedup up in the mixing time, and by

extension a quadratic speedup over classical MCMC algorithms [75,76].

It should be noted that the speedup of any quantum algorithm is heavily dependent on the

physical implementation of the circuit. Therefore, only in combination with an efficient circuit

implementation can the quantum walk provide a quadratic speed up over classical MCMC

algorithms. This speedup has not yet been proven in general for all quantum walk frameworks,

∗Despite their success, it is worth noting that MCMC algorithms are not optimal and often contribute to
large computational overheads, such as the generation of synthetic data for high energy colliders.
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and over all MCMC algorithms. However it is widely expected that this speedup will be the case

in general, with recent results providing upper bounds on the mixing time of quantum walks

have been estimated [111,112].

7.1.1 Quantum Walk Parton Shower

There are many parallels between the quantum walk parton shower from Chapter 5, and the

quantum walks which utilise the Szegedy quantisation of Markov chains [73,113–115], a method

which has been proven to provide the quadratic speed up in mixing times for reversible, ergodic

Markov chains†. To illustrate this relation, consider the observable corresponding to the number

of gluons in the final state, ⟨ng⟩, which is encoded in the quantum walk parton shower as the

position of the walker in the x-dimension of the position space, HP .

During the evolution of the shower, the number of gluons can be enhanced through the

splittings g → gg and q → qg, or diminished through the splitting g → qq̄. As a result, the

Markov chain representing ⟨ng⟩ can be modelled as a binary tree walk, with the ability to move

left or right in the x-dimension at each step. Thus, the walker can be found in any state in

the ⟨ng⟩ state after N steps with finite probability. Therefore, as there are no transient states,

the Markov chain representing ⟨ng⟩ is irreducible. Furthermore, the parton shower process

is aperiodic, and, by construction, the quantum algorithm is reversible. The Markov chain

representing ⟨ng⟩ is thus reversible and ergodic, and there is a direction connection between the

quantum walk parton shower and Szegedy quantisation of Markov Chains. As a consequence,

we can postulate that the quantum walk parton shower has the potential to benefit from a

quadratic speed up.

Here, we do not consider an analytical proof of such a speedup, and highlight some key

differences between the quantum walk parton shower and Szegedy quantisation. Firstly, the

approach taken by Szegedy [73] is not a coined quantum walk, and is an abstraction of the

†A Markov chain is said to be ergodic if it is aperiodic and irreducible
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Grover algorithm [71], which is implemented using an oracle. It has been shown that Szegedy

quantisation can be replicated by coined quantum walks [113, 114], and quantum walks with

memory [115], however there are currently strict conditions on the coin and memory operations,

with general architectures remaining an active field of research.

Without an analytical proof, one can only conjecture on the potential speedup on offer for

the quantum walk parton shower from Section 3.2. Instead, the main finding of Reference [2]

is the dramatic improvement in the quantum resources required to simulate the collinear, QCD

shower over the quantum Monte Carlo shower.

7.2 Redundancy of Quantum Error Correction

A limiting factor for current quantum architectures is the amount of quantum resources avail-

able. In their infancy, gate quantum devices have a small number of qubits, with little fault

tolerance and short coherence times. Furthermore, NISQ devices become untenable to quantum

errors from many decoherence effects within the device, ultimately delivering low fidelity results.

Therefore, a major challenge facing quantum circuit architects is how to design algorithms which

will return practical results. One solution is to employ sophisticated error mitigation techniques

to minimise the decoherence affects within the device.

The major result of the quantum discrete QCD parton shower from Chapter 6 is that no

error correction schemes are required to obtain a good description of archival collider data [3],

allowing for the algorithm to be implemented and run on the ibm algiers NISQ device. Despite

achieving a device output which is far from ideal (see Figure 6.7), due to the fact that the physical

observables are supported by a mixture of several parton shower structures, the results are

remarkably robust to quantum errors, as seen in Figure 6.9. Therefore, in conjunction with the

improvements in physical shower aspects (inclusion of soft-gluon coherence, running coupling

effects, and realistic scattering data generation) and the reduction in the required quantum
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resources required compared to all other quantum shower algorithms, the quantum discrete

QCD parton shower drastically alleviates the requirement for fully fault tolerant devices.

7.3 Towards a Fully Quantum Event Generator

Given the rapid improvement in the design of quantum circuit architectures for the simulation of

parton showers, demonstrated by the progression from the two-step, collinear shower presented

in Section 4.1, to the realistic dipole shower from Chapter 6, it is interesting to examine the

future of event generation on a quantum device.

One of the obvious extensions of the discrete QCD algorithm is the addition of g → qq̄

splittings, which are currently neglected in the shower. Reference [116] may provide inspira-

tion on how to develop the discrete QCD model to achieve this, along with the addition of

hard-collinear corrections, and sub-leading colour terms. Furthermore, a thorough programme

of dedicated event generator parameter tuning is needed for the quantum shower algorithm to

improve the data description. Although the addition of these aspects will undoubtably amelio-

rate the current implementation of the discrete QCD model, to achieve a competitive model it

will be necessary to incorporate precision QCD calculations into the discrete QCD framework

through matching [117–119] and merging [120–124] methods [3].

To develop a fully quantum event generator, quantum algorithms will have to be devised for

all steps of the event generation process. Already, there have been attempts to design quantum

circuits with the ability to simulate each of the steps in the process. A quantum machine

learning approach to determine the parton content of the proton is presented in Reference [125],

estimating “quantum” parton density functions. Reference [1] proposes a circuit for sampling

from the highest-momentum transfer interactions by exploiting the equivalence between the

mathematical form of a helicity spinor and a qubit. The inclusion of colour calculations is

an important feature of modern event generators, and an area which could benefit greatly
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from quantum devices. Reference [126] presents the first steps towards the quantum simulation

of the colour part of perturbative QCD. Finally, the event generator needs to sample from

non-perturbative hadronisation models. Reference [127] shows results from a NISQ device,

modelling string breaking in the simplified Schwinger model. Together with the quantum discrete

QCD algorithm from Chapter 6, these advances give an encouraging outlook for quantum event

generators.



Chapter 8

Conclusions and Outlook

The production of high quality synthetic data is crucial for the analysis and interpretation of

measurements from high energy collider experiments. The theoretical description of proton-

proton collisions at the Large Hadron Collider is highly complex, relying on event generator

algorithms to construct realistic pseudo scattering event data. The cornerstone of the event

generation process is the QCD parton shower, which evolves the system from the high momentum

transfer of the hard process down to the hadronisation scale, where non-perturbative effects

dominate. Together with the calculation of the hard process and phase space integral, the

parton shower presents one of the bottlenecks in the production of synthetic data for collider

experiments, becoming a limiting factor for the event generation process as we move to the era

of higher energies and higher luminosities.

Quantum computing offers a potential solution, promising to provide a quantum advantage

to a plethora of computational and theoretical problems in physics. Furthermore, all processes

in high energy physics are inherently quantum mechanical, and thus particle physics is a nat-

ural testbed for quantum algorithmic design. In this thesis, we present three novel quantum

computing algorithms for the simulation of the QCD parton showering process, following the

development of the quantum simulation of parton showers in References [1, 2], summarised in
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Chapters 4 and 5, leading to the first realistic quantum simulation of a QCD parton shower in

Reference [3], summarised in Chapter 6. These algorithms provide the first step towards a fully

quantum event generator that can benefit from the advantages that computing in the quantum

regime can provide.

In Chapter 4 we present a proof-of-principle algorithm for the quantum simulation of a QCD

parton shower, the quantum Monte Carlo parton shower. Inspired by the classical Monte Carlo

approach, the quantum algorithm has the ability to simulate a simplified QCD model comprising

one gluon and one quark flavour, which can split according to the collinear DGLAP splitting func-

tions only. The quantum circuit architecture has been designed for the ibmq qasm simulator

device, a 32-qubit quantum simulator with the ability to simulate a fully fault tolerant digital

quantum computer. Constructed from 31 qubits and 444 gate operations (275 multi-qubit and

169 single-qubit gate operations), the quantum Monte Carlo parton shower can simulate two

shower steps. Figure 4.7 shows the comparison of results from the quantum parton shower al-

gorithm and analytically calculated rates for each final state. We see that the quantum Monte

Carlo parton shower shows good agreement with the expected rates, with the exception of chan-

nels which contain a g → qq̄ process in the shower history. These channels exhibit an excess

in comparison to the analytical rates due to the preference given to the g → qq̄ splitting over

the g → gg splitting in this implementation. The preference for a gluon to split to quarks has

been included to demonstrate the correct implementation of the g → qq̄ process in the circuit

architecture. Examining the scaling of the quantum resources required, we find that the quan-

tum Monte Carlo parton shower scales quadratically in both the number of gate operations

and qubits, specifically requiring a large number of controlled gate operations. Controlled gate

operations are associated with a high error rate on the quantum device, consequently the im-

plementation of the quantum Monte Carlo parton shower on a NISQ device is currently out of

reach. Furthermore, the quadratic scaling in resources limits simulation to very shallow shower
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depths. To simulate a shower depth typical of collision events at modern collider experiments,

one must utilise compact quantum circuit architectures, such as the quantum walk.

Chapter 5 outlines a quantum walk approach to simulating the collinear QCD parton shower

on a quantum device. Reframing the parton shower as a quantum walk across a two-dimensional

lattice, the quantum resources required to implement a single shower step can be drastically re-

duced. The number of qubits scales logarithmically with the number of shower steps, allowing

for the simulation of a 31-step parton shower on the ibmq qasm simulator device. The proba-

bility distributions for the number of gluons measured in the final state associated with zero and

one quark-antiquark pair are shown in Figure 5.7. The quantum walk parton shower exhibits

good agreement with a like-for-like classical parton shower, simulated using the Monte Carlo

approach from Section 2.3.2. Due to the low probability of obtaining a final state with one or

more quark-antiquark pairs, a further validation of the quantum walk parton shower has been

performed in Figure 5.8. Once again, we see good agreement between the quantum simulator

and the classical algorithm.

Further to the efficient qubit consumption of the quantum walk parton shower, the circuit

is also compact, growing linearly with the number of shower steps. The quantum walk parton

shower is therefore much more efficient than the quantum Monte Carlo parton shower, requiring

only 9 qubits and 203 gate operations (144 mutli-qubit and 59 single-qubit gate operations) to

replicate the two-step shower from Chapter 4. However, despite the drastic improvement in the

efficiency of the algorithm, the quantum walk parton shower can still only simulate a collinear

QCD model, restricted to one flavour of quark. To include kinematics and simulate a realistic

parton shower, the approach must again be reimagined for the quantum device.

The conventional approach to parton showering, which uses variations of the “veto” algo-

rithm to perform rejection sampling, can be reframed as a one-dimensional random walk over

the baseline of a multi-gluon phase space structure, called a grove. Chapter 6 outlines how this
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approach is achieved by reformulating the discrete QCD method of Reference [90], allowing for

the result of the parton shower evolution to be pre-selected before multi-particle momenta are

generated, all the while ensuring the on-shell conditions and the conservation of momentum. By

abstracting the random walk to the quantum walk framework, the discrete QCD algorithm has

the ability to synthesise realistic particle collision events by sampling parton shower configura-

tions on a quantum device, forming the basis of the quantum discrete QCD algorithm. As an

application, a circuit has been composed to simulate collision events with ECM = 91.2 GeV, typ-

ical of collisions at the Large Electron Positron collider. Due to the compact architecture of the

one-dimensional quantum walk, the grove structures have been generated and sampled on the 27-

qubit ibm algiers quantum computer using a streamlined circuit comprising 10 qubits and 21

gate operations (12 multi-qubit and nine single-qubit gate operations). The uncorrected results

from the ibm algiers device have been compared with results from the ibmq qasm simulator

device and analytically calculated decay rates in Figure 6.7. It is clear that the ibm algiers

NISQ device suffers from substantial decoherence effects during the calculation. These noise

effects have been identified as errors introduced by cnot operations, and short T1 times of the

qubits.

Despite a far from ideal distribution obtained from the ibm algiers device, the generation

of scattering events from the grove structures is remarkably robust to noise. Figure 6.9 shows the

comparison between data from experiments at the Large Electron Positron collider and synthetic

data produced by the classical and quantum discrete QCD algorithms. The data description is

encouraging and represents the first successful comparison between synthetic data produced by

a quantum computer and “real-life” experimental data from a collider. The quantum discrete

QCD algorithm therefore improves on all previous quantum shower algorithms in several physics

aspects (incorporating soft-gluon coherence, running coupling effects, and realistic scattering

event generation), as well as the quantum resources required. Furthermore, the quantum discrete
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QCD algorithm reduces the necessity for fully fault tolerant quantum devices, demonstrating

that NISQ devices can already be used to obtain practical results by constructing efficient

quantum circuit architectures.

The parton shower algorithms presented in this thesis stand as a proof-of-principle study,

providing the first step towards the design of a fully quantum event generator. To achieve the

goal of a event generation process which can exploit the benefits of quantum computation, future

work must focus on the development of quantum circuits for all steps in the process. As outlined

in Section 7.3, designs and proof-of-principle attempts have already begun to be made. Along

with the parton showers presented here, these developments move the prospect of a quantum

event generator ever closer, and perhaps even in not-so-distant reach.

Finally, it is interesting to consider the future of quantum computing in high energy physics.

Quantum computing offers an exciting opportunity for the particle physics community, providing

a platform with the ability to simulate physics in a regime never before accessible. However,

it is not a trivial task to identify which areas of particle physics will benefit from quantum

computing, nor is it trivial to design quantum circuits which can be realised on current and

future quantum hardware. Nevertheless, it is exciting to see how the rapid advancements in

algorithmic design, exploiting efficient quantum architectures, and reimagining approaches to

problems in fundamental physics are already redefining “the horizon” for practical quantum

computing. With such swift advancements, the practical use of quantum devices is starting to

move into sight, rather than being over the horizon.
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L. Lönnblad, E. Nurse, P. Richardson, S. Schumann, M. H. Seymour, T. Sjöstrand,
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[125] A. Pérez-Salinas, J. Cruz-Martinez, A. A. Alhajri, and S. Carrazza, “Determining the

proton content with a quantum computer,” Physical Review D, vol. 103, p. 034027, 2021.



BIBLIOGRAPHY 169

[126] H. A. Chawdhry and M. Pellen, “Quantum simulation of colour in perturbative quantum

chromodynamics,” 2023. E-print: arXiv:2303.04818.

[127] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano,

P. Lougovski, and M. J. Savage, “Quantum-classical computation of Schwinger model

dynamics using quantum computers,” Physical Review A, vol. 98, no. 3, p. 032331, 2018.

[128] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Intro-

duction to quantum noise, measurement, and amplification,” Reviews of Modern Physics,

vol. 82, no. 2, pp. 1155–1208, 2010.

[129] N. A. of Engineering, Frontiers of Engineering: Reports on Leading-Edge Engineering from

the 2018 Symposium. National Academies Press (US), 2019.



Appendix A

Quantum Circuit Diagrams

Quantum circuit diagrams are a compact and efficient way of symbolically representing quan-

tum algorithms, by decomposing the unitary process into a series of qubit initialisations, gate

operations and measurements applied to individual qubits. This appendix is a brief guide to

reading quantum circuit diagrams and contains a short glossary of commonly used quantum

gate operations, useful for the reading of this thesis. An in depth review of quantum circuitry,

and quantum computing as a whole, can be found in Reference [65].

An example of a quantum circuit comprising single and multi-qubit operations, with a mea-

surement on the first qubit is shown below.

|0⟩ H X H

|0⟩ H Z H

|0⟩

|0⟩

The quantum circuit diagram is read from left to right, with time on the horizontal axis. Con-

sequently, the two Hadamard gates (see Section A.1) are implemented first in the algorithm,
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and the measurement on the first qubit is performed at the end of the algorithm. Horizontal

lines represent qubits and vertical lines represent operations applied to multiple qubits. Gate

operations are generally represented by boxes on qubit lines. Note that sometimes quantum

algorithms can have custom gates. These must be unitary in order to be implemented on a

quantum device, and can be decomposed into the universal gate set outlined in Section A.1.

A.1 Glossary of Quantum Gate Operations

Hadamard H
1√
2




1 1

1 −1




Pauli-X X




0 1

1 0




Pauli-Y Y




0 −i

i 0




Pauli-Z Z




1 0

0 −1




Phase S




1 0

0 i




T-gate T




1 0

0 eiπ/4



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U3(θ, φ, λ) U3




cos( θ2) −eiλ sin( θ2)

eiφ sin( θ2) ei(φ+λ) cos( θ2)




controlled-not (cnot)




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




|0⟩-controlled-not




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1




swap




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




controlled-Z
Z




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



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Toffoli (ccnot)




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0




Measurement Projection onto classical bit∗

Qubit

Classical bit

n qubits n

Qubit bundle

∗See Appendix B for a detail discussion of quantum measurements.



Appendix B

Quantum Measurement

Quantum algorithms proceed under unitary evolution, and are constructed from a series of

unitary operations applied to a set of qubits. In order to retrieve information from the quantum

system, a measurement must be performed. After measurement, the system is no longer closed,

and thus the evolution of the system is not necessarily unitary. This appendix provides a

short overview of quantum measurement for the purposes of understanding the algorithms in

the main text, and will concentrate on measurement in the computational basis. A detailed

overview of quantum measurement, including projective measurement and positive operator-

valued measurement, is given in References [65,66] and references therein.

Following the convention outlined in Reference [65], if a measurement is performed on a

general state |ψ⟩, the probability that result m occurs is given by

p(m) = ⟨ψ|M †
mMm |ψ⟩ , (B.0.1)

where the Mm is the measurement operator for result m. The state after measurement is

therefore
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|ψ⟩ Mm−−→
∣∣ψ′〉 = Mm |ψ⟩√

⟨ψ|M †
mMm |ψ⟩

, (B.0.2)

where the factor

√
⟨ψ|M †

mMm |ψ⟩ normalises the post-measurement state |ψ′⟩. The set of mea-

surement operators {Mm} satisfy the completeness relation
∑

mM
†
mMm = I, such that, equiv-

alently, the probabilities sum to one for all |ψ⟩,

∑

m

p(m) =
∑

m

⟨ψ|M †
mMm |ψ⟩ = 1. (B.0.3)

B.1 Computational Basis

For most of this thesis, the term measurement relates to measuring in the computational basis,

id est the basis |0⟩ and |1⟩. Using the notation from above, one can define the measurement of

a single qubit, with arbitrary state

|ψ⟩ = α |0⟩+ β |1⟩ , (B.1.1)

where α and β are complex amplitudes. There are two possible results from a measurement of

this state: the 0 and the 1 result. These are defined by the measurement operators M0 and M1

respectively, such that

M0 = |0⟩ ⟨0| , and M1 = |1⟩ ⟨1| . (B.1.2)

It is easy to show that these operators are Hermitian and satisfy the completeness relation, as

required. Applying the measurement operator for the 0 result to the state in Equation B.1.1,

one obtains
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p(0) = ⟨ψ|M †
0M0 |ψ⟩

= ⟨ψ|M0 |ψ⟩

=
(
⟨0|α∗ + ⟨1|β∗

)
|0⟩ ⟨0|

(
α |0⟩+ β |1⟩

)

= |α|2 ⟨0| |0⟩ ⟨0| |0⟩+ |β|2 ⟨1| |0⟩ ⟨0| |1⟩

= |α|2, (B.1.3)

where the orthonormality of the computational basis has been applied. Similarly, applying the

measurement operator for the 1 result,

p(1) = ⟨ψ|M †
1M1 |ψ⟩

=
(
⟨0|α∗ + ⟨1|β∗

)
|1⟩ ⟨1|

(
α |0⟩+ β |1⟩

)

= |β|2, (B.1.4)

The post-measurement states are therefore

∣∣ψ′〉 = M0 |ψ⟩
|α| and

∣∣ψ′〉 = M1 |ψ⟩
|β| . (B.1.5)

Note that for the one qubit the factorsM0 |ψ⟩ = α andM1 |ψ⟩ = β, and so the post-measurement

states effectively reduce to |0⟩ and |1⟩ respectively.

In the multi-qubit picture, subsets of the qubits can be measured as well as the full state of

the system. For example, consider the state

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ , (B.1.6)
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where αij is the complex amplitude for the state |ij⟩, where i, j ∈ {0, 1}. If we measure the

first qubit only, then we gain the 0 result with probability (|α00|2 + |α01|2), such that the post-

measurement state is

∣∣ψ′〉 = α00 |00⟩+ α01 |01⟩√
|α00|2 + |α01|2

, (B.1.7)

where the state is now normalised by the factor
√
|α00|2 + |α01|2.



Appendix C

Quantum Errors

Without understanding possible error contributions, the use of NISQ devices can become im-

practical, and lead to low fidelity results. Unlike classical devices, quantum computers have a

small amount of qubits and therefore cannot rely on bit redundancy for error correction. Until

this is the case, the fidelity of quantum algorithms depends heavily on quantum error correction

and mitigation schemes. Currently, there is no general error correction method, and no quan-

tum device is fully fault tolerant. In this Appendix, we will introduce the two main sources

of errors which affect the quantum parton shower algorithms, specifically the quantum discrete

QCD algorithm. Namely, we will consider errors from multi-qubit operations and the T1 time

of the qubits. This Appendix has been designed as a very brief introduction and identification

of the quantum errors that are present for the quantum parton showers. An in depth review of

quantum errors is available in References [97,98,128,129].

Multi-qubit Gate Operation

Multi-qubit gate operations are typically decomposed into a series of cnot and rotation gates

during transpilation∗. The cnot operation has a larger associated error rate than single-qubit

∗The process of preparing a circuit for implementation on a real quantum device.
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gate operations. Therefore, as the number of cnot operations increase in the algorithm, the

fidelity of the results is likely to reduce as more errors are introduced into the calculation.

Furthermore, if multi-qubit operations require swap operations (id est swapping the state of

the qubits) to correctly implement the routine, then this will also increase the number of cnot

operations required, as one swap operation requires three cnot gates. Therefore, even if a

small number of ccnot operation are used in the algorithm, together with the required swap

operations, the number of cnot operations required can be an order of magnitude higher. This

consequently introduces many errors into the calculation, and can lead to unfeasible circuit

implementations for NISQ devices.

Qubit Relaxation Times

Another primary source of error in results obtained from a NISQ quantum device comes from

the relaxation time of the qubits, the so-called T1 time. The T1 time of a qubit is the time

it takes for the qubit to decay from the excited state, the |1⟩ state in the computational basis,

to the ground state, the |0⟩ state. The T1 time is therefore a measure of the time in which

practical and meaningful algorithms can be run. As an example of the T1 time being a limiting

factor, the results from Figure 6.7 show a preference for grove structures with fewer emissions.

This has been attributed to qubits in the gluon register relaxing to their ground state, therefore

representing a state with fewer emissions.
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“A man is a success if he gets up in the morning and gets to bed at night, and in

between he does what he wants to do”

- Bob Dylan, 1967
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