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Preface

Recent years have seen an explosion in popularity of machine learning (ML) algorithms
for aiding or, even, automating solutions to complex, real-world problems. While
the ways in which these algorithms manifest varies by case, a stereotypical recipe is
as follows: i) make inferences about the generative process that produced a given
dataset; ii) predict what new data points might look like based on these inferences;
iii) decide what to do by predicting the consequences of feasible actions.
This process is made difficult by the fact that the data at hand rarely allows us
to fully disambiguate the aforementioned generative process. Even when outcomes
are believe to be deterministic, then, it follows that we must act in the face of
uncertainty. Indeed, especially when it comes to making decisions, careful treatment
of uncertainty is often paramount. Chapter 1 therefore acts as a technical primer
for Bayesian decision theory (BDT), a unified framework for decision-making with
uncertainty. The goal of this chapter will be to sketch core arguments in sufficient
mathematical detail for the reader to understand the general flavor of axiomatic
approaches to BDT.
Having established these arguments in some detail, Chapter 2 proceeds to further
investigate the Bayesian approach to optimization. We begin by demonstrating how
various well-known methods can be seen as direct applications of BDT. Having done
so, we then redirect our attention to the so-called inner optimization problem—the
task of finding the best queries to make at each step during search—which will
be the focus of this chapter. Here, we will explore various methods for efficiently
solving inner optimization problems and show how these improvements lead to overall
performance gains.
Due to the importance of well-calibrated predictive uncertainty and prevalence of
intractable integrals, Gaussian processes (GPs) and Monte Carlo methods both play
integral roles in popular applications of BDT. It sometimes happens, however, that
the samples we required are sufficiently high-dimensional that traditional techniques
become exorbitantly expensive. To this end, Chapter 3 introduces an alternative
interpretation of Gaussian process posteriors which better lends itself to sampling.
The resulting family of generative strategies is shown to produce high-quality samples
at a fraction of the usual cost and brings with it a host of additional benefits.
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Relationship to published papers

The content of this thesis revolves around two separate, but closely topics. Chapter 1
is intended as review and contains no technical contributions; its core arguments
were adapted from Fishburn (1970).
The first line of inquiry, published as Wilson et al. (2018), is reported in Chapter 2.
As is, I suspect, true in most fields, research on Bayesian optimization has often
revolved around creating tools to solve new problems and improve performance on
old ones. Relatively little, however, has been said about how we should go about
using the tools already at our disposal. Hence, a major goal of this work was to
study best practices, so that we may collectively sharpen our tools. In this regard, I
hope to have succeeded: the community at large seems to be increasingly cognizant
of inner optimization problems and methods championed in this work have gone on
to serve as cornerstones in popular open-source packages such as BoTorch (Balandat
et al., 2020).
Regarding the technical contributions, two comments are in order. First, pathwise
gradient estimators of certain Gaussian-process-based acquisition functions were
previously studied by Wang et al. (2016) and Wu and Frazier (2016). On this front,
I therefore sought to distill and extend upon these authors’ findings. Second, the
question of acquisition function submodularity was first posed by David Ginsbourger.
Alongside Dario Azzimonti and Henry Wynn, the four of us spent part of an afternoon
sketching a bespoke proof of submodularity for Probability of Improvement. Later,
I returned to analyzed this problem from scratch, leading to the general result
presented in Section 2.5.
The second line of inquiry, published as Wilson et al. (2020) and later Wilson et al.
(2021), was a deeply collaborative effort that could not have been completed without
the help of my coauthors. Regarding the impact of these works, the former was one
of two papers awarded an Honorable Mention for Best Paper at ICML 2020. The
general family of techniques on offer allows us to accurately sample from Gaussian
process posteriors in linear time, opening the door for real-world applications that
would otherwise prove prohibitively expensive.1

This project began as two separate threads that were eventually woven together by
Alex Terenin. I was responsible for many of the key innovations present in these
works, however everyone played a role in refining these ideas into precise technical
statements. This is particularly true of Section 3.1.3 and Section 3.5, which I merely

1Here, scaling is reported as a function of the number of test locations.
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helped motivate and write. Lastly, the software offerings listed in Chapter 3 were
written by myself.
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Decision Theory

Throughout this work, we will explore how probability and statistics can be used to
automate decisions made in the real world. To do so, we first require a mathematical
framework for answering questions such as: Given what is currently known about a
decision-making problem, what is an optimal choice of action?
The purpose of this chapter is to show how these formalisms are derived. While
comprehensive treatment of related topics is beyond the scope of the present work,
we will review key arguments behind normative theories of choice and, in particular,
Bayesian decision theory. These arguments take the form of axiomatic systems in
which rudimentary assumptions regarding an agent’s preferences are used to deduce
idealized patterns of behavior. These findings will culminate in a proof of the claim
that a rational agent’s preferences correspond to a unique pairing of a probability
measure and a (equivalence class of) utility function; and, further, that optimal
actions maximize the agent’s conditional expected utility.
This result will set the stage for Bayesian decision theoretic algorithms discussed
in later chapters, which adhere to a simple recipe: (i) model the agent’s subjective
probability measure and utility function; (ii) find an action that maximizes the
agent’s conditional expected utility under the model. Rather than starting with
practical algorithms, we therefore begin by reviewing the formal developments that
precede them. To do so, let us first agree upon a firmer definition of preference.
Intuitively speaking, given two objects f, g ∈ F , we say that the agent prefers f to
g if, when compelled to choose between the two, they would select f over g. We
will temporarily leave F generic, since different schools of decision theory formulate
preferences over different classes of objects. In order for preferences to lead to
coherent patterns of behavior, some assumptions must be made about how an agent
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Chapter 1: Decision Theory

compares different pairs of choices. Perhaps the most basic of these assumptions is
that pairwise preferences reflect an internally consistent way of ranking the set of
choices F . We may formalize this intuition as a simple, binary relation that induces
a weak ordering on F .

Definition 1.1 (Preference). Let � be a binary relation on F . Then, � is a
preference relation if, for all f, g, h ∈ F , it follows that

i. Asymmetric: f � g =⇒ g 6� f .

ii. Negatively transitive: f 6� g and g 6� h =⇒ f 6� h.

Note that, by construction, � is both transitive and irreflexive. This definition
guarantees that it is possible to identify one or more “optimal” choice f ∗ ∈ F for
which there is no alternative g ∈ F such that g � f ∗. Two derived, binary relations
will be useful here. First, a transitive and strongly connected preference-indifference
relation �, where f � g ⇐⇒ g 6� f . Second, a transitive, symmetric, and reflexive
indifference relation ∼, where f ∼ g ⇐⇒ f � g and g � f .
This representation of preference is the starting place for many axiomatic approaches
to decision-making. Our interest ultimately lies in the Bayesian decision theory put
forth by Leonard J. Savage. Like many decision theorists, however, Savage was greatly
influenced by the work of von Neumann and Morgenstern (VNM). We, therefore,
detour and first explore VNM’s arguments, which will give us an opportunity to
familiarize ourselves with some concepts (and notations) in a simpler setting.

1.1 von Neumann–Morgenstern utility theory

This section examines the axiomatic decision theory put forth in Theory of Games
and Economic Behavior (von Neumann and Morgenstern, 1944). As a starting place,
VNM define preferences over lotteries P, defined as a family of distributions on a
given σ-algebra for Y . Prior to introducing this theory, two brief asides are in order.
First, we will write p � γ to indicate that p ∈ P is preferred to the degenerate lottery

δγ(γ′) =
1 if γ′ = γ,

0 otherwise .
(1.1)

Second, we must define the notion of a compound lottery. For our purposes, this
concept is best understood in terms of mixture sets (Herstein and Milnor, 1953).

Definition 1.2 (Mixture set). A set X is said to be a mixture set if, for any x, y ∈ X
and α, β ∈ [0, 1], there is an element of X , denoted αx+ (1−α)y ∈ X , that satisfies:

M1. 1x+ (1− 1)y = x.

M2. αx+ (1− α)y = (1− α)y + αx.

M3. α[βx+ (1− β)y] + (1− α)y = (αβ)x+ (1− αβ)y.

2



Section 1.1: von Neumann–Morgenstern utility theory

In essence, a mixture set is a set that is closed under some abstract generalization
of a convex combination. As a familiar example, convex sets in real vector spaces
are mixture sets in which combinations αx + (1 − α)y are formed using scalar
multiplication and vector addition. In contrast, when discussing compound lotteries
αp+ (1− α)q with p, q ∈ P , we will be interested in mixture sets defined in terms of
probabilistic mixtures of distributions. Two immediate consequences of M1–M3 that
will be useful in later developments are

M4. αx+ (1− α)x = x.

M5. Let η = αβ + (1− α)ε for an arbitrary choice of ε ∈ [0, 1]. Then,

α[βx+ (1− β)y] + (1− α)[εx+ (1− ε)y] = ηx+ (1− η)y.

These details in order, we are now ready to explore von Neumann and Morgenstern’s
approach to decision theory.

Theorem 1.3 (von Neumann–Morgenstern expected utility). Let P be a set of
probability measures on a given σ-algebra for Y and suppose that, for all p, q, r ∈ P,

A1. � on P is a preference relation.

A2. If p � q, then for all α ∈ (0, 1] it follows that

αp+ (1− α)r � αq + (1− α)r.

A3. If p � q � r, then there exist α, β ∈ (0, 1) for which

αp+ (1− α)r � q � βp+ (1− β)r.

Then, there exists a utility function u : Y → R such that

p � q ⇐⇒ Ep[u(γ)] > Eq[u(γ)]. (1.2)

Further, the function u is unique up to positive affine transformations.

Some discussion of A2 and A3 is in order. The independence axiom, A2, posits that
the agent’s preference p � q does not change when said lotteries are equivalently
combined with alternatives that the agent is indifferent to. Said differently, A2
asserts that the agent compares αp+ (1− α)r and αq + (1− α)r solely in terms of
how they differ.
The Archimedean property of real numbers states that, given any two positive
numbers x and y, there exists a third number a such that ax > y. Fittingly, then,
A3 is often referred to as the Archimedean axiom. A3 states that there is no lottery
p so vastly superior to all other lotteries q that the agent’s preference p � q cannot
be reversed by mixing p with a third lottery r satisfying q � r; likewise, there is no
r so vastly inferior to all q that q � r cannot be reversed by mixing r with p. Lastly,
we note that A3 is sometimes replaced by a closely related continuity axiom

3



Chapter 1: Decision Theory

A3∗. If p � q � r, then there exists an α ∈ [0, 1] for which αp+ (1− α)r ∼ q.

The following two sections outline the general approach for proving Theorem 1.3.
Throughout, we will restrict our attention to the special case where P = Ps is defined
as the set of all simple probability measures on Y , i.e. of all distributions with support
over a finite number of outcomes γ ∈ Y . As we will soon see, this assumption allows
for an intuitive and instructive proof. For comprehensive treatment of this topic, see
Fishburn (1970, Chapters 8 and 10) or Kreps (1988, Chapter 5).

1.1.1 Proof of Theorem 1.3: Order-preserving functions on
Ps

We begin our proof of Theorem 1.3 by showing that there is a function that quantifies
the agent’s preferences in a consistent manner. Specifically, we shall say that a
function U : Ps → R is order-preserving with respect to � if and only if

∀p, q ∈ Ps : p � q ⇐⇒ U(p) > U(q). (1.3)

Notice that Ps is a mixture set by construction. To better see the implications of
this fact, let us introduce a few key lemmas that will carry much of the proof.
Lemma 1.4. If � satisfies A1–A3 on a mixture set Ps, then:

a. If p � q and 1 ≥ α > β ≥ 0, then αp+ (1− α)q � βp+ (1− β)q.

b. If p � q � r and p � r, then there exists a unique α ∈ [0, 1] for which
q ∼ αp+ (1− α)r.

c. If p ∼ q and α ∈ [0, 1], then αp+ (1− α)r ∼ αq + (1− α)r for every r ∈ Ps.

Proof This sketch was abridged from Kreps (1988, page 46). When α = 1 or β = 0,
Lemma 1.4a is trivial; so, suppose α, β ∈ (0, 1) and write s = αp+ (1− α)q. Then,

p � q
A2⇐⇒ s � αq + (1− α)q M4⇐⇒ s � q
A2⇐⇒ β

α
s+ (1− β

α
)s � β

α
s+ (1− β

α
)q

M3⇐⇒ β
α
s+ (1− β

α
)s � βp+ (1− β)q

M4⇐⇒ αp+ (1− α)q � βp+ (1− β)q.

(1.4)

For Lemma 1.4b: p � r and Lemma 1.4a imply that there is at most one α ∈ [0, 1] for
which q ∼ αp+ (1− α)r. If p ∼ q, then α = 1 suffices. If q ∼ r, then α = 0 suffices.
Henceforth, suppose p � q � r and define α = sup{β ∈ [0, 1] : q � βp+ (1− β)r}.
Of the three possible relations (�, ≺, and ∼) between q and αp+ (1− α)r, all but
q ∼ αp+ (1− α)r contradict A3.
For Lemma 1.4c: The claim is trivially satisfied when p ∼ q for all p, q ∈ Ps. Hence,
let p and q be such that there exists an s ∈ Ps satisfying s � p ∼ q and define

t(β) = α[βs+ (1− β)q] + (1− α)r. (1.5)
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Section 1.1: von Neumann–Morgenstern utility theory

It follows by A2 that βs+ (1− β)q � q and t(β) � αp+ (1− α)r for all β ∈ (0, 1].
Now, suppose αp+ (1− α)r � αq + (1− α)r. A3 would then imply that, for every
β ∈ (0, 1], there exists an ε ∈ (0, 1) such that

αp+ (1− α)r � εt(β) + (1− ε)[αq + (1− α)r]
= α[εβs+ (1− εβ)q] + (1− α)r = t(εβ),

(1.6)

where the second line is obtained by simply unpacking t(β) and cancelling like
terms. Since εβ > 0, however, this statement directly contradicts the aforemen-
tioned implications of A2. A similar contradiction arises under the hypothesis that
αp+ (1− α)r ≺ αq + (1− α)r.

Returning to the matter of order-preserving functions on Ps, we begin by showing
that δsup � p � δinf for all p ∈ Ps, where we have defined

δsup ∈ {δγ : γ � λ,∀λ ∈ Y} δinf ∈ {δγ : µ � γ, ∀µ ∈ Y}. (1.7)

Let n be the number of outcomes with support under p. By construction, then, the
claim holds for n = 1. When n > 1, use Lemma 1.4 followed by M5 to show that

p =
n∑
i=1

piγi ∼
n∑
i=1

pi[αiδsup + (1− αi)δinf ] = αδsup + (1− α)δinf , (1.8)

for some α ∈ [0, 1]. By definition, δsup � δinf . Accordingly, it follows by A2 that
δsup � αδsup+(1−α)δinf � δinf for all α ∈ [0, 1] and, in turn, that δsup � p � δinf for all
p ∈ Ps. Notice that, when δsup ∼ δinf , the agent is indifferent on Ps, whereupon any
constant function U trivially satisfies Theorem 1.5. Henceforth, suppose δsup � δinf .
Define U as the function that assigns to each p ∈ Ps a value U(p) ∈ [0, 1] for which

p ∼ U(p)δsup + (1− U(p))δinf . (1.9)

Since δsup � δinf , we may now use transitivity followed by Lemma 1.4a to show that

p � q ⇐⇒ [U(p)δsup + (1− U(p))δinf ] � [U(q)δsup + (1− U(q))δinf ]
⇐⇒ U(p) > U(q).

(1.10)

Moreover, since Lemma 1.4b implies there is only one value U(p) that satisfies
(1.9), it follows that all functions on Ps that agree with � are equivalent up to
multiplication by a positive number or addition of a scalar. Hence, there exists a
function U : Ps → R that agrees with the agent’s preferences on Ps and this function
is unique.

5



Chapter 1: Decision Theory

1.1.2 Proof of Theorem 1.3: Expected utility representation

Having shown that there exists an order-preserving function U : Ps → R, let us now
prove that U takes the form of an expected utility, i.e. that there exists a function
u : Y → R such that

U(p) = Ep[u(γ)] =
∑
γ∈γ

p(γ)u(γ), for all p ∈ Ps,

where γ = {γ : p(γ) > 0} is the set of outcomes with support under p. We begin by
showing that U is linear in the sense that

U(αp+ (1− α)q) = αU(p) + (1− α)U(q). (1.11)

Use transitivity and the definition of U in (1.9) to replace p and q in αp+ (1− α)q
with the equivalent lotteries

p ∼ U(p)δsup + (1− U(p))δinf q ∼ U(q)δsup + (1− U(q))δinf , (1.12)

Simplifying the resulting expression with the help of M5, we obtain

αp+ (1− α)q ∼
[αU(p) + (1− α)U(q)]δsup + [1− αU(p)− (1− α)U(q)]δinf .

(1.13)

At the same time, however, (1.9) also implies that

αp+ (1− α)q ∼ U(αp+ (1− α)q)δsup + [1− U(αp+ (1− α)q)]δinf . (1.14)

In order for both statements to hold, it follows that U must be linear as in (1.11).
Now that we know U is linear, we are ready to prove that U is an expected utility.
Conceptually, we will do so by decomposing p ∈ Ps and appealing to (1.11).
First, define u(γ) = U(δγ) and let γk = {γn−k+1, . . . , γn} be the final k elements of
γ (ordered arbitrarily). Further, denote the restriction of p to γk as

pk( · ) = p( · )δγk( · )
p(γk)

, such that p(γ) = p(γ)δγ1:n−k(γ) + p(γk)pk(γ). (1.15)

Proceeding by induction on the number of outcomes n, it follows that:

• Base case (n = 1):

U(p) = U(δγ1) = u(γ1) =
1∑
i=1

p(γi)u(γi) (1.16)

• Inductive step (n > 1):

U(p) = p(γ1)u(γ1) + p(γn−1)U(pn−1) =
n∑
i=1

p(γi)u(γi). (1.17)

6



Section 1.2: Savage utility theory

Hence, the agent’s preferences correspond with (the expectation of) a unique utility
function u : Y → R when � satisfies A1–A3 on Ps. In the next section, we will see
how a related set of axioms enables us to derive not only a unique utility function
but also a unique probability measure that agrees with �.

1.2 Savage utility theory

Often regarded as “the crowning glory of choice theory” (Kreps, 1988, page 120),
Leonard J. Savage’s theory of expected utility both unites and refines ideas put forth
by earlier theorists. Coming off of von Neumann and Morgenstern’s work, Savage
was concerned with the authors’ assumption that probabilities are objective and
known to the agent. At the time, the philosophical interpretation of probability —
situated at the center of the conflict between frequentist and Bayesian probabilists —
was a heavily contested topic.
Unsatisfied with the premise of VNM’s theory, Savage proposed an expanded set of
axioms that simultaneously explains for both (subjective) probabilities and (expected)
utilities. We will return to this topic later in this section. For now, it suffices to intuit
that the agent’s willingness to enter into different wagers evidences their belief about
whether one event is more likely than another or vice versa and that a quantitative
probability measure may be derived on the basis of these comparisons.
Seeing as we may no longer start by defining preferences over lotteries (i.e. random
outcomes adhering to known distributions), we require a slightly more nuanced model
of decision-making. Let states ω ∈ Ω be defined as the collection of covariates that
determine the outcome γ = f(ω) of an action f ∈ F , where F ⊆ YΩ. From here,
Savage proceeds to define a preference relation � on F . Paralleling the degenerate
lotteries δγ from the previous section, Savage assumes that for any outcome γ ∈ Y
there exists a constant action fγ(ω) = γ for all ω ∈ Ω. As before, we will simply
write γ in place of fγ where possible without introducing ambiguity.
Two additional constructions will prove to be immediately useful. First, reminiscent
of the compound lotteries seen in Section 1.1, define the compound action

xA(f, g) =
f(ω) ifω ∈ A
g(ω) otherwise

(1.18)

as the action which yields f(ω) for all states ω ∈ A and g(ω) otherwise. Second,
given an event A ⊆ Ω and actions f, g ∈ F , define the conditional preference relation

f � g | A ⇐⇒ xA(f, h) � xA(g, h), for all h ∈ F . (1.19)

In words, f is preferred to g given A if and only if, when both actions are modified
to yield the same results for all ω 6∈ A, the compound of f is preferred to that of g.
We shall say that an event A ⊆ Ω is null if f ∼ g | A for all f, g ∈ F .1

1Null events correspond to measure zero sets under a yet-to-be-introduced distribution ṗ.
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Now is a good time for us to properly introduce an algebra of sets A for Ω. Following
de Finetti (1937), Savage exclusively focuses on finitely additive probability measures.
Seeing as the purpose of this chapter is one of exposition, we will largely stick to his
original arguments. However, Villegas (1964) would later show that this position
can be generalized to the countably additive case under the mild assumption of
monotone continuity. For this reason, we deem it appropriate to refer to A as a
σ-algebra. Further, since Savage’s approach is specifically tailored to cases where
Ω is infinite and where non-null events A ∈ A can be partitioned into arbitrarily
fine, non-null subsets, we define A as the set of all subsets of Ω and will sometimes
write A ⊆ Ω for A ∈ A. Those curious about finite Ω should see Kraft et al. (1959),
while readers interested in overviewing these topics should see Fishburn (1986) and
references contained therein. These definitions in place, we are ready to overview
Savage’s theory of expected utility.
Theorem 1.5 (Savage expected utility). Let f(ω) = γ ∈ Y be the result of carrying
out an action f ∈ F in a state ω ∈ Ω. Suppose that � on F satisfies:

P1. � on F is a preference relation.

P2. For all events A ⊆ Ω and actions f, f ′, g, h ∈ F ,

xA(f, g) � xA(f ′, g) ⇐⇒ xA(f, h) � xA(f ′, h).

P3. For all non-null events A ⊆ Ω, actions f ∈ F , and outcomes µ, λ ∈ Y

µ � λ | A ⇐⇒ µ � λ.

P4. For all events A and B and for all pairs of outcome µ � λ and µ′ � λ′

xA(µ, λ) � xB(µ, λ) ⇐⇒ xA(µ′, λ′) � xB(µ′, λ′).

P5. There exist outcomes µ, λ ∈ Y such that µ � λ.

P6. If f � g, it follows for any outcome γ ∈ Y that there exists a finite partition
{Ω1, . . . ,Ωn} of Ω so that

f � xΩi(γ, g) and xΩi(γ, f) � g, for all i = 1, . . . , n.

P7. For all events A ⊆ Ω and actions f, g ∈ F ,

f � γ | A, ∀γ ∈ g(A) =⇒ f � g | A.

Then, it follows that:

a) There is one and only one probability measure ṗ on A that agrees with the
more-likely-than binary relation �̇ , defined for all A,B ⊆ Ω and µ, λ ∈ Y with
µ � λ as A �̇B ⇐⇒ xA(µ, λ) � xB(µ, λ), in the sense that

A �̇B ⇐⇒ ṗ(A) > ṗ(B), for all A,B ∈ Ω.

8
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Further, for all C ⊆ Ω and c ∈ [0, 1], there exists a D ⊆ C so that ṗ(C) = cṗ(D).

b) There exists a unique2 utility function u : Y → R for which

f � g ⇐⇒ Eṗ[u(f(ω))] > Eṗ[u(g(ω))], for all f, g ∈ F .

As before, let us begin by unpacking the axioms shown above. Note that many of
these axioms tacitly assert that (the distribution of) ω is independent of the chosen
f ∈ F . Axiom P2, which closely resembles the independence axiom (A2), dictates
that: the agent’s preference for f over g should only depend on those states ω ∈ Ω
for which f(ω) 6= g(ω). In light of this axiom, the conditional preference f � g | A
can now be interpreted to mean that f is preferred to g when Ω is restricted to A.
Together with P2, P3 realizes a core part of Savage’s model: the sure-thing principle.

Definition 1.6 (Sure-thing principle). Given a pair of actions f, g ∈ F and a
non-null event A ⊆ Ω with complement Ac = Ω \ A,

f � g | A and f � g | Ac =⇒ f � g. (1.20)

In digesting this principle, Savage’s original parable proves wonderfully insightful:

A businessman contemplates buying a certain piece of property. He
considers the outcome of the next presidential election relevant. So, to
clarify the matter to himself, he asks whether he would buy if he knew
that the Democratic candidate were going to win, and decides that he
would. Similarly, he considers whether he would buy if he knew that the
Republican candidate were going to win, and again finds that he would.
Seeing that he would buy in either event, he decides that he should buy,
even though he does not know which event obtains, or will obtain, as we
would ordinarily say. It is all too seldom that a decision can be arrived
at on the basis of this principle, but except possibly for the assumption
of simple ordering, I know of no other extralogical principle governing
decisions that finds such ready acceptance. Savage (1954, page 21)

Proceeding with the next axiom, P4 ensures that the preference xA(µ, λ) � xB(µ, λ)
used to define the more-likely-than relation �̇ in Theorem 1.5a is independent of
the choice of outcomes µ, λ ∈ Y so long as µ � λ. As we will see, this axiom plays a
key role in the derivation of a probability measures that agrees with �. Axiom P5
asserts that the agent is not indifferent on all of F , which helps guarantee that ṗ is
unique.
P6 is similar, in spirit, to the Archimedean axiom A3: it states that there is no
outcome γ ∈ Y such that we are unable to non-trivially3 combine an action f with
the constant action fγ without reversing the agent’s preference f � g (or g � f).
Additional implications of P6, evident in part (ii) of Theorem 1.5a, are as follows: Ω

2Up to positive affine transformations.
3By non-trivially, we mean that xA(γ, f) is predicated upon a non-null event A ⊆ Ω.
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must be uncountable; for all ω ∈ Ω, ṗ(ω) = 0; and, for every n ∈ N, there must be
an n-event, uniform partition {Ω1, . . . ,Ωn} of Ω such that Ωi ∼̇Ωj for all i, j ∈ [1, n].
Finally, P7 together with the previous axioms ensures that utilities are bounded,
which enables us to extend arguments from Section 1.1 to cases where the distributions
p◦ f−1 generated by actions f ∈ F have support over an infinite number of outcomes
γ ∈ Y . Equipped with these axioms, let us now explore the arguments that lead to
Theorem 1.5. Having explored Savage’s seven axioms, we now move on to investigate
his claims.

1.2.1 Proof of Theorem 1.5: Subjective probability

One of the distinguishing features of Savage’s approach to decision theory was his
treatment of probability. In discussing VNM, we implicitly assumed that each of the
lotteries available to the agent corresponds with a particular ground truth distribution
over outcomes that is known a priori by the agent. This view is largely at odds
with the subjective interpretation of probability inherent to the Bayesian paradigm.
Earlier works, most notably Ramsey (1926) and de Finetti (1937), had already begun
to axiomatize subjective probability as a consequence of revealed preference. It was
Savage, however, who would ultimately refine these ideas and integrate them into a
unified model of choice. To get a feel for what these developments look like, let us
revisit the more-likely-than relation previously given in Theorem 1.5a.

Definition 1.7 (More likely than). Let �̇ be a binary relation on a σ-algebra A
for Ω. Then, �̇ is a more-likely-than relation if and only if, for any two events
A,B ∈ A and outcomes µ, λ ∈ Y such that µ � λ, it follows that

A �̇B ⇐⇒ xA(µ, λ) � xB(µ, λ). (1.21)

The intuition here is straightforward: since xA(µ, λ) is preferred to xB(µ, λ) despite
the fact that both actions generate the same outcomes, it follows that the perceived
chance of obtaining the favored outcome µ must be greater under xA(µ, λ) than
under xB(µ, λ). Notice that �̇ is simply a consequence of our original preference
relation �. As we will see, the fact that �̇ ensues from � is critical because �̇ will
serve as the cornerstone for a comparison-based system of subjective probability.

Definition 1.8 (Qualitative probability). A binary relation �̇ on a σ-algebra A
for Ω is said to be a qualitative probability if:

F1. For all A ∈ A, A �̇ ∅.

F2. Ω �̇ ∅.

F3. �̇ is a weak order on A.

F4. For all A,B,C ∈ A,

(A ∩ C = B ∩ C = ∅) =⇒ (A �̇B ⇐⇒ A ∪ C �̇B ∪ C).

10
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Properties F1–F4 are necessary conditions for there to exist a probability measure ṗ
on A satisfying Kolmogorov’s axioms that agrees with �̇ in the sense that

A �̇B ⇐⇒ ṗ(A) > ṗ(B). (1.22)

Suppose ṗ exists. Then, F1 and F2 impress upon �̇ the fact that ṗ(∅) = 0, ṗ(Ω) = 1,
and ṗ(A) ≥ 0 for all A ∈ A. Further, since ṗ induces a numerical ordering on A, �̇
must similarly order A if (1.22) is to have any hope of holding. The final property,
F4, ensures that �̇ respects the finite additivity of ṗ.
Perhaps not surprisingly, F1–F4 are consequences of P1–P6. To these, Savage adds
the following condition (also due to P1–P6), which helps guarantee that there is one
and only probability measure ṗ that agrees with �̇ on A.

F5. If A,B ⊆ Ω satisfy A �̇B, then there exists a finite partition (Ω1, . . . ,Ωm)
of Ω such that A �̇B ∪ Ωi for all i = 1, . . . ,m.

We will briefly demonstrate how P1, P4, and P5 imply that �̇ is a weak order on A;
derivation of the remaining properties can be found in Fishburn (1970, page 200).
P5 guarantees that µ � λ for some µ, λ ∈ Y; hence, the definition of �̇ in (1.21)
and P1 together imply that �̇ is asymmetric. To see that �̇ is negatively transitive,
suppose A �̇B and B �̇C. Still taking µ � λ, P4 and (1.21) followed by P1 give

xA(µ, λ) � xB(µ, λ) and xB(µ, λ) � xC(µ, λ) =⇒ xA(µ, λ) � xC(µ, λ). (1.23)

Since (1.23) holds so long as µ � λ, it follows by (1.21) that

A �̇B and B �̇C =⇒ A �̇C. (1.24)

Theorem 1.5a. If � satisfies P1–P6 on F , then �̇ admits F1–F5 on A. In turn,
there is one and only one probability measure ṗ on A such that:

i. For all A,B ⊆ Ω, A �̇B if and only if ṗ(A) > ṗ(B).

ii. For all A ⊆ Ω and ε ∈ [0, 1], there exists a B ⊆ A for which ṗ(B) = εṗ(A).

Proof We sketch the proof for the first part of Theorem 1.5a; for details regarding
(ii), see Fishburn (1970, page 199). Let Z(i, 2n) be the set of all possible unions of i
distinct components from a uniform partition {Ω1, . . . ,Ω2n} of Ω. For convenience,
we will denote a generic part of Z(i, 2n) as z(i, 2n). Conceptually, it may be useful
to think of {Ω1, . . . ,Ω2n} as the possible sequences produced by n tosses of a fair
coin. Statements such as A �̇ z(i, 2n) can then be interpreted to mean that the agent
prefers a binary lottery predicated on A to its equivalent predicated on z(i, 2n). The
general proof strategy is as follows.
First, use F1–F5 to show that for all n,m ∈W, i ∈ {0, . . . , 2n}, and j ∈ {0, . . . , 2m},

C ∼̇D for all C,D ∈ Z(i, 2n) and z(i, 2n) ∼̇ z(i2m, 2n+m). (1.25)
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Now, let κ : A× N→W produce the largest integer i for which A �̇ z(i, 2n), i.e.

κ(A, 2n) = sup
{

0 ≤ i ≤ 2n : A �̇ z(i, 2n)
}
. (1.26)

Similarly, define ṗ as the function

ṗ(A) = sup
{
κ(A, 2n)

2n : n ∈W
}
. (1.27)

Immediately, we have ṗ(∅) = 0, ṗ(Ω) = 1, ṗ(A) ≥ 0, ∀A ⊆ Ω, and p(z(i, 2n)) ≥ i/2n.
Prior to continuing, let us strengthen this last statement to show that

p(z(i, 2n)) = i

2n . (1.28)

First, observer that (1.25) and transitivity imply

z(i, 2n) �̇ z(j, 2m) ⇐⇒ z(i2m, 2n+m) �̇ z(j2n, 2n+m) ⇐⇒ i

2n ≥
j

2m . (1.29)

Suppose that ṗ(z(i, 2n)) > i/2n. Then, for some m ∈ W and 0 ≤ j ≤ 2m, it would
follow that ṗ(z(k, 2n)) ≥ j/2m > i/2n, whereupon (1.26) would imply z(i, 2n) �̇ z(j, 2m).
Since this hypothesis directly contradicts (1.29), we conclude that p(z(i, 2n)) = i/2n.
Next, it follows by (1.26) and (1.29) that, for all n ∈W,

A �̇B =⇒ z(κ(A, 2n), 2n) �̇ z(κ(B, 2n), 2n) ⇐⇒ κ(A, 2n) ≥ κ(B, 2n). (1.30)

Consequently, the definition of ṗ (1.27) implies

A �̇B =⇒ p(A) ≥ p(B). (1.31)

Finally, use F1–F5 to show that ṗ is finitely additive and, then, obtain

A �̇B =⇒ p(A) > p(B) (1.32)

by refining (1.30).

We are now in roughly the same position as we were when starting the proof of
Theorem 1.3. However, rather than assuming an exogenous probability measure,
we have shown that the agent’s preference � on F give rise to a unique, subjective
probability measure ṗ on A. We now turn our attention to the matter of expected
utilities.

1.2.2 Proof of Theorem 1.5: Expected utility representation

This section demonstrates the latter half of Theorem 1.5, namely:

12
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Theorem 1.5b. P1–P7 imply that there exists a function u : Y → R satisfying

f � g ⇐⇒ Eṗ[u(f(ω))] > Eṗ[u(g(ω))], for all f, g ∈ F . (1.33)

Per the previous section, let u : Y → R be the unique function for which

γ ∼ u(γ)γsup + (1− u(γ))γinf , (1.34)

where u(γsup) = 1 and u(γinf) = 0. As discussed so far, then, u satisfies Theorem 1.5b
on the set of all actions that generate simple outcome distributions, i.e.

Fs = {f ∈ F : ṗ ◦ f−1 ∈ Ps}. (1.35)

To help move things along, we take for granted that u is a bounded, A-measurable
function and that ṗ ◦ f−1 = ṗ ◦ g−1 =⇒ f ∼ g for all f, g ∈ Fs. Lastly, we will
assume that γsup � f � γinf for all actions f ∈ F . Similar to the first part of the
proof for Theorem 1.3, we require a few key lemmas to demonstrate Theorem 1.5b.

Lemma 1.9. Let � satisfy P1–P7 on F . Then, the following statements hold for
all actions f ∈ F , non-empty events A ⊆ Ω, outcomes µ ∈ Y, and constants c ∈ R.

a. If simple distributions p, q ∈ Ps satisfy p � q, then

p � f � q =⇒ f ∼ αp+(1−α)q, for one and only one 0 ≤ α ≤ 1. (1.36)

b. There exists a simple distribution p ∈ Ps for which

µ � f | A and c > sup
ω∈A

u(f(ω)) =⇒ p � f | A and c ≥ Ep[u(γ)]. (1.37)

c. Given an n-event partition {A1, . . . , An} of Ω and a simple distribution p ∈ Ps
such that f � p, it follows that[
∃ci : ci > sup

ω∈Ai
u(f(ω)), 1 ≤ i ≤ n

]
=⇒

n∑
i=1

ṗ(Ai)ci ≥ Ep[u(γ)]. (1.38)

Proof These are lemmas 14.4, 14.6, and 14.7 from Fishburn (1970, Chapter 14).
We sketch proofs of the first two parts. Starting with Lemma 1.9a: recall that Ps
is a mixture set and suppose f ∼ αp + (1 − α)q. It follows by Lemma 1.4 that,
∀β ∈ [0, 1],

β > α =⇒ βp+ (1− β)q � f α > β =⇒ f � βp+ (1− β)q. (1.39)

Consequently, there is at most one α ∈ [0, 1] that satisfies the claim. From here,
repeated use of P6 to modify refinements of p and q yield the following contradictions:

f � αp+ (1− α)q =⇒ f � βp+ (1− β)q, for β = α + ε;
αp+ (1− α)q � f =⇒ βp+ (1− β)q � f, for β = α− ε,

(1.40)
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where ε > 0 is a small positive constant.4 Hence, f ∼ αp+ (1− α)q.
Regarding Lemma 1.9b: if A is null or c ≥ u(µ), then the claim is trivially satisfied
by any p or δµ, respectively; henceforth, suppose otherwise. Since c > u(f(ω)) for all
ω ∈ A, there exists an outcome λ so that c ≥ u(λ). Accordingly, let p = αδµ+(1−α)δλ
be the unique mixture of δµ and δλ satisfying Ep[u(γ)] = c.
For an arbitrary choice of ωi ∈ A, let fi = xA(p, f(ωi)) be the compound action that
yields a random outcome distributed according to p when ω ∈ A and f(ωi) otherwise.
Further, denote pi = p ◦ f−1

i . Since Ep[u(γ)] = c > supω∈A u(f(ω)), we have

u(f(ωi)) = ṗ(A)u(f(ωi)) + (1− ṗ(A))u(f(ωi))
< ṗ(A)Ep[u(γ)] + (1− ṗ(A))u(f(ωi)) = Epi [u(γ)].

(1.41)

Consequently, Theorem 1.3 implies fi � f(ωi). By construction, then, fi � f(ωi) | A.
Finally, since fi � f(ωi) | A and pi = p on A for all ωi ∈ A, P7 implies p � f | A.

These lemmas in hand, we are ready to prove the second half of Theorem 1.5. The
general strategy will be to show that there exists a p ∈ Ps satisfying p ∼ f . Doing so
will enable us to translate statements such as f � g into the language of preferences
over simple distributions (e.g. p � p′) and so recycle Theorem 1.3.

Theorem 1.5b. P1–P7 imply that there exists a function u : Y → R such that

f � g ⇐⇒ Eṗ[u(f(ω))] > Eṗ[u(g(ω))], for all f, g ∈ F . (1.42)

Proof Due to earlier assumption that γsup � f � γinf , Lemma 1.9a implies that
there is a simple distribution p ∈ Ps for which p ∼ f . Now, consider the n-event
partition of Ω with elements

Ωn
i =

{
ω : i−1

n
< u(f(ω)) ≤ i

n

}
, for i = 1, . . . , n. (1.43)

On this partition, define the function

un(ω) = i−1
n

for all ω ∈ Ωn
i , i = 1, . . . , n, (1.44)

such that
Eṗ[u(f(ω))] ≥ Eṗ[un(f(ω))] =

n∑
i=1

ṗ(Ωn
i ) i−1

n
. (1.45)

Here, n denotes the cardinality of the partition, not the number of distinct outcomes
with support under p. Consequently, some Ωn

i may be empty. Since u is bounded
and A-measurable, it follows that un converges uniformly from below to u as n→∞.
In much the same way, define

u′n(ω) = i−1−ε
n

for all ω ∈ Ωn
i , i = 1, . . . , n, (1.46)

4Note that q � f and f � αp+ (1− α)q imply that α < 1, so α+ ε is valid; and so for α− ε.
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where ε > 0. By Lemma 1.9c it follows that

Ep[u(γ)] ≥ Eṗ[u′n(f(ω))] =
n∑
i=1

ṗ(Ωn
i ) i−1−ε

n
. (1.47)

Since un and u′n both converge to u as n→∞, the definition of expectation implies

Ep[u(f(ω))] = lim
n→∞

Ep[un(f(ω))] = lim
n→∞

Ep[u′n(f(ω))] = Eq[u(γ)]. (1.48)

Analogous to Section 1.1.2, we may then show that

f ∼ p ∈ Ps ⇐⇒ Ep[u(f(ω))] = Ep[u(γ)]. (1.49)

Finally, it follows by transitivity that

f � g ⇐⇒ Eṗ[u(f(ω))] > Eṗ[u(g(ω))], for all f, g ∈ F . (1.50)

Hence, the claim follows.

1.3 Bayesian decision theory

Having shown how basic assumptions regarding preferences can be used to construct
a framework for rational decision-making, let us now consider the case of a stateful
agent whose preferences change as new information arrives. This will be important in
later sections when considering sequential decision-making problems. The purpose of
this section is to show that conditionally most-preferred actions maximize conditional
expected utility functions.
Originally given by (1.19), the conditional preference relation is defined as

f � g | A ⇐⇒ xA(f, h) � xA(g, h), for all h ∈ F , (1.51)

where, e.g., xA(f, h) is a compound action such that f is carried out if θ ∈ A else h.
Recall that, by P2, f � g | A may be interpreted to mean that f is preferred to g
when the set of possible states is restricted to A ⊆ Ω. Below, we will write S ⊆ Ω
for the agent’s knowledge state and assume it to be a “�”-nonnull event such that
ṗ(S) > 0. Similarly, define the conditional more-likely-than relation as

A �̇B | S ⇐⇒ xA(µ, λ) � xB(µ, λ) | S, ∀µ, λ ∈ Y such that µ � λ. (1.52)

In words: A is conditionally more likely than B if, upon restricting Ω to S, the agent
prefers a binary lottery predicated on A to its equivalent lottery predicated on B.
This is definition has the benefit of being constructive, but does not necessarily lend
itself to intuition. Fortunately, refining (1.52) into a more palatable form proves to
be straightforward.
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Using (1.51), rewrite the right-hand side of (1.52) in terms of doubly compounded
actions with h = g and simplify as

A �̇B | S ⇐⇒ xS(xA(f, g), g) � xS(xB(f, g), g)
⇐⇒ xA∩S(f, g) � xB∩S(f, g)
⇐⇒ (A ∩ S) �̇ (B ∩ S).

(1.53)

Hence, the more-likely-than relation and its conditional counterpart have the familiar
property that an event A is more likely than another B given a third event S if and
only if S is more likely to jointly manifest with A than with B.
Translating (1.51) in terms of the (unconditional) more-likely-than relation �̇ allows
us to inherit results discussed early in the text. In particular, the definition of
qualitative probability (Definition 1.8) implies that

A �̇B | S ⇐⇒ ṗ(A ∩ S) > ṗ(B ∩ S). (1.54)

This implication in mind, define a probability measure ṗ( · | S) as5

ṗ(A | S) = ṗ(A ∩ S)
ṗ(S) , for all A ⊆ Ω. (1.55)

Since ṗ(S) > 0 by assumption, ṗ( · | S) satisfies the first part of Theorem 1.5,
namely

A �̇B | S ⇐⇒ ṗ(A | S) > ṗ(B | S), for all A,B ⊆ Ω. (1.56)
More generally, one may use the fact that the conditional preference-indifference
relation obeys P1–P7 to show that the conditional more-likely-than relation admits
F1–F5 and, hence, that ṗ( · | S) is the only probability measure which satisfies
Theorem 1.5a. For more details, see Kreps (1988, Chapter 10).
Turning our attention to the second half of Theorem 1.5, let us show that conditional
preferences indeed correspond with conditional expected utilities. To help ease
notation, let f ′ = xS(f, h) and g′ = xS(g, h) so that f � g | S ⇐⇒ f ′ � g′ for an
arbitrary choice of h ∈ F . Theorem 1.5 implies that

f � g | S ⇐⇒ f ′ � g′ ⇐⇒ Eṗ[u(f ′(ω))] > Eṗ[u(g′(ω))]

⇐⇒
∫
Y
u(γ)ṗ(f ′−1(γ))dγ >

∫
Y
u(γ)ṗ(g′−1(γ))dγ.

(1.57)

By finite additivity of ṗ, we have

ṗ(A) = ṗ(A ∩ S) + ṗ(A ∩ Sc), for any A ⊆ Ω. (1.58)

Moreover, since f ′ = g′ on Sc, it follows that

ṗ(f ′−1(γ) ∩ Sc) = ṗ(g′−1(γ) ∩ Sc), for all γ ∈ Y . (1.59)
5This is not a rigorous definition of conditional probability, but suffices when ṗ admits represen-

tation in terms of a probability density (mass) function.

16



Section 1.4: Discussion

Decomposing both ṗ(f ′−1(γ)) and ṗ(g′−1(γ)) on the right-hand side of (1.57) with
the help of (1.58) and, subsequently, eliminating like terms gives

f � g | S ⇐⇒
∫
Y
u(γ)ṗ(f ′−1(γ) ∩ S)dγ >

∫
Y
u(γ)ṗ(g′−1(γ) ∩ S)dγ

⇐⇒
∫
Y
u(γ)ṗ(f−1(γ) ∩ S)dγ >

∫
Y
u(γ)ṗ(g−1(γ) ∩ S)dγ,

(1.60)

where, in the second line, we have used the fact that f ′ = f and g′ = g on S. Finally,
dividing through by ṗ(S) confirms that conditional preferences obey Theorem 1.5b:

f � g | S ⇐⇒ Eṗ(ω|S)[u(f(ω))] > Eṗ(ω|S)[u(g(ω))]. (1.61)

Under Savage’s model, then, a rational agent incorporates information about the
world by updating their beliefs about the probabilities of different events in accordance
with Bayes’ rule. Putting things together gives the following definition of optimal
decision-making, the implications of which will be discussed below.

Definition 1.10 (Bayes optimal strategy). Let F be the set of actions mapping
from states Ω to outcomes Y and let A be the largest σ-algebra for Ω. Supposing the
agent’s preference � on F obeys P1–P7, a strategy π : A → F is Bayes optimal if
and only if, for all “�”-nonnull events S ∈ A, it follows that

π(S) ∈ arg max
f∈F

Eṗ(ω|S)[u(f(ω))], (1.62)

where ṗ( · | S) is the unique, finitely additive probability measure on A that agrees
with the conditional more-likely-than relation (1.52) induced by � in the sense that

A �̇B | S ⇐⇒ ṗ(A | S) > ṗ(B | S), for all A,B ∈ A; (1.63)

and, where u is the unique utility function (up to a positive affine transform) satisfying

f � g | S ⇐⇒ Eṗ(ω|S)[u(f(ω))] > Eṗ(ω|S)[u(g(ω))], for all f, g ∈ F . (1.64)

1.4 Discussion

This chapter surveyed the foundations of Bayesian decision theory with an emphasis
on the key technical arguments behind its development. Throughout, our primary
aim has been to show why a rational agent (as prescribed by Savage’s seven axioms)
should maximize the conditional expected utility of their actions.
This framework serves as the basis for popular algorithms that seek to enact or
emulate Bayes optimal strategies (Definition 1.10). Often, the agent’s utility function
is explicitly given in the form of an objective or reward signal, which greatly simplifies
the decision-making process. In these cases, one typically constructs a model that
encodes the agent’s prior beliefs and proceeds by selecting actions that maximize the
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Chapter 1: Decision Theory

given utility function’s conditional expectation under the model. Algorithms of this
sort are easy to understand, but can be difficult to execute.
Throughout the remainder of this work, we examine these algorithms and the hurdles
they face. Chapter 2 focuses on Bayesian optimization. In it, we first show how ideas
discussed in the present chapter can be used to derive well-known acquisition functions
from a decision theoretic perspective. We then study the problem of maximizing
acquisition functions, which corresponds to the process of finding optimal actions.
We investigate the mathematical properties of these acquisition functions (and their
estimators) and uses these to devise efficient maximization procedures.
In Chapter 3, we then restrict our attention to a particular class of models known
as Gaussian processes. These models have a number of desirable properties — such
as being highly interpretable and making well-calibrated predictions — that make
them the go-to choice for many decision-making algorithms. Unfortunately, Gaussian
processes have typically struggled in cases where estimating an action’s expected
utility requires us to simulate a large numbers of terms under the model. Seeking to
address this issue, we will show how these simulations can be cheaply generated by
taking advantage of a lesser-known formulation of Gaussian process posteriors.
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Bayesian Optimization

In this chapter, we investigate the application of Bayesian decision theory to global
optimization problems

x∗ ∈ arg max
x∈X

f(x, ω∗), (2.1)

where f : X × Ω → R is an objective function mapping designs x ∈ X and states
ω ∈ Ω to outcomes y ∈ R, while ω∗ ∈ Ω is an unknown ground-truth state.
We focus on the “black-box function” setting, where f is seen as a stochastic process
and ω∗ as an abstract random number. For simplicity, let us assume that f is
an infinite collection of continuous random variables y = f(x), ∀x ∈ X , whose
probability measure uniquely extends a family of (consistent) distributions over its
finite-dimensional subsets Fin(f) = {f(Xn) : ∀Xn ∈ X n,∀n ∈ N}.1

Since the elements of Fin(f) are assumed continuous, it follows that there exist
probability density functions that agree with each of the aforementioned finite-
dimensional distributions in the usual way. Moreover, for any two finite collections
y,y′ ∈ Fin(f), the random variable y | y′ = γ ′ will follow the conditional distribution
p(y | γ ′) = p(y,γ ′)p(γ ′)−1.
The general structure of this chapter is as follows. We first derive a Bayesian decision-
theoretic approach to optimization, during the course of which a number of key
definitions will be made precise. We, then, take a step back and discuss Bayesian
optimization in a broader sense before focusing in on techniques for efficiently
maximizing acquisition functions.

1Where possible without introducing ambiguity, we denote the pointwise evaluation of a function
on a set as, e.g., f(Xn) = {f(x) : ∀x ∈ Xn}.
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Chapter 2: Bayesian Optimization

2.1 The Bayesian approach to optimization

Continuing from the previous chapter, we begin by exploring the strategy suggested
by Savage’s model of decision-making. To this end, we interpret the aforementioned
global optimization problem as a statement about preference. Specifically, we
interpret (2.1) to mean that the agent’s utility function u : R → R is identity so
that, for all ω ∈ Ω and x,x′ ∈ X ,

x � x′ | ω ⇐⇒ f(x, ω) ≥ f(x′, ω), (2.2)

where conditional preference x � x′ | ω is defined as in (1.19). Recasting the original
problem in this way will enable us to naturally accommodate uncertainty for ω∗. In
most cases, however, it will be more convenient for us to express this uncertainty
in terms of conditional distributions on Fin(f) given observations Dt = (xi, γi)ti=1,
where γi = f(xi, ω∗) is the ground-truth value of f at xi ∈ X .
Returning to the optimization problem (2.1), we know from Section 1.3 that any
most-preferred design — henceforth referred to as an incumbent and denoted by
χ ∈ X — must maximize the agent’s conditional expected utility, i.e.

χ ∈ arg max
xt+1∈X

Ep(yt+1|Dt)[yt+1]. (2.3)

As such, define an incumbent rule χ : D → X as any function mapping datasets in
D = Fin(X × R) to conditionally most-preferred designs so that

χ(D) � x | D for all x ∈ X and D ∈ D. (2.4)

Denoting χt = χ(Dt), we will write

U(Dt) = Ep(f(χt)|Dt)[f(χt)] (2.5)

for the conditional expected utility of the incumbent under rule χ. The remainder of
this section focuses on the most widely used incumbent rule, namely the best-seen rule

χbs(Dt) ∈ {xi ∈ X : ∃γi ∈ R, (xi, γi) ∈ Dt ∧ γi = γ∗t } (2.6)

where γt = (γ1, . . . , γt) is the set of observed outcomes and γ∗t = max γt. Since
p(y | Dt) = δγ for all observed designs x ∈ (x1, . . . ,xt), it follows that

Ubs(Dt) = max
i=1,...,t

E[f(xi) | Dt] = γ∗t . (2.7)

Hence, the best-seen rule is Bayes-optimal (Definition 1.10) when incumbents must
be chosen from the set of previously queried designs. Below, we extend this line of
reasoning to derive Bayes-optimal strategies for querying f .
Consider the simple case where an agent is given a dataset DT−1 and allowed to
evaluate single design xT ∈ X before nominating a final incumbent χT = χbs(DT ).
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Section 2.1: The Bayesian approach to optimization

Since (2.7) implies the agent’s utility is unchanged when re-evaluating a previously
queried design, we focus on the case of novel queries xT /∈ (x1, . . . ,xT−1). In this
setting, uncertainty over outcomes yT = f(xT ) typically leads to uncertainty for the
choice of incumbent χT . Consequently, queries xT can be seen as compound actions
(see Section 1.1.2) that stipulate a choice of χT for each possible value of yT = f(xT ).
For the best-seen rule (2.6), this incumbent plan is defined as

χbs(x | DT−1) =
x f(x) > γ∗T−1
χT−1 otherwise,

(2.8)

and its expected utility is given by

Ubs(xT | DT−1) = Ubs(DT−1) +
∫ ∞
γ∗T−1

(
yT − γ∗T−1

)
p(yT | DT−1) dyT

= Ubs(DT−1)
utility at t

+Ep(yT |DT−1)
[
max

{
0, yT − γ∗T−1

}]
expected improvement at t+1

.
(2.9)

These equations are simple and intuitive: (2.8) tells us that the agent intends to keep
incumbent χT−1 unless query xT outperforms it (and so takes its place); similarly,
(2.9) says that the expected utility for querying xT is simply the agent’s current
expect utility incremented by the expected improvement of xT over χT−1 (more on
this later).
Under the best-seen rule, querying by maximizing (2.9) is one-step optimal in the
sense that there is no design whose evaluation would generate a more favorable
incumbent plan. More formally,

x ∈ arg max
x∈X

Ubs(x | Dt) ⇐⇒ χbs(x | Dt) � χbs(x′ | Dt) | Dt, ∀x′ ∈ X . (2.10)

To see this more clearly, recall Ubs(DT−1) = max{γ1, . . . , γT−1} = γ∗T−1 and write

Ubs(xT | DT−1) = Ep(yT |DT−1)[max{γ1, . . . , γT−1, yT}]
= Ep(yT |DT−1)[Ubs(DT−1 ∪ (xT , yT ))].

(2.11)

Now, suppose the agent is tasked with selecting a penultimate query xT−1 ∈ X ,
again with the goal of maximizing the expected utility of an incumbent chosen at
time T . We have already that one-step optimal strategies proceed by maximizing the
expected utility of incumbent plans that peer one step into the future. By backward
induction, it follows that the expected utility of penultimate query xT−1 is given by

U2-step(xT−1 | DT−2) = Ep(yT−1|DT−2)

[
max
xT∈X

U
(
xT | DT−2 ∪ (xT−1, yT−1)

)]
(2.12)

and that xT−1 ∈ arg maxx∈X U2-step(x | DT−2) is a Bayes optimal query. Along the
same lines, the expected utility of a query made τ = T − t steps prior to terminating
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Chapter 2: Bayesian Optimization

may be written as

Uτ -step(xt | Dt) = E
[

max
xt+1∈X

. . .E
[

max
xT−1∈X

E
[
max
xT∈X

U
(
xT | Dt ∪ (xi, yi)T−1

i=t

)]]]
. (2.13)

Note that, in the preceding equations, we have assumed that maximums exist2 and
that lookahead utilities are measurable.
In a narrow capacity, we have now “solved” the problem of Bayesian optimization
in that we have obtained a family of Bayes optimal strategies for querying f . To
see how this approach falls short, consider the simple case where each of m = |X |
available queries has n = |Y| potential outcomes for some m,n ∈ N. At step T − 1,
an optimal query is found by solving

xT−1 ∈ arg max
x∈X

∑
γ∈Y

p(γ | DT−2) max
x′∈X

U(x′ | DT−2 ∪ (x, γ)). (2.14)

Since the term being summed on the right has O(mn) time complexity, it would
then take us O(m2n2) time to obtain xT−1. For longer planning horizons, this trend
continues such that Bayes optimal querying quickly becomes prohibitively expensive.
This tension between theory and practice is at the heart of this chapter and, arguably,
of Bayesian optimization as a field. In the next section, we will explore a variety of
acquisition functions and see how they balance these agendas.

2.2 Acquisition functions

So far, we have pursued Bayesian optimization (BO) from a formal perspective as a
natural extension of Bayesian decision theory. In this section, we will broaden this
definition and discuss BO in the sense of optimization strategies based on conditional
expectations of value functions v : D → R, where D = Fin(X × R). Specifically, we
will focus on algorithms that given an arbitrary dataset D ∈ D select a set of queries
by maximizing an acquisition function

V (X | D) = Ep(y|D)[v(X,y | D)], (2.15)

where v(X,y | D) can loosely be seen as the extent to which observing y = f(X)
helps the agent identify an optimal design. We will say that an acquisition function
is myopic if the value it assigns to a set of queries is solely determined by the
joint distribution of the corresponding outcomes, i.e. if it holds for all D ∈ D and
X,X′ ⊆ X that

p(f(X) | D) = p(f(X′) | D) =⇒ V (X | D) = V (X′ | D). (2.16)

In these cases, we will omit X from the right-hand side and write V (X | D) =
Ep(y|D)[v(y | D)]. Notice how this definition implies the value of observing y = f(X)
does not reflect said observations’ impact on the expected utility of designs X \X.

2This will be the case, e.g., when X is compact and f is sample-continuous.
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Abbr. Score Function Reparameterization Myopic

EI max{0,y − α} max
{

0,µ+ Σ1/2z − α
}

Y
EMAX max{y} max

{
µ+ Σ1/2z

}
Y

KG sup
{
µ | y

}
− supµ sup

{
µ+ k( · ,X)Σ−1/2z

}
− supµ N

UCB max
{
µ+

√
βπ/2 Abs(y − µ)

}
max

{
µ+

√
βπ/2 Abs

(
Σ1/2z

)}
Y

PI max
{
1y1>α, . . . ,1yq>α

}
max

{
στ,ε

(
µ+ Σ1/2z

)}
Y

Table 2.1: Overview of acquisitions functions discussed in this chapter, each of which is
obtained by integrating out y ∼ N (µ,Σ) from the second column or z ∼ N (0, I) from the
third. Glossary: query locations X ∈ X q, outcomes y = f(X), improvement threshold α,
mean function µ : X → R and vector µ = µ(X), covariance function k : X × X → R and
matrix Σ = k(X,X), confidence parameter β ∈ R+, absolute value function Abs : R→ R+,
and (inverse) sigmoid function στ,ε(y)−1 = 1 + exp(−y+ε

τ ) with temperature parameter
τ ∈ R+ and offset ε ∈ R+ so that στ,ε(y) converges to 1y>0 as τ and ε both tend to zero.

Figure 2.1 sketches a prototypical Bayesian optimization algorithm. At each iteration,
a model is fit to a set of observations and an acquisition function is defined in terms
of the resulting predictive posterior. A set of queries is obtained by maximizing this
acquisition function; new observations are made by evaluating these queries; and
the cycle repeats. In the remainder of this section, our goal will be to see how the
machinery developed in the previous section translates to well-known acquisition
functions.
Towards this end, we define the marginal expected utility of a query x given dataset D
as the difference in expected utilities of incumbents chosen before and after observing
y = f(x). Various acquisition functions manifest as marginal expected utilities;
the most popular of which is undoubtedly the Expected Improvement acquisition
function (Jones et al., 1998). In the previous section, Expected Improvement (EI)
was implicitly given as the (one-step) marginal expected utility of a query x under
the best-seen incumbent rule:

EI(x | D) = Ubs(x | D)− Ubs(D) = Ep(y|D)[max{0, y − α}], (2.17)

where Ubs is defined in (2.9) and where α = max{γ ∈ Y : ∃x ∈ X , (x, γ) ∈ D} de-
notes the “best-seen” outcome prior to querying x. Due to their clear theoretic
origins, ease-of-use, and strong empirical performance, EI and its many variants are
often regarded as go-to choices of acquisition functions. Table 2.1 overviews the
various acquisition functions discussed throughout this chapter. Prior to discussing
these alternatives however, we briefly detour to introduce batch querying strategies.
For brevity, we focus on the fully synchronous case.
In many real-world scenarios, the agent would like to simultaneously evaluate q > 1
queries. We will not dwell on their motives for doing so; however, it is worth noting
that purely sequential querying strategies dominate parallel ones in the absence of
factors such as time constraints and shared costs. When it comes to incumbent-based
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acquisition functions, there is nothing particularly obscure about the definition of
the marginal expected utility for querying a batch of designs X ∈ X q, given here as

V (X | D) = U(X | D)− U(D). (2.18)

The term U(D) averages the utility of the incumbent χ(D) ∈ X chosen by the rule
χ; and, U(X | D) does the same, while further accounting for the impact observing
y = f(X) will have on the resulting incumbent. As a concrete example, the Expected
Improvement of a batch X may be written as

EI(X | D) = Ep(y|D)[max{0, y1 − α, . . . , yq − α}] (2.19)

and corresponds to the increase in the incumbent’s expected utility under the plan

χbs(X | D) =



x1 y1 > max{α, y2, . . . , yq},
...
xq yq > max{α, y1, . . . , yq−1},
χbs(D) otherwise,

(2.20)

where α = max{γ ∈ Y : ∃x ∈ X , (x, γ) ∈ D} again denotes the utility of the current,
best-seen incumbent. Parallel querying and, specifically, maximization of batch
acquisition functions plays a major role in the second half of this chapter. For this
reason, we focus on acquisition functions in their generalized batch forms henceforth.
Moving on from Expected Improvement, any number of acquisition functions may
be defined by designating different incumbent rules. Strategies based on maximizing
these acquisition functions all share the property of being (one-step) optimal in
some capacity. Two acquisition functions in particular may be obtained by minor
modification of the best-seen rule.
The first is found by taking the best-seen rule and further restricting the set of valid
incumbent according to how recently a design was queried. For an arbitrary choice
of window τ ≥ 0, this gives the best-recent rule

χbr(Dt) =


x1 t1 ≥ t− τ, and y1 ≥ max{y2, . . . , yq},
...
xq tq ≥ t− τ and yq > max{y1, . . . , yq−1},

(2.21)

where, by minor abuse of notation, ti denotes the arrival time of the i-th outcome.
When τ = 0, we recover the EMAX acquisition function (Azimi et al., 2010)

EMAX(X | Dt) = Ep(y|Dt)[max y], (2.22)

which can be viewed as selecting an incumbent from the most recent batch X.
Especially when q = 1 (or when batches are constructed greedily as discussed in
Section 2.5), maximizing EMAX often results in repeated queries of the best-seen
design χ = χbs(D). In these cases, it follows that the optimal size q batch under
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EMAX is no better than the optimal size q − 1 batch under EI

EMAX(X | D) = EI(X \ χ | D) + α = Ubs(X \ χ | D). (2.23)

When all previous queries are valid incumbents, we therefore prefer EI to EMAX.
Rather than restricting incumbents to the set of previously evaluated designs (or
some subset thereof), suppose we allow them to be chosen at will on the entire
domain X . Generalizing the best-seen rule in this way gives the best-expected rule

χbe(D) ∈ arg max
x∈X

E
[
f(x) | D

]
(2.24)

and, similarly, the best-expected plan

χbe
(
X | Dt

)
= χbe

(
Dt ∪ (xj, γj)qj=1

)
, for all γ ∈ Yq. (2.25)

Together, they give the Knowledge Gradient acquisition function (Gupta and Miescke,
1996; Frazier et al., 2008)

KG(X | D) = Ep(y|D)

[
max
x∈X

E
[
f(x) | D ∪ (xj, yj)qj=1

]]
−max

x∈X
E
[
f(x) | D

]
. (2.26)

Notice that KG is non-myopic, since acquisition values (2.26) depend on both the
distribution of outcomes y = f(X) and the location of the batch X ∈ X q.
Comparing EI and KG, two primary considerations are as follows. First, one typically
uses a model to represent their belief about a black-box function f . Generally
speaking, the agent’s faith in the chosen prior for f and, hence, the model will
vary by case. In cases where the model is deemed sufficiently trustworthy, the
best-expected rule is typically preferred to the best-seen rule. Second, EI is easier to
use and less computationally demanding than KG, which may bias practitioners in its
favor. Recent works such as Wu and Frazier (2016), Wu et al. (2017), and (Balandat
et al., 2020), however, have attacked this latter problem head on and demonstrated
significant speed ups for KG acquisition functions. Overall, in cases where models
are trustworthy and acquisition functions may be thoroughly optimized, KG is likely
to outperform EI.
While each of the acquisition functions discussed so far have clear decision theoretic
origins, this is not always the case. Rather than terminating an optimal lookahead
strategy after, e.g., a single step, many acquisition functions attempt to distill the
high-level behavior of optimal strategies into simpler ones. A common paradigm for
intuiting these behaviors is the explore-exploit tradeoff. On the one hand, the agent
must explore the domain X in order to learn about the global trends exhibited by
a black-box f ; on the other, they must exploit what is already known about f in
order to identify local optima in the first place. Exploration helps ensure that local
optima are global optima, but is unlikely to immediately yield better incumbents.
Conversely, exploitation frequently leads to better incumbents, but typically conveys
little additional information about f . While Bayes optimal strategies implicitly
balance between these considerations, popular acquisition functions such as Upper
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Algorithm 1 BO outer-loop (joint parallelism)

1: Given model M and data D , ;.
2: for t = 1, . . . , T do
3: Fit model M to current data D
4: Set qt = min(T � t, q)

5: Find X 2 arg maxX2Qqt
i=1 X L(X)

6: Evaluate y f(X)
7: Update D  D [ {(xk, yk)}q

k=1
8: end for

1

Algorithm 2 BO outer-loop (greedy parallelism)

1: Given model M and data D , ;.
2: for t = 1, . . . , T do
3: Fit model M to current data D
4: Set X ;

5: for k = 1, . . . min(T � t, q) do
6: Find xk 2 arg maxx2X L(X[{x})
7: X X [ {xk}
8: end for
9: Evaluate y f(X)

10: Update D  D [ {(xk, yk)}q
k=1

11: end for

2

1

1: Given model M, acquisition L, and data D
2: for t = 1, . . . , T do
3: Fit model M to current data D
4: Set q = min(qmax, T � t)

5: Find X 2 argmaxX02X q L(X0)

6: Evaluate y f(X)

7: Update D  D [ {(xk, yk)}qk=1

8: end for

Algorithm 1 BO outer-loop (joint parallelism)

1: Given model M, acquisition L and data D
2: for t = 1, . . . , T do
3: Fit model M to current data D
4: Set q = min(qmax, T � t)

5: Find X 2 arg maxX02X q L(X0)

6: Evaluate y f(X)

7: Update D  D [ {(xi, yi)}q
i=1

8: end for

Algorithm 2 BO outer-loop (greedy parallelism)

1: Given model M, acquisition L and data D
2: for t = 1, . . . , T do
3: Fit model M to current data D
4: Set X ;

5: for j = 1, . . . min(qmax, T � t) do
6: Find xj 2 arg maxx2X L(X[{x})
7: X X [ {xj}
8: end for
9: Evaluate y f(X)

10: Update D  D [ {(xi, yi)}q
i=1

11: end for

1

a

b

c d

Figure 2.1: Overview of Bayesian optimization. Left: Pseudo code for a generic BO
algorithm. Middle: A prototypical model-based posterior, with observations denoted by
orange circles; and, a corresponding acquisition surface. In both plots, the next query
location is indicated by a pink star. Right: Time to compute 214 acquisition values given
varying amounts of data and batch-sizes. At the final step, runtimes fall of because batch-
sizes q = min(qmax, T − t) diminish to satisfy an evaluation budget constraint T = 1024.

Confidence Bounds (Srinivas et al., 2010a) do so explicitly.
Over and beyond mere intuition, these heuristics (incl. one-step optimal acquisition
functions) are often justified through rigorous analysis of their asymptotic properties.
It is easy to see that maximizing the utility of a (dynamically chosen) incumbent χ
is equivalent to minimizing the expected value of its associated regret

r(χ) = max
x∈X

f(x)− f(χ). (2.27)

Grünewälder et al. (2010) bound the simple regret incurred by a best-seen incumbent
at time T under the optimal strategy (2.13) for Gaussian process priors (with Hölder
continuous kernels and known hyperparameters) on f , while Vazquez and Bect (2010)
and Bull (2011) bound the regret incurred by Expected Improvement in similar
settings. Again for GP priors on f , Srinivas et al. (2010a) derive regret bounds for the
Upper Confidence Bound strategy as a function of the mutual information between
black-box f and observations D. For the special case of noise-free observations y,
De Freitas et al. (2012) modify this UCB algorithm to improve these bounds and
connect them with bounds on the cumulative regret ∑T

t=1 r(xt).

2.3 Inner optimization problems

All of the theory discussed so far builds on the premise that queries are obtained
by globally maximizing acquisition functions, often referred to as solving the inner
optimization problem (Gelbart et al., 2014; Martinez-Cantin, 2014; Wang et al.,
2016; Wilson et al., 2018). However, this seemingly innocent assumption presents
a major challenge to its real-world applications. In practice, a modest amount of
resources (usually, time or compute power) are allocated to decision-making itself.
One often spends minutes choosing designs that take days to evaluate. Much of
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this can be attributed to the fact that some inner optimization problems are (much)
more expensive than others.
This state of affairs is partially attributable to the fact that, in general, models
become increasingly costly and acquisition functions become increasingly multimodal
as more and more data is collected. Even when dealing with a specific querying
strategy, it can therefore be difficult to prescribe a “one-size-fits-all” approach to
solving inner optimization problems. This problem is exacerbated by the fact that
different querying strategies often incur dramatically different decision-making costs.
To help see this, consider two outer-loops based on the same of acquisition function:
one in which a single query is chosen in each of T iterations and one in which T queries
are made in the first (and only) iteration. Model fitting overheads notwithstanding,
decision-making costs will typically be higher in the latter scenario. In addition the
size of the search space simply being bigger when dealing with batches of queries,
popular acquisition functions are frequently analytic for individual queries, but
intractable for batch-sizes q > 1. Consequently, batch selection problems often rely
on unbiased (but comparatively expensive) estimators of acquisition values. These
issues are compounded by the fact that batched strategies essentially trade sample
efficiency for wall-time efficiency, which further increases decision-making costs since
it implies that they must collect more queries in order to achieve the same level of
performance.
The remainder of this chapter investigates techniques for efficiently maximizing
acquisition functions, with an emphasis on batch selection problems. We begin by
developing Monte Carlo gradient estimators for acquisition functions, which allow the
same powerful gradient-based methods to be used in both sequential and batched BO
settings. When then demonstrate that a family of batch acquisition functions (incl.
Expected Improvement) are submodular. This property provides strong justification
for the use of greedy maximization techniques, which enables us to avoid some of the
issues mentioned above by converting the batch selection problem into a sequence
of subproblems in which q = 1. Lastly, we show how to combat the loss of analytic
expression when moving from purely sequential to batch selection problems by using
Rao-Blackwellization to constructed better estimators.

2.4 Pathwise gradient estimators

Derivatives are one of the most valuable sources of information when seeking to
optimize a function, since they tell us whether moving its arguments ever so slightly
in a particular direction will improve its value. This information powers a wide
variety of efficient local optimization algorithms; and, this efficiency is vital when the
cost of evaluating the objective is high, relative to the size of the search space and
particulars of the task at hand. Here, we detail conditions under which averaging
gradients obtained by differentiating through each sample in a Monte Carlo integral
produces an unbiased gradient estimator.
Let V ( · | D) : Fin(X ) → R be an acquisition function defined per (2.15) as the
conditional expectation of a value function v : D → R given observations D ∈ D,
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where D = Fin(X × R). In many cases, exact computation of V (X | D) is infeasible
due to the involvement of one or more intractable integrals. A popular option is
therefore to use a Monte Carlo estimator as a proxy for the original function.
Consider a generic Monte Carlo estimator of an acquisition function V , namely

Ṽ (X | D) = 1
m

m∑
i=1

v
(
X,γ(i) | D

)
, (2.28)

where γ(i) denotes the i-th realization of y = f(X). Supposing this estimator is
unbiased, we would like to verify whether the same can be said of the corresponding
gradient estimator

Ṽ (X | D) = 1
m

m∑
i=1
∇Xv

(
X,γ(i) | D

)
. (2.29)

Validating this gradient estimator requires us to show that: (i) the derivative of γ(i)

with respect to X is well-defined and (ii) the order of integration and differentiation
way be swapped. We first explore these concept under the assumption that draws of
y are obtained by evaluating random functions f( · , ω), before turning our attention
to cases where y is generated by sampling from a distribution whose parameters
depend on X. Throughout, we assume an arbitrary but fixed choice of D ∈ D.
For convenience, define vf (X, ω) = v(X, (f | D)(X, ω) | D). Assuming it exists, the
pathwise derivative of vf with respect to the (i, j)-th site parameter Xij = [X]ij is
given by

dvf
dXij

(X, ω) = lim
λ→0

vf (X + λeij, ω)− vf (X, ω)
λ

, (2.30)

where [eij ]kl = 1ij=kl is the basis vector associated withXij . Here, the term “pathwise”
emphasizes the fact that (2.30) is the derivative of vf along the path specified by
ω ∈ Ω. Regarding the first of the two questions raised above: when draws of y
are obtained as γ(ω) = f(X, ω), it is clear that the pathwise derivative of vf with
respect to Xij will exist so long as v( · | D) is differentiable with respect to f(X, ω)
and both functions are differentiable with respect to X.
Now that we have defined the derivative of γ(ω) with respect to X, let us investigate
the question of whether or not the expectation of v’s derivative is equivalent to the
derivative of v’s expectation. Expanding both quantities and exploiting linearity of
expectation, it is immediately clear that the central question is whether the limit
may be brought inside the integral so that

∇X E[v(X, ω)] = lim
λ→0

E
[
vf (X + λeij, ω)− vf (X, ω)

λ

]

= E
[
lim
λ→0

vf (X + λeij, ω)− vf (X, ω)
λ

]
= E[∇Xvf (X, ω)].

(2.31)

Interchanges of this sort are typically validated by appealing to Lebesgue’s dominated
convergence theorem (Glasserman, 1988; Mohamed et al., 2020). By definition, we
know that the finite difference term converges pointwise to the pathwise derivative
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(if it exists)
vf (X + λeij, ω)− vf (X, ω)

λ
λ→0−−−→ dvf

dXij

(X, ω). (2.32)

Consequently, if there exists an integrable function ψ : X q × Ω → R that almost
surely dominates this term in the sense that, for all λ ∈ R and for all ω ∈ Ω a.s.,

ψ(X, ω) ≥
∣∣∣∣∣vf (X + λeij, ω)− vf (X, ω)

λ

∣∣∣∣∣, (2.33)

then one may show that

lim
λ→0

E
∣∣∣∣∣ dvfdXij

(X, ω)− vf (X + λeij, ω)− vf (X, ω)
λ

∣∣∣∣∣ = 0, (2.34)

and, hence, that (2.31) holds. Necessary and sufficient conditions for the existence
of a dominating function ψ are that vf is sample-continuous and dvf

dXij
exists and is

integrable (Cao, 1985; Glasserman, 1988). When π is atomless, these conditions are
satisfied by most continuous, piecewise differentiable value functions v. In practice,
then, “the most important condition is the continuity of [v] across points where it
fails to be differentiable” Glasserman (1988, page 2).
In Chapter 3, we will develop techniques for efficiently sampling (approximate)
function draws f( · , ω) and show that they offer significant advantages when q = |X|
is large. In many practical settings, however, q will be small and it will be more
convenient for us to generate random vectors γ by another means.
Recall from the beginning of the chapter that f is assumed to uniquely extend a
family of finite-dimensional distributions over elements of Fin(f). For a fixed q ∈ N,
suppose we are handed a function θ : X q → Θ and told that θ parameterizes the
q-dimensional distributions of f | D in the sense that there exists an independent
random variable z ∼ π and a continuously differentiable function g : Θ×Z → Rq

satisfying3
(f | D)(X) d= g(θ(X), z), for all X ∈ X q. (2.35)

For convenience, define vg(X, z) = v(X, g(θ(X), z)). Noting our earlier conditions for
differentiation under the integral sign, let us further assume that v, θ, and g are all
continuously differentiable so that dvg

dXij
is integrable. Now, since vf (X, ω) d= vg(X, z)

for all X ∈ X q, it follows that

dE[vf ]
dXij

(X) = lim
λ→0

E[vf (X + λeij, ω)]− E[vf (X, ω)]
λ

= lim
λ→0

E[vg(X + λeij, z)]− E[vg(X, z)]
λ

= dE[vg]
dXij

(X),
(2.36)

Like dvf
dXij

(X, ω) before it, dvg
dXij

(X, z) may be used to construct a pathwise gradient
3Continuously differentiability of g helps to ensure that vg is integrable and, hence, that we may

differentiate under the integral sign.
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estimator (2.29). Rather than generating f all at once, however, paths g(θ( · ), z)
now realize its q-dimensional subsets.
In the machine learning literature, the act of differentiating through samples obtained
by pushing an independent random variable z forward through a function g : Θ×Z →
Rq parameterized by a vector θ(X) is often referred to as the reparameterization trick
(Kingma and Welling, 2014) or stochastic backpropagation (Rezende et al., 2014).
Elsewhere, it is sometimes referred to as infinitesimal perturbation analysis (Cao,
1985; Glasserman, 1988) or, simply, pathwise differentiation (Glasserman, 2013). For
a recent survey of these techniques and more, see (Mohamed et al., 2020).
The preceding definition of g as a (continuously) differentiable function parame-
terized by θ(X) is broad enough to encompass most reparameterizations of y, but
does not necessarily lend itself to insight. Supposing g(θ(X), · ) is invertible, an
alternative point of view is to think of g(θ(X), · )−1 as a “standardization function”
that removes y’s dependence on θ(X) (Figurnov et al., 2018). This is important
because this additional dependence, left unaccounted for, would otherwise bias our
gradient estimates. Thinking in terms of standardization functions g(θ(X), · )−1

is particularly natural when dealing with continuous random variables y ∈ R. In
these cases, a reasonable choice is to let z ∼ U(0, 1) be uniformly distributed and
define g as the inverse of y’s cumulative distribution function (CDF). Despite their
intuitive appeal, however, inverse transform sampling methods of this sort are often
computationally demanding and may not extend well to the multivariate setting
y ∈ Rq. Readers interested in learning more about strategies for generating random
variables should consult (Devroye, 2006).
For now, let us suppose that f ∼ GP(µ, k) is a Gaussian process—i.e. a stochas-
tic process whose finite-dimensional subsets Fin(f) are all multivariate normally
distributed—given in terms of a mean function µ : X → R and a covariance function
k : X ×X → R. These functions have the requisite property that, for all X ∈ Fin(X ),

f(X) ∼ N (µ(X), k(X,X)). (2.37)

When it comes to drawing random vectors f(X) with covariance K = k(X,X), the
typical approach is to linearly transform a base random vector z so that

Cov(Az) = A Cov(z)A> = K, (2.38)

where A is the matrix representation of the aforementioned transform (Devroye, 2006,
Section 2.2). Since the family of Gaussian random variables is closed under affine
transformations, this procedure typically manifests as a location scale transform

f(X) d= µ(X) + k(X,X)1/2z z ∼ N (0, I), (2.39)

where k(X,X)1/2 is a matrix square root of k(X,X). Supposing (2.39) is used to
generate f(X), it follows that µ(X) and k(X,X)1/2 must be continuously differentiable
with respect to X in order for the pathwise gradient estimator (2.29) to be valid. Wang
et al. (2016) show that the latter condition is met by GPs with twice differentiable
kernels k, so long as the elements of X are unique. The authors then go on to show
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that (2.29) is an unbiased gradient estimator for Expected Improvement. Subsequent
works would go on to show that this claim also holds for Knowledge Gradient
acquisition functions (Wu and Frazier, 2016; Wu et al., 2017).
In the remainder of this section, we explore the practical implications of gradient-
based versus gradient-free approaches to maximizing acquisition functions through a
series of experiments.

2.4.1 Overview of experiments

This section outlines the general setup of the empirical studies presented in this
chapter. Throughout, experiments were designed to isolate the impact different
approaches to solving the inner optimization problem have on outer-loop perfor-
mance. To help streamline discussion, we focus on results when queries are made by
maximizing Expected Improvement.
On the whole, we investigated performance in two distinct scenarios: synthetic tasks
where the ground-truth function f was drawn from a known GP prior; and, black-box
tasks where the nature of f is unknown at the start of optimization. Dividing
our experiments this way enables us to better understand the inner optimization
problem’s impact by isolating the effects of model mismatch. In both cases, we
employ a GP prior f ∼ GP(µ, k) with a constant mean function µ( · ) = c ∈ R and
an anisotropic Matérn-5/2 kernel

k(x,x′) = σ2
k

(
1 +
√

5r + 5
3r

2
)

exp(−
√

5r), (2.40)

where r2 = (x− x′)>Λ−1(x− x′) for some diagonal matrix Λ = diag(λ1, . . . λd) with
λi > 0. When optimizing functions f : Rd → R drawn from GP priors, we set c = 0,
σk = 1, λi = d

16 . In the black-box setting, these hyperparameters were estimated
online at the start of each outer-loop iteration. In all cases, trials began with three
randomly chosen queries and proceeded until a total of T designs had been evaluated.
Finally, while the general notation of this chapter has assumed noise-free observations,
all experiments were run with Gaussian observations y | f(x) ∼ N (f(x), 10−3).
We considered a range of (acquisition) maximizers, ultimately settling on stochastic
gradient ascent using Adam (Kingma and Ba, 2015), Covariance Matrix Adaptation
Evolution Strategy CMA-ES, (Hansen, 2006), and Random Search RS (Bergstra and
Bengio, 2012). To ensure fairness, maximizers were constrained by CPU runtime.
At each outer-loop iteration, a runtime budget was established by measuring the
average amount of time required to evaluate N batch acquisition values (carried
out in parallel). For the greedy strategies introduced in Section 2.5, this budget
was split evenly among each of q rounds. To characterize performance as a function
of allocated runtime, experiments were run using inner budgets N ∈ {212, 214, 216}.
Lastly, we note that the strategy used to initialize the various optimizers will be
introduced and motivated in Section 2.5.1.
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Figure 2.2: Average performance—means and standard errors of log10 immediate regrets
incurred by best-seen incumbents over 32 independent trials—when optimizing functions
drawn from known GP priors using different approaches to maximizing Monte Carlo EI.
Random Search is shown in green, CMA-ES in blue, and stochastic gradient ascent in
yellow. The dimensionality of the search space d increases from top to bottom rows (each
time with batch-size q = d), while the time spent solving the inner optimization problem
increases from left to right columns.

2.4.2 Results

Before diving into the results shown in Figures 2.2 and 2.3, let us first clarify how
the Monte Carlo (gradient) estimators discussed in this section were used. When
such an estimator is constructed from reparameterized samples γ = g(θ, ζ), we may
either optimize it stochastically (by resampling ζ) or deterministically (by holding ζ
fixed). Together with a choice of sample count m, this decision reflects a well-known
tradeoff of approximation-based, estimation-based, and optimization-based sources of
error (Bousquet and Bottou, 2008). Here, approximation error reflects the potential
and likely mismatch between the idealized prior for f and the one we employ;
estimation error conveys the difference between the Monte Carlo estimator and the
true acquisition function (or gradients); and, optimization error communicates how
much worse the batches we obtain are from globally optimal ones.
Resampling ζ typically eliminates estimation error but increases optimization error.
Conversely, recycling ζ helps cut down on optimization error but introduces a bias.
In our experiments, we found that stochastic gradient methods—specifically Adam
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Figure 2.3: Comparison of BO performance when optimizing black-box objectives using
different approaches to maximizing Monte Carlo EI; analogous to Fig. 2.2. Random Search
is shown in green, CMA-ES in blue, and stochastic gradient ascent in yellow. When
optimizing Levy No.3 and draws from unknown GP priors, design dimensionality d and
batch-size q increase as columns go from left to right as d = q ∈ (4, 8, 16). For Hartmann-6,
d = 6 remains unchanged but q increases according to the aforementioned schedule.

(Kingma and Ba, 2015) with an initial learning rate of 1
40 and m = 128 samples—

consistently matched or outperformed deterministic ones with varying sample counts.
Similar trends were observed for the gradient-free CMA-ES optimizer, results for
which are shown using stochastic evaluations of Monte Carlo acquisition functions.
Since the time of original publication, subsequent works have demonstrated benefits
for using deterministic optimizers with quasi-random draws ζ (Balandat et al., 2020).
Figures 2.2 paints a clear picture of the inner optimization problem’s impact on
outer-loop performance by investigating cases where model-based errors have been
eliminated. On these synthetic tasks, the benefits of gradient-based approaches
to maximizing Monte Carlo estimators are on full display. By exploiting gradient
information, we are able to obtain better batches in less time.
Aside from gradient-based methods (yellow) consistently matching or surpassing
gradient-free alternatives (green and blue), two additional trends bear immediate
mention. First (as columns go from left to right), we see how increasing the amount
of time spent maximizing acquisition functions improves performance. Second (as
d increases from top to bottom rows), the performance of all methods deteriorates,
both because the number of allowed queries only increases linearly and because the
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2: for t = 1, . . . , T do
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4: Set X ;

5: for k = 1, . . .min(qmax, T � t) do
6: Find xk 2 argmaxx2X L(X[{x})
7: X X [ {xk}
8: end for
9: Evaluate y f(X)

10: Update D  D [ {(xk, yk)}qk=1
11: end for

1: Given model M, acquisition L and data D
2: for t = 1, . . . , T do
3: Fit model M to current data D
4: Set X ;

5: for j = 1, . . .min(qmax, T � t) do
6: Find xj 2 argmaxx2X L(X[{x})
7: X X [ {xj}
8: end for
9: Evaluate y f(X)

10: Update D  D [ {(xi, yi)}qi=1
11: end for

Greedy parallel selection

Iter. 1

Iter. 2

Algorithm 1 BO outer-loop (joint parallelism)

1: Given model M and data D , ;.
2: for t = 1, . . . , T do
3: Fit model M to current data D
4: Set qt = min(T � t, q)

5: Find X 2 arg maxX2Qqt
i=1 X L(X)

6: Evaluate y f(X)
7: Update D  D [ {(xk, yk)}q

k=1
8: end for

1

Algorithm 2 BO outer-loop (greedy parallelism)

1: Given model M and data D , ;.
2: for t = 1, . . . , T do
3: Fit model M to current data D
4: Set X ;

5: for k = 1, . . . min(T � t, q) do
6: Find xk 2 arg maxx2X L(X[{x})
7: X X [ {xk}
8: end for
9: Evaluate y f(X)

10: Update D  D [ {(xk, yk)}q
k=1

11: end for

2

1

a

b

c d

Figure 2.4: Left: Pseudo-code for BO outer-loop with greedy parallelism, the inner
optimization problem is boxed in red. Middle: Successive iterations of greedy maximization,
starting from the posterior shown in Figure 1b. Right: On the upper left, greedily selected
query ‘?’; on the lower right and from ‘×’ to ‘?’, trajectory when jointly optimizing parallel
queries X1 and X2 via stochastic gradient ascent. Darker colors correspond with larger
acquisitions.

time allocated to the inner optimization problem remains unchanged. Nevertheless,
gradient-based approaches are able to better utilize this time and quickly pull ahead
of their gradient-free competitors.
The same general trends appear in the black-box task setting (shown in Figure 2.3),
with gradient-based approaches consistently yielding the best performance. The
final row of Figure 2.3 reproduces the experiments shown on the main diagonal of
Figure 2.2, but replaces known priors with Type-II maximum likelihood estimated
hyperparameters fit at the start of each outer loop iteration. As the amount of data
collected within each trial increases (from left to right columns), these estimates
become increasingly accurate and we recover performance nearly identical to that
observed on synthetic tasks. Finally, performance on Hartmann-6 (top row) serves
as a clear indicator for the importance of thoroughly solving the inner optimization
problem. In these experiments, performance improved despite mounting batch-sizes
due to a corresponding increase in the inner budget.
Overall, these results clearly demonstrate that gradient-based approaches to maxi-
mizing acquisition functions improve outer-loop performance. Furthermore, these
gains become more pronounced as the batch dimensionality qd increases.

2.5 Greedy batch selection

Optimally selecting a batch is considerably more difficult than choosing a single query.
Per the previous section, this difficulty is partially due to the prevalence of intractable
integrals. A second, equally troublesome issue is that finding an optimal batch
X∗j ∈ arg maxX∈X j V (X | D) is typically a high-dimensional, global optimization
problem unto itself. This section investigates the mathematical justification for
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greedy batch selection whereby, for all i = 1, . . . , q, we have

X̄i = X̄i−1 ∪
{

arg max
x∈X

V
(
X̄i−1 ∪ {x} | D

)}
X̄0 = ∅. (2.41)

Greedy approaches to constructing a batch decompose the original qd-dimensional
problem into a sequence of q, d-dimensional subproblems. By the curse of di-
mensionality, the cost of solving these (sub)problems increases superlinearly (often
exponentially) in its dimensionality. Hence, greedy strategies are far easier to carry
out. A number of prior works have, therefore, proposed greedy batch selection as
a practical way of tackling real-world factors such as time constraints on decision-
making per se (Azimi et al., 2010; Chen and Krause, 2013; Contal et al., 2013;
Desautels et al., 2014; Shah and Ghahramani, 2015; Kathuria et al., 2016). Here,
we will show that many common batch acquisition functions are submodular. Of
acquisition functions shown in Table 2.1, this includes EI, EMAX, UCB, and PI.

Definition 2.11 (Submodularity). Let V : 2X → R be a function on the set of all
subsets of a finite collection X . Then, V is said to be submodular if it satisfies either
of the following equivalent conditions for all X,X′ ⊆ X

a. V (X) + V (X′) ≥ V (X ∪X′) + V (X ∩X′).

b. If X ⊆ X′, then V (X ∪ {x})− V (X) ≥ V (X′ ∪ {x})− V (X′), ∀x ∈ X \X′.

According to Definition 2.11b, then, a batch acquisition function is submodular (SM)
if the marginal value for querying x 6∈ X, i.e. V (X ∪ {x})−V (X), does not increase
as additional designs x′ 6∈ X are added to X. Note that, for the remainder of this
section we assume that the domain X is finite. This assumption has little bearing in
practical settings, it is necessary in order for V to satisfy Definition 2.11. Readers
interested in learning more about submodularity and its applications should see
(Bach, 2013; Krause and Golovin, 2014). Below, we will justify greedy batch selection
by appealing to a well-known result regarding greedy maximization of submodular
functions (Nemhauser et al., 1978; Krause and Golovin, 2014).

Theorem 2.12. If V : 2X → R+ is a nonnegative monotone submodular function,
then

V
(
X̄i

)
≥
(
1− e−i/j

)
max
X∈X j

V (X), for all i, j ∈ N,

where X̄i is the set obtained after i rounds of greedy selection.

Proof See Krause and Golovin (2014, page 7).

Several works on Gaussian-process-based optimization have previously exploited
submodularity (Srinivas et al., 2010a; Contal et al., 2013; Desautels et al., 2014).
These works typically leverage the submodularity of an auxiliary quantity — such
as the mutual information between a Gaussian process f and observations D — to
bound the idealized performance of a particular querying strategy. In contrast, we
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will show that many batch acquisition functions are submodular and use this fact to
bound the local error introduced at each step by greedily solving for optimal batches.
We begin by simplifying some of the machinery at hand. Suppose that V is a myopic
acquisition function such that, for some value function v : 2Y → R, we may write

V (X | D) = Ep(y|D)[v(y | D)] = Ep(f |D)[v(f(X) | D)], (2.42)

where p(f | D) is valid since X is assumed finite. Suppressing D to ease notation, it
follows that V is submodular if and only if the same can be said of v, since

V (X ∪X′) + V (X ∩X′) =
∫ [
v(f(X ∪X′)) + v(f(X ∩X′))

]
dp(f)

≤
∫ [
v(f(X)) + v(f(X′))

]
dp(f)

= V (X) + V (X′),

(2.43)

where the second line follows by Definition 2.11a. When V admits (2.42), we therefore
only need to determine whether the corresponding value function v is submodular.
As has been a recurring theme in this chapter, acquisition functions can often be
viewed in terms of incumbent rules. Specifically, the acquisition value of a batch
X communicates how the incumbent’s utility is expected to change. In myopic
cases (where the value of querying X does not account for its influences over our
understanding of f on X \X), such changes are only possible when an element of
X is taken as the incumbent. Myopic batch acquisition functions, therefore, often
manifest as

V (X | D) = Ep(y|D) max{v(y1 | D), . . . , v(yq | D)}. (2.44)

In these cases, it suffices to show that the maximum is a submodular set function.
Let V be a finite ground set and define max(∅) = inf V. Without loss of generality,
suppose u,v ⊆ Y satisfy max(u) ≥ max(v), such that max(u) = max(u∪v). Since
max(v) ≥ max(w) for all w ⊆ v, we have max(v) ≥ max(u ∩ v). It follows that
the maximum, defined as such, is submodular by Definition 2.11a:

max(u) + max(v) ≥ max(u ∪ v) + max(u ∩ v). (2.45)

We are not quite done yet, however. In order for Theorem 2.12 to bound the
inner-loop regret of greedy batch selection, max ◦ v ◦ f must almost surely satisfy,
∀X,X′ ∈ X ,

i. Monotonic: (max ◦ v ◦ f)(X ∪X′) ≥ (max ◦ v ◦ f)(X).

ii. Nonnegative: (max ◦ v ◦ f)(X) ≥ 0.

Seeing as monotonicity is guaranteed by the max operation, the challenge here is
to show that v ◦ f is nonnegative. Note that, in practice, it suffices for v ◦ f to be
bounded from below. In some cases, nonnegativity is implied by v. In others, it
suffices to bound the conditional expectation of f . More generally, however, lower
bounding v ◦ f may require us to show that inf f is finite. For a centered Gaussian
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Figure 2.5: Performance comparison between joint (lighter colors) and greedy (darker
colors) approaches to batch selection when using Monte Carlo EI to optimize functions
drawn from known GP priors; these results continue from Figure 2.3. The performance of
Random Search (as an acquisition function maximizer) is shown in greens, that of CMA-ES
is shown in blues, and that of stochastic gradient ascent is shown in orange and yellow.

process f on a compact domain X , asking whether f is almost surely bounded is
equivalent to asking whether it is sample-continuous. Alternatively, it sometimes
happens that f is known a priori to be bounded from below. Azimi et al. (2010),
for example, focus on maximizing nonnegative functions f and exploit the ensuing
submodularity of the EMAX acquisition function (2.22). Finally, we note that an
alternative proof of submodularity for the Probability of Improvement acquisition
function can be found in the supplementary material of Tallorin et al. (2018).
In summary, batches X̄i ∈ X i obtained by greedily maximizing a submodular
acquisition function are near-optimal in the sense of the inner-loop regret bound

V
(
X∗j | D

)
− V

(
X̄i | D

)
≤ e

−i/jV
(
X∗j | D

)
, for all i, j ∈ N, (2.46)

where X∗j ∈ arg maxX∈X j V (X) denotes the optimal size j batch. This theoretical
justification in place, we now proceed to examine the practical impact of greedy
batch selection.
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Figure 2.6: Analogue of Figure 2.5 when optimizing black-box functions; these results
continue from Figure 2.2.

2.5.1 Results

We validated the greedy strategies motivated above by extending the study outlined
at the end of the previous section. Each of the trials discussed there was repeated,
this time using greedy batching. For simplicity, time allocated to solving the inner
optimization problem was split evenly across rounds of greedy selection.
Prior to discussing the results for this section, we pause to motivate the strategy used
to initialize the inner optimization problems faced in experiments presented in this
chapter. As noted by Wang et al. (2016), local optimizers of acquisition functions
are typically sensitive to the choice of starting positions. The primary reason for this
issue is that acquisition surfaces are often highly non-convex, causing many would-be
queries to get stuck in local regions of the design space X .
Where applicable, we propose to combat these issues by appealing to submodularity.
For submodular acquisition functions V , it follows that V (X ∪ {x}) ≤ V (x) for all
finite sets X ⊆ X and designs x ∈ X . In the case of EI, this implies that any design
for which V (x) ≈ 0 is incapable of substantially contributing toward the quality
of an overarching batch. We therefore propose to initialize batches by sampling
designs proportional to V (x). Specifically, we draw initial batches by sampling q
times without replacement from V (x)/

∑
x′∈Xn

V (x′), where Xn is a size n discretization
of X and x ∈ Xn. This initialization strategy can be executed efficiently and enables
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Section 2.6: Rao-Blackwellization

us to avoid “inactive” regions of X by prioritizing more promising designs. Across
our experiments, using this heuristic consistently led to improved performance.
Results shown in Figure 2.5 and Figure 2.6 demonstrate the benefits of greedy
batching. Even in low-dimensional settings where inner optimization problems can
be solved with ease, greedily selected batches perform on par with jointly selected
ones. As batch dimensionality increases, however, greedy methods pull ahead due to
their ability to decompose the original qd-dimensional problem into a sequence of q,
d-dimensional subproblems. Crucially, the fact that these benefits are enjoyed by all
of the tested acquisition function optimizers indicates that greedy batch selection is
flexible and robust.

2.6 Rao-Blackwellization

In Section 2.4, we discussed how Monte Carlo gradient estimators can be used to
efficiently maximize popular acquisition functions; and, in Section 2.5, we used
submodularity to motivate greedy approaches for constructing near-optimal batches
of queries. Both of these approaches are quite general and work well when combined.
Nevertheless, we sometimes run into trouble when sampled quantities are sparse.
This pathology is most commonly observed during the latter parts of optimizations,
where much of the search space has been deemed uninteresting save for in case of
rare events. To combat this issue, this section develops Rao-Blackwellized estimators
for batch acquisition functions. For expediency, we again focus on batch acquisition
functions defined as the expected maximum of an underling value function, leading
to the naïve estimators

Ṽ (X) = 1
m

m∑
i=1

max v
(
γ(i)

)
∇XṼ (X) = 1

m

m∑
i=1
∇X max v

(
γ(i)

)
. (2.47)

Theorem 2.13 (Rao-Blackwell). Let u : Y → R be an estimator of an unknown
quantity µ ∈ R with a finite second moment for all µ. If θ is a sufficient statistic for
µ, then

E
[
(u∗(θ)− µ)2

]
≤ E

[
(u(y)− µ)2

]
, where u∗(θ) = E[u(y) | θ].

Proof E
[
(u∗(θ)− µ)2

]
= E

[
(E[u(y)− µ | θ])2

]
≤ E

[
E
[
(u(y)− µ)2 | θ

]]
= E

[
(u(y)− µ)2

]
.

Proven independently by Rao (1945) and Blackwell (1947), the Rao-Blackwell theorem
is a standard result regarding crude estimators and their optimal counterparts4. For
our immediate purposes, this theorem tells us that we may improve upon the Monte
Carlo estimators (2.47) by analytically integrating out one or more unknowns as in

V (X) ≈ 1
m

∑m

i=1 E
[
v(y) | yj = γ

(i)
j for all j = {. . .}

]
. (2.48)

4Here, optimality is typically defined with respect to mean squared error.
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Below, we will show how (estimators of) acquisition functions discussed earlier in the
text can be Rao-Blackwellized to enhance estimated acquisition values and gradients
thereof. To this end, let us begin by introducing some additional notation.
Denote by vq = v(yq) ∈ Rq the result of pushing each element of a random vector
yq = f(Xq) forward through a value function v : Y → R. Likewise, write νq = v(γq)
for an arbitrary realization γq of yq. Now, let the marginal acquisition value for
adding a query x ∈ X to a batch Xq ∈ X q be defined as

G(x | Xq) = V (Xq+1)− V (Xq) = Ep(yq+1)[max vq+1 −max vq], (2.49)

where Xq+1 = Xq ∪ {x} and vq+1 = v(f(Xq+1)). Setting X0 = ∅ and V (X0) = 0, it
follows that the acquisition value of a batch Xq is given by the telescoping sum

V (Xq) =
q∑
i=1

G(xi | Xi−1), for all Xq ∈ X q and q ∈ N. (2.50)

These quantities are particularly important when batches are constructed iteratively,
as they constitute the maximization objectives at each round of greedy selection.5
By law of total expectation, it follows that G(x | Xq) = Ep(yq)

[
g(x | Xq,yq)

]
, where

g
(
x | Xq,yq

)
= Ep(y|yq)

[
max vq+1 −max vq

]
. (2.51)

Since p(yq+1) = p(y | yq)p(yq), we may view the naïve estimator

G̃(x | Xq) = 1
m

m∑
i=1

max ν(i)
q+1 −max ν(i)

q . (2.52)

as the average of nested estimators

g
(
x | Xq,yq = γq

)
≈ 1
m∗

m∗∑
j=1

max
{
ν1, . . . , νq, ν

(j)
}
−max νq, (2.53)

where m∗ = 1 and ν(j) denotes the j-th realization of y | yq = γq. By Theorem 2.13,
it is clear that (2.52) may be improved by taking the limit where m∗ →∞, namely

G̃∗(x | Xq) = 1
m

m∑
i=1

g
(
x | Xq,yq = γ(i)

q

)
. (2.54)

Supposing G̃ is unbiased, it follows that G̃∗ will be a reduced variance estimator of
marginal acquisition function G and so for the Rao-Blackwellized gradient estimator

∇XG̃
∗(x | Xq) = 1

m

m∑
i=1
∇Xg

(
x | Xq,yq = γ(i)

q

)
. (2.55)

Of course, all of this hinges upon our ability to evaluate g. In what cases will g be
5Note that similar statements hold in parallel asynchronous cases.
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analytic though? In answering this question, a trivial but useful identity is

max(vq+1)−max(vq) = max{0, v −max vq}, (2.56)

which holds because v −max vq < 0 implies max vq+1 = max vq. Hence, we have

g
(
x | Xq,yq = γq

)
= Ep(y|yq=γq)

[
max

{
0, v(y)−max v(γq)

}]
. (2.57)

If (2.57) looks familiar, that is because it is simply the expected improvement of the
batch acquisition value itself, given yq = γq. This connection (and others like it)
exists because of the shared use of the max to measure a set’s value.
As a specific example, consider the case of marginal Expected Improvement. Denoting
the improvement threshold by α, it is easy to show that

max
{

0, vei(y)−max vei(γq)
}

= max
{

0, y −max{α, γ1, . . . , γq}
}
. (2.58)

and, consequently, that

gei
(
x | Xq,yq = γq

)
= EI

(
x | (xi, γi)qi=1

)
. (2.59)

Hence, the change in Expected Improvement when adding a design x to a batch Xq

is obtained by “fantasizing” what the Expected Improvement for querying x would
be if we observing yq = γq and, then, integrating out yq.
When y | yq is Gaussian, (2.57) admits a closed-form solution for each of the myopic,
batch acquisition functions discussed in this chapter. In these cases, the analytic
nature of g typically results in hybrid estimators whose gradients are significantly
more robust to cases where sampled utility values are sparse.

2.6.1 Results

Results for this section stem from two separate sets of experiments: initial experiments
following the setup described in Section 2.4.1 and a follow-up one tailored to highlight
and clarify the benefits of Rao-Blackwellization (RB). In both cases, RB was used
together with greedy batch selection as follows. After choosing an initial batch
element x1, we generated m samples of the unknown outcome y1 = f(x1) and used
these samples to construct an enhanced estimator (2.55). At each subsequent round
of greedy maximization j > 1, a single realization of corresponding outcome yj was
drawn from each of the m distributions formed by conditioning on the different
sample vectors.
Figure 2.7 presents the results for the first wave of experiments. These results show
that RB estimators are at least as good as their naïve counterparts and, sometimes,
significantly better. A seeming counterexample to this statement occurs when dealing
with low-dimensional batches (top row of Figure 2.7). In subsequent experiments,
however, we found that this issue reflected the small number of samples afforded to
RB estimators m = 16. Moreover, we found that these experiment do not adequately
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Figure 2.7: Comparison of BO performance (means and standard errors of log immediate
regret over 32 trials) when greedily maximizing naïve and Rao-Blackwellized Monte Carlo
estimators for EI. In all cases, batch-sizes were chosen to match with the design dimen-
sionalies, i.e. q = d. Lighter shades denote the use of naïve estimators, while darker ones
represent their Rao-Blackwellized counterparts. Colors indicate which algorithm was used
to solve each round of greedy selection with Random Search in greens, CMA-ES in blues,
and stochastic gradient ascent in orange and yellow.

characterize the advantages of Rao-Blackwellization for the simple reason that trials
were not run long enough for sparse rewards to become an issue.
Figure 2.8, therefore, presents extended findings. We report performance on the
popular Hartmann-6 test function with size q = 8 batches of synchronously evaluated
queries, chosen using estimators consisting of m = 64 samples. As is clear from
the plot, both methods perform virtually identically during the early phases of
optimization. Towards the end, however, when rewards are sparse, RB variants’
are seen to strongly outperform their basic counterparts. In additional experiments
(not shown), these trends were found to be consistent across different optimizations
problems and batch-sizes q, as well when switching from synchronous to asynchronous
evaluations.
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Figure 2.8: Extended results for BO performance on Hartmannn-6 (medians and inter-
quartiles ranges of log immediate regret over 32 trials) when greedily maximizing crude
and Rao-Blackwellized estimators for EI with q = 8. As seen on the right, RB approaches
perform markedly better than the naïve baseline when dealing with (pathwise) sparse
acquisition values.

2.7 Discussion

The purpose of this chapter has been to recount the decision-theoretic origins of
Bayesian optimization and to discuss methods for maximizing acquisition functions.
We began by seeing how the decision-making framework presented in Chapter 1 leads
to a version of Bayesian optimization in which acquisition functions directly measure
changes in the agent’s expected utility. An intuitive recipe for this construction is as
follows: (i) use a model to simulate outcomes, (ii) determine the agent’s choice of
incumbent given the simulated outcomes, (iii) compute the difference in expected
utility between new and old incumbents, (iv) repeat the first three steps many
times to integrate over possible outcomes. Querying strategies based on this process
are often highly performant and can easily be adapted to different settings though
appropriate choice of incumbent rule.
Of course, all of this hinges upon our ability to maximize these signals sufficiently well.
Much of this chapter therefore focused on techniques for solving inner optimization
problems. We first showed that Monte Carlo estimators of popular acquisition
functions are typically pathwise differentiable. The core arguments behind these
findings were previously known (Wang et al., 2016). Our role has simply been to
demonstrate greater generality and to help motivate widespread adoption (Balandat
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et al., 2020).
In practice, one often expedites the process of finding desirable solutions by exploiting
parallel evaluations. Hence, we also investigated the matter of batch selection. Our
contribution here has been to show that well-known acquisition functions (such as
Expected Improvement and Probability of Improvement) are submodular. This result
justifies the use of greedy algorithms, which drastically reduce the amount of work
required to obtain high quality batches of queries. Further, we showed how Monte
Carlo estimators for many of the same acquisition functions can be Rao-Blackwellized
to enhance the performance of gradient-based, greedy batch selection. Overall, we
hope to have equipped practitioners with the right tools to tackle commonly occurring
types of inner optimization problems.
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Pathwise Conditioning of Gaussian
Processes

In this final chapter, we focus on the driving force behind many practical applications
of Bayesian decision-making, namely Gaussian processes (GPs). In machine learning,
the narrative of GPs is dominated by talk of distributions (Rasmussen and Williams,
2006). This view is often helpful and convenient: a Gaussian process is a random
function; however, seeing as we may trivially marginalize out arbitrary subsets
of this function, we can simply focus on its behavior at a finite number of input
locations. When dealing with regression and classification problems, this reduction
simplifies discourse and expedites implementation by allowing us to work with joint
distributions at training and test locations instead of random functions.
Model-based learning and prediction generally service broader goals. For example,
when making decisions in the face of uncertainty, models enable us to simulate the
consequences of our actions. Decision-making, then, amounts to optimizing the
expectation of a simulated quantity of interest, such as a measure of utility. Be
it for purposes of safety or for balancing trade-offs between long-term and short-
term goals, it is crucial that these simulations faithfully portray both knowledge
and uncertainty. Gaussian processes are known to make accurate, well-calibrated
predictions and, therefore, stand as the model-of-choice in fields such as Bayesian
optimization (Shahriari et al., 2015), uncertainty quantification (Bect et al., 2012),
and model-based reinforcement learning (Deisenroth et al., 2015).
Unfortunately, marginal distributions and simulations do not always go hand in
hand. When the quantity of interest is a function of a process value f(x∗) at an
individual input location x∗, its expectation can sometimes be obtained analytically.
Conversely, when this quantity is a function of process values f ∗ = f(X∗) at multiple
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locations X∗, its expectation is generally intractable. Rather than solving these
integrals directly in terms of marginal distributions p(f ∗), we therefore estimate
them by averaging over many simulations of f ∗. Drawing f ∗ from p(f ∗) takes O(∗3)
time, where ∗ = |X∗| is the number of input locations. Hence, distribution-based
approaches to sampling f ∗ quickly become untenable as this number increases. In
these cases, we may be better off thinking about GPs from a perspective that
naturally lends itself to sampling
In the early 1970s, one such view surfaced in the then nascent field of geostatistics
(Journel and Huijbregts, 1978; Chilès and Delfiner, 2012). Instead of emphasizing
the statistical properties of Gaussian random variables, “conditioning by Kriging”
encourages us to think in terms of the variables themselves. This chapter studies
the broader implications of this paradigm shift to develop a general framework
for conditioning Gaussian processes at the level of random functions. Formulating
conditioning in terms of sample paths, rather than distributions, allows us to separate
out the effect of the prior from that of the data. By leveraging this property, we
can use pathwise conditioning to efficiently approximate function draws from GP
posteriors. As we will see, working with sample paths enables us to simulate process
values f ∗ in O(∗) time and brings with it a host of additional benefits.
This chapter is organized as follows. Section 3.1 and Section 3.2 introduce pathwise
conditioning of Gaussian random vectors and processes, respectively. Section 3.3
surveys strategies for approximating function draws from GP priors, while Section 3.4
discusses methods for mapping from prior to posterior random variables. Section 3.5
studies the behavior of errors introduced by different approximation techniques, and
Section 3.6 complements this theory by exploring several applications.

Notation By way of example, we denote matrices as A and vectors as a. We
write x = a ⊕ b for the concatenation of vectors a and b. Throughout, we use
|· | to denote the cardinality of sets and dimensionality of vectors. When dealing
with covariance matrices Σ = Cov(x,x), we use subscripts to identify corresponding
blocks. For example, Σa,b = Cov(a, b). As shorthand, we denote the evaluation of a
function f : X → R at a finite set of locations X∗ ⊂ X by the vector f ∗. Putting
these together, when dealing with random variables f ∗ = f(X∗) and fn = f(Xn),
we write K∗,n = Cov(f ∗,fn).

3.1 Gaussian distributions and random vectors

A random vector x = (x1, . . . , xn) ∈ Rn is said to be Gaussian if there exists a matrix
L and vector µ for which

x
d= µ+ Lζ ζ ∼ N (0, I), (3.1)

where N (0, I) is the standard (multivariate) normal distribution, whose probability
density function is given below. Each such distribution is uniquely identified by its
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first two moments: its mean µ = E(x) and its covariance Σ = E[(x− µ)(x− µ)>].
Assuming it exists, the corresponding density function is defined as

p(x) = N (x | µ,Σ) = 1√
|2πΣ|

exp
(
−1

2(x− µ)>Σ−1(x− µ)
)
. (3.2)

The representation of x given by (3.1) is commonly referred to as its location-scale
form and stands as the most widely used method for generating Gaussian random
vectors. Since ζ has identity covariance, any matrix square root of Σ, such as its
Cholesky factor L with Σ = LL>, may be used to draw x as prescribed by (3.1).
Here, we focus on multivariate cases n > 1 and investigate different ways of reasoning
about random variables a | b = β for non-trivial partitions x = a⊕ b.

3.1.1 Distributional conditioning

The quintessential approach to deriving the distribution of a subject to the condition
b = β begins by employing the usual set of matrix identities to factor p(b) from
p(a, b). Applying Bayes’ rule, p(b) then cancels out and p(a | b = β) is identified
as the remaining term—namely, the Gaussian distribution N (µa|β,Σa,a|β) with
moments

µa|β = µa + Σa,bΣ−1
b,b(β − µb) Σa,a|β = Σa,a −Σa,bΣ−1

b,bΣb,a. (3.3)

Having obtained this conditional distribution, we can now generate a | b = β by
computing a matrix square root of Σa,a|β and constructing a location-scale transform
(3.1).
Due to their emphasis of conditional distributions, we refer to methods that represent
or generate a random variable a | b = β by way of p(a | b = β) as being distributional
in kind. This approach to conditioning is not only standard, but particularly natural
when quantities of interest may be derived analytically from p(a | b = β). Many
quantities, such as expectations of nonlinear functions, cannot be deduced analytically
from p(a | b = β) alone, however. In these cases we must instead work with
realizations of a | b = β. Since the cost of obtaining a matrix square root of
Σa,a|β scales cubically in |a|, distributional approaches to evaluating these quantities
struggle to accommodate high-dimensional random vectors. To address this issue,
we now consider Gaussian conditioning in another light.

3.1.2 Pathwise conditioning

Instead of taking a distribution-first stance on Gaussian conditionals, we may think
of conditioning directly in terms of random variables. In this variable-first paradigm,
we will explicitly map samples from the prior to draws from a posterior and let the
corresponding relationship between distributions follow implicitly. Throughout this
work, we investigate this notion of pathwise conditioning through the lens of the
following result.
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Figure 3.1: Visualization of Matheron’s update rule for a bivariate normal distribution
with correlation coefficient ρ = 0.75. Left: Draws from p(a, b) are shown alongside the
marginal distributions of a and b. Right: Theorem 3.14 is used to update samples shown
on the left subject to the condition b = β. This process is illustrated in full for a particular
draw. Top right: the empirical distribution of the update samples is compared with
p(a | b = β).

Theorem 3.14 (Matheron’s Update Rule). Let a and b be jointly Gaussian, centered
random variables. Then, the random variable a conditional on b = β may be expressed
as

(a | b = β) d= a+ Σa,bΣ−1
b,b(β − b). (3.4)

Proof Comparing the mean and covariance on both sides immediately affirms the
result

E
(
a+ Σa,bΣ−1

b,b(β − b)
)

= µa + Σa,bΣ−1
b,b(β − µb) = E(a | b = β)

Cov
(
a+ Σa,bΣ−1

b,b(β − b)
)

= Σa,a + Σa,bΣ−1
b,bΣb,bΣ−1

b,bΣb,a − 2Σa,bΣ−1
b,bΣb,a

= Σa,a −Σa,bΣ−1
b,bΣb,a = Cov(a | b = β)

(3.5)

This observation leads to a straightforward, alternative recipe for generating a | b = β:
first, draw a, b ∼ p(a, b); then, update this sample according to (3.4). Compared
to the location-scale approach discussed in Section 3.1.1, a key difference is that
we now sample before conditioning, rather than after. Figure 3.1 visualizes the
deterministic process of updating previously generated draws from the prior subject
to the condition b = β.
At first glance, Matheron’s update rule may seem more like an interesting footnote
than a valuable tool. Indeed, the conventional strategy for sampling a, b (which
requires us to take a matrix square root of Σ) is more expensive than that for
generating a | b = β. We will discuss this matter in detail in the later sections. For
now, however, let us strengthen our intuition by delving deeper into this theorem’s

48



Section 3.1: Gaussian distributions and random vectors

function-analytic origins.

3.1.3 Deriving pathwise conditioning via conditional
expectations

Here, we overview the precise formalism that gives rise to the pathwise approach
to conditioning Gaussian random variables and show how to derive this result from
first principles. Throughout this section, we take a ∈ Rm and b ∈ Rn to be centered
random vectors defined on the same probability space.
The core idea is to decompose a as the sum of two independent terms—one that
depends on b and one that does not—and represent a | b = β by conditioning both
terms on b = β. We first prove that conditioning this additive decomposition of a is
simple and intuitive.

Lemma 3.15. Consider three random vectors a ∈ Rm, b ∈ Rn, c ∈ Rm such that

a
d= f(b) + c, (3.6)

where f is a measurable function of b and where b is independent of c. Then,(
a | b = β

) d= f(β) + c. (3.7)

Proof Let πx denote the distribution of a generic random variable x. Further, let
πa|b( · | · ) be the (regular) conditional probability measure given by disintegration1
of (a, b), such that ∫

B
πa|b(A | β) dπb(β) = P(a ∈ A, b ∈ B) (3.8)

for measurable sets A ⊆ Rm, B ⊆ Rn. When a | b = β is represented per (3.7), we
have∫

B
P(f(β) + c ∈ A) dπb(β) =

∫
B

(∫
Rm

1{f(β)+ς∈A)} dπc(ς)
)

dπb(β)

=
∫
Rm×Rn

1{f(β)+ς∈A,β∈B)} dπb,c(β, ς)

= P(f(b) + c ∈ A, b ∈ B) = P(a ∈ A, b ∈ B),

(3.9)

where we have begun by expressing probabilities as integrals of indicator functions,
before using Tonelli’s theorem and independence to express the iterated integral as
the double integral over the joint probability measure πb,c(β, ς). Comparing the
left-hand sides of (3.8) and (3.9) affirms the claim.

In words, Lemma 3.15 tells us that for suitably chosen functions f , the act of
conditioning a on b = β amounts to adding a random variable c to a deterministic

1See discussion and details on disintegration by Chang and Pollard (1997) and Kallenberg (2006).
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transformation f(β) of the outcome β. For this statement to hold, we require the
residual c = a− f(b) induced by f to be statistically independent of b. Fortunately,
such a function f is well-known in the special case of jointly Gaussian random
variables—namely, the conditional expectation f : b 7→ E(a | b).
For square-integrable random variables, the conditional expectation of a given b is
defined as the (almost surely) unique solution to the minimization problem

E(a | b) = arg min
f∈F

E‖a− f(b)‖2, (3.10)

where F denotes the set of all Borel-measurable functions f : Rn → Rm (Kallenberg,
2006, Chapter 6). Put simply, E(a | b) is the measurable function of b that best
predicts a in the sense of minimizing the mean-square error (3.10). This characteri-
zation of the conditional expectation is equivalent to defining it as the orthogonal
projection of a onto the σ-algebra generated by b, denoted σ(b). Consequently, a
necessary and sufficient condition for E(a | b) ∈ F to uniquely solve (3.10) is that
the residual c = a− E(a | b) be orthogonal to all σ(b)-measurable random variables
(Luenberger, 1997, page 50). Here, orthogonality can be understood as the absence
of correlation, which (for jointly Gaussian random variables) implies independence.
As a result, we may satisfy the assumptions of Lemma 3.15 by writing

a = E(a | b) + c, (3.11)

such that a decomposes into a function of b and an independent variable c =
a− E(a | b).
As a final remark, we may also use these principles to concisely derive the conditional
expectation for jointly Gaussian random variables. For now, suppose that the
conditional expectation is a linear function of b, i.e. that E(a | b) = Sb for some
matrix S ∈ Rm×n. To satisfy the orthogonality condition of (3.10), we require
Cov(a−Sb, b) = 0, implying that Σa,b−SΣb,b = 0. Rearranging terms and solving
for S gives S = Σa,bΣ−1

b,bb. With this expression in hand, to show that linearity was
assumed without loss of generality, write a = Sb+ a− Sb, which we may express as
as a = Sb+ c. Taking the conditional expectation of both sides, we may directly
calculate E(a | b) by writing

E(a | b) = E(Sb+ c | b) = E(Sb | b)
Sb

+E(c)
0

= Σa,bΣ−1
b,bb, (3.12)

where we have used linearity of conditional expectation, followed by independence of
c and b to go from the second to the third expression. We now revisit Theorem 3.14.

Theorem 1 (Matheron’s Update Rule). Let a and b be jointly Gaussian, centered
random vectors. Then, the random vector a conditional on b = β may be expressed
as

(a | b = β) d= a+ Σa,bΣ−1
b,b(β − b). (3.4)
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Proof With c = a−Σa,bΣ−1
b,bb, begin by writing

a = E(a | b) + (a− E(a | b)) = Σa,bΣ−1
b,bb+ c. (3.13)

Since b and c are jointly Gaussian but uncorrelated, it follows that they are indepen-
dent. Setting f(b) = Σa,bΣ−1

b,bb and using Lemma 3.15 to condition both sides on
b = β gives

(a | b = β) d= Σa,bΣ−1
b,bβ +

(
a−Σa,bΣ−1

b,bb
)

= a+ Σa,bΣ−1
b,b(β − b). (3.14)

Hence, the claim follows.

In summary, we have shown that Matheron’s update rule (Theorem 3.14) is a direct
consequence of the fact that a Gaussian random variable a conditioned on the
outcome β of another (jointly) Gaussian random variable b may be expressed as the
sum of two independent terms: the conditional expectation E(a | b = β) evaluated
at β and the residual c = a− E(a | b). Rearranging these terms gives (3.4).
With these ideas in mind, we are now ready to explore this work’s primary theme:
Matheron’s update rule enables us to decompose a | b = β into the prior random
variable a and a data-driven update Σa,bΣ−1

b,b(β − b) that explicitly corrects for the
error in the coinciding value of b given the condition b = β. Hence, Theorem 3.14
provides an explicit means of separating out the influence of the prior from that of
the data. We now proceed to investigate the implications of pathwise conditioning
for Gaussian processes.

3.2 Gaussian processes and random functions

A Gaussian process (GP) is a random function f : X → R, such that, for any
finite collection of points X ⊂ X , the random vector f = f(X) follows a Gaussian
distribution. Such a process is uniquely identified by a mean function µ : X → R
and a positive semi-definite kernel k : X × X → R. Hence, if f ∼ GP(µ, k),
then f ∼ N (µ,K) is multivariate normal with mean µ = µ(X) and covariance
K = k(X,X).
Throughout this section, we investigate different ways of reasoning about the random
variable f ∗ | fn = y for some non-trivial partition f = fn ⊕ f ∗. Here, fn = f(Xn)
are process values at a set of training locations Xn ⊂ X where we would like to
introduce a condition fn = y, while f ∗ = f(X∗) are process values at a set of test
locations X∗ ⊂ X where we would like to obtain a random variable f ∗ | fn = y.
Mirroring Section 3.1, we begin by reviewing distributional conditioning, before
examining its pathwise counterpart.
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3.2.1 Distributional conditioning

As in finite-dimensional cases, we may obtain f ∗ | y by first finding its conditional
distribution. Since process values (fn,f ∗) are defined as jointly Gaussian, this proce-
dure closely resembles that of Section 3.1.1: we factor out the marginal distribution of
fn from the joint distribution p(fn,f ∗) and, upon canceling, identify the remaining
distribution as p(f ∗ | y). Having done so, we find that the conditional distribution
is the Gaussian N (µ∗|y,K∗,∗|y) with moments

µ∗|y = µ∗ + K∗,nK−1
n,n(y − µn) K∗,∗|y = K∗,∗ −K∗,nK−1

n,nKn,∗. (3.15)

As before, we may now generate f ∗ | y via a location-scale transform in O(∗3) time.
This strategy for sampling Gaussian process posteriors is subtly different from the
one given in Section 3.1.1. A Gaussian process is a random function, and conditioning
on fn = y does not change this fact. Unfortunately, (conditional) distributions over
infinite-dimensional objects can be difficult to manipulate in practice. Distributional
approaches, therefore, focus on finite-dimensional subsets f = fn ⊕ f ∗, while
marginalizing out the remaining process values. Doing so allows them to perfectly
describe the random variable f ∗ | y in terms of its mean and covariance (3.15).
When it comes to sampling f ∗ | y, however, these approaches have clear limitations.
As discussed previously, a key issue is that their O(∗3) time complexity restricts them
to problems that only require us to jointly simulate process values at a manageable
number of test locations (up to several thousand). In some senses, this condition is
fairly generous. After all, we are often only asked to generate a handful of process
values at a time. Still, other problems effectively require us to realize f | y in
its entirety. Similar issues arise when X∗ is not defined in advance, such as when
gradient information is used to adaptively determine the locations at which to jointly
sample the posterior. In these cases and more, we would ideally like to sample actual
functions that we can efficiently evaluate and automatically differentiate at arbitrary
test locations. To this end, we now examine the direct approach to conditioning
draws of f ∼ GP(µ, k).

3.2.2 Pathwise Conditioning

Examining the pathwise update given by Theorem 3.14, it is natural to suspect that
an analogous statement holds for Gaussian processes. A quick check confirms this
hypothesis.

Corollary 3.17. For a Gaussian process f ∼ GP(µ, k) with marginal fn = f(Xn),
the process conditioned on fn = y may be expressed as

(f | y)( · )
conditional

d= f( · )
prior

+ k( · ,Xn)K−1
n,n(y − fn)

update

. (3.16)

Proof Follows by applying Theorem 3.14 to an arbitrary set of locations.
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Figure 3.2: Visual guide for pathwise conditioning of Gaussian processes. Left: The
residual y − fn (dashed black) of a draw f ∼ GP(0, k), shown in orange, given observa-
tions y (black). Middle: A pathwise update (purple) is constructed in accordance with
Corollary 3.17. Right: Prior and update are combined to represent conditional (blue).
Empirical moments (light blue) of 105 conditioned paths are compared with those of the
model (dashed black). The sample average, which matches the posterior mean, has been
omitted for clarity.

Figure 3.2 acts a visual guide to Corollary 3.17. From left to right, we begin by
generating a realization of f ∼ GP(µ, k) using methods that will soon be introduced
in Section 3.3. Having obtained a sample path, we then use the pathwise update
(3.16) to define a function k( · ,Xn)K−1

n,n(y− fn) to account for the residual y− fn.
Adding these two functions together produces a draw from a GP posterior, the
behavior of which is shown on the right. Whereas distributionally conditioning
on fn = y in (3.15) tells us how the GP’s statistic properties change, pathwise
conditioning (3.16) tells us what happens to individual sample paths. This paradigm
shift echoes the running theme: Gaussian (process) conditionals can be directly
viewed in terms of random variables. The power of Corollary 3.17 is that it impacts
how we think about Gaussian process posteriors and, therefore, what we do with
them.
Having said this, there are several hurdles that we must overcome in order to use
the pathwise update (3.16) in the real world. First, we are typically unable to
practically sample functions f ∼ GP(µ, k) from (non-degenerate) Gaussian process
priors exactly. A Gaussian process can generally be written as a linear combination of
elementary basis functions. When the requisite number of basis functions is infinite,
however, evaluating this linear combination is usually impossible. In Section 3.3, we
will therefore investigate different ways of approximating f( · ) using a finite number
of operations.
Second, we incur O(n3) time complexity when naïvely carrying out (3.16), due to
the need to solve the linear system of equations Kn,nv = y− fn for a vector v ∈ Rn,
such that

(f | y)( · ) d= f( · ) +
n∑
i=1

vik( · ,xi)

n-dimensional basis

. (3.17)

Here, we have re-expressed the matrix-vector product in (3.16) as an expansion
with respect to the canonical basis functions k( · ,xi) centered at training locations
xi ∈ Xn. For large training sets (xi, yi)ni=1, direct application of (3.16) may prove
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prohibitively expensive. By the same token, the stated pathwise update does not hold
when outcomes y are not defined as realizations of process values fn. In Section 3.4,
we will consider various means of resolving these challenges and ones like them.

3.2.3 Historical remarks

Prior to continuing, we pause to reflect on the historical developments that have
paved the way for this work. In a 2005 tribute to geostatistics pioneer Georges
Matheron, Chilès and Lantuéjoul (2005) comment that

[Matheron’s update rule] is nowhere to be found in Matheron’s entire
published works, as he merely regarded it as an immediate consequence
of the orthogonality of the [conditional expectation] and the [residual
process].

As if to echo this very sentiment, Doucet (2010) begins a much appreciated technical
note on the subject of Theorem 3.14 with the remark

This note contains no original material and will never be submitted
anywhere for publication. However it might be of interest to people
working with [Gaussian processes] so I am making it publicly available.

The presiding opinion, therefore, seems to be that Matheron’s update rule is too simple
to warrant extended study. Indeed, Theorem 3.14 is exceedingly straightforward to
verify. As is often the case, however, this result is harder to discover if one is not
already aware of its existence. This dilemma may help to explain why Matheron’s
update rule is absent from standard machine learning texts. By deriving this result
from first principles in Section 3.1.3, we hope to encourage fellow researchers to
explore the strengths (and weaknesses) of the pathwise viewpoint espoused here.
We are not the first to have realized the practical implications of pathwise condi-
tioning for GPs. Corollary 3.17 is relatively well-known in geostatistics (Journel
and Huijbregts, 1978; de Fouquet, 1994; Emery, 2007; Chilès and Delfiner, 2012).
Similarly, Oliver (1996) discusses Matheron’s update rule for Gaussian likelihoods
(Section 3.4.1). Along the same lines, closely related ideas were rediscovered in the
1990s with applications to astrophysics. In particular, Hoffman and Ribak (1991)
propose the use of spectral approximations to stationary priors (Section 3.3.2) in
conjunction with canonical pathwise updates (3.17).
Nevertheless, these formulae are seldom seen in machine learning. We hope to
systematically organize these findings (along with our own) and communicate them
to a general audience of theorists and practitioners alike. The following sections
therefore catalog various notable approaches to representing Gaussian process priors
and pathwise updates.
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3.3 Sampling functions from GP priors

The pathwise representation of GP posteriors described in the Section 3.2.2 allows
us to represent f | y by transforming a draw of f ∼ GP(0, k). When interpreted
as a generative strategy, this approach to sampling can only be deemed efficient
if the tasks of realizing the prior and performing the update both scale favorably
in the total number of locations |X| = |Xn|+ |X∗|. Half of the battle is, therefore,
to obtain faithful but affordable draws of f . Fortunately, GP priors often exhibit
convenient mathematical properties not present in their posteriors, which can be
utilized to sample them efficiently.
We focus on methods for generating random functions that we may evaluate at
arbitrary locations x ∈ X in O(1) time and whose marginal distributions approximate
those of f ∼ GP(0, k). Conceptually, techniques discussed throughout this section
will approximate GP priors as random linear combinations of suitably chosen basis
functions φ = (φ1, . . . , φ`). Specifically, we will focus on Bayesian linear models with
Gaussian random weights

f̃( · ) =
∑̀
i=1

wiφi( · ) w ∼ N (0,Σw), (3.18)

where the covariance of weights w will vary by case. Notice that, for any finite
collection of points X ⊂ X , the random vector f̃ = f̃(X) follows the Gaussian
distribution N (0,ΦΣwΦ>), where Φ = φ(X) is a |X| × ` matrix of features. By
design then, f̃ is a Gaussian process. Rasmussen and Williams (2006) refer to (3.18)
as the weight-space view of GPs.
From this perspective, the task of efficiently sampling the prior f̃ reduces to one of
generating random weights w. In practice, Σw is typically diagonal, thereby enabling
us to sample f̃ in O(`) time. We stress that, for any draw of w, the corresponding
realization of f̃ is simply a deterministic function. In particular, we incur O(1) cost
for evaluating f̃(x) and may readily differentiate this term with respect to x (or
other parameters of interest).
Below, we review popular strategies for obtaining Bayesian linear models such that
f̃

d≈ f . Our presentation is intended to communicate different angles for attacking
this problem and is by no means exhaustive. To set the scene for these approaches,
we begin by recounting some properties of the gold standard: location-scale methods.

3.3.1 Location-scale transformations

Location-scale methods (3.1) are the most widely used approach for generating
Gaussian random vectors. These generative strategies are exact (up to machine
precision). Given locations X, we may simulate f = f(X) in location-scale fashion

f(X) d= K1/2ζ ζ ∼ N (0, I) (3.19)
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by multiplying a square root covariance matrix K1/2 by a standard normal vector ζ.
While (3.19) rightfully stands as the method of choice for many problems, it is
not without shortcoming. Chief among these issues is the fact that algorithms for
obtaining a matrix square root of K scale cubically in |X|. In most cases, this
limits the use of location-scale approaches to cases where the length of the desired
Gaussian random vector is manageable (up to several thousand). This overhead can
be interpreted to mean that we incur O(i2) cost for realizing the i-th element of f ,
which leads us to our second issue: reusing a draw of fn to efficiently generate the
remainder of f = fn ⊕ f ∗ requires us to sample from the conditional distribution

f ∗ | fn ∼ N
(
µ∗ + K∗,nK−1

n,n(fn − µn),K∗,∗ −K∗,nK−1
n,nKn,∗

)
. (3.20)

Despite matching asymptotic costs, iterative approaches to sampling f are substan-
tially slower than simultaneous ones. In applied settings, however, test locations X∗
are often determined adaptively, forcing location-scale-based methods for generating
f to repeatedly compute (3.20). Further refining this predicament, we arrive at a
final challenge: pathwise derivatives.
Differentiation is a linear operation. The gradient of a Gaussian process f with
respect to a location x is, therefore, another Gaussian process f ′. By construction,
these GPs are correlated. Using gradient information to maneuver along a sample
path—for example, to identify its extrema—therefore requires us to re-condition
both processes on the realized values of f(x) and f ′(x) at each successive step of
gradient descent.
Prior to continuing, it is worth noting that the limitations of location-scale methods
can be avoided in certain cases. In particular, the otherwise cubic costs for computing
a square root in (3.19) can be dramatically reduced by exploiting structural assump-
tions regarding covariance matrices K. Well-known examples of structured matrices
include banded and sparse ones in the context of one-dimensional Gaussian processes
and Gauss-Markov random fields (Rue and Held, 2005; Durrande et al., 2019; Loper
et al., 2020), block-Toeplitz Toeplitz-block ones when evaluating stationary product
kernels on regularly-spaced grids X ⊂ X (Zimmerman, 1989; Wood and Chan,
1994; Dietrich and Newsam, 1997), and kernel-interpolation-based ones (Wilson and
Nickisch, 2015; Pleiss et al., 2018). When the task at hand permits their usage, these
methods are highly effective.
The following sections survey different approaches to overcoming the challenges put
forth above by approximating Gaussian process priors as finite-dimensional Bayesian
linear models.

3.3.2 Stationary covariances

Stationary covariance functions k(x,x′) = k(x− x′), such as the Matérn family’s
limiting squared exponential kernel, give rise to a significant portion of GP priors
in use today. For centered priors f ∼ GP(0, k), stationarity encodes the belief that
the relationship between process values f(xi) and f(xj) is solely determined by the
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difference xi − xj between locations xi and xj. Simple but expressive, stationarity
is the go-to modeling assumption in many applied settings.
These kernels exhibit a variety of special properties that greatly facilitate the construc-
tion of efficient, approximate priors. Here, we restrict attention to kernels admitting
a spectral density ρ, and focus on the class of estimators formed by discretizing the
spectral representation of k

k(x− x′) =
∫
Rd
e2πiω>(x−x′)ρ(ω) dω ρ(ω) =

∫
Rd
e−2πiω>xk(x) dx . (3.21)

By the kernel trick (Schölkopf and Smola, 2001), a kernel k can be written as the
inner product in a corresponding reproducing kernel Hilbert space (RKHS) Hk

equipped with a feature map ϕ : X → Hk. In many cases, this inner product can be
approximated by

k(x,x′) = 〈ϕ(x), ϕ(x′)〉Hk ≈ φ(x)> φ(x′), (3.22)

where φ : X → C` is some finite-dimensional feature map and φ(x′) denotes the
complex conjugate. Based on this idea, the method of random Fourier features
(Rahimi and Recht, 2008) constructs a Monte Carlo estimate to a stationary kernel
by representing the right-hand side of (3.22) with ` complex exponential basis
functions φj(x) = `−1/2 exp(2πiω>j x), whose parameters ωj are sampled proportional
to the corresponding spectral density ρ(ωj).2

Given an `-dimensional basis φ = (φ1, . . . , φ`), we may now proceed to approximate
the true prior according to the Bayesian linear model

f̃( · ) =
∑̀
i=1

wiφi( · ) wi ∼ N (0, 1). (3.23)

Under this approximation, f̃ is a random function satisfying f̃n ∼ N (0,ΦnΦ>n ),
where Φn = φ(Xn) is an n× ` matrix of features. Per the beginning of this section,
then, f̃ is a Gaussian process whose covariance approximates that of f .
Sutherland and Schneider (2015) showed that the worst-case kernel approximation
error

max
x,x′∈X

∣∣∣k(x,x′)− φ(x)>φ(x′)
∣∣∣ (3.24)

introduced by approximating a stationary kernel by an `-dimensional random Fourier
basis φ decays at a dimension-free rate `−1/2. In Section 3.5, we will demonstrate
that the same is true of worst-case covariance errors between true posteriors and
posteriors formed by exactly updating an RFF approximation to the prior in the
canonical basis. This property is useful when quantities of interest depend solely on
pointwise evaluations f(x) since it often simplifies the process of choosing `.
In many practical settings, however, the primary allure of pathwise approaches is
their ability jointly evaluate draws of f in a straightforward and scalable way. Much

2Using elementary trigonometric identities, we may also derive a related family of basis functions
φ : X → R` with φj(x) =

√
2/` cos(2πω>j x+ τj), where τj ∼ U(0, 2π).
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of the analysis provided in Section 3.5 therefore centers on Wasserstein distances
between processes, which provide insight for errors defined with respect to functionals
acting on f and f̃ .

3.3.3 Karhunen–Loève expansions

While exploitation of stationarity is arguably the most common route when con-
structing approximate priors, it is neither unique nor optimal. A powerful alternative
is to utilize the Karhunen–Loève expansion of a Gaussian process prior (Castro et al.,
1986; Fukunaga, 2013).
We begin by considering the family of `-dimensional Bayesian linear models f̃( · ) =
φ( · )>w consisting of orthonormal basis functions φi : X → R on a compact space
X . Following standard theory (Fukunaga, 2013), the optimal f̃ for approximating
a Gaussian process f (in the sense of minimizing mean square error) is found by
truncating its Karhunen–Loève expansion

f( · ) =
∞∑
i=1

wiφi( · ) wi ∼ N (0, λi), (3.25)

where φi and λi are, respectively, the i-th eigenfunction and eigenvalue of the
covariance operator ψ 7→

∫
X ψ(x)k(x, · ) dx, written in decreasing order of λi.3

Truncated versions of these expansions are used as both bases for constructing
optimal approximate GPs (Zhu et al., 1997; Solin and Särkkä, 2020) and modeling
tools in their own right (Krainski et al., 2018). Depending on the case, eigenfunctions
φi are either derived from first principles (Krainski et al., 2018) or obtained by
numerical methods (Lindgren et al., 2011; Lord et al., 2014; Solin and Kok, 2019).
In addition to being optimal, Karhunen–Loève expansions are exceedingly general.
Even when a covariance function k is non-stationary or the domain X is non-
Euclidean—such as when Gaussian processes are used to represent functions on
manifolds (Borovitskiy et al., 2020) and graphs (Borovitskiy et al., 2021)—the
Karhunen–Loève expansion often exists.
Widespread use of truncated eigensystems is largely impeded by their frequent lack
of convenient, analytic forms. This issue is compounded by the fact that efficient,
numerical methods for obtaining (3.25) typically require us to manipulate bespoke
mathematical properties of specific kernels. These properties are often closely related
to the differential-equation-based perspectives of Gaussian processes introduced in
the following section.

3.3.4 Stochastic partial differential equations

Many Gaussian process priors, such as the Matérn family, can be expressed as
solutions of stochastic partial differential equations (SPDEs). SPDEs are common in

3These eigenvalues are well-ordered and countable as a consequence of the compactness of X .
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fields such as physics, where they describe natural phenomena (such as diffusion and
heat transfer); many of which share a deep connection with the squared exponential
kernel (Grigoryan, 2009). Additionally, SPDEs are often the starting point when
designing non-stationary GP priors (Krainski et al., 2018). Below, we detail how the
Galerkin finite element method (Evans, 2010; Lindgren et al., 2011; Lord et al., 2014)
can be used to construct Bayesian linear models that approximate GP priors capable
of being represented as SPDEs.
Suppose a Gaussian process f ∼ GP(0, k) satisfies Lf = W, where L is a linear
differential operator and W is a Gaussian white noise process (Lifshits, 2012). Here,
we demonstrate how to derive a Gaussian process f̃ that approximately satisfies this
SPDE. To begin, we express Lf =W in its weak form4

∫
X

(Lf)(x)g(x) dx =
∫
X
g(x) dW(x), (3.26)

where g is an arbitrary element of an appropriate class of test functions. Next,
we proceed by approximating both the desired solution f and the test function g
with respect to a finite-dimensional basis as f̃( · ) = ∑`

i=1wiφi( · ) and g̃( · ) =∑`
j=1 vjφj( · ). Substituting these terms into (3.26) and differentiating both sides

with respect to the coefficients of g̃, we obtain the following expression for each
j = 1, . . . , `: ∑̀

i=1
wi

∫
X

(Lφi)(x)φj(x) dx
Aij

=
∫
X
φj(x) dW(x)

bj

. (3.27)

Defining M = Cov(b), where Cov(bi, bj) = 〈φi, φj〉 coincides with the finite-element
mass matrix, allows us to rearrange this system of random linear equations in matrix-
vector form by writing Aw = b. The basis coefficients of the random function f̃ are,
therefore, distributed as w ∼ N

(
0,A−1MA−>

)
. As in the previous sections, f̃ can

be seen as the weight-space view of a corresponding Gaussian process.
A popular choice is to employ compactly supported basis functions φi (Lindgren
et al., 2011). The matrices A and M are then sparse, and the resulting linear systems
can be solved efficiently. For example, the family of piecewise linear basis functions
is a simple but effective choice for second order differential operators L (Evans, 2010;
Lord et al., 2014).5

3.3.5 Discussion

This section has focused on identifying finite-dimensional bases with which to con-
struct Bayesian linear models f̃( · ) = φ( · )>w. These models can be seen as
weight-space interpretations (Rasmussen and Williams, 2006) of corresponding Gaus-
sian process priors f̃ ∼ GP(0, k̃) with covariance functions k̃(x,x′) = φ(x)>Σwφ(x′).

4One typically integrates (Lf)(x)g(x) by parts, either by necessity or due to affordances of the
basis φi. We suppress this to ease notation.

5A second order differential operator gives rise to a first-order bilinear form when integrated
by parts, which matches with piecewise linear basis functions which are once differentiable almost
everywhere. For higher-order operators, a piecewise polynomial basis may be used instead.
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Since w and f̃n = Φnw are jointly normal, Theorem 3.14 implies that we may enforce
the condition f̃n = y by writing6

φ( · )>(w | y) d= φ( · )>
(
w + Φ>n (ΦnΦ>n )−1(y −Φnw)

)
. (3.28)

This result encourages us to approximate posteriors in much the same way as we
have priors. After all, if we have chosen a basis φ that encodes our prior knowledge
for f (such as how smooth we believe this function to be), then it is reasonable to
think that φ will further enable us to efficiently approximate f | y. To the extent
that this approach may seem like the natural evolution of ideas discussed in this
section, we argue for the benefits of decoupling the representation of the prior from
that of the data.
The trouble with using a finite set of homogeneous basis functions φ = (φ1, . . . , φ`)
to represent both the prior and the data is that these two tasks focus on different
things. To accurately approximate a prior is to faithfully describe a random function
f on a domain X . Consequently, parsimonious approximations f̃ employ global basis
functions that vary non-trivially everywhere on X . This is largely why, e.g., Fourier
features are an attractive choice for approximating stationary priors. But what of
the data?
Conditioning on observations y requires us to convey how our understanding of f
has changed. In most cases, we choose priors (and likelihoods) that reflect the belief
that an observation yi only informs us about the process f in the immediate vicinity
of a point xi. Updating f to account for y, therefore, typically focuses on process
values corresponding to specific regions of X . Rather than global basis functions,
the data is best characterized by local ones that have near-zero values outside of the
aforementioned regions. Not coincidentally, the canonical basis functions k( · ,x)
fit this description perfectly when the chosen prior implies that yi is only locally
informative.
A key property of pathwise conditioning is that it not only provides us with a
natural decomposition of GP posteriors—as sums of prior random variables and
data-driven updates—but enables us to represent these terms in separate bases.
Similar ideas can be found in recent works that explore alternative decompositions
of Gaussian processes, such as separation of mean and covariance functions (Cheng
and Boots, 2017; Salimbeni et al., 2018) or decoupling of RKHS subspaces and
their orthogonal complements (Shi et al., 2020). Unlike these works, however, we
stress decoupling in the sense of using different classes of basis functions to represent
different aspects of GP posteriors. While this type of decoupling is not unique to
pathwise approaches (Lázaro-Gredilla and Figueiras-Vidal, 2009; Hensman et al.,
2017), they drastically simplify the process by eliminating the need to analytically
solve for sufficient statistics.
This line of reasoning also helps to explain why finite-dimensional GPs constructed
from homogeneous basis functions often produce poorly-calibrated posteriors. For

6Practical variants of (3.28) avoid inverting ΦnΦ>n by employing, e.g., Gaussian likelihoods
(Section 3.4.1).
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Figure 3.3: Overview of variance starvation when conditioning on n ∈ {10, 100, 1000}
observations of the form yi ∼ N (fi, 10−5) located within the gray shaded region. Top:
Comparison of pathwise updates to a single draw from an approximate prior f̃( · ) =
φ( · )>w, constructed using ` = 1000 Fourier features φ. Updates defined using the same
Fourier basis φ( · ) and the canonical basis functions k( · ,X) are shown in blue and dashed-
black, respectively. Bottom: Mean and two standard deviations of the empirical posteriors
formed by applying the aforementioned updates to 105 draws from the approximate prior.

now, we restrict our attention to the issue of variance starvation (Wang et al.,
2018; Mutny and Krause, 2018; Calandriello et al., 2019) and return this topic in
Section 3.4.5. Figure 3.3 demonstrates what happens as the number of observations
n = |y| approaches the number of random Fourier features ` = 1000 used to
approximate a squared exponential kernel. In general, the approximate posteriors
produce extrapolations which become increasingly erratic. Note that the rate at
which these defects materialize depends upon the choice of kernel and likelihood. In
the figure, posteriors yielded by pathwise updates in canonical and Fourier bases (all
other things being held equal) diverge as the number of observations n approaches
the number of random Fourier features `. This pattern emerges because the Fourier
basis is better at describing stationary priors than non-stationary posteriors. Fourier
features excel at capturing the global properties of the prior, but struggle to portray
the localized effects of the data.
Of course, different types of data impose different kinds of conditions on the process
f . We now examine various pathwise updates that enforce prominent types of
conditions.

3.4 Conditioning via pathwise updates

Building off of the foundation prepared in Section 3.2, we now adapt Corollary 3.17 to
accommodate different types of conditions and computational budgets. Throughout
this section, we use γ to denote the random variable realized by observations y under
the chosen likelihood.
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Figure 3.4: Visual comparison of different pathwise updates. Left and middle: Variational
inference is used to learn sparse updates at m = 10 inducing locations Z (circles). Right:
preconditioned conjugate gradients is used to iteratively solve for Gaussian updates. In all
cases, 1000 observations y are evenly spaced in the shaded region. Dashed lines denote
mean and two standard deviations of ground truth posteriors, colored regions and thicker
lines denote those of empirical ones. Middle and right plots illustrate regression with
a Gaussian likelihood N (yi | fi, 10−3). The left plot shows binary classification with a
Bernoulli likelihood and probit link function g; every tenth label is shown as a small,
vertical bar.

3.4.1 Gaussian updates

Corollary 3.17 treats observations y as a realization of process values fn = f(Xn).
Hence, the conditions it imposes manifest as the equality constraint fn = y. In the
real world, however, we seldom observe fn directly. To account for this nuance, an
observation y is modeled by a likelihood p(y | f(x)). Viewed from this perspective,
the equality constraint fn = y correspond to the limit where p contracts to a point
mass. Seeing as y usually fails to fully disambiguate the true value of f(x), we
typically employ likelihoods that induce weaker conditions than strict equalities.
For regression problems, the most common choice is to employ a Gaussian likelihood
p(y | f(x)) = N (y | f(x), σ2), the log of which penalizes the squared Mahalanobis
distance of f(x) from y. Under the corresponding observation model γ = fn + ε
with ε ∼ N (0, σ2I), f and y are jointly Gaussian. By Corollary 3.17 then, we may
condition f on γ = y by writing

(f | γ = y)( · ) d= f( · ) + k( · ,X)(Kn,n + σ2I)−1(y − fn − ε). (3.29)

Rather than exactly passing through observations y, the conditioned path f | y now
smoothly interpolates between them. In cases where γ is not a Gaussian random
variable, additional tools are needed.

3.4.2 Non-Gaussian updates

In the general setting, where the random variable γ is arbitrarily distributed under
the chosen likelihood, γ relates to process values f by way of the non-conjugate prior

p(γ,f) = p
(
γ | g−1(f)

)
N (f | µ,K), (3.30)
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where the link function g : Y → R maps from the space of predictions Y ⊂ R to
the range of f . For binary classification problems, popular choices for g : [0, 1]→ R
include logit and probit functions (Rasmussen and Williams, 2006). The left column
of Figure 3.4 illustrates this scenario using methods described below.
Even under a non-conjugate prior (3.30), the conditional expectation E(f | γ) and
the residual f −E(f | γ) it induces are uncorrelated (see Section 3.1.3). Since p(f ,γ)
may not be Gaussian, however, it no longer follows that this lack of correlation
implies independence—hence, the pathwise update (3.16) may not hold.
Exact Bayesian inference and prediction are typically intractable when dealing with
non-conjugate priors. Strategies for circumventing this issue generally approximate
the true posterior by introducing an auxiliary random variable u ∼ q(u) such
that f | u resembles f | y according to a chosen measure of similarity (Nickisch
and Rasmussen, 2008; Hensman et al., 2015). For practical reasons, u is typically
assumed to be jointly Gaussian with f .7 Consequently, non-conjugate priors p(f ,γ)
are replaced by conjugate ones p(f ,u) to aid in the construction of approximate
posteriors, whereupon Matheron’s update rule holds once more. The following section
explores these sparse approximations in greater detail.

3.4.3 Sparse updates

Approximations to GP posteriors frequently revolve around conditioning a process
f on a random variable u = (u1, . . . , um) ∈ Rm. Per the previous section, this may
be because the outcome variable γ is non-Gaussian (Nickisch and Rasmussen, 2008;
Titsias and Lawrence, 2010; Hensman et al., 2015). Alternatively, the O(n3) cost for
directly conditioning on all n = |y| observations may be prohibitive (Titsias, 2009a;
Hensman et al., 2013). In these cases and more, we would like to infer a distribution
q(u) such that f | u explains the data. Defining (approximate) posteriors in this way
not only avoids potential issues arising from the non-Gaussianity of γ, but associates
the computational cost of conditioning with u. As discussed below, this leads to
pathwise updates that run in O(m3) time.
Comprehensive treatment of different approaches to learning inducing distributions
q(u) is beyond the scope of this work. In general, however, these procedures
operate by finding an approximate posterior q(f ,u) within a tractable family of
approximating distributions Q. For reasons that will soon become clear, this family
of distributions typically includes an additional set of parameters Z, which help to
define the joint distribution p(f ,u). To help streamline our presentation, we focus
on the simplest and most widely used abstraction for inducing variables u: namely,
pseudo-data.
The noise-free pseudo-data framework (Snelson and Ghahramani, 2006; Quiñonero-
Candela et al., 2007; Titsias, 2009a) treats each draw of a random vector u ∼ q(u) as
a realization of process values fm = f(Z) at a corresponding set of tunable locations
Z ∈ Xm. This paradigm gets its name from the intuition that the (random) collection

7In the special case where p(f ,γ) is Gaussian, the optimal q is also Gaussian (Titsias, 2009b).
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of pseudo-data (zj, uj)mj=1 mimics the effect of a noise-free data set (xi, fi)ni=1 on f .
By construction, u is jointly Gaussian with f .8 Appealing to Corollary 3.17, we
define the sparse pathwise update as

(f | u)( · ) d= f( · ) +
m∑
i=1

vik( · , zi)

m-dimensional basis

, (3.31)

where v = K−1
m,m (u− fm). This formula is identical to the one given by Corol-

lary 3.17, save for the fact that we now sample u ∼ q(u) and solve for a linear
system involving the m×m covariance matrix Km,m = k(Z,Z) at O(m3) cost. The
middle column of Figure 3.4 illustrates the sparse update induced by Gaussian
u ∼ N (µu,Σu) with learned moments µu and Σu.
Just as we can imitate process values fn, we can also emulate (Gaussian) observations
y. This intuition leads to the Gaussian pseudo-data family of inducing distributions,
whose moments

µu = Km,m(Km,m + Λ)−1ỹ Σu = (K−1
m,m + Λ)−1 (3.32)

are parameterized by pseudo-observations ỹ ∈ Rm and pseudo-noise σ̃ ∈ Rm
+ , where

Λ = diag(σ̃2). This choice of parameterization is motivated by the observation that,
given n ≤ m Gaussian random variables γ ∼ N (fn, σ2I), the family of distributions
it generates contains the optimal q despite housing only O(m) free terms (Seeger,
1999; Opper and Archambeau, 2009).9 Using the Gaussian pathwise update (3.29),
we may express u itself as

u
d= fm + Km,m(Km,m + Λ)−1(ỹ − fm − ε̃) ε̃ ∼ N (0,Λ). (3.33)

Here, despite the fact that fm and ε̃ generate u, it remains the case that Cov(fm +
ε̃,u) = 0. Substituting this expression into (3.31) and simplifying gives the pathwise
update10

(f | u)( · ) d= f( · ) + k( · ,Z)(Km,m + Λ)−1(ỹ − fm − ε̃). (3.34)

Hence, while sampling u is more complicated in the Gaussian pseudo-data case, the
resulting pathwise update is straightforward. This family of inducing distributions
is particularly advantageous in the large m setting, both because it contains only
O(m) free parameters and for reasons discussed in the following section.
In rough analogy to methods discussed in Section 3.3, we may think of the sparse
updates introduced here as using an m-dimensional basis k( · ,Z) to approximate
functions defined in terms of the n-dimensional basis k( · ,Xn). In practice, this
basis is often efficient because neighboring training locations give rise to similar basis

8This holds whenever u and f are linearly related (Lázaro-Gredilla and Figueiras-Vidal, 2009).
9We may recover the true posterior by taking (ỹi, σ̃i) = (yi, σ) for all i ≤ n and sending σ̃i →∞

otherwise.
10This same line of reasoning leads to a rank-1 pathwise update for cases where conditions arrive

online.
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functions. Kernel basis functions at appropriately chosen sets of m� n locations
Z exploit this redundancy to produce a sparser, more cost-efficient representation.
Burt et al. (2020) study this problem in detail and derive bounds on the quality of
variational approximations to GP posteriors as m→ n.

3.4.4 Iterative solvers

Throughout this section, we have focused on the high-level properties of pathwise
updates in relation to various problem settings. We have said little, however, regarding
the explicit means of executing such an update. In all cases discussed here, pathwise
updates have amounted to solutions to systems of linear equations. For example,
the update originally featured in Corollary 3.17 solves the system Kn,nv = y − fn
for a vector of coefficients v, which defines how the same realization of f changes
when subjected to the condition fn = y. Given a reasonable number of conditions n
(up to several thousand), we may obtain v by first computing the Cholesky factor
Ln,n = K1/2

n,n and then solving for a pair of triangular systems Ln,nv̄ = u− fn and
L>n,nv = v̄. For large n, however, the O(n3) time complexity for carrying out this
recipe is typically prohibitive.
Rather than solving for coefficients v directly, we may instead employ an iterative
solver that constructs a sequence of estimates v(1),v(2), . . . to v, such that v(j)

converges to the true v as j increases. Depending on the numerical properties of the
linear system in question, it is possible (or even likely) that a high-quality estimate
v(j) will be obtained after only j � n iterations. This line of reasoning features
prominently in a number of recent works, where iterative solvers have been shown
to be highly competitive for purposes of approximating GP posteriors (Pleiss et al.,
2018; Gardner et al., 2018; Wang et al., 2019). The right column of Figure 3.4
visualizes an iterative solution to the Gaussian pathwise update (3.29) obtained
using preconditioned conjugate gradients (Gardner et al., 2018).
In these cases, posterior sampling via pathwise conditioning enjoys an important
advantage over distributional approaches: it allows us to solve for linear systems of
the form K−1

n,nv rather than working with K1/2
∗,∗|nζ. Whereas the former amounts to a

standard solve, the latter often requires special considerations (Pleiss et al., 2020)
and can be difficult to work with when typical square root decompositions prove
impractical (Parker and Fox, 2012).
Lastly, we note that these techniques can be combined with sparse approximations
for improved scaling in m and faster convergence of iterative solves. As a concrete
example, we return to the Gaussian pseudo-data variational family (3.32). By
construction, the corresponding pathwise update (3.34) closely resembles the original
Gaussian update (3.29). In general, however, pseudo-noise variances σ̃2

i are often
significantly larger than the true noise variance σ2. The resulting linear system
(Km,m + Λ)−1v is, therefore, substantially better-conditioned than that of the exact
alternative—implying that it can be solved in far fewer iterations.
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3.4.5 Discussion

In Section 3.3.5, we discussed finite-dimensional approximations of Gaussian process
posteriors. There, we explored how the globality of the prior reinforces the use of
basis functions φi : X → R that inform us about f over the entire domain X , while
the localized effects of the data encourage the use of φi that only tell us about f
on subsets of X . This conflict hinders our ability to efficiently represent both the
prior and the data (i.e., the posterior) using a single class of basis functions. That
discussion ended with a demonstration of what happens when φ = (φ1, . . . , φ`) solely
consists of global basis functions, specifically random Fourier features. Most works,
however, have focused on the use of canonical basis functions k( · ,x), which are
typically local. This section, therefore, aims to fill in the gaps.
At the end of Section 3.3.5, we saw how trouble conveying the data in global bases
led to approximate posteriors that were starved for variance (Figure 3.3). Writing
the update rules—for a draw from an approximate prior f̃( · ) = φ( · )>w subject
to the condition f̃n = y—in both unified and decoupled bases side-by-side helps to
highlight their key differences

f̃( · ) + φ( · )>Φ>n
(
ΦnΦ>n

)−1(
y − f̃n

)
unified approximate posterior

f̃( · ) + k( · ,Xn)K−1
n,n

(
y − f̃n

)
decoupled approximate posterior

.

(3.35)

On the right, the cross-covariance term φ( · )>Φ>n = φ( · )>φ(Xn) is replaced
by k( · ,Xn). Seeing as the former is often chosen to approximate the latter in a
way that converges when an appropriate limit is taken, for instance in (3.22), it
comes as no surprise that k( · ,Xn) more accurately represents data. Moreover, the
matrix inverse

(
ΦnΦ>n

)−1
appearing on the left is often ill-conditioned and, therefore,

amplifies numerical errors. Finite-dimensional GPs constructed from local basis
functions exhibit similar issues, albeit for essentially the opposite reason. Rather than
failing to adequately represent the data, local basis functions struggle to reproduce
the prior.
Many approaches to approximating Gaussian processes f ∼ GP(0, k) revolve around
representing the data in terms ofm-dimensional canonical bases k( · ,Z); for a review,
see Quiñonero-Candela et al. (2007). Early iterations of this strategy (Silverman,
1985; Wahba, 1990; Tipping, 2000), typically used k( · ,Z) to define degenerate
Gaussian processes (Rasmussen and Williams, 2006). Here, the term degenerate
emphasizes the fact that the covariance function

k̃(xi,xj) = k(xi,Z)k(Z,Z)−1k(Z,xj) (3.36)

of such a process has a finite number of non-zero eigenvalues. From the weight-space
perspective, degenerate GPs are Bayesian linear models f̃( · ) = k( · ,Z)w, which
makes it clear that f̃( · ) goes to zero as k( · ,Z)→ 0. This behavior is particularly
troublesome if all z ∈ Z are positioned near training locations Xn: since k(x∗,Z)
typically vanishes as x∗ retreats from Z, both the prior and the posterior collapse to
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point masses away from the data.
Instead of focusing on the data, one idea is to start by finding a basis k( · ,Z) capable
of accurately reproducing the prior. Accomplishing this feat will require us to use
a relatively large number of basis functions, since Z will need to effectively cover
the (compact) domain X . As mentioned in Section 3.3.1, certain kernels produce
special kinds of matrices when evaluated on particular sets. Exploiting these special
properties—e.g., by taking the Toeplitz matrices formed when evaluating a stationary
product kernel k on a regularly spaced grid Z and embedding them inside of circulant
ones (Wood and Chan, 1994; Dietrich and Newsam, 1997)—enables us to drastically
reduce the cost of expensive matrix operations, such as multiplies, decompositions,
and inverses. Especially when X is low dimensional, then, we can use the canonical
basis to efficiently approximate the prior.
Kernel interpolation methods (Wilson and Nickisch, 2015; Pleiss et al., 2018) take
this idea a step further. Given a set of m inducing locations Z, let ξ : X → Rm

be a weight function (Silverman, 1984) mapping locations xi onto (sparse) weight
vectors ξi such that k(xi,Z) ≈ ξ>i k(Z,Z). By applying this technique to (3.36),
we can define another Gaussian process g ∼ GP(0, c) with degenerate covariance
c(xi,xj) = ξ>i k(Z,Z)ξj. As a Bayesian linear model, we have g( · ) = ξ( · )>gm.
Notice that process values gm = g(Z) now play the role of random weights w and
fully determine the behavior of the random function g. Assuming Z was chosen
so that k(Z,Z) admits convenient structure, random vectors gm | y and, hence,
random functions (g | y)( · ) can be obtained cheaply (Pleiss et al., 2018). When Z
is sufficiently dense in X (so as to be reasonably close to x∗), this strategy provides
an alternative means of efficiently sampling from GP posteriors.

3.4.6 An empirical study

By now, we have explored a variety of techniques for sampling from GP posteriors.
Each of these methods is well suited for a particular type of problem. To help shed
light on their respective niches, we conducted a simple controlled experiment.
Here, our goal is to better understand how different methods balance the tradeoff of
cost and accuracy. We measured cost in terms of runtimes and accuracy in terms
of 2-Wasserstein distances between empirical distributions and true posterior (see
Section 3.5). To eliminate confounding variables, we assumed a known Matérn-5/2

prior on random functions f : R4 → R. All trials began by sampling this prior
at n training locations Xn and 1024 test locations X∗, using either location-scale
transforms or random Fourier features. We then used the various update rules
explored in this section to condition on n observations y ∼ N (fn, 10−3I).
Sparse updates were constructed using m = n

4 inducing variables u, whose distribu-
tions q(u) and inducing locations Z were obtained by minimizing Kullback–Leibler
divergences. Conjugate-gradient-based updates were carried out by, first, computing
partial pivoted Cholesky decompositions in order to precondition linear systems
(Kn,n + σ2I)v = (y − fn − ε). We then iteratively solved for Gaussian pathwise
updates using the method of conjugate gradients. Stopping conditions for both the
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Figure 3.5: Accuracy and cost of different methods for sampling from GP posteriors
given n observations. Draws from the prior are generated using either location-scale (top)
or ` = 4096 random Fourier features (bottom). We denote exact Gaussian updates by
black dots, sparse updates by blue stars, CG updates by orange and red triangles, and
RFF updates by green diamonds. Sparse and RFF updates both utilized m = n

4 basis
functions. All results are reported as medians and interquartile ranges measured over 32
independent trials. Left: 2-Wasserstein distances of empirical distributions of 105 samples
from the ground truth GP posterior. Middle and right: Time taken to generate a draw of
(f∗ | · ) ∈ R1024 with and without caching of terms that are independent of X∗.

partial pivoted Cholesky decomposition and conjugate gradient solver were chosen
to match those of Gardner et al. (2018). Prior to discussing trends in Figure 3.5, we
would like to point out that curves associated with Gaussian updates (black) are
heavily obscured: in the left column, by CG-based ones (orange and red) and in top
middle and top right plots by RFF-based ones (green).
Comparing the rows of Figure 3.5, we see that random Fourier feature (RFF)
approximations to priors introduce modest amounts of error in exchange for large
cost reductions. These savings are particularly dramatic in cases where test inputs
X∗ significantly outnumber training locations Xn. Echoing discussion in Section 3.3.5,
however, m-dimensional random Fourier bases struggle to represent the data. All
other things being held equal, sparse updates performed in the canonical basis
consistently outperform RFF-based ones. These sparse methods are also considerably
faster than competing approaches when m� n.
Direct comparison of sparse and CG updates is difficult, since both methods are
sensitive to various design choices. In our experiments, CG-based updates behaved
tantamount to exact ones—with two important caveats. First, CG-based updates
were initially slower than exact ones but outpace them as n increased. Second,
naïvely computing pathwise updates using CG is highly inefficient when it comes
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to caching. When repeatedly conditioning on (potentially different realizations of)
γ = y, one option is to use CG to precompute the matrix inverse (Kn,n + σ2I)−1.
This CG+ variant is significantly more cache-friendly, but also much more susceptible
to round-off error—see dashed red curves in Figure 3.5.
These empirical results help to characterize the behaviors of errors introduced by
different approximation schemes, but leave many questions unanswered. In order to
fill in some of the remaining gaps, we now analyze various types of approximation
error in details.

3.5 Error analysis

Over the course of this section, we will analyze the different types of error introduced
by pathwise approximations. Speaking about these errors requires us to agree
upon a suitable notion of similarity between Gaussian processes. We investigate
2-Wasserstein distances between true and approximate posteriors, which provide
useful information about downstream Monte Carlo errors. These distances measure
the similarity of Gaussian processes f̃ and f as the expectation of a metric d

(
f̃ , f

)
under the best possible coupling of the two processes. Formally, we have

W2,d
(
f̃ , f

)
=
[

inf
π∈Π(µ̃,µ)

Eπ d
(
f̃ , f

)2
]1/2

, (3.37)

where Π(µ̃, µ) denotes the set of valid couplings (Mallasto and Feragen, 2017), i.e.
joint measures whose marginals correspond with the Gaussian measures µ̃ and µ
induced by processes f̃ and f , respectively.
Below, we focus on cases where W2,d acts as a proper metric on a space of probability
measures such that: if W2,d(f̃ , f) = 0, then Monte Carlo estimates based on f
and f̃ , respectively, will be identically distributed. Since 2-Wasserstein distances
majorize 1-Wasserstein distances, this claim may be strengthen in the special case
of 1-Lipschitz functionals by appealing to Kantorovich–Rubinstein duality (Villani,
2008)

W1,d(f̃ , f) =
[

inf
π∈Π(µ̃,µ)

Eπ d
(
f̃ , f

)]
= sup
‖T‖Lip≤1

{∫
F
T (f̃)dµ̃−

∫
F
T (f)dµ

}
, (3.38)

where F is an appropriately chosen family of functions. In order for this line of
reasoning to hold, we assume that the domain X is a compact subset of some metric
measure space M, that X has finite measure, and that realizations of f almost
surely belong to the space of continuous functions equipped with the supremum
norm F = C(X ). Depending on the case, the metric d will either be the L2 norm or
the supremum norm and will be indicated by the appropriate subscript.
Lastly, let us introduce some additional notation to simplify materials presented
below. First, we will use f̃ | y and f̃ | u to denote pathwise conditioning of an
approximate prior f̃ via canonical (3.16) and sparse (3.31) update rules, respectively.
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These constructions should not be confused with the approximate posteriors discussed
in Sections 3.3.5 and 3.4.5. Second, we will superscript covariance functions k to
convey their corresponding processes. For example, k(f̃) will denote the kernel of the
approximation prior f̃ . Third and finally, given a set of n training locations Xn ⊂ X ,
define the weight function ξ : X → Rn as

ξ( · ) = k(Xn,Xn)−1k(Xn, · ). (3.39)

Variants of this function have been extensively studied in the context of regression; see
Silverman (1984) and Sollich and Williams (2005) and references contained therein.

3.5.1 Posterior approximation errors

This section adapts the results of Wilson et al. (2020) to study the error in the
decoupled approximate posterior

(f̃ | y)( · ) d= f̃( · ) + k( · ,Xn)K−1
n,n(y − f̃) = f̃( · ) + ξ( · )>(y − f̃) (3.40)

formed by updating an `-dimensional approximate priors f̃( · ) = φ( · )>w via an
n-dimensional canonical basis k( · ,Xn) so as to satisfy the condition imposed by n
noise-free observations y.

Proposition 3.18. Assume that X ⊂ Rd is compact and that the stationary kernel
k is sufficiently regular for f ∼ GP(µ, k) to be almost surely continuous. Accordingly,
if we define C1 =

√
2 diam(X )d/2

(
1 + ‖k‖2

C(X 2)‖K−1
n,n‖2

L(`∞;`1)

)1/2
, then we have

W2,L2(X )
(
f̃ | y, f | y

)
=
(

inf
π∈Π(µ̃,µ)

Eπ
∥∥∥(f̃ | y)− (f | y)

∥∥∥2

L2(X )

)1/2

≤ C1W2,C(X )
(
f̃ , f

)
,

(3.41)
where W2,L2(X ) and W2,C(X ) respectively denote 2-Wasserstein distances over the
Lebesgue space L2(X ) and the space of continuous functions C(X ) equipped with the
supremum norm, ‖· ‖C(X 2) is the supremum norm over continuous functions, and
‖· ‖L(`∞;`1) is the operator norm between `∞ and `1 spaces.

Proof We begin by considering the term inside the expectation in (3.41). Applying
Matheron’s rule followed by Hölder’s inequality (p = 1, q =∞), we have∣∣∣(f̃ | y)(x)− (f | y)(x)

∣∣∣2 ≤ 2
∣∣∣f̃(x)− f(x)

∣∣∣2 + 2
∣∣∣ξ(x)>(f̃n − fn)

∣∣∣2
≤ 2

∥∥∥f̃ − f∥∥∥2

L∞(X )
+ 2‖ξ(x)‖2

`1

∥∥∥f̃n − fn∥∥∥2

`∞
.

(3.42)
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Continuing from the second line, the definition of the operator norm implies that∣∣∣(f̃ | y)(x)− (f | y)(x)
∣∣∣2 ≤ 2

(
1 + ‖k(x,Xn)‖2

`∞

∥∥∥K−1
n,n

∥∥∥2

L(`∞;`1)

)∥∥∥f̃ − f∥∥∥2

L∞(X )

≤ 2
(

1 +
∥∥∥k∥∥∥2

C(X 2)

∥∥∥K−1
n,n

∥∥∥2

L(`∞;`1)

)∥∥∥f̃ − f∥∥∥2

L∞(X )

= 2
(

1 +
∥∥∥k∥∥∥2

C(X 2)

∥∥∥K−1
n,n

∥∥∥2

L(`∞;`1)

)
C0

∥∥∥f̃ − f∥∥∥2

C(X )
,

(3.43)

where, in the final line, we have used continuity of sample paths to replace ‖· ‖L∞(X )
with ‖· ‖C(X ). We now lift this bound between sample paths to one on 2-Wasserstein
distances by integrating both sides with respect to the optimal coupling π ∈ Π(µ̃, µ)

W2,L2(X )
(
f̃ | y, f | y

)
=
(

inf
π∈Π(µ̃,µ)

Eπ
∥∥∥(f̃ | y)− (f | y)

∥∥∥2

L2(X )

)1/2

≤
(
C0 vol(X ) inf

π∈Π(µ̃,µ)
Eπ
∥∥∥f̃ − f∥∥∥2

C(X )

)1/2

≤ C1W2,C(X )
(
f̃ , f

)
,

(3.44)

where vol(X ) denotes the Lebesgue measure of X . Hence, the claim follows.

Proposition 3.19. With the same assumptions, let C2 = n
(
1 + ‖K−1

n,n‖C(X 2)‖k‖C(X 2)
)2
.

Then,
Eφ
∥∥∥k(f̃ |y) − k(f |y)

∥∥∥
C(X 2)

≤ C2Eφ
∥∥∥k(f̃) − k

∥∥∥
C(X 2)

. (3.45)

Moreover, when f̃ is a random Fourier feature approximation of the prior, it follows
that

Eφ
∥∥∥k(f̃ |y) − k(f |y)

∥∥∥
C(X 2)

≤ `
−1/2C2C3, (3.46)

where C3 is one of several possible constants given by Sutherland and Schneider
(2015).

Proof Let Mk : C(X × X )→ C(X × X ) be the bounded linear operator given by

(Mkc)(x,x′) = c(x,x′)− c(x,Xn)ξ(x′)− ξ(x)>c(Xn,x
′) + ξ(x)>c(Xn,Xn)ξ(x′).

(3.47)

Henceforth, we omit the subscript from Mk to ease notation. Note that, by construc-
tion,

k(f |y)(x,x′) = (Mk)(x,x′) k(f̃ |y)(x,x′) = (Mk(f̃))(x,x′). (3.48)

Focusing on the integrand on the left-hand side of (3.45), we begin by separating
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out the operator norm ‖M‖L(C(X 2);C(X 2)) as∥∥∥k(f̃ |y) − k(f |y)
∥∥∥
C(X 2)

=
∥∥∥Mk(f̃) −Mk

∥∥∥
C(X 2)

≤ ‖M‖L(C(X 2);C(X 2))

∥∥∥k(f̃) − k
∥∥∥
C(X 2)

.

(3.49)
Refining this inequality requires us to upper bound ‖M‖L(C(X 2);C(X 2)). To do so, we
write

‖Mc‖C(X 2) ≤ ‖c‖C(X 2) + 2‖c( · ,Xn)ξ( · )‖C(X 2) +
∥∥∥ξ( · )>c(Xn,Xn)ξ( · )

∥∥∥
C(X 2)

.

(3.50)

We now use Hölder’s inequality (p = 1, q = ∞) followed by the definition of the
operator norm ‖· ‖L(`∞;`1) to bound the second and third terms on the right as

‖c( · ,Xn)ξ( · )‖C(X 2) = sup
x,x′∈X

[c(x,Xn)ξ(x′)]

≤ sup
x,x′∈X

[
‖c(x,Xn)‖`∞

∥∥∥K−1
n,n

∥∥∥
L(`∞;`1)

‖k(Xn,x
′)‖`∞

]
≤ ‖c‖C(X 2)

∥∥∥K−1
n,n

∥∥∥
L(`∞;`1)

‖k‖C(X 2)

(3.51)

and ∥∥∥ξ( · )>c(Xn,Xn)ξ( · )
∥∥∥
C(X 2)

≤ n‖c‖C(X 2)

∥∥∥K−1
n,n

∥∥∥2

L(`∞;`1)
‖k‖2

C(X 2). (3.52)

Returning to (3.50), we may now bound ‖Mc‖C(X 2) by writing

‖Mc‖C(X 2) ≤ ‖c‖C(X 2)

(
1 + 2

∥∥∥K−1
n,n

∥∥∥
L(`∞;`1)

‖k‖C(X 2) + n
∥∥∥K−1

n,n

∥∥∥2

L(`∞;`1)
‖k‖2

C(X 2)

)
≤ ‖c‖C(X 2)

(
n
[
1 +

∥∥∥K−1
n,n

∥∥∥
L(`∞;`1)

‖k‖C(X 2)

]2)
,

(3.53)

which immediately implies that

‖M‖L(C(X 2);C(X 2)) = sup
c 6=0

‖Mc‖C(X 2)

‖c‖C(X 2)
≤ n

[
1 +

∥∥∥K−1
n,n

∥∥∥
L(`∞;`1)

‖k‖C(X 2)

]2
. (3.54)

Note that, since this bound is independent of the particular realization of the `-
dimensional random Fourier basis φ used to construct the approximate prior f̃ , it is
constant with respect to the expectation (3.45). Finally, Sutherland and Schneider
(2015) have shown that there exists a constant C3 satisfying

Eφ
∥∥∥k(f̃) − k

∥∥∥
C(X 2)

≤ `
−1/2C3. (3.55)

Combining this inequality with the preceding ones gives the result.
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Together, Propositions 3.18 and 3.19 show that error in the approximate prior f̃
controls the error in the resulting approximate posterior f̃ | y. These bounds are
not tight, seeing as constants C1 and C2 both depend on the number of observations
n. Based on this observation, it is tempting to think that the error in f̃ | y therefore
increases in n. Empirically, however, the opposite trend is observed: the error in
f̃ | y actually diminishes as n grows (Wilson et al., 2020). To better understand
this behavior, we now study the conditions under which a pathwise update may
counteract the error introduced by an approximate prior.

3.5.2 Contraction of approximate posteriors with noise-free
observations

This section formalizes the following syllogism: (i) the true posterior f | y and the
approximate posterior f̃ | y have the same mean; (ii) as n increases, both posteriors
contract to their respective means; (iii) therefore, as n increases, the error introduced
by the approximate prior f̃ washes out.
To begin, let φ :M→ R` be an `-dimensional feature map on an ambient spaceM
consisting of linearly independent basis functions φi. We will say that f̃ is a standard
normal Bayesian linear model if it admits the representation

f̃( · ) =
∑̀
i=1

wiφi( · ) wi ∼ N (0, 1). (3.56)

This description includes the Karhunen–Loève and Fourier feature approximations
described in Section 3.3. As before, let Φn = φ(Xn) be an n × ` feature matrix
and Hk be the reproducing kernel Hilbert space associated with a kernel k. We say
that a function φi lies locally in Hk for a compact X ⊆M if there exists a function
ψj ∈ Hk that agrees with φi on X , i.e. φi

∣∣∣
X

= ψj
∣∣∣
X
.

WhenM is a compact metric space, the eigenfunctions φi used to construct (trun-
cated) Karhunen–Loève expansions belong to Hk by construction. More generally,
assessing whether or not φi lies locally in Hk is often straightforward for kernels with
known reproducing kernel Hilbert spaces. As a concrete example, the RKHS of a
Matérn-ν/2 kernel is the Sobolev space of order κ = ν + d/2. For integer values of κ,
this is the space of square-integrable functions with κ square-integrable derivatives.
Trigonometric basis functions φi(x) = cos(2πω>i x+ τi) can readily be adapted to
satisfy this requirement. Specifically, we may multiply them by a suitably chosen,
infinitely-differentiable function that ensures they decay to zero outside of X , such
that the resulting basis functions (and their derivatives) are square-integrable.
We are now ready to state and prove the primary claim. In the following, Proposi-
tion 3.20 and Corollary 3.21 will demonstrate that f̃ | y contracts at the same rate
as f | y. Subsequently, Corollary 3.22 will show that the error in f̃ | y vanishes as
n→∞ in any reasonable limit where the variance of the true posterior contracts to
zero everywhere on X .
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Proposition 3.20. Suppose X ⊆M is compact and that each of the ` basis functions
φi used to construct the standard normal Bayesian linear model f̃ lies locally in Hk.
If the points Xn ⊂ X used to condition the approximate posterior f̃ | y are chosen
such that f | y satisfies supx∈X k(f |y)(x,x) ≤ ε, then it follows that11

sup
x∈X

∣∣∣k(f̃ |y)(x,x)
∣∣∣ ≤ C4ε, (3.57)

where we have defined C4 = `maxi inf
{
‖ψi‖2

Hk : ψi|X = φi|X ,∀ψi ∈ Hk

}
.

Proof Recall from (3.40) that we may use the weight function

ξ( · ) = k(Xn,Xn)−1k(Xn, · )

(3.58)

to express the approximate posterior as (f̃ | y)( · ) d=φ( · )>w− ξ( · )>(y −Φnw).
Under this notation, it is clear that we may immediately upper bound the variance
of the f̃ | y as

Var
(
(f̃ | y)( · )

)
= E

[(
φ( · )> − ξ( · )>Φn

)
w
]2
≤ `max

i

(
φi( · )− ξ( · )>φi(Xn)

)2
,

(3.59)

where, on the right, we have used the fact that E‖w‖2 = `. By further denoting
G = {g ∈ Hk : ‖g‖Hk = 1}, we may now exploit the dual representation of the RKHS
norm to write∣∣∣φi(x∗)− ξ(x∗)>φi(Xn)

∣∣∣ ≤ ‖φi‖Hk sup
g∈G

∣∣∣g(x∗)− ξ(x∗)>g(Xn)
∣∣∣

= ‖φi‖Hk
∥∥∥k( · ,x∗)− ξ(x∗)>Kn,∗

∥∥∥
Hk

= ‖φi‖Hk
√
k(x∗,x∗)−K∗,nK−1

n,nKn,∗

PX(x∗)

,

(3.60)

where, because φi lies locally inHk, we may replace it with any ψi ∈ Hk : ψi|X = φi|X .
Noting that PX( · ) =

√
k(f |y)( · , · ) and collecting terms gives the result.

Corollary 3.21. With the same assumptions, as supx∈X k(f |y)(x,x)→ 0, it follows
that

sup
x,x′∈X

∣∣∣k(f̃ |y)(x,x′)− k(f |y)(x,x′)
∣∣∣→ 0. (3.61)

Proof Begin by applying the triangle inequality to the above and, subsequently, use
11This result holds even when the weights are not assumed i.i.d., albeit with a different constant.
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the Cauchy-Schwarz inequality to bound k(x,x′) ≤
√
k(x,x)

√
k(x′,x′), which gives

sup
x,x′∈X

∣∣∣k(f̃ |y)(x,x′)− k(f |y)(x,x′)
∣∣∣ ≤ sup

x,x′∈X

∣∣∣k(f̃ |y)(x,x′)
∣∣∣+ sup

x,x′∈X

∣∣∣k(f |y)(x,x′)
∣∣∣

≤ sup
x∈X

∣∣∣k(f̃ |y)(x,x)
∣∣∣+ sup

x∈X

∣∣∣k(f |y)(x,x)
∣∣∣.

(3.62)

In the final expression, convergence of the former term is given by Proposition 3.20,
while the latter goes to zero by assumption.

Corollary 3.22. With the same assumptions, as supx∈X k(f |y)(x,x)→ 0, it follows
that

W2,L2(X )(f | y, f̃ | y)→ 0. (3.63)

Proof Since L2(X ) is a normed space and E(f | y) = E(f̃ | y), we have that

W2,L2(X )(f | y, f̃ | y) = W2,L2(X )

(
f( · )− ξ( · )>f(Xn)

(f |y)0

, φ( · )>w − ξ( · )>Φnw

(f̃ |y)0

)
,

(3.64)
where (f | y)0 and (f̃ | y)0 denote centered processes. Now, let 0 be an almost surely
zero stochastic process over X . Then, by the triangle inequality,

W2,L2(X )

(
(f | y)0, (f̃ | y)0

)
≤ W2,L2(X )

(
(f | y)0,0

)
+W2,L2(X )

(
(f̃ | y)0,0

)
. (3.65)

Expanding the definition of Wasserstein distances W2,L2(X ) before using Tonelli’s
theorem to change the order of integration gives

W2,L2(X )

(
(f | y)0, (f̃ | y)0

)
≤
(
E
∥∥∥(f | y)0 − 0

∥∥∥2

L2(X )

)1/2

+
(
E
∥∥∥(f̃ | y)0 − 0

∥∥∥2

L2(X )

)1/2

=
(∫
X
k(f |y)(x,x) dx

)1/2

+
(∫
X
k(f̃ |y)(x,x) dx

)1/2

,

(3.66)

where both terms in the final expression converge to zero by compactness of X
together with Proposition 3.20.
Together, these claims demonstrate that the decoupled approximate posterior f̃ | y,
formed by using the canonical basis k( · ,Xn) to update a well-specified approximate
prior f̃ , inherits the contractive properties of the true posterior f | y.
Per the beginning of this section, approximate priors f̃ defined as standard normal
Bayesian linear models with basis functions that lie locally in Hk are well-specified.
The following counterexample helps clarify what can happen when f̃ is misspecified.
Consider an approximate prior f̃ ∼ GP(0, δ) equipped with the Kronecker delta
kernel δ such that Cov

(
f̃(xi), f̃(xj)

)
= 1 if xi = xj and 0 otherwise. Given a finite
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set of test locations X∗ ⊂ X \Xn, let Ξ = ξ(X∗)>. Applying the pathwise update
(3.17) to f̃ , the posterior covariance is then

Cov
(
f̃ ∗ | y

)
= Cov

(
f̃ ∗
)

+ Ξ Cov
(
f̃n
)
Ξ> − 2 Cov

(
f̃ ∗, f̃n

)
Ξ> = I + K∗,nK−2

n,nKn,∗.

(3.67)
Since the second of the two terms on the right is guaranteed non-negative, the
variance of the resulting posterior is bounded from below by 1. For this choice of f̃ ,
then, the approximation error inherent to f̃ | y does not diminish as n increases.12

3.5.3 Sparse approximation errors

We now examine the error introduced by using a sparse pathwise update (3.31) to
construct an approximate posterior. As notation, we write f | u and f̃ | u for the
approximate posteriors formed by applying the sparse update to the true prior f
and to the approximate prior f̃ , respectively. Results discussed here mirror those
presented by Wilson et al. (2020). Appealing to the triangle inequality, we have

W2,L2(X )
(
f̃ | u, f | y

)
≤ W2,L2(X )

(
f̃ | u, f | u

)
error in approximate prior

+ W2,L2(X )
(
f | u, f | y

)
error in sparse update

Eφ
∥∥∥k(f̃ |u) − k(f |y)

∥∥∥
C(X 2)

≤ Eφ
∥∥∥k(f̃ |u) − k(f |u)

∥∥∥
C(X 2)

+
∥∥∥k(f |u) − k(f |y)

∥∥∥
C(X 2)

.

(3.68)

From here, any of the previously presented propositions enable us to control the
total error. For the first terms on the right, the same arguments as before lead
to the same results; however, the constants involved will change, since the sparse
update now assumes the role of the canonical one. The latter terms do not involve
the approximate prior and are therefore beyond the scope of our present analysis.
Note that similar statements hold for the Gaussian pathwise update (3.29).
As a final remark, note that we may reduce the total error (3.68) by incorporating
additional basis functions k( · ,X) into the sparse update. Conceptually, the act of
augmenting a sparse update amounts to replacing u ∼ q(u) with u′ ∼ q(u′) = p(f |
u)q(u), where f are process values at centers X (Rasmussen and Quiñonero-Candela,
2005; Quiñonero-Candela et al., 2007). By construction, q(u) and q(u′) induce the
same posterior on f . However, because the augmented update utilizes additional
basis functions, the error in the induced distribution of f̃ ∗ diminishes. This result
follows from the same line of reasoning as before: since E

(
f ∗ | u′

)
= E

(
f̃ ∗ | u′

)
,

f | u′ and f̃ | u′ contract to the same function as |u′| → ∞. Hence, the approximate
prior washes out and the total error decreases.

12Contraction of the true posterior is well-studied and has strong ties to the literature on kernel
methods. Kanagawa et al. (2018) reviews these connections in greater detail: there, Theorem
5.4 shows how the power function PX can be bounded in terms of the fill distance h(Xn) =
supx∗∈X infx∈Xn

‖x∗ − x‖.
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Figure 3.6: Median performances and interquartile ranges of Thompson sampling methods
and popular baselines when optimizing function draws from known GP priors on d = dim(X )
dimensional domains. Location-scale Thompson sampling performs well in low-dimensional
settings (left), but struggles as d increase due to its inability to efficiently utilize gradient
information. RFF posteriors enable us to generate function draws, but demand many more
basis functions b = ` + n than data points n (middle vs. right). Decoupled approaches
using canonical basis functions k( · ,x) to update RFF priors f̃ avoids these pitfalls and
consistently match or outperform competing strategies.

3.6 Applications

This section examines the practical consequences of pathwise conditioning in terms of
a curated set of representative tasks. Throughout, we focus on how pathwise methods
for efficiently generating function draws from GP posteriors enable us to overcome
common obstacles and open doors for new research. We provide a general framework
for pathwise conditioning of Gaussian processes based on GPflow (Matthews et al.,
2017).13

3.6.1 Optimizing black-box functions

Global optimization revolves around the challenge of efficiently identifying a global
minimizer

xmin ∈ Xmin Xmin = arg min
x∈X

f(x) (3.69)

of a black-box function f : X → R. Since f is a black box, our understanding of its
behavior is limited to a set of observations y at locations Xn. Gaussian processes
are a natural and widely used way of representing possible functions f | y (Močkus,
1975; Srinivas et al., 2010b; Frazier, 2018). In these cases, we reason about global
minimizers (3.69) in terms of a belief over the random set

X(f |y)
min = arg min

x∈X
(f | y)(x). (3.70)

13Code is available online at https://github.com/j-wilson/GPflowSampling.
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Approaches to these problems are often characterized as striking a balance between
two competing agendas: the need to learn about the function’s global behavior by
exploring the domain X and the need to obtain (potentially local) minimizers by
exploiting what is already known.
Thompson sampling is a classic decision-making strategy that balances the tradeoff
between exploration and exploitation by sampling actions x ∈ X in proportion to
the probability that x ∈ X(f |y)

min (Thompson, 1933). At first glance, this task may
seem daunting, since X(f |y)

min is random. For a given draw of f | y, however, X(f |y)
min

is deterministic. Accordingly, we may Thompson sample an action by generating a
function f | y and, subsequently, finding a pathwise global minimizer.
Thompson sampling’s relative simplicity makes it a natural test bed for evaluating
different sampling strategies, while its real-world performance (Chapelle and Li, 2011)
assures its ongoing relevance in applied settings. A key strength of these methods is
that they support embarassingly-parallel batch selection (Hernández-Lobato et al.,
2017; Kandasamy et al., 2018). While many GP-based search strategies allow us
to choose κ > 1 queries at a time (Snoek et al., 2012; Wilson et al., 2018), their
compute costs tend to scale aggressively in κ. Especially when evaluations can be
carried out in parallel, then, Thompson sampling provides an affordable alternative
to comparable approaches.
We considered three different variants of Thompson sampling, corresponding with
different approaches to sampling from GP posteriors. The first approach samples
random vectors f ∗ | y using location-scale transforms (3.19); the second approximates
posteriors with Bayesian linear models; and, the third updates function draws from
`-dimensional approximate priors f̃ = φ( · )>w using canonical basis functions
centered at the n training locations.14 For fair comparison, we allocate b = ` + n
random Fourier basis functions to Bayesian linear models employed by the second
approach.
At each round of Thompson sampling, we began by sampling process values fi |
y independently on a randomly generated discretization of X = [0, 1]d. Next,
we constructed a candidate set X∗ using the locations that produce the smallest
realizations of fi | y. Under a location-scale approach, we then jointly sampled
process values at |X∗| = 2048 candidates. For both of the alternatives, we instead
used |X∗| = 32 candidates to initialize multi-start gradient descent. In all three cases,
queries were chosen as minimizers of the resulting vector f ∗ | y. Batches of queries
were obtained using κ independent runs of this algorithm.
To eliminate confounding variables, we experimented with black-box functions drawn
from a known Matérn-5/2 prior with an isotropic length scale l =

√
d/100 and Gaussian

observations y ∼ N (f(x), 10−3). We set κ = d, but this choice was not found to
significantly influence our results. Below, we focus on comparing each Thompson
sampling variant’s behavior for different amounts of design variables d and basis
functions `.
Figure 3.6 reports key findings based on 32 independent trials; for extended results,

14Equation (3.35) highlights the difference between the second and third approaches.
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Figure 3.7: Pathwise conditioning of samples from Matérn priors subject to observations
y (black dots) and Dirichlet boundary conditions f

∣∣
∂X = 0. From left to right, the first

three columns show a draw from the prior, a pathwise update, and the corresponding
realization of the posterior. The final two columns communicate the empirical mean and
standard deviation of the posterior, respectively. Top: Illustration of a rectangular domain
for which Laplacian eigenpairs are calculated analytically. Bottom: A non-trivial domain
for which the eigenpairs are approximated numerically.

see Wilson et al. (2020). First, location-scale methods’ inability to use gradient
information to efficiently find pathwise minimizers causes its performance to wane
as d increases. In contrast, both of the alternative variants of Thompson sampling
rely on pathwise-differentiable function draws and, therefore, scale more gracefully
in d. Second, RFF-based Bayesian linear models struggle to represent posteriors due
to variance starvation (Section 3.3.5). As the number of observations n increases
relative to the number of basis functions b = `+ n, the function draws they produce
come to inadequately characterize the true posterior, causing Thompson sampling to
falter. Decoupled approaches to updating f̃ avoid this issue by, e.g., associating the
data with the n-dimensional canonical basis k( · ,Xn).

3.6.2 Generating boundary-constrained sample paths

This section illustrates how techniques introduced in the preceding sections can be
used to efficiently sample Gaussian process posteriors subject to boundary conditions
(Solin and Kok, 2019). Whittle (1963) showed that a Matérn GP f defined over Rd

satisfies the stochastic partial differential equation
(2ν
κ2 −∆

) ν
2 + d

4
f =W , (3.71)

where W is a (rescaled) white noise process, and ∆ is the Laplacian. Following Solin
and Kok (2019) and Rue and Held (2005), we restrict (3.71) onto a (well-behaved)
compact domain X ⊂ Rd and impose Dirichlet boundary conditions f

∣∣∣
∂X

= 0 to
define a boundary-constrained Matérn Gaussian process over X . Solin and Kok
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Figure 3.8: Model-based simulations of a stochastic FitzHugh–Nagumo neuron. Left:
Phase portrait of the true drift function subject to a fixed current a = 0.5. Middle: Empirical
medians and interquartile ranges of simulated voltage traces driven by a sinusoidal current
(dotted black); ground truth quartiles are shown in dashed gray. Trajectories generated via
location-scale transforms are summarized on the top in orange, while those produced by
decoupled drift functions are portrayed on the bottom in blue. Top right: Comparison of
simulation runtimes. Bottom right: Sinkhorn estimates (Cuturi, 2013) to 2-Wasserstein
distances between model-based and ground truth state distributions at each step t. The
noise floor (dashed gray) was found using additional ground truth simulations.

(2019) demonstrate that such a prior admits the Karhunen–Loève expansion

f( · ) =
∞∑
i=1

wiφi( · ) wi ∼ N
(

0, σ
2

Cν

(2ν
κ2 + λi

)−ν− d2)
, (3.72)

where φi are eigenfunctions of the boundary-constrained Laplacian. We truncate
this expansion to obtain the `-dimensional Bayesian linear model f̃ , which we use
together with a pathwise update to construct the posterior.
Figure 3.7 visualizes function draws from boundary-constrained priors and posterior
for two choices of boundaries on R2, a rectangle and the symbol for infinity. Note
that eigenfunctions for rectangular regions of Euclidean domains are available ana-
lytically, while those of the infinity symbol are obtained numerically by solving a
Helmholtz equation. Examining this figure, we see that the sample paths respect
the Dirichlet boundary condition f

∣∣∣
∂X

= 0. Karhunen–Loève expansions enable
boundary-constrained GPs, an important class of non-stationary priors, to be used
within the pathwise conditioning framework.

3.6.3 Simulating dynamical systems

Gaussian process posteriors are commonly used to simulate complex, real-world
phenomena in cases where we are unable to actively collect additional data. These
phenomena include dynamical systems that describe how physical states evolve over
time.
We focus on cases where a Gaussian process prior is placed on the drift f : X×A → X
of a time-invariant system, which maps from a state vector xt ∈ X and a control
input at ∈ A to a tangent vector f t ∈ X . Using an Euler–Maruyama scheme to
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discretize the dynamical system’s equations of motion, we obtain the stochastic
difference equation (SDE)

xt+1 − xt = τf(xt,at) +
√
τεt = yt εt ∼ N (0,Σε), (3.73)

where τ is the chosen step size and ε denotes process diffusion. Together with control
inputs AT = (a1, . . . ,aT ) and diffusion variables ET = (ε1, . . . , εT ), each draw of f
fully characterizes how an initial state x1 ∼ p(x1) evolves over a series of T successive
steps.
Since xt+1 depends on xt, strategies for jointly sampling XT+1 = (x1, . . . ,xT+1) are
typically iterative. Under a distributional approach, we generate xt+1 by sampling
from the conditional distribution p(yt | Dt−1), where Dt−1 denotes the union of
the real data (xi,yi)ni=1 and the current trajectory (xj,yj)t−1

j=1. As mentioned in
Section 3.3.1, we may use low-rank matrix updates to efficiently obtain p(yt | Dt−1)
from p(yt | Dt−2) in O(t2) time. Nevertheless, the resulting algorithm suffers from
O(T 3) time complexity. In contrast, approaches based on updating of (approximate)
prior function draws scale linearly in T .
Many of the same issues were explored by Ialongo et al. (2019), who also proposed
a linear-time generative strategy for GP-based trajectories. In the language of
the present work, this alternative represents the SDE (3.73) by (i) formulating the
unknown drift function as the conditional expectation E(f | u) = k( · ,Z)K−1

m,mu
of a sparse Gaussian process f with inducing variables u ∼ q(u) and (ii) defining
process diffusion as the sum of the remaining terms εt ∼ N

(
0, k(f |u)(xt,xt) + Σε

)
.

Similar to the pathwise methods put forth here, this approach avoids inter-state
dependencies while unrolling by exploiting the fact each draw of u realizes an entire
drift function.
To better illustrate the practical implications of pathwise approaches to GP-based
simulation, we trained a Gaussian process to represent a stochastic variant of the
classic FitzHugh–Naguomo model neuron (FitzHugh, 1961; Nagumo et al., 1962).
This model describes a biological neuron in terms of its membrane potential vt and a
recovery variable wt that summarizes the state of its ion channels. Written in the
form (3.73), we have

xt+1 − xt =
[
vt+1 − vt
wt+1 − wt

]
= τ

[
vt − v3

t

3 − wt + at
1
γ
(vt − βwt + α)

]
+
√
τεt, (3.74)

where we have chosen τ = 0.25 ms, α = 0.75, β = 0.75, γ = 20, and Σε = 10−4I.
A two-dimensional phase portrait of this system’s drift function given a current
injection a = 0.5 is shown on the left in Figure 3.8.
Training data was generated by evaluating (3.74) for n = 256 state-action pairs
(xi,ai), chosen uniformly at random from X = [−2.5, 2.5]× [−1, 2] and A = [0, 1].
Changes in each of the state variables were modeled by independent, Matérn-5/2

GPs using m = 32 inducing variables. Both sparse GPs were trained by minimizing
Kullback–Leibler divergences.
At test time, state trajectories were unrolled from steady state for T = 1000 steps
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under the influence of a current injection; see middle column of Figure 3.8. Drift
values f t were realized using either the O(T 3) location-scale technique or the O(T )
pathwise approach. As seen on the right in Figure 3.8, both strategies are capable
of accurately characterizing possible state trajectories. At the same time, their
difference in cost is striking: the location-scale method spent 10 hours generating
1000 state trajectories (run in parallel), while the pathwise one spent 20 seconds.

3.6.4 Efficiently solving reinforcement learning problems

Model-based approaches to autonomously controlling robotic systems often rely on
Gaussian processes to infer system dynamics from a limited number of observations
(Rasmussen and Kuss, 2004; Deisenroth et al., 2015; Kamthe and Deisenroth, 2018).
Of these data-efficient methods, we focus on PILCO (Deisenroth and Rasmussen,
2011), which is an effective policy search method that uses Gaussian process dynamics
models.15

Similar to the previous section, we begin by placing a GP prior on the drift function
f : X ×A → X of a black-box dynamical system, now assumed to be deterministic.
Rather than being given a sequence of actions AT and asked to simulate trajectories
XT+1, our new goal will be to find parameters θ ∈ Θ of a deterministic, feedback
policy π : Θ×X → A that maximize the expected cumulative reward

R(θ) = Ef,x1

 T∑
t=1

r
(
xt + f(xt, πθ(xt))

xt+1

) =
T∑
t=1

Ext+1

[
r(xt+1)

]
. (3.75)

For suitably chosen reward functions r : X → R, we may optimize θ by differentiating
(3.75). The challenge, however, is to evaluate this expectation in the first place.
The original PILCO algorithm tackles this problem by using moment matching to
approximately propagate uncertainty through time. Given a random state xt ∼
N (µt,Σt,t), we begin by supposing that xt and at = πθ(xt) are jointly normal.
Next, we obtain the corresponding optimal Gaussian approximation to p(xt,at) by
analytically computing the required moments E(at), Cov(at,at), and Cov(at,xt).
This step can also be seen as finding the affine approximation to πθ that best
propagates N (µt,Σt,t). We now use moment matching to propagate this approximate
joint distribution through f in order to construct a second Gaussian approximation,
this time to p(xt,f t).16 By interpreting xt+1 = xt+f t as the sum of jointly Gaussian
random variables, we compute the corresponding right-hand side term of (3.75) and,
finally, proceed to the next time step. Overall, this strategy works well when f and
πθ are sufficiently regular and N (µt,Σt,t) is sufficiently peaked that maps from xt
to f t are nearly affine in a ball around µt whose radius is dictated by Σt,t.
Here, we are interested in comparing the behavior of moment-based and path-based
approaches to optimizing (3.75). To shed light on how these approaches fare in the

15PILCO implementation available separately at https://github.com/j-wilson/GPflowPILCO.
16By appealing to the affine approximation view of moment matching, we obtain the approximate

cross-covariance Cov(xt,f t) ≈ Cov(xt, st) Cov(st, st)−1 Cov(st,f t) where st = xt ⊕ at.
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Figure 3.9: Behavior and performance of PILCO algorithms applied to different versions
of cart-pole. Marginal distributions of terminal values are shown immediately to the
right of each plot. In top and bottom rows, initial state x1 is nearly deterministic and
highly randomized, respectively. Left: Medians and interquartile ranges of simulated pole
orientations. Right: Means and standard errors of success rates (estimated separately
by unrolling the true system 100 times); dashed lines represent average performances of
incumbent policies. On the bottom right, Pathwise (s) indicates that s samples were used
during training.

context of typical learning problems, we experimented with both methods on the
cart-pole task (Barto et al., 1983), which consists of moving a cart horizontally along
a track in order to swing up and balance a pole, upside down, at a target location.
State vectors x = [x0, ẋ0, x1, ẋ1]> define the position of the cart x0, angle of the pole
x1, and time derivatives thereof; while, actions a ∈ A = [−10, 10] N represent the
lateral forces applied to the cart.
We follow Deisenroth et al. (2015) by using a 0.5 m long, 0.5 kg pole and a 0.5 kg
cart with a 0.1 Ns/m friction coefficient. Each episode ran for a length of 3 seconds,
discretized at 0.1 s intervals during which time actions were held constant, i.e.,
zero-order hold control. We set the goal state to xgoal = 0 and define rewards
according to a Gaussian function

r(x) = exp
(
− 1

2 (x− xgoal)>Λ−1(x− xgoal)
sq. Euclidean distance

between pendulum tip and goal

)
, (3.76)

whose precision matrix Λ−1 was chosen such that the bracket term is proportional to
the squared Euclidean distance between (the Cartesian coordinates of) the tip of the
pole in states x and xgoal. Along the same lines, an episode was considered successful
if the tip of the pole was within 0.1 m of the goal for 10 or more consecutive time
steps. Depending on the particular experiment, states were initialized in one of two
ways: (i) the standard case x1 ∼ N

(
[0, π, 0, 0]>, 0.01I

)
or (ii) a challenge variant

x1 ∼ N
(
[0, π, 0, 0]>, diag(1, 1, π, π)

)
.

In all cases, system dynamics were represented by a set of independent sparse GPs
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with squared exponential kernels, each of which predicted a single component of the
tangent vector f = f(x,a). Upon collecting an additional episode of training data,
these GPs were trained from scratch using L-BFGS (Liu and Nocedal, 1989) with
m = min(n, 256) inducing variables, whose corresponding inducing locations Z were
initialized via k-means.
We defined policies as kernel regressors with inverse link functions g−1 : R→ [−10, 10]

πθ( · ) = g−1

 30∑
i=1

wik( · ,xi)
 g−1( · ) = 20Φ( · )− 10, (3.77)

where k denotes a squared exponential kernel and Φ : R → [0, 1] is the standard
normal CDF. Policy parameters θ consisted of centers (x1, . . . ,x30), weights w, and
length scales l. Following Deisenroth et al. (2015), policies were initialized once after
collecting a random initial episode and subsequently fine-tuned. At each round, θ
was updated 5000 times using ADAM (Kingma and Ba, 2015) with gradient norms
clipped to one and an initial learning rate 0.01 that decreased by a factor of ten after
every third of training. Pathwise approaches propagated uncertainty by unrolling a
separate draw of x1 along each realization of f , both of which were resampled prior
to each update of θ.
In line with previous findings, moment-wise PILCO consistently solves the standard
cart-pole task within a few episodes (Deisenroth et al., 2015). As initial state
distributions become increasingly diffuse, however, moment matching struggles to
accurately propagate uncertainty. As seen in the bottom row of Figure 3.9, this
inability prevents moment-wise PILCO from learning meaningful policies for the
challenge variant of cart-pole. Pathwise alternatives do not experience this issue, but
they are not without their own shortcomings. We now discuss the relative merits of
both approaches to propagating uncertainty.
Pathwise uncertainty propagation is significantly faster than moment matching,
enabling us to simulate (tens of) thousands of trajectories in the time it takes to
complete a single forward pass of moment matching. As Monte Carlo methods,
pathwise estimates of (3.75) allow us to easily achieve the desired balance of accuracy
and cost by controlling the sample size. Here, the use of sampling conveys additional
benefits. First, it frees us from the restrictive class of moment matchable models
by eliminating the need for closed-form integration. Second, it drastically simplifies
implementation and allows us to fully take advantage of modern hardware and
software, such as GPUs and automatic differentiation.
On the other hand, we observe that moment-wise uncertainty propagation sometimes
improves performance. By locally linearizing the functions it permeates, moment
matching implicitly favors simpler, smoother dynamics f and policies πθ (see Fig-
ure 3.9). Perhaps for this very reason, moment-wise PILCO was found to train more
robustly. In particular, its pathwise counterpart was more susceptible to catastrophic
forgetting: after solving the problem during the previous round of training, poli-
cies trained via pathwise uncertainty propagation were more likely to diverge. To
illustrate this behavior, we define the incumbent as the policy that achieves highest
expected reward under the model f . Unlike those of its moment-wise analogue,
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pathwise PILCO’s incumbents (dashed lines) often outperform more recent policies
(solid lines) by significant margins; see right side of Figure 3.9. While this issue
was easy to reproduce, the relative abundance of moving pieces makes it difficult to
pinpoint precisely why it occurs.
Many of the challenges highlighted above are common in reinforcement learning,
where generic solutions are often outperformed by skillfully tuned, bespoke alterna-
tives. Nevertheless, we hope that the ease and flexibility of pathwise approaches to
simulating posteriors will allow Gaussian processes to be applied to a wide range of
problems where data-efficiency and uncertainty calibration are paramount.

3.6.5 Evaluating deep Gaussian processes

When applying Gaussian process methods to novel problems, we are often faced with
a natural dilemma: many phenomena of interest are definitively non-Gaussian. In
order to leverage Gaussian processes to model these phenomena, we typically resort
to nonlinearly transforming f . Seeing as Gaussian random variables pushed forward
through nonlinear functions seldom admit convenient analytic expressions, we are
forced to trade tractability for expressivity.
This issue has recently come to the fore in the context of deep Gaussian processes
(Damianou and Lawrence, 2013), which represent function priors as compositions

f( · ) =
(
f (T ) ◦ . . . ◦ f (2) ◦ f (1)

)(
·
)
, (3.78)

where f (t) ∼ GP
(
µ(t), k(t)

)
for t = 1, . . . , T . Following Salimbeni and Deisenroth

(2017), sample-based methods have become the standard approach for evaluating
and training these models. When a composition (3.78) consists of independent layers
made up of independent, scalar-valued GPs (or linear combinations thereof), f(x)
can be efficiently sampled without resorting to expensive matrix operations. When
these assumptions are violated, however, sample-based evaluations of deep GPs
quickly becomes expensive. One such example was implicitly touched on in preceding
sections: Gaussian process models of time-varying stochastic differential equations
can be seen as continuous-time analogues of certain deep GPs (Hegde et al., 2019).
In these cases, dependencies between successive evaluations of a GP-based drift
function f (t)( · ) = f(t, · ) cause location-scale based evaluations to grind to halt
(see Section 3.6.3).
Similar issues arise when sampling from compositions of multioutput GPs (van der
Wilk et al., 2020). The remainder of this section focuses on the particular case of
deep convolutional GPs (Blomqvist et al., 2019; Dutordoir et al., 2020). Here, a deep
GP is defined in close analogy to a convolutional neural network (van der Wilk et al.,
2017): each layer consists of a set of independent maps that are convolved over local
subsets (patches) of an image xt ∈ Rct×ht×wt . For a convolutional neural network,
these patch response functions are affine transformations followed by nonlinearities;
while, for a convolutional Gaussian process, they are draws from GP posteriors.
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Original Mean Stddev. Sample Sample Sample Perturbations along a 2-dimensional projection

Figure 3.10: Reconstructions of MNIST digits by a deep convolutional GP trained to act as
an autoencoder. Left: Mean and standard deviations of the (non-Gaussian) distribution over
the reconstructions of randomly chosen test images are shown alongside three independently
generated samples. Right: A 2-dimensional projection of a 25-dimensional latent space is
found by performing SVD on the Jacobian of the mean response of the first decoder layer
given an encoding of first image shown on the left. Reconstructions using the mean of each
decoder layer are shown for a local walk in this 2-dimensional projected space.

Since each of the ct independent patch response functions produces ht × wt output
features, the covariance of the Gaussian random variables xt = f (t−1) ∗ xt−1 is a
block diagonal square matrix of order ct × ht × wt. Location-scale approaches to
jointly sampling these feature maps incur O (ct × h3

t × w3
t ) cost when computing

matrix square roots.17 Rather than sampling each layer at the current set of inputs,
pathwise strategies sample entire models. Said again, pathwise approaches operate
by drawing deterministic models from (approximations to) deep GP posteriors.18
By doing so, these methods allow us to evaluate individual layers in O (ct × ht × wt)
time.
As an illustrative example, we trained a deep GP to act as an autoencoder for
the MNIST dataset (LeCun and Cortes, 2010). For the encoder, we employed a
sequence of three convolutional layers, each with 384 inducing patches Z ∈ Rct−1×3×3

shared between ct ∈ (32, 32, 1) independent GPs. Strides and padding were chosen
to produce a 25-dimensional encoding of a 784-dimensional image. Analogously,
we defined the decoder using three transposed convolutional layers, each with 384
inducing patches Z ∈ Rct−1×3×3 shared between ct ∈ (32, 32, 32) independent GPs.
We then used a final decoder layer, consisting of a single convolutional GP (with
the same general outline as above), to resolve penultimate feature maps R32×28×28

into image reconstructions R1×28×28. In all cases, we employ residual connections by
using bilinear interpolation to define identity mean functions. Following Salimbeni
and Deisenroth (2017), we initialized inducing patches Z using k-means and inducing
distributions to be nearly deterministic.
Model evaluations were performed by using the sparse update (3.31) together with
functions drawn from approximate priors constructed using ` = 256 random Fourier

17This cost is separately incurred by each input to each layer, see Dutordoir et al. (2020).
18Here, we have assumed the use of approximate priors akin to those discussed in Section 3.3.
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features. We associate each input image with a single draw of the model. Running on
a single GPU, the model outlined above was jointly trained in just over 40 minutes
using 104 steps of gradient descent with a batch size of 128. Figure 3.10 visualizes
the behavior of reconstructions for a randomly chosen set of test images. While this
GP-based autoencoder performs fairly well, there is an abundance of open questions
regarding deep Gaussian processes in the wild. We hope that the ability to efficiently
sample and evaluate draws of composite functions (3.78) will enable future works to
further explore this space.

3.7 Discussion

Be it marginalizing out nuisance variables or evaluating expected utilities, integrals
play a vital role in Bayesian algorithms. All too frequently, however, these integrals
are intractable. Owing to their generality and ease of use, Monte Carlo estimators
are often the weapons of choice in combating these impediments. Nevertheless, a
Monte Carlo estimator is only as good as the samples it is based upon. And, while
we have long been able to accurately sample Gaussian process posteriors, techniques
that enable us to do so have rarely scaled well in the number of jointly distributed
terms.
Through this chapter, we developed a pathwise interpretation of Gaussian process
posteriors based on Matheron’s update rule, Theorem 3.14. Adopting this viewpoint
led to an interpretation of GP posteriors as the combination of a prior and a data-
driven updated. The virtue of this approach is that it allows us to separately
characterize the prior and the data in ways that are custom tailored to them. This
added flexibility enables us to leverage existing methods for approximating GP priors
without sacrificing our ability to faithfully represent the data.
These advantages are on full display when pathwise conditioning is used to power
Monte Carlo algorithms. Here, the ability to efficiently draw functions from (ap-
proximate) posteriors allows us to simulate vectors (f | y)(X) ∈ Rn in O(n) time.
Further, the use of function draws means that locations X may be chosen ad hoc and
typically provides access to pathwise derivatives, both of which are key properties
exploited by algorithms discussed in the preceding text. We therefore argue for
pathwise conditioning as a valuable addition to the metaphorical “toolkit”.
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Conclusion

The goal of this thesis has been to advance the real-world application of Bayesian
methods. All too often in Bayesian inference, the trouble is not so much figuring
out what to compute but determining how to compute it. Hence, we have primarily
focused on strategies for efficiently solving commonly occurring types of problems.
We began in Chapter 1 by reviewing the foundations of Bayesian decision theory.
There, we saw how a binary relation and a handful of axioms led to a decision-making
framework in which an agent’s preference for a given action can be measured as the
expectation of a corresponding utility function. This result paved the way for many
of the algorithms discussed throughout this thesis.
This connection was stressed in Chapter 2, which introduced Bayesian optimization
as the application of Bayesian decision theory to global optimization. Viewed from
this perspective, Bayesian optimization is, conceptually, rather simple: (i) the agent
will eventually use the available information to select a preferred solution, i.e. an
incumbent; (ii) a model is used to simulate what updated information states might
look like if an action is performed immediately; (iii) an optimal action is found by
maximizing the expected utility of future incumbents under the model. While cogent,
this story glosses over a number of key issues, such as how to obtain performant
models or compute expected utilities.
Along these lines, the latter half of Chapter 2 revolved around techniques for
maximizing acquisition functions. These techniques focus on two related problems.
First, how should we optimize expected utilities when integration proves intractable?
Section 2.4 attempted to help answer this question by investigating the use of
pathwise gradient estimators. Second, how can we find efficiently (near-)optimal
batches of queries X ∈ X q? Section 2.5 showed that many popular batch acquisition
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functions are submodular and used this fact to motivate greedy strategies. Together,
these techniques give guidance on how to use Bayesian optimization in the real world.
Finally, in Chapter 3, we took a step back from Bayesian optimization to examine
the general problem of scalable sampling of Gaussian process posteriors. This led us
to a pathwise view of conditioning Gaussian random variables and processes. A key
advantage of this framework is that it allows us to disentangle the way in which we
represent the prior and the data. Translating theory into practice, we showed how
these ideas open new doors for Monte Carlo methods by allowing us to efficiently
sample functions from GP posteriors.
In closing, we argue that the combination of Gaussian process modeling and Bayesian
decision-making is incredibly versatile and powerful. Gaussian processes allow us to
encode our beliefs regarding the relatively likelihood of different events and Bayesian
decision theory subsequently tells us what we should do. Adoption of this “meta-
algorithm” is often only limited by a lack of knowledge for how to execute it in a
limited amount of time. Our goal has been to help bridge this gap between what we
would like to do and what we know how to do. This problem is by no means solved,
but we hope to have done our small part to pave the way.
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