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Abstract

This thesis studies the optimal trading problem with particular attention to frictions,

taking alpha signals as given in several practical settings in modern financial markets.

Chapter 2 provides a reduced-form model for price impact of market orders. As a scal-

ing limit of the econo-physics propagator model, it has both tractability for optimization

and good empirical fit. The nonlinearity in propagator model is explained as a effect of

intraday stochasticity of the market activity. Optimal trading strategies are given for the

case of stochastic alpha signal and volume signals in closed-form solutions. Moreoever,

concrete bounds for the absence of price manipulation strategies are provided.

Chapter 3 derives an actionable derivatives hedging strategy with both market and

limit orders from the perspective of a central risk book. It is found that limit order

is only beneficial for delta-hedging when the gamma of the risky position is negative.

Additionally, the interaction between transaction cost, adverse selection and risk aversion

can be characterized by a nonlinear PDE that describes the option price. According to

empirical analysis, tactical liquidity provision is beneficial for non-competitive market

makers for reasonable trading frequencies.

Chapter 4 studies the usage of display and nondisplay limit orders for order execution.

A price impact model is postulated and the corresponding scheduling algorithm is derived.

In the case where nondisplay limit order (hidden order) is used, there is a time which

separates the trading horizon into two regimes: the former only uses hidden order, and

the latter uses the mixture of limit and hidden orders. The effectiveness and robustness

of the algorithm is shown via numerical testing in both simulated data and NASDAQ

100 Index data.
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Chapter 1

Introduction

‘How to trade optimally’ is one of the most popular and widely studied research topics in

the field of finance. It is generally known that there is no one-size-fit-all optimal trading

strategy, due to the complexity and uncertainty in market environment, and the different

notions of optimality that are most natural in different contexts. In particular, various

frictions such as price impact and other trading costs add an extra layer of complexity

to the problem. In this dissertation, we explore how to optimally trade in the presence

of frictions. In particular, we are interested in the features of the financial market that

appear more recently, for example, access to intraday transaction data, central risk books,

and non-display orders in lit pool.

Before outlining the agenda of this dissertation in more detail, we must specify the

type of trading to be discussed. In practice, trading can be generally separated into the

alpha generation process during which the number of units of each asset to be purchased

or sold is allocated, and the order execution process during which the allocated number

of units is gradually acquired or liquidated with the goal of minimizing costs caused by

market frictions. One common practice in the industry is to assign two distinct divisions

to handle the two procedures independently, or outsource one of the two entirely. Taking

alpha signals as given, this dissertation serves to provide optimal strategies for the order

execution process in several scenarios, in which market frictions and trading mechanisms

are pertinent.

15
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The primary focus of this thesis, trading frictions manifest itself in many different

forms:

� Price impact: the adverse effect on asset price in purchasing or selling a large num-

ber of units. (Torre & Ferrari, 1997) More specifically, this is the purely mechanical

impact caused by the execution. It is the largest at the instant of the execution,

and gradually dissipates as time progresses.

� Transaction costs: the additional fee charged by the venue as well as market makers

in exchange for immediate execution which is proportional to the number of units

bought or sold. It contains bid-ask spread, the difference between the best bid and

ask prices, and also make-take fee, proportional to the notional used to enter the

position with a lower bound.

� Adverse selection: the possibility of being picked-off when trading against someone

with inside information. On average, with adverse selection, one expects to lose in

the zero-sum game as a direct result of asymmetric information. This phenomenon

is especially important for market makers or agents posting limit orders, as the

execution relies on the counterparty’s discretion.

In the following, we present a brief overview of this thesis. For more in-depth discus-

sion of the respective contents as well as detailed literature review, the reader is referred

to the respective chapters.

One traditional order execution task is to acquire or liquidate a large number of units,

and in turn, price impact is the most important component. How to quickly execute

the order while incurring as little impact as possible becomes the main target here. The

optimal execution strategy largely depends on the price impact model, which describes the

relationship between order flow and asset price. Immediate execution is either extremely

expensive or virtually impossible to achieve, and the task boils down to how to split the

order into smaller chunks. The econo-physics propagator model (J. Bouchaud, Gefen,

Potters, & Wyart, 2004) describes the price as being ‘pushed’ by the trades, with each

push nonlinear in space (to the trade size) and decay in time. Despite its universally
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good fit (J. Bouchaud, Farmer, & Lillo, 2009), the propagator model remains intractable

due to its nonlinearity in space, and one can only resort to numerical solution under

this model (T. Chen, Ludkovski, & Voß, 2022; Curato, Gatheral, & Lillo, 2017). On the

other hand, the linear impact models are tractable, but does not fit the empirical data

as well as the nonlinear ones (J. Bouchaud et al., 2009). Chapter 2 reconciles the two by

showing that a scaling limit of the propagator model emerges as a linear impact model

with stochastic liquidity. This limiting model serves as a bridge between the two: it fits

the empirical data better than the linear impact model in the empirical analysis, and still

remains tractable for optimization. Moreover it answers the practical question: ‘how to

incorporate intraday transaction data into execution strategy’. The three main results of

this chapter are:

� Nonlinear price impact models can be described in reduced form by tractable lin-

ear models,in which stochastic price impact parameter links illiquidity and market

activity.

� Optimal trading strategies with stochastic alpha and volume signals have myopic

closed-form solutions for standard price impact models that only depends on one’s

current alpha, alpha decay, and volume signals.

� We give concrete bounds for volume curves and predictions for the absence of price

manipulation strategies. For instance, for fitted square-root price impact models,

with all other things being equal, (il)liquidity that doubles within 15 minutes imply

price manipulation opportunities.

Accounting for the frictions incurred during derivatives hedging is another popular

research question in mathematical finance. In option hedging, as the required position

behaves like a diffusion process, transaction cost takes over as the primary minimiza-

tion objective instead of price impact. With the celebrated frictionless option pricing

paper Black and Scholes (1973); Merton (1973) as a basis, Leland (1985) incorporated

proportional transaction costs and derived the optimal hedging strategy as well as the

corresponding option price. Chapter 3 provides an actionable derivatives hedging strategy
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with both market and limit orders from the perspective of a central risk book, where the

risks of several trading desks are managed collectively. Limit orders reduce transaction

costs, as one earns the half-spread instead of being charged, but bring along the possi-

bility of being picked-off. This chapter has three essential, quantifiable, and reproducible

messages:

� Limit order is only beneficial for delta-hedging in the case of negative gamma.

� The nontrivial tradeoff between transaction cost, adverse selection and risk aversion

can be characterized by a nonlinear PDE describing the option price.

� According to empirical analysis, tactical liquidity provision is beneficial for non-

competitive market makers for reasonable trading frequencies, as per Figure 1.1.

Figure 1.1: Scatter plot of the key variables for limit order profitability: adverse selection
and spread. To normalize the spread across the stock universe, one rescales it by the
stock’s volatility.

The inclusion of other order types in traditional order execution task is also an im-

portant research direction of mathematical finance. Different from Chapter 2, Chapter 4

studies the usage of display limit orders and non-display limit orders (hidden orders).
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”The hidden order ratio reveals the extent to which on-exchange trade exe-

cutions occur in a less than fully transparent fashion due to the participant’s

preferential use of hidden orders. As market dynamics continue to evolve,

changes (or lack thereof) in the hidden order ratio can signal changes in the

level of pre-trade transparency on exchanges.” (US Securities and Exchange

Commission, 2019)

As suggested by the U.S. Securities and Exchange Commission, the nondisplay limit

order is a critical type of order that reflects the pre-trade transparency on exchanges.

The hidden volume ratio has gradually increased from 10% at 2013 to 28% at 2022, as

supported by Figure 1.2. Over all exchanges, it has grown from 9% in 2012 to 15% to

2022(CBOE Insights, 2022). Therefore, it is natural to conclude that hidden order has

become an important instrument for on-exchange trading, and should be considered for

liquidation tasks.

Figure 1.2: Hidden volume ratio - the percentage of the total volume of trades against
hidden orders divided by the total volume of all trades. The hidden volume ratio
of NASDAQ equities market from 2013 to 2022 is provided by the data visualization
tool at https://www.sec.gov/marketstructure/datavis/ma exchange hiddenvolume

.html#.ZCKvbHbP2K1.

Chapter 4 analyzes the passive order perspective of order execution problem. In par-

ticular, we postulate and estimate the price impact structure of both limit and nondisplay

(hidden) orders, and derive and test the corresponding scheduling algorithm for order ex-

ecution. Broadly speaking, there are three main takeaways:

� The scheduling algorithm designed for limit and hidden orders is different from

the one in R. Almgren and Chriss (2001) due to the structural difference of price

https://www.sec.gov/marketstructure/datavis/ma_exchange_hiddenvolume.html#.ZCKvbHbP2K1
https://www.sec.gov/marketstructure/datavis/ma_exchange_hiddenvolume.html#.ZCKvbHbP2K1
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impact for passive orders: The impact scales with the size of the order standing on

the book, instead of the size of order executed.

� In the case where hidden order is used, there is a time which separates the trading

horizon into two regimes: the former only uses hidden order, and the latter uses

the mixture of limit and hidden orders.

� The effectiveness and robustness of the algorithm using combination of hidden and

limit orders while incorporating the self-exciting effect of market order is shown via

numerical testing in both simulated data and NASDAQ 100 Index data.



Chapter 2

Stochastic Liquidity as a Proxy for

Nonlinear Price Impact

This chapter is a joint work with Johannes Muhle-Karbe and Kevin Webster.

2.1 Introduction

Optimal execution and trading algorithms rely on price impact models, like the prop-

agator model, to quantify trading costs. Empirically, price impact is concave in trade

sizes, leading to nonlinear models for which optimization problems are intractable and

even qualitative properties such as price manipulation are poorly understood. However,

we show that in the diffusion limit of small and frequent orders, the nonlinear model

converges to a tractable linear model. In this high-frequency limit, a stochastic liquidity

parameter approximates the original impact function’s nonlinearity. We illustrate the

approximation’s practical performance using limit-order data.

“Market liquidity – the ability to rapidly execute large financial transactions

with a limited price impact – is a key feature of financial market efficiency

and functioning.” (Committee on the Global Financial System, 2014)

As succinctly summarized by the Committee on the Global Financial System, the price

impact of trades is an essential element of financial markets. For instance, price impact

21
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models are used to optimize trade execution (R. Almgren & Chriss, 2001), analyze trans-

action costs (Kolm & Westray, 2021), and backtest novel trading strategies (Waelbroeck,

Federspiel, Marchini, & Gomes, 2013). Therefore, two central challenges in trading are

(i) how to measure price impact empirically and (ii) how to incorporate price impact into

trading algorithms.

Both challenges have given rise to large and active – but somewhat separate – liter-

atures. Indeed, the empirical literature consistently finds that price impact depends on

trade size in a concave, nonlinear manner, both when estimated from proprietary trade

data and the public tape (cf. R. Almgren, Thum, Hauptmann, and Li (2005); J. Bouchaud

et al. (2004); Frazzini, Israel, and Moskowitz (2018); Gabaix, Gopikrishnan, Plerou, and

Stanley (2006); Hasbrouck (1991); Hasbrouck and Seppi (2001); Loeb (1983) and the

references therein). In particular, the evolution of the aggregate price impact can be de-

scribed in a parsimonious yet flexible manner by the “propagator model” of J. Bouchaud,

Gefen, Potters, and Wyart (2004): each trade causes an immediate impact, and a decay

kernel in turn describes how this effect “propagates” across time.1

The empirical prowess of concave propagator models has been reproduced in dozens

of studies, as reviewed by J. Bouchaud, Farmer, and Lillo (2009). However, such models

are notoriously intractable from an analytical point of view. Consequently, the optimal

control literature primarily focuses on linear price impact. An impressive toolbox has

emerged for linear models, covering optimal trading (Lehalle & Neuman, 2019; Lorenz &

Schied, 2013; Min, Maglaras, & Moallemi, 2022; Neuman & Voß, 2020; Neuman & Voß,

2022; Obizhaeva & Wang, 2013), absence of price manipulation (Fruth, Schöneborn, &

Urusov, 2013, 2019), and mean-field games (Fu, Horst, & Xia, 2022; Neuman & Voß, 2021;

Schied, Strehle, & Zhang, 2017). Yet, all these results crucially rely on the linearity of the

price impact dynamics. In contrast, the analysis of nonlinear propagator models remains

limited to numerical studies (T. Chen, Ludkovski, & Voß, 2022; Curato, Gatheral, &

1Regressions of price changes on lagged values of the order flow as in Hasbrouck (1991) are an early
predecessor of this model class. One mechanism that generates this “impact decay” are the inventory
costs of dealers, which can only gradually externalise their positions (Bank, Ekren, & Muhle-Karbe, 2021;
Gârleanu & Pedersen, 2016). The same effect also appears when new information arrives continuously
over time, but is only gradually incorporated into prices through trading (Bernhardt, Seiler, & Taub,
2010; Vodret, Mastromatteo, Tóth, & Benzaquen, 2021).
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Lillo, 2017).

This chapter builds a bridge between these two strands of literature. Indeed, us-

ing a functional central limit theorem of Jacod and Protter (2012), we show that linear

continuous-time models approximate nonlinear discrete-time propagator models. The

approximation applies in the realistic scaling limit of diffusive order flow with a nontriv-

ial quadratic variation. The discrete impact function’s nonlinearity does not disappear

in the high-frequency limit, but instead manifests itself through a stochastic price im-

pact parameter, which fluctuates with the volatility of the aggregate order flow. In this

way, our limit theorem links the unobservable illiquidity parameter to measured market

activity as proxied, e.g., by moving averages of trading volume.

The reduced-form linear limit brings to bear the potent tools developed for such linear

impact models and links their results to market activity. For instance, we show that the no

price manipulation condition of Fruth et al. (2019) translates into an upper bound for the

percentage changes of market activity, which is straightforward to measure empirically.

Using public trading data alone, this flags periods to investigate for suspicious trading

activity.

As another application, we discuss what market flow dynamics lead to execution prices

for which it is difficult to make systematic trading profits. With linear permanent price

impact, this is equivalent to order flow being (close to) a martingale as in Kyle (1985) but

in stark contrast to the strong persistence observed empirically (Lo &Wang, 2010). When

impact decays over time, the execution price’s martingale property is instead tantamount

to a trend-following order flow, where autocorrelation of the order flow offsets impact

decay, compare J. Bouchaud et al. (2004). In this regime, non-trivial flow can create

significant price deviations away from fundamental prices as in Black (1986), without

leading to statistical arbitrage opportunities for strategic agents.

To demonstrate these analytical results’ practical application, we complement them

with an empirical study. To wit, we compare the performance of the model with lin-

ear but stochastic price impact motivated by our limit theorem to alternative models,

including the non-linear propagator model. Our stochastic model does not introduce
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additional free parameters: the realized trading volume pins down the model. Despite

this parsimony, our stochastic model markedly improves linear price impact’s explanatory

power over a standard constant parameter model, halving the gap between concave and

linear propagator models. The model grounded in our limit theorem also outperforms

alternative dynamic models, e.g., based on normalizing with the limit order book depth

or by refitting the model on different time bins (Cont, Kukanov, & Stoikov, 2014).

From a practical point of view, this chapter has three broad takeaways:

(a) Nonlinear price impact models can be described in reduced form by linear models,

whose stochastic price impact parameter (“Kyle’s lambda”) mechanically links illiq-

uidity and market activity, measured by moving averages of the order flow or more

general volume curves.

(b) Optimal trading strategies with stochastic alpha and volume signals have closed-

form solutions for standard price impact models, including the square-root propaga-

tor model. The corresponding optimal trading strategy is myopic: one derives the

optimal trading target considering only one’s current alpha, alpha decay, and volume

signals.

(c) To rule out price manipulation strategies, volume curves and predictions must satisfy

concrete bounds. For instance, for fitted square-root price impact models, volume

predictions that – ceteris paribus – double within 15 minutes imply price manipulation

opportunities.

The remainder of this chapter is organized as follows. Section 2.2 recalls the discrete

nonlinear propagator models of J. Bouchaud et al. (2004). Section 2.3 introduces our

continuous-time scaling limit and the corresponding limit theorem. Section 2.4 describes

optimal trading strategies in the limiting model, the absence of price manipulation, and

order-flow dynamics that lead to martingale execution prices. Finally, Section 2.5 contains

our empirical case study. For better readability, all proofs are collected in Appendix 2.7.
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Notation

Throughout this chapter, we fix a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) and de-

note by L2 the adapted processes (Xt)t∈[0,T ] satisfying E[
∫ T

0
|Xt|2dt] < ∞. We first

consider trading on a discrete, equidistant time grid tNn = n∆tN with mesh width

∆tN = T/N. Then, we pass to the continuous-time limit N →∞ in a second step. The

samples of any continuous-time process (Xt)t∈[0,T ] along this grid and the corresponding

discrete differences are denoted by

XN
n = XtNn

and ∆XN
n = XN

n −XN
n−1.

2.2 Discrete-Time Microstructure Model

We first recall the propagator model of J. Bouchaud et al. (2004), which describes on a

discrete microstructure level how each trade’s price impact propagates across time.

To ease notation, we focus on a financial market with two assets. The first one is

safe, with the interest rate normalized to zero for simplicity. The second asset is risky.

A continuous semimartingale S models the asset’s fundamental price: S describes price

changes due to exogenous factors such as news rather than trading. Another continuous

semimartingale F models the (signed) order flow F . Finally, a price impact model de-

scribes how the order flow shifts the actual market price relative to its fundamental level.

In the propagator model, each trade has an immediate impact described by a function

gN(·). This initial price shift dissipates over time according to a decay kernel. Here, we

focus on the simplest case where impact decays at a constant rate.2

Definition 2.2.1. At the microstructure level, price impact has the dynamics

∆INn = −βINn−1∆tN + gN
(
∆FN

n

)
, (2.1)

2The empirical literature typically finds kernels of power form (e.g., J. Bouchaud, Kockelkoren, and
Potters (2006)). However, our fitting results in Section 2.5 suggest that the choice of the decay rate
within the exponential class only has a second-order effect compared to the form of the price impact
function. Therefore, we do not pursue such more sophisticated but less tractable model extensions here.
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for some odd function gN ∈ C1 that is concave on [0,∞).

As the function gN is odd, the price impact of purchases and sales is symmetric.

Concavity means that trading twice the amount at most doubles the price impact. The

simplest case is linear impact, which corresponds to the model of Obizhaeva and Wang

(2013). However, for empirical data, one improves the model’s fit by passing to a concave

parametric class of functions, compare Section 2.5. The literature fits price impact models

on proprietary order data (e.g., R. Almgren et al. (2005); Bershova and Rakhlin (2013);

Bucci, Benzaquen, Lillo, and Bouchaud (2015); Frazzini et al. (2018)) and public trading

data (e.g., J. Bouchaud et al. (2004); Y. Chen, Horst, and Hai Tran (2019); Cont et al.

(2014); Loeb (1983)). For a review and comparison of price impact estimations across

proprietary data, see Zarinelli, Treccani, Farmer, and Lillo (2015).

The shape of the function g at the microstructure level is a particular focus in three

papers:

(a) In the original propagator model of J. Bouchaud et al. (2004), gN(x) ∝ log(x).

(b) J. Bouchaud et al. (2009) review empirical results around the non-linear behavior of

price impact at the fill level. These find impact functions of power form gN(x) ∝ xp

with exponents p ∈ [0.2, 0.5].

(c) For a database of institutional trades, Bucci, Benzaquen, Lillo, and Bouchaud (2019)

document a crossover between a linear market impact regime and a square-root regime

as a function of the order’s size, i.e., gN(x) ∝ x for small x and gN(x) ∝ x1/2 for

larger x.

2.3 Scaling Limit

We now consider the continuous-time scaling limit of the impact dynamics (2.1) in the

regime where orders are small, frequent, and have nontrivial quadratic variation. Fig-

ure 2.1 illustrates this diffusive nature of the aggregate order flow for empirical data.
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Figure 2.1: Cumulative signed order flow for PayPal on January 7, 2019.

Carmona and Webster (2019); Webster et al. (2015) performed formal statistical tests

confirming diffusivity of the flow on Nasdaq’s public trading tape. Carmona and Leal

(2021) carried out formal tests on the Toronto stock exchange and highlight the diffusivity

of individual traders’ flow.3

We model the diffusive order flow by an Itô process F ∈ L2 with dynamics

dFt = µF
t dt+ vtdWt.

Here W is a Brownian motion, the drift rate µF is a locally bounded càdlàg process, and

the positive volatility process v has Itô dynamics

dvt = atdt+ ηtdWt + btdW
⊥
t ,

for a Brownian motion W⊥ independent of W and locally bounded, càdlàg coefficients

a, η, b.

Remark 2.3.1. The order flow’s volatility v corresponds to what practitioners call vol-

ume curves. For example, a widespread practice is to measure the sum
∑

n |∆FN
n | of

unsigned volumes over some time interval. Brokers measure and predict such sums in

VWAP (Volume Weighted Average Price) algorithms. Moreover, the daily volume traded

on the stock is computed in the same manner.

3The Toronto and Australian stock exchanges are examples where trading is not anonymous, enabling
Carmona and Leal (2021) to analyze traders separately rather than in the aggregate. Our central limit
theorem 2.3.3 only requires aggregate diffusivity. Our optimal trading strategies from Lemma 2.4.1 imply
individual difusivity for statistical arbitrageurs with stochastic signals.
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By the functional law of large numbers (Jacod & Protter, 2012, Theorem 7.2.2),

∆tN
∑
n

∣∣∣ 1√
∆tN

∆FN
n

∣∣∣→√
2
π

∫
vtdt,

uniformly on compacts in probability. Therefore, we refer to v as market activity, as it is

simply a (renormalized) estimate of unsigned market volumes. Practitioners commonly

predict the market activity v in volume curves. Such models could be deterministic or

include stochastic factors, but are always time-varying: market activity displays a pro-

nounced time-of-day effect.

Suppose the impact function gN(x) in (2.1) is linear as in Obizhaeva and Wang

(2013). Then, the discrete price impact model has a well-defined continuous-time limit:

an Ornstein-Uhlenbeck process driven by the order flow. To obtain a nontrivial, finite

limit for diffusive order flow also with nonlinear impact, we consider impact functions

that scale as follows:

gN(x) =
√
∆tNg

(
1√
∆tN

x
)
, (2.2)

for a universal odd function g ∈ C1 that is concave on [0,∞).4

Remark 2.3.2. Two different perspectives motivate the scaling (2.2):

(a) As the order flow observed empirically has a nontrivial quadratic variation, any

continuous-time limiting model should be compatible with this. Via the functional

central limit theorems of Jacod and Protter (2012), this naturally leads to the rescal-

ing (2.2).

Alternatively, one could also model the price impact of rough trades (say, the over-

all market) and smooth trades (say, the trades of a given agent liquidating a size-

able position) with separate price impact models. However, this conflicts with the

“anonymity assumption”, which states that the same functional form applies to all

trades, regardless of origin. Empirical support for this is provided by Tóth et al.

(2011).

4Here we note that the dynamics of order flow F does not depend on N but the impact I does via
the propagator model (2.1).



29 Chapter 2. Stochastic Liquidity for Nonlinear Price Impact

(b) From a microstructure perspective, one can derive price impact’s nonlinearity from

a limit order book model. Obizhaeva and Wang (2013) deduce linear price impact

from a block-shaped order book. Carmona and Webster (2019) derive nonlinear

price impact from a general order book shape.If one wants to keep the “distance”

between the bid and ask sides of the order book proportional to price volatility (in

line with related work on bid-ask spreads such as Wyart, Bouchaud, Kockelkoren,

Potters, and Vettorazzo (2008)), then the scaling for a large number of trades again

must be of the form (2.2).

We now state our main result, which shows that the continuous-time limit of the

nonlinear impact dynamics (2.1) with the rescaling (2.2) is a linear price impact model.5

Appendix 2.7.1 outlines how Theorem 2.3.3 follows from the functional central limit the-

orem (Jacod & Protter, 2012, Theorem 10.3.2(a)), and also explains how the linearization

can be formally derived from a Taylor expansion in the simplest case of iid order flow.

Theorem 2.3.3. As the number N of timesteps tends to infinity, the impact IN in the

nonlinear propagator model (2.1) converges (stably in law) to the linear impact model

dIt = −βItdt+ λtdFt + ηtχtdt+ θtdW
′
t . (2.3)

Here,

λt =

∫ ∞

−∞
g′(x)ϕvt(x)dx, χt =

1

2

∫ ∞

−∞
(v−2

t x2 − 1)g′(x)ϕvt(x)dx, θt =
√
λ2
tv

2
t + ζ2t − 2λtht,

for

ζt =

√∫ ∞

−∞
g2(x)ϕvt(x)dx, ht =

∫ ∞

−∞
xg(x)ϕvt(x)dx.

ϕv is the density function of a Gaussian law with mean zero and standard deviation v > 0,

5For i.i.d. order flow, an antecedent of this approximation already appears in J. Bouchaud et al.
(2009). Empirical evidence of Patzelt and Bouchaud (2018) supports this for reasonably small trades (in
line with our diffusive model for the order flow).
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and W ′ is a Brownian motion whose quadratic covariation with W is

d[W,W ′]t =
1

θt

(
ht

vt
− λtvt

)
dt.

Let us briefly discuss the elements of the limiting dynamics (2.3). The first term is

the exponential decay kernel directly implied by the linear mean-reversion of the discrete

impact process.

The second term is central: the continuous-time limit of the nonlinear propagator

model (2.1) has linear price impact. However, the nonlinearity of the discrete price impact

function does not disappear in the continuous-time limit. Instead, it is incorporated

through a stochastic illiquidity parameter λ, which fluctuates with the stochastic volatility

v of the order flow F . Collin-Dufresne and Fos (2016) derive a similar link between the

volatility of trading volumes and stochastic liquidity in an extension of the Kyle model.

The third term in (2.3) is an additional drift introduced by the concavity of the price

impact function. If the volatility of the order flow is smooth (e.g., a deterministic function

of time of day only), then this term disappears. However, if the order flow’s volatility

follows a square-root process, for example, then this drift rate is a constant. We have

evaluated this more general version of the limiting model empirically; adding an intercept

term to the linear price impact model only marginally improves the model fit, suggesting

that this term is only of secondary importance.

Finally, the last term in (2.3) is additional noise typical for functional central limit

theorems.

Remark 2.3.4. Theorem 2.3.3 mechanically links the market activity v with liquidity.

Indeed, the price impact parameter λ, sometimes referred to as Kyle’s lambda, measures

price illiquidity by quantifying how severely prices react to trades and drive up trading

costs. Our representation

λt =

∫ ∞

−∞
g′(x)ϕvt(x)dx

establishes a one-to-one relationship between the illiquidity measure λ and the market
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activity v. As a concrete example, if g(x) ∝ x1/2,6 then λt ∝ v
−1/2
t . In this case,

doubling the market activity reduces illiquidity by about 30%. In contrast, in the standard

Obizhaeva and Wang model, doubling the market activity does not decrease price illiquidity

as measured by Kyle’s lambda.

2.4 Trading Applications of the Reduced-FormModel

So far, we have analyzed how a given diffusive order flow impacts prices. Now, we outline

how the limiting dynamics’ linearity supports closed-form expressions for optimal trading

strategies. This leverages a rich body of work in stochastic control (Ackermann, Kruse, &

Urusov, 2021; Alfonsi, Fruth, & Schied, 2010; Becherer, Bilarev, & Frentrup, 2018; Fruth

et al., 2019; Fu et al., 2022; Gârleanu & Pedersen, 2016; Graewe & Horst, 2017; Mastro-

matteo, Benzaquen, Eisler, & Bouchaud, 2017; Min et al., 2022; Neuman & Voß, 2020;

Obizhaeva & Wang, 2013; Schied et al., 2017). For the linear limiting price impact model,

results of this kind are essentially known. However, our limit theorem shows that the

closed-form optimal trading strategies in linear models with suitable “effective” stochas-

tic liquidity are also approximately optimal for nonlinear propagator models. Moreover,

this interpretation naturally links optimal trading to the market flow’s activity. Our

result thereby sheds new light on conditions for the absence of price manipulation. We

also derive constraints on market flow dynamics that rule out simple trading profits for

unconstrained arbitrageurs.

2.4.1 External Inputs and Goal Functional

We now specify the optimization problem of a trader choosing their order flow F . The

external inputs are the fundamental price S of the risky asset and the external order flow

F̄ of other market participants. For simplicity, we assume that S and F̄ are both Itô

6Of course, one cannot directly apply Theorem 2.3.3 to a square-root impact function g(x) =
c sgn(x)

√
|x| due to a lack of differentiability at the origin. However, the limit theorem applies for

the smoothed version gε(x) = x
|x|+ε

√
|x| + x ε

|x|+ε , which in fact is consistent with the crossover from

linear to square root impact documented in Bucci et al. (2019). Then, the resulting formulas remain well
behaved when the regularization parameter ε goes to zero.
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processes whose drift rates belong to L2 and whose volatilities are uniformly bounded

and bounded away from zero. Moreover, the external flow’s volatility is smooth.

We suppose that the trader we consider has a small influence on the overall order

flow’s volatility. For the linear dynamics of the aggregate price impact motivated by

Theorem 2.3.3,

dIΣt = −βIΣt dt+ λtd(Ft + F̄t) + dMt, IΣ0 = 0,

this means that the external order flow pins down the stochastic liquidity parameter λ and

the continuous martingale M . Therefore, the trader treats both as exogenous processes

in their optimization problem.7 This assumption is justified, for example, if the trader’s

own order flow is smooth, so that it does not contribute to the overall order-flow volatility.

Alternatively, this regime also applies in a mean-field setting with many agents where

each makes a small contribution to the overall trading volume. Finally, a third example

arises in the – realistic – regime when fundamental prices and external impact are close

to a martingale, so that the trader’s profit opportunities are small relative to the trading

activity in the overall market.

Crucially, assuming the impact parameters to be exogenous does not imply that the

trader’s order flow has no price impact. Instead, by linearity, one decomposes the aggre-

gate price impact into the external impact

dĪt = −βĪtdt+ λtdF̄t + dMt, Ī0 = 0,

and the trader’s own impact

dIt = d(IΣt − Īt) = −β(IΣt − Īt)dt+ λtdFt = −βItdt+ λtdFt, I0 = 0.

If the trader values the terminal position FT at the execution price ST + ĪT in the absence

7Note that the third term in (2.3) is zero here because we have assumed the order flow’s volatility to
be smooth.
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of the trader’s own impact,8 then the corresponding cash position in discrete time is

FN
N (SN

N + ĪNN )−
N∑

n=1

(
SN
n−1 + ĪNn−1 + INn−1 +∆SN

n +∆ĪNn + 1
2
∆INn

)
∆FN

n .

In this budget equation, trades are settled after the fundamental price has moved, and

at the midpoint between the price before and after the trader’s own execution. Regard-

ing the contemporaneous execution of external orders, we assume the trade incurs these

orders’ entire impact. This rules out our trader consistently executing right before or

simultaneously to other market participants – a no-frontrunning assumption. In contin-

uous time, the trader’s P&L converges to

FT (ST + ĪT )−
∫ T

0
(St− + Īt− + It−)dFt − [S + Ī + 1

2
I, F ]T .

Integration by parts applied to FT (ST + ĪT ) in turn shows that the trader’s expected P&L

equals

E
[ ∫ T

0
Ft−d(St + Īt)−

∫ T

0
It−dFt − [1

2
I, F ]T

]
. (2.4)

2.4.2 Optimal Trading with a Predictive Signal

As the liquidity parameter λ is bounded, bounded away from zero and smooth, one can

write it as

λt = eφt ,

where φ is differentiable with bounded derivative φ′. Risk-neutral optimal trading prob-

lems like (2.4) are highly tractable even with stochastic liquidity parameters. This be-

comes particularly clear after switching the trader’s control variable from risky positions

to the corresponding impact. Then, the optimization problem becomes myopic and can

be solved directly by pointwise maximization. This observation first appears in the opti-

mal execution results of Ackermann et al. (2021); Fruth et al. (2019), but also applies if

8Alternatively, one could obtain equivalent results if the terminal position is valued at the fundamental
value ST . The crucial point is that the trader’s own impact should not enter the terminal valuation to
avoid manipulation of the final mark-to-market price.
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the trader has a predictive signal about future price changes (“alpha”):

Lemma 2.4.1. Suppose the trading signal

αt = Et[ST + ĪT − St − Īt]

is an Itô process with bounded volatility and denote its drift rate by µα. Then, the goal

functional (2.4) is equivalent to a myopic problem in impact space:

E
[∫ T

0

e−φt

(
−Itµα

t + (β + φ′
t)αtIt − 2β+φ′

t

2
I2t

)
dt− 1

2
e−φT I2T

]
. (2.5)

The corresponding holdings can be recovered from Ft = F0 +
∫ t

0
1
λs
dIs +

∫ t

0
β
λs
Isds. Under

the no price manipulation condition 2β + φ′
t > 0, the optimal impact is

I∗t =
β+φ′

t

2β+φ′
t
αt − 1

2β+φ′
t
µα
t , t ∈ [0, T ), I∗T = 0. (2.6)

The myopic relationship between impact, alpha, and liquidity parameters in Equa-

tion (2.6) massively simplifies the implementation of optimal trading strategies:

Example 2.4.2 (Fast-decaying impact). Assume φ′
t ≪ β: price impact decays much

faster than liquidity varies.9 In this regime, the myopic optimality equation (2.6) simpli-

fies to

I∗t =
1

2

(
αt − β−1µα

t

)
.

Therefore, the optimal impact state depends only on (a) the trader’s alpha level αt, (b)

the trader’s alpha decay −µα
t , and (c) price impact’s decay β. Specifically, the trader

simply targets an impact state equal to half their alpha level and modulates that impact

state based on their alpha’s decay.10

Gârleanu and Pedersen (2016) highlight alpha decay’s key role for optimal trading

strategies:

9In practice, the heuristic φ′
t ≪ β is verified for stocks during most of the trading day: the only time

it occasionally fails is near the close, when liquidity may sharply rise.
10In this regime, the optimal impact state doesn’t depend on Kyle’s lambda anymore: λ is only used

to translate the optimal impact I∗ into a trading strategy F ∗.
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“The alpha decay is important because it determines how long the investor

can enjoy high expected returns and, therefore, affects the trade-off between

returns and transactions costs.”

Remark 2.4.3 (Non-parametric models). Today, trading desks typically construct pre-

dictive models using non-parametric methods, such as machine learning. The stochastic

model variables such as αt, and λt then do not have simple explicit forms. For exam-

ple, rather than pinning the price dynamics down using an SDE, practitioners compute

Bayesian estimators

αt = E [ST − St| Ft]

with a wide array of non-parametric models. This is in stark contrast to traditional control

models, where price dynamics and model ingredients usually have explicit forms such as

Bachelier or Ornstein-Uhlenbeck dynamics.

By reducing optimization to a myopic problem, Lemma 2.4.1 allows to deal with gen-

eral non-parametric signals, such as those coming from neural networks, without addi-

tional effort. The closed-form solutions for general αt and λt allow one to focus on fitting

effective models for alpha, alpha decay and volume, without having to use numerical op-

timizers to turn these forecasts into an optimal trading strategy.

2.4.3 Absence of Price Manipulation

The wellposedness condition 2β + φ′
t > 0 in Lemma 2.4.1 first appears in Fruth et al.

(2013, 2019), who point out that:

“Time-dependent liquidity can potentially lead to price manipulation. In

periods of low liquidity, a trader could buy the asset and push market prices

up significantly; in a subsequent period of higher liquidity, he might be able to

unwind this long position without depressing market prices to their original

level, leaving the trader with a profit after such a round trip trade.”
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To see this, suppose a trader buys ∆t shares in a bulk trade at time t and sells them in

another bulk trade at time t′ > t. Then, the corresponding trading profits (2.4.1) are

−
(
St +

1
2
λt∆t

)
∆t +

(
St′ + e−β(t′−t)λt∆t − 1

2
λt′∆t

)
∆t

= (St′ − St)∆t +
1
2
λt

(
2e−β(t′−t) − 1− e

∫ t′
t φ′

sds
)
∆2

t .

For sufficiently large trades, the quadratic impact term dominates the linear gains from

expected fundamental price changes. For small t′ − t, the series representation of the

exponential shows that this quadratic term is positive if 2β + φ′
t < 0. Consequently,

if illiquidity decreases too promptly relative to impact decay, then large round trips

executed quickly allow the trader to obtain arbitrarily large expected profits. These

profits do not exploit any signals about fundamental price changes, but solely rely on the

price manipulation through the trader’s own impact.

Remark 2.4.4. Our limit theorem 2.3.3 linking price illiquidity λt and market activity

vt makes this trading intuition even more concrete. For example, consider the square-

root model g(x) ∝
√
x.11 Under that model, eφt = λt ∝ v

−1/2
t and in turn 2φ′

t = −v′t/vt.

Therefore, in this model, the no price manipulation condition in Lemma 2.4.1 is an upper

bound on percentage changes v′/v in terms of impact decay β: v′t/vt < 4β. Integration of

this bound shows that, for a square-root model and ceteris paribus, trading activity cannot

double in less than a quarter of the impact model’s half-life log(2)/β. Concretely, for

a price impact with a (realistic) one hour half-life, our no-price manipulation condition

states that, under the square-root impact model, trading activity cannot double in less

than 15 minutes without creating a price manipulation opportunity.

Note that price manipulation is asymmetric in liquidity. Negative shocks to market

activity, where trading and, in turn, liquidity quickly dries up, do not lead to price ma-

nipulation. In contrast, positive liquidity shocks, where trading liquidity quickly floods the

market, potentially invite price manipulation.

11Note that this discussion focuses on the time scales on which the reduced-form linear limiting model is
an effective approximation. At more more granular levels, price manipulation with nonlinear propagator
dynamics is more delicate .
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Relating Fruth, Schöneborn, and Urusov’s no-price manipulation condition to market

activity is not merely a theoretical result. Market activity is a straightforward variable to

measure, forecast, and monitor: banks provide volume curves that model the evolution of

vt over time for execution purposes. Therefore, such models can determine how sensitive

a stock is to price manipulation. For example, one could determine, at least ex-post,

whether liquidity rose fast enough to make liquidity-based price manipulation possible.

Of course, one would still need to prove that a suspicious trader anticipated or caused the

liquidity shock ahead of time and traded accordingly, pushing up the price when liquidity

was low and exiting their position when liquidity rapidly increased. But this statistic can

still flag, e.g., to regulators, what periods should be investigated more closely to identify

suspicious trading behavior.

2.4.4 Martingale Flow vs. Martingale Impact

We now consider another novel application of the optimal trading strategies from Lemma 2.4.1

combined with the Limit Theorem 2.3.3. To wit, we discuss how these results identify

order-flow dynamics compatible with execution prices that are (almost) martingales, cor-

responding to (almost) efficient markets where it is difficult to make systematic trading

profits.

In models with linear permanent price impact such as the Kyle model, martingale

order flow directly translates into martingale impact and in turn martingale execution

prices. In contrast, if impact mean reverts to zero as in (2.3), then martingale order flow

creates a predictive trading signal for observant traders. To wit, even if the fundamental

price S is a martingale, the trading signal α in Lemma 2.4.1 is not zero but, instead,

αt = (e−β(T−t) − 1)Īt, if the external flow is a martingale.

Consequently, µα
t = βĪt, so that the optimal impact from Lemma 2.4.1 is

I∗t =
β + φ′

t

2β + φ′
t

αt −
1

2β + φ′
t

µα
t = −Īt +

β + φ′
t

2β + φ′
t

e−β(T−t)Īt, t ∈ [0, T ), and I∗T = 0.
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Whence, if the time horizon T − t is relatively long compared to impact decay β, then a

risk-neutral trader completely offsets any deviation Ī from the fundamental value caused

by external noise trading. In particular, there is no aggregate trading activity in this

case, as the risk-neutral arbitrageur is happy to provide all liquidity the noise traders

demand.

Lemma 2.4.1 suggests that the trading price S + Ī needs to be close to a martingale

to rule out such simple profit opportunities. Therefore, with impact decay, external

impact Ī rather than external flow should (approximately) have martingale dynamics.

The linear limiting model (2.3.3) reveals that order-flow dynamics compatible with this

are feedback functions of the current impact state.12 To wit, if the external flow has Itô

dynamics dF̄t = µF̄
t dt + vtdWt, then we need 0 = −βĪt + λtµ

F̄
t and in turn µF̄

t = β
λt
Īt.

The corresponding external impact then has the form dĪt = λtvtdWt + θtdW
′
t . Thus,

the volatility vt of the order flow can be chosen freely, similar to Heath-Jarrow-Morton

models for the term structure of interest rates; the corresponding drift rates are in turn

pinned down.

In the linear impact model, martingale dynamics for the external impact therefore

require “trend-following” order flow. To wit, after aggregate buying (leading to a positive

current impact state Īt), the order flow continues to drift up at rate β
λt
Īt to offset the

impact decay. Our martingale condition for external price impact is a tractable reduced-

form model for the observations made by J. Bouchaud et al. (2004), who discuss the links

between positively autocorrelated order flow, mean-reverting price impact dynamics, and

martingale prices.

12An intriguing mathematical question is whether feedback order flow as above yields the same limiting
result when directly applied in the discrete, concave propagator model (2.1). Here, the challenge is that
the limit theorems of Jacod and Protter (2012) no longer apply because the order flow is not a fixed
process anymore but instead depends on the corresponding impact state.
For realistic parameter values, numerical experiments suggest that the feedback motivated by the limit-

ing model still leads to impact with approximate martingale dynamics. A formal proof of a corresponding
functional central limit theorem is an intriguing direction for future research.
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2.5 Empirical Analysis

As emphasized by the Committee on the Global Financial System (2014), measuring price

impact is crucial, e.g., when executing sizable trades and scaling investment strategies.

Such measurements are relatively straightforward once given a parametric model. One

can then fit the model parameters on publicly available trading tapes, such as NYSE

Trade And Quote (TAQ) or Nasdaq Equities Market Data.13 This chapter leverages

LOBSTER data, which presents all Nasdaq limit order book events in a standard table

format. In particular, the data includes all public trades and the limit order book state

before and after the trade. Our study covers the S&P 500 constituents over the year

2019.

2.5.1 Methodology

In line with Cont et al. (2014), we bin the data using a bin-size of ∆t = 10 seconds.

Therefore, we group and aggregate all discrete events into a set number of bins per day.

For instance, there are 390 minutes in a trading day, leading to 2340 bins per stock and

date and in turn 1.17 million data points per day. Binning the data reduces its size

and standardizes the number of data points across days and stocks. The ten-second bin

choice presents a sensible trade-off between accuracy and data reduction but is otherwise

arbitrary.

We construct three variables of interest from the events:

� the observed midprice Pt at the start of the bin and the return (Pt+∆t−Pt)/Pt over

the bin. We use geometric rather than arithmetic returns to make them unitless;

over the time scales we consider, normalizing by the initial price level instead would

lead to virtually the same results;

� the unsigned volume |∆Ft| traded over the bin;

� the signed volume ∆Ft traded over the bin.

13NYSE and Nasdaq provide customers with public trading data, and the historical datasets are helpful
for building price impact models. NYSE describes TAQ data on their website (New York Stock Exchange,
n.d.). Nasdaq describes the Nasdaq Equities Market Data on their website (NASDAQ, n.d.).
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In the following statistical estimations, we fix the decay parameter (in hourly units) to

β = 0.7 so that the half-life of impact is log 2/β = 60 minutes. We have run the empirical

tests with different values of the decay parameter: a grid-search over β has negligible

impact on the results for our prediction horizons ranging from 1 to 120 minutes.14

We compute various quantities from the base features, most notably the impact state

It at the start of the interval and the market activity vt. The impact state depends on

the impact model. As discussed in Remark 2.3.1, market activity vt can be estimated

by moving averages of absolute trading volumes. In our empirical study, we use an

exponential moving average with the same half-life as the impact model.15

Price impact behaves differently on different time horizons. For a time horizon h,

define:

� the horizon-specific return ∆h
t P = (Pt+h − Pt)/Pt.

� the impact return ∆h
t I = It+h − It. Note that ∆h

t I includes both the contempora-

neous flow effects ∆Ft and impact decay.

To estimate the parameters of the price impact model, we run the regression

∆hP = ∆hI(λ) + ϵ.

over the parameter choice λ. The resulting regressions for our parametric price impact

models are all simple linear regressions: ∆hI(λ) depends linearly on the parameter λ in

each case. We are simply fitting price impact’s magnitude, as measured by λ, given a

parametric model choice. We drop the explicit dependence of I on λ in the following

sections.

14This lack of sensitivity to β over minute to hour prediction horizons may reflect the representative
order length in the public trading tape rather than a fundamental property of price impact. Price
impact studies focusing on proprietary multi-day orders and predictions find longer time-scales, cf., e.g.,
Bershova and Rakhlin (2013); Bucci et al. (2015).

15Practitioners often use moving averages as straightforward volume predictors. Our exponential
choice is one on many: it performs equally well to regular moving averages on timescales above 15
minutes, but somewhat outperforms these on 1 minute timescales. A more sophisticated high frequency
implementation could leverage the results of Aı̈t-Sahalia and Jacod (2014) to estimate a joint model for
market activity and the stochastic volatility of prices for shorter timescales.
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Cont et al. (2014) present their core results for a timescale of h = ∆t corresponding

to ten seconds. However, the bin size ∆t and the prediction horizon h generally need not

match: Cont et al. (2014) and Cont, Cucuringu, and Zhang (2021) both briefly mention

prediction horizons ranging from fifty milliseconds to one hour (cf., e.g., (Cont et al.,

2014, Figure 12) and (Cont et al., 2021, Figure 17)). We study prediction horizons of

h = 1, 15, and 60 minutes.

2.5.2 Models

In all the models below, let σ be a daily volatility estimate for the stock price and ADV an

estimate of the daily traded volume of the stock. For a given day, σ and ADV are based on

the average daily realized volatility and volume over the past month. As in R. Almgren

et al. (2005) and many subsequent studies, these variables normalize the price impact

models across stocks and thereby make the impact coefficient λ comparable in the cross

section.

The Original OW Model

Y. Chen et al. (2019) fit an Obizhaeva-Wang model with constant parameters:

It+∆t − It = −βIt∆t+ λσ
∆Ft

ADV
.

The Concave Propagator Model

J. Bouchaud et al. (2009) review empirical studies of concave propagator models, which

suggest g(x) ∝ xc with c ∈ [0.2, 0.5]. We consider the most well-known model specification

where impact scales with the square root of trade sizes,

It+∆t − It = −βIt∆t+ λσ sgn(∆Ft)

√
|∆Ft|
ADV

.



2.5. Empirical Analysis 42

The Reduced Form Model

Our Limit Theorem 2.3.3 suggests a reduced-form version of the propagator model where

the square-root impact is proxied by a stochastic liquidity parameter:

λt ∝ 1/
√
vt.

(Here, vt is the moving average of trading volume introduced above, which measures

market activity.) The corresponding linear price impact model is

It+∆t − It = −βIt∆t+ λσ
∆Ft√
ADV vt

.

The Depth Model

Cont et al. (2014) propose an alternative model for stochastic liquidity:16

λt ∝ 1/Dt.

Here, Dt is the current “depth” on the best bid and ask queues. The corresponding linear

price impact model is

It+∆t − It = −βIt∆t+ λσ
∆Ft

Dt

.

2.5.3 Core empirical results

Comparing impact models across time-scales involves varying the horizon h. To cover

a wide range of frequencies of trading strategies, we consider horizons h ∈ {1, 15, 60},

measured in minutes.

We perform all statistical estimations in this section on a stock-by-stock basis, using

a monthly training sample (“in sample”), no regularization, and the subsequent month

as a validation sample (“out of sample”). Therefore, in total, we regress each model 11

times per stock, for a total of 5500 regressions per model and horizon. For a given (model,

16In Cont et al. (2014), the main focus is on using this factor to normalize the “order flow imbalance”,
a variable composed of both trades and quotes.
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horizon) pair, we provide performance statistics averaged across all 5500 regressions.

We define an estimator’s t-stat as mean(λ̂)/std(λ̂). Here, each λ̂ is a realization of the

fitted λ for each model on a given (month, stock) pair. The t-stat assesses the model’s

robustness across both the universe of stocks and the time period. All else being equal,

one prefers a model with a high t-stat, as it is more stable. The ability to compute t-stat

across stocks, and therefore, measure model stability across stocks, is made feasible by

the model normalizations using σ and ADV. Indeed, without those normalizations, λ

would not be unitless and comparable across stocks.

Table 2.1 summarizes and compares the performance of each model on the horizons

h ∈ {1, 15, 60}.

Price Impact Model In-sample R2 Out-of-sample R2 t-stat

Propagator 19% 18% 6.2
Reduced form 15% 14% 3.7

Depth 13% 11% 1.1
OW 11% 10% 2.7

(a) Performance of various price impact models for h = 1 minute.

Price Impact Model In-sample R2 Out-of-sample R2 t-stat

Propagator 14% 13% 3.1
Reduced form 11% 9% 2.1

Depth 10% 6% 0.8
OW 8% 6% 1.9

(b) Performance of various price impact models for h = 15 minutes.

Price Impact Model In-sample R2 Out-of-sample R2 t-stat

Propagator 10% 8% 2.0
Reduced form 8% 5% 1.5

Depth 7% 2% 0.7
OW 7% 4% 1.3

(c) Performance of various price impact models for h = 60 minutes.

Table 2.1: Performance (averaged across the S&P 500 and the year 2019) of various price
impact models across horizons h fitted on training samples of one month over the course
of 2019. In each case, the half-life of impact is 60 minutes.

The empirical results provide a clear ordering across the four models. Indeed, the

reduced form model notably outperforms the linear model with constant illiquidity pa-

rameter, indicating that the theoretically derived stochastic liquidity factor markedly
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improves the model fit. Furthermore, the reduced form model also outperforms the

depth model, especially out-of-sample and in terms of stability.17 On the other hand, the

reduced form model underperforms the propagator model with square root impact. More

specifically, the reduced-form model’s metrics fall roughly half-way between the linear

model with constant parameters and the square-root model. These statistics indicate

that the martingale terms in the convergence theorem, while mean zero and irrelevant for

many stochastic control problems, do hold explanatory power from a fitting perspective.

A further observation is that the explanatory power of price impact models is a de-

creasing function of the horizon h, in line with a broad study by Tomas, Mastromatteo,

and Benzaquen (2022).18

2.5.4 Sensitivity Analysis

Dynamic models

To incorporate systematic time-of-day effects, Cont et al. (2014) also refit their models

with different parameters every thirty minute of the day. Plotting the average model

parameter λ̂ over days as a function of the time of day then provides a visualization of

the time of day effect, see (Cont et al., 2014, Figure 10). This approach leads to another

natural benchmark, a nonparametric fit of λ that changes every thirty minutes. We

also implemented this nonparametric approach, using 90 minute intervals for h = 1 and

150 minute intervals for h = 15. Table 2.2 summarizes the performance of this fitting

methodology.

The main takeaways are the following:

(a) Refitting λ to account for time-of-day effects significantly improves the standard

17The reduced form model is also more parsimonious and does not require access to limit order book
data, only trading volumes. The depth model performs remarkably well when including additional limit
order book events, such as in the OFI model of Cont et al. (2014). However, the depth model adds less
value when considering trades only. Therefore, we exclude the depth model in the remaining analysis.

18Tomas et al. (2022) provide a large number of details for reproducing their analysis. In particular,
the authors outline their filtering procedure. The main filter is “removing the beginning and end of
the trading period to focus on the intraday behavior of liquidity and volatility and circumvent intraday
non-stationary issues.” Section 2.5.4 illustrates these time-of-day issues and their effect on price impact’s
explanatory power for various models. We do not filter trading periods at the start and end of the day
as they are important sources of time-varying liquidity.
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Price Impact Model In-sample R2 Out-of-sample R2 t-stat

Propagator 25% 24% 2.5
Reduced form 18% 17% 2.5

OW 17% 14% 1.9

(a) Performance of various price impact models for h = 1 minute.

Price Impact Model In-sample R2 Out-of-sample R2 t-stat

Propagator 20% 17% 1.5
Reduced form 13% 10% 1.5

OW 13% 8% 1.1

(b) Performance of various price impact models for h = 15 minutes.

Table 2.2: Performance across the S&P 500 of various non-parametric price impact models
across horizons h fitted on monthly samples over the course of 2019. Note that we compute
the t-stats by time of day. Therefore, the t-stats only reflect (month, stock) variability.
In each model, the half life of price impact is 60 minutes.

Obizhaeva-Wang model. In contrast, the model with stochastic illiquidity parameter

does not benefit from the refitting to the same extent, as the market activity that

determines the stochastic factor already accounts for most intraday variations.

(b) The refitted version of the Obizhaeva-Wang model does not outperform the reduced-

form model: the theoretically derived model captures the liquidity dynamics as well

as a fully non-parametric model.

(c) The non-parametric models are less stable than their static counterparts across

(month, stock) pairs for a given time of day.

(d) The R2 of the nonlinear propagator model benefits from the refitting, at the expense

of model stability.

Universal models

Another important empirical question is whether it is preferable to fit a single “universal”

model across stocks, or a collection of bespoke models, one for each stock. The former

approach has advantages in terms of stability, while the latter can more dynamically

adjust to the data, in this case, stock characteristics.

The first universal price impact models are fitted in Lillo, Farmer, and Mantegna
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(2003). Zhou (2012) provides a detailed comparison of universal and specialized models

and concludes that universal models serve as important benchmarks:

“these universal price impact functions are unambiguous targets that any

empirical model of order-driven markets must hit.” (p. 13)

Table 2.3 compares the in-sample and out-of-sample performance of universal and

specialized models. This comparison is possible because we normalize all models using the

price volatility σ and the average daily trading volume ADV. Without this normalization,

the universal model would not produce a stable λ across stocks, let alone estimates of λ

comparable to the specialized models. Three broad observations follow:

(a) All models mechanically perform better in-sample when the fitting model is special-

ized to each stock.

(b) All universal models are mechanically more stable than their stock-specific counter-

parts.

(c) The universal models consistently perform better out-of-sample than their stock-

specific counterparts.

(d) The performance gap increases with the length of the horizon h.

Because universal models are mechanically more stable, they are, all else being equal,

preferable to stock-specific models. Furthermore, universal modeling enables the pooling

of data across stocks. In turn, one can use this data pooling to fit higher dimensional

models, e.g., a neural network for the predicted volume curve vt or a reinforcement

learning algorithm for optimal execution.

2.6 Conclusion

This chapter studies the high-frequency limit of propagator models, where trades cause

immediate nonlinear price impact that in turn decays gradually over time. We show that

the nonlinearity does not disappear in the continuous-time limit, but can be effectively
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Model univ. spec.

Propagator 18% 19%
Red. form 13% 15%

OW 10% 11%

(a) In-sample R2 of various price im-
pact models for h = 1 minute.

Model univ. spec.

Propagator 18% 18%
Red. form 14% 14%

OW 10% 10%

(b) Out-of-sample R2 for h = 1
minute.

Model univ. spec.

Propagator 13% 14%
Red. form 9% 11%

OW 7% 8%

(c) In-sample R2 for h = 15 minute.

Model univ. spec.

Propagator 14% 13%
Red. form 10% 9%

OW 8% 6%

(d) Out-of-sample R2 for h = 15
minute.

Model univ. spec.

Propagator 8% 10%
Red. form 6% 8%

OW 5% 7%

(e) In-sample R2 for h = 60 minute.

Model univ. spec.

Propagator 8% 8%
Red. form 6% 5%

OW 5% 4%

(f) Out-of-sample R2 for h = 60
minute.

Table 2.3: Performance across the S&P 500 of various price impact models across horizons
h fitted on training samples of one month over the course of 2019. In each case, the half
life of impact is 60 minutes. “Univ.” stands for the universal fitting methodology; “spec.”
for the stock-specific methodology.
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approximated by a linear price impact model with a stochastic illiquidity parameter.

More specifically, illiquidity in this reduced form model is mechanically linked to market

activity.

In the limiting model, optimal trading problems have explicit solutions even for gen-

eral nonparametric alpha and volume predictions. These results in turn identify bounds

on changes in market activity that rule out price manipulation, and relations between

autocorrelation of order flow and impact decay that rule out statistical arbitrage.

Our analysis also illustrates the power of two convenient mathematical tools: func-

tional central limit theorems as in Jacod and Protter (2012) and the map to impact space

from Fruth et al. (2013). Both apply to a broader range of trading problems.19 Similarly,

our empirical analysis illustrates the availability and applicability of public trading data

for price impact models.

2.7 Appendix

2.7.1 Proofs for Section 2.3

The proof of the continuous-time scaling limit from Theorem 2.3.3 is based on the func-

tional central limit theorem as in (Jacod & Protter, 2012, Theorem 10.3.2(a)). For easy

reference and to encourage further applications of this powerful tool, we provide a com-

pact statement of this result and the underlying assumptions in our context.

We first summarize the assumptions on the processes involved; these correspond to

Assumptions (H) and (K) from (Jacod & Protter, 2012, p. 273 and p. 284) in the absence

of jumps.

Assumption 2.7.1. We consider a real-valued state process X with Itô dynamics,

dXt = btdt+ σtdWt.

19The characterization of rough volatility models as scaling limits of discrete order-flow dynamics is
one example for the former (Jaisson & Rosenbaum, 2015; Jusselin & Rosenbaum, 2020). Ackermann et
al. (2021) cover generalizations of the latter.
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Here, the drift rate b is locally bounded; the volatility σ has Itô dynamics,

dσt = b̃tdt+ σ̃tdWt + atdW
⊥
t

for a Brownian motion W⊥ independent of W and locally bounded coefficients a, b̃, σ̃.

Next, we collect the assumptions required for the nonlinear function of the discrete

increments of the state process, whose normalized sums are aggregated in the functional

central limit theorem:

Assumption 2.7.2. Let G : [0, T ]× R→ R be a function of time and state increments,

which satisfies the following conditions for a function g with at most linear growth and a

constant c > 1
2
:

(a) Anti-Symmetry: G(t, x) = −G(t,−x) for all (t, x) ∈ [0, T ]× R;

(b) Smoothness: x 7→ G(t, x) ∈ C1 for all t ∈ [0, T ];

(c) Linear Growth: |G(t, x)|+ |∂xG(t, x)| ≤ g(x) for all (t, x) ∈ [0, T ]× R;

(d) Time Regularity: |G(t, x)−G(s, x)| ≤ g(x)|t−s|c for all (t, s, x) ∈ [0, T ]× [0, T ]×R.

Under these assumptions, the following functional central limit theorem applies:

Theorem 2.7.3. Under Assumptions 2.7.1 and 2.7.2, the discrete process

√
∆tN

⌈Nt⌉∑
n=1

G
(
tNn−1,

1√
∆tN

∆XN
n

)

converges stably in law to

∫ t

0

(
bsẼ [∂xG(s, σsZ)] +

σ̃s

2
Ẽ
[
(Z2 − 1)∂xG(s, σsZ)

])
ds+

∫ t

0

√
Ẽ [G2(s, σsZ)]dW

′
s.

Here, the expectation Ẽ[·] is taken with respect to the law of an independent standard

normal random variable Z and W ′ is a Brownian motion defined on a very good extension
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of the initial filtered probability space, whose quadratic covariation with W is20

[W,W ′]t =

∫ t

0

Ẽ[ZG(s, σsZ)]√
Ẽ [G2(s, σsZ)]

ds.

Before outlining how Theorem 2.7.3 follows from (Jacod & Protter, 2012, Theorem

10.3.2(a)), let us briefly explain the intuition for the linearization in the limit. For

simplicity, we focus on the terminal time t = T and assume that the function G(t, x) =

G(x) only depends on the spatial variable x. Moreover, we suppose that Xt = X0 +

bt+ σWt is a Brownian motion with drift, so that its rescaled increments are of the form

1√
∆tN

∆XN
n = b

√
∆tN + σZN

n , where ZN
1 , . . . , ZN

N are iid standard normal. As the drift of

the order flow is a small perturbation of its fluctuations, a Taylor expansion yields the

linear approximation

√
∆tN

∑
n

G( 1√
∆tN

∆XN
n ) =

√
∆tN

∑
n

G(σZN
n ) + b∆tN

∑
n

∂xG(σZN
n ).

As G(x) is odd, the terms in first sum are already centered. By the Central Limit

Theorem, they therefore converge to a Gaussian random variable with mean zero. To

argue analogously for the terms in the second sum, we first have to subtract and add

their mean E[∂xG(σZ]). The random part of this decomposition in turn converges to

another Gaussian random variable with mean zero. The other part is the Riemann sum∑
n bE[∂xG(σZ])∆tN , which converges to

∫ T

0
bE[∂xG(σZ])dt, in line with the first term

in Theorem 2.7.3. The second term in Theorem 2.7.3 does not appear here because the

state process has no stochastic volatility in our simple example (σ̃ = 0). Finally, the two

centered Gaussians can be aggregated into the noise term in Theorem 2.7.3.

Proof of Theorem 2.7.3. First suppose that T = 1. Then, (Jacod & Protter, 2012, The-

orem 10.3.2) applies with Hypothesis (a). As G is odd, (Jacod & Protter, 2012, Equa-

20The covariation of W ′ with W⊥ is zero.
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tion (10.3.1)) simplifies to

V̄ ′N =
√
∆tN

⌈Nt⌉∑
n=1

G
(
tNn−1,

1√
∆tN

∆XN
n

)
.

The limit V̄ ′(G(X), X) from (Jacod & Protter, 2012, Theorem 10.3.2) in turn decomposes

into

V̄ ′(G(X), X) = Ū ′(G(X), X) + Ā(G(X), X) + Ā′(G(X), X) + Ū(G(X), X).

The four terms in this decomposition can be characterized as follows:

(a) Conditionally on the original σ-field F , Ū ′ is a continuous centered Gaussian process

with independent increments, satisfying

E
[(

Ū ′(G(X), X)t
)2∣∣∣F]

=

∫ t

0

Ẽ
[(

G(s, σsZ)− ZẼ [G(s, σsZ)Z]
)2]

ds−
∫ t

0

Ẽ [G(s, σsZ)]
2 ds.

As G is odd, this simplifies to

E
[(

Ū ′(G(X), X)t
)2∣∣∣F] = ∫ t

0

(
Ẽ
[
G2(s, σsZ)

]
− Ẽ [ZG(s, σsZ)]

2
)
ds.

This is the part of the term
∫ t

0

√
Ẽ [G2(s, σsZ)]dW

′
s in the final formula that is un-

correlated with W (and also uncorrelated with the orthogonal Brownian motion W⊥

that appears in the dynamics of the volatility σ of X).

(b) Next, Ū is given by

Ū(Ḡ(X), X)t =

∫ t

0

Ẽ [ZG (s, σsZ)] dWs.

In the final formula, this leads to the part of the term
∫ t

0

√
Ẽ [G2(s, σsZ)]dW

′
s that is

correlated with W (but uncorrelated with W⊥).
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(c) The term Ā is the drift
∫ t

0
bsẼ [∂xG(s, σsZ)] ds.

(d) Finally, the term Ā′ is the drift
∫ t

0
σ̃s

2
Ẽ [(Z2 − 1)∂xG(s, σsZ)] ds.

Together, these four terms in turn lead to the asserted representation for the limit process.

For a general time horizon T , one first reduces to the case of T = 1 by a simple linear

time change. Then, one argues as above, and finally switches time back to the original

clock.

Remark 2.7.4. (Jacod & Protter, 2012, Theorem 10.3.2(a)) in fact shows that the same

convergence result remains true if the function G not only depends on the increments of

the state process (“future state changes”) but also on the previous values of the process

(“current states”), as long as all assumptions are uniform in this extra argument.

Analogously, as pointed out in (Jacod & Protter, 2012, Remark 10.3.4), the function

G can also depend directly on ω ∈ Ω in an adapted way as long as all regularity condition

hold uniformly.

From a microstructure perspective, the second observation extends the result’s range

to models that have both local nonlinearities G and stochastic parameters, for instance,

a time-changed locally concave price impact model.

The functional central limit theorem does not directly apply to discrete nonlinear

propagator models (2.1), because the corresponding impact state is not the discretization

of a fixed process, but the solution of a difference equation (which depends on the time

grid). However, using the explicit solution of the difference equation, Theorem 2.7.3 can

be applied in a two-step procedure. To wit, consider the discrete nonlinear propagator

model

∆INn = −βINn−1∆tN +
√
∆tNg

(
1√
∆tN

∆FN
n

)
.

The explicit solution of this difference equation is

INn =
n∑

m=1

(
1− β∆tN

)n−m√
∆tNg

(
1√
∆tN

∆FN
m

)
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=
(
1− β∆tN

)n√
∆tN

n∑
m=1

(
1− β∆tN

)−m
g
(

1√
∆tN

∆FN
m

)
.

Whence, one can first control the gap (1−β∆tN)−m−eβtNm between discrete and continuous-

time exponentials. In a second step, one can then apply Theorem 2.7.3 to obtain the

convergence
√
∆tN

n∑
m=1

eβt
N
mg
(

1√
∆tN

∆FN
m

)
→ eβtIt

where I is the linear price impact model from Theorem 2.3.3.

2.7.2 Proofs for Section 2.4

Proof of Lemma 2.4.1. As αT = 0 and F0 = 0, integration by parts gives

0 = αTFT − α0F0 =

∫ T

0

αt−dFt +

∫ T

0

Ft−dαt + [F, α]T .

Since ST − ĪT is square integrable, αt = M̄t − St − Īt for a square-integrable martingale

M̄t, which has bounded volatility by assumption. For F ∈ L2, this implies that

E
[∫ T

0

Ft−d(St + Īt)

]
= E

[∫ T

0

−Ft−dαt

]
= E

[∫ T

0

αt−dFt + [F, α]T

]
.

The goal functional (2.4) can therefore be rewritten as

E
[∫ T

0

(
αt−dFt + d[F, α]t − It−dFt −

1

2
d[I, F ]t

)]
.

Now we use dFt = 1
λt
dIt +

β
λt
Itdt to replace the trader’s holdings. This allows us to

rewrite (2.4) as

E
[∫ T

0

(
αt−

λt

dIt +
βαt

λt

Itdt+
1

λt

d[I, α]t −
It−
λt

dIt −
βI2t
λt

dt− 1

2λt

d[I]t

)]
. (2.7)

Integration by parts (using that λt = eφt is smooth and I0 = 0), gives

1

2λT

I2T =

∫ T

0

− φ′
t

2λt

I2t dt+
1

λt

It−dIt +

∫ T

0

1

2λt

d[I]t
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as well as

0 =
αT

λT

IT =

∫ T

0

−φ′
tαt

λt

Itdt+

∫ T

0

αt−

λt

dIt +

∫ T

0

It−
λt

dαt +

∫ T

0

1

λt

d[α, I]t.

Plugging these two identities into (2.7) in turn yields

E
[∫ T

0

(
− It
λt

dαt +
β + φ′

t

λt

αtItdt−
2β + φ′

t

2λt

I2t dt

)
− 1

2λT

I2T

]
= E

[∫ T

0

e−φt

(
−Itµα

t + (β + φ′
t)αtIt −

2β + φ′
t

2
I2t dt

)
− e−φT 1

2
I2T

]
.

Under the no price manipulation condition 2β + φ′
t > 0, pointwise maximization in turn

yields the optimal impact (2.6).



Chapter 3

A Leland Model for Delta Hedging

in Central Risk Books

This chapter is a joint work with Johannes Muhle-Karbe and Kevin Webster.

3.1 Introduction

Using a tractable extension of the Leland (1985) model, we study how a delta-hedging

strategy can realistically be implemented using market and limit orders in a centralized,

automated market-making desk that integrates trading and liquidity provision for both

options and their underlyings. In the continuous-time limit, the optimal limit-order

exposure can be computed explicitly by a pointwise maximization. It is determined

by the relative magnitudes of adverse selection, bid-ask spreads, and volatilities. The

corresponding option price – from which the option can be replicated using market and

limit orders – is characterized via a nonlinear PDE.

Our results highlight the benefit of tactical liquidity provision for contrarian trading

strategies, even for a trading desk that is not a competitive market maker. More generally,

the chapter also showcases how reduced-form models are competitive with “brute force”

numerical approaches to market microstructure. Both the estimation of microstructure

parameters, and the simulation of the optimal trading strategy are made concrete and

reconciled with real-life high frequency data.

55
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This chapter revisits the Leland (1985) delta-hedging strategy in the modern context

of a centralized, automated market-making desk. The motivation of the original Leland

paper was to make the Black and Scholes delta-hedging strategy actionable. Rather than

just pricing the option via a theoretical replication argument, Leland outlined how the

replication strategy could be implemented with actual trades. This involved taking into

account some real-life trade-offs trading desks faced, most notably the trade-offs between

trading frequency, hedging error and transaction costs. As a by-product, the paper also

established how the liquidity of the underlying affected the price of the option.

In this chapter, we update this approach by outlining how a delta-hedging strategy

can realistically be implemented in a centralized, automated market-making desk that

integrates trading and liquidity provision for both options and their underlyings. More

specifically, we model how delta-hedging could practically be implemented in a market-

making context. Similarly to the original Leland paper, additional relationships between

the liquidity of the underlying and the option price are uncovered as a by-product.

Centralization has been a key force in banks and hedge funds in the last decade.

Broadly speaking, the goal is to consolidate related trading activities together for three

reasons: facilitating internalization (J. Chen, 2021), accelerating systematic, model-

driven trading and promoting a big picture understanding of trading exposures. The

last point in particular has led to the creation of “Central Risk Books” (CRBs), which

consolidate multiple trading teams into one.1 Of course, this leverages the trading tech-

nology and execution strategies developed for automated, model-driven trading in other

contexts before that.2

In the context of options market making, centralization means aggregating the trading

activity across both the underlying and all related options into one portfolio. This allows

two explicit benefits to the delta-hedging of the options positions. First, by netting delta

1Finextra (2016) provides the following definition: “The purpose of the CRB in all this is to act as a
huge repository for all the firm’s positions. Then, someone with a brain the size of a small planet sifts
through all this and works out what the net exposure of the bank is.”

2For example, the SEC’s 2020 Staff Report on Algorithmic Trading in U.S. Capital Markets(Securities
& Commission, 2020) reports: “A common theme echoed by nearly all market professionals, academic
researchers, and other students of the securities markets is that that algorithmic trading, in one form or
another, is an integral and permanent part of our modern capital markets.” (p. 4)
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exposures between multiple options positions as well as the market making position in

the underlying, the amount of delta-hedging is drastically reduced. Second, sophisticated

liquidity provision strategies employing limit orders used for the market making in the

underlying can reduce the individual cost of each delta hedge. Both lead to more com-

petitive prices being quoted on the option. The consolidation also can provide benefits

to the underlying, which we ignore in this chapter.

The exposure netting benefit is more technological in nature: the centralized team

needs a robust real-time trading infrastructure to establish this centralized view of the

consolidated exposure.3 The second benefit is mathematically more interesting, and

relates heavily to the market microstructure and market-making literature, cf., e.g., Car-

mona and Webster (2019); Cartea, Gan, and Jaimungal (2019); Cartea and Jaimungal

(2015a, 2015b); Cont and Kukanov (2017); Guéant, Lehalle, and Fernandez-Tapia (2012);

Guilbaud and Pham (2013); Herdegen, Muhle-Karbe, and Stebegg (2022); Horst and Nau-

jokat (2014); Kühn and Muhle-Karbe (2015) and the references therein. The benefits of

employing liquidity provision strategies similar to those of market makers are qualita-

tively clear. However, modelling a market-making strategy, its associated exposures and

P&L is a difficult task, as by definition a market maker doesn’t control exactly when

they trade, or what position they end up with when providing liquidity. This is primarily

due to the trade-off between capturing the bid-ask spread, adverse selection and hedging

error.4

Our modern approach to delta-hedging therefore heavily relies on understanding the

type of positions a market maker can achieve, the spread they can capture and the

adverse selection they are exposed to when providing liquidity on the underlying. In

order to obtain tractable results, we do not model the fine structure of the limit order

book as a queueing system as in, e.g., Cont, Stoikov, and Talreja (2010). Instead, we

propose a simple reduced-form model driven by two correlated Brownian motions, that

3See Chapter 12 “The Research Stack” (pp. 401-410) from the book Algorithmic Trading and Quanti-
tative Strategies (Velu, Hardy, & Nehren, 2020) for an extensive treatment of the technological challenges
involved.

4See, e.g., Section 1.3.1 in the book “Trades, Quotes and Prices” (J.-P. Bouchaud, Bonart, Donier, &
Gould, 2018) for a definition of adverse selection in the context of market making.
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captures the main tradeoffs at hand but still retains most of the tractability of the classical

Leland model. In this context, the first Brownian motion drives the price changes of

the underlying. The second models the flow of market orders placed by other market

participants, which in turn describes how limit order positions are executed. Correlation

between the two Brownian motions then models adverse selection, in that (some) other

market participants tend to buy using market orders only when they have proprietary

information that prices will have a tendency to increase subsequently.

Instead of modelling the complex dynamics of the various queues in the limit order

book, our control variable is the aggregate exposure taken with respect to this order flow

process.5 In order to offset any unwanted positions generated in this way and eventu-

ally hedge the option position at hand, these limit-order trades are complemented by

market orders. As in Leland (1985)’s original model, our baseline model assumes that

one rehedges completely to the delta hedge on a discrete time grid. In an extension of

the model, we then relax this assumption by introducing a second control variable, the

fraction of the deviation from this target position that is offset at each trading time. This

leads to a nontrivial tradeoff between spread costs, adverse selection, and risk.6

Using limit theorems in the spirit of Jacod and Protter (2012), we show that for fre-

quent trades and small transaction costs, the limiting wealth dynamics can be computed

in closed form. For a given target strategy, this in turn allows us to determine the optimal

limit-order exposure in closed form by a simple pointwise maximization. In a second step,

we can then derive a nonlinear partial differential equation that describes the option price

from which the option payoff can be replicated in this context. (We show that a smooth

solution exists for sufficiently regular payoffs by adapting the results of Ishimura (2010)

for the classical Leland model.)

We find that – for market participants for which market making in the underlying

5In a pro-rata limit order book, where limit orders are executed without a time-priority rule, full
exposure corresponds to posting a very large number of limit orders that capture almost all incoming
market order flow. Conversely, no exposure corresponds to posting no new limit orders and canceling all
existing ones.

6Optimal market and limit orders for option hedging are computed in Agliardi (2016); Cartea et al.
(2019); Ellersgaard and Tegnér (2017) by numerically solving the corresponding dynamic programming
equations. Agliardi (2016); Ellersgaard and Tegnér (2017) do not consider adverse selection. The model
of Cartea et al. (2019) is closest to the one we study in the present chapter.
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is not directly profitable – limit orders are only beneficial for “contrarian strategies”,

which are negatively correlated with the underlying. The intuition is that these can

benefit from adverse selection, because limit order execution then tends to be aligned with

changes of the strategy. In contrast, for “trend-following strategies” that have positive

correlation with the market, executed limit orders typically have to be unwound using

market orders, which is never optimal in our model. For contrarian strategies (e.g., delta

hedging of positions with negative gamma), the optimal limit order exposure depends

on the relation between the adverse selection parameter and the relative average costs of

market and limit orders in our model. More specifically, some limit orders are optimal

if the bid-ask spread and the adverse selection parameter are neither too large nor too

small relative to each other.

When it is optimal to use limit orders, these reduce hedging costs by a constant

fraction (unless the option position is so large that even capturing the entire order flow

does not lead to an interior maximum). As a consequence, the option price that allows

for replication then also lies between its counterparts from the frictionless Black-Scholes

model and the Leland model where only market orders are used. In particular, for options

with convex payoffs, the shift of the implied volatility suggested by the Leland (1985)

model is scaled back by a constant factor for negative gamma positions.

To illustrate the quantitative properties of these results, we implement them using

tick-level data from the LOBSTER database. Direct liquidity provision is profitable

at the highest trading frequencies, but these profit opportunities can typically only be

exploited by the fastest market makers. For other somewhat slower market participants,

direct liquidity provision is not profitable but limit orders are still useful for implementing

contrarian strategies. For example, for Google data from 2019, this regime applies for

realistic trading frequencies with around 25 seconds between trade (10 ticks of the trade

clock).

When one always fully rehedges to the delta hedge using market orders at this fre-

quency, the price adjustments relative to the frictionless version of the model are un-

realistically large and a substantial fraction of trades is implemented via market orders
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rather than limit orders. Both of these results change in the extension of our model where

finite risk aversion allows some discretion about displacements from the target hedge. For

different values of the risk aversion parameter, the corresponding indifference price then

interpolates between the frictionless value (without trading costs) and the model with

full rehedging. Moreover, as risk aversion decreases, the fraction of the displacement

that is rectified by market orders in each trading round quickly decreases, whereas the

optimal limit-order placement remains largely insensitive. As a consequence, trades via

limit order quickly account for more than half of the overall trading volume.

Broadly speaking, our empirical analysis highlights two takeaways of the chapter.

First, tactical liquidity provision can be beneficial even for non-competitive market mak-

ers, at least in the context of contrarian trading strategies. Second, the reduced form

model successfully synthesizes the key market microstructure features needed to bring the

trading strategy to the data, while remaining tractable and interpretable. This makes

the approach competitive and compelling compared to purely numerical simulations of

trading strategies at the discrete microstructure level.7

The remainder of this article is organized as follows. Section 3.2 introduces the model

for trading with market and limit orders on a discrete time grid. In Section 3.3, we

then report our first two main results: the continuous-time limits of the corresponding

wealth dynamics and the optimal limit-order exposures for a given target hedge. The

latter is in turn endogenized in Section 3.4 as the delta hedge for the option price from

which perfect replication is possible in the scaling limit of frequent trading and small

transaction costs. Section 3.5 implements these results using high-frequency data for limit

order books. Finally, the extension of the model with a non-trivial risk-cost tradeoff is

discussed in Section 3.6. For better readability, all proofs are delegated to Appendix 3.8.1,

Appendix 3.8.2 and Appendix 3.8.4.

7Velu et al. (2020) make a compelling case for finding alternatives to microstructure-level brute force
simulations: “Creating a realistic microstructure based simulation environment for execution strategies
is extremely hard and probably out of reach of most practitioners at this point” (p. 407).
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Notation Throughout this chapter, we fix a filtered probability space (Ω,F , (Ft)t∈[0,T ],P)

supporting two independent standard Brownian motions (Wt)t∈[0,T ] and (W⊥
t )t∈[0,T ]. The

adapted processes (Xt)t∈[0,T ] satisfying E[
∫ T

0
X2

t dt] < ∞ are denoted by L2. We first

consider trading on a discrete, equidistant time grid

tNn = nT/N, n = 0, . . . , N,

with mesh width

∆tN = T/N.

Then, we pass to the continuous-time limit N → ∞ in a second step. The samples

of any continuous-time process (Xt)t∈[0,T ] along this grid and the corresponding discrete

differences are denoted by

XN
n = XtNn

, ∆XN
n = XN

n −XN
n−1.

3.2 Model

3.2.1 Financial Market

We consider a financial market with two assets. The first one is safe, with zero interest

rates for simplicity. The second asset is risky, in that its midprice has dynamics

dPt = µtdt+ σtdWt, for µ, σ ∈ L2 and σt > 0 for all t.

3.2.2 Trading with Market Orders

The risky asset can be traded either by market orders or by limit orders. If purchases or

sales are implemented via market orders, then these trades are settled immediately at the

current best ask- or bid-prices, respectively. For typical financial assets, price changes are

of the same order of magnitude as bid-ask spreads. As the discrete price changes ∆PN
n

are of order
√
∆tNσtNn

= O(
√
∆tN) for a fine time grid with meshwidth ∆tN = T/N , we
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accordingly model the bid-ask spread as

sNn =
√
∆tNstNn ,

for a positive continuous-time process s ∈ L2. The typical examples are costs proportional

to numbers of shares (st = s) or dollar amounts traded (st = sPt).

With this notation, the ask and bid prices at time tNn are then given by PN
n + sNn /2

and PN
n − sNn /2, respectively. A market order of size ∆MN

n executed at time tNn in turn

changes the cash account by

−PN
n ∆MN

n −
sNn
2
|∆MN

n |. (3.1)

Example 3.2.1. Let us illustrate why the above scaling is a reasonable assumption at

high-frequency time scales. For Google shares, the average (absolute) bid-ask spread is

$0.37 in LOBSTER data from 2019 (about three basis points of the average stock price

in this time period). The average volatility between the N = 2552083 trading times

is about σ
√
∆tN = $0.11 (a yearly Black-Scholes volatility of about 20%).8 Whence,

for trading strategies that are rebalanced reasonably close to the tick grid (which has a

meshwidth of about 2.5 seconds here) the above scaling is very natural. For example, if

one trades about every 10 ticks, then the corresponding volatility between trades is about

$0.11 ×
√
10 = $0.35. For the entire cross section of S&P500 stocks, the distribution

of spreads in units of volatility is plotted in Figure 1.1, showing a rather tight range of

similar values across this entire range of stocks.

3.2.3 Trading with Limit Orders

Market orders allow us to trade the risky asset immediately at the current best bid and

ask prices. Alternatively, the risky asset can also be traded using limit orders. We assume

that these can only be posted at the best bid and ask prices (“on top of the book”),9 and

8This estimate is obtained by averaging the daily estimates of the volatility between trades.
9This is a reasonable simplifying assumption at least for large tick stocks, for which liquidity at the

best bid and ask prices is rarely exhausted.
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write LN
n for the cumulative number of shares purchased using limit orders until time

tNn . Put differently, ∆LN
n is the number of limit orders that was in the book at time tNn−1

(at the corresponding ask or bid prices PN
n−1 ± sNn−1/2) and is executed at time tNn . The

corresponding change in the cash account is

−PN
n−1∆LN

n +
sNn−1

2
|∆LN

n |. (3.2)

Together with (3.1) it follows that the total change of the cash account KN
n from time

tNn−1 to tNn is

∆KN
n = −PN

n ∆MN
n −

sNn
2
|∆MN

n | − PN
n−1∆LN

n +
sNn−1

2
|∆LN

n |.

The corresponding portfolio value XN
n (marked-to-market using the midprice of the risky

asset) in turn changes by

∆XN
n =(KN

n + (MN
n + LN

n )P
N
n )− (KN

n−1 + (MN
n−1 + LN

n−1)P
N
n−1)

=(MN
n−1 + LN

n−1)∆PN
n −

sNn
2
|∆MN

n |+
sNn−1

2
|∆LN

n |+∆LN
n ∆PN

n . (3.3)

Here, the first term on the right-hand side is the change of portfolio value due to price

moves, which completely describes the wealth dynamics of self-financing strategies in

frictionless markets. With a nonzero bid-ask spread, the second and third terms record

the transaction costs paid for market orders and earned by limit orders, respectively. The

last term accounts for correlation between the execution of limit orders and price changes.

This takes into account that limit orders are at risk of being “adversely selected” – that

is, being executed against counterparties with superior information who buy because they

accurately predict that prices will go up, for example.

We model this adverse selection in reduced form by introducing an order flow process

that describes the execution of limit orders:

dFt = µF
t dt+ vt

√
1− ρ2tdW

⊥
t − vtρtdWt.
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Here, µF , v, ρ ∈ L2, vt > 0 for all t and ρ takes values in (0, 1) to model that positive

order flow ∆FN
n (corresponding to sell orders of other traders hitting the market) is

negatively correlated with price changes ∆PN
n . Therefore, ρ measures the extent of

adverse selection.10 The exact process by which limit orders are posted and executed

is very involved. We abstract from this issue and instead describe the main mechanics

in reduced form by a control process (νt)t∈[0,T ] with values in [0, 1]. Here, νN
n−1 models

the fraction of incoming market order flow captured between time tNn−1 and tNn .
11 Then,

the number of limit orders executed between time tNn−1 and tNn is νN
n−1∆FN

n and the

self-financing equation (3.3) becomes

∆XN
n = (MN

n−1 + LN
n−1)∆PN

n −
sNn
2
|∆MN

n |+
sNn−1

2
νN
n−1|∆FN

n |+ νN
n−1∆FN

n ∆PN
n . (3.4)

Remark 3.2.2. We focus on symmetric limit order strategies with the same exposure to

the buy or sell orders of other market participants. This is without loss of generality for

the continuous-time limit we consider in Theorem 3.3.1, as only the (locally symmetric)

martingale parts of the frictionless target strategies (but not a potentially asymmetric

drift) contributes there. This would change in the presence of high-frequency signals like

the order-flow imbalance, for example.

3.2.4 Tilted Execution Schemes

The portfolio dynamics (3.4) are controlled by choosing (i) the exposure νN
n to the order

flow of other market participants via limit orders, and (ii) the market orders ∆MN
n placed

at each time point. An analysis of general market and limit order strategies is beyond

our scope here. To obtain tractable results, we instead focus on a class of practically

10Cartea et al. (2019) model uncertainty about fills and adverse selection in a similar manner. To wit,
they assume that limit orders are filled with some probability, and adversely selected by a price change
of one tick with some other probability.

11Here, ν = 0 corresponds to posting no new limit orders and cancelling all existing ones. Conversely,
in a pro-rata limit order book where limit orders are executed without a time-priority rule, ν = 1
corresponds to posting a very large number of limit orders that capture almost all incoming market
order flow. Of course, price impact becomes a major concern when trying to absorb a major fraction
of the entire market flow – the focus on the bid-ask spread in the present model is justified if only a
reasonably small fraction of the total order flow is targeted.
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relevant tilted execution schemes.12

For these, the limit-order exposure to the order flow of other market participants is

chosen freely. After the execution of limit orders is observed, market orders are in turn

used to readjust the risky position to an exogenous target position with dynamics

dΠt = µΠ
t dt+ γtdWt, for µΠ, γ ∈ L2. (3.5)

Example 3.2.3. One standard example are delta hedging strategies

Πt = Π(t, Pt) = ∂pC(t, Pt),

for a European option with payoff φ(PT ) at time T and option price C(t, Pt) at time t

in a local volatility model where the price dynamics are of the form dPt = µ(t, Pt)dt +

σ(t, Pt)dWt. In this case, γt = ∂ppC(t, Pt)σ(t, Pt) is determined by the option’s “gamma”,

i.e., the sensitivity of the hedge with respect to price changes of the underlying.

Example 3.2.4. Another example are investment strategies that hold a constant pro-

portion π of wealth in the risky asset.13 For Black-Scholes price dynamics dPt/Pt =

µdt + σdWt, this is optimal for investors with constant relative risk aversion, for exam-

ple; the corresponding risky position then is of the form

dΠt

Πt

= (π − 1)(µ− σ2)dt+ (π − 1)σdWt.

In particular, γt < 0 if the strategy neither shorts nor leverages the risky asset for π ∈

(0, 1). This means the strategy is always “contrarian”, in that it sells after prices rise.

Between time tNn−1 and tNn , the target strategy (3.5) changes by ∆ΠN
n and the number

of limit orders executed is νN
n−1∆FN

n . Whence, the market order that needs to be placed

12In a trading context, strategies are often classified along an axis with pure liquidity taking strategies
on the one end, and pure liquidity provision on the other end. Various algorithms are then said to “tilt”
or “lean” towards one end of the spectrum or the other.

13The use of limit orders in this context is studied by Kühn and Stroh (2010).
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at time tNn to offset the discrepancy is

∆MN
n = ∆ΠN

n − νN
n−1∆FN

n .

The portfolio dynamics (3.4) of such a tilted execution scheme in turn are

∆XN
n = ΠN

n−1∆PN
n −

sNn
2
|∆ΠN

n − νN
n−1∆FN

n |+
sNn−1

2
νN
n−1|∆FN

n |+ νN
n−1∆FN

n ∆PN
n . (3.6)

If no limit orders are used (ν = 0), this reduces to the classical model of Leland (1985).

3.3 Optimal Limit-Order Placement

The discrete-time dynamics (3.6) are difficult to optimize over the choice of the tilted

execution scheme. However, the continuous time limit N → ∞ (that can be obtained

using laws of large numbers for discretized processes from Jacod and Protter (2012)) can

be maximized pointwise over the limit-order exposure:

Theorem 3.3.1. As the number of time steps N tends to infinity, the discrete-time

portfolio process (3.6) converges (uniformly on compacts in probability) to the continuous-

time process

dXν
t = ΠtdPt +

[
st√
2π

(
−
√

γ2
t + 2ρtγtνtvt + ν2

t v
2
t + νtvt

)
− ρtσtνtvt

]
dt. (3.7)

Each of the terms in the continuous-time portfolio dynamics (3.7) is the limit of the

respective discrete counterparts in (3.6): the first records the effect of price changes

and the second accumulates the transaction costs paid for market orders. The third

term measures the transaction costs earned from limit orders and the final fourth term

describes the losses due to adverse selection.

Unlike its discrete counterpart, the continuous-time wealth process can be readily

optimized over the choice of the limit orders (controlled through νt). Indeed, this control

process only affects the drift rate in a pointwise manner. For a given target process
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dΠt = µΠ
t dt+γtdWt, the optimal limit-order exposure can therefore readily be determined

via pointwise maximization. To formulate the result in a compact manner, define

yt := 1− ρtσt

√
2π

st
∈ (−∞, 1).

Remark 3.3.2. The last two terms in the wealth dynamics (3.7) show that, without using

any market orders, limit order exposure to a fraction νt of the flow dFt generates a drift

rate of st√
2π
νtvtytdt. Arguing as in the proof of Theorem 3.3.1, one can show that obtaining

the same positions νtdFt via market orders leads to the drift rate − st√
2π
νtvtdt. Whence,

yt measures the relative costs of limit and market orders.

The empirically most relevant case is yt ∈ (−1, 0). This means that limit orders incur

a nontrivial cost, but are cheaper than market orders on average. Put differently, adverse

selection is large enough relative to the spread to cause a cost, but not so large that it is

never optimal to use limit orders.

Example 3.3.3. For our Google data from 2019, the average correlation measured tick-

by-tick on the trade clock is 22.5% (cf. Section 3.5 for more details), so that

y = 1− ρσ
√
∆tN
√
2π

s
√
∆tN

= 0.83.

This suggests that liquidity provision is profitable at the highest frequency. However, these

profits are only attainable for the fastest market makers. For example, at a frequency of

once every 10 ticks (about 25 seconds), the realized correlation is 45.9%, so that

y = 1− ρσ
√
∆tN
√
2π

s
√
∆tN

= −0.14 ∈ (−ρ, 0).

As the trading frequency decreases further, the realized correlation remains relatively sta-

ble, cf. Figure 3.1. The corresponding y parameter therefore quickly becomes more negative

than −ρ, and limit orders are in turn dominated by market orders. Figure 3.3 reports

qualitatively similar results across the entire cross section of S&P500 stocks.

Two observations cast some uncertainty on the exact value of ρ to use for our model:
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Figure 3.1: Estimates for the adverse selection parameter ρ on various sampling grids on
2019 Google data.

� The observed correlation could be explained by two different causal models: the price

could move because of the trade, or the trade could anticipate the price move. The

former is referred to as price impact. Typically, adverse selection is significantly

faster than price impact. This means that some of the increase of ρ is due to price

impact, leading the estimate for lower trading frequencies to be biased upward.

� The observed correlation is the average correlation across all market participants.

This includes very competitive market makers and traders who employ liquidity

provision more tactically. Because the former aims to maximize spread capture and

minimize adverse selection, more tactical trading strategies will achieve spreads and

adverse selection parameters that are less competitive. This means that any estimate

of ρ based on the public trading tape is going to be biased downward for a “tactical

liquidity provider”.

Both of these biases can be reduced by using proprietary trading data. The above estimates

on public data can then be used to situate the team’s achieved spreads and adverse selection

in comparison to the wider market.

Remark 3.3.4. Note that while we estimate ρ and s using the full trading tape, not every

trade can realistically be captured, and the most profitable trades will be captured by more

competitive market makers. Therefore, while the range of trading frequencies for which
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y lies between −ρ and 0 may seem narrow, the large majority of market participants will

fall in it. The competitive pressures will allow only the most dedicated, advanced market

makers to profit from pure liquidity provision and fall in the positive region of y. Other

market participants can see their transaction costs reduced by tactically providing liquidity,

but y remaining negative prevents them from employing their execution algorithms as

dedicated market making strategies.

With the above notation, the optimal limit-order exposure in (3.7) can be described

as follows:

Lemma 3.3.5. The drift rate in (3.7) is maximized by

ν∗
t = max {min{ν̃∗

t , 1}, 0} , where ν̃∗
t =

 −
γt
vt

(
ρt − sgn(γt)yt

√
1−ρ2t
1−y2t

)
if yt ∈ (−1, 1),

0 if yt ≤ −1.

(3.8)

Next, we explore in what parameter regimes it is optimal to place at least some limit

orders:

Lemma 3.3.6. It is optimal to use at least some limit orders (ν∗
t > 0) in the following

cases:

(i) If yt ∈ (−1, 0), then ν∗
t > 0 if and only if γt < 0 and ρt > −yt.

(ii) If yt ∈ [0, 1), then ν∗
t > 0 if and only if either γt < 0, or γt > 0 and ρt < yt.

As discussed in Remark 3.3.2, the empirically most relevant case is yt ∈ (−1, 0). (Limit

orders are cheaper than market orders but still incur a nontrivial cost.) In this case, we

see that limit orders are only optimal for “contrarian strategies” with γt < 0, whose

sales correlate with positive price shocks. In contrast, limit orders are never optimal

for “trend following strategies” with γt > 0 which react to positive price shocks with

further purchases. The intuition for this is the following. Due to adverse selection, a

positive price shock is more often than not accompanied by negative flow (i.e., purchases

of other market participants). Whence, the trend follower will more often than not have
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to reverse her limit order executions via market orders and then pay both adverse selection

and transaction costs. (In the wealth dynamics (3.7), the sum of the second and third

terms then is always negative, as is the fourth.) In contrast, for contrarian strategies,

one more often then not does not have to reverse limit-order executions, so that placing

limit orders is potentially profitable.

Whether this is indeed the case depends on the relative sizes of volatility, bid-ask

spreads and adverse selection. More specifically, it is optimal to use limit orders in the

case y ∈ (−1, 0) when adverse selection ρt and spread st are neither too large nor too

small:

Corollary 3.3.7. (i) Fix the bid-ask spread st. Then, yt ∈ (−1, 0) and it is optimal to

use limit orders if and only if γt < 0 and adverse selection is neither too large nor

too small, in that

ρt ∈

(
st

σt

√
2π

,min

{
2st

σt

√
2π

,

(
σt

√
2π

st
− 1

)−1
})

;

(ii) Fix the adverse selection parameter ρt. Then, yt ∈ (−1, 0) and it is optimal to use

limit orders if and only if γt < 0 and the bid-ask spread is neither too large nor too

small, in that

st ∈
(

ρt
ρt + 1

σt

√
2π, ρtσt

√
2π

)
.

Figure 3.2 displays how the parameter space for spread s and adverse selection ρ is

divided into three regions, where it is either not optimal to use limit orders at all because

the spread is too small to compensate for adverse selection, the intermediate regime

where it is optimal to use limit orders to implement contrarian strategies, and the case

where spreads are large enough that limit orders are always optimal for direct liquidity

provision.

A number of studies argue that the bid-ask spread is proportional to volatility, cf.,

e.g., Madhavan, Richardson, and Roomans (1997); Wyart et al. (2008). In this case, the

usefulness of limit orders only depends on whether the adverse selection parameter ρt is

small, large, or falls in an intermediate range.
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Figure 3.2: The partition of the parameter space (ρ, s) into the regimes where limit orders
are never optimal (slashed area), optimal to implement contrarian strategies (crossed
area) and optimal for direct liquidity provision for the underlying (dotted area). The
upper panel corresponds to trading on the trade clock (with a volatility of price changes
of $0.11). The lower panel displays the corresponding results for trading every 10 ticks
(with a volatility of $0.37 between trades).
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The optimally controlled wealth dynamics can be described as follows:

Corollary 3.3.8. With the optimal tilted execution scheme ν∗
t from Lemma 3.3.5, the

wealth process Xν∗
t has dynamics

dXν∗

t =


ΠtdPt − st√

2π
|γt| dt if ν∗

t = 0,

ΠtdPt − st√
2π
|γt|
(
sgn(γt)ρtyt +

√
(1− y2t )(1− ρ2t )

)
dt if ν∗

t ∈ (0, 1),

ΠtdPt +
st√
2π

(
ytvt −

√
γ2
t + 2ρtvtγt + v2t

)
dt if ν∗

t = 1,

where we recall that yt = 1− ρtσt

√
2π/st.

In the first case of Corollary 3.3.8, no limit orders are used and the wealth dynamics

collapse to the classical Leland model, where transaction costs accumulate proportionally

to the bid-ask spread and the (absolute value of) the volatility of the target strategy Πt.

In the second case, by capturing a fraction of the flow, the hedging cost can be reduced

by a multiplicative factor that depends on yt and the adverse selection parameter ρt. In

the empirically relevant case yt ∈ (−1, 0) (where this case arises for γt < 0 and ρt > −yt),

differentiation shows that this factor is decreasing in ρt. Whence, hedging costs are

reduced by higher adverse selection in this regime. The intuition is that, with strong

adverse selection, the sign of the order flow is aligned with the contrarian nature of the

target strategy for γt < 0.

In the third case of Corollary 3.3.8, an even larger limit order exposure than the entire

flow would be desirable, so this “saturated” case interpolates smoothly between the first

and second cases.

3.4 Impact on Option Prices

In Section 3.3, we have studied how to optimally implement delta hedging strategies

corresponding to a given option price via tilted executions schemes that employ both

market and limit orders.
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Now, we turn to the question for what option prices this procedure actually replicates

the option in the continuous-time limit, rather than producing surpluses or losses. To

this end, we assume for simplicity that the risky asset has Bachelier dynamics,

dPt = µdt+ σdWt, for µ ∈ R and σ > 0.

For simplicity, we also assume that the bid-ask spread s > 0 is constant. Finally, in order

to obtain option prices that only depend on time t and the price level Pt but not the

cumulative flow Ft, we assume that the latter follows Brownian motion with drift:

dFt = bdt+ v
√
1− ρ2dW⊥

t − vρdWt, for b ∈ R, v > 0, and ρ ∈ (0, 1).

In this setting, the price from which the option can be replicated using market and limit

orders via the optimal tilted execution scheme is described by a fully nonlinear PDE:

Lemma 3.4.1. Consider a European option with payoff function φ(PT ) at time T and

suppose there is a classical solution C ∈ C1,2([0, T ) × R) ∩ C([0, T ] × R) of the following

PDE:

0 = ∂tC +
σ2

2
∂ppC − sup

ν∈[0,1]

{
s√
2π

[
νv −

√
σ2 (∂ppC)2 + 2ρνvσ∂ppC + ν2v2

]
− ρσνv

}
,

(3.9)

with terminal condition C(T, p) = φ(p). Then, starting from the initial capital C(0, P0),

the optimal tilted execution scheme from Lemma 3.3.5 replicates the option payoff (in

probability) in the continuous-time limit.

Note that the option price (3.9) is nonlinear. In particular, the cost of replicating a

long and short positions is generally not symmetric. To illustrate this, let us first consider

the simplest case for solving the PDE (3.9): if the supremum is always attained by the

same limit order exposure ν. This happens, for example, if the option payoff is convex,

e.g., if one is trying to replicate a long position in call or put options. Then, limit orders

are never optimal and, like in Leland’s model, the unique solution of a linear equation
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with a modified higher volatility also solves the nonlinear equation (3.9):

∂tC +
σ2

2

(
1 +

√
2

π

s

σ

)
∂ppC = 0. (3.10)

Indeed, convexity of the terminal condition implies ∂2
ppC ≥ 0. It in turn follows as in the

proof of Lemma 3.3.5 that the supremum in (3.9) is aways attained by ν = 0 for this

option price, so that the nonlinear equation (3.9) is also satisfied by the solution of the

linear equation (3.10).

Conversely, suppose that the option payoff is concave (e.g., for a short position in

calls or puts), y ∈ (−ρ, 0) (so that limit orders are optimal), and the option position is

sufficiently small (to ensure it never reaches the saturated third case in Corollary 3.3.8).

Then, the nonlinear PDE (3.9) is solved by the unique solution of another linear equation,

now with smaller modified volatility:14

∂tC +
σ2

2

(
1−

√
2

π

s

σ

(
−ρy +

√
(1− ρ2)(1− y2)

))
∂ppC = 0. (3.11)

Indeed, it follows from standard arguments that C inherits ∂2
ppC ≤ 0 from the concavity

of the terminal condition. For a small option position, one can in turn verify as in

Lemma 3.3.5 that the supremum in (3.9) is attained at an interior value ν∗ ∈ (0, 1) for

∂ppC < 0 and by ν∗ = 0 for ∂ppC = 0. After inserting this maximizer (as well as the linear

equation (3.11) for C), it follows that C also solves the nonlinear equation (3.9). We see

that, compared to the Leland model (where just the sign of the volatility adjustment

in (3.10) is flipped), limit orders reduce the shift in the implied volatility by a factor of

−ρy +
√

(1− ρ2)(1− y2) ∈ (0, 1) in this case.

We now turn to the general case where the supremum in the nonlinear PDE (3.9)

is not necessarily attained by the same value of ν, i.e., where the optimal limit order

strategy possibly depends on time and price levels. As all model parameters are constant

here, y = 1 − ρσ
√
2π/s is also constant. Whether are not it is optimal to use limit

14Like for our wellposedness result for general smooth payoffs in Theorem 3.4.2 below, this solution also
requires that the bid-ask spread is small enough relative to the volatility, so that the adjusted volatility
remains positive.
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orders in turn only depends on time and the price level through the option positions

γt or, equivalently, it’s gamma ∂ppC(t, p). Indeed, if y ∈ (−ρ, 0), for example, then

the optimal limit-order placement policy is ν∗(γt) ≡ 0 if γt = σ∂ppC(t, Pt) ≥ 0 and

ν∗(γt) = −γt
v

(
ρ+ y

√
1−ρ2

1−y2

)
∈ (0, 1) if γt < 0.15 Clearly, the mapping ν∗(·) is then also

the pointwise maximizer of the Hamiltonian in the PDE (3.9) (with γ = σ∂ppC(t, p));

Equations (3.10) and (3.11) are retrieved as special cases (where ∂ppC(t, p) ≥ 0 and

∂ppC(t, p) < 0 for all t ∈ [0, T ], respectively). With these observations, we can show that

a unique solution of the PDE (3.9) exists under the same parameter constraint required

for wellposedness of the classical Leland model (Ishimura, 2010):16

Theorem 3.4.2. Suppose σ > s
√

2
π
. Then, there is a unique bounded solution C ∈

C1,2([0, T )× R) ∩ C([0, T ]× R) of the PDE (3.9) for option payoffs φ ∈ C3b (R).

3.5 Empirical Illustration

We now illustrate the quantitative properties of our theoretical results using tick data

from the LOBSTER database. Since trading at every tick leads to unreasonably large

transaction costs, we instead consider the times {tn}Nn=0 corresponding to every tenth tick

of the trade clock.

3.5.1 Parameter Estimation

Throughout this empirical illustration, we consider a time horizon of T = 1 year, suppose

that the (absolute) bid-ask spread s is constant, and prices and order flow have Bachelier

dynamics:

dPt = µdt+ σdWt, dFt = bdt+ v
√

1− ρ2dW⊥
t − vρdWt.

For Google shares in 2019, we have 2552083 trades; trading every tenth tick thus corre-

sponds to ∆tN = 1/255208.3. The bid-ask spread sN can be proxied by the average value

15The conclusion that negative gamma enables limit order usage might be obvious, but here we should
note that our result is more general.

16This parameter constraint ensures that transaction costs are not so high that hedging with market
orders would lead to a negative bid-price for the options with a convex payoff
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sN = s/
√
N = 0.369 reported in the LOBSTER database. The volatilities and correla-

tions can be estimated using realized quadratic (co-)variations: by, e.g., (Aı̈t-Sahalia &

Jacod, 2014, Theorem 1.14), we have:

σ2 ≈
N∑

n=1

(
Ptn − Ptn−1

)2
, v2 ≈

N∑
n=1

(
Ftn − Ftn−1

)2
, ρσv ≈

N∑
n=1

(
Ftn − Ftn−1

) (
Ptn − Ptn−1

)
.

Here, the order flow is proxied by the number of shares traded between the gridpoints.

The volume of each individual trade is reported in the LOBSTER database; the signs

are estimated using the Lee-Ready algorithm, see Appendix 3.8.3 for more details. For

Google data from 2019, this leads to

ρ ≈ 0.459, σ ≈ 0.366×
√
N, v ≈ 356.468×

√
N.

Remark 3.5.1. The above statistical estimators are set up on the “trade clock” rather

than “calendar time”. This makes the estimation of all model parameters (volatility,

adverse selection) significantly more robust.17 One can, in fact, interpret the whole model

under the trade clock. This has the additional advantage that the dynamics of volatility

in the volume clock are significantly reduced, circumventing the need for a time-varying

or stochastic volatility model, at least on the intraday timescale. The price to pay for this

reinterpretation is that the expiry time of the option becomes a random variable under

the trade clock. While this affects the hedging strategy over longer durations, it does not

have a big impact on the intraday timescale. Furthermore, the volatility contribution of

overnight returns, which cannot be captured via continuous-time trading, typically plays a

much larger role over the timescales where the option expiry is felt. Accordingly, models

in volume time are commonly used in a trading context.18

17Aı̈t-Sahalia and Jacod (2014) provide a comprehensive list of statistical results for high frequency
data. They treat the case of “Volatility and Irregularly Spaced Observations” in Chapter 9 (p. 299) and
focus on time changes in particular in Section 9.1.3 “Irregular Observations Schemes: Time Changes”
(p. 309).

18See for example Busseti and Lillo (2012), who tackle the estimation of price impact under different
clocks. They dedicate their entire Section 5 “The propagator model under other time measures” to this
issue and provide in Table 3, p. 14 a direct comparison of the performance of price impact models under
the trade and calendar time clocks.
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For the above parameter estimates, the (multiplicative) Leland volatility correction

when replicating options with a convex payoff is 44.3%. This is still high, but note that

this is the value obtained without any netting of delta exposure for option market makers,

compare Section 3.5.3.19 For this trading frequency, the parameter constraints y < 0 and

ρ > −y are also satisfied, as y = −0.142 ∈ (−ρ, 0).

To test the robustness of these findings over a larger universe of stocks, we also esti-

mate the model parameters over the entire universe of S&P 500 stocks for 2019 to provide

a cross-sectional view of adverse selection and its effect on limit order’s profitability. The

profitability depends crucially on the trading frequency used for estimation: if the trader

is able to capture every tick or every other tick, unconditional market making is typically

profitable. Conversely, even a trader capturing every tenth tick will lose money market

making. However, this doesn’t preclude the use of limit orders to cheapen delta-hedging

strategies as long as the limit orders are less unprofitable than the bid-ask spread paid

when taking liquidity. Figure 1.1 visualizes the distribution of spread and adverse se-

lection across stocks. Figure 3.3 flattens this distribution into a one-dimensional density

describing limit order’s profitability as a function of trade frequency.

For limit orders to be useful in delta-hedging an option, Figure 1.1 shows that one

looks for stocks with high adverse selection and sizeable spread :

(a) adverse selection helps limit orders hedge “in the right direction” for the correct

gamma.

(b) the bid-ask spread compensates for the adverse selection losses. If the spread is too

low, adverse selection costs may make limit orders more costly than market orders.

3.5.2 Optimal Policy

Now suppose that we are about to replicate a short position of 100 at-the-money European

call options on Google with time-to-maturity T = 1 year. As recapitulated above, the

19There is no public data on the average netting of delta exposures for option market makers. However,
we can point to the emergence of central risk books as an indication of the appetite for risk netting inside
a firm.
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Figure 3.3: Density of y, the profitability of limit orders in spread-units, across the S&P
500 over 2019 for various trading frequencies.

volatility for the option bid price in the classical Leland model with market orders then

is about 55.7% lower than in the frictionless version of the model. With both market and

limit orders, Corollary 3.3.8 shows that the corresponding volatility correction is smaller,

in that the “effective volatility” for pricing and hedging is only reduced by about 50.9%.

Converted into option prices, the bid price for the 100 options when hedging with market

orders only is $3271.8453. If the agent hedges with both market and limit orders, this

increased to the more competitive bid price $3623.2647; the corresponding frictionless

price is $7381.8832.

Let us now get a feeling for the trading volumes involved. Recall that the optimal

limit order exposure is

ν∗
t = max {min{ν̃∗

t , 1}, 0} , where ν̃∗
t =

 −
γt
v

(
ρ− sgn(γt)y

√
1−ρ2

1−y2

)
, if y ∈ (−1, 1),

0, if y ≤ −1.

Taking into account that γt is the product of the number of options, the price volatility

and the Bachelier at-the-money gamma ϕ(0)/σeff

√
T = 1/σeff

√
2π
√
T , this leads to

ν∗ = 1.49575× 10−4.
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The expected order flow in each timestep is 284.4, so that the number of shares captured

by limit orders is about 0.04254 every 10 ticks, equivalent to 43.08 shares per day. When

using limit orders in this manner, the expected number of shares traded by market orders

is reduced from 143.97 per day in the classical Leland model to 129.23 per day.

3.5.3 Netting and Aggregation in Central Risk Books

The previous example focuses on a single option for simplicity. To illustrate the additional

effects that appear when delta hedging an entire book of different options, we now consider

two further examples. The first focuses on netting of long and short positions; the second

demonstrates the impact of aggregate payoffs that are neither convex nor concave.

Example 3.5.2. Consider a market maker for an option with convex payoff, say a call

or put. Client buy orders for Qa > 0 options create a short position for the market

maker, who in turn needs to replicate a convex payoff for which no limit orders are used.

However, client sell orders for Qb > 0 options create a long position for the market maker,

for which limit orders help to hedge the corresponding concave payoff.

100 75 50 25 0 25 50 75 100
Qa Qb

0%

10%

20%

30%

40%

50%

with netting
without netting
with netting Leland
without netting Leland

Figure 3.4: Percentage of additional option replications costs relative to the frictionless
version of the model. The gross number of options is fixed to Qa+Qb = 100 throughout.

Without netting in a central risk book, the long and short positions of the market

maker are delta-hedged separately. As the option payoff is convex, the replication costs



3.5. Empirical Illustration 80

for long and short positions are both linear in the position sizes Qa and −Qb. However,

due to transaction costs, the replication cost Ca per option for client buy orders (i.e., the

option ask-price (3.10) with higher volatility) is higher than its frictionless counterpart

C. Conversely, the value of the replication portfolio Cb per option for client sell orders

is lower than C (the option bid-price with lower volatility (3.11)). Without netting, the

additional replication costs due to transaction costs therefore are

Qa(Ca − C)−Qb(Cb − C).

With netting in a central risk book, only the net position Qa −Qb is delta hedged. This

reduces the additional replication costs to

(Qa −Qb)1{Qa>Qb}(Ca − C)− (Qb −Qa)1{Qb>Qa}(Cb − C).

With only buy or sell orders, this reduces to the formula without netting above. But if

client buy and sell orders offset completely, then netting allows to avoid hedging and in

turn transactions costs altogether. If client buy and sell orders partially offset each other,

then the additional replication costs lie between these upper and lower bounds. Figure 3.4

illustrates this for our Google example when the gross position of options traded Qa+Qb

is fixed to 100, but the market maker’s net position Qa −Qb varies from −100 to 100.

Example 3.5.3. As a concrete example for a portfolio of different options, we now

consider a “butterfly”. This corresponds to a long position of N call options each with

strikes K1 < K3 and a short position of 2N call options with strike K2 ∈ (K1, K3). The

resulting payoff function is concave around K2, but convex outside this neighbourhood.

As a result, the nonlinear pricing PDE (3.9) no longer has a simple explicit solution but

instead needs to be solved numerically. This can be done using finite differences, which

also produces the optimal limit-order policy as a byproduct.

For our Google example with S0 = 1000, K1 = 900, K2 = 1000, and K3 = 1100, and

N = 100, the replication price of the butterfly in a central risk book then is $5354.3359. In

contrast, if each of the positions is delta hedged separately, the sum of the three separate
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Figure 3.5: Limit-order usage for butterfly option.

replication prices is $14165.0495. This is another example for the same netting effect as

in the previous example.

Here, aggregation in a central risk book also affects the optimal limit order policy.

To wit, since the aggregate payoff function of the option portfolio is neither convex nor

concave, limit orders are now optimal in some states but not in others. For the Google

example, this is illustrated in Figure 3.5. We see that limit orders are optimal if the

current stock price is near the middle strike K2, where the payoff of the butterfly is locally

concave. Outside of this region, it is optimal to hedge with market orders only.

3.5.4 Simulation Results

Both the optimal choice of limit orders and the analysis of the corresponding option prices

studied above crucially depend on the passage to a continuous-time scaling limit. For the

model parameters estimated in this section, we now test how well this approximates the

discrete version of the model by means of a simulation study.

To this end, we simulate 10,000 price and order flow paths with Bachelier dynamics,

using the parameter estimates for Google tick data obtained above. The Bachelier delta

hedge has the explicit form Πt = Φ(Pt − K)/σeff

√
T − t, for a call option with strike

K, time-to-maturity T − t, and the “effective” volatility σeff adjusted for transaction
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costs. The discrete P&L corresponding to an option position and the associated hedging

portfolio can in turn be computed conveniently for each simulated price path.
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Figure 3.6: Distribution of the hedging error for the classical Leland model (upper panel)
and for the extension with market and limit orders (lower panel).

Figure 3.6 displays the distribution of hedging errors for the classical Leland model

with market orders only, and for our extension with market and limit orders. For the

100 at-the-money call options we consider, the hedging errors are small in line with

the continuous-time replication results, both for the classical Leland model and for our

extension with limit orders. More specifically, in the classical Leland model the average

hedging error is −0.1255 with a standard deviation of 13.168; for the extended model with

limit orders the corresponding values are −0.0986 and 9.3931, respectively. As reported

above, the corresponding prices are $7381.8832 in the frictionless version of the model,

$3271.8453 with market orders only, and $3623.2647 for hedging with both market and
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limit orders.

Finally, Figure 3.7 plots the histogram of cost savings that can be achieved using limit

orders.
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Figure 3.7: Distribution of (relative) savings of replication cost that can be achieved using
limit orders.

3.6 Partial Tilted Execution Schemes

In the tilted execution schemes discussed so far, market orders are used at each trading

time to perfectly rectify the discrepancy between the actual position (after the execution

of limit orders) and the target (3.5). This provides a tight control on the associated

hedging errors, but generates substantial trading costs since a large amount of trading is

still done via market orders.

In order to reduce the amount of transaction costs paid, it is natural to extend this

analysis to partial tilted execution schemes, where only a fraction of the hedging error

is offset at each time step. Put differently, both the exposure to limit orders and the

fraction of market orders placed become control variables in this context.20

To formalize this, note that before market orders are placed at time tNn , the target

position has changed by ∆ΠN
n and the hedging position has changed by νN

n−1∆FN
n due

20The even more general case of a completely free choice of market and limit orders needs to be studied
by numerically solving the corresponding dynamic-programming equations (Agliardi, 2016; Cartea et al.,
2019; Ellersgaard & Tegnér, 2017). In contrast, the approach we present here retains most of the
tractability of the standard Leland model by still reducing optimization to a pointwise problem.
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to the execution of limit orders. Accordingly, the previous displacement DN
n−1 between

actual position and target has changed by ∆ΠN
n −νN

n−1∆FN
n . Whence, to rectify a fraction

κN
n ∈ [0, 1] of the updated displacement, the market order that needs to be placed at time

tNn is

∆MN
n = κN

n (D
N
n−1 +∆ΠN

n − νN
n−1∆FN

n ).

With this partial tilted execution scheme, the corresponding displacement has the follow-

ing autoregressive dynamics, controlled by the limit order exposure ν and the market-

order fraction κ:

DN
n = (1− κN

n )(D
N
n−1 +∆ΠN

n − νN
n−1∆FN

n ), DN
0 = 0. (3.12)

The corresponding portfolio dynamics of such a partial tilted execution scheme are

∆XN
n =(ΠN

n−1 −DN
n−1)∆PN

n −
sNn
2
κN
n |DN

n−1 +∆ΠN
n − νN

n−1∆FN
n |

+
sNn−1

2
νN
n−1|∆FN

n |+ νN
n−1∆FN

n ∆PN
n .

(3.13)

As for full tilted execution schemes, the first term measures the effect of price changes,

the second and third terms records spread costs paid and earned for market and limit

orders, respectively, and the last term accounts for adverse selection. As long as the

fractions κN
n of displacements rectified by market orders are bounded away from zero, the

sum of the first terms will still converge to the stochastic integral of the target strategy

with respect to the price process in the continuous-time limit. One can in turn trade off

the effect of the execution costs described by the other three terms against a functional

of the displacement of the actual positions from the target strategy. The most tractable

specification is to subtract a multiple of the sum of expected squared displacements:

α

2
E

[
N∑

n=1

(DN
n )

2

]
. (3.14)

Here, the relative importance of execution costs and displacements is measured by a
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risk-aversion parameter α > 0.21

3.6.1 Continuous-Time Limit

To compute the continuous-time limit of the discrete-time portfolio dynamics (3.13),

we need the following mild regularity conditions, which ensure sufficient continuity and

integrability of all processes involved:

Assumption 3.6.1. Suppose µF , v, µ, σ, s, ρ, µΠ, γ, ν, κ, F, P,Π are all Itô processes with

uniformly bounded drift and diffusion coefficients and, in addition, κ is uniformly bounded

away from zero.

Then, we have the following convergence result:

Theorem 3.6.2. Suppose Assumption 3.6.1 is satisfied. Then, as the timestep ∆tN

between the trading times tends to zero, the expectation of the discrete-time portfolio

process (3.13) converges to

E

[∫ T

0

ΠtdPt −
∫ T

0

(
st
2

√
γ2
t + 2ρtγtνtvt + ν2

t v
2
t

√
2

π

√
κt

2− κt

− stνt
2

√
2

π
vt + νtρtσtvt

)
dt

]
.

(3.15)

The sum of expected squared displacements (3.14) converges to

E
[∫ T

0

((
γ2
t + 2ρtγtνtvt + ν2

t v
2
t

) (1− κt)
2

κt(2− κt)

)
dt

]
. (3.16)

Even though the explicit expressions in Theorem 3.6.2 are more involved than in

Theorem 3.3.1, the optimal trading policy that trades off execution costs against average

displacements in an optimal manner can thus still be determined by direct pointwise

minimization of

E
[∫ T

0

H(νt, κt, γt, st, vt, ρt)dt

]
,

21Note that α is not rescaled by the length time steps. Whence, this goal functional corresponds to
the regime of small transaction costs and high risk aversion studied by Barles and Soner (1998).
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where

H(ν, κ, γ, s, v, ρ) =
s

2

√
γ2 + 2ργνv + ν2v2

√
2

π

√
κ

2− κ
− sν

2

√
2

π
v + νρσv

+
α

2

(
γ2 + 2ργνv + ν2v2

) (1− κ)2

κ(2− κ)
.

(3.17)

As a sanity check, first consider the above expression in the limiting case where the

risk-aversion parameter α is sufficiently large. Then, the influence of κt on the goal

functional is dominated by the last term in (3.17). This term is decreasing in κ, and

therefore minimized on [0, 1] by a full tilted execution scheme with κt = 1. In fact, this

regime is not only obtained in the limit α → ∞, but already for large but finite values

of α. For such sufficiently high levels of risk aversion, the goal functional (3.17) then

collapses to its counterpart (3.7) for full tilted execution schemes and we recover all the

results from the previous sections.

Conversely, suppose the risk aversion parameter α is sufficiently small. Then, the

impact of κt is governed by the first term, which is increasing in κt and therefore minimized

by κt = 0. As a consequence, sufficiently risk tolerant investors that are not worried about

hedging their option position should never place any market orders. Limit orders should

also never be used for hedging, but only if direct liquidity provision in the underlying is

profitable on average for y > 0.

For intermediate values of the risk-aversion parameter α, there is a nontrivial tradeoff

between using market orders to reduce displacement, but not doing so too aggressively

in order to limit the associated transaction costs. For the parameters estimated from

Google data in Section 3.5, Figure 3.8 plots the optimal limit order exposure νt and the

corresponding market order fraction κt against the level α of risk aversion. We see that as

risk aversion decreases, the optimal limit order exposure is initially rather insensitive. In

contrast the amount of market orders quickly decreases when some deviations from the

target position are acceptable. As the risk aversion decreases further, trading with either

market or limit orders stops altogether, as their benefits for hedging risk then become

smaller and smaller relative to their spread and adverse selection costs.
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Figure 3.8: Optimal limit order exposure νt (upper panel) and optimal market order
fraction κt (lower panel) plotted against risk aversion α. Other model parameters are as
in Section 3.5.
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3.6.2 Impact on Option Prices

We now sketch how to endogenize the target strategy in the goal functional (3.17) and

determine a corresponding option price. As in Section 3.4, we focus on delta hedges

∂pC(t, Pt) derived from option prices C(t, Pt) with fixed s, v and ρ. With a nontrivial

tradeoff between execution costs and displacements, it is then natural to look for the

“indifference price” (Hodges & Neuberger, 1989), for which the optimal performance

with the option is the same as without it.

Suppose we have sold one option with payoff φ(PT ) and hedge it starting from the

initial option price C(0, P0). If this is implemented using a partial tilted execution scheme

(ν, κ) for the delta hedge ∂pC(t, Pt) then, by Theorem 3.6.2, in the continuous-time limit,

the expected payoff of the hedged portfolio is

E
[
−φ(PT ) + C(0, P0) +

∫ T

0

∂pC(t, Pt)dPt +

∫ T

0

H (νt, κt, σ∂ppC(t, Pt), s, v, ρ) dt

]
.

(3.18)

For the indifference price C no policy should be able to generate expected gains, but there

should also be no expected losses for the optimal policy (in our class). Put differently, the

expectation (3.18) should be nonpositive for any policy (ν, κ), and zero for the optimal

one. Like the replication price with full tilted execution schemes, this indifference price

is characterized by a fully nonlinear PDE:

Lemma 3.6.3. Suppose there is a smooth solution C ∈ C1,2([0, T ) × R) ∩ C([0, T ] × R)

of the PDE

0 = ∂tC +
σ2

2
∂ppC − sup

ν,κ∈[0,1]
H (ν, κ, σ∂ppC, s, v, ρ) , C(T, p) = φ(p). (3.19)

Then, the expected payoff (3.18) is nonpositive for any policy (ν, κ) and zero for the

optimal one, the pointwise optimizer of H(ν, κ).

We conjecture that a smooth solution of (3.19) exists for sufficiently regular coefficients

and terminal conditions just like for the corresponding equation for full tilted execution

schemes. However, this is considerably more difficult to prove in the absence of an
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explicit expression for the pointwise optimum. We therefore defer further analysis of the

PDE (3.19) to future research.
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Figure 3.9: Upper panel: Indifference prices C(0, P0) (with and without using limit
orders) plotted against risk aversion α. Lower panel: (expected) fraction of trades im-
plemented via limit orders at time t = 0 plotted against risk aversion α. Other model
parameters are as in Section 3.5.

3.6.3 Empirical Results

Using standard finite-difference solvers, the PDE (3.19) can be readily solved numerically.

For the parameters estimated from tick data for Google in Section 3.5, the upper panel of
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Figure 3.9 shows how the resulting indifference prices with a long call position (i.e., the

“bid price” for the option) depend on the risk-aversion parameter α. As discussed above,

sufficiently large values of this parameter recover full tilted execution schemes, and the

indifference price (3.19) accordingly converges to its counterpart from Section 3.4. If risk

aversion is low, the trading frictions matter less and less and the option price in turn

converges to its frictionless counterpart. Intermediate levels of risk aversion interpolate

smoothly between these limiting cases. For each level of risk aversion, the indifference

bid-price with limit orders is sandwiched between its counterpart using market orders

only and the frictionless price. For the corresponding ask price, limit orders are never

optimal and both indifference prices therefore coincide.

Finally, the lower panel of Figure 3.9 displays how the expected fraction of orders

traded via limit orders at the initial time t = 0 varies as a function of the risk-aversion

parameter. We see that limit orders make up a larger part of the overall trading activity

as risk aversion decreases. The intuition for this is the behaviour of the optimal pol-

icy from Figure 3.8: as risk aversion decreases, the optimal limit order rate ν remains

relatively insensitive, whereas the fraction of displacements κ offset by market orders is

reduced much more quickly.

3.7 Conclusion

This chapter studies the derivatives hedging problem from the perspective of a central risk

book with reasonable trading frequency, where the risky positions of several trading desks

are managed collectively. We propose a reduced-form model that captures the trade-

off between spread and adverse selection. Using limit theorems in the spirit of Jacod

and Protter (2012), we show that for frequent trades and small transaction costs, the

limiting wealth dynamics can be computed in closed form. In the limiting model, the

optimization task becomes myopic and we provide the corresponding operationalizable

derivatives hedging strategy with both market and limit orders.

We show that limit order is only beneficial for contrarian strategies. More specifically,
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it is only beneficial for delta-hedging when the gamma of the risky position is negative.

The results of Leland (1985) are generalized in terms of limit order placement (with ad-

verse selection) and the corresponding option price is described by a nonlinear PDE with

unique solution. Moreover, we further generalize this result by allowing imperfect hedg-

ing and derive another nonlinear PDE characterizing the interplay between transaction

costs, adverse selection and risk aversion.

Our empirical analysis demonstrates that tactical liquidity provision is beneficial for

non-competitive market makers at reasonable trading frequencies. Additionally, our em-

pirical findings show that the reduced form model summarizes the market microstructural

features needed for implementation of the trading strategy, with better tractability and

interpretability compared to the purely numerical simulations at the discrete microstruc-

ture level.

3.8 Appendix

3.8.1 Proofs for Section 3.3

Proof of Theorem 3.3.1. We separately consider each of the four terms on the right-hand

side of (3.6). The first term is a discrete stochastic integral and therefore converges to

the continuous-time stochastic integral as N → ∞ (cf., e.g., (Jacod & Shiryaev, 2003,

Theorem I.4.31)):
⌊ tN

T
⌋∑

n=1

ΠtNn−1
(PtNn

− PtNn−1
)

u.c.p.
=⇒

∫ t

0

ΠτdPτ .

For the second term on the right-hand side of (3.6), first notice that, by the Law of Large

Numbers with normalization for discretized processes (Jacod & Protter, 2012, Theorem

7.2.2(a)):

1

2
√
N

⌊ tN
T

⌋∑
n=1

stNn−1

∣∣∣ΠtNn
− ΠtNn−1

− νtNn−1
(FtNn

− FtNn−1
)
∣∣∣ u.c.p.
=⇒

∫ t

0

sτ√
2π

√
γ2
τ + 2ρτγτντvτ + ν2

τ v
2
τdτ.
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We note here that the application of the Law of Large Numbers with normalization for

discretized processes (Jacod & Protter, 2012, Theorem 7.2.2(a)) here introduces an extra

factor of 1/
√
T , which did not appear in the original version in the book Jacod and

Protter (2012) in which T = 1 is assumed for simplicity.

The triangle inequality and (Jacod & Protter, 2012, Theorem 7.2.2(b)) in turn show

that the second term on the right-hand side of (3.6) (where stNn−1
is replaced by stNn in

the above expression) converges to the same limit.

Next, for the third term we have

1

2
√
N

⌊ tN
T

⌋∑
n=1

stNn−1
νtNn−1
|FtNn

− FtNn−1
| u.c.p.
=⇒ 1√

2π

∫ t

0

sτντvτdτ,

again by (Jacod & Protter, 2012, Theorem 7.2.2(a)).

Finally, another application of (Jacod & Protter, 2012, Theorem 7.2.2(b)) shows that

the fourth term on the right-hand side of (3.6) converges to

⌊ tN
T

⌋∑
n=1

νtNn−1
(FtNn

− FtNn−1
)(PtNn

− PtNn−1
)

u.c.p.
=⇒ −

∫ t

0

ρτστντvτdτ.

Together, these four convergence results establish the asserted continuous-time limiting

dynamics (3.7) of the discrete self-financing equation (3.6)

Proof of Lemma 3.3.5. Fix a time t and state ω ∈ Ω. For ℓt = νtvt we need to maximize

G(ℓt) :=
st√
2π

(
ℓt −

√
γ2
t + 2γtℓtρt + ℓ2t

)
− ρtσtℓt, over ℓt ∈ [0, vt]. (3.20)

If γt = 0, this function is strictly decreasing (as ρt ∈ (0, 1)) and therefore maximized by

ℓt = 0 in accordance with (3.8). For γt ̸= 0, differentiation shows that Gt(·) is strictly

concave. Therefore, it has a unique maximizer on [0, vt] that is either characterized by

the first-order condition G′
t(ℓt) = 0 or coincides with one of the endpoints of the interval.
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We have

G′
t(ℓt) =

st√
2π

[
yt −

ℓt + ρtγt√
(1− ρ2t )γ

2
t + (ℓt + ρtγt)2

]
. (3.21)

As ρt ∈ (0, 1) and in turn− ℓt+ρtγt√
(1−ρ2t )γ

2
t +(ℓt+ρtγt)2

≤ 1, the functionGt(·) is strictly decreasing

in ℓt in the case yt ≤ −1. Hence, the corresponding maximizer is ℓt = 0 and the maximizer

of (3.7) is ν∗
t = 0 in this case.

We now consider the remaining case yt ∈ (−1, 1). As st > 0, the first-order condition

G′
t(ℓt) = 0 is then equivalent to

yt =
ℓt + ρtγt√

(1− ρ2t )γ
2
t + (ℓt + ρtγt)2

. (3.22)

On the one hand, this requires sgn(yt) = sgn(ℓt+ρtγt); on the other hand some algebraic

manipulations show that we also need

√
1− y2t |ℓt + ρtγt| = |yt|

√
1− ρ2t |γt|.

As sgn(yt) = sgn(ℓt + ρtγt), this can be rewritten as

√
1− y2t (ℓt + ργt) = yt

√
1− ρ2t |γt| ⇒ ℓt = −ρtγt + yt|γt|

√
1− ρ2t
1− y2t

.

If this solution of the first-order condition lies in the interval [0, vt], then it is the unique

maximizer of Gt(ℓt) on this interval as asserted in (3.8). If it lies outside this interval,

then the maximizer of this concave function is the nearest endpoint of the interval, again

in accordance with (3.8). This completes the proof.

Proof of Lemma 3.3.6. Fix a time t and state ω ∈ Ω.

(i) First suppose that yt ∈ (−1, 0). Then, if γt > 0, ρt > 0 implies

ν̃∗
t = −γt

vt

(
ρt − yt

√
1− ρ2t
1− y2t

)
< 0. (3.23)
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As a consequence, we always have ν∗
t = 0 in this case.

If γt < 0, then ν̃∗
t > 0 (and in turn ν∗

t > 0) is equivalent to

−γt
vt

(
ρt + yt

√
1− ρ2t
1− y2t

)
> 0 ⇔ ρt + yt

√
1− ρ2t
1− y2t

> 0 ⇔ ρt√
1− ρ2t

>
−yt√
1− y2t

.

As the function x 7→ x/
√
1− x2 is strictly increasing on [0, 1], this is in turn equiv-

alent to ρt > −yt as claimed.

(ii) Now suppose that yt ∈ [0, 1) (and recall that ρt > 0). Then, if γt > 0, ν̃∗
t > 0 is

equivalent to

− γt
vt

(
ρt − yt

√
1− ρ2t
1− y2t

)
> 0 ⇔ ρt < yt

√
1− ρ2t
1− y2t

. (3.24)

As the function x 7→ x/(1−x2) is strictly increasing on [0, 1], this is in turn equivalent

to ρt < yt as claimed.

Finally, if γt < 0, then ν̃∗
t (and in turn ν∗

t ) is always positive, because

ρt + yt

√
1− ρ2t
1− y2t

> 0 ⇒ −γt
vt

(
ρt + yt

√
1− ρ2t
1− y2t

)
> 0. (3.25)

This completes the proof.

Proof of Corollary 3.3.7. Fix a time t and state ω ∈ Ω.

(i) Fix the spread st and note that by definition of yt, yt ∈ (−1, 0) is equivalent to

ρt ∈
(

st
σt

√
2π
, 2 st

σt

√
2π

)
. This is clearly satisfied if the parameter constraint from the

corollary holds. The upper bound in the latter also ensures that ρt > −yt. Together

with γt < 0, this implies that ν∗
t > 0 by Lemma 3.3.6(i).

Conversely, suppose that yt ∈ (−1, 0) and ν∗
t > 0. Then, by Lemma 3.3.6(i), we

necessarily have γt < 0 and ρt > −yt. The second inequality and yt ∈ (−1, 0) in

turn imply that the parameter constraint from the corollary is satisfied.

(ii) This follows along the same lines as (i).



95 Chapter 3. A Leland Model for Delta Hedging in CRBs

3.8.2 Proofs for Section 3.4

Proof of Lemma 3.4.1. The terminal condition for C, Itô’s formula, and the PDE (3.9)

yield (supressing the arguments of the functions to ease notation):

φ(PT )

= C(0, P0) +

∫ T

0

(
∂tC + µ∂pC +

σ2

2
∂ppC

)
dt+

∫ T

0

σ∂pCdWt

= C(0, P0) +

∫ T

0

∂pCdPt +

∫ T

0

sup
ν∈[0,1]

{
s√
2π

[
−
√

σ2∂ppC2 + 2ρνvσ∂ppC + ν2v2 + νv
]
− ρσνv

}
dt

= C(0, P0) +

∫ T

0

∂pCdPt +

∫ T

0

(
s√
2π

[
−
√

σ2∂ppC2 + 2ρν∗vσ∂ppC + (ν∗v)2 + ν∗v

]
− ρσν∗v

)
dt

= C(0, P0) +

∫ T

0

ΠdPt +

∫ T

0

(
s√
2π

[
−
√

γ2 + 2ργν∗v + (ν∗v)2 + ν∗v
]
− ρσν∗v

)
dt.

Whence, by Theorem 3.3.1, the optimal hedging portfolio from Lemma 3.3.5 (with ini-

tial capital C(0, P0)) converges to the option payoff to be hedged in probability in the

continuous-time limit N →∞.

Proof of Theorem 3.4.2. We focus on the most important case y ∈ (−1, 0) and ρ > −y

here; the other cases can be treated along the same lines.

Step 1: Rewrite the PDE. After the change of variable τ := σ2

2
(T − t) and using

Lemma 3.3.5, the PDE (3.9) can be rewritten as follows:

∂τC = ∂ppC + κG (∂ppC) , C(0, p) = φ(p), (3.26)

where κ := 2s/σ2
√
2π > 0 and G is a piecewise smooth function (plotted in Figure 3.10):

G(z) :=


σz if z ≥ 0,

σρyz − σ
√

(1− y2)(1− ρ2)z if z ∈
(
− v

σ

(
ρ+ y

√
1−ρ2

1−y2

)−1

, 0

)
,

−yv +
√
(σz + ρv)2 + (1− ρ2)v2 if z ≤ − v

σ

(
ρ+ y

√
1−ρ2

1−y2

)−1

.
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Step 2: Approximate the PDE with a smooth equation. To smooth out the two kinks

of the nonlinearity G in (3.26), we convolute it with the heat kernel:

Gε(z) :=

∫ ∞

−∞
G(z + εx)ϕ(x)dx,

where ϕ(·) is the probability density function of the standard normal distribution. For

small ε, we then consider the following smooth approximations of our original PDE (3.26),

illustrated in Figure 3.10:

∂τCε = ∂ppCε + κGε(∂ppCε), Cε(0, p) = φ(p). (3.27)

5 4 3 2 1 0 1
z

0.0

0.1

0.2

0.3

0.4

0.5

0.6 G
G
kinks

Figure 3.10: The nonlinearity G from (3.26) and its smooth approximation Gε.

Step 3: Bound the derivative of Gε. The piecewise function G is differentiable on the

interior Ri ⊂ R, i = 1, 2, 3 of each subinterval on which it is defined. In each case, the

derivative is bounded from above by σ(1 + ρ) and bounded from below by −σ. Whence,

it follows from the dominated convergence theorem that

G′
ε(z) =

3∑
i=1

∫
Ri

G′(z + εx)ϕ(x)dx. (3.28)



97 Chapter 3. A Leland Model for Delta Hedging in CRBs

In particular, the derivative of Gε is bounded as well: G′
ε(z) ∈ [−σ, σ(1 + ρ)].

Step 4: Differentiate the approximating PDE. Formally taking partial derivatives of

(3.27) with respect to p, we obtain the following PDEs that should be satisfied by the

first, second, and third derivatives of Cε with respect to this spatial variable:

∂τVε = ∂ppVε + κ∂ppVεG
′
ε(∂pVε), Vε(0, p) = φ′(p),

(3.29)

∂τUε = ∂ppUε + κ∂ppUεG
′
ε(Uε) + κ (∂pUε)

2G′′
ε(Uε), Uε(0, p) = φ′′(p),

(3.30)

∂τQε = ∂ppQε + κ∂ppQεG
′
ε(Uε) + 3κQ∂pQεG

′′
ε(Uε) + κ (Qε)

3G′′′
ε (Uε), Qε(0, p) = φ′′′(p).

(3.31)

Step 5: Establish uniform parabolicity and in turn existence of the approximating

equation. To establish uniform parabolicity in the sense of (Lieberman, 1996, Chapter

14, p. 357) for the approximating PDE (3.27) as well as for the PDEs (3.29) and (3.30)

for Vε and Uε, we differentiate the right-hand sides of these equations by ∂ppCε, ∂ppVε and

∂ppUε, respectively. By the lower bound of G′
ε and the parameter constraint σ > s

√
2/π,

these derivatives are all bounded away from zero, so all three equations are uniformly

parabolic. As a consequence, all three PDEs have unique bounded classical solutions

by (Lieberman, 1996, Theorem 14.7). Next, with Uε at hand, it follows along the same

lines that the PDE (3.31) for Qε is also uniformly parabolic and therefore has a unique

bounded classical solution as well.

Furthermore, (Lieberman, 1996, Lemma 14.11) applied to the approximating PDE (3.26)

shows that Cε is in fact three-times continuously differentiable with respect to the spatial

variable. By parabolic regularity, its time derivative is differentiable in space too, so

that (3.29) indeed describes the derivative of the solution of (3.26). The same argument

applied to (3.29) and (3.30) in turn yields that (3.30) and (3.31) indeed characterize the

second and third spatial derivatives of the solution of (3.26) respectively.

Step 6: Derive uniform bounds for the approximating PDE. We can now apply the

maximum principle (Lieberman, 1996, Theorem 14.4) to infer the boundedness of Cε,
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∂pCε = Vε, ∂ppCε = Uε and ∂pppCε = Qε, uniformly in the smoothing parameter ε:

||Cε||∞ ≤ exp(T )(||φ||∞ + 1),

||∂pCε||∞ ≤ exp(T )(||φ′||∞ + 1),

||∂ppCε||∞ ≤ exp(T )(||φ′′||∞ + 1),

||∂pppCε||∞ ≤ exp(T )(||φ′′′||∞ + 1).

Step 7: Apply the Arzela-Ascoli Theorem to construct a solution of the original equa-

tion. As ∂pCε, ∂ppCε and ∂pppCε are all uniformly bounded independent of ε, the families

of functions Cε, ∂pCε and ∂ppCε are uniformly Lipschitz continuous and hence uniformly

equicontinuous. Therefore, we can apply the Arzela-Ascoli Theorem to show that there

exists a sequence εn → 0 such that Cεn , ∂pCεn and ∂ppCεn converge on a fixed (spatial)

interval [−l, l] for every t ∈ (0, T ).

On the larger interval [−l−1, l+1], there is a subsequence εk of the sequence εn along

which Cεk again converges to a limit. On [−l, l], by uniqueness of the limit, this must be

the same limiting function. Continuing like this, we can define a limiting function on the

whole real line, for which we have uniform convergence of the functions Cε, their second

spatial derivatives ∂ppCε and, by parabolic regularity, also of their time derivatives ∂tCε

on any interval [−l, l] as the smoothing parameter tends to zero. The limit in turn solves

the original PDE (3.9).

Step 8: Uniqueness. By Step 3, the derivative of the nonlinearity in the PDE (3.9)

(with respect to ∂ppC) is bounded from above by σ(1+ρ) and bounded from below by −σ

on the interior of each of the three subintervals on which it is defined. Together with the

parameter constraint σ > s
√

2/π, this yields the monotonicity of the right-hand side of

(3.9) in the second spatial derivative ∂ppC. Whence, uniqueness follows from (Lieberman,

1996, Corollary 14.2).
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3.8.3 Details for Empirical Data Analysis

The LOBSTER data we use in the empirical illustration from Section 3.5 is compiled as

follows:

1. Collect LOBSTER data and filter out market order execution data (event type 4

or 5);

2. In LOBSTER data, the direction of trades is indicated for limit orders but not

hidden orders (which can account for up to 30% in terms of number of trades and

also traded volume). The Lee-Ready algorithm is applied to estimate the direction

of the hidden order executions: when the execution price is larger than the mid-

price, assign the direction as buyer-initiated, and vice versa;

3. Combine executions at the same nanosecond of the same direction;

4. Calculate signed order flow (from the perspective of holders of limit orders) from

direction and volume of trades;

5. Calculate price differences and inventory differences;

6. Remove the overnight differences;

7. Compute quadratic covariation between price and inventory, quadratic variation of

price, quadratic variation of inventory on the trade clock;

8. Compute estimators for v, σ, s, ρ, y; the spread sN is estimated by the average of

the difference between the best-bid and ask quotes in the market over time.

3.8.4 Proofs for Section 3.6

In this section, we prove Theorem 3.6.2 about the convergence of the partial-hedging

portfolio process (3.13) to its continuous-time limit (3.15). We do this under the following

weaker but less transparent version of Assumption 3.6.1:

Assumption 3.8.1. There exists a constant c > 1 such that:
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(i) κt ≥ 1/c > 0 for all t ∈ [0, T ];

and, for any process H ∈ {µF , v, µ, σ, s, ρ, µΠ, γ, ν, κ, F, P,Π}, we have:

(ii) E[Ht] ≤ c for all t ∈ [0, T ];

(iii) E[Ht1Ht2 ] ≤ c for all t1, t2 ∈ [0, T ];

(iv) E [Ht1Ht2Ht3Ht4 ] ≤ c for all t1, t2, t3, t4 ∈ [0, T ];

(v) E [(Ht1 −Ht)(Ht2 −Ht)] ≤ cmax(|t1 − t|, |t2 − t|) for all t1, t2, t ∈ [0, T ];

(vi) E [(Ht1 −Ht)(Ht2 −Ht)(Ht3 −Ht)(Ht4 −Ht)] ≤ cmax(|t1− t|, |t2− t|, |t3− t|, |t4−

t|)2 for all t1, t2, t3, t4, t ∈ [0, T ].

Using the Cauchy-Schwarz inequality, the triangle inequality and the Itô isometry, it

is straightforward to verify that Assumption 3.8.1 is indeed implied by Assumption 3.6.1

in the main body of the chapter.

3.8.4.1 Bounds for the Displacement

Recall that we assume in Assumption 3.8.1(i) that the fractions of the displacement DN

that are rectified using market orders at each time step are uniformly bounded away from

zero. This leads to the following bound for the displacement:

Proposition 3.8.2. (∆tN)−1/2+εDN uniformly converges to zero in L2 for any positive

ε.

Proof. By (3.12) and Minkowski’s inequality, the second moment of the displacement

satisfies the following recursion:

E
[
(DN

n )
2
]
= E

[
((1− κN

n )(D
N
n−1 +∆ΠN

n − νN
n−1∆FN

n ))2
]

≤ (1− 1
c
)2

[√
E
[
(DN

n−1)
2
]
+
√
4c∆tN

]2
.

Here, we have used in the second step that Assumption 3.8.1(ii) implies

E
[
(∆ΠN

n − νN
n−1∆FN

n )2
]
≤ 2E

[
(∆ΠN

n )
2
]
+ 2E

[
(∆FN

n )2
]
≤ 4c∆tN .
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As DN
0 = 0, it follows that E

[
(DN

n )
2
]1/2 ≤ (c − 1)

√
4c∆tN . Whence, as N tends to

infinity (and ∆tN = T/N tends to zero), (∆tN)−1/2+εDN converges uniformly to 0 in L2

for any ε > 0.

3.8.4.2 Reduction to Piecewise Constant Controls

To ease notation, we henceforth focus on values of N for which
√
N is an integer. (The

intermediate values can be dealt with along the same lines using rounding, but we do

not spell this out to ease notation.) Then, we can group the N trading rounds in the

discrete model into
√
N groups of

√
N trading rounds each. We now argue that the

continuous-time limit of the execution costs and displacements does not change when

the controls νN and κN as well as the drift and diffusion coefficients of prices and order

flow are assumed to be piecewise constant on each subgroup. This approximation in turn

allows us to compute the continuous-time limit of the goal functional for each subgroup

using conditional normal distributions in Appendix 3.8.4.3 below.

Recall that – in the original model – the execution cost can be decomposed into the

spread cost of market order trades, earnings from limit order trades and the impact of

adverse selection:

CN := CN
M − CN

L − CN
A , (3.32)

where

CN
M :=

N∑
j=1

sNj κ
N
j

2
|DN

j−1 +∆ΠN
j − νN

j−1∆FN
j |, CN

L :=
N∑
j=1

sNj ν
N
j

2
|∆FN

j |,

CN
A :=

N∑
j=1

νN
j−1∆FN

j ∆PN
j .

When controls and model coefficients are constant on each subgroup of trading rounds,

the total execution cost can be decomposed analogously:

C̃N := C̃N
M − C̃N

L − C̃N
A . (3.33)



3.8. Appendix 102

Here, like for the original controls,

C̃N
M :=

N∑
j=1

s̃Nj κ̃
N
j

2
|D̃N

j−1 +∆Π̃N
j − ν̃N

j−1∆F̃N
j |, C̃N

L :=
N∑
j=1

s̃Nj ν̃
N
j

2
|∆F̃N

j |,

C̃N
A :=

N∑
j=1

ν̃N
j−1∆F̃N

j ∆P̃N
j ,

but the drift and diffusion processes and controls are now replaced by their step-function

approximations µ̃F , ṽ, ρ̃, µ̃, σ̃, s̃, κ̃ and ν̃, which keep the value of the original process at

time tN
i
√
N

during the whole time period [tN
i
√
N
, tN

(i+1)
√
N
], i = 0, . . . ,

√
N − 1:

dF̃t = µ̃F
t dt+ ṽt

√
1− ρ̃tdW

⊥
t − ṽtρ̃tdWt, dP̃t = µ̃tdt+ σ̃tdWt, dΠ̃t = µ̃Π

t dt+ γ̃tdWt,

D̃N
j = (1− κ̃N

j )
(
D̃N

j−1 +∆Π̃N
j − ν̃N

j−1∆F̃N
j

)
. (3.34)

As the drift and diffusion coefficients of P̃ , F̃ and Π̃ are the step-function approximations

of the original coefficients, they also satisfy Assumption 3.8.1(ii-vi).

We now show that as the number of time steps N tends to infinity, the difference be-

tween the goal functional for the original model and its piecewise constant approximation

vanishes. To establish this, we prove that the squared differences between each of the

respective components tend to zero at appropriate rates:

Theorem 3.8.3. In the continuous-time limit N →∞, N1/2−ε(C̃N
M−CN

M), N1/2−ε(C̃N
L −

CN
L ), N1/2−ε(C̃N

A − CN
A ) and N3/4−ε(D̃N − DN) (uniformly) converge to zero in L2 for

any positive ε.

Proof. The increments of the original order flow process and its approximation satisfy

∆F̃N
j −∆FN

j =

∫ (j+1)∆t

j∆t

(µF
t − µ̃F

t )dt+

∫ (j+1)∆t

j∆t

(vt − ṽt)dWt.

Assumption 3.8.1(iv), the Itô isometry and Fubini’s theorem in turn yield the following
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upper bound:

E
[(

∆F̃N
j −∆FN

j

)2]

≤ 2E

(∫ (j+1)∆t

j∆t

(µF
t − µ̃F

t )dt

)2
+ 2E

(∫ (j+1)∆t

j∆t

(vt − ṽt)dWt

)2


= E

[∫ (j+1)∆t

j∆t

∫ (j+1)∆t

j∆t

(µF
t − µ̃F

t )(µs − µ̃F
s )dtds

]
+ E

[∫ (j+1)∆t

j∆t

(vt − ṽt)
2dt

]

=

∫ (j+1)∆t

j∆t

∫ (j+1)∆t

j∆t

E
[
(µF

t − µ̃F
t )(µ

F
s − µ̃F

s )
]
dtds+

∫ (j+1)∆t

j∆t

E
[
(vt − ṽt)

2
]
dt

≤ c(∆t)3
√
N + c(∆t)2

√
N = O(N−3/2).

(3.35)

Here, we have used that on any subgroup of
√
N trading rounds (with total length

∆t
√
N), the expected squared difference between the process vt and its piecewise constant

approximation ṽt is bounded from above by c∆tN
√
N by Assumption 3.8.1(v). We have

also used an analogous estimate for the process b and its approximation b̃. The same

arguments also show

E
[(

∆P̃N
j −∆PN

j

)2]
= O(N−3/2), E

[(
∆Π̃N

j −∆ΠN
j

)2]
= O(N−3/2). (3.36)

Impact of adverse selection We first bound the difference between the impacts of

adverse selection C̃N
A and CN

A , which can be decomposed as follows:

C̃N
A − CN

A = ∆CN
A,ν +∆CN

A,F +∆CN
A,P ,

where

∆CN
A,ν =

N∑
j=1

(
ν̃N
j − νN

j

)
∆F̃N

j ∆P̃N
j , ∆CN

A,F =
N∑
j=1

νN
j

(
∆F̃N

j −∆FN
j

)
∆P̃N

j ,

∆CN
A,P =

N∑
j=1

νN
j ∆FN

j

(
∆P̃N

j −∆PN
j

)
.

The expected squared difference between the adverse selection costs then can be



3.8. Appendix 104

bounded by

E
[(

C̃N
A − CN

A

)2]
≤ 4E

[
(∆CN

A,ν)
2
]
+ 4E

[
(∆CN

A,P )
2
]
+ 4E

[
(∆CN

A,F )
2
]
.

Two applications of the Cauchy-Schwarz inequality yield

E
[
(∆CN

A,ν)
2
]
≤

√√√√E

[
N∑
j=1

(
ν̃N
j − νN

j

)2]E[ N∑
j=1

(∆F̃N
j ∆P̃N

j )2

]

≤

√√√√cT
√
N

N∑
j=1

√
E
[
(∆F̃N

j )4
]
E
[
(∆P̃N

j )4
]

≤ c

√
T
√
NN

√
(∆t)4 = O(N−1/4).

Here, we have used Assumption 3.8.1(v) with time difference ∆t
√
N = T/

√
N in the

second estimate, and Assumption 3.8.1(vi) with time difference ∆t in the third step.

Arguing along the same lines, with (3.35) and (3.36), we also obtain

E
[
(∆CN

A,F )
2
]
= O(N−1/4), E

[
(∆CN

A,P )
2
]
= O(N−1/4).

In summary, we therefore have E
[(

C̃N
A − CN

A

)2]
= O(N−1/4), so that N1/2−ε(C̃N

A −CN
A )

indeed converges to zero in L2 for any positive ε.

Displacements Recall that in Proposition 3.8.2 we have already established that each

of the displacements and in turn also their difference DN
j − D̃N

j converges to zero in L2.

We now establish a faster rate of convergence, uniformly for all timesteps 1 ≤ j ≤ N .

Taking into account the dynamics of the displacements D and D̃ from (3.12) and

(3.34), respectively, their difference can be written as

DN
j − D̃N

j = (κ̃N
j − κN

j )
(
D̃N

j−1 +∆Π̃N
j − ν̃N

j−1∆F̃N
j

)
+ (1− κN

j )(D
N
j−1 − D̃N

j−1 +∆ΠN
j −∆Π̃N

j + ν̃N
j−1∆F̃N

j − νN
j−1∆FN

j ).
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By the inequalities of Cauchy-Schwarz and Minkowski,

E
[
(κ̃N

j − κN
j )

2
(
D̃N

j−1 +∆Π̃N
j − ν̃N

j−1∆F̃N
j

)2]
≤

√
E
[
(κ̃N

j − κN
j )

4
]
E
[(

D̃N
j−1 +∆Π̃N

j − ν̃N
j−1∆F̃N

j

)4]

≤

√√√√c(∆t
√
N)2

(
4

√
E
[(

D̃N
j−1

)4]
+ 4

√
E
[(

∆Π̃N
j

)4]
+ 4

√
E
[(

ν̃N
j−1∆F̃N

j

)4])4

(3.37)

≤
√
c(∆t
√
N)2

(
4
√

c(∆t)2 + 4
√

c(∆t)2 + 4
√

c(∆t)2
)4

(3.38)

≤
√

c(∆t
√
N)2 · 81c(∆t)2 = O(N−3/2).

Here, (3.37) follows from Assumption 3.8.1(vi) with time step of at most ∆t
√
N = T/

√
N

and the Minkowski inequality. (3.38) follows from an argument similar to Proposi-

tion 3.8.2 to bound the fourth moment of D̃N and Assumption 3.8.1(vi) with time step

∆t.

From a similar argument for 3.36, we can show that

E
[
(1− κN

j )
2(∆ΠN

j −∆Π̃N
j )

2
]
= O(N−3/2),

E
[
(1− κN

j )
2(ν̃N

j−1∆F̃N
j − νN

j−1∆FN
j )2

]
= O(N−3/2).

Another application of Minkowski’s inequality in turn yields the following recursion

for the second moment of the difference between the displacements:

√
E
[
(DN

j − D̃N
j )

2
]

≤

√
E
[
(κ̃N

j − κN
j )

2
(
D̃N

j−1 +∆Π̃N
j − ν̃N

j ∆F̃N
j

)2]
+

√
E
[
(1− κN

j )
2(DN

j−1 − D̃N
j−1)

2
]

+

√
E
[
(1− κN

j )
2(∆ΠN

j −∆Π̃N
j )

2
]
+

√
E
[
(1− κN

j )
2(ν̃N

j−1∆F̃N
j − νN

j−1∆FN
j )2

]
≤ O(N−3/4) +

(
1− 1

c

)√
E
[
(DN

j−1 − D̃N
j−1)

2
]
.

As DN
0 = D̃N

0 = 0, it follows that E[(DN
n − D̃N

n )
2] = O(N−3/2). Whence, as N tends
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to infinity, N3/4−ε(DN − D̃N) indeed converges uniformly to 0 in L2 for any ε > 0.

Earnings from limit orders Next, the difference between C̃N
L and CN

L can again be

decomposed into three parts:

C̃N
L − CN

L =
1

2

(
∆CN

L,s +∆CN
L,ν +∆CN

L,F

)
,

where

∆CN
L,s =

N∑
j=1

(s̃Nj − sNj )ν̃
N
j |∆F̃N

j |, ∆CN
L,ν =

N∑
j=1

sNj
(
ν̃N
j − νN

j

)
|∆F̃N

j |

∆CN
L,F =

N∑
j=1

νN
j sNj

(
|∆F̃N

j | − |∆FN
j |
)
.

The second moments of all three components can be bounded similarly as the components

of the adverse selection costs, by recalling that the spread s scales with
√
∆tN :

E
[
(∆CN

L,s)
2
]
= O(N−1/4), E

[
(∆CN

L,ν)
2
]
= O(N−1/4), E

[
(∆CN

L,F )
2
]
= O(N−1/4).

It follows that N1/2−ε(C̃N
L − CN

L ) also converges to zero in L2 for any positive ε.

Transaction costs due to market orders Finally, the difference between C̃N
M and

CN
M can once again be decomposed into three parts:

C̃N
M − CN

M =
1

2

(
∆CN

M,s +∆CN
M,κ +∆CN

M,D

)
,

where

∆CN
M,s =

N∑
j=1

(
s̃Nj − sNj

)
κ̃N
j |D̃N

j−1 +∆Π̃N
j − ν̃N

j ∆F̃N
j |,

∆CN
M,κ =

N∑
j=1

sNj
(
κ̃N
j − κN

j

)
|D̃N

j−1 +∆Π̃N
j − ν̃N

j ∆F̃N
j |,

∆CN
M,D =

N∑
j=1

sNj κ
N
j

(
|D̃N

j−1 +∆Π̃N
j − ν̃N

j ∆F̃N
j | − |DN

j−1 +∆ΠN
j − νN

j ∆FN
j |
)
.
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The second moments of the first two components can be bounded similarly as in the

previous steps:

E
[
(∆CN

M,s)
2
]
= O(N−1/4), E

[
(∆CN

M,κ)
2
]
= O(N−1/4).

We now bound the third component. By Minkowski’s inequality,

√
E
[
(D̃N

j−1 −DN
j−1 +∆Π̃N

j −∆ΠN
j − νN

j ∆FN
j + ν̃N

j ∆F̃N
j )2

]
≤
√
E
[
(D̃N

j−1 −DN
j−1)

2
]
+

√
E
[
(∆Π̃N

j −∆ΠN
j )

2
]
+

√
E
[
(νN

j ∆FN
j − ν̃N

j ∆F̃N
j )2

]
= O(N−3/4).

Here, the second inequality follows from the estimate for D̃N
j−1 −DN

j−1 established in the

previous step and (3.36). Together with the Cauchy-Schwarz inequality, it follows that

the third term in our decomposition above satisfies

E
[
(∆CN

M,D)
2
]

≤

√√√√ N∑
j=1

E
[
(κN

j )
2(sNj )

2
] N∑

j=1

E
[(∣∣∣D̃N

j−1 +∆Π̃N
j − ν̃N

j ∆F̃N
j

∣∣∣− ∣∣DN
j−1 +∆ΠN

j − νN
j ∆FN

j

∣∣)2]

≤

√√√√cT ·
N∑
j=1

E
[
(D̃N

j−1 −DN
j−1 +∆Π̃N

j −∆ΠN
j − νN

j ∆FN
j + ν̃N

j ∆F̃N
j )2

]
≤
√

cT ·N(∆tN)2
√
N · 16c = O(N−1/4).

Here, the second inequality follows from the triangle inequality and the elementary

estimate −|a − b| ≤ |a| − |b| ≤ |a − b|, for a, b ∈ R. In summary, the difference

N1/2−ε(C̃N
M − CN

M) between transaction costs due to market orders also converges to

zero in L2 for any positive ε.

3.8.4.3 Goal Functional for Piecewise Constant Coefficients

We now prove that the expected execution costs and the sum of expected squared dis-

placements in the model with piecewise constant controls and model coefficients converges

to the integrals from Theorem 3.6.2. Together with the approximation result from the
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previous section, this will be used in Appendix 3.8.4.4 below to also establish the limit

from Theorem 3.6.2 for the original model with arbitrary controls and model coefficients.

Proposition 3.8.4. For fixed control processes in the piecewise constant setting, the

expected execution cost E[C̃N ] converges to

E

[∫ T

0

(
st
2

√
γ2
t + 2ρtγtνtvt + ν2

t v
2
t

√
2

π

√
κt

2− κt

− stνt
2

√
2

π
vt + νtρtσtvt

)
dt

]
. (3.39)

The sum of expected squared displacements
∑N

n=1 E[(D̃N
n )

2] has the continuous-time limit (3.16).

Proof. We split the overall execution cost C̃N and the sum of expected squared dis-

placements into
√
N sub-parts, corresponding to the time periods [tN

i
√
N
, t(i+1)

√
N ], and

normalize each of these terms with the duration T/
√
N of these subintervals22:

1

T/
√
N
E
[
C̃N

i

]
,

1

T/
√
N

(i+1)
√
N∑

j=i
√
N+1

E
[(

D̃N
j

)2]
. (3.40)

Here, C̃N
i is the execution cost within this time period,

C̃N
i =

(i+1)
√
N∑

j=i
√
N+1

sNκ

2
|D̃N

j−1 +∆ΠN
j − ν∆FN

j | −
(i+1)

√
N∑

j=i
√
N+1

sNν

2
|∆FN

j | −
(i+1)

√
N∑

j=i
√
N+1

ν∆FN
j ∆PN

j ,

and to ease notation, we henceforth omit the time index of the controls κ, ν and the

parameters µ, σ, b, v, ρ, µΠ, γ that are constant within the i-th time period. We now show

that, for each i, the first term of (3.40) converges to the integrand of (3.39) evaluated at

t = tN
i
√
N
, so that the sum of the sub-execution costs indeed approaches the Riemann sum

that converges to the integral (3.39). Similarly, the second term of (3.40), the i-th sub-

sum of expected squared displacements converges to the integrand of (3.16) evaluated at

t = tN
i
√
N
.

By iterating (3.34), the displacement at the n-th time step of this time period can be

22Here the normalization factor of T/
√
N for each of the terms is inherited from the Riemann sum

approximation of the integrals in (3.13) and (3.14).
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expressed as

D̃N
i
√
N+n

=
n∑

j=1

(1− κ)n−j+1(∆ΠN
i
√
N+j
− ν∆FN

i
√
N+j

) + (1− κ)nD̃N
i
√
N
.

The distribution of D̃N
i
√
N+n

conditional on the information available at time ti
√
N is

D̃N
i
√
N+n
|Fti

√
N
∼ N

(
ξn,κ(µ

Π − νb)∆tN + (1− κ)nD̃N
i
√
N
, δn,κσ̂

2∆tN
)
,

where

ξn,κ =
(1− κ)(1− (1− κ)n)

κ
, δn,κ =

(1− κ)2(1− (1− κ)2n)

1− (1− κ)2
, σ̂2 = γ2+2ργνv+ν2v2.

As a consequence, the sum of the conditional expected squared displacements can be

expressed as a function of D̃N
i
√
N
,

1

T/
√
N

(i+1)
√
N∑

j=i
√
N+1

E[(D̃N
j )

2|Fti
√
N
]

=
1

T/
√
N

√
N∑

n=1

(
ξn,κ(µ

Π − νb)∆tN + (1− κ)nD̃N
i
√
N

)2
+ δn,κσ̂

2∆tN

=
1

T/
√
N

√
N∑

n=1

ξ2n,κ(µ
Π − νb)2(∆tN)2 + 2ξn,κ∆tN(µΠ − νb)(1− κ)nD̃N

i
√
N

+
1

T/
√
N

√
N∑

n=1

(1− κ)2n(DN
i
√
N
)2 + δn,κ∆tN σ̂2

= (µΠ − νb)2∆tN
1√
N

√
N∑

n=1

ξ2n,κ + 2(µΠ − νb)D̃N
i
√
N

1√
N

√
N∑

n=1

ξn,κ(1− κ)n

+ (∆tN)−1/2(D̃N
i
√
N
)2

1√
T

√
N∑

n=1

(1− κ)2n + σ̂2 1√
N

√
N∑

n=1

δn,κ.

Observe that, as N tends to infinity, we have the following convergences:

1√
N

√
N∑

n=1

ξn,κ(1− κ)n =
1√
N

1− κ

κ

√
N∑

n=1

[
(1− κ)n − (1− κ)2n

]
→ 0, (3.41)
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1√
N

√
N∑

n=1

ξ2n,κ =
1√
N

(1− κ)2

κ2

√
N∑

n=1

[1− (1− κ)n]2 → (1− κ)2

κ2
, (3.42)

1√
N

√
N∑

n=1

δn,κ =
1√
N

(1− κ)2

1− (1− κ)2

√
N∑

n=1

[
1− (1− κ)2n

]
→ (1− κ)2

1− (1− κ)2
. (3.43)

Together with the tower property of the conditional expectation, it follows that the sum

of the expected squared displacements has the limit

1

T/
√
N

(i+1)
√
N∑

j=i
√
N+1

E[(D̃N
j )

2] =
1

T/
√
N

(i+1)
√
N∑

j=i
√
N+1

E
[
E[(D̃N

j )
2|Fti

√
N
]
]

= ∆tNE

(µΠ − νb)2
1√
N

√
N∑

n=1

ξ2n,κ

+ E

2(µΠ − νb)D̃N
i
√
N

1√
N

√
N∑

n=1

ξn,κ(1− κ)n


+ (∆tN)−1/2E

(D̃N
i
√
N
)2

1√
T

√
N∑

n=1

(1− κ)2n

+ E

σ̂2 1√
N

√
N∑

n=1

δn,κ


= E

[
σ̂2 (1− κ)2

2κ− κ2

]
+ o(1), as N →∞.

Here, we have used Proposition 3.8.2, (∆t)−1/4D̃N
i
√
N
→ 0 in L2, (3.41), (3.42) and (3.43),

together with Cauchy-Schwarz inequality and Assumption 3.8.1(iii) to show that the first

three terms in the second line are of order o(1).

As N → ∞, the difference between the sum of second moments of displacements

and the Riemann sum approximating the integral (3.16) therefore vanishes. Whence, the

discrete sum of expected squared displacements for the model with piecewise constant

controls and coefficients indeed converges to the integral (3.16).

We now discuss the different components of the expected execution costs:

1. Conditional on Fti
√
N
, the market order trade D̃N

i
√
N+n−1

+ ∆ΠN
i
√
N+n
− ν∆FN

i
√
N+n

at the i
√
N + n-th time step has the following normal distribution:

N
(
(ξn,κ + 1)(µΠ − νb)∆tN + (1− κ)nD̃N

i
√
N
, (δn,κ + 1)σ̂2∆tN

)
.

By the closed-form expression for the expectation of the folded normal distribution,
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the (conditional) expected market order at the i
√
N + n-th time step is

σ̂
√

δn,κ + 1

√
2∆tN

π
exp

(
−1

2

((1− κ)nD̃N
i
√
N
+O(∆tN))2

(δn,κ + 1)σ̂2∆tN

)

+ ((1− κ)nDN
i
√
N
+O(∆tN))erf

(
(1− κ)nD̃N

i
√
N
+O(∆tN)√

δn,κ + 1σ̂
√
∆tN

)
.

The inequality exp(−x) ≥ 1−
√
2x, x ≥ 0 leads to the lower bound

σ̂
√

δn,κ + 1

√
2∆tN

π

(
1−

(1− κ)n|D̃N
i
√
N
|+O(∆tN)√

δn,κ + 1σ̂
√
∆tN

)
.

Conversely, exp(−x) ≤ 1 and erf(x) ≤ 1, x ≥ 0 give the upper bound

σ̂
√

δn,κ + 1

√
2∆tN

π
+ (1− κ)n|D̃N

i
√
N
|+O(∆tN).

By the tower property and monotonicity of the conditional expectation, the execu-

tion costs due to market-order transactions

1

T/
√
N

(i+1)
√
N∑

j=i
√
N+1

E
[
sNκ

2
|D̃N

j−1 +∆ΠN
j − ν∆FN

j |
]
,

therefore have the lower bound

E

 sκσ̂√
2πN

√
N∑

n=1

√
δn,κ + 1

− 1√
T
E
[

sκ√
2π

ξ√N,κ|D̃
N
i
√
N
|
]
−O(

√
∆tN)E

[
sκ√
2π

]
(3.44)

and the upper bound

E

 sκσ̂√
2πN

√
N∑

n=1

√
δn,κ + 1

+
1√
T
E
[sκ
2
ξ√N,κ|D̃

N
i
√
N
|
]
+O(

√
∆tN)E

[sκ
2

]
. (3.45)
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By definition of δn,κ,

1− (1− κ)(2n+1)√
κ(2− κ)

≤
√

δn,κ + 1 =

√
1− (1− κ)(2n+1)

κ(2− κ)
≤ 1√

κ(2− κ)
,

1√
N

1√
κ(2− κ)

√
N∑

n=1

(
1− (1− κ)2(n+1)

)
≤ 1√

N

√
N∑

n=1

√
δn,κ + 1 ≤ 1√

N

√
N∑

n=1

1√
κ(2− κ)

.

As a consequence,

lim
N→∞

1√
N

√
N∑

n=1

√
δn,κ + 1 =

1√
κ(2− κ)

. (3.46)

Both the lower and upper bound (3.44), (3.45) for the execution costs due to market-

order transactions converge to the same continuous-time limit as N →∞:

E
[

sσ̂√
2π

√
κ

2− κ

]
+ o(1).

More specifically, the convergence of the first terms directly follows from (3.46).

The rest of the terms are of order o(1). For the second term in the lower bound

(3.44) and the upper bound (3.45), this follows from the L2 convergence of D̃N
i
√
N

to zero by Proposition 3.8.2, and Cauchy-Schwarz inequality.

2. As N →∞, the expected earnings from the limit order trades converge to

1

T/
√
N

(i+1)
√
N∑

j=i
√
N+1

E
[
sNν

2
|∆FN

j |
]

= E

[
sν

2
√
∆tN

(
v
√
∆tN

√
2

π
exp

(
− b2

2v2
∆tN

)
+ b∆tNerf

(
b∆tN

v
√
∆tN

))]

=
sνv√
2π

+ o(1).

Here, similar to the previous part about expected transaction costs, we used the

inequalities exp(−x) ≥ 1−
√
2x, erf(x) ≤ 1, x ≥ 0 to obtain lower and upper bounds

for the expected earnings, both of which have the same limit.
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3. Finally, the expected adverse selection cost also converges as N →∞:

1

T/
√
N

(i+1)
√
N∑

j=i
√
N+1

E
[
ν∆FN

j ∆PN
j

]
= −E[νρσv] + o(1).

In summary, the (normalized) expected execution costs 1
T/

√
N
E
[
C̃N

i

]
converge to

E
[

sσ̂√
2π

√
κ

2− κ
− sνv√

2π
+ νρσv

]
+ o(1), as N →∞.

Similar to the sum of expected square displacements, as N → ∞, the difference be-

tween the sum of these sub execution costs and the Riemann sum approximating the

integral (3.39) therefore vanishes. Whence, the discrete execution costs E
[
C̃N
]
for the

model with piecewise constant controls and coefficients indeed converges to the inte-

gral (3.39).

3.8.4.4 Proof for Theorem 3.6.2

To complete the proof of Theorem 3.6.2, it now remains to combine the results from

Appendices 3.8.4.2 and 3.8.4.3 to show that the limits (3.15) and (3.16) also are ob-

tained in the original model with arbitrary (rather than piecewise constant) controls and

coefficients, and prove that the first term in (3.13) converges to the stochastic integral

in (3.15). By Theorem 3.8.3, we already know that the difference between the execution

costs (3.32) and (3.33) is negligible in the continuous-time limit N →∞.

We now argue that the same is true for the sum of the expected squared displacements.

To see this, observe that by the inequalities of Cauchy-Schwarz and Minkowski,

∣∣∣E [(DN
i )

2
]
− E

[
(D̃N

i )
2
]∣∣∣ ≤ E

[
(DN

i − D̃N
i )

2
]1/2(

E
[
(DN

i )
2
]1/2

+ E
[
(D̃N

i )
2
]1/2)

.

By Proposition 3.8.2, the last two terms are of order O(N−1/2); by Theorem 3.8.3 the term

multiplying them is of order O(N−3/4), so that the total order is O(N−5/4). In particular,

it follows that the difference between the sums of expected squared displacements is of
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order O(N−1/4). Hence,
∑N

n=1 E
[
(DN

n )
2
]
converges to the expectation of (3.16).

We now check the convergence of
∑N

n=1(Π
N
n−1 − DN

n−1)∆PN
n to

∫ T

0
ΠtdPt. This L2-

convergence is equivalent to the L2 convergence of

N∑
n=1

DN
n−1∆PN

n → 0, as N →∞. (3.47)

By the tower property and recalling that the second moment of DN
n−1 and the second

conditional moment of ∆PN
n are of order O(∆tN), we have

E
[(
DN

n−1∆PN
n

)2]
= E

[(
DN

n−1

)2 E [(∆PN
n

)2 |FtNn−1

]]
≤ c∆tNE

[(
DN

n−1

)2] ≤ (c∆tN)2.

(3.48)

This estimate, Assumption 3.8.1(ii), the Cauchy-Schwarz inequality and the fact that the

second moment of DN is of order O(∆tN), in turn yield

E

( N∑
n=1

DN
n−1∆PN

n

)2
 =

N∑
n=1

E
[(
DN

n−1∆PN
n

)2]
+ 2

N∑
i,j=1,i<j

E
[
DN

i−1∆PN
i DN

j−1∆PN
j

]
≤ N(c∆tN)2 + 2

N∑
i,j=1,i<j

E
[
DN

i−1∆PN
i DN

j−1E
[
∆PN

j |FtNj−1

]]
≤ N(c∆tN)2 + 2c∆tN

N∑
i,j=1,i<j

√
E
[(
DN

i−1∆PN
i

)2]E [(DN
j−1

)2]
≤ N(c∆tN)2 + 2c∆tN

N∑
i,j=1,i<j

√
(c∆tN)2 · c∆tN = O(N−1/2).

The expectation of
∑N

n=1(Π
N
n−1−DN

n−1)∆PN
n thus indeed converges to the expectation of∫ T

0
ΠtdPt.

Altogether, we have established that the expectation of the discrete-time portfolio

process (3.13) converges to the continuous-time limit (3.15). This completes the proof.
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3.8.4.5 Proof of Lemma 3.6.3

Suppose a smooth solution C of the PDE (3.19) exists. Then, the terminal condition for

C and Itô’s formula yield

φ(PT ) = C(0, P0) +

∫ T

0

∂pC(t, Pt)dPt +

∫ T

0

(
∂tC(t, Pt) +

σ2

2
∂ppC(t, Pt)

)
dt.

Plugging this into (3.18) shows that – in the continuous-time limit – the payoff corre-

sponding to an arbitrary partial tilted execution scheme (ν, κ) is

E
[∫ T

0

(
−∂tC(t, Pt)−

σ2

2
∂ppC(t, Pt) +H(νt, κt, σ∂ppC(t, Pt))

)
dt

]
.

By the PDE (3.19) for C, the integrand is nonpositive for any partial tilted execution

scheme, and zero for the optimizer. Whence, the solution. of the PDE (3.19) is indeed

an indifference price as asserted.
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Chapter 4

Optimal Execution with Hidden

Orders Under Self-Exciting

Dynamics

This chapter is a joint work with Chao Zhou, Ge Zhang and Ying Chen.

4.1 Introduction

Hidden liquidity is attracting significant volume share in modern order-driven markets,

reducing exposure risk and adverse selection risk. Despite lower pre-trade transparency,

non-display orders1 lose time priority to display limit orders under the price-visibility-time

mechanism implemented in most exchanges. Although non-display limit orders (hidden

orders therein) allow liquidity providers to mitigate exposure cost, execution only happens

after the display orders of the same quoted price are fully executed, lowering the overall

execution probability (Nasdaq, 2022)2.

1In general, the market offers three types of instruments with the ability to hide one’s order: dark
pool, iceberg order and non-display limit order (hidden order). Dark pool is where all trading intentions
are completely hidden from the public. Iceberg order is the order-type in lit pools that allows agents to
hide the total volume placed, but not the limit price. Non-display limit order is another order-type in
lit pools that not only hides the volume placed, but also the limit price. In this chapter, we focus on
non-display limit orders (hidden orders therein).

2We quote the section ‘Order Types and Functionality’ in the website: Nasdaq features a price/time
priority model where the execution logic is fair and transparent for all market participants. All displayed
limit orders are treated equally and executed in the order in which they were received at the same price.

117
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As suggested by the U.S. Securities and Exchange Commission(US Securities and

Exchange Commission, 2019), hidden order is a critical type of order that reflects the

pre-trade transparency on exchanges. The hidden volume ratio on NASDAQ has grad-

ually increased from 10% at 2013 to 28% at 2022, as supported by Figure 1.2. Over all

exchanges, it has grown from 9% in 2012 to 15% to 2022(CBOE Insights, 2022). There-

fore, it is natural to conclude that hidden order has become an important instrument for

on-exchange trading, and should be considered for liquidation tasks.

We develop an optimal liquidation strategy in a continuous-time framework taking

into account the trade-off between exposure risk and trading priority, where a risk-neutral

agent aims to maximize her terminal wealth with a combination of hidden limit orders

and display limit orders over a fixed period, and the remaining shares are sold with a

market order. The agent continuously controls the trading rate (order size) and order

type (hidden and display) to balance execution cost and time pressure. Our theoretic

model suggests that the optimal strategy follows a two-phase pattern, in which the agent

changes from a pure-hidden-order phase to a mixed-order phase until termination. The

transition takes place at the switching curve where the switching time depends on the

intensity of the market order arrivals, see Figure 4.1. Before the switching curve, hidden

order size increases in time; whereas after the switching curve, hidden order size decreases

in time and limit order size increases in time.

Optimal execution in centralized limit order books has received considerable attention

in the literature, see Cartea, Jaimungal, and Penalva (2015); Guéant (2016) and references

therein. For an agent seeking to liquidate her position within a fixed period, immediate

execution of a large order is either impossible or extremely expensive. The early studies

on liquidation strategy focus on market orders, in particular how price impact or risk

aversion structure affects the optimal liquidation decision. For example, Bertsimas and

Lo (1998) derived a time-weighted average price (TWAP) strategy with market orders

under the presence of a linear permanent price impact, R. Almgren and Chriss (1999)

derived a volume-weighted average price (VWAP) strategy with both permanent and

Non-displayed shares are executed after displayed shares in the order in which they were received at that
price.
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Figure 4.1: Optimal liquidation strategy and switching curve.

immediate execution costs. See also R. Almgren (2012); R. Almgren and Chriss (2001);

R. F. Almgren (2003); Belak, Muhle-Karbe, and Ou (2020); Cayé and Muhle-Karbe

(2014); Graewe and Horst (2017); Huberman and Stanzl (2005); Lehalle and Neuman

(2019); Neuman and Voß (2016, 2022); Obizhaeva and Wang (2013) for extensions in

price impact, risk aversion and volatility dynamics.

Compared to market orders, limit orders serve a pivotal role in price discovery, liq-

uidity, and information disclosure. For their greater flexibility in execution price, limit

orders are extensively used in trade execution so that agents can control the execution

process through controlling either price quote or trading rate. The price quote strategy

assumes that order execution follows a certain point process (whose intensity is function

of price quote) and the agent controls the price quote to achieve optimal execution out-

come, see for example Cartea and Jaimungal (2015a); Cartea and Sánchez-Betancourt

(2023); Guéant et al. (2012); Guilbaud and Pham (2013). The trading rate strategy con-

siders uncertainty in the inventory process that propagates to the order fill uncertainty,

and the agent controls over trading rate in terms of frequency or order size, see Cheng,

Di Giacinto, and Wang (2017) and Bulthuis, Concha, Leung, and Ward (2017).

Limit orders displayed in the book induce exposure risk caused by e.g. the reveal of

trader’s motive and price impact of future trades. This stimulates liquidity imbalance
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and drives the price to a less favorable direction of the agent (Aitken, Berkman, & Mak,

2001; Harris, 1997; Pardo & Pascual, 2012). For example, when an agent places a large

sell limit order, the order book imbalance becomes more selling-heavy, where the exposure

risk are increasing in the limit order size (Abergel, Anane, Chakraborti, Jedidi, & Toke,

2016; Cao, Hansch, & Wang, 2009; Cartea, Donnelly, & Jaimungal, 2018; Chordia, Roll,

& Subrahmanyam, 2002; Jacquier & Liu, 2018; Lehalle & Neuman, 2019; Neuman & Voß,

2022).

Moreover, the derivation of an executable liquidation strategy depends on market

microstructure. There has been a significant economic and econometric literature on

modeling the stylized fact of order book’s microstructure and its interaction with optimal

liquidation, see Abergel and Jedidi (2013); Biais, Hillion, and Spatt (1995); Cont and

De Larrard (2013); Easley and O’hara (1987); Glosten and Milgrom (1985); Horst and

Paulsen (2017) and references therein. Among others, market order arrivals are often

assumed to follow the Poisson process in most of the above-mentioned works. However,

when exposing to the same news flow, market order arrivals display significant clustering

and dispersion effects, where market order submissions are clustered and further stimulate

child orders. The self-exciting property in point process of order arrivals can be modelled

by Hawkes process (Hawkes, 1971) analogous to the models for trade arrivals in high-

frequency markets (Aı̈t-Sahalia, Cacho-Diaz, & Laeven, 2015; Andersen, Bondarenko,

Kyle, & Obizhaeva, 2018; Bacry, Delattre, Hoffmann, & Muzy, 2013; Huang, Lehalle,

& Rosenbaum, 2015; Lehalle, Mounjid, & Rosenbaum, 2021), volatility process (Bates,

2019; El Euch, Rosenbaum, et al., 2018; Horst & Xu, 2022), limit order book (Horst

& Xu, 2019), and market impact and microstructure (Alfonsi & Blanc, 2016a; Bacry,

Mastromatteo, & Muzy, 2015; Cartea, Jaimungal, & Ricci, 2014). In the literature of

optimal liquidation, Cartea et al. (2014) constructed a high-frequency trading strategy

with a Hawkes process model. (Bacry, Iuga, Lasnier, & Lehalle, 2015) considered the

mutually exciting property of order arrivals on the best bid or ask price movements.

Alfonsi and Blanc (2016a) studied the optimal execution problem under the Hawkes

process. Alfonsi and Blanc (2016b) discussed the calibration methods for the proposed
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dynamic optimal execution model. Fu et al. (2022) studied a mean-field game where

order flow follows a Hawkes process.

In our study, we develop the optimal liquidation strategy for mixed types of limit

orders and investigate the effects of time pressure and market order intensity on the

optimal liquidation strategy. In our model, both display and hidden limit orders incur

the immediate execution cost which is quadratic in executed order size, and the exposure

cost only applies to display orders which is linear in both exposure time and display

limit order size. We show that the agent’s decision on order size is driven by the cost

and time trade-off and the decision on order type needs to balance exposure risk and

fill probability. We consider two types of market order arrivals dynamics. When market

order arrivals follow a homogeneous Poisson process, we are able to derive a closed-form

solution. It shows that there is a switch time, at which the agent shifts from hidden

orders only to a mixture of display limit orders and hidden orders until termination. In

a more general case, where arrivals follow the Hawkes process, a numerical solution is

derived with feedback controls. There is a similar two-phase strategy with self-exciting

orders, except that the switching time becomes a function (or a switching curve) of the

market order intensity. In addition, the theoretical model implies different impact of time

pressure on order size under the two phases. Simulation experiments show that the use

of hidden orders reduces liquidation cost, particularly in exposure cost, accompanied by

an increase in liquidity. In addition, our strategy demonstrates robustness on estimation

errors and varying market conditions. Given event-level limit data of NASDAQ 100

stocks, we first estimate the model parameters from the limit order book data, and then

test our liquidation strategies using real market order arrivals. The results show that our

strategy with mixed order types under the self-exciting dynamics demonstrates superior

performance, with cost reduction up to 57% to the pure limit order strategy and 15% to

the strategy with mixed order types under the Poisson process.

Our work belongs to the optimal liquidation study considering hidden orders under the

self-exciting effect of the market order arrivals. It is inspired by early works but differs in

some aspects. For example, Y. Chen, Gao, and Li (2018) develops a discrete time model
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for dynamic optimal liquidation with hidden orders in lit pool. Esser and Mönch (2007)

considers a continuous-time liquidation problem with iceberg orders. Horst and Naujokat

(2014) discusses a similar problem with emphasis on the no-trade region and suggests the

agent should use market orders only when the market spread is small enough. Cebiroğlu

and Horst (2015) discusses optimal trade-off between market impact and priority gain

in liquidity competition using hidden orders. Similar literature in dark pool trading also

shares much relevance to our work: Kratz and Schöneborn (2014, 2015) demonstrate

that dark pool liquidity is predictable for future price movement, and suggested that

it is optimal for the agent to submit orders to a dark pool to survey the information.

Crisafi and Macrina (2016) studies an simultaneous trading problem in both lit and dark

pools, and takes partial execution of orders into account. Moreover, game-theoretical

study of hidden order usage explores the problem from a financial economics perspective.

The insider trading problem with iceberg orders is discussed in Moinas (2005). Buti

and Rindi (2013) studies an order submission game with traders placing market, limit

and iceberg orders. Boulatov and George (2013) analyses the impact of hidden liquidity

on market quality in an extended Kyle model (Kyle, 1985, 1989) where an informed

trader serves both as liquidity provider and liquidity consumer. Similar to these works,

the queuing dynamics is not considered in our scheduling algorithm. To operate at the

highest frequency, see Huang et al. (2015); Lehalle et al. (2021).

Among others Y. Chen et al. (2018) is the closest to our work with four major differ-

ences:

1. Y. Chen et al. (2018) assumed that the price impact of a limit order is triggered

only upon execution of orders, while we consider that the price impact is incurred

since limit order submission because of the exposure of trading motif, regardless of

the order fills (Cont et al., 2014). This critical difference not only accurately reflects

the empirical evidence on price impact of limit order via order book imbalance, but

also allows explicit modeling of the benefits of hidden order over limit order in our

theoretical framework.

2. Our cost structure considers immediate execution cost of hidden orders, with which
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very large sized hidden order is sub-optimal whereas Y. Chen et al. (2018) advocated

the usage of extremely large hidden orders.

3. Y. Chen et al. (2018) considered constant market order arrival rates, while our model

relaxes the assumption. Specifically, in our model the arrival rate of market orders

is non-homogenous and exhibits self-exciting properties. In addition, extensive

simulation and real data testing suggest that our model with self-exciting dynamics

outperforms.

4. Compared to the discrete-time setting in Y. Chen et al. (2018), we propose a

continuous-time control framework to study the joint usage of hidden and limit

order.

The contribution of this chapter is multi-fold. Firstly, we extend the optimal liq-

uidation literature by developing a continuous-time dynamic model with hidden orders

under self-exciting market order dynamics. Our theoretical model offers a scheduling

solution to traders to achieve their liquidation objective in a realistic setting. Secondly,

we elaborate on the switching time of the strategies with mixed order types and present

the interplay between the switch of execution strategies and market factors. Lastly, we

display numerical performance with both simulations and NASDAQ 100 stocks to val-

idate the effectiveness and robustness of the solution, which complements the insights

from theoretic models.

The outline of the chapter is as follows: Section 4.2 presents the model setup. Sec-

tion 4.3 details the theoretical solution with various types of market order arrival pro-

cesses. Section 4.4 demonstrates numerical performance with simulations. Section 4.5

conducts real data analysis. Section 4.6 concludes.

4.2 Model Setup

We investigate the optimal use of hidden orders along with display limit orders (limit

orders thereafter) in share liquidation, where a risk-neutral agent aims to maximize her
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terminal wealth. The agent controls both order size and order type to achieve the liqui-

dation target over a fixed period.

4.2.1 Dynamics

We consider an agent who wishes to liquidate Q0 shares in a lit exchange within a fixed

period [0, T ]. The agent continuously decides the order size of her limit and hidden

orders, denoted by (Lt)t∈[0,T ] and (Ht)t∈[0,T ], respectively. We assume that the agent can

only use sell orders (i.e., exclude the possibility of using buy limit order or buy hidden

order, which is considered spoofing or price manipulation here.) At any time t, we have

Lt ≥ 0, Ht ≥ 0. 3

Figure 4.2: Location of executed hidden order with respect to the best bid/ask prices in
the transaction data of Amazon in January 2019. 0 represents execution at the best bid
price and 1 represents execution at the best ask price.

We assume that the price of both limit and hidden order is pegged at the best ask

price. This assumption is supported by the empirical observation, e.g., nearly 100% of the

iceberg orders (which is a similar order type to hidden orders) are pegged at the best price

for the CME GLOBEX ESH1 futures on January 13, 2011 (Christensen & Woodmansey,

2013). We have also carried out our own empirical analysis on the transaction data of

several NASDAQ stocks for the entire January of 2019 and found that for more liquid

3Here we note that the difference between this strategy and posting an iceberg order with adjustable
peak size is: (1) The hidden part of iceberg order cannot be executed directly. One has to exhaust the
visible part of the iceberg order in order to release more from the hidden part to be executed. (2) This
strategy allows zero visible part while iceberg order does not.
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assets, the execution price of hidden orders are close to the best bid/ask prices for most

of the times as indicated in Figure 4.2. This tells us that hidden orders are seldomly

placed within the spread. Note that different from the usual assumption that the limit

price differs from the best ask price, the agent continuously adjusts her order such that

the order size is always currently optimal and the limit price of the orders match the

current best ask price. The fluctuation of the asset price is assumed to be driven by the

flows of information, e.g., order book events from other market participants, and modeled

with Brownian motion. 4 In addition, we assume that limit orders expose the agent’s

selling intention and thus induce an additional impact on asset price. (Cont et al., 2014)

documented that this extra pressure is of almost ‘constant’ magnitude from the time of

order submission to the time of order execution or cancellation. Thus, we consider a

fundamental price process S representing the best ask price of the limit order book as

follows:

dSt = σdWt − bLtdt, (4.1)

where Wt is standard Brownian motion, σ > 0 denotes the volatility of asset, b > 0

is the exposure risk coefficient, in the same spirit of Chordia et al. (2002). We use

an exogenous counting process (Nt)t∈[0,T ] to record the number of market order arrivals.

Without loss of generality, we assume that Nt follows an inhomogeneous Poisson point

process whose intensity λt
5 follows certain known stochastic differential equation. Here,

instead of modeling how clustering effects in trading activities are brought by specific

agent actions, e.g. informed trading, we directly go from the perspective of an agent where

no such information is available and assume that the clustering effects are random. One

can choose to improve this model by modelling the correlation between trade imbalance

and clustering, which is not the focus of this work and is therefore not discussed here.

4We use the Arithmetic Brownian motion model, which theoretically allows the possibility of having a
negative price. However note that in short timeframe Arithmetic Brownian motion behaves very similarly
to Geometric Brownian motion.

5We note here that λ represents intensity of Poisson process in this chapter, which is different from
its meaning in the previous chapters. This is because λ is both the standard notation for price impact
and intensity.
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The agent’s inventory process has the following dynamic:

dQt = −1L1+N
t−
(Lt + 1H1+N

t−
Ht)dNt, t ∈ [0, T ], (4.2)

where {Ln}n∈N and {Hn}n∈N denote the agent’s order fill events (with binary outcomes)

for limit and hidden orders, respectively. They are assumed to follow independent and

identical Bernoulli distribution with constant success probability pl and ph, which are

independent of any other process. At time t, limit orders are executed at size 1L1+N
t−
Lt

and hidden orders at size 1L1+N
t−
1H1+N

t−
Ht. This reflects the fact that hidden orders

are executable only after exhaustion of the limit order queue, see Figure 4.3 for graphical

illustration of orders queue. As a technical assumption, we disallow orders to be partially

filled, i.e., orders are always fully filled. We do not expect this to affect the qualitative

results drastically and is therefore not a major concern of this work.

Figure 4.3: A visualization of hidden order in limit order book.

Lastly, cash process X satisfies the following SDE:

dXt = −ŜtdQt, t ∈ [0, T ], (4.3)

where Ŝt denotes the transaction price at time t. Assuming that the immediate execution
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cost is proportional to the order sizes L and H, the transaction price at time t has the

form:

Ŝt = St − k1L1+N
t−
(Lt +Ht1H1+N

t−
), t ∈ [0, T ], (4.4)

where k > 0 is the immediate execution cost coefficient. Given a fixed execution price,

immediate execution cost is the opportunity cost of a sizeable sell limit order which

may stop the market buy order(s) from walking up the book temporarily, thus resulting

in an immediate (opportunity) loss. In this regard, the immediate execution cost is

the difference between the execution price and the near-future price, which suggests

opportunity cost of agent against if executing less and placing limit orders again when

price moving up. Conceptually, this immediate execution cost as part of the price impact

for limit and hidden orders also applies for market orders (R. Almgren & Chriss, 2001).

It corresponds to the instantaneous price impact caused by the execution of market

orders. Note that the price impacts of market orders and passive orders differ mainly in

the permanent component, i.e. the order pressure. Market orders exert a much larger

persistent price impact compared to limit or hidden orders.

Here we establish a price impact model with the anonymity assumption (Tóth et al.,

2011), where the aggressive of trading strategies is only taken into account through the

size of the posted order. We acknowledge that the main limitation to this model is that

agents can only peg the limit prices to the current best ask price, which is a technical

assumption that helps to focus on the effect of order sizes on liquidation, just like the

focus on the effect of limit price in the other literature about limit order executions Cartea

and Jaimungal (2015a); Guéant et al. (2012); Guilbaud and Pham (2013). This model

is not particularly suitable for illiquid markets where the market order arrival is heavily

affected by the amount of liquidity. In turn, we tend to focus on a more liquid market

where the market order arrival rate is mostly driven by external factors.
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4.2.2 Value Function

Throughout this chapter, we work on a completed filtered probability space (Ω,P, (Fs)0≤t≤T )

where the filtration is generated by the processes Wt and Nt. The performance of the

agent is measured by the expected terminal wealth, which is the expectation of the ter-

minal cash position and stock position less the price impact cost of the market order at

termination T :

V (t, x, s, q, λ) = sup
(L,H)∈A[t,T ]

Et,x,s,q,λ

{
XT +QTST − αQ2

T

}
. (4.5)

where α > 0 denotes the coefficient for market order price impact and Et,x,s,q,λ denotes the

expectation conditional onXt− = x, St = s, Qt− = q and λt− = λ. The supremum is taken

over all Ft-predictable pairs of processes (Lτ , Hτ )t≤τ≤T , which satisfies the boundedness

condition: ∀ τ ∈ [t, T ), 0 ≤ Lτ , 0 ≤ Hτ , and Lτ +Hτ ≤ Qτ . Note that λt is progressively

measurable with respect to the natural filtration of Nt.

4.3 Optimal strategy with hidden order

We derive optimal strategies for the liquidation problem under three scenarios. By as-

suming that market order arrivals follow a homogenous Poisson process, we obtain the

Limit-hidden (LH) strategy. When restricting to limit orders only, we derive the Limit-

only (LO) strategy, which can be used to evaluate how much cost is reduced from using

mixed orders. Finally, we extend the derivation to a Limit-hidden-Hawkes strategy under

self-exciting market order arrivals.

4.3.1 Limit-hidden (LH) Strategy

We first consider a simplified case where the market order arrival process is homogenous,

i.e., λt is constant. In particular, Nt follows a homogeneous Poisson process with a

constant intensity λt = λ at any t ∈ [0, T ]. As such, the value function V in (4.5) is

reduced to a simple value function, denoted by U , where the constant intensity λ is no
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longer a state variable but a parameter:

U(t, x, s, q) = sup
(L,H)∈A[t,T ]

Et,x,s,q

{
XT +QTST − αQ2

T

}
. (4.6)

Analogously, the admissible set of controls is still A[t,T ], which stipulates that the total

order size cannot exceed current inventory and both order sizes cannot be negative. The

expectation Et,x,s,q is conditional on Xt− = x, St = s,Qt− = q only. In the following, we

develop an analytical solution to this control problem.

It implies that a dynamic programming principle holds and the value function U in

(4.6), without the dynamics of the intensity process anymore, is the solution of the HJB

equation:

0 =
∂U

∂t
+

1

2
σ2∂

2U

∂s2

+ sup
(L,H)∈A(q)

{
λ̃

[
ph
(
U(t, x+ (L+H)(s− kL− kH), s, q − L−H)

)
+ (1− ph)U(t, x+ L(s− kL), s, q − L)− U

]
− bL

∂U

∂s

}
,

(4.7)

with terminal condition

U(T, x, s, q) = x+ qs− αq2

and

A(q) := {(L,H) | L ≥ 0, H ≥ 0, L+H ≤ q} .

Note that the execution intensity of limit order is denoted as λ̃ = λpl. We adopt an

excess value decomposition to break down the optimal liquidation value U(t, x, s, q) into

the current cash value x, current stock position qs, and excess value u(t, q). We show that

this excess value is purely quadratic in the inventory q, and the feedback control forms of

the order sizes can be expressed as a linear function of q, given certain assumption about

the value function as follows:

Proposition 4.3.1 (Value Function Decomposition, Feedback Control). The value func-

tion U admits the excess value decomposition U(t, x, q, s) = x+qs+u(t, q) and the excess
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value u(t, q) is purely quadratic in the inventory q: u(t, q) = q2u2(t).

Assuming that u2 is bounded by −α and 0, the unique feedback controls of the optimal

liquidation strategy are:

L∗(t, Qt) = Qt ·max

(
1−

k + b
2λ̃(1−ph)

k − u2(t)
, 0

)
,

H∗(t, Qt) = Qt ·
(
1− k

k − u2(t)

)
− L∗(t, Qt).

(4.8)

The proof is presented in Appendix 4.7.1.1. With the feedback controls and decom-

positions, the HJB (4.7) can be reduced into a system of ODEs. Solving the dynamic

programming equation through a verification argument, we prove that the unique classical

solution to the HJB (4.7) is equal to the value function of the optimal liquidation prob-

lem defined in (4.6). Further, the obtained classical solution satisfies the boundedness

assumption on u2 in Proposition 4.3.1.

Theorem 4.3.2 (Limit-hidden Strategy, Solving the HJB Equation, Verification Theo-

rem). With the decomposition in Proposition 4.3.1, the unique classical solution of the

HJB equation (4.7) coincides with the value function U of the control problem (4.6). (4.8)

defines a set of optimal controls in feedback form.

In particular, u2(t) is a piecewise function in time:

� For t ∈ (t̃, T ] where t̃ is a switching time to be determined afterwards, u2 satisfies

the following equation:

k1 − t =
1

λ̃ν

(
k +

b

2λ̃

)
tan−1

(
ũ2(t)

ν

)
− 1

2λ̃
log
(
λ̃ũ2

2(t) + λ̃ν2
)
, (4.9)

where ũ2(t) = u2(t) +
b
2λ̃
, ν = b

2λ̃

√
ph

1−ph
, k1 is a constant determined by terminal

condition ũ2(T ) = −α + b
2λ̃

and the switching time t̃ is given by inverting (4.9)

with ũ2(t̃) = − bph
2λ̃(1−ph)

.

� For t ∈ [0, t̃],

u2(t) = −
[
W
(
ϕ exp(ϕ+ λ̃ ph(t̃− t))

)]−1

. (4.10)
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where ϕ = 2λ̃(1−ph)
b

is the relative execution cost and the Lambert function W is the

inverse function of g(x) = x exp(x).

We defer the proof to Appendix 4.7.1.2.

Remark 4.3.3. Optimally, the agent should enter a pure-hidden-order phase before time

t̃, and convert it to a mixed-orders phase after time t̃.

For the pure-hidden-order phase, i.e., u2(t) ≥ − b
2λ̃(1−ph)

, the optimal limit order size

L∗ is zero and the optimal hidden order size is proportional to inventory Qt:

H∗(t, Qt) = Qt ·
(
1− k

k − u2(t)

)
. (4.11)

For the mixed-orders phase, i.e., u2(t) < − b
2λ̃(1−ph)

, the optimal order sizes are again

proportional to inventory Qt:

L∗(t, Qt) = Qt ·

(
1−

k + b
2λ̃(1−ph)

k − u2(t)

)
, H∗(t, Qt) = Qt ·

( b
2λ̃(1−ph)

k − u2(t)

)
. (4.12)

The feedback control form of total order size does not change throughout the entire

period regardless of the phase, i.e.,

L∗(t, Qt) +H∗(t, Qt) = Qt ·
(
1− k

k − u2(t)

)
, (4.13)

which is decreasing in u2(t).

In addition, it is only when
b

2λ̃(1− ph)
< α that the optimal liquidation strategy has

two phases. Otherwise, the agent would use the pure-hidden-order phase for the entire

timeframe. To give an intuition about the switching: During illiquid periods, one should

want to hide limit orders because the exposure of trading intention causes rather large

impact. This is empirically corroborated in the literature (J.-P. Bouchaud et al., 2018),

and the event Flash Crash (CFTC & SEC, 2010).

Note that the order splitting between passive order (limit or hidden order) and the

market order is always present. That is, even if the immediate execution cost k is larger
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than the price impact of market order α, the agent should still post passive order through-

out the period, instead of staying inactive and waiting to execute all shares using the

market order at termination.

Remark 4.3.4. According to the expression of the function u2, it is bounded by [−α, 0],

thus the assumption in Proposition 4.3.1 is validated. From the proof presented in Ap-

pendix 4.7.1.2, we have the ODE governing the dynamics of u2, with terminal condition

u2(T ) = −α:

0 = u′
2(t) +

λ̃

k − u2(t)

[(
u2
2(t) + u2(t)

b

λ̃
+

b2

4λ̃2(1− ph)

)
1{u2(t)≤− b

2λ̃(1−ph)
} + phu

2
2(t)1{u2(t)>− b

2λ̃(1−ph)
}

]
.

From the ODE, u2 is monotonically decreasing in time t. The value of u2 directly

reflects the level of impatience or aggressiveness of the agent. Over time, the value of u2

decreases, and the agent becomes more anxious and uses larger-sized orders for liquidation.

Unlike traditional optimal liquidation literature with market orders, our solution does

not require the price impact of market orders α to be larger than the immediate execution

cost k.

Moreover, it is critical to understand the relationship between dynamics of the value

function and the model parameters, through the ODE describing function u2 in the mixed-

orders phase:

0 = (k − u2(t))u
′
2(t) + λ̃

(
u2(t) +

b

2λ̃

)2

+
b2

4λ̃

ph
1− ph

.

One can see that the speed of time decay of u2 is positively related to ν = b
2λ̃

√
ph

1−ph
and

is scaled by k−u2(t). Economically, it implies that the speed at which the cost aggravates

over time is positively related to exposure risk and fill probability hidden orders, and

negatively related to immediate execution cost and execution intensity of the limit orders.

Definition 4.3.5. We define the relative minimal liquidation cost as cα(t) := −u2(t)/α, t ∈

[0, T ].

We introduce the relative minimal liquidation cost for the ease of analysis. From
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the terminal condition of u2, we have cα(T ) = 1. The agent’s value function can be

reconstructed using cα: U(t, x, q, s) = x + qs − cα(t)αq
2, ∀ t ∈ [0, T ]. Here u2 (cα) is to

quantify the utility (cost) of the agent at a given state, and cα(t) is the ratio between

the minimal liquidation cost and the price impact of market order, which represents the

execution cost relative to executing all remained shares using market orders at once.

According to Theorem 4.3.2, the relative cost coefficient cα is bounded between 0, where

the cost is almost entirely avoided, and 1, where the execution of all inventory using

market orders is almost unavoidable.

Figure 4.4: Switching time and order size of the Limit-Hidden strategy over time.

Figure 4.4 displays the order size, measured as the percentage value over the remaining

inventory. The switching time displayed as a dotted vertical line. It shows that the agent

adopts a two-phase strategy. Before the switching time, she enters a pure-hidden-order

phase, and switches to the mixed-orders phase after. We observe that the relative minimal

liquidation cost cα(t) grows monotonically with time. The hidden order size increases

with time before the switching time and decreases after. The limit order size increases

immediately after the switching time. Moreover, the total order size, i.e., the sum of

hidden and limit orders, increases monotonically with time. The optimal choice is to use

pure hidden orders when the pressure to liquidate is not too strong, and otherwise to use

the mixture of hidden orders and limit orders, similar to Y. Chen et al. (2018), . We also

conducted analysis of the impact of other model parameters k, α, b, pl and ph on the
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limit-hidden strategy, which can be found in Appendix 4.7.3.

4.3.2 Limit-only (LO) Strategy

To elaborate how much the agent can benefit from using a mixed strategy of both limit

and hidden orders, we consider a pure limit order strategy in liquidation and use it as a

benchmark strategy. In the limit-only case, the admissible set of controls further shrinks

down to AL
[t,T ], and the set of all Ft-progressively measurable processes (Lτ )t≤τ≤T satisfies

∀τ ∈ [t, T ), 0 ≤ Lτ ≤ Qτ . The corresponding value function in this case, denoted as UL,

is defined as follows:

UL(t, x, s, q) = sup
L∈AL

[t,T ]

Et,x,s,q

{
XT +QTST − αQ2

T

}
. (4.14)

Corollary 4.3.6 (Limit-only Strategy). If the market order arrival rate is constant, i.e.,

∀ t ∈ [0, T ], λt = λ and the agent can only use limit orders, the value function is quadratic

in the inventory q: UL(t, x, q, s) = x + qs + q2uL
2 (t) where uL

2 is a function of time with

the following expression:

1. If α > b
2λ̃
, the agent is active:

uL
2 (t) = −k̃

[
W
(
ϕ̃ exp(ϕ̃+ λ̃(T − t))

) ]−1

− b

2λ̃
, (4.15)

where λ̃ = λpl is the execution intensity and ϕ̃ = k̃
α̃
is the modified relative execution

cost with k̃ = k + b
2λ̃
, α̃ = α− b

2λ̃
.

The corresponding optimal limit order size L∗ has the following expression:

L∗(t, Qt) = Qt

[
1 +W

(
ϕ̃ exp(ϕ̃+ λ̃(T − t))

)]−1

. (4.16)

2. If α ≤ b
2λ̃
, the agent is inactive: L∗ is always zero and for all time t, uL

2 (t) = −α.

We defer the proof to Appendix 4.7.1.3.
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The limit order size L∗(t, Qt) is proportional to the current inventory Qt. As the

Lambert function W is increasing in the positive part of real-axis, the optimal exposure

amount is inversely related to ϕ̃ =
(
k + b

2λ̃

)
/
(
α− b

2λ̃

)
, which is increasing in k and b,

and decreasing in α and λ̃. It implies that, immediate execution cost and exposure risk

lower the size of limit order, while the price impact of market order and market order

arrival frequency drive it up. Compared to Theorem 4.3.2, one key difference from the

Limit-hidden (LH) strategy is the existence of a dormant phase. When the market order

price impact is smaller than the exposure risk, α ≤ b
2λ̃
, the Limit-only (LO) strategy

instructs the agent not to post any limit order but waits until termination T .

Figure 4.5: Comparison of value/cost (upper panel) and order size (lower panel) between
Limit-Hidden strategy and Limit-Only strategy. cα represents the minimal liquidation
cost relative to the impact of market orders using the Limit-Hidden strategy, and cLα
represents the minimal liquidation cost relative to the impact of market orders using the
Limit-Only strategy.

When the agent is constrained to limit orders only, her value function and the total

execution cost will be sub-optimal. Figure 4.5 visualizes the intuition, which shows that

the limit-hidden strategy is always better than the limit-only in terms of execution cost

and value function. The gap between the two strategies is particularly prevalent when the

market is less active. For example, when intensity λ approaches 0, there are hardly any

trades happening. Here, the priority of the agent would be to hide her trading volume as
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much as possible, by e.g., using hidden orders.

Interestingly, it shows that the market also benefits from the use of hidden orders by

the agent, with an increase in total liquidity supply. For an easy demonstration, let’s

assume our agent is the aggregate of all traders in the market. Our model shows that

the lit depth of the order book reduces, as shown in the bottom panel of Figure 4.5,

and the total liquidity, i.e., the sum of limit and hidden order size6, increases with the

use of hidden order against limit only, with the caveat that things might change with

endogenous market order arrival rates.

4.3.3 Limit-hidden-Hawkes Strategy (LHH)

In this section, we study an inhomogeneous Poisson case, where the intensity process λt

is governed by the following specific SDE:

dλt = −β(λt − λ)dt+ ηdNt, (4.17)

where λt follows an Ornstein-Uhlenbeck process with jump, with decay rate β > 0, jump

size η > 0 and base rate λ > 0. As such, the counting process Nt follows a Hawkes process

with exponential kernel. The trade execution depends on not only jumps in market order

arrival frequency but also the events L and H.

Analogously, classical results imply that a dynamic programming principle holds and

the value function V (4.5) is the solution of a HJB equation:

0 =
∂V

∂t
+

1

2
σ2∂

2V

∂s2
− β(λ− λ)

∂V

∂λ
+ λ(1− pl) [V (t, x, s, q, λ+ η)− V ]

+ sup
(L,H)∈At

{
λpl

[
phV (t, x+ (L+H)(s− kL− kH), s, q − L−H,λ+ η)

+ (1− ph)V (t, x+ L(s− kL), s, q − L, λ+ η)− V

]
− bL

∂V

∂s

}
,

(4.18)

with terminal condition V (T, x, s, q, λ) = x + qs − αq2. Note that λ is a state variable

instead of a model parameter as in (4.7). Moreover, the decay of λ is taken into account

6Order size here is regarded as the ratio of optimal order size to the remaining liquidation target.
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by the partial derivative, and the self-exciting property of the process is represented by

the jump in intensity in the supremum operator. Similar to the Poisson case discussed

in Proposition 4.3.1, we can find the feedback control forms for the optimal trade sizes

with boundedness assumption on the size of the value function. This leads to the Limit-

hidden-Hawkes (LHH) strategy, in which the agent continuously estimates the market

order arrival intensity and decides appropriate size of limit and hidden orders.

Proposition 4.3.7 (Limit-hidden-Hawkes Strategy). The value function V admits the

excess book value decomposition V (t, x, s, q, λ) = x+ qs+ v(t, q, λ). The excess book value

function v is purely quadratic in q, admitting this decomposition v(t, q, λ) = q2v2(t, λ)

into the reduced-form value function v2, governed by the following PDE:

0 = ∂tv2 − β(λ− λ)∂λv2 + λ(v2(t, λ+ η)− v2(t, λ))

+
λpl

k − v2(t, λ+ η)

{[(
v2(t, λ+ η) +

b

2λpl

)2
+

b2ph
4λ2p2l (1− ph)

]
1{v2(t,λ+η)<− b

2λpl(1−ph)
}

+ phv
2
2(t, λ+ η)1{v2(t,λ+η)≥− b

2λpl(1−ph)
}

}
,

(4.19)

with terminal condition: v2(T, λ) = −α.

Assuming that v2 is bounded by −α and 0, the feedback controls of the optimal liqui-

dation strategy are:

L∗(t, q, λ) = q ·max

(
1−

k + b
2λpl(1−ph)

k − v2(t, λ+ η)
, 0

)
,

H∗(t, q, λ) = q ·
(
1− k

k − v2(t, λ+ η)

)
− L∗(t, q, λ).

(4.20)

We defer the proof to Appendix 4.7.1.4.

Remark 4.3.8. v2 is called the reduced-form value function as it is the expected liqui-

dation cost at time t with λt = λ, due to exposure risk, immediate execution cost, and

terminal price impact of market orders, given that the agent always liquidates optimally.

The boundedness assumption made about v2 will be shown in Proposition 4.3.9.
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Indicator functions inside the PDE governing v2 (4.19) correspond to the two different

cases of optimal liquidation strategy, respectively. The reduced-form value function has

different rates of time decay when liquidating with mixed orders or pure hidden orders

given that negative limit order size is not allowed.

In the general case, the optimal liquidation strategy depends on a switching curve

in the two-dimensional space of time and intensity, where v2(t, λ + η) = − b

2λpl(1− ph)
.

We should note that the sensitivity of optimal controls depends heavily on the strategy

being purely hidden or mixed:

1. When v2(t, λ+η) < − b

2λpl(1− ph)
, the agent shall optimally use a mixture of limit

and hidden orders with the following allocation:

L∗(t, q, λ) = q ·

(
1−

k + b
2λpl(1−ph)

k − v2(t, λ+ η)

)
,

H∗(t, q, λ) = q · b

2λpl(1− ph)(k − v2(t, λ+ η))
,

(4.21)

where the optimal hidden order size H∗ is increasing in v2(t, λ+ η) and the optimal

limit order size L∗ is decreasing in v2(t, λ + η). At a fixed time t, higher intensity

causes larger H∗ and smaller L∗.

2. When v2(t, λ+η) ≥ − b

2λpl(1− ph)
, the agent shall optimally employ a pure-hidden-

order strategy with the following allocation:

H∗(t, q, λ) = q ·
(
1− k

k − v2(t, λ+ η)

)
, (4.22)

where the optimal hidden order size H∗ is decreasing in v2(t, λ+ η). At a fixed time

t, higher intensity causes smaller H∗.

There is no knowledge about the boundary value condition of v2 on λ. In theory, λ

can be extremely large and bounded below by λ. This motivates the derivation of certain

basic analytical properties about the reduced-form value function v2. In the constant

intensity case studied in Theorem 4.3.2, these properties are immediately attainable from

observation of the analytical solution. However, there is no analytical solution in the
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general case. We thus use the definition of the original value function V (4.5) to discuss

these properties:

Proposition 4.3.9 (Properties of v2). The reduced-form value function has the following

properties:

1. Monotonicity in λ: For any fixed t, v2(t, λ) is increasing in λ.

2. Boundedness: For any values of t and λ, −α ≤ v2(t, λ) ≤ 0.

We defer the proof to Appendix 4.7.2.

The boundedness property indicates that the average cost of liquidation is always

positive. Moreover, it never exceeds the cost of selling everything using one market order

at terminal time. The increasing property of v2 in λ shows that as long as market orders

arrive at a higher frequency, liquidation cost will be reduced given the agent can split

the inventory into smaller-sized orders, provided the uncertainty in market order arrival

intensity v2 does not have the time decay property.

(4.19) is difficult to solve analytically due to its nonlinearity and lack of boundary

conditions. We use numerical algorithms to solve for the value of v2, by applying the

finite difference method on a two-dimensional grid of intensity and time. On the upper

and lower boundaries for intensity, we assume for a Neumann boundary condition that

the partial derivative of v2 with respect to λ is zero.

� On the upper boundary λ→∞, with economic intuition that there is no execution

cost for infinitely fast market order arrivals, the limit of v2 is zero and that v2

is continuously differentiable with respect to λ, combining Properties 1 and 3 of

Proposition 4.3.9. With this information, the partial derivative of v2 with respect

to λ is zero by contradiction: for any t, suppose that limλ→∞ ∂λv2(t, λ) = l > 0.

By definition of limit, for any l > ε > 0, there exists some M such that ∀λ′ >

M, |∂λv2(t, λ′)− l| < ε, i.e. ∂λv2(t, λ
′) > l − ε. Hence, for M ′ = α

l−ε
, we have

v2(t,M +M ′) = v2(t,M) +

∫ M+M ′

M

∂λv2(t, λ
′)dλ′ ≥ −α +M ′(l − ε) > 0.



4.3. Optimal strategy with hidden order 140

This strict positivity of v2(t,M+M ′) contradicts the boundedness of v2. Hence the

assumption is wrong, and we have limλ→∞ ∂λv2(t, λ) = 0.

� On the lower boundary λ = λ, the value of ∂λv2 does not contribute to the dynamics

of v2 as its multiplier in the PDE (4.19) is zero.

Definition 4.3.10. We define the relative minimal liquidation cost as cvα(t, λ) := −v2(t, λ)/α, t ∈

[0, T ].

Similar to the Poisson case, we define a minimal liquidation cost function cvα(t, λ) here,

which is also bounded between 0 and 1. Figure 4.6 displays a heat map of cvα(t, λ) on a

two-dimensional grid of intensity λt and time t to demonstrate how the liquidation cost

changes with these two variables.

Figure 4.6: Heat map of reduced-form value function cvα(t, λ) with respect to time t (x-
axis) and intensity λ (y-axis) obtained by finite difference method on (4.19).

The heatmap in Figure 4.6 shows that the liquidation cost increases in time and

decreases in intensity. The cost reaches its peak at termination (i.e.,cvα(T, λ) = 1). It

is worth highlighting that λt is one of the state processes of the agent, while in the

homogeneous Poisson case λt = λ is a fixed model parameter. In other words, the agent

needs to actively monitor the frequency of market order arrivals and determine her order

sizes accordingly. As the order sizes are always proportional to the inventory of the agent,

we report the order sizes by normalizing the current inventory to one, i.e., L∗(t, 1, λ) and

H∗(t, 1, λ).



141 Chapter 4. Optimal Execution with Hidden Orders

Figure 4.7: Surface plots of limit order size Lt and hidden order size Ht of Limit-Hidden-
Hawkes strategy with respect to time t and intensity λ obtained by finite difference
method on (4.19).

We also present the surface plots of optimal limit or hidden order sizes L∗, H∗ in

Figure 4.7. It can be observed that the sensitivity of the optimal controls differs re-

markably in the mixed-orders phase and the pure-hidden-order phase separated by the

switching curve. Despite the lack of an analytical solution for the Hawkes case, we can

numerically display the switching curve, see Figure 4.8. It shows that the switching time

decreases in the market order arrival intensity as the agent’s exposure time is longer for

low market order intensity. When the market is relatively quiet, the priority is to prevent

exposure of trading intention, and dedicate to a pure-hidden-order strategy. When the

market becomes active, the order book imbalance imposed by the agent’s ask limit order

is neutralized by the incoming market order at a faster rate, making limit orders more

desirable.

The switching time can be considered a special case of the switching curve. It directly

corresponds to the scenario when η = 0 and β = 0, i.e., one cross-section of the two-

dimensional space of time and intensity. In that case, there is only one switching time

point that divides the optimal decision between mixed-orders phase and pure-hidden-

order phase. It is also consistent with economic intuition that in most situations, the

switching time is closer to terminal time T for larger intensity, when the agent can
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Figure 4.8: Switching curve of the Limit-Hidden-Hawkes strategy in the two dimensional
space of time and intensity obtained by finite difference method on (4.19).

liquidate better, consistent with the monotonicity of v2 in λ.

4.4 Simulation Study

In this section, we demonstrate the optimal solutions of the three trading strategies,

i.e., Limit-Hidden (LH), Limit-Only (LO), and Limit-Hidden-Hawkes (LHH), in

a simulated environment. We consider two scenarios, where market order arrivals follow

either a homogeneous Poisson process or a Hawkes process. Under the known data

generating process, we compute the execution costs by implementing different strategies

and compare the economic values. Moreover, we conduct a robustness analysis, where we

focus on the impact of 1) market arrival intensity and 2) misspecification of parameters

on the numerical performance of the strategies.

We break the total execution costs into three components, elaborating respective cost

origins. Specifically, the exposure execution cost, denoted as Cb, is induced by exposure

risk b; the immediate execution cost Ck is associated with large order execution and
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determined by the parameter k; and the terminal cost Cα happens when liquidating the

remained shares with market price that is driven by the price impact of market orders α.

7:

Exposure Cost: Cb := E
[∫ T

0

bLtQtdt

]
,

Immediate Cost: Ck := E
[∫ T

0

(Ŝt − St)dQt

]
,

Terminal Cost: Cα := E
[
αQ2

T

]
,

where the expectation is taken with respect to the randomness in market order arrivals

and fill events of limit and hidden orders, with the initial condition I = (t0, Q0, λ0). The

agent’s value function is the difference between the initial book value Q0S0 and the total

cost Cb + Ck + Cα, regardless the market order arrival dynamics.

Our agent is designated to liquidate her position of one underlying with Q0 = 2000

shares over a fixed period determined by T = 600 s. The trading environment is generated

with the following parameter values, if not stated otherwise.

α = 2.68× 10−4, b = 4.64× 10−7s−1, k = 2.31× 10−5, pl = 0.55, ph = 0.5,

λ = 5.76× 10−2s−1, λ = 3.78× 10−2s−1, β = 2.70× 10−1s−1, η = 9.26× 10−2s−1.

which are the average values of parameters estimated based on NASDAQ 100 stocks in the

later real data analysis8, except the fill probability of hidden orders ph. In practice, users

can specify the value of ph according to their own trading record. In the simulation, we

take ph = 0.5 as illustration. We generate two scenarios with different market dynamics.

In the first scenario, market order arrivals follow the homogeneous Poisson process, where

the constant intensity λ = 5.76 × 10−2s−1 is used. That is, on average there are 0.0576

market order arrivals per second. In the second scenario, market order arrivals follow the

7With a light abuse of notation, we include λ0 in the state space for unified denotation for Cb, Ck, Cα,
knowing that λt has no meaning to LH and LO strategy. Moreover, the cost due to volatility of funda-
mental price σ is zero as an expectation over a Brownian term.

8λ is set to λβ/(β − η) throughout the simulation analysis
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Hawkes process with time dependent intensity λt driven by λ = 3.78×10−2s−1, β = 2.70×

10−1s−1, η = 9.26×10−2s−1 over time. In the simulation, we use λ0 = λ = 5.76×10−2s−1

as initial value for the Hawkes process. For a fair comparison in the second scenario, the

intensity of the Poisson process should take the same value as the long-term expected

intensity of the Hawkes process, where we characterize the long-term mean arrival rates

as follows:

Definition 4.4.1. The long-term expected arrival rate of a Poisson process with intensity

λ is E[λ∞] := limt→∞ E[λt].

We align the long-term mean arrival rate between the two processes through the

following proposition:

Proposition 4.4.2 (Long-term mean arrival rate of Hawkes processNt). For a stationary

Hawkes process with exponential kernel ϕ(t) = η exp(−βt) with β > η, the long-term

expected arrival rate is E[λ∞] = limt→∞ E[λt] = λ β
β−η

.

Each scenario is tested with 5,000 independent runs with all three strategies. For

each run, we first generate a series of market order arrivals (tn)t∈[0,T ] over a fixed time

interval [0, T ]. Upon each market order arrival, we sample two realizations (l, h) indepen-

dently from the uniform distribution, and use 1pl>l and 1pl>h to mimic order fill events

as depicted in model setup. We keep the liquidation trajectories consisting of the state

(Qtn , Xtn , tn) and control variable (Ltn , Htn) including terminal conditions. The cost as-

sociated with each simulation run could be easily derived from the liquidation trajectory.

Finally, we compute and compare the average liquidation cost for three strategies LH,

LO and LHH for each scenario.

4.4.1 Numerical Results

In this subsection, we compare the numeric performance of three strategies under two

settings, namely when market order arrival follows the Poisson and Hawkes process,

respectively. In the simulation steps, we assume the agent knows the true parameters for

k, α, b, k, pl, ph, λ, λ, η and β.
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When the generated market arrivals follow the homogeneous Poisson process with

λ = 5.76× 10−2s−1, we let the LO and LH take the true value of λ, and the LHH obtains

the unbiased estimate of λ, η, and β. Specifically, the corresponding parameters of the

Hawkes process are λ = 5.47 × 10−2s−1, η = 7.2 × 10−5s−1, β = 1 × 10−3s−1, which are

estimated from the data generated with Poisson process for a fair comparison. For small

β and η, the estimated Hawkes process behaves very similarly to a Poisson process. In

that case, it is expected that the two strategies will behave similarly. However, when

LH is calibrated with true data generating process, LO is expected to perform badly as

hidden order is not allowed.

When the generated market arrivals follow the Hawkes process, we let the LHH strat-

egy know the true value for λ, η and β. The LO and LH strategies take the average

market order arrival intensity as lambda, which is the same as the first scenario.

Table 4.1: Simulation results where market orders are generated with the Poisson process
with intensity λ = 5.76 × 10−2s−1 (left panel) and inhomogeneous (Hawkes) with expo-
nential kernel λ = 3.78× 10−2s−1, β = 2.70× 10−1s−1, η = 9.26× 10−2s−1 (right panel),
where λ0 = λ = 5.76× 10−2s−1 for both cases. The best performing result is highlighted
in bold.

Poisson Hawkes
Metric LHH LH LO LHH LH LO

QT/Q0 (%) 0.66 0.87 0.71 2.15 4.04 3.59
Exposure cost 1.31 1.43 31.23 2.99 5.32 45.39
Immediate cost 11.93 11.53 5.87 16.89 13.97 7.89
Terminal cost 0.54 0.71 0.49 3.87 8.77 6.19
Total cost 13.78 13.67 37.59 23.76 28.06 59.46
Average limit order size 12.78 13.70 104.85 20.85 31.75 146.02
Average hidden order size 184.69 182.62 254.89 228.40
Average total order size 197.46 196.33 104.85 275.74 260.15 146.02

Table 4.1 reports the average execution costs over 5, 000 runs as well as the breakdowns

of each strategy under the two scenarios using the estimated parameters.

As expected, the LH strategy delivers the best performance when the market order

arrivals follow the homogenous Poisson process, with the lowest total cost of 13.67. The

LHH achieves 13.78 and is on par with the LH, and further study shows that LO has the

smallest immediate cost Ck, in exchange for a much larger exposure cost Cb for only using
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limit orders. The use of hidden orders in the mixed strategies LH and LHH dramatically

reduces exposure cost from 31.23 to 1.43 and 1.31, respectively. There are marginal

differences in the terminal cost among the three strategies, as the ratios, QT/Q0 indicate

only a few remaining shares are liquidated by market orders at termination. Moreover, in

general, the implementation of mixed order strategies enhances liquidity in the market,

with a smaller limit order size (12.78/13.70/104.85 for LHH/LH/LO) but a significant

increase in hidden order size (197.46/196.23 for LHH/LH) pushing up the total order

size.

It is worth mentioning that the strategy LHH delivers a similar performance as the

optimal strategy, i.e., LH in the scenario of Poisson. Although LHH is based on a mis-

specified Hawkes process assumption, it can reasonably describe the stochastic behavior

of market arrivals with three parameters. It indicates LHH is robust and applicable for

both homogeneous Poisson and Hawkes processes.

When market arrivals are self-exciting, liquidation becomes more expensive in general,

and more shares need to be liquidated with market orders at termination, regardless of

strategy. Given the uncertainty in arrival intensity, there is a significant increase in

the use of limit orders. Nevertheless, the mixed order strategies LH and LHH again

display superior performance, where total cost drops from 59.46 to 28.06 for LH and

23.76 for LHH. Among the mixed order strategies, LHH delivers outstanding results,

where exposure cost reduces by more than 15-folds compared with LO, and by 43.6%

against LH, and terminal cost drops by more than 55.9% compared to LH and by 37.5%

against LO. The saving in exposure cost is directly caused by the smaller average limit

order size, whereas the lower terminal cost is attributed to timely monitoring of market

activity, i.e., considering the time-dependent intensity. By utilizing the dynamic variation

of market conditions, LHH seems to ensure a steady inventory trajectory and alleviating

the liquidation need of remaining shares with market orders.



147 Chapter 4. Optimal Execution with Hidden Orders

4.4.2 Robustness analysis: market intensity

We study the robustness of the liquidation strategies in different market conditions, where

the intensity of market order arrivals varies. Specifically, we use Hawkes process as the

true data generating process of market order arrivals for its flexibility and implement the

three strategies to compute liquidation cost. To facilitate a meaningful comparison, the

parameters values λ in the Poisson based strategies LH and LO are assigned to be the

long-term expected market order intensity of Hawkes process, i.e., λβ/(β−η). Moreover,

the long-term expected order intensity remains unchanged across the robustness study

for consistent comparisons.

We consider four market scenarios by altering the values of i) the initial intensity λ0

at t = 0, ii) the decay rate β and iii) the jump size η in the Hawkes process while keeping

the other parameters as the default values. In particular, we design a less active market

where the initial intensity λ0 is scaled down by 10 times and a more active market with

the initial intensity is scaled up by 10 times. Simultaneously, the market condition can be

influenced by the decay speed and jumps. In the other two scenarios, we mimic a market

with a more stable intensity, where β and η are scaled down by a factor of 2, representing

a slower decay and lower jump, as well as a market with more turbulence, where β and

η are both scaled up by a factor of 2, indicating faster decay and more jumps.

Table 4.2 reports the performance of the three strategies, averaging over 5, 000 inde-

pendent runs, under the above described specifications.

In general, the relative performance of the three strategies remain the same as in

the default case. LHH delivers the lowest execution cost, where the main contribution

is from the savings in exposure cost with hidden orders, followed by the cost efficiency

at termination with less need for market order liquidation at termination. However, the

absolute amount of execution cost monotonically decreases in the initial intensity λ0,

where the total cost drops from 24.30/28.86/60.75 (LHH/LH/LO) to 20.68/25.35/50.72

when the agent moves from a less active market to a more active market at time 0. This

suggests that agents should adjust trading behaviors, e.g., to start liquidation at points

when market is active for cost efficiency and fast liquidation.
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Table 4.2: Simulation results under inhomogeneous (Hawkes process with exponential
kernel) market order intensity, with various parameter values. Default values are λ =
3.78 × 10−2s−1, β = 2.70 × 10−1s−1, η = 9.26 × 10−2s−1, and λ0 = λ = 5.76 × 10−2s−1 .
The best performing result is highlighted in bold. A ← cA means that parameter A is
scaled by a factor of c over its default value.

Metric LHH LH LO LHH LH LO

λ0 ← 0.1λ0 λ0 ← 10λ0

QT/Q0 (%) 2.25 4.20 3.66 1.85 3.73 3.24
Exposure cost 3.14 5.51 46.73 3.50 4.56 38.61
Immediate cost 17.17 14.17 8.07 14.15 12.87 7.20
Terminal cost 4.00 9.18 5.96 3.04 7.92 4.91
Total cost 24.30 28.86 60.75 20.68 25.35 50.72
Average limit order size 21.45 32.48 148.56 19.87 29.10 134.59
Average hidden order size 260.21 231.81 210.03 210.16
Average total order size 281.66 264.30 148.56 229.89 239.26 134.59

β ← 0.5β and η ← 0.5η β ← 2β and η ← 2η
QT/Q0 (%) 2.69 3.64 3.19 2.46 4.40 3.86
Exposure cost 2.69 4.76 43.71 3.40 5.88 47.55
Immediate cost 15.55 13.66 7.66 17.07 14.30 8.24
Terminal cost 4.93 7.45 5.23 4.55 9.80 6.54
Total cost 23.17 25.88 56.60 25.02 29.98 62.34
Average limit order size 19.03 29.30 140.70 22.84 34.08 151.89
Average hidden order size 245.22 222.73 0.00 261.48 233.93 0.00
Average total order size 264.25 252.03 140.70 284.32 268.01 151.89

Among the self-exciting processes with the same long-term average intensity but dif-

ferent clustering effects, it shows that arrivals with strong clustering with larger jumps

(larger η) and faster decay (larger β) lead to more expensive liquidation 25.02/29.98/62.34

(LHH/LH/LO). Meanwhile, when β and η are scaled down, the execution cost is signifi-

cantly reduced to 23.17/25.88/56.60 (LHH/LH/LO) although both cases have the same

long-term average intensity. The average size of both limit and hidden orders increases

with respect to the level of clustering. This indicates that a highly clustering/dispersing

market presents higher randomness in the intensity, which makes it more difficult to

liquidate shares using limit and hidden orders.

4.4.3 Robustness analysis: parameter misspecification

In addition to robustness in market order dynamics, it is also crucial to investigate the

numerical performance of the strategies under parameter misspecification due to either
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misunderstanding of market state or estimation errors. In this section, we purposely

perturb the value of parameters estimated with the simulated data, with ±50% variation

from its ground truth. In particular, we use the under-/over-estimated values for five

parameters, i.e., immediate execution cost k, exposure risk b, price impact α, and the

two fill probabilities pl and ph, while keeping the remaining parameters as default.

Table 4.3: Simulation results under inhomogeneous (Hawkes with exponential kernel)
market order intensity, with estimation bias. The default values for the parameters
are α = 2.68 × 10−4, b = 4.64 × 10−7s−1, k = 2.31 × 10−5, pl = 0.55, ph = 0.5. The
estimation bias is introduced to one parameter at a time. The parameters for market
order generating process are λ = 3.78× 10−2s−1, β = 2.70× 10−1s−1, η = 9.26× 10−2s−1,
and λ0 = λ = 5.76× 10−2s−1 . The best performing result is highlighted in bold.

Underestimation Overestimation
(50%) (+50%)

Para Metric LHH LH LO LHH LH LO

QT/Q0 (%) 1.25 2.69 2.64 2.94 5.09 4.42
Exposure cost 1.66 3.30 45.62 4.35 7.20 45.21

k Immediate cost 20.15 16.15 8.24 15.09 12.64 7.63
Terminal cost 2.36 6.06 4.56 5.18 10.84 7.66

Total cost 24.17 25.51 58.43 24.61 30.68 60.50
QT/Q0 (%) 1.95 3.77 3.27 2.25 4.17 3.90

Exposure cost 6.74 10.01 45.47 1.82 3.64 45.32
b Immediate cost 14.77 12.40 8.00 17.99 14.74 7.79

Terminal cost 3.27 7.71 5.64 4.15 9.27 6.73
Total cost 24.77 30.12 59.10 23.96 27.65 59.84

QT/Q0 (%) 4.02 6.43 5.72 1.49 3.08 2.74
Exposure cost 2.31 4.51 44.95 3.35 5.71 45.59

α Immediate cost 15.65 13.05 7.28 17.57 14.44 8.20
Terminal cost 7.54 14.44 10.13 2.69 6.69 4.74

Total cost 25.50 32.00 62.36 23.61 26.84 58.54
QT/Q0 (%) 0.39 0.66 0.58 5.30 9.40 8.52

Exposure cost 1.27 2.30 46.71 5.54 8.56 44.99
pl Immediate cost 30.71 23.10 10.74 13.49 12.15 7.92

Terminal cost 0.52 0.91 0.52 12.58 27.56 21.45
Total cost 32.50 26.30 57.97 31.61 48.27 74.37

QT/Q0 (%) 1.15 2.15 3.59 4.36 7.59 3.59
Exposure cost 4.28 6.63 45.39 1.94 4.22 45.39

ph Immediate cost 18.73 14.89 7.89 15.86 14.17 7.89
Terminal cost 1.53 3.26 6.19 10.21 21.92 6.19

Total cost 24.55 24.78 59.46 28.01 40.31 59.46

Table 4.3 presents the average performance of the three strategies LHH, LH, and LO

with the misspecified parameters. In general, the influence of parameter misspecification

is mainly on the corresponding cost breakdowns, e.g., k for immediate cost, b for exposure

cost, and α for terminal cost. However, the change is marginal in most cases, indicating
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that the strategies are robust to parameter misspecification, at least with up to 50%

estimation errors. For the case of ph, there is no influence on the strategy LO, where

only limit orders are allowed. Moreover, in both under- and over-estimation scenarios,

LHH remains to be the best performing strategy in terms of total cost across the board,

except once when LH beats LHH because pl is under-estimated by 50%, due to much

larger immediate execution cost.

4.5 Real data analysis

Significance of hidden liquidity and hidden orders in the financial markets promotes em-

pirical studies of our model: The percentage of U.S. stock trades executed on dark pools

and other off-exchange trading venues can be as high as 38.6% in April 2019 (Osipovich,

2019). Hidden orders have obtained significant volume share in a large number of modern

order-driven securities markets globally, with empirical evidence on a significant increase

of the overall market depth in NASDAQ with the introduction of hidden orders (Tuttle,

2003) and that the percentage of volume traded against hidden orders is more than 20%

in October 2010 (Hautsch & Huang, 2012b). Also, studies have shown that hidden or-

ders in the lit pool can serve as substitutes for dark pool trading (Degryse, Karagiannis,

Tombeur, & Wuyts, 2021).

In this section, we implement the derived optimal execution strategies to real data.

We consider an agent who has to liquidate her position of a single stock with a sizeable

number of shares over a fixed period. The agent’s interest is to evaluate the cost-benefit

of using limit orders only or mixed orders with both limit and hidden as in Section 4.3.1,

or mixed orders under self-exciting market order arrivals as in Section 4.3.3.

In the following, we present descriptive statistics of 100 stocks in NASDAQ. We

present the estimation methods that have been used in literature to extract the param-

eters from public data. We detail the estimation model setup and report the numerical

performance of the execution strategies. Note that estimation here is for illustration only

and there exist other estimation approaches that are appropriate for specific situations.
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To check the robustness of the model, we have conducted sensitivity analysis as in the

previous section, where we recomputed the execution costs with under- or over-estimated

parameters.

4.5.1 Data

We use event-level data of NASDAQ 100 Index data (102 tickers)9, which are the 100

largest and most actively traded U.S companies listed on the NASDAQ stock exchange.

The stocks belong to various industries except for the financial sector. The limit order

book data are obtained from LOBSTER from 1 to 15 Feb 2018 (11 trading days). Since

each ticker has its own limit order book and is traded separately, our estimation and

testing are conducted for each ticker. Table 4.4 presents the summary statistics of the

102 tickers on the ask side of the book during market open. It shows that during the 11

trading days, the average daily trading volume among the 102 tickers is 43,078 shares, yet

with a wide range from 7,159 (MELI) to 252,498 (AAPL). The average number of trades

per day is 7,180, corresponding to 0.31 trades per second. Again, there is a variation from

1,193 (MELI) to 42,083 (AAPL). The average depth, measured as shares available at the

best ask price level of the limit order book, is 803. The average market order arrival rates

vary not only from stock to stock, with a range from 0.05 per second (MELI) to 1.8 per

second (AAPL), but also over time.

Table 4.4: Summary statistics for NASDAQ 100 Stocks during 1 to 15 Feb 2018.

Mean SD min P25 P50 P75 max
Average depth at best ask price 803 3,698 79 170 205 386 35,829
Average market order arrival per second 0.31 0.29 0.05 0.14 0.22 0.33 1.80
Average trade price 151 202 6 61 95 166 1414
Average daily trades 7,180 6,679 1,193 3,297 5,031 7,701 42,083
Average daily volume 43,078 40,075 7,159 19,783 30,186 46,207 252,498

9There are 102 tickers, with two tickers for Fox Corporation (FOXA, FOX) and Alphabet Inc.
(GOOGL and GOOG), respectively.
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4.5.2 Implementation and estimation setup

We design a scenario where the agent has to liquidate Q0 = 5% 10 of the average daily

trading volume of every single stock over T = 600 s. Given the average daily trading

volume is 43,078 shares, the average liquidation target of the agent is 2,154 shares, for

which the individual liquidation volume differs among the 102 tickers. To implement

liquidation strategies, i.e., Limit-Hidden-Hawkes (LHH), Limit-Hidden (LH), and Limit-

Only (LO), the agent needs to estimate the respective parameters from publicly available

data and determine the type and number of shares based on the derived solutions.

The dataset contains both event-level information as well as limit order book price

and depth for each event. For each stock, we consider 10:00 AM to 3:30 PM of the trade

and quote data, removing the first and last 30 min (9:30 AM to 10:00 AM and 3:30 PM

to 4:00 PM) to alleviate microstructural impact in opening and closing. For trade data,

we aggregate multiple orders within short intervals, i.e, 100 ms, to avoid capturing the

effect of ultra-high frequency market order splitting. The resultant data of 11 days are

concatenated to form a single time series. Finally, to utilize as much information from

the remaining data as possible, we adopt a trade clock in the real world and fix a set of

discrete-time grids {tn}Nn=1 with tn being the arrival time of the n-th market order, see

(Carmona & Webster, 2019; Cartea et al., 2015; Y. Chen et al., 2018).

Moreover, for a robust evaluation of the liquidation strategies, the agent is asked

to liquidate with the same time duration and initial number of shares multiple times

with a representative coverage of different days and times in the market. Specifically,

they need to liquidate 6 times a day at 10:00-10:10, 11:00-11:10, 12:00-12:10, 13:00-13:10,

14:00-14:10 and 15:00-15:10, respectively, over the 11 consecutive trading days. In the

experiments, the actual market order arrivals are used, reflecting the real-life situation,

instead of being generated from an agent-specified process. This is the key difference

between real data testing and simulation. The remaining testing procedure is similar to

that described in the simulation. We conduct 500 independent runs for each of the tickers

10We acknowledge that these stocks are traded in multiple exchanges, we only focus on the trading
volume captured by the limit order books provided by LOBSTER data. For consistency, summary
statistics, estimation and testing are based on the same limit order book data



153 Chapter 4. Optimal Execution with Hidden Orders

at each testing session 11.

4.5.3 Model Parameter Estimation

The estimation procedure is conducted for the following model parameters: price impact

of market order α, exposure risk b, immediate execution cost k, fill probability of limit

orders pl, together with the Hawkes parameters associated with self-excitement: λ, η and

β. For each stock, we concatenate the event-level data over the 11 trading days (10:00

AM to 3:30 PM for each day) for estimation.

The depth of hidden orders is not available in the dataset. In practice, agents can

estimate ph with the actual fill probability of her posted hidden orders from proprietary

data. In the experiment, we specify ph = 0.5 to represent the fill probability of hid-

den orders, the same as the simulation section, and calculate execution cost for each,

respectively. For robustness, we also perform a set of tests with ph = 0.2, representing a

situation with very deep hidden queues.

Price Impact of Market Orders: α A large market order will consume liquidity on

the bid side of the book and thus temporarily push the best bid price down. We construct

an order book by taking an average of all the snapshots and execute a hypothetical market

order by walking the LOB. For each hypothetical market order, we calculate the price

change due to this order with respect to the order book data. Following Cartea and

Jaimungal (2015a) and Y. Chen et al. (2018), the price change is assumed to be linearly

proportional to the number of executed (hypothetical) shares. In other words, the price

impact α can be interpreted as the slope of a linear book:

Smid
tn − Sbid,Qi

tn = αQi + εαi,tn ,

where Smid
tn is the mid-price at the trading time tn of the n-th market order arrival,

{Qi}Ii=1 is the hypothetical order size up to 1% of the traded volume of the same ticker

11Total number of testing runs is 66 × 102 × 500, due to much larger testing demand compared to
simulation, we conduct 500 independent runs instead of 5,000.
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on the same day, Sbid,Qi
tn is the best bid price after a market sell order of size Qi is placed

and εαi,tn is the error term with mean zero and finite variance. In the estimation, we set

I = 20 and only consider up to 10 levels of the orderbook book due to the availability of

data. This effect is statistically significant as the largest p-value of the Student-t test is

3.3×10−274.

Exposure risk: b Exposure risk is influenced by order book imbalance. When limit

orders are posted onto the order book, the order flow imbalance will decrease, thus

increasing the downward price pressure. Cont et al. (2014) shows that this extra pressure

is almost ’constant’ from order submission until order execution or cancellation. We build

up a linear regression to estimate the exposure risk,

Smid
tn+1
− Smid

tn = b(tn+1 − tn)OBItn + εbtn ,

where the temporal price change is measured at mid-price Smid
· between two consecu-

tive observations at trade time tn+1 and tn, the order book imbalance is computed as

OBIt := qaskt − qbidt , with qbidt and qaskt denoting the total order size at best bid and ask

levels, respectively. The error term εbtn is assumed to have mean zero and finite variance.

Statistical significance of b is strong as all the p-values of the Student-t tests are smaller

than 0.2%.

Immediate Execution Cost: k Immediate execution cost is associated with execution

of large orders, both limit or hidden. R. Almgren and Chriss (2001) show that the

immediate execution cost is due to execution speed and in our case, the limit order size.

Hautsch and Huang (2011, 2012a) show that market buy orders temporarily increase the

best ask price, while large limit orders prevent walking up the book. Instead of selling a

large limit order, the agent can benefit more if they place a smaller order and then other

orders after price moves in their favor. We estimate the immediate execution cost by a
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linear model between execution price change and executed limit order size:

S̄
exec,dtn
tn − Sexec

tn = dtnkQ
exec
tn + εktn ,

where Sexec,·
tn is the execution price at trade time tn, S̄

exec,d
tn is the average future execution

price of the next M trades on the side with direction dtn of the n-th trade. The direction

dtn is dummy, taking 1 for buyer-initiated and −1 for seller-initiated. The executed limit

order size is denoted as Qexec
tn

12. In the estimation, we setM = 20 such that the immediate

execution cost is neither overwhelmed by the future price trends, nor by the price impact

of market orders. Again, εktn is the error term with mean zero and finite variance. The

immediate execution cost effect is in general statistically significant, in which 92 out of

102 tickers have p-values less than 5% and 86 out of 102 tickers have p-values lower than

1%.

Fill Probability of Limit Orders: pl The fill probability of limit order is positively

correlated to the average market order size and negatively correlated to the displayed

market depth. We estimate the fill probability of limit orders pl with the empirical ratio

of market buy order size to order book depth:

p̂l =
Q̄mb

q̄a
,

where Q̄mb denotes the average market buy order size and q̄a represents the average

displayed depth at best ask price when a buy market order arrives.

4.5.4 Parameters of Market Order Arrival: λ, λ, η and β

We use the maximum likelihood method to estimate the counting processes. The log-

likelihood function is of the form:

N(T )∑
n=1

log λtn +

∫ T

t

λtdt

12It may contain a portion of hidden orders if executed by the same trade.
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The two strategies, LH and LO, assume that market order arrivals follow the Poisson

process. We estimate the constant intensity λ = N(T )/T , by taking the first-order

condition of the log-likelihood function, where N(T ) is the total number of market orders.

The strategy LHH assumes the Hawkes process with an exponential kernel. We adopt a

numeric solver to estimate their values λ, η and β.

Table 4.5: Summary statistics of the parameter estimates of the price impact model fitted
on NASDAQ 100 stock data.

Parameter Mean SD min P25 P50 P75 max
α (10−4) 2.68 3.94 0.00 0.39 1.30 2.76 19.67
k (10−5) 2.31 3.72 0.01 0.26 0.80 1.98 17.13
b (10−6s−1) 4.64 7.42 0.00 1.32 3.12 5.33 63.24
pl (%) 55.76 14.48 5.33 48.53 58.36 64.36 74.39
λ (10−2s−1) 8.51 8.18 1.30 4.13 6.15 8.72 55.76
λ (10−2s−1) 3.78 2.23 0.34 2.20 3.46 4.90 14.47
β (10−2s−1) 27.00 14.78 1.08 13.34 30.54 38.99 63.54
η (10−2s−1) 9.26 3.72 0.88 7.67 9.97 11.95 16.08

Estimation Results Table 4.5 presents a summary of the estimated values. The details

of estimators for each stock can be found in Appendix 4.7.4. We make the following

remarks on the estimation results. Firstly, the price impact parameters α, k, b differ

for each ticker, where the ratios between the largest and smallest values go beyond the

magnitude of 103. Since these parameters are closely related to execution cost, we expect

the liquidation costs to vary widely among the tickers. Secondly, the fill probability is

scattered around 50% which means that on average limit order pegged at the best price

will be successfully executed half of the times upon each market order arrival. Thirdly,

the decay β and jump size η are significant compared to the average market order arrival

rate λ. This means that the clustering/dispersion effect of market orders is commonly

seen across all the tickers, suggesting that the market order intensity is not homogenous.

4.5.5 Execution Cost

We now implement the three strategies LHH, LH, and LO, where LH and LO are de-

rived with constant market order arrival intensity and LHH is with self-exciting intensity.
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Meanwhile, LO only submits limit orders, while the other two quote both limit and hidden

orders.

Table 4.6: Execution cost of different strategies on NASDAQ 100 stock data.

Metric LHH LH LO LHH LH LO

ph = 0.5 ph = 0.2
QT/Q0 0.05 0.08 0.09 0.06 0.09 0.09

Exposure cost 0.76 0.46 13.49 4.26 2.89 13.49
Immediate cost 4.12 3.30 1.91 4.84 4.34 1.91
Terminal cost 4.21 6.94 5.93 5.75 8.24 5.93

Total cost 9.09 10.70 21.33 14.86 15.47 21.33

Table 4.6 presents the averages execution cost over 102 tickers and 66 testing sessions.

It shows the breakdowns of execution cost, including the exposure cost, immediate cost,

and terminal cost, summing up to the total cost. The average remaining shares (QT/Q0)

are also reported. As an illustration, the fill probability of hidden order is set to ph = 0.5

for the base case and 0.2 for a robustness check. Due to space limitation, details of the

average execution cost for each ticker and that for each testing session can be found in

Appendix 4.7.4.

In the base case (ph = 0.5), our experiments show that the use of hidden orders

substantially reduces the total execution cost, from 21.33 (LO) to 10.70 (LH) with 50%

cost savings. We attribute this to the reduction in exposure cost, dropping from 13.49

(LO) to 0.46 (LH), a direct benefit of hidden orders. Meanwhile, the immediate cost is

almost doubled, from 1.91 (LO) to 3.30 (LH), when hidden orders are used, but at a

relatively smaller magnitude. The terminal cost of LH (6.94) is higher than LO (5.93),

due to the lower execution priority of hidden orders. In the robustness setting where

the fill probability of hidden order ph = 0.2, the margin of LH (15.47) over LO (21.33) is

narrower because hidden orders become even less likely to execute, which directly leads to

an increase in terminal cost (from 6.94 to 8.24) and increase in the remained shares ratio

QT/Q0. In addition, the agent uses more limit orders, which results in higher exposure

costs than before.

LHH achieves a cost reduction of 57% over LO, from 21.33 (LO) to 9.09 (LHH). By

taking into consideration the inhomogeneity of intensity, LHH reduces execution cost
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over LH with a cost reduction of 15%, from 10.70 (LH) to 9.09 (LHH), mainly due to the

reduction in terminal cost. Compared to LH, LHH actively monitors the market order

arrivals and adjusts order type/sizes accordingly, especially when the market is inactive.

Moreover, LHH achieves the agent’s liquidation target with the lowest remained share

ratio, i.e., QT/Q0. The same cost reduction pattern applies when ph = 0.2. It is worth

noting that the leftover ratio (QT/Q0) in the real-data testing is larger than that in

simulation. Given the market order arrivals are obtained from limit order book data,

we consider the empirical arrivals are more chaotic than the generated ones with known

parameter values.

We present the average trading cost of strategies over 102 tickers for each of the 66

sessions in Figure 4.9. The execution cost of liquidation follows a similar daily pattern

over the testing periods (top), higher around 12 pm to 1 pm and lower approaching

market opening and close. LH consistently outperforms LO in all the sessions given the

reduction in exposure cost (middle). The Hawkes-based strategy, LHH, further improves

the Poisson-based strategy LH, especially during lunch hours when the market is relatively

inactive. The cost reduction again is attributed to the saving in terminal cost (bottom).

Figure 4.11 displays the comparison of the average total execution cost over 66 testing

sessions for each ticker where the stocks are ordered according to the relative performance

which, for plotting purposes, is calculated as (LH−LHH)/LHH. The radius of the circle

of each ticker represents the absolute amount of the cost difference |LH −LHH|. We fill

the circle in green if LH − LHH > 0 and red otherwise. It shows that LHH is a better

strategy for 86 tickers (out of 102 tickers), with cost savings in a range of 0.04-27.42

corresponding to 1%-65% reduction.

We study the relationship between the performance of LHH/LH and the actual market

order arrival patterns. Specifically, we examine the ratio between the standard deviation

and the mean of the empirical inter-arrival (IA) time of market order for each ticker

and use this measure as a proxy for the randomness of market order arrivals. As the

inter-arrival time of the Poisson process follows the Exponential distribution, this ratio

corresponding to the Poisson process is 1. The larger the ratio, the more random the
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Figure 4.9: Average liquidation cost of NASDAQ 100 stocks for each of the 66 testing
sessions. Upper panel: total execution cost of LHH, LH and LO. Middle panel: difference
in exposure cost between LO and LH: LO -LH. Lower panel: difference in terminal cost
between LH and LHH: LH - LHH.

market order intensity is. We sort the tickers based on the ratio and group them into

three baskets. We plot the performance of each basket over the randomness of market

order arrivals in Figure 4.10. We see strong correlation between the randomness of market
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order arrivals and the margins achieved by LHH (in both relative and absolute sense).

Figure 4.10: Comparison of the Limit-Hidden-Hawkes and Lidden-Hidden strategies over
randomness in market order inter-arrival time. The 102 tickers are ranked based on the
ratio between SD and mean of market order inter-arrival time, and then grouped into
three groups with equal size (i.e., 34). The vertical axis reports the group average cost
saving margins where the size of the radius represents the average absolute cost saving
for each group. A circle is filled in green if its corresponding group cost saving in LHH is
positive and red otherwise. ph = 0.5.

4.6 Conclusion

We study the optimal liquidation strategy with display and hidden limit orders in a limit

pool, where the agent is tasked to sell 5% of daily volume within a given period. The theo-

retical results of our continuous-time model suggest that the optimal liquidation strategy

follows a two-phase pattern where it starts with a pure-hidden-order phase, followed by

a mixed-order phase. The transition of phases occurs at the switching curve, where the

switching time depends on the intensity of market order arrivals. Our simulation results

confirm that our strategies are robust to estimation errors and varying market conditions.

In addition, the usage of hidden orders helps to reduce the liquidation costs and we show

numerically that continuous monitoring of market order arrival frequency further helps

to reduce the liquidation costs. Lastly, we test our strategies using event-level data of 102

stocks included in the NASDAQ 100 Index, and find that the strategy using combination

of hidden and limit orders while incorporating the self-exciting effect of market order has
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the best performance.

Additionally, we leave an important future research direction, that is to extend this

work to the multi-asset case see Min et al. (2022), Schneider and Lillo (2019) and

Tsoukalas, Wang, and Giesecke (2019). We acknowledge the difficulty in empirically

estimating a price-impact matrix from the trades on multiple asset on multiple asset

prices. Theoretically, with homogeneous Poisson market order arrivals, it is expected

that there will be one switching time for each asset.

4.7 Appendix

4.7.1 Proofs

4.7.1.1 Proof for Proposition 4.3.1

With the excess book value ansatz U(t, x, q, s) = x + qs + u(t, q), the HJB equation is

reduced to the following equation about the excess book value function u about time t

and inventory q:

0 =
∂u

∂t
+ sup

(L,H)∈At

{
λ̃

[
ph
(
u(t, q − L−H)− k(L+H)2

)
,

+ (1− ph)(u(t, q − L)− kL2)− u

]
− bqL

}

u(T, q) = −αq2,

(4.23)

where λ̃ = λpl is the execution intensity of limit orders.

Application of the quadratic ansatz u(t, q) = u0(t) + qu1(t) + q2u2(t) decomposes u

into three functions about time t only. With the ansatz, the Hamiltonian term can be

written as:

λ̃

[
ph
(
− (L+H)u1(t) + ((L+H)2 − 2q(L+H))u2(t)− k(L+H)2

)
+ (1− ph)(−Lu1(t) + (L2 − 2qL)u2(t)− kL2)

]
− bqL.
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The optimal order sizes are given by first order conditions over L and H respectively:

L∗(t, Qt) =
u1(t) + 2Qtu2(t) +

bQt

λ̃

2(u2(t)− k)
− phH

∗(t, Qt), (4.24)

H∗(t, Qt) =
u1(t) + 2Qtu2(t)

2(u2(t)− k)
− L∗(t, Qt). (4.25)

If both first order conditions (4.24) and (4.25) hold, we have the following feedback

controls by solving the system of linear equations:


L∗(t, Qt) = −

u1(t)

2(k − u2(t))
−Qt ·

u2(t)− b
2λ̃(1−ph)

Qt

k − u2(t)
,

H∗(t, Qt) =
− b

λ̃(1−ph)
Qt

2(u2(t)− k)
= Qt ·

b

2λ̃(1− ph)(k − u2(t))
.

(4.26)

(4.27)

The corresponding optimized Hamiltonian term becomes:

λ̃

4(k − u2(t))

[
u2
1(t) + 2u1(t)

(
2u2(t) +

b

λ̃

)
q +

(
4u2

2(t) + 4u2(t)
b

λ̃
+

1

1− ph

(
b

λ̃

)2)
q2

]
.

As the optimized Hamiltonian term is also quadratic in q, we can break down the

original PDE into a system of ODEs about u0, u1 and u2:



0 = u′
0(t) +

λ̃

4(k − u2(t))
u2
1(t), u0(T ) = 0,

0 = u′
1(t) + u1(t)

λ̃

2(k − u2(t))

(
2u2(t) +

b

λ̃

)
, u1(T ) = 0,

0 = u′
2(t) +

λ̃

k − u2(t)

[
u2
2(t) + u2(t)

b

λ̃
+

1

4(1− ph)

(
b

λ̃

)2
]
, u2(T ) = −α.

(4.28)

(4.29)

(4.30)

As the ODE about u1 does not have any source term other than u1 itself, u1 ≡ 0 and

the same goes for u0. With this knowledge, the feedback controls simplify to:


H∗(t, Qt) = Qt ·

b

2λ̃(1− ph)(k − u2(t))
,

L∗(t, Qt) = Qt ·
−u2(t)− b

2λ̃(1−ph)

k − u2(t)
.

(4.31)

(4.32)
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By non-positivity of u2, H
∗(t, Qt) in (4.32) is bounded below by 0 and above by Qt

and is therefore admissible. For L∗(t, Qt) in (4.32), only upper bound Qt follows from the

upper bound of the total order size. Hence the possibility of negative L∗ in (4.32) needs

to be considered: if the optimal limit order size is negative, then the optimal admissible

L should be zero by concavity of the Hamiltonian. When L is selected to be zero, the

first order condition on L (4.24) does not hold and only the first order condition on H

(4.25) holds.

Hence, the feedback controls of all scenarios are characterized as such:


L∗(t, Qt) = Qt ·max

(
1−

k + b
2λ̃(1−ph)

k − u2(t)
, 0

)
,

H∗(t, Qt) = Qt ·
(
1− k

k − u2(t)

)
− L∗(t, Qt).

(4.33)

(4.34)

4.7.1.2 Proof for Theorem 4.3.2

By Proposition 4.3.1, if u2 is bounded below by −α and above by 0, the feedback controls

are as per (4.8). It is worth noting that based on (4.32), L∗ > 0 if and only if u2(t) <

− b

2λ̃(1− ph)
. This condition determines the optimal liquidation strategy: when u2(t) <

− b

2λ̃(1− ph)
, the agent should use both limit orders and hidden orders as per (4.32) and

(4.31); otherwise, she should only use hidden orders.

For the pure-hidden-order phase u2(t) ≥ − b
2λ̃(1−ph)

, the agent uses such feedback

controls:

L∗(t, Qt) = 0, H∗(t, Qt) = Qt ·
(
1− k

k − u2(t)

)
.

Plugging the feedback controls into the Hamiltonian term, we have the optimized

Hamiltonian:

λ̃ph

(
qu1(t)

u2(t)

k − u2(t)
+ q2

u2
2(t)

k − u2(t)

)

Putting it back into the PDE about the excess value function u (4.23), we can have
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a new system of ODEs about u0, u1 and u2:



0 = u′
0(t),

0 = u′
1(t) + λ̃phu1(t)

u2(t)

k − u2(t)
,

0 = u′
2(t) + λ̃ph

u2
2(t)

k − u2(t)
.

(4.35)

(4.36)

(4.37)

Note that u0 and u1 are constantly zero in the mixed-order phase. As their ODEs in

the pure-hidden-order phase also do not have any non-zero source terms, they are always

zero in this phase.

Combining with (4.30) describing behaviour of u2 in the mixed-order phase, the initial

(terminal) value problem of u2 is:

du2

dt
= f(t, u2), u2(T ) = −α, (4.38)

where the function f : [0, T ]× [−α, 0)→ R is defined as:

f(t, y) := 1{y<− b
2λ̃(1−ph)

}
λ̃

y − k

[(
y +

b

2λ̃

)2

+
b2ph

4λ̃2(1− ph)

]
+ 1{y≥− b

2λ̃(1−ph)
}
λ̃phy

2

y − k
.

Existence and Uniqueness of Solution The piecewise function f is continuous on

its domain, and is Lipschitz over y:

� In the region y ∈
[
−α,− b

2λ̃(1−ph)

)
,

df

dy
= −b2 + 4bkλ̃(1− ph) + 4λ̃2y(1− ph)(2k − y)

4λ̃(1− ph)(y − k)2
,∣∣∣∣dfdy

∣∣∣∣ ≤ b2 + 4bkλ̃(1− ph) + 4λ̃2α(1− ph)(2k + α)

4λ̃(1− ph)k2
.

� In the region y ∈
(
− b

2λ̃(1−ph)
, 0
)
,

df

dy
= − λ̃phy(2k − y)

(y − k)2
,
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∣∣∣∣dfdy
∣∣∣∣ ≤ λ̃phα(2k + α)

k2
.

By Picard–Lindelöf Theorem, the initial value problem (4.38) has unique solution.

Analytical Solution Note that the right hand side of (4.38) is strictly positive, and

thus u2 is decreasing in time. Since the strategy is determined by the value of u2, the

terminal condition for u2 in the pure-hidden-order phase is u2(t̃) = − b
2λ̃(1−ph)

. Also, u0

and u1 are both uniquely zero, as their associated ODEs do not contain any non-zero

source terms.

For the mixed-orders phase case u2 ∈
[
−α,− b

2λ̃(1−ph)

)
, the ordinary differential equa-

tion for u2 with respect to time is as such

0 = (k − u2(t))u
′
2(t) + λ̃

(
u2(t) +

b

2λ̃

)2

+
b2

4λ̃

ph
1− ph

, u2(T ) = −α. (4.39)

This equation can be solved backwards with terminal condition at time T to find the

switching time point t̃ where u2(t̃) = − b
2λ̃(1−ph)

. However, explicit solution does not exist

and there is only an implicit equation satisfied by u2(t):

k1 − t =
1

λ̃ν

(
k +

b

2λ̃

)
tan−1

(
u2(t) +

b
2λ̃

ν

)
− 1

2λ̃
ln

[
λ
(
u2(t) +

b

2λ̃

)2
+ λ̃ν2

]
, (4.40)

where ν = b
2λ̃

√
ph

1−ph
.

From the terminal condition that u2(T ) = −α, the constant k1 can be backed out:

k1 = T +
1

λ̃ν

(
k +

b

2λ̃

)
tan−1

[−α + b
2λ̃

ν

]
− 1

2λ̃
ln

[
λ̃
( b

2λ̃
− α

)2
+ λ̃ν2

]
.

As u2(t̃) = −
b

2λ̃(1− ph)
, the switching time is given explictly by (4.40):

t̃ = k1 −
1

λ̃ν

(
k +

b

2λ̃

)
, tan−1

[
−bph

2λ̃(1− ph)ν

]
+

1

2λ̃
log

b2ph

4λ̃(1− ph)2
.

For the pure-hidden-order phase case t ∈ [0, t̃], explicit solution of u2 from (4.37)
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exists

u2(t) = −k
[
W
(
k exp(c2 − λ̃pht)

)]−1

.

Plugging in the terminal condition u2(t̃) = − b
2λ̃(1−ph)

,

u2(t) = −k
[
W
(
ϕ exp(ϕ+ λ̃ph(t̃− t))

)]−1

for ϕ =
2kλ̃(1− ph)

b
. (4.41)

The corresponding optimal hidden order size for t ∈ (0, t̃] is:

H∗(t, Qt) = Qt

{
1 +W

[
ϕ exp

(
ϕ+ λ̃ph(t̃− t)

)]}−1

.

Finally, we validate our a prior assumption about the boundedness of u2:

� For the pure-hidden-order phase, from the solution of u2 (4.41), u2 is bounded below

by threshold − b
2λ̃(1−ph)

and above by 0.

� For the mixed-orders phase, from (4.30) it satisfies, u2 is monotonically decreasing

in time and its terminal value is −α. Going backwards in time, as the mixed-orders

phase starts once u2 reaches the threshold − b
2λ̃(1−ph)

< 0, u2 is bounded below by

threshold −α and above by − b
2λ̃(1−ph)

in this phase.

Verification Argument In a spirit to apply the traditional verification result, we check

the following conditions:

1. Uniqueness of controlled state processes: The SDEs governing the joint dy-

namics of cash process X, inventory process Q and fundamental price process S

associated to the optimal liquidation strategy (L∗, H∗) admit unique solutions.

2. Regularity of the state processes: The state processes X,Q, S are corlol, i.e.

right-continuous with left limits. Also, the Lp norm of the state process is bounded

above by Cp(1 + ||(x, q, s)||p) for constant Cp.
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3. Admissibility of the control processes: The liquidation strategy outlined in

‘Analytical Solution’ of Appendix 4.7.1.2 is a measurable function of the time and

state, and is also adapted, i.e. Ft-measurable.

4. Quadratic Growth of the value function: Recall that u2 ∈ [−α, 0). Thus,

U(t, x, q, s) = x+qs+q2u2(t) satisfies the quadratic growth condition U(t, x, q, s) ≤

C(1 + ||(x, q, s)||2).

5. Smoothness of the value function: The function u2 is at least continuously

differentiable in time.13 As it is the only part in U related to time, U is also

continuously differentiable in time and infinitely differentiable in space with the

previous decompositions.

Hence, by Fleming and Soner (2006, Theorem 8.1), we can conclude that the liq-

uidation strategy in Appendix 4.7.1.2 is indeed an optimal Markovian control to the

optimization problem and the classical solution of the PDE is equal to the value function

defined in (4.6).

4.7.1.3 Proof for Corollary 4.3.6: Limit-only Strategy

If the agent can only use limit orders, i.e. H = 0, with the excess value decomposition

UL(t, x, q, s) = x+ qs+ uL(t, q) the HJB equation is as follows:

0 =
∂uL

∂t
+ sup

0≤L≤Qt

(
λ̃
(
uL(t, q − L)− kL2 − uL

)
− bLq

)
,

u(T, q) = −αq2.

where the admissible set of controls isAL
[t,T ] which contains all Ft-progressively measurable

processes (Lτ )t≤τ≤T that satisfies ∀τ ∈ [t, T ), 0 ≤ Lτ ≤ Qτ .

With the quadratic ansatz on q, uL(t, q) = uL
0 (t) + quL

1 (t) + q2uL
2 (t), the Hamiltonian

term is expressed as λ̃
(
− kL2 − LuL

1 (t) + (L2 − 2qL)uL
2 (t)

)
− bLq.

13This is due to the fact that we can write u′
2(t) as a continuous function of u2(t) and that u2(t) is

continuous in t.
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The optimal control L∗ is given by the first order condition:

0 =
∂

∂LL=L∗

[
− kL2 − LuL

1 (t) + (L2 − 2qL)uL
2 (t)−

bqL

λ̃

]
,

L∗(t, q) =
−uL

1 (t)− 2quL
2 (t)−

bq

λ̃

2(k − uL
2 (t))

. (4.42)

Given the experience in the mixed-orders phase, L∗ in (4.42) may not be non-negative

(admissible) and investigate the active case in which the agent uses the optimal order

size L∗ as per (4.42) carefully. In particular, if uL
2 (t) is bigger than − b

2λ̃
then the agent

should turn dormant and does not place any limit order at all at time t.

Here we solve the problem for the case of α > b
2λ̃
. Plugging L = L∗ into the Hamil-

tonian term, the optimized Hamiltonian is:

λ̃
(uL

1 (t) + 2quL
2 (t) +

bq

λ̃
)2

4(k − uL
2 (t))

,

and the original HJB can be broken down into the following system of ODEs:



0 =
∂uL

0

∂t
+ λ̃

(uL
1 (t))

2

4(k − uL
2 (t))

, uL
0 (T ) = 0,

0 =
∂uL

1

∂t
+ λ̃

uL
1 (t)

(
uL
2 (t) +

b
2λ̃

)
k − uL

2 (t)
, uL

1 (T ) = 0,

0 =
∂uL

2

∂t
+ λ̃

(
uL
2 (t) +

b
2λ̃

)2
k − uL

2 (t)
, uL

2 (T ) = −α.

(4.43)

(4.44)

(4.45)

Along the lines of ‘Existence and Uniqueness of Solution’ in Appendix 4.7.1.2, it can

be shown that u2 has a unique solution. Similarly, uL
0 (t) and uL

1 (t) are uniquely zero at

any time t. With the change of variable χ(t) := uL
2 (t) +

b
2λ̃
, α̃ := α− b

2λ̃
and k̃ := k + b

2λ̃
,

the ODE about χ is:

0 = χ′(t) + λ̃
χ2(t)

k̃ − χ(t)
, χ(T ) = −α̃,
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with solution in the following form:

χ(t) =
−k̃

W
(
k̃ exp

(
c1 − λ̃t

)) ,
With the terminal condition χ(T ) = −α̃, we can back out c1:

c1 = − logα + λ̃T +
k̃

α̃
.

Hence

uL
2 (t) = −k̃

[
W
(
ϕ̃ exp(ϕ̃+ λ̃(T − t))

) ]−1

− b

2λ̃
, (4.46)

where ϕ̃ = k̃
α̃
.

We should note that uL
2 (t) is always smaller than − b

2λ̃
as per (4.46), and the corre-

sponding optimal control L∗ as per (4.42) is then always admissible.

The optimal limit order size L∗ has the following expression:

L∗(t, Qt) = Qt

k̃
[
W
(
ϕ̃ exp(ϕ̃+ λ̃(T − t))

) ]−1

k + b
2λ̃

+ k̃
[
W
(
ϕ̃ exp(ϕ̃+ λ̃(T − t))

) ]−1 ,

= Qt

[
1 +W

(
ϕ̃ exp(ϕ̃+ λ̃(T − t))

)]−1

.

(4.47)

As L∗(t, Qt) is always between 0 and Qt, it is indeed an admissible control. We

can prove along the lines of ‘Verification Argument’ in Appendix 4.7.1.2 to show that

the classical solution of the HJB is equal to the value function and L∗ is an optimal

Markovian control of the optimization problem defined in (4.14).

Regarding the case that α ≤ b
2λ̃
, the optimal limit order size L∗ is always zero and for

all time t, uL
2 (t) = −α.



4.7. Appendix 170

4.7.1.4 Proof for Proposition 4.3.7: Reduction to Quadratic PDE

Using the ansatz V (t, x, s, q, λ) = x+ qs+ v(t, q, λ), we reduce the HJB (4.18) to a PDE

about the excess book value u:

0 =
∂v

∂t
− β(λ− λ)

∂v

∂λ
+ λ(1− pl) [v(t, q, λ+ η)− v] ,

+ sup
(L,H)∈Aq

{
λpl

[
ph
(
v(t, q − L−H,λ+ η)− (L+H)(kLL+ kHH)

)
,

+ (1− ph)(v(t, q − L, λ+ η)− kLL
2)− v

]
− bqL

}

v(T, q, λ) = −αq2.

(4.48)

Again quadratic ansatz over inventory v(t, q, λ) = q2v2(t, λ) reduces the Hamiltonian

term to:

λpl

[
ph
(
(q − L−H)2v2(t, λ+ η)− k(L+H)2

)
+ (1− ph)((q − L)2v2(t, λ+ η)− kL2)− q2v2(t, λ)

]
− bqL.

First order conditions over L and H are

L∗(t, q, λ) = q
−v2(t, λ+ η)− b

2λpl

k − v2(t, λ+ η)
− phH

∗(t, q, λ),

H∗(t, q, λ) = q
−v2(t, λ+ η)

k − v2(t, λ+ η)
− L∗(t, q, λ)

. (4.49)

Similar as in Proposition 4.3.1, the first order conditions yield the optimal order sizes

L∗(t, q, λ) = q ·max

{−v2(t, λ+ η)− b
2λpl(1−ph)

k − v2(t, λ+ η)
, 0

}
,

H∗(t, q, λ) = q · −v2(t, λ+ η)

k − v2(t, λ+ η)
− L∗(t, q, λ).

(4.50)

There are two scenarios in which different optimization results occur:

1. If L∗ is positive, i.e. v2(t, λ+ η) < − b

2λpl(1− ph)
, the optimized Hamiltonian term
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is:

λplq
2

[(v2(t, λ+ η) + b
2λpl

)2
+ b2ph

4λ2p2l (1−ph)

k − v2(t, λ+ η)
+ v2(t, λ+ η)− v2(t, λ)

]
.

Under this scenario, i.e. v2(t, λ+ η) < − b

2λpl(1− ph)
, (4.48) becomes:

0 = ∂tv − β(λ− λ)∂λv + λq2 [v2(t, λ+ η)− v2(t, λ)] ,

+
λplq

2

k − v2(t, λ+ η)

[(
v2(t, λ+ η) +

b

2λpl

)2
+

b2ph
4λ2p2l (1− ph)

]
.

(4.51)

which confirms that under this scenario, v(t, q, λ) is still at most quadratic in q.

2. If L∗ = 0, i.e. v2(t, λ+ η) ≥ − b

2λpl(1− ph)
, the optimized Hamiltonian term is:

λplq
2
[ phv

2
2(t, λ+ η)

k − v2(t, λ+ η)
+ v2(t, λ+ η)− v2(t, λ)

]
.

Under this scenario, i.e. v2(t, λ+ η) ≥ − b

2λpl(1− ph)
, (4.48) becomes:

0 = ∂tv − β(λ− λ)∂λv + λplq
2 [v2(t, λ+ η)− v2(t, λ)] +

λplphq
2v22(t, λ+ η)

k − v2(t, λ+ η)
,

(4.52)

which confirms that under this scenario, v(t, q, λ) is also still at most quadratic in

q.

As we have confirmed that v(t, q, λ) is at most quadratic in q in both scenarios and

the optimal order sizes are proportional to q, (4.48) about the excess book value function
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v can be further reduced to the equation about v2(t, λ):

0 = ∂tv2 − β(λ− λ)∂λv2 + λ(1− pl) [v(t, q, λ+ η)− v] ,

+ sup
(L̂,Ĥ)∈Â

{
λpl

[
ph
(
(1− L̂− Ĥ)2v2(t, λ+ η)− k(L̂+ Ĥ)2

)
,

+ (1− ph)((1− L̂)2v2(t, λ+ η)− kL̂2)− v2(t, λ)
]
− bL̂

}
,

v2(T, λ) = −α.

(4.53)

After optimizing the Hamiltonian term, the PDE without supremum appears:

0 = ∂tv2 − β(λ− λ)∂λv2 + λ(v2(t, λ+ η)− v2(t, λ)),

+
λpl

k − v2(t, λ+ η)

{[(
v2(t, λ+ η) +

b

2λpl

)2
+

b2ph
4λ2p2l (1− ph)

]
1{v2(t,λ+η)<− b

2λpl(1−ph)
},

+ phv
2
2(t, λ+ η)1{v2(t,λ+η)≥− b

2λpl(1−ph)
}

}
,

v2(T, λ) = −α.

4.7.2 Proof for Proposition 4.3.9: Properties of Reduced-form

value function

Using the definition of v2 through V (4.5),

v2(t, λ) =
V (t, x, q, s, λ)− x− qs

q2
, ∀ t, x, q, s, λ, (4.54)

we show several properties that v2 satisfies, with arbitrage starting state Xt− = x, St− =

s,Qt− = q:

1. Monotonicity in λ: For any fixed t, v2(t, λ) is increasing in λ.

We consider the corresponding value function of an intensity-irrelevant liquidation

strategy (Lτ , Hτ )t≤τ≤T ∈ A[t,T ], in which at any time τ , Lτ = L̂τQτ and Hτ = ĤτQτ
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are independent of market order arrival intensity.

E
{
XT +QTST − αQ2

T | Ft

}
− x− qs

= E

{∫ T

t

dXτ +

(
q +

∫ T

t

dQτ

)
ST − α

(
q +

∫ T

t

dQτ

)2

| Ft

}
− qs

= Et

[
−
∫ T

t

ŜτdQτ

]
+ Et

[
q

∫ T

t

dSτ + s

∫ T

t

dQτ +

∫ T

t

dQτ

∫ T

t

dSτ − α
(
q +

∫ T

t

dQτ

)2]
= Et

[
−
∫ T

t

(Sτ + kdQτ )dQτ + s

∫ T

t

dQτ

]
+ Et

[
− bQT

∫ T

t

Lτdτ − αQ2
T

]
= Et

[
b

∫ T

t

∫ τ

t

Lτ ′dτ
′dQτ − k

∫ T

t

d[Q]τ − bQT

∫ T

t

Lτdτ − αQ2
T

]
= Et

[
− b

∫ T

t

∫ τ

t

Lτ ′dτ
′λτ (Lτ + phHτ )dτ − k

∫ T

t

λτ (Lτ + phHτ )
2dτ

− bQT

(∫ T

t

Lτdτ
)
− αQ2

T

]
= Et

[
− b

∫ T

t

∫ τ

t

Qτ ′L̂τ ′dτ
′λτQτ (L̂τ + phĤτ )dτ − k

∫ T

t

λτQ
2
τ (L̂τ + phĤτ )

2dτ

− bQT

(∫ T

t

Qτ L̂τdτ
)
− αQ2

T

]
.

For a fixed path Ω, the number of executions NL
T is increasing with λt, and for

any τ ∈ [t, T ], Qτ is decreasing with λt, given a fixed strategy. Hence the quantity

E[XT +QTST−αQ2
T | Ft]−x−qs is increasing in λt = λ. As for each given strategy

and given path, this quantity is increasing in λ, the supremum over all possible

strategies is also increasing in λ, and so does the reduced form value function

v2(t, λ).

2. Boundedness: For any values of t and λ, −α ≤ v2(t, λ) ≤ 0.

For the lower bound −α:

v2(t, λ) =
1

q2
[V (t, x, s, q, λ)− x− qs]

=
1

q2

[
sup

(L,H)∈A[t,T ]

E
{
XT +QTST − αQ2

T | F
x,s,q,λ
t

}
− x− qs

]
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≥ 1

q2

[
EN[t,T ]

{
XT +QTST − αQ2

T | F
x,s,q,λ
t

}
− x− qs

]
=

1

q2

[
E
{
Xt +QtST − αQ2

t | F
x,s,q,λ
t

}
− x− qs

]
=

1

q2
[
E
[
x+ q(s+ ST − St)− αq2

]
− x− qs

]
=

1

q2
[
x+ qs− αq2 − x− qs

]
= −α.

For the upper bound 0:

v2(t, λ) =
1

q2
[V (t, x, s, q, λ)− x− qs]

=
1

q2

{
sup

(L,H)∈A[t,T ]

E
[
XT +QTST − αQ2

T | F
x,s,q,λ
t

]
− x− qs

}

=
1

q2

{
sup

(L,H)∈A[t,T ]

E
[
x+

∫ T

t

dXτ +

(
q +

∫ T

t

dQτ

)
ST

]
− x− qs

}

≤ 1

q2

{
sup

(L,H)∈A[t,T ]

E
[
x−

∫ T

t

(Sτ + kdQτ )dQτ +

(
q +

∫ T

t

dQτ

)
s

]
− x− qs

}

≤ 1

q2

{
sup

(L,H)∈A[t,T ]

E
[
−
∫ T

t

SτdQτ + qs+

∫ T

t

sdQτ

]
− qs

}

=
1

q2

{
sup

(L,H)∈A[t,T ]

E
[∫ T

t

(s− Sτ )dQτ

]}
≤ 0.

4.7.2.1 Proof for Proposition 4.4.2

Proof. The expected intensity is actually a deterministic function of time and its dynamics

can be expressed as follows,

dE[λt] = −β(E[λt]− λ)dt+ ηE[λt]dt.

Reorganizing, we have the ordinary differential equation

d

dt
(E[λt]−

λβ

β − η
) = (η − β)(E[λt]−

λβ

β − η
).
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The solution of this ODE is

E[λt] =
λβ

β − η
+ C exp(−(β − η)t),

where C = λ0 − λβ
β−η

is a constant related to the initial value of intensity λ0.

Hence, taking t to infinity, we have E[λ∞] = limt→∞ E[λt] = λ β
β−η

.

4.7.3 Model Sensitivity Analysis of the Homogeneous Poisson

case

We lay out the dependence of optimal liquidation strategy on market conditions charac-

terized by the model parameters, such as λ, α, k, b and ph in this section. Note that in the

absence of explicit solution, we leverage on numerical results to study the relationship

between the optimal strategy and market parameters.

Dependency on immediate execution cost and price impact of market orders:

k and α We first look at the how price impact of selling with market orders influences

the order sizes in Figure 4.12. The total order size increases with α as seen in Figure b.

Facing a higher pressure-to-sell, limit order is more preferable as it is more time efficient

to reduce the inventory pressure of the agent, as shown in Figure c. Hidden order size

does not heavily depend on α.

Next we examine the relationship between value function / liquidation strategy and

the immediate execution cost parameter k in Figure 4.13. Conceptually, higher immediate

execution costs prompts the agent to use smaller sized orders and hence on average leaving

larger remnant inventory at time T . In addition, we observe across different order types

that indeed the order size decreases with k. This is consistent with our discussion in

Remark 4.3.4, that the speed of decay of u2(t) with respect to time is scaled by k− u2(t)

in the ODE.

Dependency on hidden order execution probability and exposure risk: ph and

b Next, we shift our attention to the hidden order fill probability ph in Figure 4.14.
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Generally speaking, higher hidden fill probability benefits the agent, as the agent enjoys

a higher overall fill probability as long as she post hidden order to the order book. We can

observe the value function increase slightly with ph in Figure 4.14a. In particular, instead

of impacting the total order size, the hidden order fill probability has more pronounced

impact on the breakdown between hidden and limit orders. When the hidden order fill

probability is high, hidden order is more preferred to take up a higher proportion in the

total order size, vice versa for limit order size.

Last but not least, we study the effect of exposure risk coefficient b in Figure 4.15.

Recall that posting of limit order is subject to exposure risk due to changes in order

imbalance. A bigger b prevents the agent from posting large limit order and therefore

increases the likelihood of agent paying a larger terminal execution cost, in turn reducing

the agent’s value function. This is again consistent with our discussion in Remark 4.3.4,

that ν = b
2λ̃

√
ph

1−ph
directly controls the speed of decay of u2(t). Naturally, limit order size

decreases with exposure risk coefficient b as reflected in the figure. Facing a more costly

limit order, the agent has to rely more heavily on hidden order, thus uses larger sized

hidden order. Increasing hidden order size and decreasing limit order size both results

in less efficient liquidation, requiring larger total order size as compensation as shown in

Figure 4.15.

4.7.4 Empirical Estimation and Testing results

In this section, we display the results from empirical estimation and testing on 100 NAS-

DAQ stocks (102 stocks).
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Table 4.7: Parameter estimation results of price impact model for NASDAQ 100 stocks.

ticker α k b pl λ λ η β ticker α k b pl λ λ η β
AAL 4.3E-05 1.9E-06 5.8E-08 0.45 0.074 0.051 0.359 0.111 JBHT 2.1E-04 2.3E-05 3.5E-07 0.59 0.031 0.022 0.459 0.125
AAPL 5.4E-06 8.5E-07 6.3E-08 0.41 0.558 0.145 0.055 0.041 JD 1.0E-05 1.0E-06 1.8E-08 0.42 0.171 0.030 0.016 0.013
ADBE 4.6E-04 2.2E-05 5.9E-07 0.73 0.058 0.041 0.459 0.129 KHC 4.8E-05 3.1E-06 2.4E-07 0.56 0.098 0.067 0.282 0.089
ADI 1.0E-04 1.9E-06 2.6E-07 0.66 0.076 0.048 0.239 0.088 KLAC 1.8E-04 1.0E-06 7.1E-07 0.58 0.036 0.026 0.390 0.107
ADP 2.1E-04 7.1E-06 1.1E-07 0.68 0.047 0.035 0.423 0.113 LBTYA 3.0E-05 1.2E-06 1.8E-08 0.27 0.062 0.020 0.115 0.079
ADSK 1.9E-04 1.0E-05 9.0E-07 0.66 0.055 0.035 0.359 0.133 LBTYK 2.5E-05 2.5E-06 5.4E-08 0.43 0.074 0.014 0.031 0.025
ALGN 1.1E-03 1.2E-04 1.7E-06 0.74 0.031 0.022 0.282 0.083 LRCX 2.5E-04 1.6E-05 1.0E-06 0.70 0.074 0.050 0.423 0.136
ALXN 4.0E-04 1.4E-05 7.3E-07 0.69 0.045 0.029 0.331 0.118 LULU 1.3E-04 5.5E-06 3.8E-07 0.61 0.058 0.024 0.260 0.153
AMAT 1.0E-05 1.5E-06 3.1E-08 0.38 0.211 0.036 0.024 0.020 MAR 1.6E-04 1.6E-05 1.1E-06 0.58 0.056 0.038 0.359 0.116
AMD 9.3E-07 2.8E-07 2.8E-09 0.11 0.070 0.012 0.031 0.026 MCHP 7.3E-05 9.6E-06 6.1E-07 0.60 0.082 0.052 0.331 0.124
AMGN 2.8E-04 2.6E-05 1.0E-06 0.64 0.072 0.050 0.459 0.137 MDLZ 1.4E-05 2.3E-06 2.6E-08 0.38 0.110 0.035 0.065 0.044
AMZN 3.7E-04 1.7E-04 3.5E-06 0.42 0.165 0.077 0.239 0.128 MELI 1.8E-03 1.3E-04 8.6E-07 0.64 0.013 0.010 0.390 0.085
ASML 1.8E-04 7.8E-06 1.8E-07 0.45 0.024 0.005 0.018 0.014 MNST 1.2E-04 1.1E-05 2.5E-07 0.59 0.049 0.036 0.331 0.086
ATVI 5.8E-05 4.1E-06 5.2E-07 0.68 0.130 0.083 0.239 0.087 MSFT 6.7E-06 7.8E-07 1.1E-07 0.41 0.449 0.058 0.034 0.030
AVGO 4.3E-04 3.1E-05 3.2E-07 0.74 0.074 0.049 0.459 0.152 MU 5.6E-06 5.0E-07 1.8E-08 0.26 0.296 0.026 0.021 0.019
BIDU 2.3E-04 1.8E-05 1.7E-07 0.52 0.060 0.040 0.331 0.108 MXIM 1.4E-04 3.3E-06 2.7E-07 0.58 0.060 0.029 0.125 0.065
BIIB 1.0E-03 1.2E-04 6.3E-07 0.66 0.031 0.015 0.115 0.058 MYL 4.2E-05 1.0E-06 3.6E-08 0.50 0.087 0.054 0.187 0.072
BMRN 1.9E-04 1.2E-05 1.5E-07 0.59 0.031 0.022 0.423 0.120 NFLX 1.3E-04 1.3E-05 1.2E-06 0.65 0.135 0.074 0.221 0.099
CDNS 7.3E-05 7.0E-06 1.5E-07 0.53 0.060 0.043 0.203 0.057 NTAP 3.2E-05 4.8E-06 3.3E-07 0.55 0.074 0.033 0.221 0.122
CELG 8.0E-05 4.6E-06 3.9E-07 0.68 0.100 0.070 0.359 0.108 NTES 1.2E-03 9.8E-05 3.2E-07 0.71 0.030 0.023 0.390 0.096
CERN 1.0E-04 7.6E-06 2.3E-07 0.58 0.054 0.037 0.305 0.092 NVDA 2.6E-05 6.2E-06 1.6E-07 0.43 0.217 0.081 0.159 0.100
CHKP 2.1E-04 1.2E-05 4.8E-07 0.63 0.041 0.030 0.423 0.116 NXPI 1.3E-04 3.8E-06 4.3E-08 0.48 0.030 0.017 0.239 0.106
CHTR 1.4E-03 5.1E-05 5.0E-07 0.73 0.032 0.020 0.305 0.113 ORLY 9.9E-04 8.1E-05 3.8E-07 0.72 0.029 0.021 0.359 0.098
CMCSA 8.4E-06 9.1E-07 3.0E-08 0.27 0.153 0.020 0.029 0.025 PAYX 7.6E-05 4.4E-06 2.4E-07 0.61 0.056 0.032 0.239 0.102
COST 4.0E-04 3.2E-05 6.0E-07 0.67 0.050 0.038 0.498 0.124 PCAR 1.4E-04 1.0E-05 3.8E-07 0.64 0.051 0.039 0.359 0.084
CSCO 4.2E-06 9.0E-07 2.0E-08 0.16 0.227 0.018 0.024 0.023 PEP 7.9E-05 8.4E-06 1.8E-07 0.57 0.079 0.056 0.305 0.091
CSX 3.0E-05 4.3E-06 2.0E-07 0.49 0.112 0.049 0.083 0.047 PYPL 1.3E-05 3.5E-06 1.6E-07 0.52 0.176 0.060 0.090 0.059
CTAS 3.7E-04 6.3E-05 7.1E-07 0.57 0.020 0.014 0.282 0.089 QCOM 1.5E-05 2.2E-06 9.3E-08 0.52 0.146 0.051 0.125 0.081
CTRP 4.3E-05 1.1E-06 1.0E-07 0.51 0.069 0.049 0.359 0.102 REGN 1.6E-03 1.3E-04 1.5E-06 0.62 0.029 0.022 0.498 0.121
CTSH 7.0E-05 8.5E-06 2.1E-07 0.55 0.084 0.058 0.305 0.095 ROST 1.3E-04 1.6E-05 4.2E-07 0.64 0.060 0.044 0.390 0.100
CTXS 1.9E-04 2.0E-05 3.1E-07 0.65 0.047 0.034 0.390 0.107 SBUX 1.5E-05 1.4E-06 2.7E-08 0.34 0.137 0.037 0.083 0.061
DLTR 1.7E-04 1.4E-05 4.7E-07 0.64 0.057 0.039 0.390 0.121 SIRI 4.2E-07 1.3E-07 2.7E-10 0.05 0.016 0.003 0.098 0.077
EA 1.3E-04 8.1E-06 7.6E-07 0.72 0.082 0.054 0.423 0.145 SNPS 2.0E-04 1.0E-05 5.4E-07 0.68 0.042 0.031 0.331 0.091
EBAY 1.5E-05 2.4E-06 3.7E-08 0.36 0.150 0.034 0.040 0.031 SWKS 2.0E-04 1.3E-05 2.3E-07 0.52 0.063 0.044 0.390 0.119
EXPE 7.0E-05 1.2E-05 4.2E-07 0.61 0.075 0.038 0.282 0.140 SYMC 1.6E-05 9.1E-07 1.6E-08 0.31 0.082 0.031 0.060 0.037
FAST 9.5E-05 6.6E-06 3.3E-07 0.59 0.059 0.037 0.239 0.089 TMUS 4.8E-05 4.3E-06 1.3E-07 0.57 0.066 0.043 0.221 0.077
FB 6.4E-06 1.8E-06 1.9E-07 0.41 0.275 0.111 0.098 0.058 TSLA 2.4E-04 1.6E-05 3.9E-07 0.57 0.089 0.043 0.305 0.158
FISV 2.8E-04 2.6E-05 4.9E-07 0.60 0.040 0.023 0.282 0.118 TTWO 2.1E-04 1.6E-05 8.7E-07 0.64 0.057 0.030 0.239 0.112
FOXA 9.1E-06 1.3E-06 3.7E-08 0.30 0.111 0.035 0.090 0.062 TXN 5.9E-05 5.1E-06 4.5E-07 0.63 0.135 0.092 0.390 0.125
FOX 1.7E-05 1.3E-06 3.6E-08 0.27 0.064 0.020 0.051 0.035 UAL 1.5E-04 6.1E-06 1.9E-07 0.72 0.051 0.040 0.459 0.103
GILD 3.8E-05 3.4E-06 2.5E-07 0.57 0.131 0.076 0.239 0.100 ULTA 7.9E-04 4.8E-05 2.8E-07 0.64 0.029 0.009 0.239 0.161
GOOGL 9.6E-04 1.0E-04 6.3E-06 0.60 0.079 0.048 0.305 0.117 VRSK 1.4E-04 3.2E-06 2.0E-07 0.66 0.029 0.022 0.498 0.124
GOOG 1.3E-03 6.3E-05 6.4E-07 0.47 0.066 0.039 0.305 0.124 VRSN 3.1E-04 4.0E-05 3.9E-07 0.58 0.027 0.020 0.459 0.124
HAS 2.3E-04 1.7E-05 4.6E-07 0.63 0.045 0.027 0.221 0.085 VRTX 4.3E-04 2.3E-05 1.1E-06 0.69 0.043 0.030 0.359 0.111
HSIC 8.1E-05 7.5E-06 2.8E-07 0.50 0.044 0.027 0.331 0.125 WBA 6.0E-05 6.2E-06 4.7E-07 0.57 0.087 0.059 0.423 0.136
IDXX 6.9E-04 1.0E-04 2.6E-07 0.59 0.016 0.011 0.331 0.093 WDAY 2.9E-04 1.2E-05 2.4E-07 0.55 0.027 0.020 0.459 0.129
ILMN 7.2E-04 5.4E-05 7.8E-07 0.65 0.026 0.019 0.423 0.119 WDC 1.1E-04 2.0E-06 3.7E-07 0.61 0.078 0.058 0.459 0.115
INCY 2.7E-04 9.5E-06 3.2E-07 0.64 0.033 0.024 0.359 0.095 WLTW 6.2E-04 1.1E-04 4.0E-07 0.52 0.014 0.011 0.635 0.137
INTC 6.0E-06 8.7E-07 3.1E-08 0.24 0.223 0.016 0.015 0.014 WYNN 1.3E-04 9.8E-06 5.5E-07 0.68 0.061 0.035 0.203 0.087
INTU 2.8E-04 4.0E-05 5.8E-07 0.64 0.037 0.026 0.359 0.104 XEL 3.0E-05 4.8E-06 6.1E-08 0.39 0.066 0.013 0.011 0.009
ISRG 2.0E-03 1.5E-04 8.5E-07 0.67 0.023 0.016 0.331 0.095 XLNX 8.7E-05 4.2E-06 5.1E-07 0.64 0.067 0.045 0.282 0.091
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Table 4.8: Real data testing results (total execution cost) for NASDAQ 100 stocks.

Ticker LHH LH LO Ticker LHH LH LO Ticker LHH LH LO
ph = 0.5

AAL 0.7 0.8 2.0 EXPE 6.0 7.7 18.7 NFLX 10.9 17.3 81.1
AAPL 2.3 1.5 11.3 FAST 1.7 2.0 6.4 NTAP 1.4 1.7 7.7
ADBE 7.3 9.3 16.6 FB 2.9 2.5 30.5 NTES 35.3 38.9 38.9
ADI 1.0 1.6 6.1 FISV 8.9 9.4 14.2 NVDA 8.8 10.3 28.4
ADP 1.3 1.5 2.1 FOX 0.8 0.8 1.4 NXPI 2.5 2.9 3.0
ADSK 3.6 5.3 18.9 FOXA 0.9 1.0 2.2 ORLY 20.5 22.7 23.0
ALGN 30.0 33.6 47.0 GILD 1.4 1.7 10.3 PAYX 1.1 1.4 4.2
ALXN 5.7 7.6 16.6 GOOG 79.0 102.4 111.5 PCAR 1.9 2.1 5.8
AMAT 2.6 1.4 3.0 GOOGL 74.3 101.7 338.6 PEP 1.6 1.8 4.0
AMD 0.4 0.3 1.0 HAS 8.2 10.1 15.0 PYPL 2.3 2.1 10.2
AMGN 7.9 8.6 31.7 HSIC 2.7 2.9 5.9 QCOM 1.1 1.4 4.5
AMZN 160.9 182.2 435.6 IDXX 11.9 12.8 12.9 REGN 42.8 44.3 53.2
ASML 9.4 9.1 9.6 ILMN 13.0 14.1 18.7 ROST 2.5 2.6 7.4
ATVI 1.3 1.9 14.1 INCY 3.7 4.0 7.1 SBUX 1.1 1.6 2.4
AVGO 14.1 20.1 22.1 INTC 4.6 2.1 4.8 SIRI 0.0 0.0 0.0
BIDU 9.5 11.1 12.9 INTU 10.0 10.6 14.4 SNPS 1.4 1.5 5.6
BIIB 29.6 35.8 37.8 ISRG 36.3 39.6 39.9 SWKS 7.0 8.1 12.8
BMRN 3.0 3.4 3.9 JBHT 4.9 5.1 7.4 SYMC 0.7 0.9 1.1
CDNS 1.1 1.2 2.5 JD 1.1 0.7 1.2 TMUS 0.7 0.8 2.2
CELG 1.5 2.0 10.3 KHC 0.8 1.0 4.9 TSLA 16.1 24.5 36.9
CERN 1.3 1.5 3.4 KLAC 1.1 1.3 11.2 TTWO 8.2 11.4 29.5
CHKP 2.5 2.7 6.8 LBTYA 2.1 2.5 2.8 TXN 1.9 2.5 16.0
CHTR 19.2 26.7 27.8 LBTYK 1.4 1.1 1.8 UAL 0.5 0.6 1.7
CMCSA 3.2 1.8 3.4 LRCX 8.4 11.9 36.3 ULTA 13.8 22.3 22.1
COST 10.0 11.5 17.4 LULU 1.7 2.8 7.3 VRSK 1.0 1.1 2.0
CSCO 6.0 2.9 5.5 MAR 5.8 6.7 25.8 VRSN 5.7 6.2 7.4
CSX 1.7 2.2 7.8 MCHP 5.5 7.1 21.1 VRTX 6.5 7.9 23.0
CTAS 9.1 9.2 10.9 MDLZ 1.0 1.3 1.7 WBA 1.7 1.9 12.3
CTRP 0.4 0.4 2.0 MELI 28.8 29.2 29.9 WDAY 4.5 5.2 6.6
CTSH 4.2 5.0 8.3 MNST 1.3 1.3 3.1 WDC 0.5 0.6 6.6
CTXS 3.1 3.2 5.3 MSFT 3.0 2.1 15.4 WLTW 13.4 13.5 13.9
DLTR 3.7 4.5 10.3 MU 3.6 1.4 3.3 WYNN 5.8 8.5 21.2
EA 2.5 3.3 18.7 MXIM 2.3 3.3 7.7 XEL 2.0 1.4 1.9

EBAY 1.9 2.6 3.6 MYL 0.4 0.7 1.4 XLNX 1.0 1.2 8.2

ph = 0.2
AAL 1.5 1.5 2.0 EXPE 12.6 12.5 18.7 NFLX 27.8 32.8 81.1
AAPL 6.1 3.3 11.3 FAST 4.0 4.0 6.4 NTAP 4.1 3.5 7.7
ADBE 13.4 14.7 16.6 FB 7.2 6.1 30.5 NTES 35.4 39.0 38.9
ADI 2.5 3.0 6.1 FISV 12.0 12.9 14.2 NVDA 18.1 19.1 28.4
ADP 1.8 2.0 2.1 FOX 1.2 1.3 1.4 NXPI 2.6 3.0 3.0
ADSK 9.3 11.6 18.9 FOXA 1.7 1.7 2.2 ORLY 21.0 23.0 23.0
ALGN 40.6 44.4 47.0 GILD 3.4 3.6 10.3 PAYX 2.6 2.7 4.2
ALXN 12.9 13.7 16.6 GOOG 103.9 113.9 111.5 PCAR 3.9 4.1 5.8
AMAT 4.3 2.4 3.0 GOOGL 170.4 185.5 338.6 PEP 2.9 3.1 4.0
AMD 0.5 0.4 1.0 HAS 12.9 14.4 15.0 PYPL 5.5 4.5 10.2
AMGN 19.1 17.7 31.7 HSIC 4.7 4.6 5.9 QCOM 2.4 2.5 4.5
AMZN 314.9 315.2 435.6 IDXX 12.0 12.9 12.9 REGN 52.0 51.1 53.2
ASML 10.3 9.5 9.6 ILMN 17.1 17.9 18.7 ROST 5.3 4.9 7.4
ATVI 3.2 3.7 14.1 INCY 6.0 6.0 7.1 SBUX 1.8 2.2 2.4
AVGO 19.6 23.9 22.1 INTC 6.8 3.5 4.8 SIRI 0.0 0.0 0.0
BIDU 12.3 12.8 12.9 INTU 13.5 13.7 14.4 SNPS 3.3 3.3 5.6
BIIB 32.8 37.5 37.8 ISRG 37.0 40.0 39.9 SWKS 11.8 12.1 12.8
BMRN 3.5 3.9 3.9 JBHT 6.6 6.8 7.4 SYMC 1.0 1.1 1.1
CDNS 1.9 2.0 2.5 JD 1.6 1.1 1.2 TMUS 1.5 1.5 2.2
CELG 3.8 4.1 10.3 KHC 2.0 2.2 4.9 TSLA 30.7 35.1 36.9
CERN 2.6 2.6 3.4 KLAC 6.0 5.5 11.2 TTWO 19.9 21.6 29.5
CHKP 5.1 4.7 6.8 LBTYA 2.5 2.7 2.8 TXN 4.8 5.2 16.0
CHTR 23.7 28.8 27.8 LBTYK 2.0 1.6 1.8 UAL 1.1 1.2 1.7
CMCSA 4.7 2.8 3.4 LRCX 21.7 23.4 36.3 ULTA 14.1 22.3 22.1
COST 16.8 16.2 17.4 LULU 4.6 5.3 7.3 VRSK 1.7 1.8 2.0
CSCO 8.3 4.4 5.5 MAR 13.6 13.0 25.8 VRSN 6.8 7.1 7.4
CSX 4.1 4.3 7.8 MCHP 11.5 11.9 21.1 VRTX 15.9 16.2 23.0
CTAS 10.7 10.4 10.9 MDLZ 1.4 1.7 1.7 WBA 4.4 4.2 12.3
CTRP 1.0 1.0 2.0 MELI 29.3 29.8 29.9 WDAY 5.8 6.4 6.6
CTSH 7.5 7.7 8.3 MNST 2.4 2.3 3.1 WDC 1.5 1.6 6.6
CTXS 4.8 4.6 5.3 MSFT 12.1 4.0 15.4 WLTW 13.6 13.8 13.9
DLTR 7.7 8.3 10.3 MU 4.9 2.3 3.3 WYNN 12.8 14.8 21.2
EA 6.6 7.1 18.7 MXIM 4.7 5.8 7.7 XEL 2.3 1.8 1.9

EBAY 2.7 3.4 3.6 MYL 0.9 1.3 1.4 XLNX 2.9 3.0 8.2
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Table 4.9: Real data testing results (total execution cost) for 66 testing sessions.

Time Strategy 2018-02-01 2018-02-02 2018-02-05 2018-02-06 2018-02-07 2018-02-08 2018-02-09 2018-02-12 2018-02-13 2018-02-14 2018-02-15
ph = 0.5

10:00 LHH 7.3 4.5 4.6 4.1 5.1 5.8 4.1 4.3 6.2 4.5 5.1
LH 7.4 3.6 3.8 3.0 4.7 5.9 3.2 3.4 6.7 3.4 4.8
LO 17.0 10.0 11.5 7.7 13.7 15.1 10.6 10.6 15.2 12.1 12.2

11:00 LHH 13.0 7.4 13.0 5.2 5.2 9.7 4.4 7.0 15.1 7.6 4.7
LH 15.4 7.4 14.4 4.9 5.1 9.9 3.6 6.6 18.8 7.8 4.1
LO 27.3 19.6 26.0 14.3 14.7 18.5 9.8 14.2 34.2 21.5 13.0

12:00 LHH 20.2 9.0 20.0 4.9 17.4 9.1 4.8 6.1 24.1 10.6 22.8
LH 24.1 10.5 25.2 4.0 22.5 10.9 4.1 5.7 32.7 14.4 28.7
LO 38.2 20.8 40.4 14.8 37.9 21.0 12.1 16.5 50.3 25.9 44.6

13:00 LHH 6.6 19.8 7.7 7.3 5.3 4.2 5.3 13.2 20.2 12.1 6.5
LH 8.7 24.9 9.2 8.6 4.6 3.2 4.9 16.6 29.8 19.0 6.9
LO 17.1 35.8 22.3 18.8 15.7 11.5 12.4 31.1 45.1 29.2 15.9

14:00 LHH 11.3 9.7 11.4 12.4 8.6 21.1 3.5 10.1 13.6 9.8 12.5
LH 13.3 11.5 15.3 16.6 11.5 24.4 2.4 13.6 17.6 13.9 17.2
LO 23.8 24.7 28.3 29.8 24.7 39.3 6.6 27.7 36.9 25.4 31.8

15:00 LHH 9.8 6.1 3.7 3.6 6.6 6.9 4.3 5.8 11.4 6.5 6.3
LH 13.0 5.1 2.6 2.6 9.2 7.8 3.6 6.9 16.4 8.0 7.0
LO 25.3 14.8 8.2 8.0 19.8 14.9 11.4 16.8 30.4 17.0 15.9

ph = 0.2
10:00 LHH 11.6 7.4 7.9 6.3 8.4 9.8 7.0 7.6 10.0 7.8 8.8

LH 11.4 6.1 6.3 5.1 7.5 9.2 5.6 6.0 10.8 6.2 7.9
LO 17.0 10.0 11.5 7.7 13.7 15.1 10.6 10.6 15.2 12.1 12.2

11:00 LHH 18.8 12.2 19.0 8.9 8.9 13.9 7.2 10.3 25.6 13.9 8.5
LH 20.7 11.4 19.2 8.2 9.0 13.4 6.4 9.2 26.3 12.1 7.4
LO 27.3 19.6 26.0 14.3 14.7 18.5 9.8 14.2 34.2 21.5 13.0

12:00 LHH 29.9 14.4 31.7 9.4 28.4 15.0 8.5 9.7 36.1 19.1 34.2
LH 31.8 15.1 33.5 7.1 30.5 15.8 6.9 9.4 41.8 21.2 37.2
LO 38.2 20.8 40.4 14.8 37.9 21.0 12.1 16.5 50.3 25.9 44.6

13:00 LHH 10.9 28.9 13.8 12.2 9.7 7.6 8.6 19.5 31.0 19.4 11.1
LH 13.0 33.1 14.5 13.0 8.1 5.7 8.2 21.8 37.7 26.8 11.5
LO 17.1 35.8 22.3 18.8 15.7 11.5 12.4 31.1 45.1 29.2 15.9

14:00 LHH 17.4 15.9 19.6 20.9 16.5 31.2 5.5 17.5 23.5 17.7 24.0
LH 19.0 16.6 21.3 25.3 18.0 29.6 4.2 20.2 25.6 20.3 24.3
LO 23.8 24.7 28.3 29.8 24.7 39.3 6.6 27.7 36.9 25.4 31.8

15:00 LHH 16.2 9.4 6.2 5.8 12.6 10.3 7.7 10.4 21.4 11.3 10.9
LH 18.1 7.7 4.5 4.5 14.9 11.3 6.3 11.0 25.5 13.3 11.1
LO 25.3 14.8 8.2 8.0 19.8 14.9 11.4 16.8 30.4 17.0 15.9
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Figure 4.11: Comparison of average total execution cost over 66 testing sessions between
the Limit-Hidden-Hawkes and Limit-Hidden strategies for each ticker. The horizontal
axis represents the relative performance calculated as (LH − LHH)/LHH. The radius
of each circle represents the absolute amount of the cost difference |LH −LHH|. Circles
are filled in green if LH − LHH > 0 and red otherwise. The fill probability of hidden
order is ph = 0.5.
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Figure 4.12: a|b
c|d Optimal liquidation strategy and price impact of market orders α: a: cα,

b: total order size Lt +Ht, c: Lt, d: Ht.
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Figure 4.13: a|b
c|d Optimal liquidation strategy and immediate execution cost coefficient k:

a: cα, b: total order size Lt +Ht, c: Lt, d: Ht.
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Figure 4.14: a|b
c|d Optimal liquidation strategy and hidden order fill probability ph: a: cα,

b: total order size Lt +Ht, c: Lt, d: Ht.
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Figure 4.15: a|b
c|d Optimal liquidation strategy and exposure risk coefficient b: a: cα, b:

total order size Lt +Ht, c: Lt, d: Ht.
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Fruth, A., Schöneborn, T., & Urusov, M. (2019). Optimal trade execution and price

manipulation in order books with stochastic liquidity. Mathematical Finance, 29 (2),

507–541.

Fu, G., Horst, U., & Xia, X. (2022). Portfolio liquidation games with self-exciting order

flow. Mathematical Finance, 32 (4), 1020-1065.

Gabaix, X., Gopikrishnan, P., Plerou, V., & Stanley, H. E. (2006). Institutional investors

and stock market volatility. Quarterly Journal of Economics , 121 (2), 461–504.
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