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Abstract

Atmospheric blocking events are regularly observed mid-latitude weather patterns, which

obstruct the usual path of the jet streams. However, there is no well-defined historical dataset

of blocking events and the effect of climate change on atmospheric blocking is uncertain. In this

thesis, I explore how climate change influences European summer blocking (ESB). I develop a

new algorithm to identify regional blocking events (the SOM-BI index), combining supervised

and unsupervised learning. This is compared to other methods and a new ground truth dataset.

I find the SOM-BI has an improved detection skill over other methods, particularly for climate

models. I apply the SOM-BI to study ESB in the abrupt-4xCO2 experiments from phases 5

and 6 of the Coupled Model Intercomparison Project. These runs maximise the forcing and

have not previously been used to study atmospheric blocking. I identify a strong negative

correlation between the historical occurrence of ESB and the change in occurrence of ESB. This

enables a prediction of the ESB climate response from the historical model bias. Further, I

identify the two main physical mechanisms which affect the ESB climate response: the poleward

shift of the North Atlantic jet; and the propagation of Rossby waves across the North Pacific

from diabatic heating in the tropical Pacific. I develop an informed physical understanding of

these mechanisms, which have not been discussed in the literature as positive influences on the

ESB climate response. I then define two metrics as proxies for these physical mechanisms and

estimate a positive climate feedback on ESB: 0.22±0.35 days / ◦C. My thesis demonstrates

the potential for machine learning in studying atmospheric blocking, highlights the importance

of tropical forcing in influencing the climate feedback on ESB, and identifies new mechanisms

that can be further explored to develop our understanding of how climate change will influence

atmospheric blocking.
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which are all insignificant after correcting for multiple testing and autocorrelation. 90
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3.1 A diagram to show how model bias arises in the application of the SOM-BI
(top half) and how the normalised MSLP (defined in lower right) addresses
the issue of model bias (lower panel). (a) shows the MSLP climatology across
JJA for the historic period (1979-2005) in both ERA5 and ACCESS-ESM-1-5.
(b) shows the optimised self-organizing maps (SOMs, see section 1.5.5) for the
MSLP (top) and MSLPnorm (bottom) data. In both cases the JJA historic period
of the ERA5 reanalysis was used to train the SOM. (c) shows the SOM node
distribution for ACCESS-ESM1-5 and ERA5 for the MSLP (top) and MSLPnorm

data. The difference between the model and reanalysis data SOM node histograms
is significantly reduced by applying the normalisation. This demonstrates that
the normalisation is effective in removing the SOM node bias. See discussion
below and in Appendix B.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2 The ESB response across 22 global climate models. Derived by combining the
4xCO2 and historical periods of JJA global mean surface temperature and mean
JJA blocking over Europe and calculating a linear regression. The lines show
the error bars on the trend, defined by the standard error of the slope. Blocking
occurrence is calculated using the SOM-BI for the MSLP normalised anomaly
discussed in section 3.3.2. Crosses indicate the percentage change in blocking
occurrences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.3 Linear regression across 22 models (shown in 3.2) between the change in T
(zonally-averaged across all longitudes) and the ESB response, scaled by the
change in GMST. For each grid cell, the latitude/longitude point is the dependent
variable against the ESB response. The left (middle) panel shows the slope
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p-values for the two sample independent t-test between the positive and negative
model groups. Slashed hatching indicates a p-value < 0.05, and cross hatching
indicates a p-value < 0.01, not accounting for multiple hypothesis testing. . . . . 112
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in section 3.3.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
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3.6 Linear regression across 22 models (shown in Fig. 3.2) between 200 hPa vorticity
and ESB. For each grid cell, the latitude/longitude point is the dependent variable
against ESB. The left (middle) column shows the slope (R2) for each grid cell.
The top (middle) row shows the linear regression for the historical (4xCO2)
periods. The bottom row shows the correlation between the change in 200 hPa
vorticity and the change in ESB between the historical and the 4xCO2 runs,
scaled by the change in GMST across all models. The rightmost column shows
the historical and 4xCO2 mean climatologies (Fig. 3.3c and 3.3f respectively)
across all models. Figure 3.3i shows the mean 200 hPa vorticity change across all
models, scaled by the change in GMST. Hatching indicates where the p-value <
0.01, not accounting for multiple hypothesis testing. Compare to Fig. 3.3 which
has the same layout of panels but for zonally-averaged T . . . . . . . . . . . . . . 116

3.7 A diagram summarizing the suggested mechanism for how changes in North
Atlantic U across the model ensemble are causally connected to changes in ESB.
The blue text boxes indicate physical changes and orange arrows show causal
connections between these changes. Green ovals reference figures which highlight
the relevant correlations to justify the causal connections between these physical
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physical changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.8 Linear regression across 22 models (shown in Fig. 3.8) between precipitation and
ESB. For each grid cell, the latitude/longitude point is the dependent variable
against ESB. The left (middle) column shows the slope (R2) for each grid cell. The
top (middle) row shows the linear regression for the historical (4xCO2) periods.
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3.11 A diagram summarizing the suggested mechanism for how diabatic heating in
the Pacific is causally connected to ESB. The blue text boxes indicate physical
effects and orange arrows show causal connections between these effects. Relevant
literature to justify the causal connections is highlighted in the text boxes. Green
circles reference figures which highlight correlations between certain physical
effects and ESB. Yellow arrows connect the figures to their relevant physical effects.127
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as most important in influencing the ESB response. These are mechanisms #3
and #4 from the list in section 4.1, and are discussed in sections 3.4.3 and 3.4.5
respectively. Mechanisms #3 and #4 are described in yellow and purple text
boxes and arrows, respectively. The dotted cyan lines show the latitudes and
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Chapter 1

Introduction

1.1 Thermodynamic and dynamic climate change

Climate change is a global phenomenon with far reaching implications for society. Among

the most important effects of climate change are the increased frequency of extreme weather

events such as heatwaves, droughts and floods (Cutter et al. 2012; King et al. 2015). These

events occur on regional scales across cities, countries and continents, and our confidence in

projections of extreme events varies significantly depending on the region and extreme event

under consideration (Madsen et al. 2017). This uncertainty has several causes, including a finite

observational record, constraints in model capability, internal variability in the regional climate

and a limited understanding of the physical processes contributing to changes in extreme event

patterns (Hawkins and Sutton 2009; Knutti et al. 2010). In particular, in the extratropics the

internal variability is enhanced due to persistent large-scale weather patterns, causing greater

uncertainty in extreme event projections (Xie et al. 2015).

A common approach to constraining and understanding regional projections in extreme

events is to separate thermodynamic and dynamic mechanisms driven by climate change

(Shepherd 2014; Horton et al. 2015; Oueslati et al. 2019; Cloutier-Bisbee et al. 2019; Norris et al.

2019; Ali and Mishra 2018; Suarez-Gutierrez et al. 2020). Investigating how these two classes of

mechanisms have changed patterns of extreme events has proved useful in understanding the

causes of extreme events and in further constraining their trends (Chen et al. 2018; Vautard
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et al. 2016).

Thermodynamic climate change can be understood as corresponding to an average

change in the global energy budget, reflected in an average change in mean surface temperature.

This leads to a mean shift in the surface air temperature distribution globally, which is then

correlated with regional increases in air temperature. This increase in the global mean surface

temperature therefore has a direct effect on the frequency and intensity of regional persistence

of hot extremes, since even a small shift in the mean can have a large relative effect on the

extremes of a temperature distribution (Coumou et al. 2013; Fischer and Knutti 2015). Such

increases in regional surface air temperature also lead to increased precipitation extremes, since

warmer air can store more water vapour (Trenberth et al. 2003; Stephens and Ellis 2008). Whilst

the mechanisms of thermodynamic climate change are relatively well understood, uncertainty

remains surrounding the magnitude of future regional and global warming (Hawkins and Sutton

2009; Qu et al. 2018).

Dynamic climate change involves changes in atmospheric circulation regimes, which

could have significant regional effects on the occurrence and persistence on phenomena such as

heatwaves. This is particularly true for mid-latitude regions such as Europe, where large-scale

weather patterns significantly enhance regional uncertainty in future projections (Xie et al. 2015).

Changes in the occurrence and persistence of weather regimes are currently poorly understood

and constrained relative to the thermodynamic mechanism, but could have significant effects

on the surface temperature extremes, affecting not just the mean but also the variance of the

temperature distribution (Shepherd 2014; Tamarin-Brodsky et al. 2020). Atmospheric dynamics

has therefore been identified as a significant source of uncertainty in climate model projections,

and there has been considerable interest into the effect of anthropogenic climate change on

atmospheric circulation (Vecchi and Soden 2007; Horton et al. 2015; Fereday et al. 2018; Ma

et al. 2018).

The dynamic mechanisms of climate change are more difficult to constrain (Held 1993),

since atmospheric dynamics are nonlinear (Palmer 1999) and are governed by a wide range

of regional phenomena and possible feedbacks (Shepherd 2014), such as Arctic Amplification

(Barnes and Screen 2015), land-surface feedbacks (Miralles et al. 2014), and SSTs and sea ice
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anomalies (Deser et al. 2004). There is also a significant uncertainty arising from the problem

of distinguishing trends in atmospheric dynamics from internal variability (Deser et al. 2004;

Simpson et al. 2009; Deser et al. 2012).

The dynamic component of climate change is particularly relevant for extreme events,

which typically occur under exceptional weather regimes. Of particular relevance to mid-latitude

heatwaves is atmospheric blocking, where a persistent high pressure system blocks the zonal

flow over a region for several days to weeks (Rex 1950; Nakamura and Huang 2018). Both

the prominent 2003 and 2019 European summer heatwaves were associated with a blocking

system centered over Western Europe (Black et al. 2004; Mitchell et al. 2019), and the 2010

Euro-Russian heatwave was caused by strong persistent blocking over Russia and Eastern Europe

(Matsueda 2011; Quandt et al. 2017).

It should be noted that in the physical atmosphere, dynamic and thermodynamic

processes are often closely coupled. One example of a process occurring under climate change in

the atmosphere that responds both to thermodynamic and dynamic mechanisms is the expansion

of the Hadley cell, a common feature across all global climate models (Chou et al. 2013). As the

tropical atmosphere warms, the tropospheric column-integrated water vapour increases at the

Clausius-Claperyon rate (7% K−1), whereas the rate of increase in global mean precipitation

is much smaller (2% K−1) as it is limited by changes in net surface radiative flux and the

increase of Bowen’s ratio (Allen and Ingram 2002). This increases moist convection, leading to

enhanced upper-tropospheric warming and a reduced magnitude of the moist adiabatic lapse

rate (Held and Soden 2006). This increases dry static stability, stabilizing the subtropical jet

streams at the poleward extent of the Hadley Cell. This shifts the baroclinic eddies poleward

and thus the Hadley cell expands (Chou et al. 2013; Levine and Schneider 2015). In short, the

thermodynamic effects resulting from increased heating and water vapour in the tropics lead

to dynamic changes in the Hadley cell expansion. It is therefore misleading in this case to try

to separate the thermodynamic and dynamic effects. However, since in general the changes in

circulation are more poorly constrained than changes in the average global mean energy budget,

the separation of dynamic and thermodynamic climate change mechanisms is a useful heuristic

to better understand the sources of uncertainties in model projections (Shepherd 2014).
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1.2 Physical overview of atmospheric dynamics

This section discusses the key physical concepts that are needed to discuss atmospheric blocking

and the influence of climate change on atmospheric blocking events.

1.2.1 The momentum equation

The momentum equation is a partial differential equation that describes how the velocity or

momentum of a fluid responds to internal and imposed forces. For an incompressible inviscid

fluid in a rotating frame of reference, the momentum equation can be written as (Vallis 2006a)

Dv

Dt
+ 2Ω × v = −

1

ρ
∇p − ∇Φ, (1.1)

where v is the wind vector (relative to the rotating frame), t is time, Ω is the angular velocity

of the rotating frame, ρ is the density of the fluid parcel and p is pressure of the fluid parcel. Φ

is the geopotential of the effective gravitation force g which includes the centrifugal force and

Newtonian gravity such that g = −∇Φ. Since the Earth has developed a slight bulge to make

the centrifugal force zero at the surface, the geopotential Φ can simply be taken as Φ = gz,

where g is the acceleration due to gravity and z is the height of the fluid parcel above the

surface.

Equation (1.1) is frequently simplified to create the primitive equations, using three

related assumptions:

1. Hydrostatic balance. This assumes that the pressure gradient force acting of the fluid

parcel is balanced by the gravitational force such that:

∂p

∂z
= −ρg, (1.2)

where z is the height of the fluid parcel above the surface and g is the acceleration due

to gravity. This means that in the vertical direction the Coriolis terms and advection of

vertical velocity are neglected.
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2. The shallow-fluid approximation. This approximation replaces the coordinate r in spherical

coordinates with the radius of the Earth a (except where it is used as a differentiating

argument), noting that r = a+ z and a >> z.

3. The traditional approximation. Following the above assumption of a small aspect ratio

of motion, the Coriolis terms and metric terms in the horizontal momentum equations

involving the vertical velocity are neglected.

These approximations are all very accurate for large-scale flow in the atmosphere. By

considering the above approximation for an inviscid fluid on the Earth, the horizontal momentum

equation can be written as (Vallis 2006a)

∂u

∂t
+ (u · ∇)u+ f× u = −1

ρ
∇zp, (1.3)

where u is horizontal wind vector, t is time. f is the vertical component to the Coriolis term,

defined as f = fk = 2Ω sin ϕk, where Ω is the Earth’s rotation rate at the equator, ϕ is the

angle of the air parcel with respect to the equator and k is the unit vector in the vertical

direction.

1.2.2 Geostrophic balance

The ratio of the advection term ((u · ∇)u) to the Coriolis term (f × u) in equation (1.3) is

defined to be the Rossby number (Ro), which scales as (Vallis 2006a)

Ro =
U

fL
, (1.4)

where U and L are the horizontal wind and length scales of the flow, and f is the magnitude of

the Coriolis term. This follows from the fact that (u · ∇)u scales as U2/L and f× u scales as

fU .

If the Rossby number is small then the rotation effects are important, which is the case

for large-scale flow in the atmosphere (Vallis 2006b). In this case the rotation term dominates

the advection term, so equation (1.3) can be simplified as (Vallis 2006a):
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f× u ≈ −1

ρ
∇zp. (1.5)

Equation (1.5) can be written in component form as (Vallis 2006a)

fu ≈ −1

ρ

∂p

∂y
, (1.6a)

fv ≈ 1

ρ

∂p

∂x
, (1.6b)

where x and y are the zonal and meridional distance components respectively. The above

situation is known as geostrophic balance, and it has significant consequences for large-scale

flow in the atmosphere. The geostrophic wind is defined as ug = (ug, vg, 0), where

fug = −1

ρ

∂p

∂y
, (1.7a)

fvg =
1

ρ

∂p

∂x
. (1.7b)

1.2.3 Thermal wind balance

Thermal wind balance is obtained from combining the geostrophic and hydrostatic approxima-

tions. In pressure coordinates geostrophic balance can be expressed as (Vallis 2006a)

f× ug = −∇pΦ, (1.8)

where Φ is the geopotential and ∇p is the gradient operator taken at constant pressure. Hydro-

static balance can be expressed as

∂Φ

∂p
= −α, (1.9)

where α = 1/ρ is the specific volume of the flow. Using the ideal gas equation (p = ρRT , where

R is the gas constant and T is temperature), α can be expressed as α = RT/p. Taking the
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vertical derivative of equation (1.8) and using equation (1.9) gives the thermal wind equation:

f× ∂ug

∂p
= −∇pα =

R

p
∇pT. (1.10)

In component form this is

−f ∂vg
∂p

=
R

p

∂T

∂x
, (1.11a)

f
∂ug
∂p

=
R

p

∂T

∂y
. (1.11b)

This creates an important effect: a horizontal temperature gradient is accompanied by

a vertical shear of the horizontal wind. Since temperatures decrease poleward from the

equator in the atmosphere, the thermal wind relation is one reason why there is fast-flowing

westerly wind in the upper troposphere known as the jet stream. There are two prominent jet

streams in each hemisphere: the polar jet stream, which is situated in the midlatitudes; and

the subtropical jet stream, situated at the poleward edge of the tropics. The thermal wind

relation is also important for understanding the response of European summer blocking (ESB)

to climate change; this will be explained in detail in section 3.4.3.

1.2.4 Vorticity and streamfunction

Two important dynamical quantities that relate to atmospheric flow are vorticity and stream-

function. The vorticity ω is defined as (Vallis 2006c)

ω = ∇ × u. (1.12)

In a rotating frame of reference, the vorticity induced by the air velocity relative to the Earth’s

surface (called the relative vorticity and labelled ζ) is distinct from the absolute vorticity η,

which is computed from the air velocity relative to an inertial frame and therefore includes the
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Coriolis parameter:

η = ζ + f. (1.13)

The streamfunction ψ is defined as the vector potential such that

u = ∇× ψ, (1.14)

with the horizontal components of the flow

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (1.15)

These quantities are both discussed in later sections and are applied to the analysis of the ESB

response to climate change in chapter 3.

1.2.5 Potential temperature

Following from the first law of thermodynamics for an ideal gas, if a fluid parcel changes pressure

adiabatically it will change its temperature. However, an important temperature-like quantity

can be constructed which only changes when diabatic effects are present. This quantity is

called potential temperature (labelled θ), and it is defined to be the temperature that a fluid

parcel would have if moved adiabatically with no change in composition to a reference pressure

(typically 1000 hPa). It can be written as (Vallis 2006c)

θ = T

(
pref
p

) R
cp

, (1.16)

where T is temperature, pref is the reference pressure, p is the pressure of the air parcel, R

is the molar gas constant and cp is the heat capacity at constant pressure. Since θ does not

change adiabatically, it is constant on surfaces of constant entropy, which enables θ to be a

useful quantity for tracing the motion of fluid parcels in the atmosphere (Vallis 2006c).
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1.2.6 Potential vorticity

An important perspective on the atmosphere can be obtained through potential vorticity, which

is “a primary concept in modern dynamical meteorology” (Hoskins and James 2014b).

A prerequisite for understanding potential vorticity is Kelvin’s circulation theorem,

which was first discussed in the context of meteorology by Bjerknes (1898). Kelvin’s circulation

theorem states that in a barotropic ideal fluid with conservative body forces, the circulation

around a closed curve (which encloses the same fluid elements) moving with the fluid remains

constant with time. The circulation (Γ) around a closed contour is a function of time (t) and is

defined as (Hoskins and James 2014b)

Γ(t) =

˛
C

u · dl, (1.17)

where u is the wind vector and l is a line element along the closed contour. The total derivative

of circulation with respect to time can be written as

DΓ

Dt
=

˛
C

Du

Dt
· dl+

˛
C

u · Ddl
Dt

(1.18)

The second term on the right hand side of equation (1.18) can be shown (using gradient theorem)

to be equal to 0. Using the governing equation for an inviscid fluid (a fluid with no viscosity)

with a conservative body force and applying Stokes’ theorem means that the first term on the

right hand side of equation (1.18) can be written as (Hoskins and James 2014b)

˛
C

Du

Dt
· dl =

‹
s

∇×
(
−1

ρ
∇p+∇Φ

)
· ndS =

‹
s

1

ρ2
(∇ρ×∇p) · ndS. (1.19)

where ρ is the density and p is the pressure of the fluid parcel, Φ is the body force applying on

the fluid parcel, S is the surface and n is the unit vector normal to the surface S. If the fluid

is barotropic (that is, the density of the fluid is a function only of pressure, ρ = ρ(p)), then

equation (1.19) is also zero, resulting in
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Figure 1.1: A parcel of fluid moves between two nearby surfaces of constant potential
temperature, conserving its mass and the circulation around it. Reproduced from Fig. 10.1 of
Hoskins and James (2014b).

DΓ

Dt
= 0 (1.20)

for a barotropic fluid.

Kelvin’s circulation theorem means that the circulation around a fluid parcel is constant

if the integral of the pressure gradient force around it is zero (Hoskins and James 2014b). In

a situation where the motion is adiabatic (and potential temperature is conserved), the mass

is constant (no change in the vapour pressure of the air parcel) and where there is no friction

between the air parcel and the surface (above the boundary layer), a conservation relation can

be written for a fluid parcel enclosed between two isentropes:

ζ · n
ρδh

= constant. (1.21)

where ζ is relative vorticity (see equation (1.13)), ρ is the density and h is the height of the

fluid parcel. Such a cylindrical fluid parcel is shown in Fig. 1.1. n in equation 1.21 is a unit

vector normal to the isentropes, which can be expressed as

n =
∇θ
|∇θ|

. (1.22)
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Noting that in the limit of a small cylinder (see Fig. 1.1)

|∇θ| = ∇θ
∇h

, (1.23)

equation (1.21) can be written as

DP

Dt
= 0, where P =

ζ · ∇θ
ρ

. (1.24)

P is called Ertel-Rossby potential vorticity (commonly potential vorticity or PV), first introduced

by Rossby (1940) and Ertel (1942). P is nearly conserved where there is no friction (outside of

the boundary layer) and negligible latent heat release (outside of weather fronts and regions

of intense precipitation); as a result, P is conserved for much of the flow in the mid- and

upper-troposphere. In addition, if friction or heating occur within a region, P will be altered,

but outside of the region of heating or friction P will adjust such that the mass-weighted P

integrated over a given volume remains constant. Potential vorticity (hereafter PV) therefore

provides a strong constraint on atmospheric motion.

When advective processes dominate frictional and diabatic processes, PV on an isentropic

surface acts as a Lagrangian tracer of air parcels (Starr and Neiburger 1940). An additional

feature of PV is that (given certain boundary conditions) the PV field can be inverted to derive

all other dynamical fields, including winds, temperatures, geopotential heights, static stability

and vertical velocity (Hoskins et al. 1985). This arises because the potential vorticity field (ξ) is

related to the streamfunction field (ψ) by a Poisson equation (Thorpe 1985):

∇2ψ = ξ. (1.25)

Because of its conservation properties and relationship to other meteorological variables, PV

is useful in operational forecasting (Mansfield 2007). PV has also been used in the study

of atmospheric blocking (Pelly and Hoskins 2003; Schwierz et al. 2004), and is applied to

understanding blocking events in chapter 2.

31



CHAPTER 1. INTRODUCTION

1.2.7 The quasi-geostrophic potential vorticity equation

Using hydrostatic balance, geostrophic balance and assuming the appropriate horizontal scale of

flow for large-scale synoptic activity, a set of equations that simplify the Navier-Stokes relation

is obtained called the quasi-geostrophic equations (Vallis 2006d). The specific assumptions

made are:

• there is a small Rossby number;

• there are small variations in the Coriolis parameter;

• the time scale of the motion T scales advectively (such that T = L/U); and

• the scale of motion is not significantly larger than the deformation radius.

The deformation radius Ld is defined as the length scale at which rotational effects become as

important as gravity wave effects, and is written as:

Ld =
NH

f0
. (1.26)

H = RT/g is the scale height of the atmosphere - that is, the change in altitude over which

the atmospheric pressure decreases by a factor of e. f0 = 2Ωsinϑ0, where ϑ0 is the latitude of

a plane tangent to the Earth’s surface and ϑ is the latitude of an air parcel. f0 relates to the

Coriolis parameter f through the beta-plane approximation, which is that for small variations in

latitude:

f = 2Ωsinϑ ≈ 2Ωsinϑ0 + 2Ω(ϑ− ϑ0)cosϑ0 ≈ f0 + βy, (1.27)

where

β = ∂f/∂y = (2Ωcosϑ0)/a. (1.28)

N from equation (1.26) is the Brunt-Väisälä frequency, which is the frequency at which a

vertically displaced parcel will oscillate in a statically stable atmosphere:

N =

√
g

θ

dθ

dz
, (1.29)

where z is height, g is the acceleration due to gravity and θ is potential temperature defined in
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equation (1.16).

To make the quasi-geostrophic assumption, the ratio of the length scale of the motion L

to the deformation must satisfy (
L

Ld

)2

≫ 1. (1.30)

From applying the above assumptions, expressing the dynamic terms to order Rossby number and

cross differentiating the momentum equation (Vallis 2006d), one obtains the quasi-geostrophic

potential vorticity equation for a stratified fluid:

Dq

Dt
= 0,where q = ∇2ψ + f +

f 2
0

ρ̃

∂

∂z

(
ρ̃

N2

∂ψ

∂z

)
. (1.31)

ρ̃ is the reference density profile for a stratified fluid. q is called the quasi-geostrophic potential

vorticity, and is analogous to the Ertel potential vorticity (see equation (1.24)). q is conserved

when advected by the horizontal geostrophic flow. Equation (1.31) is “one of the most important

equations in dynamical meteorology” (Vallis 2006d) and can be used to explain many synoptic-

scale processes in the atmosphere.

1.2.8 Rossby waves

Rossby waves are the most important large-scale waves in the atmosphere. They can be derived

from considering the equation of motion for adiabatic quasi-geostrophic potential vorticity,

which from equation (1.31) can be written as

∂q

∂t
+ u · ∇q = 0. (1.32)

Equation (1.32) can be linearized by expressing q(x, y, z, t) and u(x, y, z, t) as a function of a

time-independent base state (q̄ and ū) and a small perturbation (q′ and u′):

q = q̄(y, z) + q′(x, y, t),u = ū(y, z) + u′(x, y, t). (1.33)

Substituting (1.33) into equation (1.32) and neglecting small quantities yields the common
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equation of motion for Rossby waves:

∂q′

∂t
+ ū

∂q′

∂x
+ v′

∂q̄

∂y
= 0. (1.34)

Rossby waves therefore arise from gradients in potential vorticity in the atmosphere. These

gradients commonly arise from the differential rotation of the atmosphere arising from the

meridional gradient of the Coriolis parameter; this is called the β effect (see equation (1.28)).

If a barotropic fluid parcel is displaced it conserves its potential vorticity, which means that

the relative vorticity will change. This change in relative vorticity creates a velocity field that

displaces adjacent fluid parcels, thus leading to further changes in relative vorticity and therefore

a propagating displacement in the fluid (Vallis 2006e).

For a non-zero β the ambient potential vorticity increases northward, and in general

Rossby waves propagate westward in the direction of increasing potential vorticity (Vallis 2006e).

These Rossby waves form large meanders in the polar jet stream, creating ridges

and troughs in the midlatitude flow which form anticyclones and cyclones in the atmosphere.

Atmospheric blocking events can be understood as times when the Rossby wave breaks, forming

a persistent anticyclone over a region (Hoskins and James 2014a).

1.2.8.1 Rossby waves and diabatic heating

Whilst a key ingredient for the existence of Rossby waves is a potential vorticity gradient, this

potential vorticity does not have to be produced by the β effect. Another source of potential

vorticity gradients in the atmosphere which produces Rossby waves is diabatic heating. This is

a particularly prominent source in the tropics (Hoskins and Karoly 1981). Such Rossby waves

have relevance for understanding the European summer blocking response to climate change, as

discussed in section 3.4.5. Such Rossby wave perturbations can be understood by considering a

simple model of the atmosphere with the following assumptions:

• The background easterly flow ū is considered to be only a function of altitude and increasing

with height z

ū(z) = ūzz, (1.35)
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where ūz is the vertical derivative of ū.

• The background flow is in geostrophic and hydrostatic balance (see sections 1.2.1 and

1.2.2).

• the equation of state is of the form

ρ = ρ0(1− γθ) (1.36)

where ρ is density, ρ0 is the reference density for the fluid, γ is a constant and θ is potential

temperature.

If the atmosphere is heated or cooled, then the entropy will increase or decrease. This

creates density perturbations arising from the equation of state, and pressure perturbations

arising from hydrostatic balance.

By considering a perturbation that is much smaller than the mean state, one can rewrite

the wind u, density and pressure p fields in the same fashion as in section 1.2.8 (with a time

independent base state and a time dependent perturbation). This means that geostrophic

balance (see equation (1.7)) can be expressed as

ū
∂u′

∂x
− fv′ = − 1

ρ0

∂p′

∂x
, (1.37)

ū
∂v′

∂x
+ fu′ = − 1

ρ0

∂p′

∂y
, (1.38)

where p′ is the pressure perturbation and u′ and v′ are the zonal and meridional wind perturba-

tions respectively. By manipulating equations equation (1.37) and equation (1.38) (taking the

x-derivative of equation (1.38) and subtracting the y-derivative of equation (1.37)); considering

volume conservation (ux + vy + wz = 0) and simplifying the notation for derivatives (such that

uy = ∂u/∂y and similar) we obtain equation 3.1 of Hoskins and Karoly (1981):

ūζ ′x + βv′ = fw′
z, (1.39)

where ζ is the relative vorticity (ζ ≡ vx − uy), β is the change of the Coriolis parameter with

latitude (β ≡ fy = 2Ωcosϕ/R, where ϕ is the angle with respect to the vertical). The first term
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on the left hand side of equation (1.39) is a local increase of spin when the flow brings high

vorticity fluid. The second term is the local increase of spin when a fluid parcel shifts towards

the equator (the β-effect).

Equation 3.2 of Hoskins and Karoly (1981) is obtained from the second law of ther-

modynamics: Ds/Dt = Q̇/T , where s is entropy, Q̇ is the heating rate and T is temperature.

Re-writing D/Dt in terms of an air parcel (D/Dt = ∂/∂t+u∂/∂x+ v∂/∂y+w∂/∂z), substitut-

ing potential temperature for entropy and employing the thermal wind relationship (fv′z = gαθ′x)

gives equation 3.2b of Hoskins and Karoly (1981):

f(ūv′z − v′ūz) + w′N2 = Q. (1.40)

N is the Brunt-Väisälä frequency of the atmosphere, defined in equation (1.29). The three terms

on the left hand side of equation (1.40) reflect the zonal, meridional and vertical advection of

entropy respectively. By assuming synoptic scale diabatic heating in the upper troposphere and

considering the situations when each term on the left hand side of equation (1.40) dominates,

two different physical situations can be obtained:

• The diabatic heating is opposed by cooling due to expansion of a rising air parcel. From

equation (1.39) this results in poleward motion at low-levels, and implies a low pressure

west of the heating anomaly.

• The diabatic heating is opposed by cooling due to the advection of cold air from the pole.

From equation (1.39), this results in downward motion in the mid-troposphere, and due

to geostrophic balance a low-pressure cell east of the heating.

These two situations occur in the tropics and midlatitudes, and are depicted in Fig. 1.2a

and Fig. 1.2b respectively. A third situation involving shallow heating in the midlatitudes is also

shown in Fig. 2c, where low-level heating is balanced by the advection of zonal flow, leading to

a temperature gradient in the direction of flow.

The situation depicted in Fig. 1.2a leads to Rossby wave perturbations that extend

poleward and east of the source of the heating (Hoskins and Karoly 1981; Hoskins and Ambrizzi

1993; Ting and Sardeshmukh 1993). This mechanism is relevant for the understanding of the

ESB response to climate change, discussed in section 3.4.5.
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Figure 1.2: Longitude-height sections showing the different responses to thermal forcing in
(a) tropics, (b) midlatitudes, and (c) the midlatitudes for shallow forcing. The arrow depicts
vertical motion. Circled crosses and dots show motion into and out of the section, respectively.
L is the pressure trough. C and W is cold and warm air respectively. Reproduced from Fig. 2
of Hoskins and Karoly (1981).

1.2.9 Barotropic and baroclinic instability

There are two broad characteristics of the flow in the atmosphere that separate the tropical

atmosphere from the midlatitude atmosphere. In the tropics a common assumption made to

describe the flow is that of a barotropic atmosphere. In a barotropic atmosphere pressure is only

a function of height (ρ = ρ(p)). This means that surfaces of constant pressure are also surfaces

of constant density. There is no horizontal gradient of temperature and no vertical wind shear,

so the geostrophic wind is independent of height.

A baroclinic atmosphere is one in which the density is a function both of pressure and

temperature (from the ideal gas equation ρ = ρ(p, T ) = p/RT ). Surfaces of constant pressure cut

across surfaces of constant density at a constant angle. and a horizontal temperature gradient

exists, along with a vertical wind shear. This is a useful way to describe midlatitude flow.

These two assumptions have associated hydrodynamic instabilities which describe much

of the synoptic-scale flow in the atmosphere. Barotropic instability occurs when flow is unstable

because of horizontal wind shear. Disturbances to the flow grow by extracting kinetic energy

from the background flow. This describes short-waves in the jet stream and vortices in tornadoes
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Figure 1.3: A steady basic state giving rise to baroclinic instability. Potential density decreases
upwards and equatorwards, and the associated horizontal pressure gradient is balanced by the
Coriolis force. Parcel ‘A’ is heavier than ‘C’, and so statically stable, but it is lighter than ‘B’.
Hence, if ‘A’ and ‘B’ are interchanged there is a release of potential energy. Reproduced from
Fig. 9.9 of Vallis (2006b).

and tropical cyclones.

Baroclinic instability occurs in a rotating stably stratified fluid that is subject to a

horizontal temperature gradient. From the thermal wind relationship this creates unstable

vertical wind shear. Disturbances to the flow grow by extracting potential energy from the

background flow, which is converted to potential and kinetic energy of flow perturbations.

Baroclinic instability is the main instability which causes weather systems in the atmosphere

(Vallis 2006b).

Given a basic state of a baroclinic atmosphere where there is stable baroclinic flow,

layers of the atmosphere with decreasing potential density are at a constant angle with the

surface. Each layer has some available potential energy, which could be converted to kinetic

energy by adjacent air parcels shifting such that lower density air shifts to a higher altitude. A

disturbance to the atmosphere introduces baroclinic instability where such movements of air

parcels take place. This converts potential energy to kinetic energy, which feeds the instability.

This process is shown in Fig. 1.3.

1.2.9.1 Baroclinic eddies

These disturbances form baroclinic eddies which extract energy from the mean midlatitude

flow. In addition to this effect, the available energy of the mean flow is replenished by external

38



CHAPTER 1. INTRODUCTION

radiative forcing, which maintains an equator-to-pole temperature gradient.

The scale of baroclinic eddies in the atmosphere is determined by the deformation

radius (approximately 1000 km), the mean equator-to-pole temperature gradient (approximately

40 K), and the strength of the zonal flow and the β effect. The lifecycle and phenomenology

of baroclinic eddies is also determined by the effect of geostrophic turbulence (Vallis 2006f).

Baroclinic eddies can be cyclonic or anticyclonic. Regions where eddy activity is strongest

determine the location of the storm tracks (Orlanski and Gross 2000), where extratropical

cyclones most frequently occur. Baroclinic eddies interact with atmospheric blocking events by

becoming less baroclinic close to the blocking high; anticyclonic eddies can reinforce atmospheric

blocking events through advection of low potential vorticity air from lower latitudes (Nakamura

and Wallace 1993).

1.3 Atmospheric blocking

1.3.1 Atmospheric blocking events

One important feature of extratropical circulation are persistent anti-cyclones which are known

as atmospheric blocking events. These synoptic-scale events are characterised by a persistent

reversal of the usual westerly flow over a region, which diverges weather systems to the North

or South (Berggren et al. 1949; Rex 1950). They usually exhibit a large anticyclonic anomaly

and often a dipole with a low-pressure system equatorward of the blocking high (Hoskins and

James 2014a; Woollings et al. 2018).

Blocking events were first noted in the context of long-range forecasting by Garriott

(1904). However, whilst blocking events have been extensively studied, the onset and longevity

of blocking events is still not well forecast or completely understood (Lupo 2021). The American

Meteorological Society (AMS) (Glickman and Zenk 2000) specifies three criteria to classify a

flow pattern as blocked (Pinheiro et al. 2019):

1. persistent obstruction of the usual westerly flow,

2. pronounced meridional flow in the upper levels, and

39



CHAPTER 1. INTRODUCTION

Figure 1.4: Example North Atlantic blocks. Snapshots of (colour shading) potential tempera-
ture (θ) on the dynamical tropopause (PV = 2 PVU) and (contour lines) geopotential height at
500 hPa (contour spacing 60 m) for the dates indicated. Data is from ERA-Interim. Caption
and figure adapted from Fig. 1 of Woollings et al. (2018).

3. anticyclonic circulation at high latitudes accompanying cyclonic circulation at low latitudes.

A range of circulation patterns have been referred to as blocking events; the most

important categories of atmospheric blocking are shown in Fig. 1.4. These include ridges in

large amplitude Rossby waves with low phase speed, where low potential vorticity (PV) air is

advected from the subtropics resulting in a large stationary anticyclone (Hoskins et al. 1985).

The “omega block” is described as such since the geopotential height contours around the

anticyclone resemble the letter Omega (Sousa et al. 2021). Blocking has also been characterised

by Rossby wave-breaking, where PV on specific isentropes are folded over and the meridional

PV gradient is reversed (Gabriel and Peters 2008). Other blocking events can be associated

with a bifurcation of the jet stream (Sumner 1954).

Blocking events with a dipole characteristic are typically formed through the poleward

motion of warm air and equatorward and eastward movement of cooler air. The two air masses

develop anticyclonic and cyclonic motion and are cut off from their source. This Rossby wave-

breaking sets up a blocking anticyclone (Hoskins and James 2014a). Furthermore, Nakamura

and Huang (2018) has recently compared the onset of a blocking event to traffic congestion,

where as a highway has a limit to the number of vehicles before congestion, the jet stream has a

limited capacity for meandering wave activity, beyond which a blocking pattern forms.

Blocking events can often persist for several weeks. Their persistence is due to the fact
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that a dipole cut-off structure can only be returned back to westerly flow if the cyclone and

anticyclone are advected back to their source positions (which can occur only through a strong

incoming weather system), or through frictional and heating processes (which have a timescale

of weeks) (Hoskins and James 2014a). Furthermore, synoptic-scale eddies can reinforce the

blocking structure. Eddies propagating into a split jet stream develop a meridionally stretched

vorticity field, which reinforces the vorticity fields in the block (Shutts 1983; Mullen 1987;

Swanson et al. 1997; Altenhoff et al. 2008).

1.3.2 Atmospheric blocking and extreme weather

Blocking systems are often associated with regional extreme weather events, particularly

heatwaves in summer and cold snaps in winter. A widely studied example was the record-

breaking 2003 European heatwave. This event exhibited a range of significant societal impacts

such as increased mortality, reduced crop yields and reduced labour productivity (Ciais et al.

2005; Robine et al. 2008; Garćıa-Herrera et al. 2010; Garćıa-León et al. 2021).

The 2003 heatwave was shown to have been made at least twice as likely due to

anthropogenic climate change (Stott et al. 2004). According to climate change projections, such

heatwaves will become commonplace by the 2040s irrespective of future emissions scenarios

(Christidis et al. 2014). The most extreme temperatures during this heatwave were recorded

from the 6-12 August, where the peak temperature recorded was in Southern France at 41◦C.

Black et al. (2004) reports that atmospheric flow anomalies were recorded in early August,

although there was a relatively weak signature of blocking. The 2003 heatwave remained the

European temperature record until 2019, when surface temperatures of 46◦C were observed in

central France. The 2019 heatwave was concurrent with persistent hot air that originated in

North Africa (the so-called “Saharan heat bubble”), which was sustained by an omega block

centered on Western Europe (Mitchell et al. 2019).

Other extreme weather events associated with blocking include the 2010 Russian heat-

wave (Schneidereit et al. 2012) and the 2018 European heatwave (Kueh and Lin 2020). The

recent 2021 Pacific Northwest heatwave was also associated with an omega block (Philip et al.

2021). Persistent ridges over the North-Eastern Pacific have led to several recent periods of
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drought in California (Swain et al. 2016), and the 2009/10 winter cold events in Europe were

associated with atmospheric blocking (Cattiaux et al. 2010).

1.3.3 The effect of climate change on atmospheric blocking

The influence of climate change on atmospheric blocking remains an open question (Francis

and Vavrus 2012; Barnes 2013; Francis and Vavrus 2015; Barnes and Polvani 2015; Barnes

and Screen 2015; Mann et al. 2018; Coumou et al. 2018a; Fabiano et al. 2021). As a complex

dynaical feature of the atmosphere, the underlying physics involved in developing atmospheric

blocking events is nonlinear (Palmer 1999) and not fully understood (Nakamura and Huang 2018;

Woollings et al. 2018; Hauser et al. 2022). Furthermore, there is a large seasonal, inter-annual

and decadal variability (Kennedy et al. 2016; Brunner et al. 2017), which compounds the

problem of separating forced changes in blocking occurrence from unforced variability (Barnes

et al. 2014; Shepherd 2014). There are two prominent mechanisms that have been discussed as

possible mechanisms which can affect summer atmospheric blocking under climate change: Arctic

Amplification (AA) and increased upper-tropospheric warming (UTW). These two mechanisms

have competing influences and have been described as in a “tug-of-war” (Barnes and Screen 2015)

of effects which work to increase and decrease atmospheric blocking occurrence respectively.

Arctic amplification (AA) is the the increased surface warming over the Arctic compared

to the rest of the Earth surface (Manabe and Wetherald 1975), associated with rapid sea ice loss

(Dai et al. 2019). It has been hypothesised that this impacts the Northern Hemisphere polar jet

stream (Francis and Vavrus 2012), since by reducing the meridional temperature gradient the

speed of the jet stream may also decrease. It has been proposed that this slows down Rossby

waves and increases their amplitude (Francis and Vavrus 2015; Francis et al. 2018), increasing

the likelihood of blocking events.

This hypothesis has received criticism, with several studies claiming that there is no

convincing evidence that a link between AA and midlatitude extreme weather exists (Barnes 2013;

Barnes and Screen 2015; Blackport and Screen 2020; Dai and Song 2020). Cohen et al. (2020)

noted that whilst there is significant observational evidence to link AA to winter midlatitude

extreme weather including atmospheric blocking, particularly in the Barents-Kara sea region,
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there is limited evidence from modelling studies to associate AA and severe midlatitude weather.

One example of a modelling study investigating this relationship is McCusker et al. (2016),

who found that from 600 years of GCM simulations with multiple ensembles, the unusually

cold winters reported over the Barents-Kara sea region relate to a pattern of anticyclonic

activity that is independent of AA. Whilst there are several studies which propose a connection

between Arctic sea ice loss and midlatitude weather extremes (Honda et al. 2009; Petoukhov and

Semenov 2010; E. et al. 2011; Inoue et al. 2012; Liu et al. 2012), the role of Arctic Amplification

in this link between sea ice loss and midlatitude extremes is not clear (Hopsch et al. 2012).

Screen and Simmonds (2013) found that the link between Arctic warming and midlatitude wave

amplitude is sensitive to the definition of wave. Additional proposed hypotheses to connect AA

to midlatitude extreme weather include the weakening of the Arctic stratospheric polar vortex

(Cohen and Barlow 2005; Kim et al. 2014; Garfinkel et al. 2017), and the favourable occurrence

of splits in the jet stream (Petoukhov et al. 2013; Coumou et al. 2014). This divergence of

conclusions leads to a lack of clarity about the role AA plays in midlatitude weather extremes.

A second and competing mechanism that is frequently discussed in the literature which

may have an impact on ESB under climate change is enhanced tropical upper-tropospheric

warming (UTW). The temperature gradient between the tropics and mid-latitudes at higher

altitudes is strengthening under anthropogenic greenhouse gas forcing (Allen and Sherwood

2008), which would work to increase jet stream-level winds through the thermal wind relationship

(see section 1.2.3). An increased upper-level temperature gradient is expected to shift the jet

stream poleward and increase storm track activity (Held 1993). This may work to decrease

the persistence and frequency of atmospheric blocking events by reducing the stationarity of

circulation patterns (Vries et al. 2013). This process competes with AA which is expected

to shift the jet stream equatorward, weaken the jet stream and decrease storm track activity,

leading to more blocking events (Barnes and Polvani 2015).

Further discussion of the role of these mechanisms in influencing the ESB response to

climate change events is discussed in chapter 3.
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1.3.4 The representation of atmospheric blocking in global climate

models

Global climate models are known to generally underestimate the occurrence of atmospheric

blocking (Berckmans et al. 2013a). Newer generations of complexity of models have led to

sizeable improvements in the simulation of atmospheric blocking events (Davini and D’Andrea

2016; Schiemann et al. 2020). Fernandez-Granja et al. (2021) note that whilst there is a general

(although not without exceptions) improvement in the CMIP6 models, the latest generation

of CMIP6 models still shows significant biases in the representation of atmospheric blocking

events.

A commonly cited reason for the bias is the lack of horizontal atmospheric resolution in

the models (Scaife et al. 2010; Schiemann et al. 2020). Higher horizontal resolution can improve

transient eddy activity and therefore enable the blocking highs to be sustained (Berckmans

et al. 2013b). Mean state biases have also been identified as a reason for the low occurrence of

atmospheric blocking in models, since blocking occurrence has been shown to be sensitive to the

climatological mean state (Scaife and Knight 2008; Matsueda et al. 2009; Woollings et al. 2010).

Improving the horizontal resolution of orography can also decrease the blocking bias, since the

mean state of planetary waves is better described (Brayshaw et al. 2009). Improved convection

over the Pacific can also reduce the atmospheric blocking bias (Jung 2012), which suggests a

physical connection between convection in the Pacific and atmospheric blocking. This last point

will be particularly important for a mechanistic discussion of potential future ESB changes in

section 3.4.5.

1.3.5 Future trends in atmospheric blocking in global climate models

In general, most models show a small decrease in atmospheric blocking under climate change,

but with significant differences regionally and seasonally (Woollings et al. 2018). The CMIP3,

CMIP5 and CMIP6 model ensembles all predict a multi-model mean reduction in blocking

occurrence in the future (Barnes et al. 2012a; Masato et al. 2013; Davini and D’Andrea 2020).

Davini and D’Andrea (2020) found statistically significant decreases in the atmospheric blocking
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in both JJAS and DJFM across most of the NH (with some positive trend over the Barents-Kara

sea area). Stronger trends were found in winter than in summer, but for European summer

the trend in atmospheric blocking decreased. Woollings et al. (2018) also generally found

decreases in NH atmospheric blocking as a result of climate change, although for the most

part not statistically significant. The Greenland blocking index, which uses geopotential height

anomaly over Greenland as a proxy for atmospheric blocking over the region (scaled by the

NH geopotential height increase to account for thermodynamic climate change) has also been

observed to be generally stationary or to decrease in the CMIP6 runs (Delhasse et al. 2021).

High-resolution models similarly predict a decline (Matsueda et al. 2009).

This decrease in atmospheric blocking across climate models can be explained by the

change in the mean state and variance of the westerly winds (Vries et al. 2013). This suggests

that the change in atmospheric blocking events under climate change in the climate models

is a passive change in response to changes in the mean flow rather than an active component

acting on atmospheric blocking events specifically. However, although changes in blocking

occurrence are generally small, the impact of blocking events under climate change on surface

temperature extremes can be modified by climate change. This is because changes to the

land-sea temperature contrast under climate change (Sejas et al. 2014) modify thermal advection

associated with atmospheric blocking patterns (Masato et al. 2014).

In addition, given the challenges that climate models have in representing atmospheric

blocking (see section 1.3.4), the fact that most climate models show a general decrease in the

future occurrence of atmospheric blocking has not led to a consensus view in the literature of

the role of atmospheric blocking (Woollings et al. 2018). Furthermore, other mechanisms (in

addition to those discussed in section 1.3.3) have been suggested that could lead to increases

in the occurrence of atmospheric blocking with climate change. These include quasi-resonant

amplification (Petoukhov et al. 2013) and the formation of double jets (Petoukhov et al. 2013;

Coumou et al. 2014). Mann et al. (2018) found that quasi-resonant amplification is increasing

with climate change in the CMIP5 model archive, which could be associated with atmospheric

blocking, and Rousi et al. (2022) found that increased persistence in heatwaves is associated

with increases in double jet formation. Therefore, whilst climate models show a general decrease
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in atmospheric blocking in the future, the response of atmospheric blocking to climate change

remains an open question.

1.4 Data

The data that I use in this thesis includes data from Global Circulation Models and from global

reanalysis data.

1.4.1 Global climate models (GCMs)

Global circulation models are mathematical-physical models of radiative transfer and the

circulations of the atmosphere and oceans. They use the equations discussed in sections 1.2.1-

1.2.7 with the energy sources of radiation and latent heat to simulate the Earth’s atmosphere

and oceans. They include several components, which with the recent generations of GCMs often

extends them to ‘Earth System Models (ESMs)’, such as interactive atmospheric chemistry,

land-surface and sea ice components. Different GCMs have different levels of complexity

and resolution, and coupled GCMs include feedbacks between the atmosphere and ocean. In

this thesis, I use data from the two latest generations of inter-comparisons between GCMs:

The Coupled Model Intercomparison Project Phase 5 (CMIP5) (Taylor et al. 2012) and the

Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al. 2016). In each of these

intercomparison projects, several experiments are run, where the models are forced in different

scenarios. In this thesis I show data from three different experiments:

• the pre-industrial control (piControl) scenario, where models can be run for centuries

using a constant pre-industrial climate forcing (e.g., pre-industrial levels of CO2);

• the historical scenario, where models are run across the historic period (from 1850-2005 in

CMIP5 and 1850-2012 in CMIP6) using the historic prescribed emissions for this period

of CO2 and atmospheric components such as aerosols and CFCs;

• the 4xCO2 scenario, where the models are forced with a sudden quadrupling of CO2 in

the atmosphere starting from pre-industrial baseline simulations.

Several such modelling experiments are available for each climate model. Each model is
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run with a number of ensemble members in order to estimate the effects of internal variability.

1.4.1.1 Sources of uncertainty in GCMs

There are three sources of uncertainty in climate projections from GCMs (Hawkins and Sutton

2009; Wu et al. 2022):

1. Natural variability. This refers to the natural fluctuations in the Earth’s climate that

are produced without radiative forcing. The dominant source of this uncertainty in the

midlatitudes is internal atmospheric variability associated with (Deser et al. 2012) annular

modes of circulation variability such as the North Atlantic Oscillation (Visbeck et al. 2001)

and the Southern Annular Mode (Fogt and Marshall 2020). The use of different ensemble

members for a given GCM can quantify this uncertainty.

2. Model uncertainty: this is the uncertainty associated with the fact that different models

have different responses in their climates under the same radiative forcing. These differences

arise from varied implementation of numerical methods, different parameterisations of

mathematical expressions, and different integrations between small-scale and large-scale

processes (Wang et al. 2022). Using an ensemble of models can quantify this uncertainty.

The increased integration of complex biological, chemical and physical processes in the

CMIP6 model ensemble compared to CMIP5 leads to greater complexity in the investigation

of model uncertainty (Eyring et al. 2016).

3. Scenario uncertainty. Scenario uncertainty arises from the uncertain changes in future

emissions of greenhouse gases and other pollutants. This uncertainty arises from different

projections of population and social and economic development (Yu et al. 2018). The use

of different pathways of future development (labelled the SSP scenarios in CMIP6 (Eyring

et al. 2016)) can quantify this uncertainty.

1.4.2 Reanalysis data

A climate reanalysis project is a global data assimilation of historic weather measurements,

that is assimilated across an extended period on homogeneous spatial grids at various time
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resolutions. In this thesis, I use the ERA5 global reanalysis from 1979-2019 (Hersbach et al.

2020), produced by ECMWF. The ERA5 reanalysis uses data from several sources including

satellite observations, weather stations and radiosondes. The data is assimilated and a weather

prediction model is combined with the data assimilation algorithm to produce a gridded dataset

of historic atmospheric, oceanic and land surface variables at a horizontal resolution of 30 km

grid and a time resolution of 3 hours. The atmospheric variables are produced across 137 vertical

levels, which extend up to 80 km from the surface. I take the ERA5 reanalysis to be a broadly

reliable reconstruction of the historic synoptic-scale weather across the Euro-Atlantic region

which I am interested in.

1.5 Methods

1.5.1 Blocking indices

Whilst much significant work has been undertaken to understand blocking events, there is

no complete theory that can capture all of the processes across the life cycle of a blocking

event (onset, maintenance, decay) (Woollings et al. 2018). The different ways of understanding

blocking events has led to a wide variety of blocking indices (BIs) to automatically detect

blocking events (Lejenäs and Økland 1983; Dole and Gordon 1983; Tibaldi and Molteni 1990;

Pelly and Hoskins 2003; Schwierz et al. 2004; Small et al. 2013; Chen et al. 2015; Thomas et al.

2021). The uncertainty around the definition and categorisation of blocking events complicates

the task of comparing scientific results (Liu 1994).

The first blocking climatology defined blocking as a persistent surface high pressure

anomaly that exceeded a certain climatological threshold for a long period (Elliot and Smith 1949).

Lejenäs and Økland (1983) adapted the criterea from Rex (1950) to develop a one-dimensional

index based on the geopotential height differences between 60◦ N and 40◦ N, computed across

longitudes. This method was adapted by Tibaldi and Molteni (1990), who added a further

condition between 80◦ N and 60◦ N to remove instances of a southward displacement of the

westerly jet that would not be recognised as blocked. The Tibaldi and Molteni (1990) index has

been widely adopted in the literature, with a range of modifications employed to improve blocking
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detection (Barriopedro et al. 2006; Barriopedro et al. 2010; Schalge et al. 2011; Davini et al.

2012; Barnes et al. 2012b). In particular, Scherrer et al. (2006) extended the one-dimensional

method of Tibaldi and Molteni (1990) across latitudes to develop a two-dimensional climatology

of blocking.

An alternative development of a blocking index involves using geopotential height

anomalies over an extended area for a period of time (Dole and Gordon 1983; Shukla and

Mo 1983; Knox and Hay 1984). Subsequent literature has developed thresholds used for the

amplitude, persistence, areal extent and contour overlap (the extent to which blocked regions

overlap on adjacent days) of the blocked region (Pinheiro et al. 2019). Hybrid indices have

also been developed that combine thresholds for the anomaly of the field and the meridional

gradient of geopotential height (Barriopedro et al. 2010; Dunn-Sigouin et al. 2013). In addition,

motivated by the potential vorticity perspective (Hoskins et al. 1985), Pelly and Hoskins (2003)

developed a blocking index using the overturning of potential temperature on the PV = 2

PVU surface. Schwierz et al. (2004) adapted the method of Dole and Gordon (1983) but

used mid-tropospheric potential vorticity anomalies as the field to identify blocking instead of

geopotential height anomaly.

The multiplicity of these BIs, with a variety of thresholds for defining the area, persistence

and magnitude of blocked features on different atmospheric dynamical variables, mean that

these methods necessarily carry the burden of somewhat subjective definitions. Notably, while

previous intercomparisons of BIs show similar global climatologies, and while all indices capture

many of the basic features of atmospheric blocking within their definitions, there are known

regional and seasonal differences (Croci-Maspoli et al. 2007; Barriopedro et al. 2010; Pinheiro

et al. 2019). For example, Pinheiro et al. (2019) found that the Scherrer et al. (2006) adaptation

of the Tibaldi and Molteni (1990) method identified anomalous features in the low latitudes

in NH summer and an approximately 10% blocking frequency over most of Northern Europe

for JJA. However, the Dole and Gordon (1983) approach did not exhibit such anomalous low

latitude features, and also had a higher blocking frequency (15%) in the JJA Euro-Atlantic

region, with a distinct maximum South of the Icelandic low.

In addition, whilst spatial climatologies obtained from these BIs have been compared
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extensively, to the best of my knowledge there has been no direct time series comparison of

the BIs beyond case study analyses such as those in Scherrer et al. (2006) and Pinheiro et al.

(2019). A time series comparison forms part of chapter 2.

One important consideration is that the Tibaldi and Molteni (1990) index has been

most frequently used to identify DJF blocking events in the NH, which is the most commonly

studied period for blocking. This thesis focuses on studying blocking events in summer, as

these are associated with extreme heat, which has significant societal impacts. However, in

the NH summer the eddy-driven jet stream shifts poleward and the subtropical jet, which is

usually confined to the upper troposphere, exerts a stronger influence on midlatitude circulation

anomalies (Illari 1984; Woollings et al. 2010). This suggests that the thresholds and variables

that are commonly used in a winter context may not be valid in summer (Small et al. 2013).

In chapter 2, I use three blocking indices to compare to a new blocking index that I

have developed. These three are:

• AGP - the geopotential height gradient method, which is the Tibaldi and Molteni

(1990) index as adapted by Scherrer et al. (2006) to construct a two-dimensional field of

geopotential height gradients

• DG83 - the Dole and Gordon (1983) method of investigating positive geopotential height

anomalies

• S04 - the Schwierz et al. (2004) method of identifying persistent anomalies in the potential

vorticity field (VPV) averaged over 150-500 hPa (VPV).

These methods were developed from previous work by Pinheiro et al. (2019) who applied

four thresholds for each blocking index: the magnitude of the anomaly, the persistence of the

blocking event (minimum five days), a minimum area over which the anomaly takes place and

an overlap criterion which measures if there is continuity across the blocked region between

different days (an overlap of the blocked contours). Pinheiro et al. (2019) standardised the

thresholds used for these different methods to develop an intercomparison. For my application

of these methods in chapter 2 I apply further modifications, which will be discussed in section

2.2.3.
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1.5.2 Machine learning

In my thesis, I apply machine learning (ML) techniques to develop a new blocking index. ML

involves the use of predictive models which iteratively use data to improve performance on

specific tasks (“learning”). ML has been frequently employed in several atmospheric science

applications (e.g. Skific and Francis (2012), Lary et al. (2016), Gil et al. (2018) and Karpatne

et al. (2018)), including the study of regional atmospheric circulation patterns (Horton et al.

2015; Schlef et al. 2019; Juliano and Lebo 2020).

There are two broad categories of ML algorithms: supervised learning and unsupervised

learning algorithms. Both of these are used in this thesis. Supervised learning is a set of

methods in which predictive models are trained on a labelled dataset (i.e. there are predictors

and predictands). This can be either a regression or classification task. For the latter, the goal is

to identify the difference between different classifications (where the classes are the predictands,

and features characterising the classes are the predictors) of data, such that it can from a new

set of data create accurate classifications. In the case of binary labelled datasets where each

data point can be one of two types (such as a picture being of a dog or a cat), the skill of a

model can be quantified using the classification skill measures described in section 1.5.3.

Unsupervised learning involves training a consistently associative model from an un-

labelled dataset (such as a series of daily geopotential height anomalies over a region). An

algorithm is used to infer consistent patterns from the unlabelled dataset. Common unsupervised

learning techniques are clustering algorithms, where a specified number of distinct patterns is

provided as input, and the algorithm produces that number of distinct clusters by iteratively

adjusting the patterns to states representative of the training data. The input patterns can

initially be randomly defined, randomly selected from data samples or initialised using other

dimension reduction methods such as principal component analysis. In the case of regional daily

geopotential height anomalies, the output clusters could be types of circulation patterns over

the region. There are two clustering algorithms that are used in this thesis: K-means clustering

and self-organizing maps. K-means is introduced in section 1.5.4, self-organizing maps (SOMs)

are introduced in section 1.5.5. The use of these clustering approaches in identifying blocking

events is discussed in section 1.5.6.
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1.5.3 Classification skill measures

There are several skill measures that can be used to identify how skillful a classification algorithm

is; the three classification skill measures used in this thesis are precision, recall and F1 score.

Precision (P) is defined as the ratio of true positives to total detected positives. For example,

a precision of 0.8 indicates that 80% of the events identified by a method are true positives and

the remaining 20% are false positives. Note that in meteorological forecasting literature, the

equivalent metric to precision is called the success ratio (Roebber 2009). Recall (R) is the

number of true positives divided by the total number of actual events. A recall of 0.8 indicates

that 80% of all total blocking events are captured by the classification method, but 20% are

false negatives. Note that in meteorological forecasting literature, the equivalent metric to recall

is called the probability of detection (Roebber 2009). A higher recall is typically associated with

a loss in precision, as identifying more events also means that one typically identifies more false

positive events. Therefore, a careful balance between precision and recall is usually sought after.

One widely used skill metric to achieve this balance is the F1 score, which is the harmonic

mean of precision and recall:

F1 =
2 · P · R
P + R

(1.41)

which can vary between 0 (worst case, low detection skill) and 1 (best score). If either P or

R are low, the F1 score tends towards 0, thus indicating low detection skill in at least one of

the two measures. For example, if a given classification algorithm identifies a small number of

events correctly, the precision is very high but the recall is very low - a small number of events

are well described but many events are missed by the classification. When a larger number of

events are identified, then typically precision decreases and recall increases; more events are

described but there is also a higher proportion of false positives.
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1.5.4 K-means clustering analysis

K-means clustering analysis (Lloyd 1982) has been used extensively in atmospheric science

to classify weather patterns (e.g. Vautard 1990; Michelangeli et al. 1995; Kageyama et al.

1999; Cassou 2008; Hannachi et al. 2017; Fabiano et al. 2021). As input to the algorithm, a

specified number of clusters to produce is chosen and applied to an unlabelled dataset. In

classifying atmospheric weather patterns this will often involve classifying daily geopotential

height anomalies over a region. Each cluster is characterized by a data vector or matrix called

the “centroid”, which represents the center of a set of data points associated with the cluster.

Here, this could for example be the mean pattern of daily geopotential height data for those

samples, representing a typical circulation pattern. Each data entry (e.g. each daily geopotential

height pattern) has one centroid which it is closest to in Euclidean distance. The purpose of the

algorithm is to identify the optimal location in the data for each centroid, such that the location

of each centroid is such that the total sum of squared errors across all clusters is at a minimum.

Once the k number of clusters is specified, the algorithm assigns the location of each

within the space of all data points. This can be done by randomly setting a location within each

dataset, sampling k random points within the dataset, or by using principal component analysis.

Then each data sample is assigned to its nearest centroid, specified by the one with the smallest

Euclidean distance between them. Next, the new center for each cluster is specified by shifting

the location of each centroid to be the mean position across all the data samples that are - at

the current iteration - assigned to it. This process is then repeated: by shifting the position of

each cluster (or, its centroid), a different set of data samples will be assigned to each, leading to

updated centroid positions. This process repeats until a new iteration of each centroid does not

re-assign any of the data samples to a new centroid. At this point the algorithm has converged,

and the mean position of each centroid/cluster is considered to be the final position for the

given number of clusters (Hartigan and Wong 1979). In the case of daily geopotential height

data patterns, this is often considered to be a set of typical atmospheric circulation patterns.
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Figure 1.5: The self-organizing map algorithm. Illustrated using a 3x3 node SOM with ERA5
Z500 JJA 1979-2019. The PCA-initialised SOM pattern (step 1) has a much larger amplitude so
has been multiplied by 10−3 for visualisation purposes. The BMU refers to the best-matching
unit, the SOM node which most closely matches the sample day.
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1.5.5 Self-organizing maps (SOMs)

Self-organizing map cluster analysis (SOM; Kohonen 1982) is an increasingly popular unsuper-

vised machine learning technique in synoptic meteorology to learn representative patterns of

weather regimes and to investigate their trends (Hewitson and Crane 2002; Liu and Weisberg

2005; Huth et al. 2008; Sheridan and Lee 2011; Johnson 2013; Horton et al. 2015; Xu et al.

2016; Singh et al. 2016; Diffenbaugh et al. 2017; Sánchez-Beńıtez et al. 2019). In the context

of this thesis, the SOM algorithm is trained with daily spatial maps of dynamical states of

the atmosphere above Europe, as for example characterized by maps of geopotential height

anomalies, potential vorticity or sea level pressure. By iteratively cycling through all samples of

such meteorological maps, the algorithm learns representative patterns of atmospheric dynamical

states, which are referred to as “SOM nodes”. Note that across this thesis, I use the term

centroid to refer to each map in the optimised K-means cluster (there are K number of centroids

in each K means analysis), and the term node to refer to each optimised map in the SOM

grid in the SOM. An infographic to show the application of the SOM algorithm to classifying

European circulation patterns is shown in Fig. 1.5.

First, the number of nodes is specified and the SOM is initialised either with random

values or with principal component analysis patterns. Then for each day from the input field,

the Euclidean distance between that daily meteorological pattern and each node pattern is

calculated. The node with the smallest Euclidean distance to the sample day is known as the

best matching unit (BMU) for that day. Then the BMU pattern is updated to shift towards

the pattern of the sample day. The neighbouring SOM nodes (on the grid of SOM nodes) are

also updated to shift towards the sample day according to a Gaussian neighbourhood function.

The Gaussian neighbourhood function ensures that the updates for the neighbouring nodes are

smaller than the update for the BMU. For each cycle of iterations through all training samples,

the updates tend to become smaller as the SOM nodes converge towards a representative pattern

of atmospheric dynamical states. A decay function on the updates is additionally applied, which

ensures convergence. Finally, a stable SOM is obtained with a set of nodes that each provide

a representative composite of circulation patterns, arranged according to their similarity on a

row-column grid (i.e. the map). A diagram of the training procedure is shown in Fig. 1.5. The
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number of nodes to be learned by the algorithm, or in other words the number of representative

weather patterns one aims to learn for a particular meteorological problem, is chosen by the

user.

SOMs are of particular relevance in atmospheric science because they maintain the

topological properties of the input space. Once optimised, each node pattern represents a possible

state of the atmosphere, and the nodes are arranged in order of similarity, thus representing a

continuum of atmospheric states. This contrasts with other methods of dimension reduction

such as principal component analysis, where the identified patterns are orthogonal. Such purely

mathematical representations are typically less meaningful from a physical point of view, whilst

each SOM node maintains physical significance as it can closely resemble actual atmospheric

states found in meteorological data, with the nodes on the row-column grid representing smooth

transitions across those possible atmospheric states (see the similarity of neighbouring nodes

in the final SOM grid in Fig. 1.5). I have implemented the SOM algorithm using the somoclu

Python package (Wittek et al. 2017).

This property of SOMs is also a significant distinguishing feature between SOMs and

K-means clustering. In the case of K-means clustering, each centroid is updated at each

iteration independently and no neighbourhood function is applied. As a result, K-means

maximizes differences between the nodes such that it does not learn a smooth topology of

possible atmospheric states. This difference between K-means and SOMs is minor for low node

numbers, since the sharp differences in spatial patterns are effectively imposed on the SOMs as

to be able to represent the range of atmospheric states with only a small number of nodes, thus

making the effect of the neighbourhood function negligible. For larger node numbers, the SOM

topology becomes smoother and the K-means centroids remain distinct rather than representing

a continuum of states, whereas a continuum is a more realistic reflection of the actual atmosphere

(Skific and Francis 2012). A comparison between SOMs and K-means analysis for 4 and 20

node/cluster numbers is shown in Fig. A.5 in Appendix section A.3.
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Figure 1.6: Adapted from Figure 3 of Horton et al. (2015). Trends in JJA circulation patterns
over Europe. Identified by a four node SOM using daily 500 hPa geopotential height data from
the 1979-2013 NCEP-DOE-R2 reanalysis (Kanamitsu et al. 2002). (a-d) shows SOM-derived
atmospheric circulation patterns if the number of nodes is set to four. White boxed percentages
in the top left show the frequencies of each pattern. The SOM node numbers are labelled in
the top right. (e-h) shows the seasonally averaged time series of SOM circulation patterns
across four metrics from 1979 to 2013: the total number of daily occurrences of patterns in each
year (labelled “occurrence” and in black), the average length of circulation pattern occurrence
(labelled “persistence” and in blue); and the maximum duration of each circulation pattern in
each year (labelled “max duration” and in red). Each panel has a straight line showing the
trend across 1979-2013, and a dashed line showing the trend from 1990-2013. At the top of
each panel in (e-h) the colour-coded slopes of the trends are shown, with the 1979-2013 trend
displayed above the 1990-2013 trend. The p-value of each trend is displayed in parentheses after
the trend, and where the p-value is less than 0.05 the slope and p-value is in bold font.

1.5.6 A comment on previous use cases of clustering approaches to

identifying blocking events

1.5.6.1 Self-organizing maps

In this section, I discuss some of the previous uses of clustering approaches in analysing circulation

patterns, highlighting some of their benefits and limitations. This motivates my development

of a new approach to analysing atmospheric blocking events using machine learning, which is

introduced in chapter 2.

An approach to studying atmospheric circulation patterns through self-organizing maps

was developed by Horton et al. (2015). They used SOM cluster analysis to track the occurrence
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and duration of circulation patterns over Europe and correlate these patterns with surface

temperature extremes. By using the Cassano et al. (2007) method of correlating the surface

temperature trends with the trends in the circulation patterns, they were able to quantify the

thermodynamic and dynamic contributions to the increasing surface temperature extremes over

Europe. They concluded that the ”observed increase in extreme summer heat over Europe is

attributable to both increasing frequency of blocking circulations and changes in the surface

energy balance“.

In their analysis, they explicitly associated an increase of atmospheric blocking events

with the increased occurrence and persistence of the SOM pattern involving a dipole showing

ridging across central Europe. This patterns and its trend are shown in Fig. 1.6b and Fig. 1.6f

respectively. However, using the increased occurrence and persistence of this node to identify

blocking patterns is unconvincing for several reasons:

• Most blocking events over Europe are centered over Scandinavia (see Fig. A.4 in section A).

If one of the four SOM nodes used in Horton et al. (2015)’s analysis was to be associated

with blocking events, it would then more naturally fit with Fig. 1.6a. Fig. 1.6c will be

associated with some blocking events, but certainly not all of them.

• Fig. 1.6c with the ridge shifted across to Western Europe may actually be a better fit for

the blocking anticyclones associated with some prominent Western European heatwaves

such as the 2003 and 2019 heatwaves, where the anticyclone was centered on continental

Western Europe (see Fig. 2.4 and 2.5 for a discussion of these case studies).

• As the occurrence and persistence of the Fig. 1.6b pattern increases, the occurrence and

persistence of the opposite pattern in Fig. 1.6c decreases. This could mean that the

number of blocking events is constant but that the center of the blocking anticyclone

shifts to the Eastern part of the domain from the Western part. Therefore, it is not clear

from the trend in Fig. 1.6f alone that there is a significant increase in the occurrence of

atmospheric blocking events.

• Since blocking events are identified as persistent anticyclones, it is inaccurate to use

daily circulation patterns to categorise a pattern as a circulation pattern. There will be

several days in the period studied by Horton et al. (2015) which reflect circulation patterns
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Figure 1.7: Regime patterns for the Euro–Atlantic regimes using 500 hPa geopotential height
anomalies. Obtained from the ERA-40 and ERA-Interim reanalysis datasets (1964–2014,
NDJFM). The observed regime frequencies are indicated in the subplot titles. Caption and
figure taken from Fig. 1 of Fabiano et al. (2021).

that closely approximate Fig. 1.6c that will reflect non-stationary weather patterns such

as the movement of weather fronts. If the occurrence of the ridging pattern increases, this

does not necessarily mean that blocking across this part of the domain is increasing.

A further issue with the analysis of Horton et al. (2015) was noted by Jézéquel et al. (2018),

namely that they failed to effectively detrend geopotential height to remove the thermodynamic

effect. Since geopotential height at a given pressure level increases with a warming troposphere

by the hypsometric equation, if geopotential height is to be used in analysis as a dynamical

variable it needs to be detrended in some way to approximately account for this effect. This was

not done by Horton et al. (2015) and therefore in their analysis they overstate their quantification

for a dynamic shift already seen in the historical data. Therefore Horton et al. (2015) overstate

the importance of the dynamic contribution to increasing surface temperature extremes. A new

method in which I show how SOMs can be more accurately used to identify blocking events is

described and applied in section 2.

1.5.6.2 K-means analysis

K-means cluster analysis has been used since the 1990s to identify distinct weather regimes in

Winter in the Euro-Atlantic region (Vautard 1990; Michelangeli et al. 1995; Kageyama et al.

1999; Cassou 2008; Hannachi et al. 2017; Fabiano et al. 2021).

Four regimes are commonly identified: NAO+, NAO-, Atlantic Ridge and Scandinavian

blocking. A typical pattern of these is shown in Fig. 1.7, using 500 hPa geopotential height
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ERA-40 and ERA-Interim reanalysis data across 1964-2014 in NDJFM. Figure 1.7 accords with

many similar analyses over the Euro-Atlantic region using both reanalysis data and climate

model output (Dawson et al. 2012; Ferranti et al. 2015; Hannachi et al. 2017; Fabiano et al.

2020).

These patterns are robust, and it is clear that the Scandinavian blocking weather

regime is commonly associated with Scandinavian blocking events; Day et al. (2019) used the

Scandinavian blocking pattern as a continuous index to identify Scandinavian blocking events

by pattern correlation with the daily geopotential height anomaly. Whilst this approach can

yield physically meaningful results relevant to atmospheric blocking events, it also lacks the

persistence criteria necessary for identifying individual blocking events.

1.5.7 The emergent constraint approach

One recent technique for using ESMs in reducing uncertainty on future climate change is through

emergent constraints (ECs). These rely on strong statistical relationships between aspects of

the current climate and future change across an ESM ensemble. If a relationship is identified

between past and future states of the climate across a model ensemble, the historic observational

record can be used to make an estimate for the future change in the climate system (Hall et al.

2019).

One example of the emergent constraint approach can be found in Hall and Qu (2006),

who found that the variations in the strength of the snow albedo feedback with climate change

across models were strongly correlated with variations in the feedback strength of snow albedo

in the seasonal cycle. Therefore, in principle the current seasonal cycle can be used to constrain

the snow albedo feedback under climate change.

The EC approach has received criticism. Cox et al. (2018) used the EC approach to

provide an estimate of equilibrum climate sensitivity, which was critiqued by Rypdal et al.

(2018), who argued that the work of Cox et al. (2018) is “derived from incorrect physics” and

“sensitive to arbitrary methodological choices”. Hall et al. (2019) have developed a framework

for assessing the viability of emergent constraints involving out-of-sample testing and verified

mechanisms for where these approaches are valid.
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An approach involving an emergent constraint in the relationship between the historic

occurrence of ESB and the future trend of ESB is discussed in 4, and applied to provide an

estimate for the ESB climate feedback.

1.6 Aim and research questions

The aim of this thesis is to produce an estimate for the ESB climate response using information

from climate models.

The research questions are:

• What is the optimal blocking index for studying atmospheric blocking events?

• What is the optimal method for comparing the skill of blocking indices?

• What physical mechanisms are involved in influencing the ESB climate response?

• Can a comparison between the CMIP5/6 model ensemble and the ERA5 climatology of

the model skill be used to obtain an estimate for the ESB response?
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Chapter 2

An unsupervised learning approach to

identifying blocking events: the case of

European summer

2.1 Introduction

This chapter is based on a paper published in Weather and Climate Dynamics (Thomas et al.

2021).

In order to better understand blocking and to investigate the influence of climate change,

there have been significant efforts to develop blocking indices (BIs) that can automatically

detect blocking in long meteorological records (Lejenäs and Økland 1983; Dole and Gordon 1983;

Tibaldi and Molteni 1990; Pelly and Hoskins 2003). However, the multiplicity of these BIs, with

a variety of thresholds for defining the area, persistence and magnitude of blocked features on

different atmospheric dynamical variables (Barnes et al. 2012b; Pinheiro et al. 2019), means that

these methods necessarily carry the burden of somewhat subjective definitions. Whilst previous

intercomparisons of BIs show similar global climatologies, and all indices capture many of the

basic features of atmospheric blocking within their definitions, there are known regional and

seasonal differences (Croci-Maspoli et al. 2007; Barriopedro et al. 2010; Pinheiro et al. 2019). In

addition, whilst spatial climatologies obtained from these BIs have been compared extensively,
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to the best of my knowledge there has been no direct time series comparison of the BIs beyond

case study analyses such as those in (Scherrer et al. 2006) and (Pinheiro et al. 2019).

The utility of machine learning in pattern recognition has led to several applications

of clustering algorithms to study circulation patterns. In particular, self-organizing maps are

frequently used to classify midlatitude circulation patterns (Cassano et al. 2007; Skific and

Francis 2012; Horton et al. 2015; Loikith et al. 2017; Gibson et al. 2017a; Agel et al. 2021).

These studies often categorise daily data of fields such as geopotential height to identify different

circulation patterns and investigate how these are linked to changes in other variables such as

temperature or precipitation. In doing so, certain weather regimes can be understood to be

causally connected to temperature and precipitation extremes, which has several applications,

including in attributing climate changes to dynamic and thermodynamic mechanisms (Cassano

et al. 2007; Higgins and Cassano 2009; Skific et al. 2009; Horton et al. 2015; Mioduszewski et al.

2016). However, since atmospheric blocking events by definition are persistent across several

days, individual SOM circulation patterns categorising daily weather patterns are not sufficient

to classify blocking events as the blocking index since they lack the necessary persistence

threshold for study of atmospheric blocking events.

K-means analysis, a clustering algorithm similar to SOMs, is also frequently used to

study atmospheric circulation patterns (Vautard 1990; Michelangeli et al. 1995; Cassou 2008;

Ullmann et al. 2014; Strommen et al. 2019; Fabiano et al. 2021). It is common in K-means

clustering analyses over the Euro-Atlantic sector to identify four circulation regimes, including

one that describes the typical conditions for Scandinavian blocking (Ferranti et al. 2015). This

can also be used as a continuous index to identify Scandinavian blocking events (Day et al. 2019).

However, as with the SOM analysis, this K-means approach lacks the persistence criterion which

is a necessary requirement for any blocking index. A further discussion of these methods can be

seen in section 1.5.6.

There are therefore two broad categories of approaches to studying blocking patterns

and their connection to weather extremes - clustering algorithms and blocking indices. It has

been highlighted that consistency across various methods in detecting long-term changes is a

fundamental requirement to confidently identify trends (Barnes et al. 2014; Woollings et al.
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2018). To the best of my knowledge, there has been no previous study that directly compared a

clustering approach to other BIs.

In this chapter, I define a new binary ground truth dataset (GTD) of European blocking

events across June–July–August (JJA) 1979-2019, based on a five-day persistence threshold,

reanalysis data and expert judgement. Such a GTD is the first of its kind. As part of the process

of labelling the GTD, my understanding (cf. expert judgement) of blocking events has been

informed by the BIs and the various definitions that have been proposed, but as a key advance

my event interpretations do not merely rely on labels obtained by using individual BIs. This

enables an independent time series comparison with the BIs. I also compare my results to a

K-means clustering approach to describing the weather regimes of the mid-latitude atmosphere.

I present case studies of the prominent 2003 and 2019 European heatwaves, and show how well

K-means, the BIs and self-organizing maps (SOMs) describe the blocking events.

I then use SOMs to develop a new blocking index (SOM-BI). This is a unique approach

that combines both the persistence threshold of the blocking indices and the pattern recognition

of the SOM. This SOM-BI method has advantages over previous BIs because it exploits all

the spatial information provided in the input data and reduces the dependence on arbitrary

thresholds. It also provides a new way of studying blocking events that can more intuitively

distinguish between different regimes and locations of blocking events, which the other indices

are lacking. I identify the skill of different BIs by developing a binary time series identification

of European blocking patterns and comparing this to my GTD using standard skill metrics

discussed in section 2.2.6. This study is the first to define such a GTD and I use it as a

benchmark to compare the skill of different BIs over a region.

A key result introduced in this chapter is that the SOM-BI method has an improved

skill at detecting European summer blocking events to other BIs, particularly in climate models.

Since the SOM-BI method is not bound to a specific meteorological variable, I also quantify

how its detection skill varies with the variable used, from geopotential height anomaly fields

to potential vorticity maps. While there have been theoretical discussions on the importance

of the meteorological variable used to define and identify blocking (Pelly and Hoskins 2003;

Chen et al. 2015), the variable-dependence of skill of blocking detection methods has not been
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quantified before. Finally, I evaluate the performance of the SOM-BI on 41 years from the ERA5

reanalysis and 101 years of a pre-industrial control run carried out with the UK Earth System

model (UKESM1-0-LL, hereafter UKESM). I identify a moderate improvement in blocking

identification over the BIs for the reanalysis period and a significant improvement for the

UKESM data. A key advantage is that the longer climate model simulation allows us to test

the robustness of my method compared to other BIs over longer timescales, and to study the

dependence of the SOM-BI detection skill on the number of years included in the algorithm’s

training dataset.

This chapter is structured as follows. In section 2.2 and its subsections, I introduce the

meteorological reanalysis and climate model data, the new GTD, the BIs, K-means, SOMs, and

my new SOM-BI. In section 2.3, I present the main results of my analysis. I first compare the

various blocking identification methods by means of the 2003 and 2019 European heatwave case

studies (section 2.3.1), followed by an evaluation and intercomparison of the methods on ERA5

reanalysis and UKESM climate model data (sections 2.3.2 and 2.3.3). In section 2.3.4, I discuss

how the performance of the SOM-BI depends on the length of the data record used to train

the algorithm. In section 2.3.5, I test the feasibility to train SOM-BI on ERA5 data to then

reliably identify blocking in climate model data, and vice versa. In section 2.3.6, I briefly discuss

the effect of other hyperparameters on the SOM-BI skill. In section 2.3.7, I demonstrate how

the SOM-BI can be used to study trends in regional blocking patterns by applying it to ERA5

data. In section 2.4, I summarise and discuss my key results, and motivate the analyses of the

subsequent result chapters on the detection of blocking in climate change simulations.

2.2 Methods

2.2.1 Meteorological data

As a proxy for observed dynamical states over Europe, I used ERA5 reanalysis data from

the European Centre for Medium Range Weather Forecasts (ECMWF, Hersbach et al. 2020).

The pre-industrial climate model data was obtained from simulations carried out with the UK

Earth System Model UKESM1-0-LL (UKESM), as part of Coupled Model Intercomparison
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Project Phase 6 (CMIP6, Eyring et al. 2016; Sellar et al. 2019). For ERA5, I used gridded

data at a spatial resolution of 1◦ x 1◦ across 1979-2019, and created daily averages derived from

3-hourly intervals. In UKESM, I used 101 years of daily data from the pre-industrial run of the

r1i1p1f2 ensemble member, across the 1960-2060 period (arbitrarily defined due to the absence

of additional climate forcings). I used the UKESM data at the native resolution of 1.25◦ x

1.875◦ to develop the GTD plots and regridded to a 2◦ x 2◦ grid for the SOM analysis. When

training and testing between the ERA5 and UKESM data (section 2.3.5), I also regridded the

ERA5 data to a 2◦ x 2◦ grid.

For both types of datasets, I used the following common meteorological variables to

characterize the dynamical state of the atmosphere at any given time: geopotential height

at 500 hPa (Z500), mean sea level pressure (MSLP), relative vorticity at 500 hPa (ζ500). For

ERA5, I also used vertically integrated potential vorticity across 150-500 hPa (VPV), isentropic

potential vorticity on 350 K and 330 K (IPV350 and IPV330) and potential temperature on the

PV= 2 PVU surface (θ-PV). These PV-based variables have all been used in the context of

understanding atmospheric blocking (Hoskins et al. 1985; Crum and Stevens 1988; Pelly and

Hoskins 2003) but are not available from the CMIP6 archive. The 350 K and 330 K isentropes

were chosen because these intersect with the tropopause in the mid-latitude summer, as shown

in Fig. 1 of Liniger and Davies (2004), and therefore represent upper-level dynamics. For the

case study analyses, I have also used the surface horizontal wind fields and surface temperature

(Tsurf).

Following Grotjahn and Zhang (2017) and Pinheiro et al. (2019), I define the anomaly

fields that I study by subtracting a long-term daily mean (LTDM) from the data instead of

subtracting the daily average. This is a smoothed function of the 365-day seasonal cycle across

Z500, VPV and Tsurf using the first six harmonics of their Fourier series, where the first harmonic

corresponds to the mean and the fifth to a 73 day span. The purpose of this is to smooth out

the daily mean fields, which can otherwise show excessive variation between neighbouring days

across the seasonal cycle calculated from the available observational record.

The Tsurf and Z500 anomaly fields in ERA5 have been detrended linearly across time to

approximately remove the effect of thermodynamic warming. Following Jézéquel et al. (2017), I
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subtract a spatially uniform trend, so that the horizontal gradients of the field are not altered.

I depart from the Jézéquel et al. (2017) method by subtracting a linear Z500 anomaly trend

instead of a cubic spline interpolation, since I assume that in the 1979-2019 time period the

thermodynamic dilation of the troposphere can be approximated as linear, so removing nonlinear

trends could risk removing the dynamical variability in the atmosphere that I am interested

in. This assumption is based on the approximately linear increase in surface temperature over

Europe across this period (Folland et al. 2018; Twardosz et al. 2021). I also apply the same

detrending approach to the pre-industrial UKESM data, to remove any minor remaining trends

in the data, e.g. due to the finite spin-up time of the control simulations (Gregory et al. 2004;

Nowack et al. 2017; Mansfield et al. 2020).

2.2.2 Creating the ground truth dataset (GTD)

In order to objectively compare the blocking indices, I develop a ground truth dataset (GTD)

of blocking events in JJA Europe, here defined as 30–75 ◦N, 10 ◦W–40 ◦E, following IPCC AR5

definitions (Stocker et al. 2013). The northern latitude is extended to 76 ◦N when using data

on a 2◦ x 2◦ grid. JJA Europe was chosen because of my interest in the role of atmospheric

dynamics in the development of mid-latitude land heatwaves. Europe is a region which has

seen many recent significant heat extremes (Christidis et al. 2014), and the role of changes in

atmospheric dynamics has been a significant area of interest (Cattiaux et al. 2013; Horton et al.

2015; Saffioti et al. 2017; Huguenin et al. 2020).

The size of the domain has been motivated by my purpose in developing a dataset that

can be used to train an algorithm to identify blocking patterns over a region. Using a region

much smaller or larger than this would lead to a significant difference between the number of

days labelled as blocked and not blocked. Such a difference between the two sets of elements is

described as a “biased dataset”, and would limit my ability to train and validate a blocking

identification method.

The GTD has been derived by studying every successive five-day period from 28 May to

4 September within the years 1979 to 2019, and manually identifying whether or not a blocking

high persisted across any such five-day period. By including the last four days at the end of
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Figure 2.1: The information used to classify blocks in the ERA5 ground truth dataset (GTD).
(a) shows the Z500 contour for the averaged value across 30-70 ◦N, indicated in the bottom left of
the panel. The red and blue colours highlight the contours at midnight and midday, respectively.
(b) and (c) show the Z500 time detrended anomaly and IPV350 anomaly for each day.

May and the first four days of September, I ensure that all blocking events within the JJA

period are detected. Five days was chosen since this a typical persistence threshold for blocking

indices (Verdecchia et al. 1996; Schwierz et al. 2004; Scherrer et al. 2006; Pinheiro et al. 2019),

although a persistence of 7-10 days with weaker BI thresholds for amplitude and area has also

been used (Rex 1950; Lejenäs and Økland 1983).

A diagram of the type of information analysed to label each individual day is shown

in Fig. 2.1, for the example period 1-5 June 1979. This period was labelled as blocked, since

Fig. 2.1a clearly shows a continuous northward shift in the Z500 contours over Europe and

Fig. 2.1b shows a substantial positive Z500 anomaly which persists across Northern Europe. The
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IPV350 maps in Fig. 2.1c highlight filaments and regions where there is fast moving air. Once

the total set of all 4001 consecutive five-day periods across JJA 1979-2019 has been classified,

persistent blocking events are reconstructed to form a time series where each day is labelled as

blocked or not. If a day belongs to any one of the consecutive blocked five-day periods, it is

individually labelled as blocked (1), and if a given day does not belong to any of the blocked

five-day periods it is labelled as not blocked (0). This creates a classification of blocking patterns

for each day where each blocking event has a minimum length of five days. Blocking events

longer than five days are also identified through this approach, since days that are part of any

consecutive five-day blocked period are labelled as blocked. Blocking events longer than five

days are then identified through a series of adjacent five-day blocked periods.

A similar approach was adopted to classify 9494 five-day periods from 101 years of

JJA data in the UKESM pre-industrial control run, with an example blocked period shown in

Fig. A.1. As in Fig. 2.1, there is a clear quasi-stationary high centered on a region slightly north

of the UK. This is indicated by the Z500 contours which show a significant northward protrusion

over this region, and by the substantial Z500 anomaly across all panels in Fig. 2.1b. Since PV is

not available in CMIP6 data and the physical variables used to derive PV are not available at

sufficiently high vertical resolution, I instead show the MSLP anomaly field in Fig. A.1c, which

also indicates a high pressure region consistent with Figs. A.1a and A.1b.

2.2.3 Blocking Indices (BIs)

One way of describing atmospheric flow and investigating trends in atmospheric dynamics is

by using proxy indices such as those used to classify if a blocking event is occurring. There

are many blocking indices (BIs) that have been used to create a blocking climatology, and

these have been rigorously compared (Barriopedro et al. 2010; Pinheiro et al. 2019). A detailed

discussion of the different BIs is included in section 1.5.1.

In this chapter, I use the three indices compared in Pinheiro et al. (2019) including their

modifications:

• AGP - the geopotential height gradient method, which is the Tibaldi and Molteni

(1990) index as adapted by Scherrer et al. (2006) to construct a two-dimensional field of
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geopotential height gradients.

• DG83 - the Dole and Gordon (1983) method of investigating positive geopotential height

anomalies.

• S04 - the Schwierz et al. (2004) method of identifying persistent anomalies in the potential

vorticity field (VPV) averaged over 150-500 hPa (VPV).

I refer the reader to section 2.2 in Pinheiro et al. (2019) for a detailed discussion of these

methods and their associated thresholds. However, my analysis differs from the methodology

outlined by Pinheiro et al. (2019) in three ways, reflecting the fact that my study is regional

and seasonal instead of global. Firstly, I apply all thresholds defined by Pinheiro et al. (2019)

only to those grid cells within the region of study to exclude events that are on the edges of the

domain. Such events would be considered blocking events if the domain studied was extended.

Secondly, Pinheiro et al. (2019) applied a spatial smoothing to their global threshold field,

which defines the minimum threshold for each grid cell to be blocked. Although I have applied

the LTDM smoothing of the seasonal cycle (which I subtract from variables to calculate field

anomalies, section 2.2.1) and I also use a spatially varying threshold field, I have not applied

this spatial smoothing to my threshold field. I found that the resulting blocking climatologies

shown in Fig. A.4 are broadly consistent with those presented in Fig. 6 of Pinheiro et al. (2019),

underlining that this regional use of the BIs is still valid. Finally, to remove the well-known

problem of the AGP index identifying anomalous blocking events associated with the subtropical

high in summer (Davini et al. 2012), I adopt the extra threshold of the AGP index from

Woollings et al. (2018). The subtropical high feature was not observed in UKESM over Europe,

since the meridional geopotential height gradients have a smaller magnitude. I use the standard

AGP index for UKESM, but similar results are observed for UKESM with the modified index

(not shown).

I note that more indices have been proposed, including hybrid approaches combining

the AGP and DG83 indices (Barriopedro et al. 2010; Dunn-Sigouin et al. 2013; Woollings et al.

2018), the PV-θ approach developed by Pelly and Hoskins (2003) and the finite amplitude wave

activity method (Huang and Nakamura 2015). K-means clustering analysis (Diday and Simon

1980) has also been extensively used to study the Euro-Atlantic midlatitude variability and to
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Figure 2.2: The SOM blocking index (SOM-BI). (a) The trained 3x3 SOM for Z500 time-
detrended anomaly. (b) Normalised histograms showing the distributions of occurrence of BMUs
for the days identified as blocked or non-blocked within the GTD. (c) The SOM-BI optimisation
of the set of node groups against three different skill scores (precision (P), recall (R) and F1

score) that are associated with the GTD blocking events.

identify weather regimes (Vautard 1990; Michelangeli et al. 1995; Cassou 2008; Ullmann et al.

2014; Strommen et al. 2019; Fabiano et al. 2021). However, with the three BI methods included

here in addition to the SOM-BI and K-means comparison in the case studies, I expect to see

results that are sufficiently representative of the range of blocking detection methods available,

and to be able to highlight their most important similarities and discrepancies.

2.2.4 Self-organizing map (SOM)

The fourth method I used to investigate trends in atmospheric circulation regimes in European

summer is self-organizing map cluster analysis (SOM; Kohonen 1982). I refer the reader to

section 1.5.5 where SOMs are introduced and discussed in the context of this thesis. I have

implemented the SOM algorithm using the somoclu Python package (Wittek et al. 2017).
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2.2.5 The self-organizing map blocking index (SOM-BI)

Once I have created the GTD, this can be used to develop a new BI using SOM analysis. For a

given variable from the ERA5 dataset, I can specify a node number and arrangement of nodes

(number of rows and columns, Fig. 1.5) and then learn the corresponding SOM nodes from

that data. Figure 2.2a shows the trained pattern for Z500 anomalies in ERA5 28 May-4 Sep

1979-2019 for 9 nodes arranged in a 3x3 grid. Since each day in the dataset has been matched

to a BMU, I can identify which nodes are associated with blocked days according to my GTD.

Figure 2.2b compares the histograms of those nodes which are and are not associated with the

GTD blocking events. As expected, the three nodes with large positive Z500 anomalies (nodes 1,

2 and 3) are most closely associated with blocking events, and the nodes with large negative

Z500 anomalies (nodes 7 and 8) are rarely associated with blocking events. However, nodes 1, 2

and 3 still occur on 15% of non-blocked days, and 28% of the blocked days are also matched

with one of the other six nodes, including 3% of blocked days matched with nodes 7 and 8. This

tells us that while the SOM nodes can indicate the occurrence of blocked events, there is no

node or single combination of nodes that can be consistently identified with blocking events

with high skill.

However, from every five-day period within the GTD, I can identify an associated “group”

of nodes. For example, a five-day period can be associated with nodes 1 and 4 (any arrangement

of nodes 1 and 4 across five days), and this would mean that [1,4] is the associated group of

nodes for that five-day period. Since each five-day period has been classified either as blocked or

not blocked, it raises the possibility that a set of such groups can be more specifically associated

with blocking. In the following, I will identify the optimal set of node groups associated with

blocking by ordering the list of all possible node groups (e.g. [1,2,3], [1,4], [1], [1,2,3,4,6] etc)

from the node groups that have the highest to lowest precision (P) at identifying blocking events.

2.2.6 Classification skill measures

Fig. 2.2 (c) shows the binary classification skill according to the measures of precision, recall

and F1 score when applying the 9-node SOM-BI to ERA5 data. These three skill measures
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Figure 2.3: Examples of four blocked node groups identified by the SOM-BI described in
section 2.2.5 averaged to form mean codebooks. Shown here for Z500 in the optimised case of 20
nodes. In this case, there are 114 blocked node groups in total.

are defined in section 1.5.3. The three skill measures are shown for consecutive cases where I

successively add node groups as described above in order from highest to lower precision to the

set of groups that are associated with blocking. In other words, once a new group has been

added to the set of groups, this new group will define a series of blocked periods within my

SOM-BI approach. For the 3x3 SOM learned from ERA5 data, the node group with the highest

precision is [1], with P = 0.91 and R = 0.15, followed by [2] with P = 0.89 and R = 0.19 and [1,

2, 6] with P = 0.87 and R = 0.03. If only one node group is included in the set (e.g. [1] or [1, 2,

6]), there is a high P and low R, but as more node groups are added to the set of node groups

(e.g. [1], [2]; then [1], [2], [1, 2, 6]), P decreases but R increases. The optimal set of node groups

is identified by the value which maximises the F1 score (Fig. 2.2c). I perform this classification

for a range of node numbers and meteorological variables to identify an optimal performance in

section 2.3.3.
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2.2.7 SOM-BI application

Once an optimal set of node groups has been identified, these can be used to classify days as

blocked or not blocked. This creates a time series of blocking events but it does not produce a

spatial climatology. To develop a spatial climatology for the SOM-BI, I use the BIs described in

2.2.3 across the days that are identified as blocked by the SOM-BI.

A key advantage of the SOM-BI is that it identifies distinct types of regional blocking

events, since each blocked node group within the set of node groups is associated with a set of

blocking events. In the example shown in Fig. 2.2, 14 node groups are associated with blocking

at the intersection of precision and recall, which therefore identifies 14 possible distinct types of

blocking. For example, the node group [1] describes broad NW European events, [2] describes

Scandinavian blocking, and [1, 2, 6] describes a more variable set of blocking patterns that are

broadly associated with NE Europe.

To aid in my interpretation of these node groups, I calculate the mean of their node

codebooks, i.e. the mean of the spatial patterns of the nodes in each node group, which in turn

also characterize the corresponding blocking patterns. This forms “mean codebooks” for each

node group. Figure 2.3 shows four examples of such node groups associated with blocking from

ERA5 Z500 for the case of 20 nodes - the optimum number of nodes for this case (cf. Fig. 2.6a).

These four node groups are chosen since they illustrate the variety of nodes and numbers of

nodes present across the set of blocked node groups, and also represent a variety of spatial

patterns in blocking (N, NW, W and E). In section 2.3.7, these mean codebooks are applied to

identify distinct categories of blocking and to study their historical trends in ERA5.

As shown later in Fig. 2.8 (a), the optimised case of 20 nodes for Z500 yields a total set of

114 blocked node groups. This large number of different blocking patterns with subtly different

characteristics creates a challenge for easy interpretation of results. Furthermore, several of

these node groups occur very infrequently, perhaps only once in the 1979-2019 period, so a

meaningful study of their trends is not possible. To address these challenges and to study the

characteristics of different types of blocking events, I suggest a post-processing approach using

K-means clustering analysis (Diday and Simon 1980) applied to the 114 mean codebooks from

each node group. Each resulting K-means cluster will identify a sub-set of pattern-wise similar
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blocked node groups from the total set of blocked node groups. I will show in detail in section

2.3.7 and in Fig. 2.10 how this process can be used to identify distinct categories of blocking

over Europe, which are straightforward to interpret, and which allow us to study trends in such

blocking regimes.

2.3 Results

2.3.1 Case study analyses

Case studies of major past summer blocking events are useful to illustrate and understand

differences among BIs. I thus first compare the blocking identification methods (i.e. SOMs/SOM-

BI, the three conventional BIs, and K-means) for two examples of well-known 2003 and 2019

European heatwaves that were linked to blocking states of the atmosphere (Figs. 2.4 and 2.5).

In addition, I study two blocking events from UKESM, to investigate how blocking events are

described in the climate model. From the 101 years investigated in the pre-industrial control

run I have found the largest extent of heat extremes to occur in an extended heatwave shown in

Appendix Fig. A.2. This is contrasted with Fig. A.3, which shows the end of a blocking event and

a weaker transitory anticyclone. Both UKESM events are discussed further in Appendix A.1.

The 2003 European heatwave was record-breaking and had significant societal impacts

(Robine et al. 2008). It was shown to have been made at least twice as likely due to anthropogenic

climate change (Stott et al. 2004). According to climate change projections, such heatwaves

will become commonplace by the 2040s irrespective of future emissions scenarios (Christidis

et al. 2014). The most extreme temperatures during this heatwave were recorded from the

6-12 August, where the peak temperature recorded was in Southern France at 41◦C. Black

et al. (2004) reports that atmospheric flow anomalies were recorded in early August, although

there was a relatively weak signature of blocking. The 2003 heatwave remained the European

temperature record until 2019, when surface temperatures of 46◦C were observed in central

France. The 2019 heatwave was concurrent with persistent hot air that originated in North

Africa (the so-called “Saharan heat bubble”), which was sustained by an omega block centered

on Western Europe (Mitchell et al. 2019).
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Figure 2.4: The 2003 European heatwave. (a) shows the detrended 500 hPa geopotential
height anomaly for each day. Left (right) hatching indicates where the local surface temperature
exceeds the 90th (99th) percentile for the detrended 2 m temperature. (b) shows the potential
vorticity anomaly vertically averaged across 150-500 hPa, with arrows showing the 10-m wind
field. (c) shows the corresponding SOM pattern for Z500 anomalies from 9 nodes. (d) similarly
shows the corresponding K-means centroid for 4 clusters. (e) shows the contours identified
as blocked in this region in the AGP (red), DG83 (black) and S04 (blue) indices. A green
(magenta) tick or cross indicates if the GTD (SOM-BI) identifies the day as blocked or not.
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Figure 2.5: As in Fig. 2.4 but for the 2019 European heatwave.
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Figs. 2.4a and 2.5a show daily maps of detrended Z500 anomalies for the two events, the

field used by the DG83 index to identify blocking events. The hatching indicates detrended

surface temperature extremes at the 90th and 99th percentile. It can be seen that across all cases

there are significant positive Z500 anomalies which are associated with temperature extremes.

Figures 2.4b and 2.5b show the vertically averaged potential vorticity (VPV) field, used by

the S04 index to identify blocking, and also the 10 m winds. The VPV field is consistently

anti-correlated with the Z500 field, and significant negative anomalies in the VPV field tend to

be associated with stationary surface winds, particularly across 26-29 June 2019. Figures 2.4c

and 2.5c show the BMU SOM pattern for the case of 9 nodes for detrended Z500 anomaly fields.

Whilst the SOM nodes clearly track the features shown in the Z500 maps, a range of BMUs are

identified in both case studies even though there is a consistent extreme weather event across

these time periods. In the 2003 case study in ERA5, three SOM BMUs and four transitions

between BMUs are shown in Fig. 2.4c. These all show positive Z500 anomalies in the Northern

part of the domain, even though the meteorological situation varies meridionally more than

zonally, particularly across 4-9 August 2003. An even greater variety of BMUs is observed in

the 2019 case, where four nodes and four transitions between SOM nodes are shown in Fig. 2.5c.

This creates a difficulty of interpretation - whilst the SOM can identify the best matching

spatial pattern of Z500 anomalies, these particular SOM patterns do not correspond to circulation

regimes as conventionally understood, since even minor shifts in the domain (such as the change

from the 2-3 August 2003) can cause the corresponding pattern to shift. The frequency of

these shifts and sensitivity of the SOM is dependent both on the number of nodes chosen and

the domain size. Smaller domains with fewer SOMs show more consistency in the synoptic

weather patterns, but when these are sufficiently reduced (such as for four SOMs over the

Mediterranean), the SOMs become less distinguishable and lose even more of their explanatory

power to represent meaningful pattern variations across the domain (not shown). Overall, the

fact that several SOM nodes occur during the case study blocking events shows that individual

SOM patterns will not be able to consistently identify blocking events with high precision or

recall, contrary to how SOMs are typically used in many applications in the literature. However,

well-defined groups of nodes, as I will show below, can indeed achieve this task and can thus be
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used for the purpose of my new SOM-BI.

Figures 2.4d and 2.5d show a K-means clustering analysis using Z500 anomaly fields for

the case of 4 centroids. As described in section 1.5.5, the case of K-means with 4 centroids

produces a similar set of weather regimes to SOMs with 4 nodes. Consequently, the K-means

analysis exhibits a similar behaviour to the SOMs discussed above but distinguishing between

fewer weather regimes. One weather regime indicating Scandinavian blocking consistently

represents the 2003 European heatwave across Fig. 2.4d, but the westward shift of the high

pressure centre from Scandinavia on 31 July to the UK on 8 August 2003 is not described by 4

centroids. For the 2019 heatwave in Fig. 2.5d, all four weather regimes are represented, and the

blocked period is primarily associated with a mixed weather regime. This shows that the 2019

case is also not described well by K-means clustering.

Figs. 2.4e and 2.5e show the contours demarking blocked regions as identified by the

three different BIs. A tick or cross in the bottom left and right corners indicates whether

the day was identified as blocked or not in the GTD and the SOM-BI, respectively. For the

SOM-BI labelling, Z500 20 SOM nodes are chosen on the basis of the optimisation of the SOM-BI

in Fig. 2.6a. Across all case studies the DG83 index clearly tracks regions of positive Z500

anomalies. The S04 and AGP indices also track the same feature in the 2003 heatwave until

3 August 2003, but does not identify any blocking associated with the 2019 heatwave. The

SOM-BI describes the initial period of the 2003 heatwave well, although it does not capture

the Western European blocking event during the peak period of extreme temperature across

6-12 August. The SOM-BI also does not capture the 2019 blocking pattern coincident with the

2019 heatwave. This is because the SOM nodes are too variable over the 2019 event such that

the set of nodes which best match the Z500 anomaly fields are not generally associated with

blocking. For example, the SOM nodes across 27-30 June 2019 indicate mixed patterns which

do not obviously correspond to blocking over a consistent area (the positive maxima shift from

the British Isles to Eastern Europe within a day). This lack of pattern consistency is mostly the

result of an unfortunate balance between the positive and negative Z500 anomalies on these days,

where the latter play a major role in the allocation of the BMU during this period. I discuss the

possibility of ignoring negative anomalies in my assignments of the BMUs in section 2.3.6, but
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Table 2.1: A comparison of skill scores of the original BIs and the new SOM-BI against the
GTD for ERA5 1979-2018 and UKESM for JJA over the European domain. Where not indicated
the skill scores are measured with respect to the relevant GTD. “BLO” indicates the skill score
for the trivial case of every day labelled as blocked, and “RND” where a random allocation of
blocked days has occurred with the same proportion of blocked days as the GTD.

Dataset Method Days blocked PrecisionRecall F1 F1 wrt AGP F1 wrt DG83 F1 wrt S04 F1 wrt SOM-BI

ERA5 GTD 33.4% 1 1 1 0.56 0.73 0.19 0.74
ERA5 AGP 19.5% 0.76 0.44 0.56 1 0.55 0.22 0.51

ERA5 DG83 34.3% 0.72 0.75 0.73 0.55 1 0.19 0.69

ERA5 S04 5.3% 0.69 0.11 0.19 0.22 0.19 1 0.15

ERA5 SOM-BI 34.6% 0.73 0.75 0.74 0.51 0.69 0.15 1

ERA5 BLO 100% 0.33 1 0.50 0.33 0.51 0.10 0.51

ERA5 RND 33.4% 0.33 0.33 0.33 0.25 0.34 0.09 0.34

UKESM GTD 29.0% 1 1 1 0.34 0.60 - 0.71
UKESM AGP 20.8% 0.41 0.29 0.34 1 0.29 - 0.28

UKESM DG83 14.5% 0.90 0.45 0.60 0.29 1 - 0.55

UKESM SOM-BI 29.6% 0.70 0.72 0.71 0.28 0.55 - 1

UKESM BLO 100% 0.29 1 0.45 0.34 0.25 - 0.46

UKESM RND 29.0% 0.29 0.29 0.29 0.24 0.19 - 0.29

found that this modification does not improve the SOM-BI performance overall. In summary,

there are blocking events such as these that will also not be described well by the new SOM-BI,

but as I show below the SOM-BI performs as good as or better than conventional BIs in most

cases.

2.3.2 Blocking index comparison in ERA5 and UKESM with GTD

A climatological comparison of the BIs over JJA Europe confirms what has been discussed in

the case study analyses above, and is consistent with the results of Pinheiro et al. (2019), which

are broadly consistent with other BI climatologies. I show the spatial distribution of blocking

climatologies according to three conventional blocking indices in Fig. A.4. Where my analysis

substantially differs from the literature is in the regional approach and consideration of direct

time series comparisons across the BIs including the SOM-BI. I do not explicitly consider the

time-averaged climatological distributions of blocking events over Europe (as shown in Fig. A.4),

which can only emphasize a time-averaged picture instead of the series of individual events. For

my comparison, I first apply all BIs to the historical ERA5 data over the European domain.

Each day for each BI is labelled as blocked if a blocking event has been identified within the
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Figure 2.6: A comparison of the performance of the SOM blocking index for seven variables in
the ERA5 1979-2019 historical period with a varying number of nodes in the SOM. Precision
(P), recall (R) and F1 scores are calculated, and the absolute difference between precision and
recall is also shown. Error bands show the standard deviation (±1σ) for 10-fold cross-validation.
The red number inset into each panel shows the optimal F1 score and the position of the box
indicates the corresponding optimal node number. The optimal value is defined by the node
number where the F1 score is close to its maximum value and the difference between precision
and recall is close to the minimum value.

European sector and persists for at least five days. A blocking event is not identified if the

thresholds for amplitude, persistence, area and overlap discussed in section 2.2.3 are not met

within the European domain. This results in a binary dataset for each BI that identifies periods

of at least five consecutive days where blocking patterns exist within the European sector. These
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binary BI data sets I then compare to my manually labelled GTD.

Table 2.1 compares the precision, recall and F1 scores of these BIs and the SOM-BI

against the GTD for this domain-based comparison in both ERA5 and UKESM. I further

compare the time series of blocking classifications among the BIs themselves to quantify how

consistent the BIs are with each other. The key results are underlined. In both ERA5 and

UKESM, the best blocking index is the SOM-BI, with a F1 score of 0.74 in ERA5 and 0.71

in UKESM. All of the indices consistently perform worse in UKESM than in ERA5. This is

because blocking is less frequent in the model and several of those blocking patterns identified

in UKESM are less distinct (Fig. A.3). This is probably associated with mean biases in the

representation of Z500 that have been observed across several climate models (Scaife et al. 2010;

Schaller et al. 2018). The DG83 index performs almost as well as the SOM-BI in ERA5 with an

F1 score of 0.73, but there is a significant reduction in performance to 0.60 when applied to

UKESM data. The AGP index in turn shows an even weaker skill than DG83 in both reanalysis

and model, with a larger drop in skill from 0.56 to 0.34 in ERA5 and UKESM, respectively.

The fact that SOM-BI still shows a relatively good score for UKESM of 0.71 suggests that the

SOM-BI can be particularly useful in studying regional blocking in climate models. In particular,

since a model ensemble may exhibit a variety of intensities of blocking, the SOM-BI would be

able to overcome the limitations of BIs, where (particularly in the case of AGP) thresholds are

defined with respect to the observational record. Since the anomalous flow patterns associated

with blocking will be more consistent across datasets, the SOM-BI can identify blocking events

across a model ensemble with greater accuracy. The consistent skill of the SOM-BI across both

ERA5 and UKESM has been further verified by swapping the training and test datasets between

each dataset, as described in section 2.3.5.

A case where every day in Europe is labelled as blocked (“BLO”) is also compared,

which represents the case of perfect recall (=1) but a low precision. This case gives an F1 score of

0.53 for the GTD for ERA5 and 0.45 for the GTD of UKESM, and provides a useful benchmark

of basic performance. Surprisingly, the AGP index only performs marginally better than BLO

for ERA5, and performs worse in the UKESM case. Whilst S04 has a higher precision than

BLO, because the recall is so low the total F1 score is much lower (0.19). Finally, I compare
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a random labelling of blocked and non-blocked days, where the proportion of blocked days is

equal to that of the GTD (“RND”). This gives an equal precision and recall because the number

of true positives is equal to the number of false negatives. The F1 score of RND still exceeds

that of S04, with 0.33 for ERA5 and 0.29 for UKESM, and is comparable to the F1 score of

AGP in UKESM.

2.3.3 SOM-BI skill dependence on the choice of SOM node number

and the meteorological variable

The key hyperparameter in the SOM-BI is the number of nodes (k), which here is similar to

identifying the optimal number of circulation patterns required to effectively classify European

summer weather regimes. In addition, there are a number of meteorological variables from

which I could learn the SOM patterns, which in turn will also influence the skill of the SOM-BI

method. The dependency of the skill of my BI on these two factors is quantified in the following.

Figures 2.6 and 2.7 show how precision (P), recall (R) and F1 score depend on k and the

meteorological variable in ERA5 and UKESM, respectively. Specifically, I compare the skill

metrics for cases where I learn the SOM nodes from Z500, MSLP and ζ500 anomalies. For ERA5,

I additionally consider four PV-related variables (VPV, θ-PV, IPV350 and IPV330) shown in

Fig. 2.6d-g.

Another hyperparameter related to the number of nodes is the row × column (n×m)

arrangement of nodes. For example, 16 nodes can be arranged as 16×1, 4×4, 8×2, 2×8 or 1×16.

These different arrangements affect the topology of the SOM, the initialization of the nodes

and which nodes are counted in the neighbourhood of other nodes during the update process

of the SOM (Fig. 1.5). For each k in Figs. 2.6-2.8, I have used the arrangement of nodes that

maximises the average number of nearest neighbours between each node (e.g. using 4×4 nodes

for k = 16). This approach maximally exploits the SOM topology. I have also used n ≥ m

(for example using a 9×2 arrangement instead of a 2×9 arrangement of nodes for k = 18) to

preferentially arrange the SOM topology zonally across the domain rather than meridionally.

This is done because there is greater variability in the occurrence of blocking patterns zonally
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Figure 2.7: A comparison of the SOM blocking index performance for three variables in
101 years from the UKESM pre-industrial control period with a varying number of nodes in the
SOM. Precision (P), recall (R) and F1 scores are calculated, and the absolute difference between
precision and recall is also shown. Error bands show the standard deviation (±1σ). The red
number inset into each panel shows the optimal F1 score and the position of the box indicates
the corresponding node number. As above, the largest F1 score is for Z500, indicating that Z500

is the best variable tested for analysing blocking patterns using the SOM-BI in UKESM.

than meridionally across Europe (Fig. A.4).
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Figure 2.8: The number of node groups that are identified as blocked in the SOM-BI for ERA5
and UKESM for a range of node numbers and variables. The panels separate the variables
available in both models from those only available in ERA5. Error bands show the standard
deviation over cross-validation scores (±1σ).

The results are shown for 1 < k < 41. To measure out-of-sample skill, I used 10-fold

cross-validation, where the GTD was split into 10 separate sections for testing the SOM-BI. The

SOM-BI is trained on nine of the ten data sections and its skill is evaluated on the remaining

section. The skill scores shown only indicate how well the SOM-BI is able to predict the test

period in question, which was not used for training. This ensures that the SOM-BI has not been

tuned to the data I measure its skill against, which could give it an unfair advantage compared

to the other BIs. For ERA5 I used 4 year periods (1980-1984, ... , 2015-2019 inclusive) to

test on and trained on the remaining 37 years, with each 4-year period once serving as the

independent test set. In UKESM 10-year periods (1960-1959, ... , 2050-2059 inclusive) were

used for testing the SOM-BI and it was trained on the remaining 91 year period. This 10-fold

cross-validation procedure produces a range of precision, recall and F1 scores for each node

number. Figures 2.6 and 2.7 show the mean values for precision, recall, F1 and the absolute

difference between precision and recall. Figure 2.8 compares the number of groups of nodes

identified as blocked for each variable. Error bands indicate the standard deviation of each skill
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metric (±1σ).

Common features are observed for each variable for a very small or large number of

SOM nodes. For small k the SOM-BI identifies more days as blocked, such that R >> P. This

indicates that the SOM is under-fitting the data for European circulation patterns across the

domain and so the algorithm lacks a precise delineation of blocking events. In other words, it

could be beneficial to increase k to be able to represent a larger number of dynamical states

and thus to detect and describe blocking events more precisely. For large k, R << P , showing

that the SOM-BI is trending towards overfitting the training data. I deduce that the optimal k

occurs when the difference between P and R is small and the F1 score is close to its maximum

value.

From Figs. 2.6 and 2.7, I find that for both ERA5 and UKESM the Z500 anomaly is the

best variable to use with the SOM-BI, with a mean F1 score of 0.74 and 0.71 for k = 20 and

21 in ERA5 and UKESM, respectively. From Fig. 2.8a, Z500 also shows the lowest number of

blocked node groups for a given k, which shows that the blocked node groups are physically

more explanatory in Z500 than the blocked node groups associated with other for other variables,

making the SOM-BI results easier to interpret physically. MSLP is the second most effective

variable, with an optimum F1 score of 0.66 and 0.64 for ERA5 and UKESM respectively. This

lower peak performance is because the MSLP field has a lower signal-to-noise ratio as it is

influenced by effects within the boundary layer such as heat lows. The PV-related variables

exhibit a variety of lower skills, where the VPV field performing at a similar level to MSLP,

since the vertical integration of the VPV variable enables it to capture the pattern of blocking

better than other PV-based variables (Schwierz et al. 2004).

2.3.4 SOM-BI skill dependence on number of training years

One important verification for the SOM-BI is to ensure its robustness over long timescales.

Contrary to the other BIs, the SOMs learn from training data. Therefore, the SOM-BI skill on

test data will also be a function of how representative the training samples are of general states

of the atmosphere. Here I investigate if the observational record, for example, is long enough to

indeed ensure the same performance of the SOM-BI described above over longer timescales. For
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Figure 2.9: SOM-BI skill depending on the number of training years. (a) and (b) show the
skill scores for ERA5 and UKESM, and (c) shows how the number of node groups associated
with blocking varies with the length of the training record. 10-fold cross-validation is used, with
4 and 10 years used to test the SOM-BI for ERA5 and UKESM respectively. In both models
Z500 is the variable tested with 20 (5x4) nodes in the SOM. Error bands indicate standard
deviation (±1σ) in the skill scores depending on the training/test set combination.

this purpose, I train the SOM-BI algorithm on a range of different numbers of training years,

while keeping the number of years to test the algorithm performance consistent. Importantly,

there is no overlap between the training and test data to ensure that the skill evaluation is

truly independent, following the idea of statistical cross-validation (see e.g. Nowack et al. 2018b;

Mansfield et al. 2020). Figure 2.9 shows the results of this analysis for Z500 and 20 nodes across

both (a) ERA5 and (b) UKESM datasets, which is the best performing case according to my

analysis above. Since the datasets have different lengths (41 years vs. 101 years), I tested

the model on 4 and 10 years for each dataset respectively. For a small number of years, the

algorithm only sees a few blocking events and so only identifies the particular node groups

that are associated with these blocking events rather than identifying node groups that are in

general associated with blocking events. This leads to a high precision for a small number of

training years, particularly in the ERA5 data, since the SOM-BI is effectively over-fitting on a

few events, but the recall and overall F1 score are low. This behaviour is confirmed by Fig. 2.9

(c), which shows that there is a small set of node groups associated with blocking for a small

number of training years.
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Figs. 2.9 (a) and (b) both show that the recall and F1 scores increase asymptotically for

a larger number of training years, and the precision decreases asymptotically. These variations

become very small after 20 years for both ERA5 and UKESM, which indicates that after around

20 years the SOM-BI seems to approximate optimal performance. Figure 2.8 (c) shows that

the number of node groups associated with blocking continues to increase in both ERA5 and

UKESM even after this point, with 120 node groups identified with blocking for UKESM over 91

years compared to 95 node groups over 37 years. However, these extra node groups occur rarely

in the blocking datasets since they do not significantly affect either the precision or recall of the

algorithm, and are therefore less important for the detection of blocking from meteorological

data.

2.3.5 Cross-comparison of SOM-BI skill

For the SOM-BI to be effectively applied to understand future trends in atmospheric blocking, I

need to verify that the training of the SOM-BI on the observational record is consistent with

CMIP6 models. This step is necessary to ensure that the SOM-BI can identify blocking patterns

in the models. If it is possible for the SOM-BI to identify blocking patterns in a CMIP6 model

from training on the observations, then this shows potential for the SOM-BI to be applied

consistently across a model ensemble. Furthermore, if the SOM-BI can be trained on a CMIP6

model and tested on the observations, differences in the skill of the SOM-BI would highlight

limitations in that model’s ability to represent blocking patterns. This could be applied across

a model ensemble to compare the skill of different models at representing blocking patterns.

To investigate the feasibility of such studies, I test the skill of the SOM-BI algorithm by

training Z500 data on the 41 years from the ERA5 dataset and testing on the UKESM dataset

and vice versa. Table 2.2 shows the differences in the optimal performance for Z500 across the

different datasets. In all cases several node numbers were tested, and I identified an optimal

node number of 20 or 21 across all the configurations of training and testing data. There

was also a good performance of the SOM-BI for other node numbers that is consistent with

Fig. 2.6a (not shown). The stable performance of the SOM-BI shows that there is a consistent

range of synoptic weather patterns between the ERA5 and UKESM for European summer.
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Table 2.2: A comparison of the optimal F1 score for when Z500 ERA5 and UKESM datasets
are trained and tested on themselves and each other respectively. The corresponding node
number and number of blocked node groups is shown. When the dataset is tested on itself,
10-fold cross-validation is used and the mean value is shown. The optimal F1 score is identified
by finding the node number with the smallest difference between precision and recall whilst
maintaining a relatively high F1 score.

Training data Test data F1 score No of nodes No of blocked node groups

ERA5 ERA5 0.74 20 95

UKESM ERA5 0.74 21 134

UKESM UKESM 0.71 20 131

ERA5 UKESM 0.71 19 99

It also indicates a consistency between the labeling that occurred in the GTD across ERA5

and UKESM, despite the reduced performance in the blocking indices to label the GTD. This

further shows that UKESM describes blocking patterns in a similar enough way to the historical

observations for useful study of blocking events, which in turn reinforces the validity of studies in

blocking trends from the CMIP6 archive (Davini and D’Andrea 2020). Finally, this underscores

the potential for the SOM-BI to be used in understanding future trends and diagnosing model

skill across the CMIP model ensemble.

2.3.6 Dependence of SOM-BI skill on other parameters

Apart from the number of SOM nodes, the number of years trained over and the choice of

training dataset, there are several other parameters that could be modulated within the SOM-BI

framework. First, I investigated 5-fold cross-validation on the ERA5 dataset, which involves

testing the SOM-BI on 8 years of data five times. This was found to have a marginally lower

performance than 10-fold cross-validation. Furthermore, I tested an alternative approach to

identifying the corresponding best matching unit for the SOM pattern, where I only used positive

anomalies to define the BMU. Since I am only interested in positive anomalies it is possible

that such an approach would increase the skill score, particularly for events such as the 2019

European heatwave (Fig. 2.5). However, this modification was found to have a negligible effect

on the overall SOM-BI skill.
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Figure 2.10: Application of the SOM-BI to ERA5 Z500 1979-2019 JJA, using the method
outlined in section 2.2.7. (a) The K-means centroids of the mean codebooks. Hatching indicates
regions where the mean codebooks for contributing node groups agree on the sign. The number
of node groups associated with each cluster is indicated in the bottom right of each panel. The
labels in the top right of each panel reflect the main region with a positive anomaly. “tot” is the
total combination across all blocked node groups. To show that the four clusters are consistent
with the fields they represent, I show in (b) the average Z500 field across all days belonging to
each cluster of blocked node groups. At the bottom right of each panel in (b) the precision,
recall and F1 scores are shown for each cluster. (c) The blocking climatology for each set of node
groups, derived using the DG83 index for each blocked day identified by SOM-BI for the given
K-means cluster. Since the frequency of blocked events varies strongly between each cluster, the
climatologies have been scaled by the numbers in the top left of each panel. (d) Historical trends
as characterized by four different metrics for each cluster, using five-year moving average data:
black - occurrence of pattern; blue - persistence (average duration) of pattern; red - maximum
duration of block; gold - average number of blocked events (uses the right hand y-axis scale).
The numbers (numbers in brackets) show the gradients (p-values) for each trend, which are all
insignificant after correcting for multiple testing and autocorrelation.
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2.3.7 Application of the SOM-BI to ERA5

A central question of current research is how the characteristics of regional blocking events are

affected by climate change (Woollings et al. 2018; Drouard and Woollings 2018; Kornhuber

et al. 2019; Kornhuber et al. 2020). Here, I briefly demonstrate how the SOM-BI can be used

to study such effects. For this purpose, I apply SOM-BI to ERA5 data (Fig. 2.8a), where my

optimization yields the best performance for 20 SOM nodes (using Z500), and a total set of 114

blocked nodes (section 2.6). Clearly, this large number of different blocking patterns with subtly

different characteristics creates a challenge for easy interpretation of the results. In addition,

because several of these node groups occur very infrequently, perhaps only once in the 1979-2019

period, a meaningful study of their trends is not always possible. To achieve this, I suggest a

post-processing approach using the aforementioned K-means clustering analysis (Diday and

Simon 1980), but now applied to the 114 mean codebooks (section 2.2.7) identified for each

node group. The goal of this post-processing step is to identify distinct K-means clusters of

SOM node groups, where each K-means cluster summarizes a pattern-wise similar set of blocked

SOM node groups. In Fig. 2.8 (a), k = 4 is chosen since it is a common choice for identifying

weather regimes (Michelangeli et al. 1995; Cassou 2008; Ullmann et al. 2014; Strommen et al.

2019; Fabiano et al. 2021), but I note that a larger value of k yields a more detailed classification

of blocking patterns. Hierarchical clustering was also tested as an alternative to K-means, and

similar patterns were produced (not shown).

To illustrate the method, Figure 2.10 (a) shows the cluster centroids for each set of mean

codebooks for this case of k = 4. The bottom panel shows the mean pattern across all centroids.

Regions of hatching show where all of the mean codebooks in each centroid agree on the sign.

The number of node groups included in each cluster has been labelled in the bottom right of

Fig. 2.10 (a). The different clusters show distinct regions of positive anomalies, with generally

strong agreement across all mean codebooks included in each cluster. This underlines that the

clustering approach is effective at identifying distinct types of blocking events. The clusters

have been labelled in the top right of Fig. 2.10 (a) reflecting in each case the main region of

positive anomaly. Fig. 2.10 (b) shows the mean Z500 field across all blocked days identified

for each cluster, which are highly consistent with Fig. 2.10 (a). Consequently, the subsets of
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node groups are as expected physically consistent with the circulation patterns across these

blocked days so that the K-means clusters can indeed be used to study specific types of regional

blocking. In Fig. 2.10 (c), I show the blocking climatology associated with each cluster derived

using the DG83 index across the days identified as blocked in each cluster. The climatology

again matches well the patterns identified in (a) and (b). The bottom panel of Fig. 2.10 (c)

shows the total blocking climatology from the SOM-BI. It is similar to the corresponding DG83

blocking climatology in Fig. A.4 (b), with a slightly reduced number of blocking events around

the Scandinavian high. This suggests that the SOM-BI is reducing the identification of events

on the edge of the domain.

Having established that SOM-BI, following by K-means post-processing, identifies

clusters representing distinct regional blocking events, I turn my attention to studying potential

trends in such blocking patterns. Such trends are given in Fig. 2.10 (d), using four different

metrics to characterize the events. These are the rate of occurrence of events (“Occ”; the

number of days in JJA that are associated with the pattern each year) and their persistence

(“Persis”; the average persistence of a blocking pattern in days), maximum duration (“Max

Dur”; the longest event for each year), and the number of events (“# Events”; the total number

of continuous blocked events per year). These quantities are calculated for each cluster and I

average all metrics using a five-year centred moving window, which is necessary to ensure that

at least one event for each of the four blocking patterns occurs within a given period.

The numbers (numbers in brackets) show the gradients (p-values) for each trend. The

p-values have been corrected for autocorrelation using the Zwiers and Storch (1995) two-tailed

Student’s t-test, and the multiple hypothesis testing has been corrected for using the false

discovery rate (Benjamini and Hochberg 1995; Horton et al. 2015). Since all of the p-values

are large, none of the trends are significant. However, I note that the number of E and NE

European blocking events doubles whilst the number of W European events halves across the

1979-2019 period. Whilst none of these trends are statistically significant, it highlights how the

SOM-BI method could be used to study changes in the characteristics of European blocking

over time, e.g. in longer climate change simulations. The SOM-BI can provide information that

is not directly available in the other BIs discussed here, since it can be used to study long-term
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trends across several types of automatically identified European blocking patterns.

2.4 Discussion and Conclusions

Using self-organizing maps (SOMs), I have developed a new blocking index (SOM-BI). This

has involved the creation of a new time series dataset (GTD) to describe when blocking events

have historically occurred over a region. I have described my approach as unsupervised through

its use of the SOM algorithm, but I note that the SOM-BI also employs supervised learning

through its blocking classification using the GTD. By studying the case of European summer, I

have identified a similar or better skill score for SOM-BI compared to several other blocking

indices (BIs) using ERA5 reanalysis data from 1979-2019. I further applied my new approach to

a pre-industrial control run from UKESM, and find that my method shows consistent skill for

this model dataset, whereas the other BIs substantially lose performance in this case. Whilst

no individual SOM node directly corresponds to a weather regime such as blocking, with an

optimal node number I can develop a set of node groups which are associated with blocking.

I have also found that 20 years are needed to train the SOM-BI, which underlines that the

SOM-BI has a robust level of performance if trained on standard reanalyses or on typical lengths

of climate model simulations. The performance of the SOM-BI is also robust to the dataset

used to train it, since it shows good performance when it is trained on the ERA5 data and

tested on UKESM and vice versa. These results show that unsupervised learning can be usefully

applied to understand regional blocking events, both historically and in the future.

I have further compared the performance of SOM-BI for a range of variables in both

ERA5 and UKESM that have been classically used to study blocking (Figs. 2.6 and 2.7). I find

that the best skill is obtained when applying SOM-BI to the Z500 field because it exhibits the

best signal-to-noise ratio in blocking identification. This is reflected in Fig. 2.8, which shows that

for a given node number the Z500 SOM-BI identifies blocking patterns with a smaller number of

node groups than for other variables.

I have confirmed that individual SOM nodes do not represent weather patterns perfectly

so that care needs to be taken in using SOM patterns as a means of diagnosing weather patterns

93



CHAPTER 2. AN UNSUPERVISED LEARNING APPROACH TO IDENTIFYING
BLOCKING EVENTS: THE CASE OF EUROPEAN SUMMER

(Gibson et al. 2017b). If individual SOM nodes were used to create a blocking index, or if a small

node number was used (3-6 nodes) there would be a high recall and low precision in detecting

blocking using this approach, which would be the equivalent to some of the approaches applied

elsewhere (e.g. Horton et al. 2015). If a higher node number (12+) was used and only one node

was associated with blocking, then there would be a high precision and low recall, and overall a

lower F1 score than for a low node number. However, by using a large number of nodes and

studying groups of nodes across periods of five days, I have developed an algorithm that can

regionally identify blocking patterns with optimal precision and recall, and which outperforms

several conventional blocking indices for this task.

Using this algorithm has involved the creation of a GTD, a binary dataset that identifies

regional blocking events. There are several limitations to this approach. Firstly, the choice of

domain is somewhat arbitrary and here primarily motivated by a specific scientific question

(summer heatwaves in Europe), and events which are on the edges of the domain are excluded,

even though a large region within the domain could be considered blocked. In addition, the task

of assigning a binary label to each day can be further complicated, since there is subjectivity

in assigning a binary label to the onset and decay of blocking events. However, by focusing

on events which are centered within the domain, a broad agreement with the identification of

blocked events was achieved, despite the somewhat subjective labelling nature of this approach.

The fact that the SOM-BI exhibits consistently good skill across ERA5 and UKESM even when

the SOM is trained on the other dataset underscores the consistency of my labelling as applied

both to the climate model and reanalysis data.

The use of SOMs as a blocking index provides opportunities for regional study that are

not directly available in the other BIs. Through an additional post-processing step involving

K-means clustering on blocked node groups (sections 2.2.7 and 2.3.7), I have shown that the

SOM-BI can identify specific types of blocking events and provide detailed information about

the changing nature of blocked events over a European subdomain (Fig. 2.10). The case of k = 4

has been shown in Fig. 2.10, but larger values of k can also be chosen to identify more distinct

types of blocking pattern. Whilst the SOM-BI does not directly produce a gridded climatology

of blocking patterns, I have shown that the SOM-BI can be integrated with the other BIs to
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develop a climatology that only considers days detected as blocking by the SOM-BI. This results

in a SOM-BI climatology with a higher precision than the DG83 index. The identification of

distinct blocking patterns from node groups enables a detailed study of blocking characteristics

over European subdomains as shown in Fig. 2.10.

This SOM-BI method has been applied to future trends in chapter 3 across CMIP5 and

CMIP6 models to study the ESB response, and different mechanisms for understanding this

response are proposed. In chapter 4 the SOM-BI method is used to provide an observational

constraint for the response on European summer blocking.
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Chapter 3

Model predictions and proposed

physical mechanisms for the European

summer blocking (ESB) response to

climate change

3.1 Introduction

One reason for the current uncertainty in the response of atmospheric blocking to climate change

is the large inter-annual and decadal variability in the blocking climatology (Kennedy et al.

2016; Brunner et al. 2017). This creates a challenge in separating forced changes in blocking

occurrence from unforced variability (Barnes et al. 2014; Shepherd 2014). One way to address

this is to study the response of atmospheric blocking in climate models in a high forcing scenario.

The self-organizing maps blocking index (SOM-BI) introduced in chapter 2 (Thomas et al. 2021)

provides an opportunity to study atmospheric blocking in high forcing scenarios, since it can be

used on a wide variety of datasets with a comparable skill to alternative BIs.

The atmospheric blocking response to climate change has been discussed in light of two

competing mechanisms: Arctic Amplification (AA) and increased upper-tropospheric warming

(UTW). These mechanisms work to increase and decrease atmospheric blocking occurrence
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respectively (Barnes and Screen 2015). In studying the ESB response under high forcing across

the CMIP5/6 model ensemble, I can investigate how other meteorological variables change under

high forcing. This enables me to identify the importance of AA and UTW and propose other

possible physical mechanisms which may have a role in influencing the ESB response.

The models and scenarios used for this analysis are introduced in section 3.2, and the

application of the SOM-BI method is discussed in section 3.3. The results section is divided

into five subsections. Section 3.4.1 presents the trends and relationship between past and future

blocking change. Sections 3.4.2 present a discussion of four physical mechanisms which could

affect the ESB response across the model ensemble:

1. Arctic amplification (AA) (section 3.4.2);

2. increased tropical upper-tropospheric warming (UTW) (section 3.4.3);

3. changes in the midlatitude meridional temperature gradient (section 3.4.4); and

4. the propagation of Rossby waves from diabatic heating in the equatorial Pacific (sec-

tion 3.4.5).

Discussion and conclusions are presented in section 3.5.

3.2 Data

The climate model data used in this chapter comes from the Coupled Model Intercomparison

Project Phases 5 and 6 (CMIP5 and CMIP6). I am studying JJA across 22 models (listed on the

x-axis of Fig. 3.2). To maximise the effect of climate forcing and to improve the signal-to-noise

ratio, I have studied blocking in the 4xCO2 runs and compared to the historical period (note

throughout this chapter I define “historical” as referring to the 1979-2005 period inclusive of

all years). The 1979-2005 historical period is used to provide a comparison to reanalysis data

from ERA5 and to maximise the number of models that can be used in this analysis, since

more daily data was available for the historical scenarios than for the pre-industrial control

runs. Since most models have only one ensemble member across the 4xCO2 and historical runs,

one ensemble member has been used in each model for consistency. The 22 models used in
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the analysis include all models across CMIP5 and CMIP6 which have provided monthly data

output for wind fields and surface air temperature, with concurrent daily data for mean sea

level pressure in both the studied 4xCO2 and historical periods.

I have taken daily mean sea level pressure (MSLP) data for the 4xCO2 and historical

runs, and have studied the JJA period with 5 days before and after to ensure that all blocking

events captured by the SOM-BI within JJA are included. To allow for the climate to adjust

after the significant 4xCO2 forcing, I have selected the period 120-150 years after the start of

the 4xCO2 run, since this period is available across all models (note throughout this chapter

that the 4xCO2 period refers to the 120-150 year period after the start of the 4xCO2 run). Note

that 120-150 years after the abrupt change is not long enough for the model to have reached

an equilibrium with stationary global mean surface temperature (GMST). For example, Li

et al. (2013) found that it takes 1,200 years for the surface to equilibriate after a 4xCO2 step

change in the ECHAM5 coupled climate model, and Rugenstein et al. (2019) found that the

CESM104 coupled climate model needs 4,000 years to achieve radiative balance at the top

of the atmosphere after a 4xCO2 step change. However, across the 120-150 year period the

rate of change of GMST is approximately the same as the rate of change of GMST across the

1979-2005 period (+0.1 ◦ C per decade) and much smaller than the first 100 years after the

abrupt 4xCO2 change (see e.g. Fig. 1a in Nowack et al. (2018a)). Therefore, I argue that it is

legitimate to treat the 120-150 year period as a new state of the climate which can be compared

to the 1979-2005 period.

To compare the change in ESB with the changes in other variables across the 22 models,

I have studied monthly-mean data from the 4xCO2 and historical runs across JJA and taken

seasonal averages. The variables I have studied include zonal and meridional wind (U and V )

at 200 hPa, which have been used to derive the dynamical variables of relative vorticity and

streamfunction. Additionally, I have derived the vertical U gradient (∂U/∂z) by calculating a

cubic spline interpolation across the pressure axis at every latitude and longitude and calculating

the first derivative.

At the surface, I have also used surface air temperature (Tsurf) to calculate the GMST.

To account for differences in model climate sensitivity, in this chapter the inter-model changes
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in blocking occurrence between the historical and 4xCO2 periods of each model have all been

scaled by the change in GMST of each model, respectively. Similar correlations between the

change in the synoptic variables considered and the change in ESB have been found without

applying a GMST scaling (not shown).

3.3 Methods

3.3.1 Use of SOM-BI with MSLP

Since there is limited availability of daily geopotential height data in the 4xCO2 runs, in this

study I use daily MSLP fields to identify blocking events. MSLP is not frequently used as a

variable for blocking studies, because it has a much lower signal-to-noise ratio than geopotential

height or potential vorticity, partially because of the interaction with boundary layer effects such

as surface lows. However, I have previously found in section 2.3.3 that the MSLP-based version

of the SOM-BI provides more skill in identifying blocking events than other indices in climate

models. A further benefit of MSLP is that it is a (mostly) stationary variable with respect

to climate change, compared to geopotential height which linearly increases under warming

according to the hypsometric equation. Whilst this effect can be detrended, such detrending

relies on assuming that the thermodynamic effect is linear over time (see the discussion in

section 2.2.1). However, in a sudden forcing scenario, the assumption of linearity in the response

to the time following the forcing is clearly invalid, and it is therefore impossible to clearly

separate out thermodynamic climate change effects on geopotential height from the dynamic

effects (see discussion in 2.2.1 on detrending geopotential height and section 1.1 on dynamic and

thermodynamic climate change). Therefore, MSLP appears to be the optimal choice of variable

if one wants to study the response of atmospheric blocking to climate change in a scenario with

abrupt forcing.

Note that global warming will thermodynamically impact the MSLP level by increasing

the mass of the atmosphere through the increased capacity for the air to store water vapour

(Trenberth and Guillemot 1994). The increase in the partial pressure of water vapour at

typical temperatures in the atmosphere will lead to maximum increases in atmospheric pressure
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of approximately 3 hPa ◦ C−1, assuming the air is saturated (Lester et al. 1984). This

thermodynamic effect is observable in the global mean in the 4xCO2 simulations, where increasing

the GMST increases the global MSLP by approximately 0.1 hPa ◦ C−1. However, whilst this

thermodynamic effect is dominant in the global MSLP average, the regional change in MSLP

over e.g. Europe is not in general correlated with changes in GMST. These differences are

shown for the UKESM 4xCO2 run in Appendix B.3. The lack of correlation demonstrates

that when studying how MSLP patterns change under climate change, the effects of climate

dynamics dominate on regional scales. I therefore assume that changes in MSLP reflect dynamic

mechanisms of climate change, and that MSLP is a valid variable to track changes in the

occurrence of atmospheric blocking in forced scenarios.

3.3.2 MSLP bias and normalization

To study blocking events in the 4xCO2 runs, I use the SOM-BI as described in chapter 2 to

classify days over Europe as blocked or not (Thomas et al. 2021). This is calculated from MSLP

anomaly data over Europe for both the historical (1979-2005) and 4xCO2 (120-150 years after

start of 4xCO2 run) periods.
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Figure 3.1: A diagram to show how model bias arises in the application of the SOM-BI (top
half) and how the normalised MSLP (defined in lower right) addresses the issue of model bias
(lower panel). (a) shows the MSLP climatology across JJA for the historic period (1979-2005)
in both ERA5 and ACCESS-ESM-1-5. (b) shows the optimised self-organizing maps (SOMs,
see section 1.5.5) for the MSLP (top) and MSLPnorm (bottom) data. In both cases the JJA
historic period of the ERA5 reanalysis was used to train the SOM. (c) shows the SOM node
distribution for ACCESS-ESM1-5 and ERA5 for the MSLP (top) and MSLPnorm data. The
difference between the model and reanalysis data SOM node histograms is significantly reduced
by applying the normalisation. This demonstrates that the normalisation is effective in removing
the SOM node bias. See discussion below and in Appendix B.1.

3.3.2.1 MSLP bias and implications for SOM-BI skill

I have found that using the MSLP SOM-BI trained on ERA5 data for climate models introduces

a significant bias in the results that is correlated with the future changes in the blocking of

the model, particularly over Scandinavia (see Fig. B.4 in Appendix B). This is due to the fact

that the bias of the historical MSLP climatology and variability of CMIP models is sufficiently

different to the ERA5 MSLP climatology so as to create biases in the occurrence of certain

SOM nodes. Such biases in the occurrence of certain SOM nodes will then lead to biases in

the detection of blocked SOM node groups, and therefore biases in the occurrence of blocking
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events from using the SOM-BI method. Such biases are based on differences in the statistics of

the SOM node occurrence, and therefore do not represent physical differences between ERA5

and a given climate model, so need to be addressed in some way.

This problem is illustrated in the top half of Fig. 3.1, which shows a comparison between

the ERA5 reanalysis and the ACCESS-ESM1-5 model (a model which shows a particularly

strong bias) for the historic period (1979-2006). In Fig. 3.1a the two MSLP climatologies

are shown, and whilst they exhibit the same general features, the MSLP climatology shows

significantly higher values (4 hPa) over much of the Western part of the domain, particularly

the UK. Here, I use the optimised SOM trained on ERA5 data to assign the best-matching

units for each day (see the discussion of SOMs in section 1.5.5 and the blocking index derived

from SOMs in section 2.2.5). This SOM is shown in the top panel of Fig. 3.1b.

The difference in the MSLP climatology leads to an over-representation and under-

representation of certain SOM nodes in the ACCESS-ESM1-5 model. These differences are

shown in the top panel of Fig. 3.1c. In particular, node 1 is over six times as likely to occur in

the ERA5 reanalysis than in ACCESS-ESM1-5, and node 3 is over twice as likely to occur in the

ACCESS-ESM1-5 model than in the ERA5 reanalysis. The higher occurrence of node 3, which

(from Fig. 3.1b) shows an SOM node with a dipole centered across Western Europe and the

Norwegian Sea), and lower occurrence of node 1 (which has a node with low pressure centered

on the UK) in ACCESS-ESM1-5 can be explained by the bias in the MSLP climatology in

Fig. 3.1a over the UK and Western Europe.

This bias in the occurrence of certain SOM nodes will then lead to significant differences

when occurrences of blocking events are detected, which from the SOM-BI are defined by using

blocked node groups (see section 2.2.5). Since there are significant changes in the occurrence of

certain blocked node groups historically, changes in the MSLP climatology and variability under

4xCO2 will lead to more/less significant changes in the occurrence of the SOM node groups

than are warranted. I have found across models that a higher historic MSLP climatology over

Scandinavia leads to a decrease in the future occurrence of blocking (see Fig. B.4 in Appendix B).

Such a relationship occurs because such models have an over-abundance historically of the

SOM nodes with low pressure over Scandinavia (see Fig. B.3 in Appendix B). Therefore, any
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positive increases or pattern shifts over Scandinavia will lead to a disproportionate change in

the occurrence of such SOM nodes, resulting in biased future changes in the number of blocking

events from the SOM-BI.

Note that this issue of reduced model skill arising from applying the ERA5 SOM to

CMIP data was already partially considered in section 2.3.5 for the UKESM model. However,

for the UKESM model there was not a significant change in the skill score using the SOM

derived from ERA5 or from UKESM across either model and vice versa (see Table 2.2). The

need to use normalised MSLP data emerges from considering the CMIP5 and CMIP6 model

ensemble, which has a wide range of skill in representing the European MSLP climatology.

3.3.2.2 MSLP normalisation and implications for SOM-BI skill

One means of addressing this issue of model bias is to define the SOM-BI using MSLP anomalies

which are normalised by subtracting the mean and dividing by the standard deviation in each

grid cell:

MSLPnorm =
MSLP− µMSLP

σMSLP

, (3.1)

where µMSLP and σMSLP are the mean and standard deviation of JJA-averaged MSLP

in each grid cell respectively. If done for all ERA5 and CMIP model datasets separately, this

approximately removes the model bias in the occurrence of certain SOM nodes. The resulting

SOMs found for ERA5 using the MSLPnorm data is shown in the bottom panel of Fig. 3.1b.

Note that using the SOM-BI with a new variable requires a redefinition of the set of

blocked node groups and the optimal SOM node number. This could lead to a different skill

in identifying blocking events, as shown in Fig. 2.8 in section 2.3.2 in the previous chapter.

However, Fig. B.5 in Appendix B.2 shows that the SOM-BI using normalised MSLP anomalies

has a similar skill in identifying blocking events to the SOM-BI using non-normalised MSLP

anomalies.

The lower panel of Fig. 3.1c shows the SOM node histograms for ACCESS-ESM1-5 and

ERA5 for the normalised SOM case, which more closely approximate each other than in the

upper panel in Fig. 3.1c. This demonstrates that the model bias issue has been significantly
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reduced by using the normalised MSLP variable instead of the MSLP variable. The largest bias

between ERA5 and ACCESS-ESM1-5 is for node 8, which is 1.5x more likely to occur in the

ACCESS model than in the ERA5 reanalysis. However, these differences could of course equally

be caused by internal variability (limited sample size) as well as model structure leading to

different frequencies of event occurrence, i.e. the distributions are not expected to be exactly

the same in any case.

Note that under 4xCO2 the MSLP climatology shifts, and therefore the MSLP anomalies

in the 4xCO2 run are projected onto a different background climatology. Since atmospheric

blocking events are deviations from the climatological background of MSLP, I separately define

the MSLP anomaly field in the 4xCO2 run with respect to the 4xCO2 climatology, and separately

apply the SOM-BI normalisation for the 4xCO2 period. Note that in separately defining the

anomalies for the historic and 4xCO2 periods I remove any direct dependence of trends in

atmospheric blocking on changes in the mean state of MSLP. This is a necessary step to apply

in the normalisation process of the SOM-BI to remove the dependence between the historic

MSLP climatology and the ERA5 climatology in a model. However, in separately defining

the anomalies and applying the normalisation for the historic and 4xCO2 periods I reduce the

magnitude of the dynamic climate change signal. This means that the ESB response obtained

from the normalised SOM-BI will tend to be an under-estimate of the actual ESB response.

Figure B.1 in Appendix B.1 shows that when the normalisation is not applied, the magnitude of

the ESB response is significantly larger. The implications of this under-estimate are discussed

in section 4.4 and future work to address this challenge in defining/normalising for background

climatologies is suggested in section 5.2.3.

The difference between the trends in the MSLP anomaly data using anomalies defined

by the historic period, the normalised MSLP anomaly in each period, using anomalies defined

by each period, is shown in Fig. B.1 in Appendix B.1. Since the model dependence on the

differences in the model’s historic MSLP climatology are significantly reduced when using the

normalised SOM-BI, I use the normalised SOM-BI across chapters 3 - 4.
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3.3.3 Comparison of meteorological variables to the ESB response

across the model ensemble

The relationships across the CMIP5/6 model ensemble between a given variable and the blocking

occurrence are analysed for both the historical and 4xCO2 periods. These are averaged over the

whole historical and 4xCO2 time periods for each model in the CMIP5/6 ensemble, such that

22 data points are used in the regressions for each of the plots shown in sections 3.4.2 - 3.4.5.

Note that in section C.1 in Appendix C the historical (1979-2005) relationship between U and

blocking is presented for ERA5 and compared to individual relationships between historical U

and blocking occurrence in the CMIP models. These regressions are all averaged across JJA for

each year, such that 27 data points are used in the regressions for each latitude/level point in

Figs. C.1, C.2 and C.3.

Fourteen pressure levels and seven longitude bands are used in this analysis. The

pressure levels extend from 1000 hPa to 30 hPa: 1000 hPa, 925 hPa, 850 hPa, 700 hPa, 600 hPa,

500 hPa, 400 hPa, 300 hPa, 250 hPa, 200 hPa, 150 hPa, 100 hPa, 70 hPa, 50 hPa and 30 hPa.

The seven longitude bands (defined as regions) in order are:

a) all longitudes;

b) Pacific (PAC): 140◦ E - 236◦ E;

c) Maritime Continent (MC): 100◦ E - 140◦ E;

d) Indian Ocean + Maritime Continent (IO+MC): 50◦ E - 140◦ E;

e) Indian Ocean + Pacific (IO+PAC): 50◦ E - 236◦ E;

f) Atlantic (ATL): 80◦ W - 14◦ W; and

g) Europe (EUR): 10◦ W - 40◦ E.

These regions are chosen since these longitude bands roughly delineate the major differences in

the U climatology arising from the world’s land masses and ocean basins.
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Figure 3.2: The ESB response across 22 global climate models. Derived by combining the
4xCO2 and historical periods of JJA global mean surface temperature and mean JJA blocking
over Europe and calculating a linear regression. The lines show the error bars on the trend,
defined by the standard error of the slope. Blocking occurrence is calculated using the SOM-BI
for the MSLP normalised anomaly discussed in section 3.3.2. Crosses indicate the percentage
change in blocking occurrences.

3.4 Results

3.4.1 Response of European summer blocking to climate change

Figure 3.2 shows the ESB response across 22 global CMIP5 and CMIP6 climate models. These

values are derived by combining the 4xCO2 and historical periods of JJA global mean surface

temperature and mean JJA blocking over Europe and calculating a linear regression over annual
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averages (using the 27 years across 1979-2005 and 30 years in the 4xCO2 run, 120-150 years

after the start of the 4xCO2 run). A linear regression is calculated instead of defining the

ESB response as the difference between the mean blocking occurrence divided by the difference

between the mean GMST of the 4xCO2 and historical runs. In subsequent figures the ESB

response is defined as the difference between the mean blocking occurrence divided by the

difference between the mean GMST of the 4xCO2 and historical runs. Figure 3.2 uses a linear

regression since this yields an error bar from the standard deviation of the slope. Both definitions

have been found to yield almost identical results.

Most studies concerned with trends in future blocking consider proportional changes in

blocking across models - reporting a percentage change in blocking under climate change instead

of a ESB response (e.g. Woollings et al. (2018), Davini and D’Andrea (2020)). I am not aware

of any study that presents the change in atmospheric blocking under climate change normalized

by GMST. In principle, normalizing by GMST enables a better comparison across a model

ensemble with a wide variation in climate sensitivity. Such an approach is common in studies

using high forcing scenarios, where the effect of a large forcing on a certain physical feedback

(e.g. cloud feedbacks) is often scaled by the change in GMST (e.g. Bacmeister et al. (2020),

Ceppi and Nowack (2021) and Thornhill et al. (2021)). However, since this is the first study to

use such sudden and high forcing scenarios to study the effect of climate change on atmospheric

blocking, I have additionally plotted the proportional change (the relative proportional change

between the historic and 4xCO2) in the models in Fig. 3.2 using red crosses.

In general, the proportional change in the models (indicated by the red crosses) is well

correlated with the ESB response. However, UKESM, CanESM5 and CNRM-ESM2-1 show

a large increase in blocking proportionally but a small ESB response. In these models there

is either an unusually high climate sensitivity (UKESM and CanESM5 have the 2nd and 3rd

highest climate sensitivity respectively of the models in this study) and/or a small historic

blocking climatology (UKESM, CNRM-ESM2-1 and CanESM5 have the 2nd, 3rd and 5th lowest

historical JJA Europe blocking occurrence). For simplicity, across the rest of this thesis I will

focus on the ESB response metric for European blocking.

None of the individual trends in Fig. 3.2 are statistically significant. However, statistically
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significant relationships (p-value <0.01) are observed across the model ensemble when I study

how the ESB response relates to the historic climatology for several variables. These variables

indicate the role of different mechanisms, which are discussed in sections 3.4.2 - 3.4.5.

3.4.2 The role of Arctic Amplification in the ESB response

Arctic amplification (AA) is a commonly cited possible mechanism to influence NH blocking

events (Francis and Vavrus 2012; Hassanzadeh et al. 2014; Overland et al. 2015; Peings et al.

2017; Fabiano et al. 2021). It is argued that the increased surface warming over the Arctic

compared to the rest of the Earth (Manabe and Wetherald 1975), associated with rapid sea ice

loss (Dai et al. 2019), could impact the Northern Hemisphere jet stream (Francis and Vavrus

2012). It has been hypothesised that by reducing the surface meridional temperature gradient

the speed of the jet stream reduces, and therefore Rossby waves are slower and more amplified

(Francis and Vavrus 2015; Francis et al. 2018), increasing the likelihood of blocking events.

This hypothesis has received criticism, with several studies claiming that there is no convincing

evidence that a link between AA and midlatitude extreme weather exists (Barnes 2013; Barnes

and Screen 2015; Blackport and Screen 2020; Dai and Song 2020). Further discussion of the

possible role of AA can be found in section 1.3.3.

I note that whilst Francis and Vavrus (2012) claim that AA plays a role in increasing

midlatitude extreme weather across all seasons, the discussion around the role of AA in

midlatitude weather is usually in the context of considering winter (Cohen et al. 2013; Barnes

and Screen 2015; Overland et al. 2015), since the peak season for AA is November-January

(Liang et al. 2022). Certainly, the role of a stratospheric pathway enabling AA to influence

midlatitude summer weather is not relevant, since there is no stratospheric polar vortex in JJA

(Kidston et al. 2015). However, Coumou et al. (2015) have shown that AA does have a significant

impact on weakening the NH JJA midlatitude circulation. Coumou et al. (2015) found that

this reduction in zonal wind speed is associated with reductions both in eddy kinetic energy

(EKE) and the amplitude of fast-moving Rossby waves, implying an increase in persistence

in JJA NH circulation patterns. Since heat extremes such as the 2010 Russian heatwave are

associated with low EKE (Dole et al. 2011), it is possible that AA is working to increase the
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severity of heat extremes through increasing the persistence of weather and therefore increasing

the persistence of JJA blocking events (Schubert et al. 2011). If this is the case for Europe, I

should expect to find a correlation between AA and increased ESB.

I studied the relationship between changes in the equator-to-pole temperature gradient

at the surface and at 850 hPa between the tropics and polar regions following the method of

Harvey et al. (2014). I found no statistically significant correlations across any of the regions

discussed in 3.3.3 (not shown). Therefore, there is limited evidence to suggest that AA has a

role in influencing the variation in ESB response across the CMIP5/6 model ensemble studied

here.

3.4.3 The role of tropical upper-tropospheric warming (UTW) in

the ESB response

3.4.3.1 Background

A second mechanism that is frequently discussed in the literature which may have an impact

on ESB under climate change is enhanced tropical upper-tropospheric warming (UTW). The

temperature gradient between the tropics and mid-latitudes at higher altitudes is strengthening

(Allen and Sherwood 2008), which would work to increase jet stream-level winds through the

thermal wind relationship (see section 1.2.3). An increased upper-level temperature gradient is

expected to shift the jet stream poleward and increase storm track activity (Held 1993). This

may work to decrease the persistence and frequency of atmospheric blocking events by reducing

the stationarity of circulation patterns (Vries et al. 2013). This process competes with AA

which is expected to shift the jet stream equatorward, weaken the jet stream and decrease storm

track activity, leading to more blocking events (Barnes and Polvani 2015). This has led to

the NH midlatitude jet described as in a “tug-of-war” between the processes of AA and UTW

(Barnes and Screen 2015; Screen et al. 2018; Peings et al. 2019). Harvey et al. (2014) found

that both mechanisms are important in influencing the storm track response across CMIP5

models, but in JJA the storm track response across the CMIP5 models is dominated by the

lower-tropospheric temperature differences. Riboldi et al. (2020) found from studying Rossby
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Figure 3.3: Linear regression across 22 models (shown in 3.2) between the change in T
(zonally-averaged across all longitudes) and the ESB response, scaled by the change in GMST.
For each grid cell, the latitude/longitude point is the dependent variable against the ESB
response. The left (middle) panel shows the slope (R2) for the linear regression in each grid cell.
The right panel shows the mean zonally-averaged T change across all models.

phase speeds in reanalysis data that whilst reduced phase speed is associated with midlatitude

atmospheric blocking and extreme temperatures, the Rossby phase speed is not associated with

AA for either JJA or DJF, reducing the likelihood of an explicit connection between AA and

atmospheric blocking but highlighting a potential role for UTW.

3.4.3.2 UTW and its relation to ESB response

In order to assess the role of UTW in influencing the ESB response, the temperature difference is

compared to the ESB response across the model ensemble. Figure 3.3 shows the linear regression

between the change in zonally-averaged T across all longitudes for each latitude/level grid cell

and the ESB response. Similar analyses were performed for zonally-averaged T other longitude

bands listed in section 3.3.3 and similar results for the regressions were found (not shown).

Figure 3.3a-b indicates a weak correlation between increased tropical UTW and increased

ESB occurrence (R2 ≈ 0.1 across 30◦ S - 30◦ N and 250 - 400 hPa). Whilst these correlations

are not statistically significant, Fig. 3.3g distinctively highlights a pattern of positive slopes

across the tropics in the upper troposphere that would be expected if there was a strong positive

relationship between UTW and increased ESB. However, since the correlation is very weak, I

conclude that there is no substantial evidence to relate UTW to ESB.
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3.4.4 The role of changes in the Atlantic midlatitude meridional

temperature gradient in the ESB response

In this subsection, I propose a separate physical mechanism that can influence ESB through

modifying the Euro-Atlantic midlatitude meridional temperature gradient (∆TML-Atl). From

studying U patterns across the models and splitting the models into groups with a positive ESB

response (10 models) from those with a negative ESB response (12 models), I identify distinct

patterns in U and how U changes across models (Figs. 3.4- 3.5). These changes correlate with

changing patterns of baroclinic instability which influence the meridional temperature gradient

across the Euro-Atlantic region and atmospheric blocking occurrence (Fig. 3.6).

First, in section 3.4.4.1 I show the relevant correlations which support the existence of

this physical mechanism. Then in section 3.4.4.2 I provide a description of the mechanism with

an accompanying infographic (Fig. 3.7).

3.4.4.1 Analysis of U and vorticity changes between models

Figures 3.4 and 3.5 show the NH U patterns averaged over all longitudes and the Atlantic,

respectively, separated by the period in the columns (historical and 4xCO2) and the model

group (negative and positive ESB response) in the first and second rows and columns. The

first two panels in the third column (Figs. 3.4c, 3.5c 3.4f and 3.5f) show the difference between

the 4xCO2 run and historical run U climatologies across the negative (Figs. 3.4c and 3.5c) and

positive (Figs. 3.4f and 3.5f) models. The third row (Figs. 3.4g - 3.4i and 3.5g - 3.5i) shows

the difference between the positive and negative model groups, with the positive model groups

subtracted from the negative model groups. Figures 3.4g and 3.5g (3.4h and 3.5h) show the

difference in the historical (4xCO2) periods. Figures 3.4i and 3.5i shows the difference between

the positive and negative model groups in the change in U climatology between the 4xCO2 and

historical periods. Figures 3.4i and 3.5i therefore highlight differences between the positive and

negative model groups under climate change.

Analysis of changes in the NH U . Figure 3.4 shows that both model groups show a

decrease in the strength of the JJA polar jet in the 4xCO2 run (note the decrease in U at
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Figure 3.4: The NH zonally-averaged U across the model groups. Averaged across all longitudes.
Separated out for the model groups in the rows and the model periods in the columns. The
mean U across the negative models is shown in the top row, the positive models in the middle
row and the difference between them in the bottom row. The left and middle columns show the
mean U for the historical and 4xCO2 periods, and the rightmost column shows the difference,
subtracting the historical run from the 4xCO2 run. Hatching indicates statistically significant
p-values for the two sample independent t-test between the positive and negative model groups.
Slashed hatching indicates a p-value < 0.05, and cross hatching indicates a p-value < 0.01, not
accounting for multiple hypothesis testing.

200 hPa and 50◦ N in Figs. 3.4c and 3.4f). As discussed in section 3.4.2, this will tend to

decrease the propagation of Rossby waves from tropical diabatic heating since there is less EKE
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Figure 3.5: As for Fig. 3.4, but averaged across the Atlantic region (80◦ W - 14◦ W as defined
in section 3.3.3).

in the atmosphere (Coumou et al. 2015).

In addition, the models with a positive ESB response have faster upper tropospheric

U than those with a negative ESB response. This can be seen by studying the first column of

Fig. 3.4, and noting the positive (negative) U difference in Fig. 3.4g at 200 hPa and 50◦ N (20◦ N)

where there is a positive (negative) U climatology. This suggests that there is a relationship

between the historic climatology and ESB response, which will be further explored in chapter 4.
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Analysis of changes in the NH Atlantic U . Figure 3.5 shows the U averaged across the

Atlantic for the two model groups, and there are several observations that can be made from

Fig. 3.5 to inform the mechanism described in section 3.4.4.2:

1. The models with a positive (negative) ESB response have a weaker (stronger) subtropical

Atlantic jet historically. This can be seen by studying the first column of Fig. 3.4, and

noting the negative U difference in Fig. 3.4g at 200 hPa and 30◦ N, the location of the

secondary subtropical jet.

2. The models with a positive (negative) ESB response have a stronger (weaker) polar

Atlantic jet historically. This can be seen by studying the first column of Fig. 3.4, and

noting the positive U difference in Fig. 3.4g at 200 hPa and 50◦ N.

3. 1. and 2. imply that models with a positive (negative) ESB response have a

stronger (weaker) meridional gradient in the 200 hPa U across 30◦ N - 50◦ N

historically. This results from corresponding differences in the meridional temperature

gradient shown in Fig. C.4 in Appendix C.2.

4. There is a poleward shift in the Atlantic polar jet across all models (see the negative sign

at 45◦ N and 200 hPa and the positive sign at 60◦ N and 200 hPa and the positive sign in

Figs. 3.5c and 3.5f).

5. There is a greater poleward shift in the Atlantic polar jet across models with a positive

ESB response. This can be seen by the hatched region in Fig. 3.5i, indicating a greater

increase in the strength of the subtropical North Atlantic jet in the models with a positive

climate feedback. This greater increase in the strength of the subtropical North Atlantic

jet leads to a greater shift in the Atlantic polar jet, which can be seen in the negative

(positive) sign 45◦ N (60◦ N) in Fig. 3.5i.

In summary, Fig. 3.4 indicates a general weakening of the strength of the NH circulation and

Figs. 3.5c and 3.5f show that both model groups have a general weakening of the strength of the

North Atlantic jet. However, Fig. 3.5i indicates a differential strengthening of the North Atlantic

subtropical jet, with a stronger response in the positive ESB response model group. This suggests
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a possible mechanism for the development of Rossby wave-breaking events in the Euro-Atlantic

region in the positive model group which will be further discussed in section 3.4.4.2.

Analysis of changes in 200 hPa vorticity. Figure 3.6 shows the pattern of linear regression

between 200 hPa vorticity and ESB. Many of the statistically significant features of this graph

relate to the tropical forcing mechanism discussed in section 3.4.5. What is most relevant for

the Atlantic meridional temperature gradient is the bottom panel (Fig. 3.6g-i) which shows the

linear regression between changes in 200 hPa vorticity and changes in ESB.

In Fig. 3.6g, hatched regions that extend NE from the subtropical North Atlantic

across the Mediterranean, Scandinavia and the Arctic Ocean north of Russia show a pattern

of positive and negative vorticity anomalies. From Fig. 3.6h these have a peak R2 of 0.55.

The pattern is positive/negative/positive/negative across the subtropical Atlantic/Mediter-

ranean/NW Eurasia/Arctic Ocean. I note that this pattern is similar to the pattern of 200 hPa

U shifts shown in Fig. C.5i in Appendix C.2, which shows a negative/positive/negative/positive

response in the 200 hPa U between the positive and negative model groups across the subtropical

Atlantic/Mediterranean/NW Eurasia/Arctic Ocean.

These suggest that models with a positive (negative) model feedback show a greater

(reduced) occurrence of this series of vorticity anomalies under climate change, which works to

increase (decrease) ESB.

3.4.4.2 Explanation of the physical mechanism

In this subsection I propose a mechanism consistent with the results shown in Figs. 3.4-3.6.

This mechanism can be briefly described as having two components:

• A weakening of the JJA NH midlatitude jet that decreases EKE in the atmosphere and

enables more atmospheric blocking (Coumou et al. 2015); and

• a poleward shift of the JJA Euro-Atlantic jet as the rest of the jet weakens, leading to

more Rossby wave-breaking in the Euro-Atlantic region.

Each of these components work to increase the occurrence of ESB events and they act in both

model groups. However, both components occur more (less) in models with a positive (negative)
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ESB response.

Figure 3.5 shows that models with a positive (negative) ESB response have a greater

(weaker) increase in the strength of the subtropical Atlantic jet. This differential change in the

subtropical jet results from differences in the heating profile between the models; models with a

positive (negative) ESB response have a greater (smaller) increase in the meridional temperature

gradient in the NH Atlantic tropical upper troposphere (see Fig. C.4 in Appendix C.2). Figure 3.5i

additionally shows that this greater increase in the strength of the Atlantic subtropical jet in

models with a positive ESB response is associated with a poleward shift of the Atlantic polar

jet. This is supported by Lee and Kim (2003), who have shown through an idealised primitive

equation model that baroclinic wave growth occurs when the subtropical jet is sufficiently strong.

The fact that a poleward shift of the Atlantic polar jet is associated with an increase in

ESB is contrary to initial expectation, since in general a poleward shift of the jet is associated

with increased EKE, faster U and a reduction in the occurrence of blocking anticyclones (Schubert

et al. 2011; Coumou et al. 2015; Francis et al. 2018). However, from comparing Fig. 3.5 to

Fig. 3.4 and similar zonally-averaged U plots across the other regional averages discussed in

section 3.3.3 (not shown), I note that this poleward shift of the Atlantic jet appears to

be a distinct phenomenon in the Euro-Atlantic region in contrast to the rest of the NH.

This creates a differential response of the jet in the Euro-Atlantic with respect to the rest of

the NH that is greater in models with a positive ESB response. Figure 3.5 shows that models

with a positive (negative) ESB response have a greater (smaller) difference in the

upper-level zonal wind climatology at 60 ◦N between the Euro-Atlantic region and

the rest of the NH.

This increased shift in the jet position could lead to more frequent discontinuities in the

jet stream, and therefore more Rossby wave-breaking events over Europe. Since Rossby-wave

breaking is a common way of discussing blocking anticyclones (Pelly and Hoskins 2003; Gabriel

and Peters 2008; Hoskins and James 2014a), this provides a possible mechanism for how an

increased meridional temperature gradient in the NH Atlantic can lead to more ESB.

This mechanism is reinforced by Fig. 3.6, which shows the correlation between 200 hPa

vorticity anomalies and ESB across all models for the historical and 4xCO2 periods and the
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difference between them. Figure 3.6i shows how changes in vorticity patterns relate to changes

in ESB, and highlights a clear pattern across the Euro-Atlantic region of alternating positive

and negative vorticity anomalies that are associated with a more positive ESB response. This

shows that models with a positive (negative) ESB response have a distinctive pattern of vorticity

anomalies that propagate across the Euro-Atlantic storm track.

Additional evidence has been included in Appendix C. The same pattern of vorticity

anomalies in Fig. 3.6i can be seen not only in the 200 hPa vorticity field but in the 200 hPa U

field shown in Fig. C.5i in Appendix C.2. Further, by regressing the historical U shear against

ESB, Figure C.6 in Appendix C.3 shows that ESB is associated with an increased zonal wind

shear in the subtropical Atlantic at 20◦ N. U shear is associated with baroclinic instability

(Vallis 2006a) which can cause the development of cyclones (Houze 2014). This highlights the

potential role of baroclinic instability in the subtropical Atlantic influencing ESB in line with

the above mechanism.

3.4.5 The role of Rossby waves from diabatic heating in the tropical

Pacific in the ESB response

In this section, I introduce a fourth potential mechanism contributing to the historical occurrence

of ESB, and therefore (through the negative correlation found in chapter 3 between historical

ESB and ESB response) influences the ESB response. The hypothesis behind the mechanism is

that the propagation of Rossby waves from diabatic heating in the tropical Pacific (Hoskins

and Karoly 1981) can lead to Rossby wave perturbations that extend to the North Pacific.

These exert an influence on the NH circulation to lead to increased ESB. These Rossby wave

perturbations are expected to decrease as the NH U decreases under climate change.

I first present the relevant data in section 3.4.5.1 through Figures 3.8-3.10. In sec-

tion 3.4.5.2 provide an explanation of the physical mechanism with reference to an explanatory

figure (Fig. 3.11) and relevant literature.
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3.4.5.1 Analysis of the physical mechanism

In this section, I provide a detailed discussion of the relevant features from Figs. 3.8, 3.9 and 3.10

to support the physical mechanism which will be described in Fig. 3.11.

Linear regression between ESB and global precipitation patterns Figure 3.8 shows

a linear regression across all 22 models in Fig. 3.8 between JJA precipitation and ESB. The

top row shows the correlations historically between precipitation and blocking, and it is clear

that tropical precipitation is correlated with ESB. The hatching in Fig. 3.8a across the tropical

Pacific suggests that models with high levels of precipitation across the central tropical Pacific

in the Inter-tropical Convergence Zone (ITCZ) have an increased occurrence of ESB, with peak

R2 ≈ 0.45 in the central tropical Pacific. This suggests that the ITCZ may play a role across

models in producing diabatic heating that generates Rossby waves of relevance for ESB, as

discussed in section 3.4.5.2.

The other prominent hatched regions in Figs. 3.8a-c are in the Southern Hemisphere.

These are bands that extend across the South Pacific and Southern Indian Ocean, where

increased precipitation is correlated with increased ESB. These correlations are unlikely to be

causally connected, but since diabatic heating from the tropics will produce Rossby waves in

both hemispheres, perturbations to SH circulation patterns (which could themselves lead to

precipitation anomalies) are likely to also be correlated with ESB in some regions.

Figures 3.8d - 3.8f show the correlations between precipitation and ESB in the 4xCO2

runs. Comparing to Figs. 3.8a and 3.8d shows that whilst the sign is the same, the magnitude

and significance of the correlations across the tropical Pacific are much weaker (note the factor

of two difference in the colourbars), and the prominent hatched regions are no longer present.

This suggests that the Rossby wave mechanism decreases with importance under climate change,

as discussed in section 3.4.5.2.

Figures 3.8g - 3.8h show the slope and R2 of the change in precipitation and the change

in ESB per degree GMST across the model ensemble. Interestingly, there is a strong (R2 ≈ 0.55)

correlation between increased precipitation in the tropical Pacific and increased ESB. This

shows that whilst diabatic heating from the tropical Pacific is less strongly associated with
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ESB (due to the weakening circulation discussed in section 3.4.5.2), propagation of Rossby

waves from diabatic heating in the tropical Pacific still plays an additional role across models

in increasing ESB in the 4xCO2 run. Therefore this mechanism works to affect the diversity

of ESB response across models, providing an additional contribution alongside the previously

discussed mechanisms.

Linear regression between ESB and zonally-averaged U . Figure 3.9 shows the correlation

between historical U and ESB occurrence across the model ensemble. Each row shows the slope,

R2 and climatology of a different zonally-averaged band, following the region definitions in

section 3.3.3. There is a significant positive correlation between the U in the tropics across the

IO+PAC region and its subregions. This can be seen in Figs. 3.9d, 3.9g and 3.9m, which all

have hatched regions at 15◦ N - 20◦ N. Noting that this is a positive correlation and from the

climatologies (Figs. 3.9f, 3.9i and 3.9o) there is easterly flow in these regions, it follows that a

weaker easterly flow across the tropical Asia-Pacific region at 15◦ N - 20◦ N is correlated with

increased ESB, with peak R2 ≈ 0.5. This will be further discussed in section 3.4.5.2.

I also note that there are some hatched regions in the extatropical SH in the Euro-

Atlantic region across 200 hPa - 30 hPa in Figs. 3.9p and 3.9s. There are unlikely to be direct

causal connections relating SH weather patterns to ESB, but (as in Fig. 3.8) these correlations

reflect how the tropical forcing that is influencing the NH is also influencing the SH.

Linear regression between ESB and 200 hPa streamfunction. Figure 3.10 shows how

200 hPa streamfunction is correlated with the occurrence of ESB events (see definition of

streamfunction in section 1.2.4). The arrangement of panels is the same as in the precipitation

linear regression plot (Fig. 3.8), where the slope and R2 of linear regressions for each grid cell

across all 22 models are shown in the left and middle columns respectively, and the right column

shows the climatology. Hatching indicates where the p-values are less than 0.01, not accounting

for multiple hypothesis testing.

The top row of Fig. 3.10 shows that 200 hPa streamfunction has tropical and extratropical

correlations associated with Rossby waves produced from diabatic heating in the tropical Asia-

Pacific. Figure 3.10a shows significant correlations with increasing streamfunction in both

122



CHAPTER 3. MODEL PREDICTIONS AND PROPOSED PHYSICAL MECHANISMS FOR
THE EUROPEAN SUMMER BLOCKING (ESB) RESPONSE TO CLIMATE CHANGE

1000
700
400
250
150 70 30

Pressure (hPa)1000
700
400
250
150 70 30

Pressure (hPa)1000
700
400
250
150 70 30

Pressure (hPa)1000
700
400
250
150 70 30

Pressure (hPa)1000
700
400
250
150 70 30

Pressure (hPa)1000
700
400
250
150 70 30

Pressure (hPa)

-80
-60

-40
-20

0
20

40
60

80
Latitude

1000
700
400
250
150 70 30

Pressure (hPa)

-80
-60

-40
-20

0
20

40
60

80
Latitude

-80
-60

-40
-20

0
20

40
60

80
Latitude

(a) all longitudes - slope

1.5
1.0

0.5
0.0

0.5
1.0

1.5
slope (days blocked m

1 s)

(d) PAC - slope

(g) M
C - slope

(j) IO + M
C - slope

(m
) IO + PAC - slope

(p) ATL - slope

(s) EUR - slope

(b) all longitudes - R
2

0.0
0.1

0.2
0.3

0.4
0.5

R
2

(e) PAC - R
2

(h) M
C - R

2

(k) IO + M
C - R

2

(n) IO + PAC - R
2

(q) ATL - R
2

(t) EUR - R
2

0.1
3 7.2
10.4
13.6
18.3

23.5

Altitude (km)

(c) all longitudes - historic zonal wind

30
20

10
0

10
20

30
Historic zonal wind (m

 s
1)

0.1
3 7.2
10.4
13.6
18.3

23.5

Altitude (km)

(f) PAC - historic zonal wind

0.1
3 7.2
10.4
13.6
18.3

23.5

Altitude (km)

(i) M
C - historic zonal wind

0.1
3 7.2
10.4
13.6
18.3

23.5

Altitude (km)

(l) IO + M
C - historic zonal wind

0.1
3 7.2
10.4
13.6
18.3

23.5

Altitude (km)

(o) IO + PAC - historic zonal wind

0.1
3 7.2
10.4
13.6
18.3

23.5

Altitude (km)

(r) ATL - historic zonal wind

0.1
3 7.2
10.4
13.6
18.3

23.5

Altitude (km)

(u) EUR - historic zonal wind

F
ig
u
re

3
.9
:
T
h
e
relation

sh
ip

b
etw

een
th
e
b
lo
ck
in
g
o
ccu

rren
ce

an
d
glob

al
p
attern

s
of
U

in
th
e
h
istorical

(1979-2005)
p
erio

d
across

th
e

C
M
IP

5/6
m
o
d
el

en
sem

b
le

in
F
ig.

3.2.
T
h
e
left

an
d
cen

tral
colu

m
n
s
sh
ow

th
e
slop

e
an

d
R

2
for

th
e
lin

ear
regression

resp
ectively,

an
d
th
e

righ
tm

ost
colu

m
n
sh
ow

s
th
e
U

clim
atology.

H
atch

in
g
in
d
icates

w
h
ere

th
e
p
-valu

e
<

0.01,
n
ot

correctin
g
for

m
u
ltip

le
h
y
p
oth

esis
testin

g.

123



CHAPTER 3. MODEL PREDICTIONS AND PROPOSED PHYSICAL MECHANISMS FOR
THE EUROPEAN SUMMER BLOCKING (ESB) RESPONSE TO CLIMATE CHANGE

(a) hst 200 hPa stream
function vs hst blo

(b) hst 200 hPa stream
function vs hst blo

(c) hst 200 hPa stream
function clim

(d) 4xCO2 200 hPa stream
function vs 4xCO2 blo

(e) 4xCO2 200 hPa stream
function vs 4xCO2 blo

(f) 4xCO2 200 hPa stream
function clim

(g) diff 200 hPa stream
function vs diff blo

(h) diff 200 hPa stream
function vs diff blo

(i) diff 200 hPa stream
function clim

-4
-3

-2
-1

0
1

2
3

4
slope (days blocked s) [x10

7]
0

0.1
0.2

0.3
0.4

0.5
0.6

R
2

-1.8
-1.2

-0.6
0

0.6
1.2

1.8
200 hPa stream

function (s
1) [x10

8]

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
slope (days blocked s) [x10

7]
0

0.1
0.2

0.3
0.4

0.5
0.6

R
2

-1.8
-1.2

-0.6
0

0.6
1.2

1.8
200 hPa stream

function (s
1) [x10

8]

-1.2
-0.9

-0.6
-0.3

0
0.3

0.6
0.9

1.2
slope (days blocked s 

C
1 / 

C
1) [x10

6]
0

0.1
0.2

0.3
0.4

0.5
0.6

R
2

-4.5
-3

-1.5
0

1.5
3

4.5
200 hPa stream

function (s
1 

C
1) [x10

6]

F
ig
u
re

3
.1
0
:
L
in
ear

regression
across

22
m
o
d
els

(sh
ow

n
in

F
ig.

3.8)
b
etw

een
200

h
P
a
stream

fu
n
ction

an
d
E
S
B
.
F
or

each
grid

cell,
th
e

latitu
d
e/lon

gitu
d
e
p
oin

t
is
th
e
d
ep

en
d
en
t
variab

le
again

st
E
S
B
.
T
h
e
left

(m
id
d
le)

colu
m
n
sh
ow

s
th
e
slop

e
(R

2)
for

each
grid

cell.
T
h
e
top

(m
id
d
le)

row
sh
ow

s
th
e
lin

ear
regression

for
th
e
h
istorical

(4x
C
O

2 )
p
erio

d
s.

T
h
e
b
ottom

row
sh
ow

s
th
e
correlation

b
etw

een
th
e
ch
an

ge
in

p
recip

itation
an

d
th
e
ch
an

ge
in

E
S
B

b
etw

een
th
e
h
istorical

an
d
th
e
4x

C
O

2
ru
n
s,
scaled

b
y
th
e
ch
an

ge
in

G
M
S
T

across
all

m
o
d
els.

T
h
e

righ
tm

ost
colu

m
n
sh
ow

s
th
e
h
istorical

an
d
4x

C
O

2
m
ean

clim
atologies

(F
ig.

3.8c
an

d
3.8f

resp
ectively

)
across

all
m
o
d
els.

F
igu

re
3.8i

sh
ow

s
th
e
m
ean

stream
fu
n
ction

ch
an

ge
across

all
m
o
d
els,

scaled
b
y
th
e
ch
an

ge
in

G
M
S
T
.
H
atch

in
g
in
d
icates

w
h
ere

th
e
p
-valu

e
<

0.01,
n
ot

accou
n
tin

g
for

m
u
ltip

le
h
y
p
oth

esis
testin

g.

124



CHAPTER 3. MODEL PREDICTIONS AND PROPOSED PHYSICAL MECHANISMS FOR
THE EUROPEAN SUMMER BLOCKING (ESB) RESPONSE TO CLIMATE CHANGE

hemispheres (note from Fig. 3.10c that streamfunction has a negative sign in the NH and a

positive sign in the SH). The maximum positive and negative slopes are located in the South

Asian Monsoon (see Fig. 1 of Ha et al. (2018)) and Maritime Continent (MC) (Ramage 1959)

regions respectively, and hatched regions with significant correlations extend in both directions

from these regions into the North and South Pacific, respectively. This suggests that both the

South Asian Monsoon and MC may act as sources for diabatic heating, leading to Rossby wave

perturbations across the Pacific relevant to ESB.

The middle row (Figs. 3.10d, 3.10e, 3.10f) shows the slope, R2 and climatology of the

4xCO2 period, indicating the role of 200 hPa vorticity in influencing ESB in the 4xCO2 run.

The clear feature is that whilst the pattern of correlations is similar, the strength of

the correlations and magnitude of the slope is significantly smaller. There are few hatched

regions across Figs. 3.10d-f, and (noting the colourbar Figs. 3.10d has half the magnitude when

compared to Fig. 3.10a) the magnitude of the slope decreases by a factor of two. Comparing

Fig. 3.10b to Fig. 3.10e the peak R2 decreases from ≈0.35 to ≈0.15, indicating that the effect of

Rossby wave propagation from tropical forcing on ESB decreases significantly in the 4xCO2 run.

Therefore, the mechanism of tropical diabatic heating on ESB through Rossby wave propagation

significantly decreases with climate change. This will be discussed in section 3.4.5.2.

Figs. 3.10g and 3.10h show the linear regression coefficients of the difference between

the historical and 4xCO2 periods against the change in ESB, scaled by GMST. Figure 3.10i

show the difference between the historical and 4xCO2 climatologies, scaled by GMST. Similar

results were found when not using the GMST scaling (not shown). The bottom row in Fig. 3.10

therefore highlights the regions where changes in 200 hPa streamfunction and vorticity relate to

changes in ESB.

Figure 3.10g shows a positive correlation between changes in 200 hPa streamfunction

across the MC, SAM and equatorial tropical Pacific and changes in ESB. The most prominent

part of this trend is in the middle of the equatorial tropical Pacific, with R2 ≈ 0.30. From

comparison with Figs. 3.10c and 3.10f, this region has a negative background climatology of

streamfunction, and from comparison with Fig. 3.10i the models generally show a decrease in

the streamfunction across the equatorial Pacific. Therefore the positive correlation in Fig. 3.10g
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implies that a greater decrease in the magnitude of equatorial streamfunction is associated with

an increase in ESB. Further, from comparison to the 200 hPa U field in Fig. C.5, this region of

positive streamfunction correlation across the tropical Asia-Pacific is associated with easterly

flow in the climatology. Since a higher magnitude of streamfunction indicates the flow rate is

high, the greater decrease in the magnitude of streamfunction indicates a greater decrease in

the easterly flow across the tropical Asia-Pacific. The positive correlation in Fig. 3.10g therefore

indicates that tropical diabatic heating still plays a role in increasing the occurrence of ESB

events in the 4xCO2 run. As also shown by Fig. 3.8, this confirms that diabatic heating in the

equatorial Pacific still plays a role in influencing the ESB response under climate change.

3.4.5.2 Explanation of the physical mechanism

The tropical Asia-Pacific includes many convectively active regions that have a significant

effect on the global atmospheric heating and circulation. One of these is the Inter-tropical

Convergence Zone (ITCZ), a region of enhanced precipitation and rainfall across the equatorial

Pacific, corresponding to the upward branch of the Hadley circulation. As a region of enhanced

diabatic heating from deep convection (Wiel et al. 2016), it plays an important role in the

transfer of heat to the extratropics (Waliser and Somerville 1994).

One way in which the tropical Pacific fuels global atmospheric circulation is through

producing Rossby wave trains. These are formed from vertical motion and upper-tropospheric

divergence, causing anomalous upper-level vorticity (Bjerknes 1966; Fuentes-Franco et al. 2022),

which extend eastward and poleward from the tropics to influence weather at higher latitudes

(Hoskins and Karoly 1981; Sardeshmukh and Hoskins 1988; Jin and Hoskins 1995) (see section

1.2.8 for an explanation of what Rossby waves are, and section 1.2.8.1 for an explanation of how

Rossby waves can be produced by diabatic heating).

Regions of high diabatic heating in the tropical Pacific are frequently coincident with

large precipitation anomalies. Yu (2007) calculated the vertically integrated diabatic heating in

the tropical Pacific, and found that the precipitation-related term dominates the contribution

to diabatic heating in the tropical Pacific. Figure 3.8a shows that precipitation across the

equatorial Pacific is positively correlated with ESB. The correlation is strongest across the
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central Pacific, suggesting that diabatic heating from the ITCZ in particular is associated with

increased propagation of Rossby waves into the extratropics and subsequently ESB. Furthermore,

the relationship between the propagation of Rossby waves in the North Pacific and ESB is

suggested by the correlations in Fig. 3.10a between 200 hPa streamfunction and ESB.

The modelling studies of Ting and Sardeshmukh (1993) and Hoskins and Ambrizzi

(1993) both found that diabatic heating in the equatorial Pacific can act as a “Rossby wave

source” (Sardeshmukh and Hoskins 1988). What is unusual in this mechanism is that I am

hypothesising significant Rossby wave propagation in the North Pacific in JJA. Whilst Hoskins

and Ambrizzi (1993) showed propagation of Rossby waves in both hemispheres, the propagation

of Rossby waves in the North Pacific is significantly weaker in JJA. This is in line with my

analysis, where I find that the correlations between U and ESB in Fig. 3.9 are most significant

in the Southern Hemisphere. Since there cannot be a direct causal connection between SH U

and ESB, these correlations suggest that there is a common mechanism that causes both shifts

in the SH U and ESB. This can be explained by the fact that tropical Pacific diabatic heating

in JJA will produce a greater Rossby wave perturbation in the SH, so the signal-to-noise ratio

is higher in the SH.

A further related correlation in Fig. 3.9a is between the flow at the equatorward edge of

the subtropical N Pacific jet and ESB. This shows that models with a N Pacific subtropical jet

that extends further equatorward have a greater occurrence of ESB events. I hypothesise that a

more equatorward shift of the N Pacific jet enables further propagation of Rossby waves. Whilst

I am not aware of any research that has specifically studied how the background climatology

poleward of a region of diabatic heating would affect the propagation of Rossby waves into

that hemisphere, the seasonality of Rossby wave propagation (strong in winter) suggests that

stronger westerlies will be associated with more Rossby wave propagation (Nie et al. 2019).

Renwick and Revell (1999) showed for the South East Pacific in JJA that there is an

increased occurrence of atmospheric blocking resulting from diabatic heating in the tropics.

Since Fig. 3.10a shows that there is a similar pattern of streamfunction correlations which

propagates into the NH, I hypothesise a similar process of Rossby wave-breaking which affects

the synoptic-scale dynamics in the North Pacific. However, it is not clear from my analysis
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what the precise nature and location of such a disruption would be.

The correlations shown in Figs. 3.8, 3.9 and 3.10 between ESB and the tropical Pacific

precipitation, U and streamfunction respectively together suggest that Rossby wave propagation

in the North Pacific can increase ESB. However, an additional plausible way to connect the

Rossby wave propagation in the North Pacific with ESB needs to be hypothesised. This could

occur through Rossby wave propagation in the North Pacific affecting a teleconnection pattern

such as the circumglobal teleconnection (CGT). The CGT extends from central Asia across the

North Pacific and is the second leading empirical orthogonal function of inter-annual variability

of the upper-tropospheric NH JJA circulation (Ding and Wang 2005). Furthermore, Fig. 5 of

Ding and Wang (2005) shows that the CGT pattern in August is associated with positive 200

hPa geopotential height anomalies in North-Western Europe and the North Central Pacific. This

suggests that increased anticyclonic activity in the North Pacific (which can arise from a tropical

Pacific Rossby wave source as discussed in Renwick and Revell (1999)) could reinforce the CGT

pattern such that more stationary anticyclonic activity is found in North-western Europe. Such

a pathway is not clearly discerned from the linear regression analysis in Figs. 3.8-3.10, since

there is a relatively low signal-to-noise ratio between the tropical Pacific and ESB. Therefore,

whilst the analysis shown does not provide a clear signal of the CGT pattern, there is at least

one possible pathway for how diabatic heating in the tropical Pacific could influence ESB.

An additional feature of the Figs. 3.8 and 3.10 is that the correlations become weaker in

the 4xCO2 runs between ESB and precipitation and streamfunction, respectively (compare the

first and second columns in both figures and see extended discussion in 3.4.5.1). This can be

understood by the fact that the U across the NH JJA weakens with climate change (Coumou

et al. 2015; Shaw 2019). Since the tropical Pacific diabatic heating works to increase ESB, this

weakening of the connection provides an additional mechanism which causes a general decrease

of ESB under climate change. This could contribute to why certain models have a negative ESB

response. However, Fig. 3.8g also shows that models with a greater increase in precipitation in

the ITCZ have a positive ESB response. This suggests that whilst there is a general decrease in

the strength of the Rossby wave propagation, this mechanism still plays an additional role in

contributing to the variety of responses to ESB response (alongside the previous mechanism
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discussed in section 3.4.4).

3.5 Discussion and Conclusions

From applying the SOM-BI to high forcing scenarios, I have found a divergence of future

responses in the ESB response (Fig. 3.2). To explain differences in model projections of ESB, in

this chapter I have discussed four physical mechanisms that may have a significant impact on

the occurrence of ESB events.

The first two of these mechanisms are Arctic Amplification and tropical upper tropo-

spheric warming. Whilst these are extensively discussed in the literature (Francis and Vavrus

2012; Barnes and Polvani 2015; Barnes and Screen 2015; Fabiano et al. 2021) and both play

a role in influencing the ESB circulation, I have found that neither seems to have a distinct

directly measurable influence in affecting the diversity of the ESB response. Note that this does

not mean that they are irrelevant for changes in the NH JJA circulation, but simply that these

processes cannot be considered in isolation from other mechanisms to explain the ESB response.

AA plays a significant role in generally reducing the NH JJA circulation (Coumou et al.

2015; Coumou et al. 2018b; Shaw 2019) and thereby reduces the occurrence of ESB. I find

that models with a greater (smaller) reduction in the strength of the NH jet have a positive

(negative) ESB response. However, the lack of a significant direct correlation between AA and

changes in ESB suggests that other mechanisms need to be considered in addition to this effect.

Two further mechanisms are proposed which can influence ESB occurrence. The first of

these considers the midlatitude temperature gradient across the Euro-Atlantic region, and notes

that there is a greater poleward shift in the NH Atlantic jet in models with a positive ESB

response. This shift can be understood to increase Euro-Atlantic Rossby wave-breaking, since

this poleward shift of the jet occurs uniquely in the Euro-Atlantic region, and therefore creates

a greater discontinuity between the jet in the Euro-Atlantic and the rest of the NH. Such an

effect is not commonly considered, since the poleward shift of the jet is typically considered in

DJF (Woollings et al. 2011; Woollings and Blackburn 2012), and is associated with faster winds,

more EKE and therefore less atmospheric blocking (Coumou et al. 2015). This mechanism
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appears to be a distinct feature in the Euro-Atlantic region in the summer.

An additional mechanism is introduced which relates the greater occurrence of ESB

to diabatic heating in the tropical Asia-Pacific, which produces Rossby waves that propagate

polewards (Hoskins and Karoly 1981) and influences the synoptic conditions in the North Pacific.

I suggest that by doing so the CGT is reinforced, leading to an increase in the occurrence of ESB

events (Ding and Wang 2005). By studying statistical correlations between ESB and several

dynamic variables such as precipitation, U and 200 hPa vorticity and streamfunction, I find

that these last two mechanisms seem particularly prominent in how they influence ESB events.

This highlights the significant role of the tropics in influencing ESB events (Sun et al. 2022).

A clear limitation from the above analysis is that by studying linear regressions across

the model ensemble, I am not able to directly deduce the causal connections between correla-

tions. Such analysis may be possible through a focused modelling study using an intermediate

complexity model to investigate these proposed mechanisms and quantify the effect these have

on atmospheric blocking (see section 5.2.2 for further discussion on the future work to verify

the hypothesis).

From my discussion, it is clear that there are several mechanisms that are important

in influencing the response of ESB under climate change. Therefore, if I want to to derive an

estimate for the ESB response, I will need to consider a combination of several mechanisms

simultaneously. Chapter 4 therefore combines the mechanisms discussed here in a multiple

linear regression framework to derive an estimate for the ESB response.
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Chapter 4

Estimating the response of European

summer blocking to climate change

4.1 Introduction

The research question for this thesis is to investigate the ESB response to climate change.

Chapter 2 has developed a new index to identify ESB events, which has been applied to models

in high forcing in chapter 3. Figures 3.4 and 3.5 indicate that there is a relationship between

the past climatology of a model and its future trend. This creates the possibility of using an

emergent constraint to derive a quantitative estimate of the ESB response (see section 1.5.7 for

a discussion on emergent constraints). Such emergent constraints have been used in different

contexts (Hall and Qu 2006; Cox et al. 2013; Cox et al. 2018), and whilst they have received

criticism (Riboldi et al. 2020), a greater confidence can placed on such predictions if they are

based on verified mechanisms (Hall et al. 2019).

Chapter 3 has outlined four possible physical mechanisms that relate to the ESB response.

In this chapter these same mechanisms are used as the basis for deriving an estimate of the

ESB response using a multiple linear regression (MLR). In section 4.2, I discuss the method

and the metrics used in the MLR regression. In section 4.3, I show the results from the MLR

analysis and derive the estimate of the ESB response, and in section 4.4, I discuss these results.
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4.2 Methods

I use the same datasets of 22 CMIP models and the ERA5 reanalysis as discussed in sections 3.2.

I use the self-organizing map blocking index (SOM-BI) introduced in chapter 2 to identify

blocking events in the historical (“hist”) (1979-2005) and 4xCO2 (120 years after the start of

the 4xCO2) runs, with the normalisation of the SOM-BI index as discussed in section 3.3.

To predict the ESB response from the historical period, I employ a multiple linear

regression (MLR) using a variety of metrics. These metrics are all based on monthly data from

zonal wind (U) at 400 hPa as well as air temperature (T ) at the surface (Tsurf) and on four

pressure levels (850 hPa, 300 hPa, 250 hPa and 150 hPa). The Pacific and Atlantic longitudinal

bands are averaged across for several of the metrics. These are the same as those described in

section 3.3.3:

• Pacific (PAC): 140 ◦E - 236 ◦E; and

• Atlantic (ATL): 80 ◦W - 14 ◦W.

4.2.1 Metrics used as proxies for the mechanisms

Chapter 3 discussed four mechanisms that each have a potential role in affecting the historical

and projected ESB occurrence under climate change across 22 CMIP models:

1. Arctic amplification (AA);

2. enhanced tropical upper-tropospheric warming (UTW);

3. changes in the Euro-Atlantic midlatitude meridional temperature gradient; and

4. the propagation of Rossby waves from diabatic heating in the equatorial Pacific.

The choice of relevant metrics for each variable follows from the analysis and discussion

for each mechanism in sections 3.4.2 - 3.4.5:

1. The equator-to-pole temperature gradient at 850 hPa (∆T850);

2. The equator-to-pole temperature gradient at 250 hPa (∆T250);
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3. The 300 hPa temperature difference (∆T300) between 30 ◦N and 10 ◦N averaged across

the Atlantic;

4. The surface temperature difference (∆Tsurf) between 60 ◦N and 40 ◦N averaged across the

Atlantic;

5. The 150 hPa temperature difference (∆T150) between 60 ◦N and 40 ◦N averaged across

the Atlantic;

6. Precipitation (Pr) averaged across the equatorial Pacific between 2 ◦S and 2 ◦N;

7. U400 at 20 ◦N averaged across the Pacific.

Metrics 1 and 2 were chosen because they are the equator-to-pole temperature gradient metrics

from Harvey et al. (2014), where lower and upper-level equator-to-pole temperature differences

are calculated as the latitudinally area-averaged time-mean temperature difference between the

tropical (30 ◦S - 30 ◦N) and polar (60 ◦N - 90 ◦N) regions. These were studied with reference to

the first two mechanisms in sections 3.4.2- 3.4.3.

Metrics 3-7 were all specifically chosen since the historical values of their particular

latitudes, levels and regions have the strongest patterns of correlation with the ESB response

across models. Metrics 3, 4 and 5 all relate to the midlatitude meridional temperature gradient

across the North Atlantic at different levels and in different ways, and so relate to the third

mechanism discussed in section 3.4.4.1 (see also Fig. C.4, which shows that the changes in

temperature gradients across the Atlantic differentiate the climate models with a positive and

negative ESB response). ∆T300 between 30 ◦N and 10 ◦N averaged across the Atlantic relates

to the strength of the North Atlantic subtropical jet, but also the warming of the tropical

tropopause, so relates to both the tropical upper tropospheric warming and the midlatitude

meridional temperature gradient mechanisms. ∆Tsurf across the midlatitude Atlantic at 40 -

60 ◦N at the surface will reflect the difference in the strength and location of the North Atlantic

jet stream between models. ∆T150 between 40 ◦N and 60 ◦N will relate to the location of the

jet, but also the difference in the height of the tropopause between models, which relates to the

strength of midlatitude baroclinic eddies (Zurita-Gotor and Vallis 2011).
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Metrics 6 and 7 both relate to the influence of diabatic heating in the tropical Pacific on

ESB (the fourth mechanism discussed in section 3.4.5.2). Metric 6 relates to the precipitation in

the tropical Pacific, which is going to be well correlated with diabatic heating of the atmosphere

(Yu 2007), and therefore indicates the strength of Rossby wave propagation (Hoskins and Karoly

1981). The choice of averaging across the equatorial Pacific is motivated by Fig. 3.8a (reproduced

in Fig. 4.1), which particularly highlights the equatorial Pacific as a region where the level of

precipitation is correlated with ESB. The value of U400 at 20 ◦N averaged across the Pacific

relates to the average location of the Pacific subtropical jet, such that models with stronger

easterly flow at this latitude (and an equatorward subtropical jet) have more ESB historically.

4.3 Results

In this section, I present the results from the MLR analysis. Sections 4.3.1 and 4.3.2 and

Tables 4.1 and 4.2 show the results from the 7 variable and 2 variable MLR analysis, respectively.

In each case four MLRs are calculated to study:

1. how the historical values of the metrics correlate with the historical ESB (hist → hist);

2. how the historical values of the metrics correlate with the ESB response (hist → diff);

3. how the 4xCO2 values of the metrics correlate with the 4xCO2 ESB (4xCO2 → 4xCO2);

and

4. how the change in values of the metrics correlate with the ESB response (diff → diff).

I then assume that the correlation between the metrics and ESB may relate to one of the

suggested causal mechanisms described in chapter 3.

Figure 4.1 in section 4.3.2 illustrates the two most important physical mechanisms that I

have identified from the MLR analysis, with reference to the discussion in chapter 3. Figure 4.1

also geographically shows the two metrics used in the 2 variable MLR analysis in Table 4.2 to

capture these physical mechanisms and provide an estimate for the ESB response.

Section 4.3.3 then presents a scatter plot (Fig. 4.2) to graphically compare the hist → diff

MLR for three cases: using metrics 1 and 2; using all 7 metrics (Table 4.1); and using 2 metrics
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Table 4.1: The coefficients of MLR analysis, using the seven metrics listed in section 4.2 to
predict ESB across the 22 model ensemble. The top half of the table shows the mechanisms
and linear regression coefficients (in days ◦C−1) associated with each metric. The 1st column
specifies the mechanism from chapter 3 that each metric is associated with and the 2nd column
specifies the metric. The 3rd - 6th columns show the coefficients for each MLR using normalised
data. Four MLRs are listed across four columns: the MLR between the historical values of
each metric and the historical ESB (hist → hist); the MLR between the historical ESB and
the ESB response (hist → diff); the MLR between the metrics and ESB in the 4xCO2 period
(4xCO2 → 4xCO2); and the MLR between the change in the metrics listed and the ESB response
(diff → diff). The bottom half of the table specifies the intercept and skill metrics (three error
metrics and the R2) for each MLR. The bottom row shows the predicted values of the average
level of historical ESB (in days) and the ESB response (days ◦C−1) using the MLR for the real
atmosphere. A graphical representation of the hist → diff with the ERA5 prediction is shown
in Fig. 4.2b.

Mechanism Metric hist → hist hist → diff 4xCO2 → 4xCO2 diff → diff

1 ∆T850 -3.01 0.97 -4.31 -0.32
2 ∆T250 -1.70 0.54 1.46 -0.13

2/3 ∆T300 (30 ◦N - 10 ◦N) Atl avg -0.85 -0.35 -1.96 1.30

3 ∆Tsurf (60
◦N - 40 ◦N) Atl avg -4.39 0.95 6.78 2.37

3 ∆T150 (60 ◦N - 40 ◦N) Atl avg 8.75 -3.57 -2.15 -1.06

4 Pr (2 ◦S - 2 ◦N) Pac avg 0.38 0.88 2.42 0.45

4 U400 20 ◦N Pac avg 2.69 -1.57 4.41 1.70

intercept 14.25 2.25 26.08 21.96

root mean square error 1.13 0.28 0.87 1.21

R2 0.66 0.78 0.61 0.25

ERA5 prediction 21 days -0.55 ± 0.28 days ◦C−1

(Table 4.2). Figure 4.2 therefore graphically represents how I obtain my estimate for the ESB

response.

4.3.1 MLR for seven metrics

Table 4.1 shows the results from the seven metric MLR. The top half of Table 4.1 shows the

coefficients for all four MLRs in the order specified above. Note that the second of these four

result columns (hist → diff), is the one that can be used to estimate the ESB response. The

bottom half of Table 4.1 specifies the intercept and two skill metrics (root mean square error

and R2) of the MLR. The bottom row provides a prediction of the historical blocking amount

and the ESB response using ERA5 reanalysis data. Note that the coefficients in the top half

of Table 4.1 are for the MLR using data for each metric that has been normalised to a value

between -1 and 1, using the maximum absolute value for each metric. This enables a comparison
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of the sign and magnitude of each coefficient between them, and does not affect the R2 of the

regression. The error coefficients are for the MLR that has not been scaled by the metrics, to

enable direct comparison to the ERA5 estimate in SI units. The normalisation of the data

makes no difference to the skill of the MLR.

By comparing the coefficients in Table 4.1 with one another, the ∆T150 metric averaged

across the Atlantic has the largest magnitude of its coefficient for both the hist → hist and

hist → diff MLRs. The sign indicates that models with a larger ∆T150 between 60 ◦N and

40 ◦N have more ESB historically.

The ∆T150 metric has coefficients significantly larger than all other metrics for the

historical comparisons, but for the 4xCO2 → 4xCO2 and diff → diff studies the dominant

term is the ∆Tsurf term between 60 ◦N and 40 ◦N. This means that whilst ∆T150 across the

midlatitude Atlantic is most important metric historically (and can therefore be used to predict

the ESB response), the ∆Tsurf metric is more important under climate change at influencing

ESB. This change in the most significant metric under climate change and reflects the changing

dynamics in the North Atlantic jet. As discussed in section 3.4.4.2, the North Atlantic jet both

weakens under climate change and shifts poleward, and in models with a positive (negative) ESB

response have a greater (smaller) weakening of the jet and a greater (weaker) poleward shift of

the jet. Between 60 ◦N and 40 ◦N, each of these metrics relate to both aspects of the influence of

the midlatitude meridional temperature gradient on ESB, but in different ways. ∆Tsurf relates to

both the strength and position of the North Atlantic midlatitude jet. In addition, ∆T150 between

60 ◦N and 40 ◦N reflects changes in the height of the tropopause between models, and therefore

relates to the strength of baroclinic eddies and the profile of heating in the tropical troposphere.

From this analysis, I am not able to determine precisely which changes in the dynamics of the

North Atlantic midlatitude jet under climate change are most important in influencing ESB, but

the changing magnitude of coefficients for the surface and 150 hPa temperature gradients reflects

the importance of the Atlantic midlatitude meridional temperature gradient, both historically

and under climate change.

The R2 of the MLR reflects how predictive the model is. For each of the first three

regressions (hist → hist, hist → diff and 4xCO2 → 4xCO2) the skill score for the MLR is
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reasonably predictive (0.66, 0.78 and 0.61 respectively). The R2 of 0.78 for the hist → diff

may indicate over-fitting; since seven metrics have been chosen to run a MLR across 22 models,

there is a significant risk of over-fitting. To address this, the two most skilful metrics have been

identified and a separate MLR run for them (discussed in section 4.3.2 and shown in Table 4.2)

to make a trustworthy prediction for the ESB response.

There is a significant decrease in the skill for the diff → diff regression. This suggests

that the metrics that are most relevant for developing a historical understanding of ESB are not

effective at predicting how the change in the relevant physical mechanisms causes the change in

ESB. This suggests that the historical climatology of the physical mechanisms is more relevant

than the changes in the physical mechanism in terms of understanding the ESB response. This

is consistent with the results from chapter 3; the differences between the models historically are

a much higher magnitude than the changes that occur in the model groups. This can be seen in

the U field in Figs. 3.4 and 3.5.

4.3.2 MLR for the two most skilful metrics

To reduce the risk of over-fitting, several MLRs were run with different combinations of the

seven metrics used in Table 4.1. Two metrics were identified as playing a particularly important

role in using their historical value to predict the ESB response: ∆T150 between 60 ◦N and 40 ◦N,

averaged over the Atlantic; and U400 at 20 ◦N, averaged across the Pacific. Table 4.1 indicates

the prominence of these variables, since they have the largest coefficients for the hist → diff

regression.

These two metrics and their accompanying mechanisms are graphically illustrated in

Fig. 4.1. The top half of Fig. 4.1 overlays the graphically illustrations on top of the historical

zonal wind climatology at 200 hPa. A stronger North Atlantic midlatitude temperature gradient

at 150 hPa between 60 ◦N and 40 ◦N indicates more ESB, due to a greater change in the

midlatitude tropopause height and changes in baroclinic instability (related to mechanism #3

described in 3.4.4.2). This mechanism is indicated on the right hand side of Fig. 4.1, with gold

text boxes and arrows summarising the flow diagram from Fig. 3.7. On the bottom right of

Fig. 4.1, I reproduce Figs. 3.5a-f, which indicates that the strengthening of the subtropical
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jet (due to an increased upper tropospheric meridional temperature gradient across the North

Atlantic) and resultant poleward shift of the polar jet (Lee and Kim 2003) is greater in the

models with a positive ESB response. Mechanism #3 suggests that this poleward shift of the

North Atlantic jet creates more Rossby wave breaking across the Euro-Atlantic region because

it contrasts with the general weakening of the jet in other longitude bands (see Fig. 3.4), such

that a larger poleward shift creates a greater meridional displacement of the North Atlantic jet.

The dotted cyan lines across the North Atlantic indicate the two longitudinal bands across the

North Atlantic which are used to calculate the ∆T150 metric. As can be seen from the ERA5 U

climatology, these temperature gradients are taken between the maximum speed of the polar jet

(at approximately 50 ◦N). Therefore, the ∆T150 metric at this region is an appropriate metric to

use to capture the physics of mechanism #3, since it describes differences in the jet location

across models and how those jet locations change with climate change.

In addition, a stronger zonal wind at 400 hPa in the Pacific at 20 ◦N indicates more

ESB, due to a North Pacific subtropical jet that is closer to the equator, enabling further

propagation of Rossby waves from the tropical Pacific (related to mechanism #4 described

in 3.4.5.2). This mechanism is indicated on the left hand side of Fig. 4.1, with purple text

boxes and arrows summarising the flow diagram from Fig. 3.11. On the bottom left of Fig. 4.1,

I reproduce Figs. 3.8a-b and 3.10a-b, which show important correlations historically between

ESB occurrence and precipitation in the tropical Pacific (Figs. 3.8a-b) and ESB occurrence

and streamfunction in the North Pacific (Figs. 3.10a-b). The dotted cyan line across the North

Pacific lies at 20 ◦N, indicating the location for the U400 metric used in the two variable MLR

analysis. From comparing to the U200 climatology, this metric lies across the regional of the

subtropical jet where in the West Pacific there is easterly flow (in blue) and in the East Pacific

there is westerly flow (in red). Therefore the value of the U400 metric will indicate how close to

the equator the subtropical Pacific jet is and also its strength. Where there is stronger westerly

flow in this region, there is more Rossby wave propagation into the North Pacific resulting from

diabatic heating. Therefore, the U400 metric is an appropriate metric to use to capture the

physics of mechanism #4, since it describes differences in the Pacific subtropical jet location

and strength across models and how that jet location and strength (and the subsequent Rossby
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wave propagation in the North Pacific) is affected by climate change.

Table 4.2 shows the MLR for the two most skilful metrics. Both metrics positively

correlate with historical ESB. The normalised coefficients indicate that ∆T150 is a more important

variable for controlling ESB, suggesting that the Atlantic meridional temperature gradient is

more important than Pacific Rossby wave propagation. The use of both metrics to predict ESB

response from historical data (hist → diff) leads to R2 = 0.65. By comparison, the seven

metric MLR in Table 4.1 was R2 = 0.78. There was not another metric from the list of seven

metrics provided in Table 4.1 that significantly contributed to the difference between these,

indicating that these two metrics provide sufficient skill to the MLR for predicting the ESB

response without the risk of over-fitting.

Two predictions can be made from the MLR analysis. First, using the hist → hist

regression, the historical values of ∆T150 and U400 in ERA5 can be used to predict the amount

of ESB. The predicted average number of days blocked from the MLR is 22 days, which is 7

days (28%) lower than the average number of blocked days that were manually identified in the

Ground Truth Dataset (see section 2.2.2). Both Tables 4.1 and 4.2 also show an under-estimate

of historical ESB. This reflects the fact that the models under-estimate the amount of ESB

historically, and therefore a derived MLR from the models will under-estimate the amount of

historical blocking. The second prediction that can be made from the MLR analysis is that the

ESB response can be estimated from hist → diff. I obtain a value of 0.22 ± 0.35 days ◦C−1. I

use the root mean square error on the regression as the uncertainty for the prediction of ESB

response, since the root mean square error directly reflects the accuracy of forecasts from the

linear regression (Wilks 2005). I note that this estimate significantly differs from the estimate in

Table 4.1 (−0.55± 0.28 days ◦C−1), but I consider this latter estimate to be unreliable since the

seven metric MLR is probably over-fitting the data (note that there are only 22 models in the

ensemble). I also note that Table 4.1 has several large values for slopes, which further indicates

over-fitting. Therefore, the estimate from Table 4.2 for the ESB response is the more reliable

estimate.
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Table 4.2: As for Table 4.1, but instead showing the MLR analysis from the two metrics
that provide the most skill in predicting the ESB response from historical data. A graphical
representation of the hist → diff with the ERA5 prediction is shown in Fig. 4.2c.

Mechanism Metric hist→hist hist→ diff 4xCO2 → 4xCO2 diff → diff

3 ∆T150 (60 ◦N - 40 ◦N) Atl avg 8.89 -2.61 -2.99 -0.13

4 U400 20 ◦N Pac avg 3.41 -1.23 3.34 -0.18

intercept 14.04 2.59 22.13 -0.09

root mean square error 1.31 0.35 1.26 0.59

R2 0.55 0.65 0.19 0.01

ERA5 prediction 22 days 0.22 ± 0.35 days ◦C−1

4.3.3 A comparison of the MLR predictions for the ESB response

Figure 4.2 shows the hist → diff MLR for three cases: using metrics 1 and 2; using all 7 metrics

(Table 4.1); and using 2 metrics (Table 4.2). Figure 4.2 therefore graphically represents how I

obtain my estimate for the ESB response.

Figure 4.2a shows the MLR using only metrics 1 and 2. Metrics 1 and 2 are the

equator-to-pole temperature gradients at 850 hPa and 250 hPa, respectively, and so relate to

the “tug-of-war” of physical processes that are commonly discussed in the literature (see Barnes

and Screen (2015) and sections 3.4.2 and 3.4.3 for further discussion). However, I am not able

to use these two metrics to predict the ESB response, since no relationship emerges between

the historical and future behaviour. Since such a relationship has already been established

(see chapter 3), I conclude that the “tug-of-war” is an inadequate description of the physics to

describe the processes involved in understanding the ESB response.

Figure 4.2b shows the MLR using the 7 metrics shown in Table 4.1. This produces a

strong correlation of R2 = 0.78 between the past and future data. However, since there are only

22 models, using 7 metrics in a MLR is likely over-fitting the data, so whilst a prediction for the

cliamte feedback on ESB in the real atmosphere can be obtained, this is unlikely to be accurate.

Figure 4.2c shows the MLR using the 2 metrics shown in Table 4.2 and Fig. 4.1. This

still produces a good correlation of R2 = 0.65, and since only two metrics are used there is a

low risk of over-fitting. I therefore conclude that the prediction for the ESB response in the real

atmosphere obtained from this analysis is the most reliable.
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Figure 4.2: A comparison of three MLRs for the hist → diff comparison, which compares
the historical behaviour with the ESB response to produce an estimate for the ESB response
in the real atmosphere. The x-axis shows the result from summing the coefficients for each
metric multiplied by the historical value in each given climate model, and the y-axis shows the
ESB response for each model. The red line indicates the linear regression. The blue lines show
the prediction for the ESB response, using the values for the metrics from the ERA5 historical
period. The uncertainty on the ERA5 prediction is in blue, and is the root mean square error of
the regression. The R2 for each regression is shown in the bottom left, alongside the value for
the ERA5 prediction where appropriate. (a) shows the case for the two metric MLR using the
first two metrics listed in table 4.1, using the equator-to-pole temperature gradients at 850 hPa
and 250 hPa. (b) shows the case for the seven metric MLR described in 4.3.1 and shown in
Table 4.1. (c) shows the case for the two metric MLR described in 4.3.2 and shown in Table 4.2.

4.4 Discussion and Conclusions

In agreement with conclusions from chapter 3, my analysis suggests that the two most important

mechanisms to influence ESB historically (and therefore to influence the ESB response from

chapter 3) are:

• the North Atlantic meridional temperature gradient; and

• Rossby wave propagation in the North Pacific.

From identifying the most relevant metrics that correspond to these physical mechanisms,

I have used MLR to estimate the ESB response. I have identified two relevant metrics which I
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have used to predict the ESB response and obtained a value of 0.22 ± 0.35 days ◦C−1. This

value is relatively small, and the uncertainty on the value (the root mean square error of the

regression) is larger than the value itself. However, given that the SOM-BI probably provides a

conservative estimate for the change resulting from blocking, the data evidence points towards a

small positive feedback (this will be discussed further in section 5.1.3). One implication is that

models which show very significant changes in ESB in the future reflect significant over- and

under-representations of the mechanisms which impact ESB. In particular, they will most likely

mis-represent either or both of the two mechanisms described above, or - equivalently - other

mechanisms that might drive these correlations but that are not considered in my analysis. In

section 5.2.3, I discuss what future work could be undertaken to further refine this estimate.

However, an untested assumption is made with the above analysis. I note that by

simply using the correlation between the historical bias and future trend of ESB, I obtain an

estimated ESB response of −2.04± 0.32 days ◦C−1 (not shown). I assume that this result is

unreliable. To make this assumption, I assume that the reason that all the models have a

significantly lower blocking occurrence than the ERA5 reanalysis is to do with systematic issues

of the representation of blocking in global climate models (see section 1.3.4), and therefore

the intercept in the correlation between the historical bias and future trend of ESB is too low.

In any case, given that the actual occurrence of ESB is significantly higher than found in all

models, extrapolation beyond the model ensemble is needed to derive an estimate for the ESB

response, so any method of estimating the ESB response from the historical bias of ESB events

in the model ensemble alone cannot be made with confidence.

Another possible explanation for the strong relationship between the past bias and

future trend of ESB is that there may be additional systematic issues with the application of

the SOM-BI that cause the occurrence of model biases that have not been addressed by the

normalization. Whilst the normalisation of the SOM-BI (see section 3.3.2) has been shown to

significantly reduce the biases between the historical climatology and the change in the occurrence

of SOM node groups, this problem may still persist through biases in the variability of the

MSLP climatology between each model and the historical data. Since the definition of blocking

events from the SOM-BI is fundamentally tied to the occurrence of certain SOM nodes in ERA5

144



CHAPTER 4. ESTIMATING THE RESPONSE OF EUROPEAN SUMMER BLOCKING TO
CLIMATE CHANGE

(even after applying normalisation), and since these SOM nodes are defined from the ERA5

climatology, there is still a potential that the blocking events in a given model will be sensitive

to the differences in the climatological differences between ERA5 and the given model. Given

that the results from the normalised SOM-BI can be physically interpreted in a way consistent

with the occurrence of ESB events, it seems likely that blocking events are being adequately

described. However, to test this assumption an alternative blocking index such as the AGP

index (introduced and applied in chapter 2) should be used to confirm that a relationship exists

between the past bias and future trend of ESB events, that can be independently verified from

the SOM-BI index (an important requirement specified by Woollings et al. (2018)). However,

there is a lack of daily geopotential height data for the 4xCO2 scenarios. Of the 22 models

studied in this chapter, only five models (UKESM1-0-LL, HadGEM3-GC31-LL, GFDL-ESM2M,

IPSL-CM5A-LR, MIROC5) have daily 4xCO2 geopotential height data available. Whilst I am

not able to do a direct comparison of the results, these models could be studied and the AGP

index compared to the SOM-BI index. This and other possible avenues for future work will be

further discussed in section 5.2.3).

Finally, I note that these mechanisms are clearly co-dependent and interact with one

another in potentially complex ways, and the metrics that I use do not fully quantify the

strength of these mechanisms. In addition, there is a risk with this analysis that the correlations

that I identify are driven by additional mechanisms that have not been suggested here. However,

this initial analysis provides a discussion of some of the most important mechanisms involved in

influencing the ESB response in models across the CMIP archive.
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Conclusions and future work

5.1 Conclusions

5.1.1 The self-organising map blocking index (SOM-BI)

This thesis has examined the ESB response on European summer blocking (ESB) occurrence.

In order to study this problem, I have developed a new blocking index using a combination of

supervised and unsupervised machine learning. This is based on the self-organizing map (SOM)

clustering algorithm, and the training of the selection of node groups associated with ESB

from the SOM. Such an algorithm is a significant advance over the literature, where typically

either blocking indices (BIs) are used or machine learning methods are employed to study more

generic changes in circulation patterns. By developing a BI that is based on common machine

learning methods in the literature, I have advanced a unique method which brings together

both approaches and yields several advantages:

1. Improved skill of the algorithm, particularly in application to climate models.

Table 2.1 in section 2.3.2 compares the skill of different algorithms in identifying ESB

by comparing the classification skill of each algorithm to the objectively labelled ground

truth dataset (GTD, defined in section 2.2.2). It was found that the SOM-BI has a similar

skill to the most effective BI studied (the DG83 index) for the ERA5 reanalysis period,

but a significant improvement in skill over the BIs when comparing the SOM-BI to the
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climate model output. This is particularly important since some of the indices such as the

AGP index had a surprisingly low detection skill for ESB events in the climate model.

2. The use and comparison of a variety of variables used to study atmospheric

blocking. Whilst BIs are typically defined on one variable and level (500 hPa geopotential

height (Z500 for Dole and Gordon (1983); vertically averaged potential vorticity for Schwierz

et al. (2004) and potential temperature on the dynamic tropopause for Pelly and Hoskins

(2003)), the SOM-BI can be used with a variety of variables, and the skill of different

methods has been compared (see Fig. 2.6). Of the variables studied, Z500 was found to be

the most effective variable at classifying atmospheric blocking events.

3. A spatio-temporal identification of types of blocking events over Europe. Since

groups of SOM nodes that exist across time are used to identify blocked nodes, blocking

events can be classified in new ways through the application of such groups. The application

of these different blocked node groups to classifying categories of blocking event over

Europe was described in section 2.3.7 and shown in Fig. 2.10, and involves the use of

K-means clustering to specify the number of blocking events one is interested in. This

is unique in that other BIs generally do not provide categories of blocking events over

particular regions. Whilst other BIs could be used to study the changing persistence

of blocking events over particular regions, identifying a shift of types of blocking events

that have been both spatially and temporally defined (as shown in Fig. 2.10 between

Eastern and Western European blocking events) is enabled by the SOM-BI. This regional

identification and trend analysis of blocking events enables a more finely-tuned study of

blocking events over Europe beyond the typical study of Scandinavian blocking events.

5.1.2 Physical mechanisms influencing the historic and future occur-

rence of ESB events

Points 1 and 2 above have enabled the study of atmospheric blocking events in the 4xCO2 runs.

This is useful because such a high forcing scenario ensures a high signal-to-noise ratio; these

runs are also conceptually simple since there are no changes in other atmospheric components
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such as aerosols. Such runs do not typically have daily Z500 data available, but they do have

frequently archived daily mean sea level pressure (MSLP) output. Whilst this variable has a

slightly lower skill than Z500 in identifying blocking events, the lack of a need to detrend MSLP

(see section 3.3.1 and Appendix B.3) is a key advantage and has enabled the straightforward use

of the SOM-BI to study atmospheric blocking in 4xCO2 runs. By comparing the results of such

analyses across 22 CMIP5/6 climate models, the ESB response was determined in each model.

A range of positive and negative ESB responses was identified across all models (see Fig. 3.2).

In addition, chapter 3 showed that there is a relationship between the historic U

climatology and the ESB response (Figs. 3.4 and 3.5). This relationship between the historic

climate and future ESB response enables the possibility of developing a prediction of the

ESB response. This could provide observational constraint on the model uncertainty (see

section 1.5.7).

To develop this estimate for the ESB response, an understanding of the relevant physical

mechanisms which cause ESB is necessary (Hall et al. 2019). I have discussed four mechanisms

that can play a role in influencing the ESB response, motivated by the existing literature and

augmented by correlations I identified across the CMIP5/6 ensembles:

1. Arctic amplification (AA);

2. increased tropical upper-tropospheric warming (UTW);

3. changes in the midlatitude Euro-Atlantic meridional temperature gradient; and

4. the propagation of Rossby waves from diabatic heating in the equatorial Pacific.

AA and UTW are commonly discussed in the literature as a “tug-of-war” in the

midlatitudes (Screen et al. 2018; Peings et al. 2019). AA is hypothesised to increase midlatitude

blocking through reducing the temperature gradient in the lower troposphere, leading to a

weaker NH jet with a shift equatorward, which is associated with more stationary weather

and Rossby wave-breaking (Barnes and Screen 2015). Increased warming in the tropical upper

troposphere (compared to equivalent altitudes at higher latitudes) is hypothesised to decrease

atmospheric blocking through increasing the NH meridional temperature gradient in the upper
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troposphere (Barnes and Screen 2015), leading to a stronger NH jet with a shift poleward, which

is associated with more storm track activity and fewer persistent anticyclones (Held 1993).

By studying the relation between relevant metrics for these mechanisms and ESB,

no significant relationship was found across the model ensemble between the ESB response

and AA, or between the ESB response and enhanced UTW. This is a surprising result, as it

indicates that there is additional physics driving the changes in ESB that is not usually explicitly

considered. Note that this does not suggest that AA or UTW are unimportant, since they may

have a significant effect through affecting other mechanisms that more directly impact the ESB

response.

From studying the correlations with changes in ESB across several dynamical variables,

two additional mechanisms (3 and 4 in the list above) have been hypothesised which influence

both the historic ESB occurrence and the ESB response. The third mechanism involves

changes in the Euro-Atlantic meridional temperature gradient. This mechanism has two related

components:

1. AA decreases the lower-tropospheric Euro-Atlantic meridional temperature gradient,

leading to a weaker NH polar jet; and

2. UTW in the Atlantic causes a significant increase in the strength of the North Atlantic

subtropical jet, causing a poleward shift of the Euro-Atlantic polar jet.

Both of these features occur across all models and work to increase ESB. These changes

in the jet strength and position occur to a greater extent in models with a positive ESB response.

The weaker NH jet could lead to more ESB since it tends to increase the waviness of the

jet, as is commonly discussed (Francis and Vavrus 2012; Hassanzadeh et al. 2014; Coumou

et al. 2015; Overland et al. 2015; Peings et al. 2017; Fabiano et al. 2021). Additionally, the

concurrent poleward shift of the NH Atlantic polar jet seems to be correlated with increased

Rossby wave-breaking in the Euro-Atlantic region. This can be seen from the greater (smaller)

increase in the strength of the Euro-Atlantic subtropical jet in models with a positive (negative)

ESB response.

I propose that this increased strength of the Euro-Atlantic subtropical jet creates a
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poleward shift of the Euro-Atlantic polar jet. However, rather than this decreasing the occurrence

of ESB (as would be typically expected from a poleward shift of the jet (Barnes and Screen

2015)), this poleward shift of the Atlantic jet works to increase ESB since it occurs alongside

a general equatorward shift of the NH polar jet. I hypothesise that this creates a greater

meridional displacement between the North Atlantic jet and the rest of the NH polar jet, which

increases Rossby wave propagation.

The fourth mechanism relates to the propagation of Rossby waves in the North Pacific

from the tropical Pacific, arising from diabatic heating (Hoskins and Karoly 1981). This is

not a mechanism that has been causally connected to atmospheric blocking in Europe before.

Additionally, the presence of such a connection is also unusual in JJA, because the Rossby

wave propagation is much weaker in the NH summer (Hoskins and Ambrizzi 1993; Ting and

Sardeshmukh 1993).

From distinct correlations with precipitation in the tropical Pacific and ESB in the

historic period, I hypothesise that diabatic heating is causally connected to ESB. From studying

the zonal wind correlations, I also hypothesise that models with a more equatorward North

Pacific subtropical jet enables further propagation of these Rossby waves across the North Pacific.

Whilst it is not clear precisely how the propagation of Rossby waves in the JJA North Pacific

affects the NH JJA circulation and influences the occurrence of ESB events, the presence of

remote influences on the JJA Euro-Atlantic circulation such as the circumglobal teleconnection

(CGT) provides a plausible mechanism by which tropical Pacific diabatic heating can modulate

ESB (Ding and Wang 2005).

Both of these mechanisms (3 and 4) relate to the commonly discussed AA and UTW,

but add additional physics that has not been previously discussed in the context of ESB. These

mechanisms also underscore the importance of tropical influences on ESB (Sun et al. 2022), and

involve complex dynamics that have not yet been adequately studied. This motivates future

work to understand how mechanisms 3 and 4 relate to ESB.
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5.1.3 Estimating the ESB response

Chapter 4 showed that there is a significant negative correlation between the historic occurrence

of ESB and the ESB response across the model ensemble. This motivates the possibility of

using the bias of the historic climatology to influence future ESB events. Chapter 3 discussed

four physical mechanisms that can play a role in influencing ESB occurrence historically.

Two mechanisms (weakening and poleward shift of the Euro-Atlantic jet, and Rossby wave

propagation in the North Pacific) were particularly highlighted as having important roles in

influencing ESB both historically and under climate change. Therefore, to provide an estimate

of the ESB response based on these mechanisms, in chapter 4 I use multiple linear regression

(MLR) across several metrics that are related to the four mechanisms discussed above and relate

the historic ESB to future ESB.

First I use a seven metric MLR which covers all four mechanisms and obtain a R2 skill

of 0.78. This is a very high skill, but since I am only using 22 models in the regression it is

likely over-fitting the data. From comparing the coefficients associated with each metric, the

MLR highlights two metrics that significantly contribute to the overall skill of the prediction of

the ESB response (change in T150 between 60 ◦N and 40 ◦N average across the Atlantic; and

U400 at 20 ◦N, averaged across the Pacific). These two metrics relate to the two prominent

mechanisms discussed in chapter 3, which provides further implications for the importance of

these two metrics in understanding ESB and its response to climate change.

From using these two metrics in a MLR, I obtain an R2 skill of 0.65; this is also high

which indicates good predictive skill, but since only two metrics are used in this regression there

is a much lower risk of over-fitting. Therefore I use this regression to obtain a best estimate for

the ESB response, and get a result of 0.22± 0.35 days ◦C−1.

Note that in section 3.3.2.2, I discuss the normalisation of the SOM-BI that was used to

calculate ESB. As part of the normalisation process I define the MSLP anomaly in each model

differently between the historic and 4xCO2 runs. This was necessary to reduce direct dependence

of trends in atmospheric blocking on changes in the mean state of MSLP. However, since these

changes in MSLP will also reflect coupled thermodynamic-dynamic shifts under climate change,

the normalised SOM-BI will tend to under-estimate the magnitude of the changes to ESB. This
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means that the resulting estimate for the ESB response is likely a lower bound estimate of the

actual feedback. Note that Figs. B.1a and B.1b compare the results for the non-normalised

and normalised data, respectively. The non-normalised trends in Fig. B.1a uses the MSLP

anomalies with respect to the historical data for both the historical and 4xCO2 periods, and

the normalised trends in Fig. B.1b take the anomaly and dividing by the standard deviation of

the historical and 4xCO2 periods separately for the historical and 4xCO2 data (as discussed

in section 3.3.2). The magnitude of the trends is an over-estimate of the dynamic changes in

climate in the case Fig. B.1a (ranging from -2.5 to 3.5 days ◦C−1) and an under-estimate in

B.1b (ranging from -2 to 1.5 days ◦C−1). I therefore conclude from my analysis that it is most

likely that the occurrence of ESB will modestly increase with climate change.

5.2 Future work

5.2.1 Future analysis with the SOM-BI

In this analysis the SOM-BI has been created and used to study changes in four categories of

ESB events, distinguished by their location (shown in Fig. 2.10 in section 2.3.7). Four metrics

were considered across the ERA5 1979-2019 period to study trends in blocking events: occurrence

(number of blocked days), persistence (average duration of a blocking events), maximum duration

of a blocking event and number of blocking events. This detailed approach to studying trends

in ESB was not carried throughout my thesis and the comparison across the climate models

in chapters 3 - 4. This is because to compare the historic and 4xCO2 scenarios, mean sea

level pressure (MSLP) was used, due to complexities with detrending other variables after a

nonlinear climate forcing and due to a lack of other available data. One reason for this is

that I found that MSLP could not as sharply distinguish between different categories of ESB

events, so the different categories of blocking event were not studied. In addition, the other

metrics (persistence, maximum duration and event number) were not studied across the 4xCO2

run comparison, because in previous applications of blocking indices to the climate models

persistence and maximum duration were found to be significantly correlated with the occurrence

metric (not shown).
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However, studying the separate metrics alongside a range of blocking categories across

the CMIP5 and CMIP6 models could yield several interesting results. Such study could identify

shifts in the domain between Eastern and Western European blocking events, which may

indicate the increased prevalence of certain Rossby wavenumbers with particular phase positions

(Kornhuber et al. 2019; Kornhuber et al. 2020). The changing persistence of either Eastern or

Western European blocking events could further indicate increases in the persistence of such

patterns (Rousi et al. 2022). To extend the study of blocking categories in this way I would

need to use geopotential height. The RCP and SSP scenarios could be used in this regard with

the SOM-BI, assuming that geopotential height can be sufficiently well detrended to remove the

thermodynamic effect of troposphere expansion.

Further quantities such as the Rossby wave breaking properties or the nature of blocking

onset and decay can also be studied, both in ERA5 data (which has now been extended back to

1950 (Bell et al. 2021)) and across CMIP5 and CMIP6. This analysis could be done by studying

particular dynamical quantities on the blocked days identified by the SOM-BI, and extended by

contrasting the dynamical quantities across different categories of blocking pattern identified by

the SOM-BI node groups. I have also made the GTDs available for both ERA5 and UKESM,

which have wider application in understanding historic blocking events, how they interact with

other meteorological phenomena (such as heatwaves and droughts) and comparing blocking

patterns and their occurrences between reanalyses and CMIP6 models (cf. process-based climate

model evaluation, Nowack et al. (2020)). I encourage similar ground truth datasets to be created

for other world regions and seasons, and the SOM-BI method could then be trained for and

applied to those regions.

5.2.2 Exploration of the physical mechanisms influencing the ESB

response

The analysis from chapters 3 and 4 highlighted two mechanisms that are particularly important

in influencing the ESB response:

1. changes in the midlatitude Euro-Atlantic meridional temperature gradient; and
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2. the propagation of Rossby waves from diabatic heating in the equatorial Pacific.

The first of these involves two elements: a decreased strength of the NH polar jet

arising from AA and an increase in the strength of the subtropical North Atlantic jet, causing a

poleward shift of the Euro-Atlantic polar jet. Whilst the first of these mechanisms is commonly

discussed in the literature (Francis and Vavrus 2012; Barnes and Screen 2015; Woollings et al.

2018) and has a relatively simple mechanism with well understood physics, the second of these

elements is dynamically complex. I hypothesise that a poleward shift of the Atlantic polar jet

increases ESB. Since this shift is a unique regional feature of the Euro-Atlantic (and is a more

prominent shift in models with a positive ESB response), a poleward shift of the Atlantic polar

jet may increase the likelihood of Rossby wave-breaking events through a greater latitudinal

gradient in the zonal wind between the Euro-Atlantic and adjacent regions. Whilst such a

mechanism is plausible and consistent with physical understanding and the correlations in the

data between positive and negative model groups, my analysis has not developed a detailed

physical understanding of precisely how this poleward shift of the Euro-Atlantic polar jet can

increase ESB.

In addition, whilst the propagation of Rossby waves in the North Pacific arising from

diabatic heating in the tropical Pacific is well understood (Hoskins and Karoly 1981; Hoskins and

Ambrizzi 1993; Ting and Sardeshmukh 1993), the physics of how Rossby wave propagation in the

North Pacific may influence ESB is not well understood. Whilst such a correlation is plausible

given physical connections between the North Pacific and Europe such as the circumglobal

teleconnection (Ding and Wang 2005), a detailed physical understanding of this has not been

explored.

To explore this, an intermediate complexity model could be used with which simplified

experiments could be run. By changing the Euro-Atlantic meridional temperature gradient, the

strength of the subtropical Atlantic jet could be increased from thermal wind balance. The effects

that this has on the position of the Atlantic polar jet and on subsequent Rossby wave-breaking

could then be investigated. A further experiment using an intermediate complexity model could

be run to study how teleconnections in the NH boreal summer can be influenced by Rossby

wave propagation in the North Pacific, given a source of diabatic heating in the tropical Pacific.
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This would shed light on the physical connection between diabatic heating in the tropical Pacific

and ESB.

Finally, the prominence of these mechanisms in the real atmosphere could be further

investigated from reanalysis data. Whilst chapters 3 and 4 show that the two mechanisms

above are important in affecting ESB historically, the two mechanisms themselves have not

been directly explored with reanalysis data. Figure C.1 shows the relationship between annual

historic ESB occurrence and the annual JJA zonal wind climatology for ERA5. The same

region of zonal wind correlations at the equatorward edge of the North Pacific subtropical jet

(400 hPa and 20◦ N in Fig. C.1k) is correlated with ESB, with R2 ≈ 0.2. This suggests that

the Rossby wave propagation in the North Pacific may influence ESB in the real atmosphere.

Other variables such as streamfunction, vorticity and precipitation could be investigated here.

Particular cases could be identified for particular years or blocking events where the tropical

Pacific has had the greatest influence on ESB. Such analysis could confirm the influence of

Rossby waves in the North Pacific on ESB, and case studies could inform our understanding of

the physics behind this mechanism.

5.2.3 Improving the prediction of the ESB response

In chapter 4, an estimate for the ESB response is provided, derived from the relationship between

the tropical zonal wind bias and the ESB response across the model ensemble. An estimate of

0.22± 0.35 days ◦C−1 was obtained. As discussed in section 5.1.3, this estimate for the ESB

response is probably an underestimate, given that the normalisation of the SOM-BI will tend to

remove part of the dynamic climate change signal. To develop a more accurate estimate for the

ESB response, several further investigations could be conducted:

1. Investigate the SOM-BI and other BIs (such as AGP or DG83 as discussed and applied

in chapter 2) in the RCP8.5 and SSP5-8.5 transient scenarios, and investigate if there

is a relationship between the historic occurrence of ESB and future occurrence of ESB.

The transient scenarios do not have the data limitations of the 4xCO2 runs, so from daily

geopotential height data the AGP, DG83 and SOM-BI indices can all be directly compared.

However, there will be a weaker signal-to-noise ratio than in the 4xCO2 run, which would
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affect the statistical significance of the results. In addition, using this transient scenarios

produces a more complex picture, since the transient climate response between the models

is different (Meehl et al. 2020), and there are also changes to other forcing agents such as

aerosols across these runs. The transience, smaller forcing and presence of other forcing

agents limit the ability for using the transient scenarios to derive an accurate ESB response.

2. The AGP index could be used in the 4xCO2 run for the models which have available

data. This would ensure a strong signal-to-noise ratio and provide a comparative estimate

of the ESB response across these models. From comparing the magnitude of change

in ESB between the AGP and SOM-BI methods, the ESB response estimate could be

appropriately scaled to correct for the conservative estimate provided by the SOM-BI

method. However, only five of the 22 climate models studied (UKESM1-0-LL, HadGEM3-

GC31-LL, GFDL-ESM2M, IPSL-CM5A-LR, MIROC5) have daily 4xCO2 geopotential

height data available, so this comparison would provide limited data.

Each of the above approaches has limitations. The transient scenarios have many models to

compare and both the AGP and DG83 indices can be used, but there is a relatively weak

signal-to-noise ratio. However, using the 4xCO2 scenario run has a strong signal-to-noise ratio

but fewer models available. Additionally, apart from the SOM-BI only the AGP index can be

used in the 4xCO2 run, since the DG83 index requires detrended geopotential height data, and

sensible detrending is particularly challenging with a nonlinear climate forcing (see section 2.2.1

and Malik et al. (2020) for an example). Therefore, both of the above approaches could be used

in tandem to provide a more robust prediction of the ESB response.
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Bjerknes, V. (1898), Über einen hydrodynamischen Fundamentalsatz und seine Anwendung
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Schubert, S., Wang, H., and Suárez, M. J. (2011), Warm Season Subseasonal Variability and

Climate Extremes in the Northern Hemisphere: The Role of Stationary Rossby Waves, Journal

of Climate 24, 4773–4792. doi: 10.1175/JCLI-D-10-05035.1.

Schwierz, C., Croci-Maspoli, M., and Davies, H. C. (2004), Perspicacious indicators of atmo-

spheric blocking, Geophysical Research Letters 31.6. doi: https://doi.org/10.1029/

2003GL019341.

Screen, J. A., Deser, C., Smith, D. M., Zhang, X., Blackport, R., Kushner, P. J., Oudar, T.,

McCusker, K. E., and Sun, L. (2018), Consistency and discrepancy in the atmospheric

response toArctic sea-ice loss across climate models, Nature Geoscience 11.3, 155–163. doi:

10.1038/s41561-018-0059-y.

Screen, J. A. and Simmonds, I. (2013), Exploring links between Arctic amplification and mid-

latitude weather, Geophysical Research Letters 40.5, 959–964. doi: https://doi.org/10.

1002/grl.50174.

Sejas, S. A., Albert, O. S., Cai, M., and Deng, Y. (2014), Feedback attribution of the land-sea

warming contrast in a global warming simulation of the NCAR CCSM4, Environmental

Research Letters 9.12, 124005. doi: 10.1088/1748-9326/9/12/124005.

Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O’Connor, F. M.,

Stringer, M., Hill, R., Palmieri, J., Woodward, S., Mora, L. de, Kuhlbrodt, T., Rumbold, S. T.,

Kelley, D. I., Ellis, R., Johnson, C. E., Walton, J., Abraham, N. L., Andrews, M. B., Andrews,

T., Archibald, A. T., Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J.,

Folberth, G. A., Gedney, N., Griffiths, P. T., Harper, A. B., Hendry, M. A., Hewitt, A. J.,

Johnson, B., Jones, A., Jones, C. D., Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J.,

Predoi, V., Robertson, E., Siahaan, A., Smith, R. S., Swaminathan, R., Woodhouse, M. T.,

180

https://doi.org/10.1038/s41598-019-43496-w
https://doi.org/10.1175/MWR-D-11-00249.1
https://doi.org/10.1175/JCLI-D-10-05035.1
https://doi.org/https://doi.org/10.1029/2003GL019341
https://doi.org/https://doi.org/10.1029/2003GL019341
https://doi.org/10.1038/s41561-018-0059-y
https://doi.org/https://doi.org/10.1002/grl.50174
https://doi.org/https://doi.org/10.1002/grl.50174
https://doi.org/10.1088/1748-9326/9/12/124005


REFERENCES

Zeng, G., and Zerroukat, M. (2019), UKESM1: Description and Evaluation of the U.K.

Earth System Model, Journal of Advances in Modeling Earth Systems 11.12, 4513–4558. doi:

10.1029/2019MS001739.

Shaw, T. A. (2019), Mechanisms of Future Predicted Changes in the Zonal Mean Mid-Latitude

Circulation, Current Climate Change Reports 5.4, 345–357. doi: 10.1007/s40641-019-

00145-8.

Shepherd, T. G. (2014), Atmospheric circulation as a source of uncertainty in climate change

projections, Nature Geoscience 7, 703–708.

Sheridan, S. C. and Lee, C. C. (2011), The self-organizing map in synoptic climatological

research, Progress in Physical Geography: Earth and Environment 35.1, 109–119. doi: 10.

1177/0309133310397582.

Shukla, J. and Mo, K. C. (1983), Seasonal and Geographical Variation of Blocking, Monthly

Weather Review 111.2, 388–402. doi: 10.1175/1520-0493(1983)111<0388:SAGVOB>2.0.

CO;2.

Shutts, G. J. (1983), The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of

‘blocking’ flow fields, Quarterly Journal of the Royal Meteorological Society 109.462, 737–761.

doi: https://doi.org/10.1002/qj.49710946204.

Simpson, I. R., Blackburn, M., and Haigh, J. D. (2009), The role of eddies in driving the

tropospheric response to stratospheric heating perturbations, Journal of the Atmospheric

Sciences 66.5, 1347–1365.

Singh, D., Swain, D. L., Mankin, J. S., Horton, D. E., Thomas, L. N., Rajaratnam, B., and

Diffenbaugh, N. S. (2016), Recent amplification of the North American winter temperature

dipole, Journal of Geophysical Research: Atmospheres 121.17, 9911–9928. doi: 10.1002/

2016JD025116.

Skific, N. and Francis, J. (2012), Self-Organizing Maps: A Powerful Tool for the Atmospheric

Sciences. In: doi: 10.5772/54299.

Skific, N., Francis, J. A., and Cassano, J. J. (2009), Attribution of Projected Changes in

Atmospheric Moisture Transport in the Arctic: A Self-Organizing Map Perspective, Journal

of Climate 22.15, 4135–4153. doi: 10.1175/2009JCLI2645.1.

181

https://doi.org/10.1029/2019MS001739
https://doi.org/10.1007/s40641-019-00145-8
https://doi.org/10.1007/s40641-019-00145-8
https://doi.org/10.1177/0309133310397582
https://doi.org/10.1177/0309133310397582
https://doi.org/10.1175/1520-0493(1983)111<0388:SAGVOB>2.0.CO;2
https://doi.org/10.1175/1520-0493(1983)111<0388:SAGVOB>2.0.CO;2
https://doi.org/https://doi.org/10.1002/qj.49710946204
https://doi.org/10.1002/2016JD025116
https://doi.org/10.1002/2016JD025116
https://doi.org/10.5772/54299
https://doi.org/10.1175/2009JCLI2645.1


REFERENCES

Small, D., Atallah, E., and Gyakum, J. R. (2013), An Objectively Determined Blocking Index

and its Northern Hemisphere Climatology, Journal of Climate 27.8, 2948–2970. doi: 10.

1175/JCLI-D-13-00374.1.
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Appendix A

Appendix A1

A.1 UKESM case studies

In the UKESM pre-industrial run, we show in Fig. A.2 part of a heatwave in the (arbitrary)

year 2014. This year shows the largest spatial extent of heat extremes, where the number of grid

cells exceeding the 90th (99th) temperature percentile peaks at 66% (24%) on 19 (20) July 2014.

To complement this extreme case, we also show in Fig. A.3 a period from the 2030 summer,

which shows the edge of a blocking pattern in Eastern Europe on the 19 July and an anticyclone

shifting across Europe over 20-27 July.

Since VPV is not available as a variable, the S04 blocking index cannot be calculated,

and we have instead shown MSLP in Figs. A.2b and A.3b.

Many of the same features are observed. Extreme heat is associated with persistent

high pressure and stationary surface winds. The MSLP field is broadly correlated with the Z500

anomalies, but frequently the Z500 anomaly doesn’t represent the MSLP anomalies well, such as

on the 25th July 2014 shown in Fig. A.2, where low MSLP is contrasted with high Z500. The

AGP index in general performs worse than in ERA5, since the zonal Z500 gradients are not as

prominent. The DG83 index is still able to describe blocking patterns from the Z500 anomalies.

The SOM-BI labelling is generally consistent with the ground truth dataset in both cases.

The MSLP field is broadly correlated with the Z500 anomalies, but frequently the

Z500 anomaly does not represent the MSLP anomalies well, such as on the 25th July 2014
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02-06-1961 03-06-1961 04-06-1961 05-06-1961 06-06-1961

270 180 90 0 90 180 270
Z500 anom (m)

18 12 6 0 6 12 18
MSLP anom (hPa)

5627 m

(a)

(b)

(c)

02-06-1961 to 06-06-1961

Figure A.1: The information used to classify blocks in the UKESM GTD. (a) shows the daily
Z500 contour for the averaged value across 30-70 ◦N, indicated in the bottom left of the panel.
(b) and (c) show the Z500 time detrended anomaly and MSLP anomaly for each day.

shown in Fig. A.2, where low MSLP is contrasted with high Z500. The surface wind fields

in UKESM similarly show the easterly wind direction associated with high pressure and vice

versa, particularly when the MSLP anomalies are also strong such as on the 20-21 July 2030 in

Fig. A.3.

189



APPENDIX A. APPENDIX A1

Figure A.2: As with the case studies shown in figures 2.4 and 2.5, but for a heatwave in
UKESM.
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Figure A.3: As above, but for a transient period in UKESM.
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A.2 Blocking climatologies

(a) AGP ERA5 (b) DG83 ERA5 (c) S04 ERA5

0 2.5 5 7.5 10
Blocking freq x 10 2

0 2 4 6 8
Blocking freq x 10 3

ERA5 (d) AGP UKESM (e) DG83 UKESM

4 6 8
freq x 10 3

0 1.5 3 4.5 6
Blocking freq x 10 2

Figure A.4: Occurrence of blocking events per grid cell across JJA Europe for three BIs in
ERA5 1979-2019 and two BIs in UKESM JJA 1960-2060.
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A.3 Difference between the SOM and K-means analysis

13+17

+

13 17

13+14+17+18

+
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+

14

+

17 18

270 180 90 0 90 180 270
Z500 anomaly (m)

SOMs

ERA5 SOM for 20 nodes
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Z500 anom (m)

ERA5 SOM for 4 nodes

270 180 90 0 90 180 270
Z500 anom (m)

K-means for k = 4

ERA5 K-means for k = 20

K-means

(a) 4

  nodes
/clusters

(b) 20

Figure A.5: Comparison of the SOM analysis and K-means clustering for (a) 4 and (b) 20
nodes/clusters. Whilst the K-means and SOM analysis produce a similar set of patterns for
smaller node numbers, their behaviour diverges for larger node numbers. Since the neighbourhood
function ensures that several nodes are updated at once, the SOM produces a continuum of
weather patterns. However, since the K-means clustering updates each centroid independently,
it will seek to maximise the differences between each cluster. This causes some centroids for
high cluster numbers to represent mixed weather regimes that are less realistic than the SOM
continuum of weather regimes. The data used for above is ERA5 Z500 across JJA 1979-2019.
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A.4 Code and data availability

The scripts used for the self-organizing map blocking index, the plots for this chapter and the

ground truth datasets for labelling of blocking events in JJA Europe (in both ERA5 1979-2019 and

UKESM pre-industrial control 1960-2060) can be accessed in github.com/carlmagnusthomas/

SOM-BI. ERA5 data is available from confluence.ecmwf.int and UKESM data is available

from esgf-node.llnl.gov.
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Appendix B

Appendix A2

B.1 The model bias of the SOM-BI using MSLP anoma-

lies that have not been normalised

This section describes the model bias that is evident in the SOM-BI index using the MSLP

anomalies in the 4xCO2 runs, extending the discussion in 3.3.2. There are two differences

between the non-normalised MSLP data and the normalised MSLP anomalies:

1. Definition of anomalies: in the non-normalised case, the MSLP anomalies in the 4xCO2

period are defined with respect to the anomalies of the historic period. This will over-

emphasise the dynamic shifts in the MSLP climatology over this time period, since the

4xCO2 anomalies are projected onto a shifted background state. In the normalised case,

the anomalies are defined with respect to each climatological period.

2. Normalising by standard deviation: in the normalised case, the anomalies in each grid

cell are divided by the standard deviation of MSLP for each period, such that such that

(MSLPnorm) are calculated:

MSLPnorm =
MSLP − µMSLP

σMSLP

(B.1)

Figure B.1 shows the ESB response across 20 global climate models across CMIP5 and CMIP6.
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Figure B.1: The response of ESB to climate change across 20 global climate models. Derived
by combining the 4xCO2 and historical periods of JJA global mean surface temperature and
mean JJA blocking over Europe and calculating a linear regression. Red bars show statistically
significant trends (p-value < 0.05, corrected for multiple hypothesis testing). The lines show
the error bars on the trend. Blocking occurrence is calculated using the SOM-BI for (a) the
MSLP anomaly and (b) the MSLP normalised anomaly. Crosses indicate the mean change in
blocking occurrence divided by the GMST change between the 4xCO2 and historical periods.

The trends are derived by combining the 4xCO2 and historical periods of JJA global mean

surface temperature and mean JJA blocking over Europe and calculating a linear regression,

averaged over each year, as in Fig. 3.2. Red bars show statistically significant trends, and the

lines show the standard error on the trend. Figures B.1 (a) and B.1 (b) show the ESB response

calculated using the MSLP anomaly and normalized MSLP anomaly respectively. The MSLP

anomaly calculation shows across several models a statistically significant ESB response, with

85% of models showing a positive trend. The multi-model mean is an increase of 1.7 ± 1.5 days

blocked over European summer per degree of GMST increase. Therefore, whilst there is a wide

divergence of model responses in the ESB response, an increase is generally reported.

However, in Fig. B.1 (b) no model shows a statistically significant trend. The magnitude
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of the trends across all models is significantly lower than those of Fig. B.1 (a), and 7 of the 20

models have a change in the sign of the ESB response between Fig. B.1 (a) and B.1 (b). Figure

B.1 (b) also shows a more consistent model response across different model groups, which would

be expected to have similar physical features. In particular, the IPSL models (IPSL-CM5B-LR,

IPSL-CM5A-LR and IPSL-CM6A-LR) all have a very similar slightly negative ESB response in

Fig. B.1 (b), but in Fig. B.1 (a) IPSL-CM5B-LR and IPSL-CM5A-LR show opposite trends.

These differences between the normalised and non-normalised data are striking, and they

result from model biases in the historic MSLP distribution (see 3.3.2 and Fig. 3.1). These model

biases can be seen in how the future change in the models is sensitive to the past occurrence of

certain SOM nodes for the non-normalised MSLP data.

Figures B.2 and B.3 show the optimised SOM for each index and the statistically

significant (p-value < 0.05) trends between the occurrence of each SOM node and the future

trend in that model. In each case the occurrence of the SOM nodes is shown as the difference

between the occurrence of that SOM node in the historic climatology in the model and the

occurrence of that SOM node in the ERA5 climatology. These are therefore measures of model

skill.

Figure B.2 shows clear decreases in the occurrence of the SOM nodes with negative

anomalies in MSLP over Scandinavia (nodes 3, 4, 5, 7 and 9), and clear increases in those nodes

with positive anomalies over Scandinavian MSLP (nodes 17, 18, 19 and 20). This suggests that

the changes in the occurrence of certain blocking patterns are dependent on how much the

model deviates from the past occurrence of SOM nodes. Since all models use an SOM trained on

ERA5 data, this suggests that the differences between the MSLP climatology historically lead

to a greater occurrence of blocking in the future. This could be due to difference in the physics,

or simply because if the model is incorrect in its MSLP climatology, the effect of changes in

the 4xCO2 run is going to be significantly magnified, since the positive SOM nodes that occur

historically infrequently suddenly occur much more frequently in the 4xCO2 models. This does

not necessarily reflect interesting physics, but an error in the application of the algorithm.

However, Fig, B.3 does not show such trends. Whilst both models have statistically

significant trends, there are many more (9 out of 20) in the non-normalised data than in the
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normalised data (4 out of 16). Additionally, after correcting for multiple-hypothesis testing the

trends in Fig. B.3 are no longer significant, but most of the trends in Fig. B.2 remain significant

after applying this correction. The SOM nodes that occur more or less frequently historically in

Fig. B.3 do not map on to clear parts of the European domain where there would be biases

in the MSLPnorm climatology. For example, the occurrence of nodes 6 and 2 (which have a

slight positive relationship with future trend) shows a pattern of positive MSLP anomalies over

Scandinavia, but the occurrence of node 11 (which also has a slight positive trend) shows a

negative MSLPnorm anomaly over Scandinavia. This shows that there are no clear biases that

relate the past skill of the MSLPnorm climatology to the future trend in the SOM-BI index.

Therefore, using the normalised MSLP anomalies corrects for the model biases in the historic

MSLP climatology.

This correction is also shown in Fig. B.4, which shows slope and R2 for a linear regression

between the historic MSLP climatology and the future trend in European summer blocking for

(a) the MSLP SOM-BI and (b) the MSLPnorm SOM-BI trends, The hatching shows statistical

significance, and there is a clear relationship between the negative MSLP over Scandinavia and

peak R2 0.45 in the climatology and a positive future trend in the MSLP SOM-BI, but in (b)

there are no statistically significant trends, with peak R2 0.15. The lack of any statistically

significant correction between the MSLP climatology and the MSLPnorm SOM-BI trends shows

that the normalisation has removed the model bias. Therefore, the normalised MSLP anomaly

is an effective way of calculating future trends in SOM-BI in the 4xCO2 runs.

B.2 Applying the SOM-BI to normalized MSLP data

This section describes the optimization of the SOM-BI index using normalized MSLP anomalies

discussed and motivated in section 3.3 and B.1. Since MSLPnorm is effectively a new variable

with a new SOM (see Fig. B.3), the SOM-BI needs to be optimised again to identify the optimal

set of node groups associated with blocking. This requires an optimization of the SOM node

number, and then an identification of the best blocked node group within that set, calculated

through cross-validation (see section 2.3.3 and the skill score comparison in Fig. 2.6). Figure

B.5 shows the optimization of this node group. The optimisation follows a similar pattern to
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Figure B.2: The optimised self-organising maps used for calculating blocking using the
MSLP anomaly (right), alongside the statistically significant trends in relating the SOM node
occurrence to the model skill (left). These trends remain statistically significant after accounting
for multiple hypothesis testing.

Figure B.3: As in figure B.2 but for the normalised MSLP anomalies. After accounting for
multiple hypothesis testing, none of these trends are statistically significant.

the MSLP optimization in Fig 2.6 (b), where the recall decreases whilst precision increases with

an increasing node number. The difference between precision and recall is smallest at node

number 16 (arranged in a 4x4 SOM arrangement), so this has been chose for optimization. The

cross-validation F1 score in 0.65, which is very similar to the cross-validation F1 score of 0.66
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Figure B.4: The slope (left) and R2 (right) of a linear regression between the mean historic JJA
MSLP climatology (1979-2005) and the change in blocking across 26 CMIP5/CMIP6 models.
Hatching shows where the p-value is statistically significant (p-value ¡ 0.05). The top row shows
the relationship for the MSLP anomaly plots and the bottom row shows the same for the
normalised MSLP anomalies.

for the non-normalised MSLP anomalies. In order to derive the optimal set of SOM blocked

node groups, a slightly different method was used to that described in section 2.3.3. Since the

cross-validation produces 10 different sets of blocked node groups with a widely varying F1

score, the blocked node group with the smallest number of blocked node groups was chosen,

which also had a higher F1 score (0.70) and a smaller difference between the precision and recall

(0.01). This is different to taking the blocked node group set that would be obtained without

cross-validation, which was the method employed with the other indices, which led to a larger

number of blocked node groups associated with blocking, and a higher F1 score overall, but

introduces a potential error in overfitting the dataset (albeit generally with combinations of

blocked node groups that are rarer). This modification in the choice of optimal node groups was

motivated by the fact that smaller node groups generally show better F1 scores when applied

across different datasets (see table 2.2 in section 2.3.5). This minor modification is likely to
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Figure B.5: The optimization of the node number for the normalized MSLP anomalies using
10-fold cross validation in the ERA5 dataset. See Figure 2.6 for the optimization across other
variables and section 2.3.3 for a further discussion and comparison with other variables.

slightly improve the classification of blocking with the MSLPnorm variable.

B.3 Using MSLP as a variable to investigate dynamic

climate change

Figure B.5 shows the relationship between MSLP and surface temperature for 150 years in the

UKESM1-0-LL abrupt-4xCO2 simulation for JJA. Figure B.6 (a) shows the trend globally, which

increases with the increase in GMST. This demonstrates that the thermodynamic effect clearly

dominates the MSLP distribution globally. However, there is no discernible relationship between

surface temperature and MSLP when averaged over the European domain. This demonstrates

that on the regional scale which this thesis is concerned with, the dynamic changes in MSLP

dominate. Therefore climatic changes in MSLP at the regional scale reflect dynamic mechanism

of climate change rather than thermodynamics.
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Figure B.6: The relationship between mean sea level pressure and surface temperature using
150 years from in the UKESM 4xCO2 run. Taking the annual JJA average (a) globally and (b)
over Europe. The linear regression statistics are shown in each figure.
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C.1 Historic zonal wind and historic JJA European block-

ing occurrence in ERA5 and CMIP models

Figure C.1 shows the relationship between historic blocking occurrence and U for ERA5. The

ground truth dataset (GTD) is used to define the seasonal occurrence of blocking (see section

2.2.2).

The most notable feature is that there is a strong correlation between negative U

anomalies over Europe and the seasons which have more atmospheric blocking over Europe.

This can be seen by the negative hatched region in Figs. C.1s - u at 40 ◦ N - 60 ◦ N, which

extends across all pressure levels, with R2 > 0.5. There is also a hatched positive region across

66 - 78 ◦ N, which is situated at the top of the European domain, indicating a poleward diversion

of flow that would be typical for omega blocks. The diversion of flow around a blocked region

across the atmosphere is a trivial feature of atmospheric blocking events. However, the fact that

the occurrence of blocking events over a season can be correlated with the seasonal climatology

of U is significant, since this demonstrates that atmospheric blocking events can impact the

seasonal climatology of U over a region.

Similar correlations in hatched regions occur at similar latitudes in other longitude

bands, including over the Pacific in Fig. C.1b (R2 ≈ 0.2) and in the global average in Fig. C.1a

(R2 ≈ 0.25). This indicates the greater prevalence of higher hemispheric Rossby wavenumbers
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associated with blocking events, a well-known result in the literature (e.g. Kornhuber et al.

(2019)).

Another noteworthy feature of Fig. C.1 is that there are correlations in the tropical Asia-

Pacific region associated with increased blocking. This is strongest for the IO+MC longitude

band, in the hatched region at 400 hPa and 20◦ N in Fig. C.1k, with R2 ≈ 0.2, This longitude

band, latitude and level is also the region in the tropics where there is the strongest correlation

across the CMIP5/6 model ensemble between past model skill and future trend (not shown). This

region represents the equatorward edge of the Noth Pacific subtropical jet, and (as illustrated in

Fig. 3.11) a more equatorward North Pacific subtropical jet can be connected to ESB through

enabling further Rossby wave propagation across the Pacific. The fact that a similar (but

weaker) correlation can be identified in the same region in ERA5 suggests that the Rossby wave

physical mechanism has played a role historically in the development of future blocking events.

This will be further discussed in section 5.2.2.

Figures C.2 and C.3 show the same correlations for two models from the model ensemble

(ACCESS-CM2 and GFDL-ESM2M respectively). These two models are shown because they

show strongly contrasting correlations between the tropical U and ESB between each other and

the ERA5 reanalysis. Whilst the ERA5 reanalysis shows some correlations with tropical forcing,

ACCESS-CM2 has no significant correlation with the tropics or correlation outside of the region

of Europe and GFDL-ESM2M has strong correlations (highest R2 ≈ 0.5) between the U and

ESB in the tropics and across both hemispheres. Both models have a relatively low historic

blocking occurrence and a positive ESB response (not shown). This suggests that models have

strong differences in the relationship between U and ESB individually. However, significant

features emerge when studying trends across the model ensemble.
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C.2 Change in the Atlantic temperature profile and 200

hPa U between models
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Figure C.4: The difference between the T zonally averaged across the Atlantic. Separated
across the positive and negative model groups. Fig. C.4i shows that there is a greater (smaller)
increase in the meridional temperature gradient for the positive (negative) model groups.
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C.3 Historic relationship between U shear and blocking

Figure C.6 shows the correlations of linear regressions between the JJA U shear and ESB. Here U

shear is defined as the partial derivative of U with respect to the decreasing pressure level (−∂u
∂p
).

I define the vertical wind shear here using a partial derivative to provide a two-dimensional

picture of the flow across latitude and pressure level, and because such a definition follows more

closely the physical connection between vertical wind shear and baroclinic instability. Baroclinic

instability occurs in the midlatitude atmosphere, and arises from the existence of a meridional

temperature gradient that causes a vertical shear of the mean flow (Charney 1947; Eady 1949).

Baroclinic instability generates large-scale eddies which grow by taking energy from the mean

flow (Pierrehumbert and Swanson 1995) and are the cause for all midlatitude cyclones.

As in Fig. 3.8, the strongest correlations for changes to the U shear are in the SH.

Across all panels in the left column of Fig. C.6, a pattern of positive (negative) correlations of

U shear at 200 hPa exists at 30◦ S (55◦ S). Across the total longitudinal average in Fig. 3.8b,

the R2 exceeds 0.50. This change in U gradient indicates a shift in the location of baroclinic

eddies in the SH, associated with the propagation of Rossby waves from the tropics (Hoskins

and Karoly 1981). Therefore these are not causal correlations but reflect the role of tropical

forcing in increasing ESB.

In the NH extratropics, the most significant correlation is in the Atlantic region (Figs.

C.6p - C.6r), with a pattern of positive (negative) correlations at 300 hPa and 25◦ N (35 ◦ N),

with R2 ≈ 0.4. Comparison to the Atlantic U climatology in Fig. 3.9r shows that this series

of correlations exist in the Atlantic subtropical jet, and at the edge of the easterly flow in the

tropical Atlantic.

The increased (decreased) U shear at 25◦ N (35 ◦ N) in the Atlantic upper-troposphere

may be associated with the second mechanism described in 3.4.4.2, which proposed that the

propagation of positive and negative vorticity anomalies along the North Atlantic storm track is

associated with increased ESB. Baroclinic instability can be understood as interacting potential

vorticity anomalies at different levels in the atmosphere (Robinson 1989), so vorticity anomalies

are likely to be associated with increasing and decreasing patterns of U shear.
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I note that 25◦ N is a relatively low latitude to consider baroclinic instability, since

the Coriolis parameter is much smaller at this latitude, However, Charney (1963) has shown

through scale analysis that the quasi-barotropic assumption of synoptic-scale motion is not valid

at 20◦ N. Therefore it is reasonable to consider that baroclinic instability is important at 25◦ N.
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