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Grid-based methods for chemistry simulations on a
quantum computer
Hans Hon Sang Chan1*, Richard Meister1, Tyson Jones1, David P. Tew2,3, Simon C. Benjamin1,4

First-quantized, grid-based methods for chemistry modeling are a natural and elegant fit for quantum comput-
ers. However, it is infeasible to use today’s quantum prototypes to explore the power of this approach because it
requires a substantial number of near-perfect qubits. Here, we use exactly emulated quantum computers with
up to 36 qubits to execute deep yet resource-frugal algorithms that model 2D and 3D atoms with single and
paired particles. A range of tasks is explored, from ground state preparation and energy estimation to the dy-
namics of scattering and ionization; we evaluate various methods within the split-operator QFT (SO-QFT) Ham-
iltonian simulation paradigm, including protocols previously described in theoretical papers and our own
techniques. While we identify certain restrictions and caveats, generally, the grid-based method is found to
perform very well; our results are consistent with the view that first-quantized paradigms will be dominant
from the early fault-tolerant quantum computing era onward.
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INTRODUCTION
Quantum computers may prove to be transformative tools for ex-
ploration and prediction in chemistry. When conventional comput-
ers are used for first-principles quantum molecular dynamics
simulation, which is an important technique for predicting reaction
outcomes and various experimental observables, the required re-
sources (i.e., the hardware and time duration) scale exponentially
with the number of simulated particles. However, these costs are ex-
pected to scale only polynomially for quantum computers, thus en-
abling simulations that are otherwise practically impossible.
Whether and when this promise will be realized can only be predict-
ed with a comprehensive exploration of the quantum approach. It is
relevant to note that recently, a study concluded that there is as-yet
no evidence of fundamental “exponential quantum advantage” in
the task of computing molecular ground state energies (1). While
that task is distinct from quantum dynamical simulation, the obser-
vation highlights a pressing need for clarity, which will doubtlessly
increase as more powerful quantum computers emerge [see,
e.g., (2)].

In this work, we investigate the prospects for accelerating chem-
ical dynamics simulation on early fault-tolerant quantum comput-
ers using the first-quantized, real-space grid approach (3–17). By
“early,” we mean machines that have a limited number of error-cor-
rected qubits, as we presently explain. This approach involves rep-
resenting wave functions over a grid of points; thus, the method
explicitly encodes features such as particle symmetry (unlike the
conventional second-quantized formulation). We select this ap-
proach as it is appealingly intuitive, but moreover, first-quantized
simulation is anticipated by many researchers to offer the optimal
resource scaling for complex and interesting molecules (9, 11, 18);
some have even suggested that first-quantized simulation can effi-
ciently encode both nuclear and electronic degrees of freedom on an

equal footing, potentially addressing the gap in simulating
non–Born-Oppenheimer processes inmodern chemical physics (5).

Real-space grid methods have been used with classical comput-
ers since at least the 1980s (19–23); even if in practice, only simpli-
fied models with wave functions that are, so to speak, “heavily
pixelated” can be stored and processed within conventional
random-access memory. Even with quantum computers, first-
quantized methods will require numerous qubits and deep circuits
for meaningful realizations, making them impractical on the noise-
burdened quantum computers of today. Most prior studies of such
approaches have therefore focused on theoretical “pen and paper”
analysis of the resource costs (7, 9, 11, 13, 24). In this study, we take a
different approach: We deploy very substantial classical computing
resources to perform exact emulations of small but noise-free
quantum computers; these emulated computers then simulate rep-
resentative quantum molecular dynamics. Thus, we are able to di-
rectly examine costs and performance measures.

The cost of emulation limits us to modest-sized quantum com-
puters (we use at most 36 perfect qubits). However, we find that we
can explore a number of informative scenarios within this restric-
tion: two-dimensional (2D) and 3D simulations of one- and two-
electron systems. We select specific scenarios to elucidate two key
areas of interest in chemistry. We now describe these and identify
small-to-medium molecules that would be important targets for
early fault-tolerant quantum computers; here, we leverage our
results to estimate the quantum resources required.

Scenario I: Simulation of dynamics in the presence of strong
external fields
Our exploratory work here involves a suddenly applied external
field with resulting dipole oscillation and ionization of a single
bound electron. Ultimately, efforts in this direction will encompass
topics such as photochemistry and laser excitation. Some applica-
tions would require mature (rather than early) fault-tolerant
quantum computers; for example, comprehensively modeling the
dynamics of photosynthesis would be a profound accomplishment
but would involve highly complex molecules, e.g., the Fenna-Mat-
thews-Olson complex (25). A more near-term prospect is laser-

1Department of Materials, University of Oxford, Oxford OX1 3PH, UK. 2Department
of Chemistry, University of Oxford, Oxford OX1 3TA, UK. 3Duality Quantum Photon-
ics, 6 Lower Park Row, Bristol BS1 5BJ, UK. 4Quantum Motion, 9 Sterling Way,
London N7 9HJ, UK.
*Corresponding author. Email: hans.chan@materials.ox.ac.uk

Chan et al., Sci. Adv. 9, eabo7484 (2023) 1 March 2023 1 of 25

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org on A

ugust 11, 2023

http://crossmark.crossref.org/dialog/?doi=10.1126%2Fsciadv.abo7484&domain=pdf&date_stamp=2023-03-01


driven dynamics: Coherent quantum control of small molecules in
this way has been considered one of the “holy grails” of chemical
science (26). A modest molecule well worthy of study would be
ammonia (NH3), investigated in the context of selective hydrogen
atom removal (27). If quantum modeling of its dynamics under
laser control were to reveal new synthesis options, then the conse-
quences could be profound since ammonia use lies at the heart of
modern agriculture.

Scenario II: Simulating the dynamics of particle scattering
Our exploratory work here involves an incident electron scattering
from a bound electron and potentially ionizing it. In general, elec-
tron-molecule scattering is relevant in spectroscopy, astrochemis-
try, atmospheric chemistry, and manufacturing processes (28).
While part of the computational challenge is scanning through pos-
sible initial energies of the incoming electron, predicting what
happens upon collision and scattering is a highly quantum dynam-
ical process that is difficult to model classically. Many cases involve
reaction intermediates with fleeting lifetimes that are hard to
observe and occur under conditions that are experimentally chal-
lenging to access. An example currently beyond the reach of full-di-
mensional quantum dynamics simulation is hexafluoro ethane
(C2F6), a representative example of fluorocarbons (29) relevant in
the chemistry of the ozone layer and in plasma etching.

Our adopted approach is to perform wave packet simulations
with the split-operator quantum Fourier transform (SO-QFT)
Hamiltonian simulation approach (5, 10, 12) based on the Lie-
Suzuki-Trotter product formula. We model subatomic particles in-
teracting directly via the Coulomb potential, a prerequisite for ulti-
mately treating electrons and nuclei on a fully quantum basis. The
classical SO-FT algorithm has had decades of demonstrated success
in nuclear wave packet propagation (30) on electronic potential
energy surfaces, but as far as we know, it was never used with
Coulomb potentials. Compared with other first-quantized real-
space Hamiltonian simulation methods [see, e.g., linear combina-
tion of unitaries (9) or qubitization (11, 13)], SO-QFT can require
the lowest number of qubits to implement time evolution (5).

Given that we use classically emulated quantum computers to
perform grid-based simulations, the reader might wonder
whether we are simply rehashing prior classical grid-based tech-
niques under a new banner. We emphasize that this is not the
case; our emulation is restricted to exactly the capabilities of real,
albeit noise-free, quantum machines. This restriction is severe and
manifests in multiple ways as we explore early fault-tolerant
quantum computing techniques in the context of chemically rele-
vant quantum dynamics.

Beyond the inherent value in executing previously proposed
quantum algorithms and thus determining performance measures
that hitherto could only be estimated, we make a number of
contributions:

1) To perform scattering and ionization modeling within the
finite “simulation box” of the grid-based method, we create and
explore a nonunitary wave packet attenuation approach. It is in-
spired by complex absorbing potentials (CAPs) from classical sim-
ulation. The method uses a measurement of a single entangled
ancilla qubit to attenuate particles that are ejected from the finite
simulation environment, preventing them from returning at the pe-
riodic boundary and interfering with the simulation. We note that
sampling the outcome of the ancilla measurement doubles up as a

means of tracking escape probabilities of wave packets and has po-
tential for quantum computing reaction rates. We present visualiza-
tions of such dynamical events that a quantum computer would
enable; the user of a real quantum processor would have access to
analogous images for far more complex systems.

2) Our use of the unmitigated Coulomb singularity creates a
challenge in the spatial resolution, which we address by creating
an augmented SO (ASO) approach. Here, we use an additional
small quantum circuit to correct the Trotter error incurred at
every SO-QFT time evolution step when low spatial and temporal
resolution is used.

3) State preparation is a nontrivial challenge in quantum mod-
eling. We assess prior methods and make our own contribution:

a) We investigate an approach that uses the single-ancilla itera-
tive phase estimation (IPE) measurement to project out
excited states.

b) We investigate an adaption of the single-ancilla probabilistic
imaginary-time evolution (PITE) method (12) for approximating
small imaginary-time evolution steps.

c) We build upon existing work (31) to create a method that ex-
plicitly generates the correct particle (anti)symmetry for first-quan-
tized simulations.

4) Last, in light of the above studies, we estimate the quantum
resource costs (time and hardware scale) for modeling the interest-
ing molecules noted earlier, C2F6 and NH3. We also indicate the
hardware layout of a suitable quantum computer.

The paper is structured as follows. In Results, we present a range
of results from applying grid-based SO-QFT techniques to 2D and
3D systems with single and paired particles. We extrapolate from
those results to estimate the quantum resources required for simu-
lations beyond the reach of emulation, and we also present a suitable
quantum hardware architecture. In Discussion, we discuss implica-
tions and remark that the SO-QFT may be advantageous in appli-
cations well beyondmolecular dynamics. InMaterials andMethods,
we describe the methods used in SO-QFT: The “Theoretical frame-
work” section in Materials and Methods sets out ideas described in
prior works but which are provided here for a self-contained expla-
nation with consistent notation; expert readers may care to skip di-
rectly to the “Techniques for SO-QFT modeling” section in
Materials and Methods where we set out the specific methods that
we use.

RESULTS
The numerical results in this section were obtained from exactly
emulated quantum processors, implemented using the open
source tools QuEST (32), QuESTlink (33), and pyQuEST (34).
Results are reported in Hartree atomic units, where the reduced
Planck constant, electron mass, elementary charge, and Bohr
radius are treated to be unity ℏ = me = e = a0 = 1. The particular
techniques used for each of the studies are specified in Materials
and Methods and forward referenced from the present section.
Details of important configuration choices including the alignment
between the grid of pixel functions and the nuclear potential, as well
as the specific hardware used, are given in the Supplementary
Materials.
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Commonly used Hamiltonian and initial states
Here, we frequently use the 2D hydrogenic system described by the
Hamiltonian

Ĥtot ¼ �
h� 2

2me
rr �

e2

4πε0 jR � r j
ð1Þ

where we model the atomic nucleus as a classical discretized
Coulomb potential, clamped with the origin between two pixels.
Analytic solutions to Eq. 1 have been reported in (35, 36). We use
an equation from the former

Ψn;mðr; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q30ðn� jmjÞ!
πðnþjmjÞ!

q

� ð2q0rÞ
jmj
� e� q0r

� L2jmjn� jmjð2q0rÞ � e
imθ

ð2Þ

where q0 ¼ 1
nþ1=2 and L are the generalized Laguerre polynomials.

The quantum numbers n = 0,1,2, …, and there are (2n + 1) values
of m. The energy eigenvalues are

En ¼ �
1

2 nþ 1
2

� �2 ð3Þ

We show two of the eigenstates used in this work in Fig. 1. In a
two-particle, 36-qubit simulation, we also use states related to the

well-known 3D hydrogenic eigenstates

Ψn;l;mðr; θ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z
n

� �3 ðn� l� 1Þ!
2nðnþlÞ!

q

� 2Zr
n

� �l

� e� Zr=n � L2lþ1n� l� 1
2Zr
n

� �

� Yml ðθ;ϕÞ

ð4Þ

where Yml ðθ;ϕÞ is a spherical harmonic and Z is the central nuclear
charge. We also use Gaussian wave packets of the form

ΨðxÞ ¼ eImðγÞ
2ReðαÞ

π

� �1=4

e� αðx� xcÞ
2
þipcðx� xcÞþiγ ð5Þ

where xc, pc, α and γ are continuous parameters.

Spatial and temporal resolution
A key topic to explore is the number of qubits and the execution
duration required to achieve simulations of a given accuracy. In
the grid-based method, the model’s spatial resolution δr−1 and
the temporal resolution of the dynamics δt−1 are crucial in deter-
mining accuracy; the qubit count per spatial dimension, nr, is log-
arithmically related to the former (see Eq. 27 in Materials
and Methods).

To explore these requirements, we first propagate eigenstates of
the 2D hydrogen with different choices of δr−1 and δt−1. We start
with loading the discretized analytic ground and excited states Ψ0,0

Fig. 1. SO-QFT simulation of 2D hydrogenic electron. (A) Real projections of the ground ψ0,0 state (left) and a first excitedψ1,1 state (right) of 2D hydrogen. Note that the
plots here do not reflect the choice of simulation box size and are not to scale. (B) Top represents difference between the energy from phase estimation and the analytic
energy of 2D hydrogen. Bottom captures the deviation of the simulation fidelity at the end of the propagation. In this series of experiments, we initialized the ground state
ψ0,0 centered in a simulation box with L = 10 a.u., such that the origin of the Coulomb singularity lies halfway between two central grid points. Each subregister has a
budget of 8 ≤ nr ≤ 12 qubits to store the wave function, corresponding to spatial resolutions of 0.039 ≥ δr ≥ 0.002 a.u. We also initialize the ψ1,1 excited state in a
simulation box with sides of length 40 a.u., with budgets of 7 ≤ nr ≤ 10 qubits per subregister and corresponding resolutions of 0.313 ≥ δr ≥ 0.039 a.u. These two
states, represented at different spatial resolutions, are all time-propagated using the first-order SO for 1.5 atomic time units. We used time steps between
0.00001 ≤ δt ≤ 0.01 (150,000 to 150 SO steps) for the ψ0,0 state and between 0.001 ≤ δt ≤ 0.1 (1500 to 15 SO steps) for the ψ1,1 state. (C) The difference between the
final and initial energy expectation value, measured by direct sampling of the state, of the ground state (left), and the first excited state (right), propagated at different
spatial and time resolutions. The left inset plot zooms in on the energy error at high temporal resolutions for the ground state.

Chan et al., Sci. Adv. 9, eabo7484 (2023) 1 March 2023 3 of 25

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org on A

ugust 11, 2023



and Ψ1,1 into emulated qubit registers with different numbers of
qubits per spatial degree of freedom nr and then perform time evo-
lution experiments using the first-order SO-QFT. States were prop-
agated for 1.5 atomic time units at different time step resolutions.
Figure 1 summarizes these results.

As the initial states are eigenstates, ideally, they would be static
up to a global phase. Thus, the final absolute value of the autocor-
relation for each propagation sequence, specifically the deviation
from unity, is a suitable fidelity metric. The bottom pair of plots
in Fig. 1B displays this metric for Ψ0,0 (left) and Ψ1,1 (right).
When a higher spatial resolution is used, correspondingly finer
time steps are needed to conserve the fidelity (see the “Coulomb po-
tential: Demands on spatial and temporal resolution” section inMa-
terials and Methods). This is true of both cases, but the relationship
is more marked for Ψ0,0, as expected, given that its amplitude is
peaked at the central Coulomb singularity.

Single-ancilla IPE (see the “Energy observable” section in Mate-
rials and Methods) is a simple means to extract an estimate of a
system’s energy from a simulation of its dynamics on a quantum
computer. Figure 1B (top) plots the deviation of this estimate
from the exact analytic result. One observes qualitatively the same
behavior as for the autocorrelation; there is a strong divergence
when the δt is insufficient and that depends on both the δr and
the modeled state. For the ground Ψ0,0 state, the error in the most
accurate energy prediction (attained with the smallest time step
propagation) halves when we increment nr. While deviation of
the energy inferred from phase estimation versus the exact value
falls exponentially with the number of qubits nr, chemical accuracy
is not yet reached with nr = 12.

We note that in additional simulations, not shown in the figure,
we found that by quartering the size of the simulation box and in-
creasing nr by 1 (effectively an additional 4 qubits) and propagating
at δt = 10−5 atomic units (a.u.) for 4 a.u., we were able to achieve an
error of 0.652 mEh from the estimated phase. In this case, 400,000
SO-QFT cycles were used to cover only ≈0.1 fs of physical process.
While these time requirements for accurate simulation of core-
peaked states like Ψ0,0 may seem daunting, it is worth reiterating
that the approach taken here is not optimized, and we used only
the first-order Trotter sequence. Moreover, as we show in the “Aug-
mented split-operator” section in Results, an ASO approach can
obtain accurate phase estimation with far fewer qubits and lower
time resolution than the “brute force” method reported here. It is
also noteworthy that accurate modeling of the Ψ1,1 state is remark-
ably tolerant of low resolutions.

Cautionary tale: A “bad” energy observable
Here, we examine a sampling-based method of estimating the
system’s energy that proves to be highly sensitive to inevitable im-
perfections in the model. Ultimately, it will converge to give the
correct expected energy once spatial and temporal resolutions are
sufficiently high. However, it is profoundly inaccurate at resolutions
where the IPE can already provide reliable, well-converged results.

We are referring to the energy expectation as given by Eq. 37, viz.
hEi ¼ hĤkini þ hĤpoti, and supposing that this would be obtained
from our quantum computer as follows: Generate the desired state
at time t, measure in the k-space representation, and repeat this
many times to estimate the first term. Apply the same process but
measuring in the real-space representation to estimate the second

term. This method is inefficient in terms of the sampling cost and
is therefore already unattractive compared to phase estimation, but
more problematically, it is very sensitive to the resolution parame-
ters. As shown in Fig. 1, the error between the initial and final ex-
pected energy grows exponentially with the size of the elementary
time step δt: For the ground state Ψ0,0, the energy difference was
more than 7000 Eh, accumulated over less than 40 as of simulated
time in theworst offending case. In the Ψ1,1 simulation, the noncon-
servation of expected energy is also apparent when the temporal res-
olution does not match the spatial resolution but is more contained
relative to the ground state (in the worst case, it goes up to 0.20 Eh).
It is evident that the core-peaked nature of the Ψ0,0 state is a
key issue.

It is the kinetic energy term hĤkini that exhibits this diverging
behavior. The explanation is as follows: Imbalance between the
extreme potential and extreme kinetic energy near the Coulomb
origin, inevitable in our discrete grid representation, can allow a
small amount of the amplitude to diffuse toward high-frequency
states in the plane wave representation. The extent of this diffusion
may be small relative to the initial state so that the fidelity of the state
remains high (see Fig. 1), and thus, phase estimation methods can
perform well. However, simply sampling ∣ki and squaring it to es-
timate hĤkini gives direct weight to this error that actually worsens
as we improve the fineness of our resolution. Reducing δr, the sep-
aration of our spatial pixels, can reduce the leakage of amplitude
(increasing the state’s fidelity), but the maximum kinetic energy
that the model can represent goes as 1/(δr)2. Amplitude leakage de-
clines less rapidly than the rate at which the energy of the leaked
states increases; thus, the problem worsens. One must use extremely
high time resolution to ameliorate the effect.

A higher-order Trotter formula would also presumably help, in
the sense that a more modest time resolution could control the
leakage. Nevertheless, we anticipate that this approach to estimating
energy will always be inferior to phase estimation.

State preparation
State editing
Earlier plots (Fig. 1) have presented the results of IPE for energy
estimation. Here, we demonstrate the preparation of an initial
wave packet state on a set of qubits using IPE (the “State prepara-
tion” section in Materials and Methods). Figure 2 shows the results
of a simulation where the initial state [shown at the bottom left and
inset (1)] is a superposition of two eigenstates of 2D hydrogen

1
ffiffiffi
2
p ðΨ1;1 þ Ψ2;2Þ

The state’s amplitude is not symmetric about the nucleus, and
when we apply our SO-QFT cycles, we observe a rotation of the
state due to the different rates at which the two superposed eigen-
states acquire phase. At the time marked (2), the total phase ac-
quired by the more tightly bound state Ψ1,1 (having a more
negative energy) has reached π; thus, if this state was the sole one
present, a control ancilla initially in state ∣+i would now certainly
be in state ∣−i. We measure the ancilla at this point but postselect
on seeing the outcome ∣+i. The probability of the desired outcome
depends on the probability associated with the target Ψ2,2 within the
initial superposition (which was 0.5) and the probability that this
state, had it been prepared alone, would yield a ∣+i outcome at
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this point. The latter is 0.713 in the present case. In a scenario where
the states to be distinguished are closer in energy, it may be optimal
to simulate for several complete cycles of the undesired state before
measuring.

In our numerical emulation, we assume that the desired ∣+i state
is obtained, and we continue our time propagation. The new evolu-
tion of the ancilla state (green curve in the figure) is exactly that of
the pure Ψ2,2 state. The contour plots of the simulated state [insets
(3) and (4)] confirm that we have prepared that pure state. Fidelity
with respect to Ψ2,2 was essentially identical to an initial state pre-
pared directly in that state.

This is a demonstration of the practically useful capability to take
an initial state that is not fully understood and remove from it the
components corresponding to states with energies that are under-
stood. More generally, one could use Fourier analysis (see the Sup-
plementary Materials) to identify the components in the plot of
Prob(∣+i) for the full state and then use the postselection method
to stochastically isolate given components.
Probabilistic imaginary-time evolution
We now compare with an alternative approach for preparing real-
space ground states on a quantum computer, which approximates

imaginary-time evolution. As before, we model an attractive
nucleus centered in a square simulation box. Instead of starting
from an explicitly defined superposition of eigenstates as in the pre-
vious example, we initialize a Gaussian wave packet centered about
the origin of the Coulomb potential. The initial Gaussian wave
packet can obviously also be expanded in the eigenstate basis,
which we assume has a large component corresponding to the
ground state of the Hamiltonian.

We then propagate the state using PITE for 300,000 steps, using
m0 = 0.9 and δt = 2 × 10−5 (note that the actual imaginary-time δτ
rescales δt). Figure 3 shows the state evolving under the approxi-
mate imaginary-time evolution. The main plot shows the overlap
of the state with the analytic eigenstates in the “Commonly used
Hamiltonian and initial states” section in Results. Only eigenstates
peaked at the origin (the equivalent of s states in 3D) have large
overlap with the state throughout the propagation, with the n = 1
excited state contributing more to the initial Gaussian wave
packet than the ground state. In the long time limit, the ground
state overlap approaches unity, whereas its overlap with higher
energy states decays. The overlap signal does not go exactly to 1
and nor do the contributions of higher energy states go exactly to
0; this is because the state prepared is the ground state of the pixe-
lated model Hamiltonian, which nonetheless has a high overlap
with the true analytic ground state Ψ0,0 digitized to the same
spatial resolution. This disparity should vanish with higher spatial
resolution.

The probability distribution of the state, plotted at the bottom,
also shows that the broad initial wave packet contracting to a sharp
state peaked at the origin. Visually, it would appear that at a short
evolved time, the state already resembles the ground state with a sin-
gular central peak. However, superimposing the sampled distribu-
tions (top right), the subsequent long time evolution appears
necessary to render increased sharpness.

Fig. 2. Demonstrating state editing by phase measurement. A 1 + 2 × 8–qubit
quantum computer was emulated. The initial state is a superposition of nondegen-
erate eigenstates of 2D hydrogen. The representation uses eight qubits for each of
the two dimensions, with a total simulation box width of L = 56 a.u. The state
evolves, conditional on a controlling ancilla, for time T1 chosen such that
T1E1 = π; in this period, the conditional evolution is a rotation of the state due
to the accumulated phase difference between states (bottom left plots). At T1,
the controlling ancilla is measured in ∣+⟩ as shown in the top right inset. This pro-
jects the state into the ψ2,2 state.

Fig. 3. Preparing the ground state of 2D hydrogen using the PITE technique.
The method was emulated on a 1 + 2 × 10–qubit quantum computer. Postselect
the successful outcome at all times. The main plot shows the overlap of the prop-
agated state with analytic eigenstates. Bottom shows scaled cross sections of the
electron probability density sampled at labeled points during the imaginary-time
evolution. Top right shows the same probability densities plotted on the
same scale.
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We further assess the state prepared from PITE by subjecting it
to real-time SO-QFT propagation for 4 a.u. and estimate its energy
via IPE. The fidelity does not drop below 4 × 10−8, and the estimated
phase agrees with the converged energy at this spatial resolution re-
ported in the previous section, further confirming that the PITE
converges to the ground state of the model at this resolution.

This scenario, however, demonstrates clearly the main drawback
of PITE: At every measurement, there is a substantial probability of
measuring the undesired outcome; this is then a failure of the pro-
cedure. In the case described here that probability is about 0.33, this
means that the cumulative success probability falls before 10−4 after
only about 23 measurement steps. The demonstration here, with
300,000 steps, would therefore have (essentially) zero success prob-
ability on a real quantum computer. However, the method may be
useful in “quantum-inspired” classical algorithms given its attrac-
tive feature of not requiring a priori knowledge of the states. More-
over, the authors of (12) suggest that amplitude amplification
methods might address the issue of vanishing success probability.

Quantum dynamics demonstrations
We describe two studies that are proof-of-concept real-space grid
simulations relevant to the two scenarios that we described in Intro-
duction: ionization by strong external field and electron-electron
scattering. The corresponding data are shown in Fig. 4. In both
these studies, we use a method of amplitude attenuation via weak
measurements, which we developed as an analog of the CAPs
used in modeling with nonquantum computers. Our method
allows one to track the rate at which particles exit the simulation
box and that prevents them from becoming incident due to the pe-
riodic boundary conditions; it is explained in the “Attenuation and
scattering” section in Materials and Methods.
Scenario I: Electric field ionization
In Fig. 4A, we show the performance of a 19-qubit emulated
quantum computer, modeling a single 2D particle (9 + 9 qubits rep-
resent the state, and 1 qubit is used for the weak measurements).
The modeled system at t = 0 is a state within the first excited man-
ifold of 2D hydrogen, specifically

1
ffiffiffi
2
p ðΨ1;1 þ Ψ1;� 1Þ

An additional Ex term in the Hamiltonian corresponds to a
strong, static electric field applied in the horizontal direction; com-
bination of the Coulomb potential and the electric field is shown in
the figure inset. Because of the electric component, the initial state is
no longer an eigenstate, and the simulation can determine whether
the electron will be removed from the nucleus.

The initial state occupies only a small central region in the sim-
ulation box. The contour plots in the main part of the figure show
the evolution, both in the center part of the simulation box (the box
bordered in green) and a larger region encompassing the center and
the region to the right (the box bordered in blue). The pink region,
constituting the outermost 50% of the simulation box in both the x
and y directions, is the region that is monitored by weak
measurements.

The figure also shows the cumulative probability that the particle
will have “escaped,” i.e., that it will have been measured to be in the
pink region. The curve ultimately approaches unity, indicating that
the particle will eventually ionize with certainty. We observe

oscillations in this curve, which we can account for by examining
the contour plots of particle density shown below.

Note that the contour plots show the particle’s probability
density postselected on it not having yet escaped; therefore, the nor-
malization is unity in each case. Focusing on the green boxes, those
zoomed in close to the nucleus, we observe that the part of the state
that remains close to the nuclear core actually oscillates in a dipole-
like fashion. Note that the sequence of green panels, labeled 352 to
672, exhibits this: Panel 352 is similar to 576, while panel 480 is
similar to 672. Moreover, examining the corresponding blue
regions, we observe waves of density propagating away from the
nucleus, synchronized with the dipole oscillation; whenever the os-
cillation favors the “downstream” right side, there is an enhanced
probability that the particle will escape; in due course, this leads
to a fluctuation in the probability of observing the particle in the
pink attenuating region. It is interesting to note that this fluctuation
probability is reminiscent of the bond breaking of sodium iodide
observed with femtosecond pulsed lasers (37), an experiment recog-
nized by the Nobel Prize in Chemistry in 1999.

On a real quantum processor, the contour plots in Fig. 4 can be
obtained by repeated sampling, simply by measuring the state of the
particle’s register at a given time t. Obtaining these outputs through
brute force sampling would obviously represent a multiplicative
cost depending on the accuracy with which we require the plots.
The plot of the cumulative probability can also be obtained by re-
peatedly executing the simulation; however, it only requires mea-
surement on a single ancilla and directly produces particle
location data that can be used to determine, for example, rates in
a chemical reaction dynamics simulation. We argue therefore that
this approach is more useful for studying real chemistry problems
on early fault-tolerant quantum computers than direct state
sampling.
Scenario II: Two-particle scattering
Figure 4B shows the results of a two-particle scattering simulation.
There are two simulation phases. In the initial phase, we have the
both interacting particles present: an electron initially in a bound
state of 2D hydrogen corresponding to ðΨ1;1 þ Ψ1;� 1Þ=

ffiffiffi
2
p

and an
incident electron in a Gaussian state (but with the total state prop-
erly antisymmetrized). This simulation runs until one of the parti-
cles is measured to have escaped our simulation box. We then
proceed to a second phase of simulation where we study the dynam-
ics of the surviving particle. We find that it has a small (∼3.5%)
probability of ionizing due to the perturbation of the prior
“impact” with the incident particle.

In the first phase, we use a 25 = 1 + 4 × 6–qubit emulated
quantum processor, where the x and y coordinates of each particle
are represented with 26 = 64 states. As in the case of the electric field
ionization described, we monitor with weak measurement a set of
spatial pixels near the boundary of the simulation box. In the initial
phase of this two-particle simulation, thewidth of that region is 25%
rather than the 50% width used in the electric field case. The
contour plot panels in the figure show the central nonattenuated
region. The state is antisymmetrized so that the probability
density plots do not distinguish one particle from the other, but in-
formally, we can say that the incident particle interacts with the
bound particle before passing on, away from the nucleus. In the
case shown in the figure, we deem that a particle has been detected
in the attenuation region exactly at the point when the cumulative
probability of detection reaches 50% (this is an arbitrary choice; in a
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real quantum processor, the user would of course be unable to
specify this). This event occurs shortly after the last of the panels
in the top of the figure.

The simulation to that point would not teach us much about the
nature of the scattering event. We could, in principle, measure, e.g.,
any deflection in the trajectory of the incident particle, and we can
confirm (from longer simulations) that there is near-100% proba-
bility of a particle exiting the simulation region; the incident particle
does not become bound. However, it is more interesting to study the
subsequent behavior of the remaining particle. Because this particle

is represented by a register in the quantum processor that has not
“collapsed,” we can simply continue to simulate its evolution; the
component UV in our SO-QFT cycle, corresponding to particle-
particle interaction, will no longer be applied. We can now
choose to vary other parameters such as δt, anticipating that
further dynamics are on a slower time scale since the high-energy
particle has exited the simulation. Moreover, we can reallocate some
of the qubits that were previously used to model the now-exited par-
ticle, repurposing them tomodel a larger simulation box. Given that
the outer regions of such a box have zero amplitude associated with

Fig. 4. Single- and two-electron dynamics. (A) Figures showing a 2D simulation of a single electron ionized by a strong electric field, executed on a 1 + 2 × 9–qubit
quantum computer. The initial state is a low-lying bound state of 2D hydrogen (ψ1,1 + ψ1,−1). Top left shows the initial state as a contour plot; it occupies a small region in
the center of the entire simulation box (black boundary). The regions marked with green and blue borders are the zones into which we zoom in the bottom, which are a
series of contour plots with the time index shown in the corner of each plot. The pink region corresponds to attenuation (a complex potential). The total probability of the
particle having been found in the outer pink region is shown by the top right plot. (B) 2D simulation of two-particle scattering using a 25-qubit emulated quantum
computer. The initial state is the antisymmetrized version of the following: an electron (blue) in a low-lying bound state of 2D hydrogen, while a second electron (red) is in
a Gaussian state and moving in the negative y direction (downward in the plots). The simulation reveals the scattering event (purple plots) until we deem one particle to
have exited. A second phase of simulation shows the evolution of the state of the remaining electron (orange), which has a probability of about 3.5% of ultimately ionizing
(escaping the nuclear potential). In the event that the remaining electron does not ionize, it nevertheless remains in a statewhere it oscillates back and forth; the inset plot
shows the quantity hxLi> as defined in the main text.
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them at the moment that the first particle exits, there is no difficulty
in simply introducing those qubits [in the case that we use the com-
plement of the two, so that the coordinate (0,0) is in the center of the
simulation box, we simply append the new qubits to the high-order
end of each subregister and perform a controlled-NOT (CNOT)
gate on each new qubit controlled by the prior highest-order
qubit]. This was performed in the simulation shown on the right
of Fig. 4, and the second phase of the simulation uses 1 + 2 × 8
qubits to provide a much larger attenuation region.

In this second phase, we observe that the remaining particle has
been perturbed by the passage of the incident particle: Its distribu-
tion at t = 0 (now measuring time relative to the exit of the other
particle) is noticeably more irregular than the simple symmetric
initial form. The probability distribution is lopsided, favoring the
left side. Over the remaining period of the simulation, the particle
exhibits mild dipolar oscillation between a left-favored and a right-
favored distribution. Defining Pleft(t) as the probability that the par-
ticle would be found left of center, we observe the oscillation shown
in the inset to the time-series plot on the right of Fig. 4. Moreover, as
the particle oscillates, it sheds probability, i.e., there is a finite prob-
ability that the particle will escape the simulation region. In contrast
to the electric field simulation, this probability is shed symmetri-
cally (both left and right), and it converges to a small cumulative
probability of about 3.5% (see the main plot).

Augmented split-operator
The concept of the ASO is described in the “Augmented split-op-
erator” section in Materials and Methods. The intent is to optimize
the fidelity of simulation without resorting to very high spatial or
temporal resolutions, by introducing additional elements to the
basic SO-QFT cycle. We assess the method by using it to simulate
the dynamics of states peaked at the singularity, i.e., the most chal-
lenging cases.

In Fig. 5, we present numerical results from our study of the ASO
method. We consider the ground state of 2D hydrogen Ψ0,0, which
is peaked (with discontinuous gradient) at the origin of the classical
Coulomb potential. We use a relatively modest resolution corre-
sponding to nr = 6 qubits per register (i.e., a 64 × 64 grid of
spatial pixels) to represent the state and set the simulation box to
be optimal (see the top right graphic in the figure).

Step 2 in the “Augmented split-operator” section in Materials
and Methods states that, having decided that our core patch will
involve a subspace of Q pixels, we “derive a small Q × Q unitary
Ucore that closely matches Urepair in that subspace.” The operator
Urepair is simply the matrix that maps from the SO cycle as actually
applied to the ideal time increment operator. We therefore begin by
calculating these matrices, each being a 22nr × 22nr object, explicitly
using Mathematica. Having thus obtained Urepair, we can proceed.

In simulations reported in Fig. 5, we consider two cases: core
patches of size Q = 2 × 2 and Q = 4 × 4 pixels. For each case, we
write down the Q × Q matrix Mcore, which is composed of the ele-
ments of Urepair that lie in the Q-pixel subspace. Mcore will not be
unitary and therefore cannot be implemented deterministically on
our emulated quantum computer; we need a unitary matrix Ucore
that is close to Mcore. This was obtained by performing a standard
singular value decomposition ofMcore and using the components to
construct Ucore

Mcore ¼ u Σ vy then Ucore ; u vy

Note that Σ matrix would be the identity ifMcore were unitary; it
is not, but by simply omitting Σ, we generate our unitary approxi-
mation. The final step 4 of finding a circuit to implement the stabi-
lization was performed using the circuit synthesis tool described in
(38) for the sizes used here, which is a trivial task.

We perform a series of standard and ASO simulations, in all
cases fixing the time resolution at δt = 0.004, and monitor the ab-
solute value of the autocorrelation. Figure 5A shows the result for
three cases: the simple SO-QFT protocol (red) and protocols with a
small (orange)– and a medium (green)–scale core stabilization aug-
mentation. The small augmentation involves a circuit that modifies
only the amplitudes associated with the 2 × 2 spatial pixels that are
closest to the singularity (note that we align the spatial pixel lattice
such that the singularity is midway between the four central pixels).
The medium augmentation involves a larger set of 4 × 4 spatial
pixels. We observe that there is a marked improvement in the auto-
correlation by an order of magnitude between the red and
green plots.

The plots in Fig. 5B show the result of the single-qubit phase es-
timation method described in the “Energy observable” section in
Materials and Methods. Ideally, the autocorrelation plot would
match the blue dashed curve, which corresponds to phase acquisi-
tion according to the analytically derived energy. We observe that
the red, orange, and green lines are again progressively closer to the
ideal. We should emphasize that the ASO method is agnostic to the
state simulated; therefore, while it would be trivial to “cheat” and
apply an exactly compensating phase to obtain the blue dashed
curve, the circuits we have used are derived without foreknowledge
of the specific simulation task (i.e., Ψ0,0 in no way enters the deri-
vation of Ucore).

Last, a third lens on the simulation fidelity is provided by eval-
uating the difference between the t = 0 probability density (over the
grid of 642 spatial pixels) and the density at a later time. Ideally, of
course, this difference would be zero. In the contour plots on the
right of Fig. 5, we contrast the case with no augmentation with
the small-augmentation scenario. While there is still a discrepancy,
it is far more localized and stable (the unaugmented simulation in-
volves wider, more marked fluctuations in the probability
distribution).

The circuits that implement both the small and the medium aug-
mentations are shown on the bottom left of Fig. 5. They were
derived through the process explained in the “Augmented split-op-
erator” section in Materials andMethods. Note the preparatory step
of applying a unitaryA that simply adds an integer to all states in the
spatial representation, i.e.

A jni ¼jnþ Gi

where the addition is understood to be modulo 2nr. The main figure
shows the implementation of this for a general “size” of the augmen-
tation patch nl, where in our numerical studies nl = 1 for the small
case and nl = 2 for the medium case. The figure caption defines the
shift for the case of the 2 × 2 augmentation, where we will use G =
1. The A operators can be avoided entirely if we simply define the
origin of our spatial coordinates to a bounding corner of our core
stabilization region. The implementation of the spatial part of the
SO would need to be corrected for such shift but that may prove
to have lower total cost. Regardless, we include the A operators in
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the figure so as to make it directly consistent with the other circuits
and expressions in the present paper.

We note that the multicontrolled-NOT operation appearing in
the circuits of Fig. 5 can be compactly realized by recently discov-
ered circuits (39) that involve 4n − 6 T-gates (single-qubit phase
gates) and a comparable number of control-NOTs, together with
an ancilla that is measured during the process. We anticipate that
the time cost of moving from the simple SO-QFT approach to the
ASO method should be far less than the cost of the brute force in-
crease to the temporal resolution needed to assure proper behavior
of core-peaked states (see the “Coulomb potential: Demands on
spatial and temporal resolution” section in Materials and
Methods). For the present demonstration, the performance of the
nr = 6 qubit registers was able to approximately match that of the
nr = 11 qubit registers under a brute force approach (Fig. 1, top left),
and moreover this, was achieved with a time step δt that is an order
of magnitude greater, so facilitating more rapid runtimes. The ASO
method is therefore highly relevant when one operates with the
strict Coulomb interaction, as in all the numerical studies in the
present paper. It remains to be seen whether it would also be
useful in scenarios where the Coulomb singularity is approximated
by some of the other means listed in the “Coulomb potential:
Demands on spatial and temporal resolution” section in Materials
and Methods. The ASO method is distinct from, and compatible
with, the use of higher-order Trotter sequences. Throughout the
paper, we restrict to the lowest-order Trotter pattern, but extending
this is an interesting direction for further work.

3D helium simulation
Last, we extend the low-dimensional demonstrations to simulating
the dynamics of a helium atom: two electrons interacting via a re-
pulsive Coulomb interaction, both bound by a central attractive
Coulomb potential, in three spatial dimensions. As the true electron
eigenstates of the helium atom cannot be solved exactly, we approx-
imate the two-electron initial state by combining two single-elec-
tron solutions of the 3D hydrogen-like Schrödinger equation (Eq.
4), with a central nuclear charge of Z = 2. Note that this would be
an exact eigenstate if there were no electron-electron interactions.
The two sets of quantum numbers (n, l, m) that we used were
(2,1,0) and (2,1, −1), of which the former is the 2pz orbital and
the latter is the atomic orbital 2p� 1 ¼ ð2px � i 2pyÞ=

ffiffiffi
2
p

. The com-
plete initial (triplet) state is then the antisymmetric wave function

Ψinitð r!1; r!2Þ ¼ Ψ2;1;0ð r!1Þ Ψ2;1;� 1ð r!2Þ

� Ψ2;1;� 1ð r!1Þ Ψ2;1;0ð r!2Þ ð6Þ

As our simulation box, we use a cube with side lengths of 25 a.u.
and discretize the initial function Ψinit as per Eq. 30 using nr = 6
qubits per register, providing 64 divisions per axis and per particle.
We then propagate the full 36-qubit state forward in time for 500
steps, where each step is of length 0.05 a.u., thus having a total evo-
lution of 25 a.u. It is worth noting that this relatively simple initial
state has symmetries that could be exploited for a more compact
representation; however, we wished to test the full 3D two-particle
grid representation, and therefore, we did not exploit any such
properties.

The single-ancilla phase estimationmethod was used in previous
sections (see, e.g., Fig. 2) to track the evolution of the simulated
system’s state. However, this requires our emulator to use double

Fig. 5. The performance of the ASO technique. The emulated quantum comput-
er has 13 = 1 + 6 × 6 qubits. (A) The 3D inset depicts the eigenstate ψ0,0 of 2D
hydrogen within its simulation box. The graph shows the autocorrelation of the
state at time t with respect to the initial state, which ideally remains at unity
(blue dashed line). The red, orange, and green lines are respectively the cases of
no augmentation, a 2 × 2 augmentation, and a 4 × 4 augmentation. (B) The result
of phase estimation for the same three cases, with the ideal again shown with a
blue dashed line. The contour plots on the right show the absolute difference in
probability density, with respect to the initial state, for the case of no augmenta-
tion (red) and the 2 × 2 augmentation (orange). (C) Generic circuit used. (D) and (E)
specify the particular circuits used for our 2 × 2 and 4 × 4 augmentations, respec-
tively. The A operators simply increment the indexing of the spatial “pixels” so that
the bottom right pixel is (0,0). In the case of the 2 × 2 augmentation, the increment
used is G = 1 so that Amaps the indices of the pixels of interest, i.e., (−1,−1), (−1,0),
(0,−1), and (0,0) to (0,0), (0,1), (1,0), and (1,1), respectively. These indices are now
exactly those states for which themost important nr − 1 qubits are zero, facilitating
the application of the small-augmentation circuit to only the four target states.
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the memory that would be needed simply to represent and propa-
gate the state. Since the resource costs for the present emulation are
already considerable, we opted instead to compute and record, at
every SO-QFT time step, the probability density of one of the elec-
trons (since the two electrons are indistinguishable, the probability
density is equal). Specifically, we record the probability associated
with each computational basis state of the three registers corre-
sponding to one of the particles. Using these probability distribu-
tions, we can compute the Bhattacharyya coefficient (40) of the
distribution at time t with respect to the distribution of the initial
state Ψinit. This quantity is

X

i

ffiffiffiffi
pi
p ffiffiffiffiqi
p

for our two discrete probability distributions p and q. It can be
thought of as a classical analog of the usual inner product fidelity.
It is plotted in Fig. 6.

As the initial state is not an eigenstate, we expect the distribution
to vary over time. As shown in Fig. 6, the electron density is initially
distributed with rotational symmetry around the vertical z axis, with
charge accumulations in the positive and negative z directions.
Because the electrons partly shield each other from the core, the
chosen central charge of the initial state Z = 2 is too large, and
thus, the electron orbitals are too close to the core. The time

evolution shows that the charge initially spreads out away from
the core in every direction and then returns slightly but not to its
original distribution. To confirm that the interaction between the
electrons is the cause for this behavior, we also performed an iden-
tical calculation but with the e-e interaction disabled. Figure 6 shows
that, in this case, the probability distribution simply stays constant.
We thus confirm that our simulation directly shows the effect of
electron shielding in this hypothetical configuration.

One could repeat the experiment to find the value for the effec-
tive nuclear charge that allows our analytic initial state to most
closely approximate a true helium eigenstate; moreover, one could
use the methods of the “State preparation” section in Materials and
Methods to actually prepare the eigenstate from such an initial ap-
proximation. These are interesting tasks for further study.

Antisymmetrization of the initial state
In the “State preparation” section in Materials and Methods, we
discuss the preparation of an initial state of our grid-based simulator
with proper antisymmetrization of the electrons. We assume that
there is some set of P single-particle basis states ψi, each of which
we know how to prepare on a register (possibly via a repeat-until-
success probabilistic method). We note that it would be convenient
to simply prepare a product state over our P particle registers and
subsequently antisymmetrize it.

We observe that one means of doing so involves first finding a
Hamiltonian Hsynth with the property that

Hsynth jψii ¼ Ei jψii; Eiþ1 . Ei ð7Þ

Here, Hsynth need not correspond to any physically legitimate
scenario. One means of obtaining Hsynth would be to start from a
description of the chemical system of interest and then introduce
modifications to conveniently localize Hamiltonian terms and to
break any degeneracies in the single-particle solutions. In this
way, the available basis states ∣ψii will be close to the canonical
choice of basis states that might be made in, e.g., chemistry model-
ing with a conventional computer. While this is an interesting topic
to consider further, we will not do so in the present paper, but
rather, we will simply assume that Hsynth can be found.

Given that Hsynth is synthetic, it can of course be scaled and
shifted arbitrarily. We will align the energies conveniently with
respect to the binary states that can be represented by a register of
t bits. For example, we can set E0 = 0 and EP−1 = 2t − 1 where t is
sufficiently large that the smallest energy gap min (Ei+1 − Ei) is at
least unity.

We can proceed in at least two distinct ways, and wewill describe
the first in detail. It requires a modest number of additional qubits:
For each of the P particle registers, introduce a “tag” ancilla register
of t qubits.

1) Prepare the particle registers as ∣ψ0i∣ψ1i…∣ψP−1i.
2) Set the ith tag register to the integer closest to Ei, which we

write as E0i.
3) Permute the entire object (the particle registers and their tag

registers) into antisymmetric form by any means that can permute
an initially ordered list of integers, for example, the inverse sorting
network method of (41). We simply apply this method to the tags
while “dragging along” the particle registers “for the ride.”The result

Fig. 6. Simulation of a helium atom in real space. The top plot is the Bhattachar-
yya coefficient (with and without enabled electron-electron interactions), and the
bottom is the real-space electron density distributions during the time evolution of
the helium atom simulation. Colored shells are electron probability density isosur-
faces, within a simulation box with L = 25 a.u. Distributions are shown for the initial
state, at the timewhere it is maximally spread out, and at the end of the simulation.
The 500 SO cycles correspond to the propagation of 25 a.u. (≈0.6 fs).
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is the state

1
ffiffiffiffi
P!
p

XP!

i
permi½ðjE

0
0i jψ0iÞ. . .ðjE0P� 1i jψP� 1iÞ� ð8Þ

with the notation (∣tagi∣particle statei).
4) Erase the tag registers through phase estimation: Apply a QFT

to every tag register and then apply operations of the form con-
trolled exp (iHsymCπ) from each tag register qubit to its main reg-
ister, where C is an appropriate power of two.

5) Measure out the tag register qubits in the x basis; with high
probability, all should be in the ∣+i state, and this outcome is our
success criterion.

If all energies Ei can be exactly represented with t bits, then
E0i ¼ Ei for all i values and the method will succeed with certainty.
Moreover, even in the in the event that the energies cannot be per-
fectly represented in this binary form (as will be the case, for
example, if two energies differ by an irrational number), the only
consequence is that the success criterion in step 5 will have a
reduced probability of occurring. Given that it does occur, the
final state remains ideal.

We explored this using classical emulation, on inputs of up to P
= 5 particles. In this case, 30 qubits were used: t = 3 tag qubits for
each particle and a further 3 qubits to represent each corresponding
ψ state.We considered several choices of spectrum Ei and proceeded
in each case as follows. We prepared the state given in Eq. 8 directly
in the emulator’s random-access memory: It is readily verifiable by
inspection that the first three steps lead to this state regardless of the
choice of Ei, whereas the additional qubits required to permute via
the sorting network would have greatly increased the emulation
cost. We then performed the final steps explicitly and noted the
performance.

For P = 5 particles, with the ideal case that all energies corre-
spond to integers, we confirmed the expected success probability
of unity. For cases where the all energies differed from an integer,
we found success probabilities of 0.990, 0.960, and 0.850 for devia-
tions of 0.025, 0.05, and 0.1, respectively, showing an anticipated
quadratic behavior. However, when only one of the energies
differs from an integer by some specified discrepancy, then we
find that the success probability is essentially constant regardless
of P. Thus, the performance for a large number of particles will
depend on how many of the energies differ from an integer and
to what extent (with respect to 2−t). We note that in each emulated
scenario, we confirmed that given the “all-∣+i” success criterion, the
resulting state is ideal (up to a meaningless global phase). In the
Supplementary Materials, we outline the alternative method,
which is similar but allows one to create and destroy the tag register
on the fly, thus reducing the qubit count while increasing the com-
putation time.

Quantum computer resources and architectures
In the following two subsections, we assess on the resource require-
ments for undertaking modeling beyond the reach of classical algo-
rithms and the related question of suitable quantum architectures.
Resources for postclassical modeling
In this section, we reflect upon the implications of our numerical
results for the resource demands of postclassical chemistry model-
ing.Wewill not undertake a formal resource scaling analysis, noting
instead that asymptotic analyses have been made in the past few

years for real-space grid, first-quantized Hamiltonian simulation
(7, 9, 11) and specifically the SO-QFT method (13). Complement-
ing these analyses, our present work implemented grid-based sim-
ulations using emulated quantum computers that have proven large
enough to elucidate practical issues, such as the number of basis
functions required for given levels of accuracy in specific observ-
ables. Data of this kind will be of use in estimating the constants
that must appear in any resource scaling analysis.

The lowest possible qubit count (for a given simulation accuracy)
results from selecting the smallest adequate simulation box length L
and setting the spatial resolution δr (Eq. 27) to be just sufficient to
capture the most curved elements of the wave function (see the
“Coulomb potential: Demands on spatial and temporal resolution”
section in Materials and Methods). The number of qubits per par-
ticle, per spatial dimension, is then nr = log2 (L/δr). The quantity L
simply specifies the region of space outside of which our multipar-
ticle wave function only has negligible amplitude “clipped” by the
boundary. Moreover, as we explain in the “Attenuation and scatter-
ing” section in Materials and Methods, we can study processes that
would, over the simulation time, go beyond the simulation box due
to scattering or ionization. It is reasonable to assume, as in (12), for
example, that the volume L3 goes linearly with the number of par-
ticles P; a molecule with twice the number of particles requires (of
order) twice the volume. Meanwhile, the severity of the wave func-
tion’s curvature should scale directly with Zmax, the maximum
nuclear charge of any of the nuclei in the system (the “Coulomb po-
tential: Demands on spatial and temporal resolution” section inMa-
terials and Methods). Thus, increasing the molecule’s size without
increasing Zmax should not require any adjustment in δr, but the
simulation box may have to be larger to accommodate more parti-
cles. The accuracy with which we model the particle is essentially
unaffected by this change.

In view of the above observations, we can expect that for suitable
constants Ci

nr ¼ log2
L
δr

� �

� log2
C1P

1
3

C2Z� 1max

 !

¼ C3 þ log2ðZmaxÞ þ
1
3
log2ðPÞ

ð9Þ

The total qubit count will be 3Pnr for P particles in 3D. Note that
this simple expression for nr does not account for the potentially
helpful fact that atomic radii have a highly nonlinear (and sublinear)
dependence on the number of electrons (42). In the Supplementary
Materials, wemake an estimate of the root termC3 from our numer-
ical results; we argue thatC3 ∼ 10 is optimistic but not unreasonable.

Using some further assumptions, we canmake an estimate of the
number of qubits necessary to model the important scenarios that
we described in Introduction: electron scattering of hexafluoro
ethane (C2F6) and quantum coherent control of the ammonia mol-
ecule (NH3). In the Supplementary Materials, we suggest that grid-
based modeling of C2F6 may require about 2250 computational
qubits, even with frugal use of ancilla qubits. Fortunately, our esti-
mate for the coherent control of NH3, being one of smallest relevant
cases, is far lower at 450 qubits (with relatively optimistic
assumptions).

The overall time cost for simulation depends of course on the
hardware realization but is certainly interesting to discuss. As the
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methods we propose will almost certainly require a fault-tolerant
quantum computer, the most relevant metric for time complexity
on such a machine may be the T-gate count. This is a measure of
how many steps in the algorithm correspond to the costly non-Clif-
ford operations that cannot be directly performed in stabilizer
codes, and efforts to minimize the count for standard subroutines
are ongoing (43). For example, a recent note has reduced the
number of such gates needed for multicontrolled rotations to a re-
markably frugal level (39); such rotations are key in both our atten-
uation and ASO techniques. More generally, the trade-off between
time and qubit count is a research topic in its own right, and recent
papers have shown how markedly this balance can be adjusted
(44, 45).

The overall “wall clock” duration of a simulation is determined
by the number of T-gates needed for each complete SO-QFT cycle,
the duration each of these steps represents (the time resolution δt),
and the total duration of the dynamical process under investigation.
In the Supplementary Materials, we use various observations and
assumptions to estimate the gate depth for simulating interesting
chemical physics, noting that dynamical processes where
quantum effects are meaningful can occur from subfemtosecond
to picosecond time scales. For simulations of rapid events such as
ionization, we estimate an algorithmic gate depth of O(108), while
for a more challenging simulation of physics over longer time scales,
we suggest that a depth of O(1011) may be required.

Translating gate count to execution time will vary markedly de-
pending on the native physical gate error rate (typically assumed to
be 10−3 or 10−4), the speed of a stabilizer cycle, and the option to
trade computation speed for higher qubit overheads (45). For
surface code–based implementations with solid-state platforms, a
credible stabilizer speed (46) is 1 μs (with faster speeds being con-
ceivable). Assuming that the state preparation procedure only re-
quires a polynomial-scaling overhead and is thus not the
dominant cost, this gives a clock time of the order of minutes for
the more simple simulations, while the challenging long–time
scale process would require a clock time on the order of a day.

We must also note that generating certain interesting plots
(equivalent to those shown here) will require many repeated execu-
tions of the simulation. Fortunately, such repetitions can be perfect-
ly parallelized over independent quantum processors, which need
not have quantum interlinks or even be colocated.

The same full-dimensional real-space grid simulation of the re-
action on classical machines of course is not possible, simply
because the sheer number of pixels in the simulation is beyond
the memory available on most high-performance computer clus-
ters. An equivalent classical procedure of selecting reduced reaction
coordinates where the dynamics is expected to be relevant, comput-
ing the corresponding electronic potential energy surfaces, and sub-
sequent dynamics propagation can require months of effort;
finalizing the electronic structure itself can often be the main bot-
tleneck. We therefore conclude that the quantumHamiltonian sim-
ulation approach presented can bemore efficient than an equivalent
classical method, based on the fact that a more complete picture is
used and the effort of computing potential energy surfaces is
circumvented.
Quantum computer architectures
The preceding section obtained back-of-the-envelope estimates of
qubit counts ranging from several hundreds to several thousands.
While this sounds encouraging, we note the very likely need for

fault tolerance and the resulting multiplicative increase in physical
qubit count. Presently, the most well-understood codes can require
many hundreds of physical qubits per logical qubit, assuming rela-
tively deep algorithms and physical error rates comparable to
today’s best quantum computer prototypes. Even if one makes the
very optimistic assumption that some form of error mitigation can
suffice in place of full fault tolerance, at least for small molecular
simulations, the more powerful forms of mitigation can require a
multiplicative increase in the number of physical qubits (47, 48).
Thus, the number of physical qubits required for the modeling con-
sidered in the preceding section could easily reach the high thou-
sands or millions. This raises the question of what kind of
architecture would be needed.

In particular, we are motivated to explore whether some form of
network architecture might be compatible with the SO (or ASO)
approach. Such a network might involve quantum computers inter-
linked within a building, analogously to a conventional High Per-
formance Computing facility, and relevant methods of linking
processors have been experimentally realized. Alternatively, for
suitably compact platforms, the network might correspond to
linked quantum computing processors on a single chip, analogous
to today’s multicore central processing units; multicore quantum
computing has recently been explored (49). In either case, it is real-
istic to assume that in a network of processor nodes, the internode
operations are slower than the intranode ones.

Fortunately, the SO-QFT method is quite compatible with a
network paradigm; there is a natural partitioning of the problem
into nodes that each contain the registers (or subregisters) associat-
ed with a given simulated particle. While data exchange between
nodes is obviously required, it need not be a dominant component
of the overall resource costing even if the physical links are slow.

In Fig. 7, we show one possible partitioning: It is not the most
granular, since one could assign individual subregisters to cores, but
it does strike a good balance between the intra- and intercore oper-
ations. Note that the required connectivity between cores is merely
linear and nearest-neighbor.We suppose that there are two forms of
core: The compute nodes are responsible for all the processing that
is associated with the SO-QFT method, while the simpler memory
nodes only store registers transiently.

Each node includes communication resources that facilitate
transfer of quantum information between nodes, for example,
through the use of teleportation enabled by high-quality shared
Bell pairs. The “comms resources” would thus correspond to Bell
pair distribution, purification, and buffering. Such processes can
occur independently of the main computation and simultaneously
with it and need not involve a large number of qubits; see, for
example, the analysis in (49, 50).

In the scheme illustrated in Fig. 7, the transfer of a register from
one node to another involves writing into an “empty” register where
all qubits are in state ∣0i. If the individual qubits are encoded logical
states formed of many physical qubits, then this would introduce a
multiplicative factor in the Bell pair count, but it would remain
linear in the register size. Ideally, the “comms” hardware would
be capable of generating the required Bell pairs within the time
that the compute node requires for a full implementation of the par-
ticle-particle interaction component for the current pair (and any
augmentation, as per the “Augmented split-operator” section in
Materials and Methods). Given that this computation will require
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a gate depth of at least n2r , there is scope for a factor of 10 to 100 in
the relative speeds of the intracore computations and the intercode
Bell preparation before the latter would become a bottleneck.

DISCUSSION
In this work, we explore the SO-QFT approach on exactly emulated
qubits and test resource-frugal techniques that facilitate augmenta-
tion and monitoring of first quantized, real-space quantum chem-
istry simulations. We test known quantum techniques and others
that we introduce, covering all key aspects of quantum simulation:
state preparation, Hamiltonian simulation, and the extraction of
physical observables. Thus, we characterize the resources needed
to realize a “digital experiment” of quantum molecular dynamics
(18) on early fault-tolerant quantum computers.

The methodologies that we presented can become part of a
learning/prediction cycle that augments physical experiments,

providing accurate datasets for machine-learned emulators that
can accelerate chemical discovery. We believe that the SO-QFT
method, in tandem with the resource-frugal approaches presented
here, may prove itself superior to classical quantum molecular dy-
namics simulations relatively early in the era of fault-tolerant ma-
chines. We have already noted that the technique itself leads to
robust methods for measuring observables such as phase estima-
tion. We have also noted that we are free to check certain properties
quite cheaply at any time, analogous to stabilizers of a code, and
their cost of evaluation can be low even if preparing the state was
not. In the PITE and attenuation cases, we have also used frequent
measurement to modify the evolution of the system in a nonunitary
manner. In light of this, it is interesting to ask whether the grid
method can be inherently robust to errors. It may be possible to
craft a version of the algorithm where most harmful errors will
cause the state to fail a validation check, while less damaging
errors are mitigated by a nonunitary component in the dynamics.

Fig. 7. A possible “multicore” architecture. On the basis of distributing the P particle state over P/2 memory nodes (3nr qubits) and P/2 compute nodes (6nr qubits),
which are interlinked either on-chip (49) or at the macroscale. Top right indicates that three steps occur in a compute node. In step 1, quantum addition and subtraction
are used to move to the relative and total coordinates (and step 3 will reverse this). In the middle, step 2, the relative coordinate is used to apply phase shifts required by
the SO cycle, and optionally, we apply an augmentation step. Bottom shows how parallelized phases alternatingly process and permute the data. The numbers within the
circles and squares are the labels of particles; they correspond to the subscripts of the x, y, and z symbols on the top right.
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While combining SO-QFT with other Hamiltonian simulation
methods may lead to hybrid quantum-classical approaches for
real-space simulations, the high qubit count for encoding the
first-quantized grid representation and generally deep circuits will
likely prevent its applicability in the Noisy Intermediate Scale
Quantum (NISQ) era. Nevertheless, in the early fault-tolerant
regime, small executions of these methods might offer synergies
with real-space electronic structure approaches such as density
functional theory (DFT); one can imagine using small exact calcu-
lations enabled by real-space quantum simulations to improve DFT
functionals or using particle densities provided by an initial DFT
precomputation to inform the single-particle functions that are
loaded into particle registers.

A natural next step is to explore the use of multiresolution grids
as used in, e.g., MADNESS (23, 51), the highly successful classical
computing program for real-space grid simulations. We are well
motivated to incorporate such ideas given that the present paper
has revealed remarkable variation in resolution requirements,
even across different states of a single system. Moreover, particles
within many-body systems can often be considered as localized,
presenting the opportunity for frugal representations based on
that locality. However, while multiresolution grids might reduce
the qubit count considerably, it would likely be at the cost of
more sophisticated time propagators and basis transformations.
Thus, it is important to establish whether the methods in, e.g.,
(23, 51), can be translated successfully to the quantum context.

It is obvious that the SO-QFT simulation techniques presented
here can be generalized to modeling systems beyond quantum
chemistry. The solution to any Cauchy-type initial value problem

∂
∂t

Ψðx; tÞ ¼ D̂ðtÞΨðx; tÞ ð10Þ

with a time-dependent differential operator that may be separated
into operators that are respectively diagonal in position and mo-
mentum space

D̂ðtÞ ¼ D̂1ðtÞ þ D̂2ðtÞ ð11Þ

can be approximated with the SO-QFT approach (52). Many prob-
lems of interest can be modeled with Cauchy-type partial differen-
tial equations. For example, Dirac and Klein-Gordon equations,
which are of Cauchy form, reconcile quantum mechanics with
special relativity and may be used for modeling of high-energy par-
ticles (53). A very different application is financial engineering.
Quantum advantage is often promised for the modeling of how
the prices of assets, such as options and derivatives, evolve over
time (54, 55). This is key to executing purchases and sales that max-
imize the eventual payoff from trading such assets. These assets
often have complex underlying dependence on random variables,
which have, in practice, been modeled using computationally ex-
pensive stochastic Monte Carlo methods. In the same manner as
pixelating real-space wave functions and storing them in the com-
putational basis states of a quantum computer, probability distribu-
tions corresponding to asset prices can be discretized and loaded
into quantum registers. A very relevant model for time propagation
of these distributions is the Black-Scholes-Merton equation (56, 57),
which is a Cauchy-type partial differential equation. Beyond these
use cases, it remains to be seen how nonunitary operations achieved

through ancilla measurements can extend the applications of the
SO-QFT model.

MATERIALS AND METHODS
This section is divided into two parts. The first introduces the the-
oretical framework, i.e., the essential physics and notation, as well as
the core concepts for the grid paradigm. The second describes the
specific methods explored and evaluated in Results, including tech-
niques developed for this study.

Theoretical framework
The nonrelativistic time evolution of a quantum state is governed by
the time-dependent Schrödinger equation

∂
∂t

Ψðr; s; tÞ ¼ � iĤΨðr; s; tÞ ð12Þ

where Ψ is the normalized, complex-valued, many-body wave func-
tion defined by the spatial r and spin s coordinates of the constitu-
ent particles (note that throughout this work, we are using atomic
units where ℏ = 1). For the systems of interest here, the Hamiltonian
Ĥ is

Ĥtot ¼ Ĥkin þ Ĥint ð13Þ

where

Ĥkin ¼ �
XP

p¼1

1
2mp
r2
p ð14Þ

represents the kinetic energy of each of the P particles present, and
Ĥint encompasses all interactions. In many cases, it is convenient to
further resolve according to

Ĥint ¼ ĤU þ ĤV ð15Þ

where ĤU represents single-particle interactions with, e.g., classical
fields, while ĤV represents particle-particle interactions. For inter-
acting charged particles (electron-electron, nucleus-electron, and
nucleus-nucleus), we would write

ĤV ¼
XP

p;q¼1;p=q

qp;q
jrp � rq j

ð16Þ

for suitable constants q. In the case of atomic and molecular
systems, we could opt to model each nucleus as a full quantum par-
ticle in its own right, in which case, we may set ĤU ¼ 0 unless there
are external, e.g., electric or magnetic fields. In their seminal paper,
Kassal et al. (5) argue that this is the natural choice given the rela-
tively modest additional resources needed.

If the nuclei are not treated explicitly within the model, we then
opt to model only the electrons and use classical fields to represent
theM nuclear potentials originating at fixed locations Rm according
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to

ĤU ¼
XM

m¼1

XP

p¼1

Zp;m
jrp � Rm j

¼
XP

p¼1

Zp
jrp j

for M ¼ 1 nucleus at R0 ¼ 0

ð17Þ

for suitable values of nuclear charges Zp or Zp,m. In the 2D and 3D
atomic simulations we report, we consider M = 1 nucleus as in the
equation above. However, the techniques generalize naturally to M
> 1. External and possibly time-dependent potentials can also be
included in the Hamiltonian. Presently, we will consider the case
of uniform electric field E, by including within ĤU a term

ĤE ¼
XP

p¼1
Qprp � E

Formally, the solution to Eq. 12 is

Ψðr; s; tÞ ¼ e� iĤtΨðr; s; 0Þ ð18Þ

For the multielectron Hamiltonian with more than two particles,
it is not possible to analytically evaluate the action of the time evo-
lution operator e� iĤt , and one has to resort to numerical techniques
to solve the initial value problem. A practical time propagation
method therefore involves selecting a representation of the state
and then applying (some approximation of ) the time evolution
operator.

We begin by providing a brief summary of the real- andmomen-
tum-space (k-space) grid representations of a many-body wave
function, suitably encoded on a quantum computer. We then
discuss the SO-QFT method for simulating Hamiltonian dynamics.
We refer the reader to the Supplementary Materials for a detailed
presentation of these topics. We highlight that this method of ex-
ploiting quantum computers, explored by earlier authors in (5–8,
10–12, 16, 17), is an adaption of the classical computing methods
developed in (30, 58–60), which we also review in the Supplemen-
tary Materials.
Representations in real and momentum space
Consider a system of P quantum particles in d spatial dimensions,
well localized within a region of volume Ld (has negligible ampli-
tudes beyond throughout the simulation), which we refer to as
the simulation box. In this work, we use the approach where this
system is represented on a quantum computer by partitioning the
qubits into P registers, and each register is further divided into d
spatial subregisters each with nr qubits. Each particle is thus discre-
tized into an evenly spaced grid with 2dnr basis functions, either in a
spectal, finite basis representation (FBR) or its dual pseudo-spectral
basis, also called the discrete variable representation (DVR). The co-
efficients of the wave function expansion in this grid representation
map directly onto the amplitudes of the computational basis (3–5).
The number of qubits in the register therefore scales linearly as
O(dPnr) and logarithmically with the number of grid basis func-
tions. The favorable asymptotic scaling is one of the main advantag-
es of first-quantized real-space grid–based encoding; in the second-
quantized representation, the required number of qubits scales lin-
early with the number of basis functions (sites or orbitals) (5, 11).

We choose an FBR where the plane wave basis state of the
modeled system is represented by a state of the computer’s subregis-
ter as follows

ϕkðxÞ ¼ L
� 1

2 exp
i2πkx
L

� �

$jki ð19Þ

Here, k is an integer, and ∣ki refers to the computational basis
state which, regarded as a binary string, corresponds to k. Defining
ρ = 2nr−1 and noting that we have 2ρ basis states in our computer’s
subregister, a natural choice for the allowed k is to run from −ρ
through zero to ρ − 1. Therefore, a 1D single-particle state Ψ
would be represented by our subregister ∣ψxi according to

Ψ ¼ L�
1
2
Xρ� 1

k¼� ρ
akei2πkx=L $jψKS

x i ¼
Xρ� 1

k¼� ρ
ak jki ð20Þ

The superscript KS denotes the k-space representation.
We generate the dual DVR on a quantum computer by applying,

to each subregister, a QFT denoted byUQFT (see the Supplementary
Materials for its quantum circuit). The subregister as a whole will be
transformed as

jψiRSx ¼ UQFTjψiKS
x ¼

Xρ� 1

n¼� ρ
bn jni ð21Þ

where

bn ¼
1
ffiffiffiffiffi
2ρ
p

Xρ� 1

k¼� ρ
exp i

nπ
ρ
k

� �

ak ð22Þ

The superscript RS indicates the real-space representation.
When we wish to return to the original k-space representation, we
use the inverse QFT

jψiKS
x ¼ U

y
QFTjψi

RS
x ¼

Xρ� 1

k¼� ρ
ak jki ð23Þ

where of course

ak ¼
1
ffiffiffiffiffi
2ρ
p

Xρ� 1

n¼� ρ
exp � i

kπ
ρ
n

� �

bn ð24Þ

We find that the basis functions represented by each computa-
tional basis ∣ni appearing in Eq. 21 are peaked at (but not strictly
localized around) the spatial point xn ¼ n

ρ
L
2. The top left of Fig. 8

shows a plot for the case that nr = 6, n = 0. Specifically, the inferred
mapping is

ϕnðxÞ ¼ P
n
nrðxÞ $jni ð25Þ

with

PnnrðxÞ ¼ exp �
iπx0

L

� � ffiffiffiffiffi
2
ρL

s
Xρ

j¼1
cos

πð2j � 1Þx0

L
ð26Þ

where x′ = x − xn with xn ¼ nL
2ρ, and ρ = 2nr − 1. The function PnnrðxÞ,

which we informally refer to as a “pixel function,” serves the role of
an approximation or “smear” of the Dirac delta function Δ(x − xn),
the sharpness increasing as 2nr tends to infinity. The separation
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between the peaks of adjacent pixel functions, e.g., x2 − x1, is δr = L/
2nr, and we now define the model’s spatial resolution as the recipro-
cal of this quantity, i.e., as the number of pixel functions per unit
distance

δr� 1 ¼ 2nr=L ð27Þ
A suitable decomposition to represent any 1D wave function

Ψ(x) in our quantum register is therefore very intuitive

ΨðxÞ �
C
ffiffiffiffiffi
δr
p

Xρ� 1

n¼� ρ
ΨðxnÞPnnrðxÞ $

C
ffiffiffiffiffi
δr
p

Xρ� 1

n¼� ρ
ΨðxnÞ jni ð28Þ

i.e., the required amplitude of ∣ni, the state representing the wave
function peaked at point xn, is found simply by sampling the
target wave function at that point. Here, C is a normalization cons-
tant that will be close to unity providing that (i) the target wave
function has negligible amplitude outside of the simulation box
and (ii) the target wave function varies slowly with respect to δr.
Intuitively, one can think of these spatial basis functions PnnrðxÞ
analogously to pixels as used in conventional digital photographs:
The greater the number of spatial pixels or grid points, the more
features of the wave function are adequately captured.

The duality between the momentum- and real-space representa-
tions under the UQFT has been explored in multiple grid-based
quantum simulation studies, including (5, 7, 10, 12). Whereas the
k-space representation maps qubit basis states to wave functions
with sharp values of k, in the dual representation, the mapping is

to wave functions that are not perfectly sharp around points in
real space. Nonetheless, because of their Dirac-like nature, one
can analyze techniques and protocols as if they were Dirac func-
tions, secure in the knowledge that, in the high-resolution limit,
this becomes exact. This gives the visually intuitive picture that a
particle is a (pixelated) wave function in real space, supported by
a basis of sharp, evenly spaced functions; this insight is used in
most prior works (5, 10, 12, 13). The appealing conceptual simplic-
ity over second quantization can be regarded as another merit of
first-quantized grid representation.

The generalization to 2D or 3D is the natural one: The subregis-
ters tensor together to form the complete representation of a given
particle. The 3D analog of Eq. 28 is

ΨðrÞ � Cδr�
3
2
Xρ� 1

n;m;l¼� ρ
Ψðxn; ym; zlÞP

n
nrðxÞP

m
nr ðyÞP

l
nrðzÞ

$ Cδr�
3
2
Xρ� 1

n;m;l¼� ρ
Ψðxn; ym; zlÞ jni jmi j li

ð29Þ

When we generalize to represent a P particle wave function Ψ(r1,
…, rP), we need only to extend in the natural fashion

Cδr�
3P
2

Xρ� 1

fn1::lPg¼� ρ

Ψðxn1 ; ym1
; . . .; zlPÞ jn1i jm1i. . . j lPi ð30Þ

Fig. 8. Basis of spatial DVR wave functions modeled by a quantum computer. (A) A pixel function Pnnr ðxÞ with nr = 6 qubits and n = 0 (neglecting its complex phase;
see Eq. 27). (B) Adjacent pixel functions n = 0 and n = 1; where a function has its primary peak, all others are zero. (C) 2D pixel functions formed from products of the 1D
cases. (D) Representing a continuous state in this DVR. Left (blue green) shows the exact ground state ψ0,0 of 2D hydrogen. Right (orange) is the same state approximately
modeled by a 6 + 6 = 12 qubit quantum computer. The fidelity of the modeled state with respect to the analytic state (integrating over all space) is 0.99946. If instead we
project the analytic state into the box and renormalize, then the infidelity between the model and the analytic solution falls below 10−4. The discrepancy is a ≈6%
variation localized at the Coulomb singularity, where the analytic expression has a gradient discontinuity, as highlighted by the central plot. The sharpness of the ap-
proximation is characterized by δr−1 and so increases exponentially with nr.
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Split-operator propagation
The SO-QFT exploits these representation choices, and the low
computational cost incurred to transform between them, to approx-
imate the time evolution operator e−iHδt. Evolution by a total time t
is discretized into short time intervals δt such that

e� iĤt ¼ e� iĤδte� iĤδt. . .e� iĤδt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N times

¼ UNðδtÞ ð31Þ

and the SO-QFT approximates the unitary short-time propagator
using Lie-Trotter-Suzuki product formula (or Trotterization), split-
ting the Hamiltonian into its kinetic and interacting parts

e� iĤδt ¼ e� iðĤkinþĤintÞδt

¼ e� iĤkinδte� iĤintδt þ Oðδt2Þ

¼ USOðδtÞ þ Oðδt2Þ

Higher-order splitting schemes and their numerical properties
are well documented (61–65). For simplicity and to compare differ-
ent techniques on an equal basis, in this work, we focus on the first-
order SO-QFT, summarized in Fig. 9. The methods that we use are
equally compatible with any Trotter sequence; although where
½Ĥkin; Ĥint�= 0, the dynamics will be imperfectly modeled and
gives rise to the Trotter error terms as in Eq. 32; we discuss
further in the “Coulomb potential: Demands on spatial and tempo-
ral resolution” section in Materials and Methods.

The real- andmomentum-space grid representations (detailed in
the “Representations in real and momentum space” section in Ma-
terials and Methods) are natural options for state representation
when computing the approximate time evolution operator of Eq.
32: In the k-space representation, the kinetic part of the Hamiltoni-
an Ĥkin is separable and exactly local (diagonal); in the real-space
representation, the interaction part of the Hamiltonian Ĥint is

approximately diagonal and would be exact if the basis of pixel
functions were Dirac delta functions. Because the gate complexity
for the UQFT only scales quadratically with the number of qubits
per particle subregister nr (see the Supplementary Materials for
the QFT circuit), the SO-QFT can very efficiently compute the
two phases of the short-time propagator by periodically transform-
ing each subregister independently into their preferred, diagonal
basis

jψðt þ δtÞiRS ¼ USOðδtÞ jψðtÞiRS

where

USOðδtÞ ¼ e� iDintδtðUyQFT e
� iDkinδt UQFTÞ ð32Þ

Here, Dkin and Dint are diagonal real matrices, and UQFT is the
QFT applied to all subregisters.

We discuss in detail the evaluation of these operators on
quantum computers in the Supplementary Materials, but we
provide a summary here. From Eq. 14, we observe that propagation
under the kinetic Hamiltonian Ĥkin separates exactly into a product
of operators acting independently on each particle and in each
spatial subregister because the components commute

UkinðδtÞ ¼
YP

p¼1

Y

q[fx;y;zg

exp � i
δt
2mp

k2q

� �

where k again refers to the momentum state k from Eq. 19. The re-
quired quadratic phases are introduced onto our computational
basis states in the momentum-space representation according to

jki ) e� iCδt k
2
jki ð33Þ

and can be achieved using a sequence of single- and two-qubit
phase gates [see, for example, (7, 10)], which scales as Oðn2r Þ.

Fig. 9. Real-space grid Hamiltonian simulation using the SO-QFT approach. In this example, the dynamics of two electrons in a simulation box is simulated: One is
modeled as a Gaussian wave packet, and the other is modeled as the bound ground-state hydrogen solution. The two interact via a repulsive Coulomb potential, and the
atomic nucleus is modeled as a classical attractive Coulomb potential. The particles are digitized into regularly spaced pixels, encoded into the state of two qubit sub-
registers of the same size. The starting state is a tensor of these two states (a Hartree product), and upon antisymmetrization of the two particles (which would generate a
Slater determinant), the initial state can then be propagated in time by repeated application of the SO-QFT small-time evolution operator USO(δt) (depicted by the top
circuit). A possible sequence of the subsequent dynamics, where the unbound electron scatters with the bound electron, is plotted at the bottom.
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Propagation under the interaction potentials ĤU and ĤV is only
modestly more complex than the former kinetic propagation. For
interaction of particles with classical fields ĤU, we are primarily in-
terested in an attractive Coulomb potential representing a nucleus
(although we discuss a variation including a static electric field pres-
ently). For a single nucleus with charge Z, we write a time evolution
operator

UUðδtÞ ¼
YP

p¼1
exp � i

Zδt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p

 !

The operations are independent between the registers corre-
sponding to different particles but not independent between sub-
registers assigned to a given particle. The phases changes that we
apply to our quantum registers are

jni jmi j li ) exp
� iZ δt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2n þ y2m þ z2l
q

0

B
@

1

C
A jni jmi j li

¼ exp
� iZ δt

δr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ l2

p

 !

jni jmi j li

ð34Þ

Efficient evaluation of functions such as the inverse square root
on quantum computers is an active area of development; we high-
light (5, 7, 14, 66) in these directions. Here, it suffices to note that the
number of gates required can scale quadratically with the number of
qubits nr (7, 66), and we discuss this further in the Supplementary
Materials.

For the interaction between quantum particles ĤV, the propaga-
tion is of the form

UVðδtÞ ¼ exp � iδt
XP

p;q¼1;p=q

qp;q
jrp � rqj

 !

ð35Þ

To compute this propagation, we consider two particle registers,
each composed of three subregisters, which represent a given pair of
particles p = 1 and p = 2. The basis states will be updated as

jn1 m1 l1i jn2 m2 l2i ) e� iΘn jn1 m1 l1i jn2 m2 l2i

where

Θ ¼
Zp;q δt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxn1 � xn2Þ
2
þ ðym1

� ym2
Þ
2
þ ðzl1 � zl2Þ

2
q

¼
Zp;q δt

δr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1 � n2Þ2 þ ðm1 � m2Þ
2
þ ðl1 � l2Þ2

q

ð36Þ

We discuss how this is computed in the “Quantum computer ar-
chitectures” section in Results when we consider appropriate com-
puter architectures and in further detail in the Supplementary
Materials.

We again emphasize that, when propagating HU and HV in the
real-space representation, the operators are approximated to be di-
agonal. This would be exact in the limit of infinite spatial resolution,
and the spatial states were Dirac delta functions. Under this approx-
imation, the two terms commute, and we expect that for a suffi-
ciently small δt and a smoothly varying potential, an adequate

spatial resolution δr−1 will result in dynamics that converge to the
exact behavior. However, the Coulomb potential is singular at r = 0,
and consequently, we will need to investigate the behavior in this
region carefully.

Techniques for SO-QFT modeling
We now present techniques and important considerations specific
to SO-QFT modeling. We outline the methods known in the liter-
ature but tested here in a quantum chemistry setting while high-
lighting those methods that (to our knowledge) have not been
previously described.
Energy observable
In this first section, we review energy measurement for grid-based
quantum simulations; the experienced reader may care to skip to
the “State preparation” section in Materials and Methods.
Energy expectation. The energy expectation is the most ubiqui-

tous observable in quantum chemistry. In the grid-based approach,
it is possible to split the Hamiltonian and calculate the kinetic
energy expectation in k space, followed by the potential energy ex-
pectation in real space

hEi ¼ hΨ jUyQFTĤkinUQFT jΨi þ hΨ j Ĥint jΨi ð37Þ

where, here, ∣Ψ⟩ is understood to be the spatial representation.
Aside from requiring inefficient repeated sampling of the
quantum state, as we demonstrate in the “Cautionary tale: A
“bad” energy observable” section in Results, the aforementioned
Trotter error gives rise to nonconservation of this energy expecta-
tion and renders the method unsuitable for extracting the correct
physics from simulation.
Iterative phase estimation. The energy of a state can also be ex-

tracted by tracking the global phase that it acquires during time
propagation. This is given by the phase of the autocorrelation func-
tion, which is a discrete time series of the inner product between a
propagated state and the initial state. Suppose that we time propa-
gate an eigenstate Ψn of Ĥtot with energy En. The corresponding au-
tocorrelation signal is

hΨnðtÞ jΨnðt ¼ 0Þi ¼ e� iEnt ð38Þ

where the absolute value ∣⟨Ψ(t = 0)∣Ψ(t)⟩∣ should be close to unity,
and in this work, we use it as one measure of a simulation’s veracity.

On a quantum computer, this otherwise-unobservable global
phase is efficiently extracted using phase estimation. Phase estima-
tion through the use of ancilla qubits (67) is one of the fundamental
techniques used in diverse applications of quantum computing, and
its utility in the context of SO-QFT and first-quantized simulation is
well recognized [see, e.g., (5)].

In the IPE approach, even a single ancilla (8, 68) is sufficient to
learn this phase; a resource cost saving that will be welcome in the
early fault-tolerant regime. Themethod is summarized on the left of
Fig. 10. We conditionally apply N SO-QFT steps UN(δt) controlled
by an ancillary qubit in the ∣+⟩ state. At theNth step, wemeasure the
ancillary qubit in the ∣+⟩ basis, at which point the state is discarded.
We see that for an eigenstate, the global phase information is
encoded in the relative phase between the ∣0⟩ and ∣1⟩ state of the
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ancillary qubit

jþi jΨnð0Þi )
1
ffiffiffi
2
p ½j0i jΨnð0Þiþj1i jΨnðtÞi�

¼
1
ffiffiffi
2
p ðj0i þ e� iEnt j1iÞ j Ψnð0Þi

ð39Þ

The probability of finding the ancillary qubit in state ∣+⟩ fluctu-
ates as the phase. We use this to extract a periodic time signal a(t)
where the frequency is proportional to the energy of the simulated
wave function

aðtÞ ¼ cos2
En
2
t

� �

ð40Þ

Because the number of qubits that we can classically emulate is
limited, using the single-ancilla IPE for our demonstrations here is a
natural choice. We report the exact evolution of a(t) plotted at
regular time points; this is straightforward since we use classically
emulated quantum processors. On a real device, because the single-
ancilla projection probability is statistical in nature, the time prop-
agation and measurement will have to be repeated multiple times.

If more ancilla qubits are available, then this naturally extends to
the standard Fourier phase estimation; for completeness, we include
this in the Supplementary Materials, where we also note the use of
classical Fourier analysis to extract features if the hardware is limited
to a single ancilla.
State preparation
Preparing an appropriate starting state is a crucial and nontrivial
component of dynamics simulation. To be consistent with the per-
formance of the subsequent time evolution, we should ideally
perform state preparation in polynomial time. Furthermore, since
we are working in the first-quantized picture, we must explicitly
realize the correct (anti)symmetry therein. The canonical
quantum algorithmic approach is to start by initializing an easily
prepared reference state and then drive it toward, e.g., the ground
state; recent studies (1) have highlighted ongoing challenges and

uncertainties associated with this task. In this section, we briefly
review them and introduce the state preparation methods assessed
in this work: a quantum algorithm for preparing antisymmetric
states, state preparation with IPE described in the “Energy observ-
able” section in Materials and Methods, and PITE (12) for prepar-
ing ground states. We provide a brief review of the state preparation
literature in the Supplementary Materials.
Initial state loading and antisymmetrization. For many-body

systems in which most particles are indistinguishable, the challenge
of preparing an initial state with proper exchange symmetry is non-
trivial. Here, we will assume that we wish to prepare antisymmetric
states, but the methods to prepare bosonic symmetric states are near
identical. The choice of method to accomplish antisymmetrization
determines the options for actually loading the initial single-particle
basis states, as we now explain.

Protocols for creating an antisymmetric superposition on a
quantum computer have been explored in several publications
dating back at least as far as 1997 by Abrams and Lloyd (69). The
relatively recent 2018 paper of Berry et al. (41) describes a determin-
istic, polylogarithmic algorithm to create a state of the form

jprmi ;
1
ffiffiffiffi
P!
p

XP!

i
permiðj0i j1i. . . jP � 1iÞ ð41Þ

Here, we have P sets of qubits, each of size s = ⌈ ln P⌉, which
represent the binary numbers 0 to P − 1. The notation permi() in-
dicates the ith permutation and is understood to include the sign
appropriate to antisymmetry [that is, (−1)k if there are k pairwise
swaps needed to permute from the canonical ascending order].

The state ∣prm⟩ is a superposition of binary labels rather than a
superposition of states in the grid-based representation as we
require. In principle, we can obtain the latter once we have the
former. Specifically, we prepare ∣prm⟩ and distribute each of the P
sets of qubits as follows: Each will occupy the first s qubits of
one of our P particle-representing registers, while the remaining
qubits within each particle register are in state zero, j 0i. We now

Fig. 10. Three early fault-tolerant quantum circuit techniques for real-space chemistry explored in this work. (A) The single-ancilla IPE method emulated in this
work. The global phase is encoded in the probability of measuring an entangled ancilla qubit, which controls the application of N SO cycles, in the ∣+⟩ state. To obtain this
probability, one must repeat the propagation andmeasurement at each point in timewhere onewishes to sample the signal. (B) Attenuation of a wave packet on a qubit
register. Top right depicts the dispersion of a Gaussian wave packet across the periodic boundary. Addition of complex absorbing region in pink (bottom right) attenuates
the scattered wave packet by reducing its norm. In the illustrated case, the process is not quite perfect: There is some reflection caused by the attenuation being too
severe. Left is a circuit that performs probabilistic wave packet attenuation at a select pixel. The pixel ∣111101⟩ is selected, corresponding to the attenuating region on the
right-hand side of the simulation box in the figure. (C) Preparing ground states using the PITE circuit. The filled circles indicate “control by ∣1⟩,” and the open circles
indicate “control by 0.” Postselecting on the ∣+⟩ outcome yields a state with, to first order, an imaginary-time evolution step applied. Given a choice of an appropriate
parameter m0, the time-rescaling factor s ¼ m0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m2

0

p
and the rotation θ ¼ κ arccos ½m0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m2

0

p
=
ffiffiffi
2
p
�, where κ ¼ sgnðm0 � 1=

ffiffiffi
2
p
Þ [see (12)].
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apply to each register an operator that maps these integer numbers
to the desired grid-based eigenstates as follows:
Munpack j ðjÞi j 0i¼jψji where ψj with j = 0…(P − 1) are the single-
particle basis states from which we are building the initial state.
While this is conceptually simple, the operatorMunpack may be chal-
lenging to implement since it must encode knowledge of every ψj,
and moreover, it should be (near) deterministic if it is to succeed
over all P particle registers.

Instead, one might wish to begin by preparing a simple product
state across our particle registers, i.e.

jψ0i jψ1i. . . jψP� 1i ð42Þ

and then find some means to antisymmetrize this, thus generating a
Slater determinant (70). The preparation of each state ∣ψj⟩ would be
relatively easy, performed independently for each particle register
and optionally involving nondeterministic approaches with a high
success probability per attempt. In the Supplementary Materials, we
highlight recent advances in preparing known (analytic) single-par-
ticle states ∣ψ⟩ on a quantum register. This route is attractive but
relies on an efficient means of subsequently antisymmetrizing the
product state in Eq. 42.

In (31), the authors propose performing antisymmetrization on
a product state using an adaption of the methods in (69) (i.e., per-
muting a product state by cosorting a state of the form ∣prm⟩);
however, they do not explicitly specify how the resulting swap
flags are to be uncomputed [moving from equations 4 to 5 in (31)
appears nontrivial]. In the “Antisymmetrization of the initial state”
section in Results, we introduce two simple solutions to this issue.
We will rely on the following assumption (which may itself be non-
trivial): We must specify a Hamiltonian Hsynth with the property
that

Hsynth jψi ¼Ei jψi
� �

Eiþ1 . Ei
(reiterating Eq. 7). This Hamiltonian is synthetic in the sense

that it need not correspond to any physically legitimate scenario.
The condition implies that the states ∣ψi⟩ must be orthogonal; more-
over, we desire well-separated energies. The “Antisymmetrization of
the initial state” section in Results not only specifies the key steps but
also gives indicative performance numbers from numerical emula-
tion of antisymmetrization for P = 5 particles.
Refining the initial state: Ground state preparation. The remarks

above concern the initialization of our grid-based machine into a
state that we understand and can describe analytically. Of course,
we may then wish to drive this state into a more accurate represen-
tation of, e.g., the ground state of the real system before exploring its
dynamics, assuming nonzero overlap between the initial reference
and the target state. While many quantum algorithms have been
proposed for this (see the Supplementary Materials), in this work,
we demonstrate two techniques that exploit the nonunitary nature
of single-ancilla measurements.

1) State editing: Use of ancilla measurements in phase estimation
is a well-established technique for ground state preparation (41, 67,
71). Here, we consider the single-ancilla variant that uses IPE as de-
scribed in the “Energy observable” section in Materials and
Methods, where we regard the ancilla measurement as a midpoint
rather than an end goal.We emulate an approach that uses this mea-
surement to remove a known state from superposition to 2D hydro-
gen, which we report in the “State editing” section in Results.

Suppose that we can prepare an initial state that contains a super-
position of eigenstates including our desired state. Let us assume
that we know the energy Eκ of the state that we wish to remove,
which can be revealed using the method in the “Energy observable”
section in Materials and Methods and classical Fourier analysis. We
prepare our ancilla in the ∣+⟩ state and then perform conditional
evolution as previously described. To remove state(s) Ψκ with eigen-
value Eκ, we require measurement at Tκ, such that e−iEκTκ = −1, thus

Tκ ¼ Nκδt ¼
π
Eκ

ð43Þ

Now, the undesired component has zero probability of yielding ∣
+ ⟩ from the ancilla measurement, so postselecting on that outcome
will entirely eliminate its contribution from the register. The more
conventional approach for state preparation with phase estimation,
which seeks to amplify a target state with known energy, is reviewed
in the Supplementary Materials.

2) PITE: The second state preparation method that we explore is
a recently introduced approach for performing imaginary-time evo-
lution (12, 72) on quantum computers. The method does not
require a priori knowledge of Hamiltonian eigenvalues; however,
unfortunately, it does suffer an exponentially vanishing success
probability, as the authors note and we presently explore.

Suppose again that we have an initial state that contains a super-
position of eigenstates ∣Ψ⟩ = ∑ncn∣Ψn⟩. Imaginary-time evolution
applies the nonunitary evolution operator e� Ĥτ to the initial state

jΨðτÞi ¼ e� Ĥτ jΨi ¼
X

n
cne� Enτ jΨni ð44Þ

and therefore approaches the lowest-energy state in the initial super-
position exponentially fast at the long-τ limit. The PITE approxi-
mates, to first order, the Hermitian small imaginary-time
evolution operator m0e� Ĥδτ (where 0 < m0 < 1 and m0 = 1=

ffiffiffi
2
p

)
applied to the state on the main register, by controlling both
forward and reverse real-time evolution operators U(δt) and
U†(δt) with a single ancillary qubit prepared in superposition. Post-
selecting on the ancilla measurement outcome of ∣0⟩ applies the
desired evolution on the register. We prepare the same ∣+⟩ ancilla
state as per the IPE and start from the circuit in Fig. 10, noting that it
achieves the exact same nonunitary operation proposed in (12) but
with fewer gates. In the “Probabilistic imaginary-time evolution”
section in Results, we emulate such a circuit and test it numerically
in preparing the ground state of a 2D hydrogen atom.

Similar to state editing by phase estimation, this approach is also
probabilistic, and preparing an initial state with large overlap with
the ground state is key to maximizing the rate of success. In this
case, however, the probability that every sequential ancilla measure-
ment yields the desired outcome decays exponentially with the
number of measurements. We refer the reader to (12), which intro-
duced the technique and applied it to wave packets in parabolic po-
tentials, for details of this drawback and possible ways to address it.
We highlight that, while the current method may be impractical on
a real quantum computer, it is nonetheless an effective quantum-
inspired ground state preparation method for classical emulations.
Attenuation and scattering
In this work, we developed a quantum circuit analog of CAPs, a
well-established technique from classical simulation (60). Here,
we present this method and show that it can also be used to track
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the probabilities of wave packets being found at specific pixels,
which are important to the determination of reaction rates in mo-
lecular processes. We test these techniques in the ionization of a
single bound electron by a strong applied electric field and two-par-
ticle scattering scenarios in the “Quantum dynamics demonstra-
tions” section in Results.

The use of the k-space mapping imposes a periodic boundary
condition in real space. For nonperiodic systems, this introduces ar-
tificial interactions and state interference through the boundary,
and one of the requirements on the simulation box is that it is suf-
ficiently large that these have negligible impact on the dynamics.
Given that, for fixed spatial resolution, the width can be increased
with only a logarithmic cost both in the number of additional qubits
and the wall clock execution time (see the “Quantum computer re-
sources and architecture” section in Results), this does not usually
pose a problem. However, there are simulation tasks where simply
enlarging the box may not be an ideal solution: for example, a study
of a scattering process where the quantum states of scattered parti-
cles have contributions that travel at speed toward the edges of the
simulation box.

One alternative is to attenuate wave function amplitude near the
boundary. Any such attenuation would be a nonunitary process in-
volving measurement and implying some probabilistic element;
however, the cost associated with any need for repetition may be
preferable to the increase in the number of qubits required in the
former approach. Furthermore, we show that from the rate of
failure of this probabilistic process, one can infer the probability
of a particle being measured at a given pixel.

The interaction potential part of the Hamiltonian Ĥpot is mod-
ified to contain both a real and (negative) imaginary part

Ĥint ¼ ĤU þ ĤV � iV̂ ð45Þ

The time evolution operator is thus

Ψðr; tÞ ¼ e� iĤte� V̂tΨðr; 0Þ ð46Þ

The absorbing potential V̂ ¼ VðrÞ should be balanced between
sharp, abrupt attenuation, which reduces the size of the attenuation
region while suppressing transmission, and smooth, gradual atten-
uation, which suppresses reflection. For brevity, we will only assert
that it is possible to construct CAPs that are completely reflection
and transmission free (73) and refer the reader to the rich body of
classical quantum dynamics literature on complex potentials
(74–79).

On a quantum computer, the objective is to achieve the following
nonunitary transformation in (although not limited to) the real-
space representation at every SO-QFT step

X
an jni )

X
ane� VðxnÞδt jni ð47Þ

followed of course by the necessary renormalization. Here, xn is the
location of the peak of the pixel function PnnrðxÞ as per Eq. 25. Of
course, δt is merely a constant, corresponding to the temporal gran-
ularity of the simulation. The analogousmapping should occur for y
and z and for each particle in the system; ideally, this should be done
in a fashion that perfectly preserves any exchange symmetry rele-
vant to the system.

To achieve this, we could proceed as follows for each xn that lies
within our attenuating region [i.e., where V(xn) ≠ 0]. At the end of
each spatial part of our SO-QFT cycle, we prepare an ancilla qubit in

state ∣0⟩, and we perform a multicontrolled rotation eiσxθ on that
ancilla. The rotation occurs if and only if the subregister is exactly
in state ∣n⟩, which corresponds to the pixel function peaked at xn.
We then measure the ancilla. If we obtain outcome ∣1⟩, we say that
the particle in question has been measured to be that point, and we
may either halt the simulation or proceed with the remaining par-
ticles—both scenarios are examined in the numerical emulations
presented. However, if we obtain outcome ∣0⟩, then the simulation
simply proceeds, except that the amplitude of state ∣n⟩ has been at-
tenuated from an to an cos (θ) (and the state has been renormalized).
By repeating this process for all xn within the attenuating region,
selecting the proper θ = arccos [e−V(xn)δt] in each case, we imple-
ment Eq. 47 (see middle of Fig. 10). In parallel, the same process
can be applied for other subregisters and other particles.

If the attenuation region is narrow, corresponding to only a few
values of xn, then the above protocol can be relatively efficient. Re-
markably frugal constructions for multicontrolled Paulis do exist
(39), and of course, a controlled Pauli can implement the general
θ rotation described above with the use of additional single-qubit
rotations. However, if the attenuation region is a main portion of
the simulation box, then the method would be exponentially inef-
ficient as it requires action for each element of the spatial superpo-
sition. Fortunately, however, one can simply set a uniform
attenuation strength V over a range of xn values and implement it
in one step using an appropriate subset of register qubits in the
control process. The simplest example occurs when the width of
the attenuating region is 2−mL for some integer m (L being the
width of the simulation box). In this case, only the first m qubits
from the subregister control the rotation. This is the approach
taken in the numerical emulations presented in this work.

By repeating the entire simulation multiple times and keeping
track of the probability that the ancilla qubit yields ∣1⟩, we are
also recording the time-dependent probability that a particle has
reached a given pixel in the simulation box. One could, in principle,
obtain this information by generating the probability distribution of
particles at different times through direct sampling of particle sub-
registers; we generate plots that would be obtained this way.
However, on a real quantum computer, selecting specific pixels
and entangling them with a single qubit that would then be mea-
sured is a much more cost-efficient statistical approach. One
might envisage the determination of reaction rates by selecting
key pixels, much like the selection of a reaction coordinate in tradi-
tional reaction dynamics, and using an equivalent approach to track
the probability that a particle wave packet crosses said pixels. We
show a proof of concept here by directly measuring particle scatter-
ing and ionization probabilities, in combination with CAPs.
Coulomb potential: Demands on spatial and temporal
resolution
Here, we review considerations regarding the granularity of simu-
lating the Coulomb potential using either the classical or quantum
SO; a more detailed discussion can be found in the Supplementary
Materials. The SO uses finite spatial basis set and discrete time ap-
proximations, which become exact in the limit of infinite resolution.
To optimize computation cost, it is sensible to use the minimum
finite resolution necessary for obtaining physically accurate
results. The spatial discretization determines the fidelity of a
model’s state and (potential) operators to reality and bounds the
maximum attainable accuracy of measurable properties. The time
resolution is chosen such that the Trotter error during time
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propagation is sufficiently low; however, because the error term of
any Trotter sequence depends on the commutator between Ĥkin and
Ĥint, which, in turn, depends on the spatial derivatives of the model
potential, using a fine spatial resolution will therefore require com-
mensurately fine time stepping to suppress Trotter error during
propagation (65).

For propagation under smooth (e.g., harmonic) potentials, low
spatial and time resolutions are generally sufficient. On the other
hand, because of the sharp singularity in the Coulomb potential, ac-
curately describing wave function propagation near the singularity
is more involved, even if we are to effectively model a capped poten-
tial by never collocating the origin at a grid point. We expect that a
high spatial resolution is necessary to attain accurate operator
physics for states with large amplitudes at the singularity, which
will demand a high time resolution to control propagation errors.
In the “Spatial and temporal resolution” section in Results, we use
numerical studies to estimate the minimum spatial and temporal
resolution required for sufficiently accurate time propagation of
chemically relevant systems, using the first-order SO-QFT.
Augmented split-operator
We now describe an alternative means to tackle simulation of states
that may have large amplitudes at the Coulomb singularity instead
of using a brute force increase in spatial and temporal resolution.
We call the approach the ASO as it involves introducing an addi-
tional step in the SO-QFT cycle. The results of applying the protocol
below with an emulated quantum computer are presented in the
“Augmented split-operator” section in Results.

Following the implementation of the exponential operators in a
SO-QFT time step and while still in the real-space representation,
we apply a core stabilization process. This is intended to “fix” the
most severe deviations of the applied unitary from the ideal
unitary e� iĤtotδt. We emphasize that the fix is at the operator level
and is agnostic to the specific state that is being modeled.
However, the motivation is to make the dynamics of core-peaked
states more accurate. We aim to reduce the overall time cost of a
simulation with a given accuracy, without increasing the
qubit count.

We describe the process for a simulation of a single particle and
comment on the generalization to N particle systems further below.
The following is performed on a classical computer, as a one-off
preparation for our simulation. We make a fixed choice of δt, and
we must repeat the analysis for each value of δt that we wish to use.

1) We compute the ideal iterate U ideal ¼ e� iĤtotδt and the actual
iterate defined by Eq. 32 viz.

USOðδtÞ ¼ e� iDintδtðUyQFT e
� iDkinδt UQFTÞ

These objects are computed in the full basis of pixel functions for
the particle (and are therefore far from diagonal).

2) We examine Urepair, which is defined by

U ideal ¼ UrepairUSOðδtÞ

and we will find that Urepair is close to the identity except for ele-
ments corresponding to pixel functions that are near the
Coulomb singularity. Therefore, we select a set of Q such pixels
and derive a small Q × Q unitary Ucore that closely matches Urepair
in that subspace.

3) We define augmentation Uaug as the identity operator except
for the Q-state subspace, where it corresponds to Ucore.

4) We find a circuit Caug that can implement Uaug to a good ap-
proximation. This circuit is not merely a set of phase operations
since Uaug is not diagonal in the Q-state subspace; Caug will cause
a flow between the amplitudes of those states.

This classical analysis is nontrivial but tractable since the uni-
taries involved are “only” of size 2nrD for a D-dimensional
problemwhere nr is the number of qubits per subregister. Moreover,
there are helpful symmetries in the analysis, and notwithstanding
the description in step 1, we need not compute Uideal and USO en-
tirely but only in the subspace where we are likely to identify the Q
core pixels. With these steps completed, we are in a position to
perform simulations with the ASO iterate

UASOðδtÞ ; Uaug USOðδtÞ

¼ Uaug e� iDintδtðUyQFT e
� iDkinδt UQFTÞ

ð48Þ

In Results, we report on the performance of this method for two
cases, 2 × 2 and 4 × 4 pixels. As demonstrated by those examples,
even with such small corrections, the method is quite effective, and
the cost of the augmentation can be modest: The circuit Caug is
compact and need only target a small subset of qubits, with the
others acting as controls.

The generalization of the ASO method to the P particle case is
straightforward except for a caveat. The main time cost of the SO-
QFTmethod lies in the implementation of the e� iĤintδt part, because
of the P(P − 1)/2 particle pairings involved. The ASO method can
be efficiently implemented by applying an Uaug augmentation after
each such pairing, subsequent to implementing the e−iCδt/∣r∣ and
while the registers are still representing relative coordinates xi −
xj, yi − yj, etc. Because Uaug is not diagonal, ensuring the proper
evolution requires implementing the full orthogonal transforma-
tion to relative and central coordinates

fxi; xjg ) fxi � xj; xi þ xjg rather than fxi � xj; xig

and similarly for y and z. Fortunately, the additional arithmetic step
that this implies is trivial.
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