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Abstract

Organoids are multi-cellular structures which are cultured in vitro from

stem cells to resemble specific organs (e.g., colon, liver) in their three-

dimensional composition. The gene expression and the tissue composi-

tion of organoids constantly affect each other. Dynamic changes in the

shape, cellular composition and transcriptomic profile of these model sys-

tems can be used to understand the effect of mutations and treatments in

health and disease. In this thesis, I propose new techniques in the field

of topological data analysis (TDA) to analyse the gene expression and

the morphology of organoids. I use TDA methods, which are inspired by

topology, to analyse and quantify the continuous structure of single-cell

RNA sequencing data, which is embedded in high dimensional space, and

the shape of an organoid.

For single-cell RNA sequencing data, I developed the multiscale Laplacian

score (MLS) and the UMAP diffusion cover, which both extend and im-

prove existing topological analysis methods. I demonstrate the utility of

these techniques by applying them to a published benchmark single-cell

data set and a data set of mouse colon organoids. The methods valid-

ate previously identified genes and detect additional genes with known

involvement cancers.

To study the morphology of organoids I propose DETECT, a rotation-

ally invariant signature of dynamically changing shapes. I demonstrate

the efficacy of this method on a data set of segmented videos of mouse

small intestine organoid experiments and show that it outperforms clas-

sical shape descriptors. I verify the method on a synthetic organoid data

set and illustrate how it generalises to 3D to conclude that DETECT of-

fers rigorous quantification of organoids and opens up computationally

scalable methods for distinguishing different growth regimes and assess-

ing treatment effects. Finally, I make a theoretical contribution to the

statistical inference of the method underlying DETECT.



F
ig

u
re

I.
1:

G
ra

p
h

ic
al

ab
st

ra
ct

.
I

an
al

y
se

tw
o

ty
p

es
of

or
ga

n
oi

d
d

at
a

in
th

is
th

es
is

:
O

rg
an

oi
d

b
ou

n
d

ar
ie

s
se

gm
en

te
d

fr
om

v
id

eo
s

(t
op

le
ft

)
an

d
si

n
gl

e-
ce

ll
R

N
A

se
q
u

en
ci

n
g

d
at

a
(b

ot
to

m
le

ft
).

T
h

e
fo

rm
er

is
an

al
y
se

d
u

si
n

g
D

E
T

E
C

T
,
a

n
ov

el
si

gn
at

u
re

p
ro

p
os

ed
in

th
is

th
es

is
w

h
ic

h
ex

te
n

d
s

th
e

E
u

le
r

ch
ar

ac
te

ri
st

ic
tr

an
sf

or
m

.
D

E
T

E
C

T
ca

n
cl

as
si

fy
ex

p
er

im
en

ta
l

or
ga

n
oi

d
s

in
to

tr
ea

te
d

an
d

u
n
tr

ea
te

d
gr

ou
p

s
b

as
ed

on
th

ei
r

m
or

p
h

ol
og

y.
T

h
es

e
re

su
lt

s
ar

e
ve

ri
fi

ed
on

sy
n
th

et
ic

or
ga

n
oi

d
d

at
a,

w
h

ic
h

D
E

T
E

C
T

cl
u

st
er

s
b
y

m
it

os
is

ra
te

.
W

e
ca

n
p

ro
ve

th
at

th
e

E
C

T
an

d
D

E
T

E
C

T
ar

e
st

ab
le

(t
op

ri
gh

t)
.

T
h

e
sc

R
N

A
-s

eq
d

at
a

ca
n

b
e

re
p

re
se

n
te

d
b
y

a
U

M
A

P
gr

ap
h

or
a

si
m

p
li

fi
ed

M
ap

p
er

gr
ap

h
.

W
e

ca
n

id
en

ti
fy

ge
n

es
w

h
ic

h
ar

e
ex

p
re

ss
ed

co
n

si
st

en
tl

y
w

it
h

th
is

n
et

w
or

k
st

ru
ct

u
re

at
m

u
lt

ip
le

sc
al

es
u

si
n

g
th

e
n

ov
el

m
u

lt
is

ca
le

L
ap

la
ci

an
sc

or
e

(M
L

S
;

b
ot

to
m

ri
gh

t)
.
N
e
w

co
n
tr
ib
u
ti
o
n
s
a
re

in
b
o
ld
.



List of Publications and Manuscripts

Peer-reviewed publications

1. Hoekzema RS, Marsh L, Sumray O, Carroll TM, Lu X, Byrne HM, Harrington

HA. ‘Multiscale Methods for Signal Selection in Single-Cell Data’. In: Entropy

(2022) 24:1116. https://doi.org/10.3390/e24081116.

Contributions: Developed and implemented the multiscale Laplacian score

and analysed its output on two data sets.

2. Marsh L, Dufresne E, Byrne HM, Harrington HA. “Algebra, Geometry and

Topology of ERK Kinetics”. In: Bull Math Bio (2022) 84:137. https://doi.

org/10.1007/s11538-022-01088-2.

Contributions: Proposed and implemented the topological metric on posterior

distributions. Developed and implemented the Bayesian data analysis. Imple-

mented the simulations suggesting structural non-identifiability. Contributed to

the proofs and implementations of the structural identifiability tests. Derived

the algebraic model reductions and contributed to the QSSA model reductions.

3. Yeung E, McFann S, Marsh L, Dufresne E, Filippi S, Harrington HA, Wühr M,
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Chapter 1

Introduction

Chapter Content

1.1 Topological Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 scRNA-seq Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organoid Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Theory of the Euler Characteristic Transform . . . . . . . . . . . . . 8

1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Organoids are in vitro cell cultures that mimic certain functions of mammalian tissues.

They are also known as mini organs because their constituent cells can differentiate

into various cell lineages with defined cellular functions. The increasing use of or-

ganoids for studying tissue development, disease progression and tissue responses to

genetic and environmental perturbations can be attributed to their ability to recapit-

ulate the three-dimensional (3D) cellular architecture and function of their tissue

of origin [87]. This architecture distinguishes organoids from earlier two-dimensional

(2D) tissue cultures. In particular, due to their 3D similarity to the tissue from which

they were derived (the primary tissue), organoids model tissue-specific functions, such

as signalling pathways of the primary tissue more accurately [148, 123]. As such, they

can be used to study the impact of defined genetic and environmental manipulations

in vitro. Analysing organoid responses to these manipulations makes them useful for

understanding the development and disease progression as well as for drug testing

1



[28] while decreasing the cost and ethical implications of testing on animal or human

subjects. Organoids also have the potential to play an important role in the future of

precision medicine: For example, growing organoids derived from defective tissue of

a patient and applying various drugs to such organoids could reveal which treatment

promises the greatest therapeutic benefit. While organoids can now be generated to

study multiple organs, including the brain, kidney and liver, the most widely stud-

ied organoids are derived from the intestinal epithelium, one of the fastest renewing

mammalian tissues [123].

Organoids are grown from stem cells. Growth factors present in the culture me-

dium (e.g. Matrigel) surrounding the organoids drive the stem cells to proliferate and

the organoids to increase in size. During this early stage, many cells exhibit pluri-

potency (the ability to develop into any cell type found in a tissue). In response to

developmental cues, these pluripotent cells migrate to their destined site in the orga-

noid and differentiate to perform their function and maintain homeostasis (broadly:

the functioning of the tissue/cell culture). Cell differentiation leads to various areas

of an organoid being occupied by different cell types with distinct functional proper-

ties. At the organoid level, this process leads to changes in morphology. At the cell

level, changes in the number of cell types and their spatial positions affect cross-talk

and, by extension, molecular processes within the cell, such as gene expression and

transcription.

Genetics, including cancer mutations, are known to affect tissue composition and

thus cell fate, which in turn affects organoid morphology. Thus, tissue composition,

which is closely linked to tissue morphology, and genetics are tightly coupled. Unrav-

elling interactions between morphology, genetics and treatments is thus an essential

aspect of understanding tissue fate and disease progression. For example, metaplasia,1

an early stage of oncogenesis, requires an understanding of both tissue composition

and genetics. Metaplasia is often linked to irregular cell morphology and cell plasticity

1‘A change of cells to a form that does not normally occur in the tissue in which it is
found.’ according to the National Cancer Institute. https://www.cancer.gov/publications/

dictionaries/cancer-terms/def/metaplasia (last checked: 21/02/23).
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[163]. As it requires the de-differentiation of cells, it also affects gene transcription

and expression.

Current methods for both analysing organoid morphology and transcriptomics (in

the form of single-cell RNA sequencing data) are incomplete. For both types of data,

I propose new methods using topological data analysis (TDA) to improve analysis

methods for such data. In the case of morphology data, I show that the method I

developed is scalable, interpretable and has high discriminative power. Most existing

methods lack at least one of these properties. Similarly, I compare my methods for

scRNA-seq data with existing methods on benchmark data and demonstrate how it

yields new insights and identifies genes not found previously. All of the methods I

propose are motivated by organoid data but generalise to other types of data.

1.1 Topological Data Analysis

Topological data analysis is a set of methods which use topology to study the shape

of data. TDA has been successfully applied in biology [51, 29, 61, 101, 110]. In

particular, it has been used to study morphology [3, 39, 155] and to analyse high-

dimensional sequencing data of genetic material [60, 118, 122]. Related to TDA is

network theory, as any network can be viewed as a special instance of a simplicial

complex, a key notion in TDA. In particular, random walk theory on networks, the

main method from network theory used in this thesis, generalises from networks to

simplicial complexes [128]. Random walks on networks have been successfully applied

to a number of research problems in biology [124, 36, 150, 8].

In this DPhil thesis, I demonstrate how TDA methods are effective in analysing

organoid morphology and single-cell RNA-seq data at multiple resolutions. The to-

pological analyses, presented across separate chapters, increase the understanding of

the relationship between morphology and genetics. While integrating scRNA-seq and

morphology data of organoids into a single study is beyond the scope of this DPhil

project, I present a roadmap towards such an integrated study in the discussion

chapter.
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1.2 scRNA-seq Data

Single-cell sequencing methods provide transcriptomic data at an unprecedented res-

olution: unlike previous bulk sequencing methods, which aggregate the genetic ma-

terial from multiple cells into one data point, single-cell sequencing methods generate

one data point per cell. This increase in resolution has also affected how researchers

view notions of cell type. While previously cell types were viewed as discrete - or

binary - (e.g., a cell could be either completely ‘cancerous’ or completely ‘healthy’),

single-cell sequencing has revealed many intermediate cell states, which can be viewed

as a continuous trajectory from one cell type to another [122].

A class of methods for analysing transcriptomic data are differential expression

(DE) tests. In the over-simplified, but nonetheless illustrative example of a data set

containing points derived from ‘cancerous’ and ‘healthy’ cells, DE tests use statistics

to identify genes which are expressed at significantly higher levels on the ‘cancerous’

than the ‘healthy’ cells (or vice-versa). However, in many instances of scRNA-seq data

sets, it is impossible to stably assign cells into such discrete categories. In practice,

clustering algorithms are often used to assign cells to cell types before a DE test

is conducted. If the structure underlying the data is continuous, such clustering is

unstable (with respect to small perturbations of the data, subsampling, small changes

in the parameters of the algorithm, etc.). By extension, any DE analysis that builds

on such clustering is also unstable.

Govek and co-authors proposed a generalised DE test using the Laplacian score

[71] on a cell-similarity network, which assumes that the sequencing data has a con-

tinuous structure [60]. They model the continuous structure using simplicial com-

plexes, a key notion from TDA. In particular, their method does not require the

data to be clustered and thus does not suffer from clustering-related instabilities.

Their test can also be applied to spatial-transcriptomic data (RNA data annotated

by spatial coordinates of a cell within a tissue or cell culture) to identify genes highly

expressed in particular spatial regions.

A drawback of using the Laplacian score for generalised DE testing is that it
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operates only at a single scale (both in terms of gene expression similarity and spatial

distance). However, many data sets exhibit structure at multiple scales. In our simple

example, the ‘cancerous’ and ‘healthy’ cells may comprise multiple sub-groups (e.g.

epithelial, muscular, neuronal and connective cells). In such cases, clustering can

be performed at multiple resolutions (many clustering algorithms, including k-means

and single-linkage, have a parameter controlling how coarse the resulting clustering

is) and the DE test is applied to each clustering to obtain a multiscale description of

the data.

In this thesis, I propose a novel multiscale Laplacian score (MLS) which gener-

alises the Laplacian score analysis introduced by Govek et al. [60]. The MLS uses

insights from network theory and random walk theory to perform generalised DE

tests at multiple resolutions. Further, I propose to use variation of information (VI),

a heuristic commonly used in multiscale community detection on networks, to detect

resolutions at which the data exhibits interesting structures. While this heuristic

is motivated by community detection/clustering methods, the MLS itself, like the

Laplacian score, does not use any assignment of cells into clusters.

I apply this method to two data sets: a benchmark data set of lung-tumour

infiltrating human T cells [91] and a data set collected from mouse colon organoids

which have various cancer-related mutations induced. First, I demonstrate that VI

identifies resolutions of interest in both data sets. On the mouse colon data, I show

that the identified resolutions relate to cell types identified by biomarkers and to

genetic conditions, respectively. Second, I show that the MLS identifies differentially

expressed genes (which are known to be involved in various types of cancer) at each

resolution in both data sets and have not been identified by the Laplacian score.

Trajectory inference methods, unlike DE testing, assume that the structure of

single-cell data is continuous. They attempt to infer continuous trajectories between

different cell states. The performance of such methods varies significantly across data

sets and depends on their topology [125]. Further, many methods are biased either

through the limited topology they can model or the large number of hyperparameters

which need to be set by the user [125]. A method from TDA that has been used
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successfully for trajectory inference [122, 118] is Mapper [134]. Mapper builds a graph

representation of high-dimensional data by adapting the concept of a Reeb graph, a

notion from pure topology. However, the cover, a key hyperparameter in the Mapper

algorithm, has been chosen manually rather than by a biological or computational

principal in these studies. The results therefore may be biased.

I propose a novel heuristic that enables the cover in Mapper to be specified al-

gorithmically. This heuristic, called the UMAP diffusion cover, is again inspired by

network theory and random walks. I illustrate that, in conjunction with Mapper, it

returns promising results on the two aforementioned data sets by comparing it to the

state-of-art trajectory inference method PAGA [160].

1.3 Organoid Morphology

Organoids in their initial stages of growth comprise clusters of stem cells and are typ-

ically approximately circular in their shape (in the top-down, 2D view). As they grow,

they undergo morphogenesis, which is the emergence of increasingly complex geomet-

ric and topological structures [78]. Morphogenesis typically proceeds as a series of size

and shape changes and topological transitions [78, 107]. These transitions play a key

role in tissue function and are perturbed in a number of pathological conditions [78,

11]. However, the mechanisms underlying these transitions are not well understood

[78]. Quantifying changes in morphology in detail and understanding their connec-

tions with genetics and disease progression would yield an increased understanding of

the underlying mechanisms and give a fast, inexpensive method to infer the genetics

and the tissue health of an organoid.

Therefore, there is a need to study the morphology of organoids and how it changes

over time. Ideally, any measure of the morphology should be interpretable and yield

a meaningful distinction between different morphologies induced by different genetic

conditions and environmental stimuli. Further, to accommodate the ever-increasing

size of data sets and to allow for future use in precision medicine, any method should

also allow for high throughput. I.e., the method should have sufficiently low com-
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putational complexity, but also should not depend on the staining of different tissue

regions or on any other manual annotation of the data.

Several studies have focused on quantifying and analysing organoid morphology.

Simple measures, such as cell numbers, organoid volume and surface area, diameter,

shape factor (ratio of surface area to volume), and growth rate have been used to

relate morphology, genotype and drug responses [27, 69, 84, 161]. Furthermore, deep

learning methods can segment organoid images and extract morphological features

including organoid perimeter and eccentricity [62, 83]. At the same time, mechan-

istic models have been developed to investigate the relationship between stem cell

proliferation, cell fate specification, organoid growth and morphology. These agent-

based and continuum models have been compared with growth curves derived from

experimental data [69, 140, 161]. However, these approaches lack either discriminat-

ive power (simple measures, which I illustrate in Chapter 4), interpretability (deep

learning approaches) or scalability (model-based approaches). The complexity of or-

ganoid morphology lends itself to more sophisticated analysis. For example, genus

and average curvature [78], measures from geometry and topology, have been used to

distinguish shape changes in organoids. Here, I propose studying the geometry and

topology of organoids with topological data analysis.

The Euler characteristic transform (ECT) [146] is a method from TDA that com-

pares shapes embedded in Euclidean space. It is a sufficient statistic of shapes (i.e.,

any two distinct shapes give distinct ECT signatures), is fast to compute and amen-

able to further statistical analysis. Through its rigorous motivation by notions of

pure topology, it is also easy to interpret.

In this thesis, I extend the Euler characteristic transform so that it can analyse

shapes that change over time and it is rotationally invariant. The temporal evolution

of shape is key to understanding morphogenesis. Rotational invariance is necessary as

the rotation of an organoid only depends on non-biological factors, such as the initial

placement of an organoid inside a well. Making the ECT rotationally invariant is

inspired by a theorem of Curry et al. [41]. To the best of my knowledge, this work is

the first instance of this theorem being turned into a computable signature. I call my
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method DEtecting Temporal shape changes with the Euler Characteristic Transform

(DETECT).

I then show on a data set of experimental mouse small intestine organoids (seg-

mented videos of the experiments) that it is possible to regress a number of classical

shape descriptors (e.g. diameter, major/minor axis lengths, area, convex area) from

the ECT with high accuracy. Further, I show that DETECT can accurately clas-

sify organoids into treated and untreated groups. By contrast, the aforementioned

collection of classical shape descriptors is unable to classify these organoids with an

accuracy that exceeds guessing. We conclude that DETECT outperforms classical

shape descriptors in analysing the morphogenesis of organoids.

Next, I validate DETECT on synthetic data. This data set has been generated by

a mechanistic model describing organoid growth [161]. I show that on this data, in

which we have complete control over model parameters, DETECT clusters organoids

by parameter values. Further, I illustrate how DETECT generalises to 3D data.

This is particularly relevant as it is becoming easier to perform 3D segmentations of

experimental data [78].

1.4 Theory of the Euler Characteristic Transform

While the ECT is a sufficient statistic on a broad class of shapes [41, 59] and is fast to

compute, it is not stable with respect to standard metrics. Even small perturbations

to the input can lead to large distortions in the output. Hence, while the ECT encodes

all information about a shape, it may also encode large amounts of noise.

In joint work with David Beers, a DPhil student in the TDA research group at

Oxford, I have proposed a metric on the space of shapes with respect to which the

ECT is, in fact, stable. This metric is non-standard in the sense that it also depends

on arc lengths and curvature. I show that, in the presence of ambient Gaussian noise,

a smoothing procedure on a simplicial complex, relying merely on taking weighted

averages of vertices, leads to probabilistic convergence in the metric we proposed.
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As the ECT is continuous in this metric, the smoothing procedure I propose gives a

consistent estimator of the ECT.

I do not apply this estimator to the experimental organoid data as the organoid

boundaries are already smoothed by the segmentation algorithm. However, the result

on the consistent estimation of the ECT supports the analysis of organoid data as

it indicates that smoothing by methods as simple as weighted averages efficiently

removes noise from the ECT signature.

1.5 Structure

This thesis is structured as follows. In Chapter 2, I give the background on the bio-

logy of organoids and key concepts of single-cell RNA sequencing (scRNA-seq) data.

I then review relevant methods of topological data analysis and network theory and

existing work on scRNA-seq and morphology analysis of organoids. In Chapter 3, I

introduce the multiscale Laplacian score and UMAP diffusion cover, apply them to

two scRNA-seq data sets and discuss the findings. Further, in Chapter 4, I introduce

DETECT and build a pipeline for organoid morphology analysis around it. I use this

pipeline to show that the DETECT outperforms classical shape descriptors on an

experimental data set in Chapter 4 before using synthetic data to validate DETECT

and to illustrate how it generalises to 3D data in Chapter 5. The theoretical contri-

bution to the statistical estimation of the ECT follows in Chapter 6 before the thesis

concludes with a discussion of the key findings and possible future work in Chapter

7.
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Chapter 2

Background and Literature Review
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I start this chapter by introducing the notion of an organoid. First, I explain stem

cells, which are the cells organoids are derived from, and how organoids are grown.

I further explain why organoids are useful in cancer research and present examples

of their use (Section 2.1). Next, I describe the relevance of RNA data and single-

cell methods (Section 2.2). Morphology and scRNA-seq data are the two types of

organoid data analysed in this thesis. Therefore, I review existing studies of scRNA-
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seq organoid data (Section 2.3) and organoid morphology data (Section 2.4). Finally,

I introduce mathematical notions that are of relevance to several methods introduced

or several chapters of this thesis (Section 2.5).

2.1 Organoids

Organoids are cultured from stem cells in vitro and mimic the functions of mammalian

tissues [28]. To understand organoids in general and the types of organoid data (shape

and RNA sequencing) I analyse in this thesis in particular, we first need to understand

the function of stem cells within a tissue.

Stem cells are defined by two properties: a stem cell can reproduce itself (it can

undergo mitosis) indefinitely and a stem cell can generate daughter cells of a different

functional cell type (this process is called differentiation) [136]. Differentiated cells,

by contrast, can be characterised by the genes which are transcribed in that cell.

After a stem cell differentiates, the cell type of a cell can differentiate further. Cells

which can change their cell type further are called progenitor cells. While progenitor

cells can differentiate into a cell type different to their own, they cannot self-replicate

indefinitely. We call the sequence of cell types along which a cell differentiates a

lineage and the cells at the end of a lineage a matured cells.

Tissues in which dead cells are replaced by the differentiation of stem cells are

called renewal tissues. Examples of renewal tissues in the human body include the

skin, the liver, kidneys, the colon, blood and the brain. However, not all tissues are

renewal tissues. E.g., muscles, the heart or bones do not renew via stem cells and

their differentiation. While differentiation is an effective way for a tissue comprising

diverse cell types to self-renew, differentiation also increases the risk of mutation of

cells. For this reason, human cancers are almost exclusively found in self-renewal

tissues [136] and, therefore, the study of cancer includes the study of stem cells.

Stem cells are not uniformly distributed across self-renewal tissues. They are

typically located in micro-environments called niches. The environment in niches is

favourable to the persistence and functions of stem cells [136]. Niches make stem
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cells available to external stimuli, which includes both cell-to-cell and cell-to-matrix

signalling [54].

To grow an organoid, stem cells are first extracted from live tissues and then placed

in a medium (such as matrigel) to which growth factors are added. At this stage,

the organoid is round (circular in the 2D top-down view) as its cellular composition

is typically homogeneous. The stem cells then proliferate and differentiate and self-

organise during morphogenesis, i.e. the cells spatially rearrange to form distinct

micro-environments, including stem cell niches [123]. This rearrangement is driven

by developmental cues, which are system-autonomous mechanisms; i.e., a spatially

non-uniform distribution of cell types forms, even if the cells are exposed to a spatially

uniform signalling environment [123]. Self-organisation usually occurs via a sequence

of self-patterning events, typically starting with a symmetry-breaking event. Several

symmetry-breaking mechanisms have been proposed and all of them involve positive

and negative feedback loops in sub-cell signalling pathways [123]. Cell rearrangements

are further mediated by physical cell-to-cell interactions and are thus affected by

adhesion, cortical contractility, cortical tension and cell motility [123].

Genetics affect cell signalling and cross-talk between signalling pathways and, by

extension, tissue composition, self-patterning and symmetry-breaking. Conversely,

the tissue composition and the distribution of cell types affect cell signalling and cell

microenvironments, thereby altering the cells’ ability to proliferate and their molecu-

lar functions. Hence, tissue composition, self-patterning and genetics constantly affect

each other. Unravelling the interplay between morphology, genomics and treatments

is thus a key aspect of understanding tissue fate and disease progression. For example,

metaplasia, an early stage of oncogenesis, requires an understanding of both tissue

composition and genetics. Metaplasia is often linked to irregular cell morphology and

cell plasticity [163]. As it requires the de-differentiation of cells, it also affects gene

transcription and expression.

What distinguishes organoids from traditional 2D mammalian tissue cultures is

that they more closely resemble the tissue they were derived from in terms of 3D

tissue composition rather than merely in terms of 2D composition. In particular,
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organoids recapitulate tissue-critical features in terms of architecture, differentiated

cells and tissue-specific function. Thereby, organoids can be compared to traditional

genetically engineered mouse models, cell lines and patient-derived xenografts [148].

Unlike organoids, all of these tissue models are in vivo and come with higher costs

and ethical hurdles. Organoids generally take less time to culture and are usually

cheaper to culture compared to these tissue cultures, while maintaining good success

rates [148].

These favourable features of organoids have been exploited to address a number of

important research questions. Firstly, organoids have been used to study normal tis-

sue development and the development of cancer (carcinogenesis) [148]. For example,

a series of studies [99, 49, 56] used organoids to show that a specific sequence of muta-

tions leads to the developmental independence of niche-specific signals in colorectal

cancers. These studies also showed that this developmental independence directly fa-

cilitates tumour growth, migration and metastatic colonisation. Organoids were also

xenotransplanted into mice for verification, where they established invasive colorectal

cancers [56]. In similar studies, organoids were used to highlight the roles of specific

genes in Barrett’s oesophagus [97] and colorectal cancer [93].

Secondly, organoids have also been used to identify and study the properties of

the tumour microenvironment for immune therapy in cancer. While tumour orga-

noid models generally lack intact microenvironments, recent findings have shown

that co-cultured organoids (i.e., multiple organoids grown in the same well) accur-

ately replicate some aspects of the tumour microenvironment [148]. For example,

organoid co-cultures can accurately mimic aspects of the tumour microenvironment

of pancreatic carcinomas [109, 15]. Further, it has been demonstrated that patient-

derived organoids from specific tumours can be cultured together with peripheral

blood lymphocytes from the same patients, which then are able to generate T cells

[46]. In principle, such co-cultures can help optimise the response of effector T cells

against the patient’s neoplastic cells [148].

Finally, organoids promise important advances in precision medicine. In some lim-

ited cohort clinical studies, the response of patient-derived organoids (PDOs) largely
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replicated the initial response of these patients to the same treatments [96, 72, 141,

154, 113]. If these findings are verified in larger trials, organoids could help to identify

the most effective treatment options for an individual cancer patient (by applying

several treatments to several PDO cultures and identifying the best response). At

present, such an approach could only help with optimising second-line or adjuvant

therapies, as it typically takes 4-6 weeks to derive PDOs [148]. In either case, or-

ganoids can be used to identify biomarkers indicative of drug response in a given

patient. Tiriac et al. [141] compared standard cytotoxic drug responses in vivo to

the drug responses of in vitro PDOs that had the same drugs applied. By sequencing

the cells of the organoids, they thereby managed to derive a transcriptional signature

of common responders to different chemotherapies. While it is unclear whether this

transcriptional signature reflects differences in drug response or drug pharmacology,

the signature has been shown to correctly identify a patient sub-group with improved

therapeutic response.

2.2 scRNA Sequencing Data

Since single-cell sequencing was named ‘Method of the Year’ in 2013 by Springer

Nature, it has become a benchmark for investigating the genetic heterogeneity of

tissues and other cell cultures [90]. In this section, I compare RNA sequencing with

DNA sequencing and protein expression data and single-cell methods with bulk meas-

urements. More detail on the structure and typical size of the data as well as the

pre-processing methods I use is given in Chapter 3.

Why RNA?

Genetic research often compares genotype and phenotype. Genotype refers to all of

the DNA of an organism. Phenotype refers to all observable traits of an organism.

In the context of molecular biology, these traits are primarily determined by protein

expression, although other traits, such as morphology, may be considered as well.
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DNA, which forms the genotype of an organism, is the underlying blueprint for all

cellular processes. If one of these processes is needed, RNA copies relevant sections

of the DNA, which in return are translated into proteins (see Figure 2.1). Hence,

unlike DNA, RNA provides a snapshot of the processes active in a cell at a given

time. RNA, therefore, lies at the interface between geno- and phenotype: on the one

hand, it is a transcript of a DNA segment, on the other hand, it determines gene

expression and as such directly contributes to the phenotype.

Figure 2.1: In the first step of transcription (of mRNA), RNA polymerase and tran-
scription factors bind to the DNA strand in the nucleus of the cell (top left). The
polymerase opens the DNA double-strand to allow the copying of a section of one
side of the strand. The copied single strand is called pre-mRNA (top centre). The
pre-mRNA contains sequences of nucleotides which get removed by the cell (called
introns) and sequences which are not (called exons). The process of removing introns
is called splicing and turns pre-mRNA into (mature) mRNA (top right). The mRNA
is then exported to the cytoplasm (bottom right), where it is translated into proteins
(bottom left).

For example, diseases with a genetic link can be caused by a non-functional en-

zyme, which can be the result of incorrect RNA splicing (see Figure 2.1). In this

case, the mutated and original enzymes derive from the same DNA. In such a scen-
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ario, RNA sequencing gives more detailed information about the underlying issue

than protein expression levels while DNA sequencing would yield little insight.

Why Single Cells?

Until the development of single-cell sequencing (sc-seq) techniques, genetic mater-

ial was sequenced in bulk, i.e. fragments of DNA or RNA strands of many cells

were sequenced simultaneously and aggregated to produce a data point. While there

are advantages to bulk sequencing data (e.g., it is typically less sparse as it is less

susceptible to so-called dropout effects), sc-seq enables genetic analyses at a finer res-

olution, at the cell level. Sc-seq allows for cell-type identification, the arrangement of

cell populations into hierarchies and the identification of cells transitioning between

states [90] to be distinguished. Analysis of sc-seq data provides a detailed view of

tissue development and its underlying dynamics [90].

2.3 Previous Studies on Organoid scRNA-seq

Data

Since the first applications of scRNA-seq technology to organoids were published,

such as Gruen et al.’s study on mouse small intestine organoids in 2015 [63], a vast

array of similar studies have followed. I point the interested reader to [162] for a

comprehensive review. A common problem with early studies was that the number of

cells harvested from organoids was relatively small compared to the high-throughput

scRNA-seq methods are designed for (> 1000 cells), which may make them inaccurate

[26]. Optimised procedures for lower throughput have been developed [26] and the

number of cells sequenced has also increased in later organoid studies [22] (both data

sets analysed in this thesis contain well over 1000 cells).

ScRNA-seq technology applied to organoids can yield important insights into how

similar an organoid is to primary tissue in terms of cellular composition and sub-

sequently help to improve protocols for growing organoids. Similarly, it allows for in

vitro testing cell-specific responses to environmental variables, such as treatments or
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changes in the microenvironment [22]. Examples of successful applications include

a number of brain organoid studies [30, 117], where scRNA-seq methods showed

that organoids derived from different areas of the brain accurately model the cellular

composition of the primary tissue. Brain organoids have also been used to model a

neurodevelopmental disorder [16]. Here, scRNA-seq verified that the iPSC lineages

in organoids were compatible with the expected disease phenotype.

The applications of scRNA-seq to other types of organoids are similar: scRNA-

seq was used to optimise the protocols for growing mouse small intestine [63] and

liver organoids [31]. Notably, a cell atlas for mouse small intestine organoids has

been created [65]. In kidney organoids, an scRNA-seq study has shown that the

mapping of disease-related genes from primary tissue to organoids is consistent, but

while the cellular composition of primary tissue and organoids is similar, cell types

occur in different proportions and stages of maturation in the organoids [112]. Tiriac

et al. [141] compared standard cytotoxic drug responses in vivo to the drug responses

of in vitro PDOs that had the same drugs applied. They used scRNA-seq methods

on organoids to identify biomarkers indicating a positive drug response (see Section

2.1).

2.4 Previous Studies on Organoid Morphology

Data

Several studies have focused on quantifying and analysing organoid morphology.

Simple measures, such as cell numbers, organoid volume and surface area, diameter,

shape factor (ratio of surface area to volume), and growth rate have been used to relate

morphology, genotype and drug responses [27, 42, 69, 84, 161]. OrganoSeq provides a

software package that segments organoid images and extracts simple measures from

these segmentations [19].

Furthermore, deep learning methods can segment organoid images and extract

morphological features including organoid perimeter and eccentricity [62, 83]. Orga-

noID is a software package that uses deep learning to segment and track organoids
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across a whole video [100]. Abdul et al. [1] used image-classification deep neural

networks to classify images of human colon organoids into opaque/non-opaque and

budding/non-budding classes with high accuracy.

Beck et al. have studied the morphological properties of organoids at the cell

level [7]: They measure the number and size of cells and the size of cysts. In a

data set of Madin-Darby canine kidney cysts organoids, they collect the above data

for organoids exposed to different genetic perturbations and observe a number of

constraints. These constraints vary with age, genetics and applied treatments and

growth factors [7]. While their data is partially collected by software, it requires

manual correction and thus does not allow for high throughput.

Furthermore, mechanistic models have been developed to investigate the rela-

tionship between stem cell proliferation, cell fate specification, organoid growth and

morphology. These agent-based and continuum-based models have been compared

with experimental data using simple growth curves [69, 74, 140, 161]. The complex-

ity of organoid morphology lends itself to more sophisticated analysis. For example,

genus and average curvature [78], measures from geometry and topology, have been

used to distinguish shape changes in organoids. Bremond-Martin et al. used Vietoris-

Rips filtrations, a common TDA method, together with vectorisations of persistence

diagrams to cluster organoids by developmental stage [25].

2.5 Mathematical Preliminaries

Throughout this section, we will use the concept of a graph:

Definition 2.1. Let V be a finite set of vertices. A graph is a tuple G = (V,E,w),

where E ⊂ V × V are called edges and w : E → R>0 is a weight function.

We call a graph undirected if (a, b) ∈ E whenever (b, a) ∈ E and call it directed

otherwise.

We call a graph unweighted if w(e) = 1 for all e ∈ E and will possibly omit w

from the definition of G in this case. We call a graph weighted if it is not unweighted.
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For a given graph, consider RV , the free vector space generated by V . The adja-

cency operator of G is the linear operator A : RV → RV defined by

A(v) =
∑

(v,v′)∈E

w((v, v′)) · v′.

We usually consider the matrix representation of A we get by considering the canonical

basis on RV , which is called the adjacency matrix.

2.5.1 Mapper

A topological method used to analyse scRNA-seq data in Chapter 3 is Mapper [134],

which was developed by Singh et al. in 2017. Mapper is commonly used to summarise

topological properties, in particular the connectivity, of high-dimensional data sets. It

has been successfully used for trajectory inference in scRNA-seq data [118, 122]. It is

theoretically well-motivated and is able to model a wide range of different topologies

in data [122].

Mapper is based on the so-called Reeb graph, a notion from pure topology which

tracks the topological evolution of level sets of a topological space endowed with a

real-valued function:

Definition 2.2. Let (X, f) be a pair of a topological space X and a continuous func-

tion f : X → R. Define the set of points G(X,f) = {π0 (f−1(c)) | c ∈ R}, where π0(Y )

denotes the set of path-components of a topological space Y . Furthermore, define

F : X → G(X,f) as the function mapping each x ∈ X to the unique path-component

in which it is contained. We call G(X,f), endowed with the quotient topology induced

by the surjection F , the Reeb graph of the pair (X, f).

As shown in Figure 2.2, a Reeb graph is often topologically equivalent to the

geometric realisation of a graph. Indeed, the Reeb graph in Figure 2.2 captures

that the original topological space is path-connected and contains at least one non-

contractible loop. Furthermore, each point in the topological space can be projected

onto the Reeb graph (see the height-lines on the torus in Figure 2.2, each height-line

mapping to a unique point on the Reeb graph).
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Figure 2.2: A Reeb graph (right) extracted from a torus (left) with the
z-axis used as a lens function (illustrated by horizontal height lines).
Taken from https://en.wikipedia.org/wiki/Reeb_graph#/media/File:

3D-Leveltorus-Reebgraph.png (last checked 10/05/2023).

When considering real-world data, it is common to assume that data points are

sampled from a manifold or a similarly well-behaved topological space embedded

within some ambient space (usually RN). Mapper approximates the Reeb graph of

the underlying topological space from a finite, discrete sample. Working only with a

discrete sample {xi}i=1,...,n ⊆ RN , rather than the continuous space, gives rise to two

challenges:

1. Consider a real-valued function f , called the lens, defined on the ambient space

and, by restriction, on the intrinsic topological space and the sample. By the

finite nature of the sample, it is unlikely that f(xi) = f(xj) for two distinct

sample points.

2. Even if point 1. were resolved and samples were mapped to the same value

by f , none of these samples would lie in the same path-component, due to the

discrete nature of the sample.

Both issues imply that, generically, the Reeb graph of a discrete sample is (to-

pologically equivalent to) the sample itself. Thereby, the Reeb graph of the sample
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does not yield a simplification of the data. I now describe the Mapper algorithm by

explaining how it resolves the above two issues. Other challenges, including how to

choose f and other parameters, will be addressed in a later chapter of this thesis

(Section 3.2.2), as their resolution requires the context of data.

To address point 1., Mapper does not ask whether f(xi) = f(xj) exactly for

two distinct sample points, but whether f(xi) and f(xj) both lie in a common open

interval out of a pre-defined collection of intervals. Instead of looking at the pre-

image of a continuously varying c, Mapper considers the pre-images of a sequence

of overlapping intervals, Ui say. More formally, Mapper takes a finite open cover

U := {Ui}i∈A of the image of the data under f as one of its inputs, where A is some

indexing set. The pre-images f−1(Ui) are constructed to contain several points of a

generic sample X. In practice, ensuring that the pre-images f−1(Ui) contain a usable

number of samples is an important consideration when choosing a cover U .

We now consider point 2. Each pre-image f−1(Ui) is a discrete set of points. As for

the full sample, we assume that this set of points approximates a continuous geometric

object. To determine which points should be considered as lying in the same path-

component of the underlying topological space, Mapper applies a clustering algorithm

to each pre-image f−1(Ui). For each generated cluster, Mapper creates a node in the

Reeb-graph approximation. Mapper is best suited to use density-based or hierarchical

clustering methods (e.g. linkage clustering, DBSCAN, HDBSCAN, ToMaTo) whose

notion of a cluster is more similar to a path-connected component (compared to

centroid-based methods, such as k-means).

Finally, to model the notion of quotient topology used in the definition of a Reeb-

graph on a discrete data set, Mapper connects any two nodes via an edge if their

associated clusters share at least one data point. Note that clusters can share data

points, as the cover elements Ui overlap and, thus, each point can lie in several pre-

images and can be clustered several times.

To formalise the intuition described above, we begin by describing the input to

the algorithm. Let X := {x1, ..., xn} ⊂ RN be a finite sample and let f : X → Rd

be a function (note that the domain can be any Euclidean space Rd for the Mapper

21



algorithm). Let U := {Ui}i∈A be a finite open cover of the image of the data, i.e.

a finite collection of open sets Ui such that f(X) ⊂ ∪i∈AUi. Assume that CA is a

clustering algorithm that is compatible with X.

Remark. Both f (often determined by a dimension-reduction algorithm) and CA have

their own hyper-parameters. These should be considered as further inputs.

The Mapper algorithm consists of the following steps [134]:

1. For each cover element Ui ∈ U , construct the pre-image f−1(Ui).

2. Apply CA to each pre-image f−1(Ui). Denote the resulting set of clusters by

{CA(Ui)j} and add them as nodes to an output-graph G.

3. Iterate through all possible pairs of distinct nodes in G. If the intersection of

a pair of clusters is non-empty, i.e. if CA(Ui)j ∩ CA(Ui′)j′ ̸= ∅, then add the

edge (CA(Ui)j, CA(Ui′)j′) to G.

4. Return G.

The algorithm is illustrated by the example presented in Figure 2.3.

2.5.2 UMAP

An important input for the Mapper algorithm is the filter function. For some data

sets the choice of filter function is obvious, e.g. one component of the data which

is especially important or some relevant metadata. Where data comes without an

obvious filter, it is common to use a dimension-reduction procedure as a filter function.

In this thesis, I typically use UMAP to filter the data.

Uniform Manifold Approximation and Projection for Dimension Reduction

(UMAP) is a non-linear dimension reduction method developed by McInnes et

al. [102]. UMAP draws heavily on insights from topological data analysis and, as

such, lends itself well to being used as part of a Mapper pipeline. In this section, I

give a brief overview of the motivation of UMAP and after introducing all relevant

notions state the UMAP algorithm.
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Figure 2.3: The Mapper algorithm applied to a random sample from S1. The lens
function f is indicated by the colouring of the sample. The algorithm uses a cover of
the interval [0, 4.2] with 5 intervals with 20% overlap each. Taken from [134].

In Appendix A.2, I present a more detailed motivation of the UMAP algorithm.

In particular, I present a new version of the motivation presented by McInnes et

al., which uses Vietoris-Rips filtrations, a central notion in TDA. This novel way of

presenting the motivation for the UMAP algorithm further highlights the connection

between UMAP and topological data analysis. I also present a new generalisation of

the UMAP algorithm, which embeds a simplicial complex in low dimensional space,

rather than a graph.

Manifold Hypothesis

Similarly to Mapper, UMAP assumes that the input data set has been sampled from

an m-manifold M embedded into Euclidean space RN and that, typically, m ≪ N .

Specifically, UMAP postulates that the data has been sampled from a Riemannian

manifold (M, g) following the uniform distribution with respect to g. Notably, the

embedding ofM into RN need not be an isometry with respect to g and the Euclidean

metric; however, if g is constant on an open ball inM, then the metric induced by g is
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identical to a scalar multiple of the Euclidean metric in that neighbourhood (Lemma

1 in [102]). Therefore, the UMAP method locally approximates the unknown intrinsic

metric g by scalar multiples of the extrinsic Euclidean metric.

Nearest Neighbour Graphs

UMAP approximates the manifoldM underlying a sample X using nearest neighbour

graphs:

Definition 2.3. Let (X, δ) be a finite metric space and k a positive integer. Define

a directed graph Gknn = (V,E) by V = X,

E = {(x, y) ∈ X ×X | |{z ∈ X | 0 < δ(x, z) ≤ δ(x, y)}| ≤ k}

That is, an ordered pair of points (x, y) is an edge if y is among the k closest points

to x.1 We call Gknn the k-nearest-neighbour graph of (X, δ).

Assuming X is a sample from a Riemannian manifold (M, g) embedded in RN

and that k is small relative to the size of X, we can view the k closest points to x ∈ X

as samples in a small neighbourhood of x. As the Euclidean distance approximates

the Euclidean distance well in small neighbourhoods (up to scaling), the g-distances

from x to its k-nearest-neighbours should be similar for all x ∈ X. Hence, we re-scale

the weights of the edges in the following way to obtain a k-nn graph weighted by g:

Let x ∈ X and let ρx denote the distance (in the ambient metric δ) to its closest

neighbour. For each x ∈ X define σx > 0 such that the equality∑
(x,x′)∈E

exp

(
−max{0, ∥x− x′∥ − ρx}

σx

)
= log2(k) (2.1)

holds. The log2-term on the right-hand-side of Equation (2.1) has been chosen based

on empirical experiments [102]. We can then define a weight-function

w̃(x, x′) = w(x, x′) + w(x′, x)− w(x, x′)w(x′, x), (2.2)

w(x, x′) =

{
exp

(
−max{0,∥x−x′∥−ρx}

σx

)
(x, x′) ∈ E

0 otherwise
.

1Not considering x as a point close to itself.
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The weighting w gives higher strength to pairs of points that lie close together in a

re-scaled version of the ambient metric which approximates g. The subtraction of ρx

in Equation (2.1) is for performance reasons and improves the behaviour of outliers

[102]. We can interpret w(x, x′) as the probability that a directed edge exists from x

to x′ and w̃(x, x′) as the probability that a directed edge exists from x to x′ or that

a directed edge exists from x′ to x. Henceforth, we call a k-nn graph with weighing

w̃ a UMAP graph. By the symmetry of w̃, we consider the UMAP graph to be a

symmetrised, undirected version of a k-nn graph.

The UMAP Algorithm

UMAP embeds a k-nn graph Gknn with weights w̃ into low-dimensional Euclidean

space such that the embedding is approximately isometric by using stochastic gradient

descent on the following loss function:

Definition 2.4. Let G = (V,E) be a graph and let v and w be two weight functions

on E (which take values in (0, 1] only). Their Kullback-Leibler divergence is defined

as

D((G, v), (G,w)) =
∑
e∈E

v(e) log

(
v(e)

w(e)

)
+ (1− v(e)) log

(
1− v(e)

1− w(e)

)
. (2.3)

We note that while D is differentiable for changes in v, the weight-function v is

not differentiable for small changes in its inputs in the low-dimensional space Rd if

it follows a definition such as Equation (2.2). In the target embedding, UMAP aims

to approximate the metric structure of the underlying Riemannian manifold. As

the sample is assumed to be uniformly distributed with respect to this Riemannian

metric, we may assume that σy and ρy are (approximately) the same for all y ∈ Rd,

the embedding space. Without loss of generality, we may set σx = y for all y and ρy

to a user-defined value min-dist. Then, for an edge connecting points y, y′ ∈ Rd in

the low-dimensional embedding, we have that its weight is

v(y, y′) = exp (−max {0, ∥y − y′∥ −min-dist}) .
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UMAP approximates v by the smooth function

Φ(y, y′) :=
(
1 + a∥y − y′∥2b

)−1
,

where a and b are determined by least-squares fitting against v for a given value of

min-dist.

Recall that our initial sample is {xi} ⊂ RN . Let {yi} ⊂ Rd be the dimension-

reduced sample. A first guess for the coordinates of {yi} is obtained by a spectral

embedding [102] and its positions are subsequently optimised by gradient descent.

Using the above differentiable function Φ, the stochastic gradient descent then re-

peatedly samples edges (x, x′) ∈ E with probability w̃(x, x′) and updates the position

of one of its contained vertices according to the gradient on log(Φ). For each sampled

vertex, it uniformly samples n-neg-samples (a user defined-parameter) other vertices

and updates the position of x according to the gradient of log(1 − Φ). The former

is motivated by minimising the right-hand term in Equation (2.3), while the latter

minimises the left-hand term in Equation (2.3). This procedure is repeated over sev-

eral epochs. Formally, the optimisation algorithm is given by Algorithm 1, where we

iterate over ordered edges (i.e. if (a, b) ∈ E then (b, a) ∈ E too) and the function

Random() returns numbers in [0, 1] uniformly at random.

Note that the negative sampling in Algorithm 1 employs the value one minus the

weight of any hypothetical edge between ya and yb. However, negative sampling aims

to minimise the right-hand term of Equation (2.3), which only considers edges in E.

In practice, this discrepancy does not seem to negatively affect the UMAP output.

We can then summarise the UMAP algorithm as Algorithm 2.

2.5.3 Random Walks and Community Detection

In this section I introduce the concept of community detection on graphs, using the

concepts of modularity maximisation and Markov stability. Random walks allow us

to interpret the Laplacian score in a way which naturally motivates its generalisation

to a multiscale Laplacian score in Chapter 3. Further, the interpretation of the

(multiscale) Laplacian score in terms of random walks links these scores back to
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Algorithm 1 Stochastic gradient descent

1: procedure OptimiseEmbedding(Gknn = (V,E, w̃), {yi}, min-dist, n-epochs,
n-neg-samples)

2: α← 1.0
3: Φ is fitted from min-dist
4: for i← 1, ..., n-epochs do
5: for (a, b) ∈ E do
6: if Random() ≤ w̃(a, b) then
7: ya ← ya + α · ∇(log(Φ))(ya, yb)
8: for j ← 1, ..., n-neg-samples do
9: c← random vertex in V
10: ya ← ya + α · ∇(log(1− Φ))(ya, yc)
11: end for
12: end if
13: end for
14: α← 1.0− i/n-epochs
15: end for
16: return {yi}
17: end procedure

Algorithm 2 UMAP

1: procedure UMAP({xi}, k, d, min-dist, n-epochs, n-neg-samples)
2: Construct Gknn = (V,E, w̃) from {xi} using k
3: {yi} ← spectral embedding of Gknn = (V,E, w̃) in Rd

4: {yi} ←OptimiseEmbedding(Gknn, {yi}, min-dist, n-epochs, n-neg-samples)
5: return {yi}
6: end procedure
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clusterings of cells, which are key to classical DE tests. In this section, we assume

that any graph is undirected unless it is stated otherwise.

Given a graph G, with nodes V , and (possibly weighted) adjacency matrix A, a

community structure on G is a partition of the graph’s nodes

V = C1 ⊔ C2 ⊔ · · · ⊔ Ck.

We call each Ci a community and assume that it is non-empty. Moreover, we denote

by cv the community a node v belongs to and assume that the sub-graphs induced by

the Ci are all connected (i.e., between any two nodes in Ci there is a path only along

nodes in Ci connecting the two nodes). We consider two community structures to be

equivalent if one can be obtained from the other by permuting the labels 1, ..., k.

Modularity

One can view a community structure on a graph as a clustering of its nodes. A

commonly used function to assess the quality of a community structure and, hence,

a clustering of nodes, is modularity:

Definition 2.5. For a given graph G, endowed with a community structure {cv}v∈V ,

let kv be the degree of node v and let m denote the sum of the degrees of all nodes.

Then the modularity of {cv}v∈V is defined as

Q ({cv}v∈V ) =
1

2m

∑
v,w∈V

[
Avw −

kvkw
2m

]
δ(cv, cw),

where δ denotes the Kronecker delta.

In the expression Avw − kvkw/(2m), the adjacency matrix entry gives the number

of edges between nodes v and w (0 or 1). By contrast, to understand the fraction

consider a random graph model in which we are given nodes V . Each node v has kv

‘stubs’ of an edge attached to it (stubs being halves of edges which can be connected

to form a whole edge). In total, there are 2m stubs. We now reconnect these stubs

uniformly at random to form edges in a new, random graph. Given a node v, the

probability of its i-th stub connecting to one of the stubs of node w is then kw/(2m−1)
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(the stub cannot connect to itself). By extension, the probability that any of the kv

stubs of v connects to a stub of w is given by kvkw/(2m − 1). Hence, we can view

the second term as an approximation to the expected number of edges between v and

w under a random re-wiring of G (if m is large). It follows that Avw − kvkw/(2m)

approximates the difference between the actual and the expected number of edges

between v and w. Hence, modularity is relatively large if the difference between the

actual and expected number of edges within communities is high and is low for edges

between communities.

In practice, community structures on a graph in which connections within com-

munities are significantly more frequent than connections between communities, are

found by maximising modularity. Modularity extends to directed graphs.

Markov Stability

Markov stability employs Markov chain methods to generalise the above interpreta-

tion of modularity [45].

In addition to the notation of the previous subsection, we define d := (dv1 , ..., dvn)T ,

D := diag(d) and M := D−1A. Note that M is the transition matrix of a Markov

chain (i.e. all entries are non-negative and all rows sum to 1). If G is connected

and not bipartite, the Markov chain corresponding to M is ergodic and, thus, has a

unique stationary distribution π [24].

Furthermore, (M s)vw is the probability of a random walker on G, starting at

node v, landing on node w after s discrete time-steps. Thus, (M s)vw − πw gives the

difference in probability that a random walker starting at v walks to w in s time steps

minus the probability that the walker is at w in steady-state.

In a similar vein to modularity, we can define the discrete stability of a partition

of G as

rdisc(t, {cv}v∈V ) = min
0<s≤t

∑
v,w∈V

πv [(M s)vw − πw] δ(cv, cw).

That is, we sum over the differences (M s)vw − πw and weight them by πv. Note that

in practice, we can often omit the min-expression, from the above definition without
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altering the stability score significantly [45]. Discrete stability generalises modularity,

as Q({cv}v∈V ) = rdisc(1, {cv}v∈V ) [129].

The above notion can be refined for continuous-time Markov chains. Continuous-

time Markov chains do not change their state at each time t ∈ N, but at random

events {ti}i∈N ⊂ R. Their distribution is given by setting t0 = 0 and assuming that

∆i = ti− ti−1 are i.i.d. exponential random variables with rate 1 for i ≥ 1. At each ti,

the probability of the walker to transition from their current node v to another node

w is, again given by Mvw. The probability of a random continuous-time walker to

being on node v at time 0 and being on node w at time t is given by the (v, w)-entry

of the matrix P (t) := exp (−tLrw), where exp is the matrix exponential function and

Lrw := I −M [45]. The matrix Lrw is called the random walk-normalised Laplacian

of G. We can then define the continuous stability of a partition of G as

rcont(t, {cv}v∈V ) =
∑

v,w∈V

πv [P (t)vw − πw] δ(cv, cw).

The discrete and continuous stability of a partition allow us to consider ‘stable’

partitions across different resolutions. We view Markov stability as follows: We pick

a node v at random from the stationary distribution π and place a random walker

at this node. The stability of a partition at time t is then the expected value of the

random variable indicating whether the walker has remained in cv after walking for

time t (it is permissible for the walker to leave and re-enter cv) minus the probability

of the walker being in cv at steady state. For small t, the walker is likely to still

be close to v, while for large t its location becomes increasingly independent of its

starting point. Hence, the stability of a partition decreases with increasing t. It is

therefore important to only compare stability scores calculated at the same time t.

Using the above intuition, we can illustrate why maximising Markov stability at

different times t is useful for analysing community structures at different resolutions.

At small t, a community structure obtained by maximising stability will contain many

relatively small communities, while for large t a few relatively large communities will

be found. When increasing t from small to large, the small communities will merge to

form larger ones. In particular, Markov stability can find sub-communities (at small
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t) of larger communities (found at larger t) on an array of benchmark data sets [129].

A further advantage of being able to scale t is that it enables Markov stability, un-

like other state-of-art methods, to detect non-clique-like community structures [129].

Going forward, we only consider continuous Markov stability in this chapter.

Louvain Method

Finding interesting community structures on a graph via modularity or Markov sta-

bility involves maximising a function over all partitions of a given graph. It is known

that finding global optima of functions such as modularity or Markov stability is NP-

hard [45]. A scalable method that does not guarantee finding a global optimum but

yields good results in practice is the Louvain method [18].

Originally developed for modularity optimisation, the Louvain method exploits

the insight that while computing the modularity score of a large graph is costly,

computing the difference in modularity arising from moving a node v in an existing

community structure from one community to another can be efficiently computed.

Concretely, if we assume that a node v is moved from its current community Cold to

a new community Cnew, the difference in modularity given by this move is

∆Q =
1

m

[( ∑
w∈Cnew

Avw −
kvkw
2m

)
−

( ∑
w∈Cold

Avw −
kvkw
2m

)
+

k2v
2m

]
.

When computing ∆Q, we can record the sum of degrees within a community to speed

up computations. I.e., if Σnew and Σold are the sum of degrees within Cnew and Cold,

respectively, then ∆Q simplifies to

∆Q =
1

m

[ ∑
w∈Cnew

Avw −
∑

w∈Cold

Avw +
kv(Σold − Σnew + kv)

2m

]
.

Analogously, for continuous Markov stability at a fixed t, let Π = diag(π) and

B = ΠP (t) − πTπ. Then the difference in rcont when a single node v is moved from

its current community Cold to a new community Cnew, is given by

∆rcont =
∑

w∈Cnew

(Bvw +Bwv)−
∑

w∈Cold

(Bvw +Bwv) + 2Bvv.
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Note that for ∆Q we assume that the underlying graph is undirected. However, the

expression can be generalised to the setting of directed graphs.

The Louvain method uses easily computable difference functions together with an

initial community structure and iterates through the nodes of a graph in order. It

then performs the following steps at each node v:

1. For each neighbour v′ of v, compute the difference in objective function, ∆v′

say, if v were hypothetically moved from its current community to that of v′.

2. Of all alternative communities considered in step 1., let C∗
new be the community

that leads to the largest difference ∆∗ in the objective function. If ∆∗ > 0,

move i to C∗
new. If not, leave v in its current community.

These two steps are repeated until no nodes are moved in a full iteration over

the graph’s nodes. In practice, the procedure is typically randomised by permuting

the order of the nodes at random. Once no further improvement is observed, a new

graph is created: each node in this graph is a community arising from the previous

step. A weighted edge between two nodes is created with a weight equal to the sum

of all weights of edges connecting the two communities in the previous graph. This

newly constructed graph can also contain self-loops. Steps 1. and 2. are then again

repeated until no further improvement is attained. New graphs are created and steps

1. and 2. are re-applied until no improvement in modularity is obtained.

Note that some current implementations of the Louvain method terminate if the

increase in the objective function after an iteration over the nodes falls below a user-

defined threshold.2

Variation of Information

When using Markov stability to detect communities at different resolutions, (i.e.

different values of t), it may not be immediately clear what constitutes a ‘good’

resolution. While for a given graph more than one resolution may yield insight into

2E.g. Generalized Louvain optimization https://github.com/michaelschaub/

generalizedLouvain (visited 28/4/23) and find communities https://sites.google.com/

site/findcommunities/ (visited 28/4/23).
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the graph structure, this does not imply that all resolutions are equally insightful.

In particular, identifying the scales at which we can detect interesting structures is

informative in its own right.

Studies using Markov stability have addressed this problem by computing parti-

tions at a large number of time points [9, 45, 129]. At each time-point t, they compute

a large number of partitions. As they use the Louvain method, which is randomised,

these partitions need not be the same. For resolutions at which there is an obvious

community structure, we expect each iteration of the Louvain method to yield a parti-

tion that approximates the optimal structure. By contrast, at resolutions where there

is no evident partitioning, we would expect different iterations of the Louvain method

to generate partitionings that are rather dissimilar. Thus, if the average dissimilarity

of the partitionings obtained at a fixed t is small, t should be viewed as a resolution

at which an interesting structure exists. A dissimilarity measure widely used [9, 45,

129] is variation of information (VI):

Definition 2.6. Let {Ci}1≤i≤k and {C ′
j}1≤j≤k′ be two community structures on a

graph with N nodes. Then their variation of information is defined to be

VI
(
{Ci}, {C ′

j}
)

= 2H
(
{Ci}, {C ′

j}
)
−H({Ci})−H({C ′

j}),

where

H
(
{Ci}, {C ′

j}
)

= −
∑
i,j

∣∣Ci ∩ C ′
j

∣∣
N

log2

(∣∣Ci ∩ C ′
j

∣∣
N

)
,

H ({Ci}) = −
k∑

i=1

|Ci|
N

log2

(
|Ci|
N

)
.

An example of how VI can be used together with Markov stability optimisation

to find community structures at different scales is given in Figure 2.4.

2.5.4 Simplicial Complexes and Filtrations

To undertake our work, we require a mathematical definition of a shape which we can

utilise for fast computations. In topological data analysis (TDA) and computational

geometry, simplicial complexes are widely used for this purpose:
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Figure 2.4: The graph on the left displays community structures at four different
scales, exemplified by the groups A, B, C and D. When computing the mean pairwise
variation of information (bottom right) as a function of scale (Markov time), we find
local minima corresponding to resolutions A (256 communities), B (64 communities),
C (16 communities) and D (4 communities). Figure inspired by [5].

Definition 2.7. Given a finite set of vertices X, an abstract simplicial complex is a

set of subsets of X, denoted K, such that for any τ ∈ K and σ ⊆ τ , we have σ ∈ K.

We call σ ∈ K a simplex of K. Moreover, for any simplex σ, we define dim(σ) = |σ|−1

and Ki = {σ ∈ K | dim(σ) = i}. We call the elements of Ki the i-simplices of K.

A geometric (or embedded) simplicial complex K is an abstract simplicial complex

that is endowed with an embedding in Rd. That is, X ⊂ Rd and for all σ, τ ∈ K

with σ ̸= τ we have relint(cvx(σ)) ∩ relint(cvx(τ)) = ∅. Here, relint is the relative

interior3 and cvx the convex hull.4 We can then think of K equivalently as the union

of the convex hulls of all of its simplices, which is a topological subspace of Rd.

Given two simplicial complexes K and K′, a simplicial map f is a function f :

X → X ′, extending to a map f : K → K′ by f(σ) = {f(x) |x ∈ σ}.

Note that any abstract simplicial complex can be viewed as a geometric simplicial

complex by considering V to be a subset of the free vector space generated by V . This

geometric simplicial complex is called the geometric realisation of K. Conversely, each

3For a convex set C ⊂ Rd, that is {x ∈ C | ∀y ∈ C : ∃λ > 1 : λx+ (1− λ)y ∈ C}.
4I.e., the intersection of all convex subsets of Rd that contain the given set of points.
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Figure 2.5: Example of two simplicial complexes, K1 and K2, embedded in R2. Ver-
tices as blue dots, 1-simplices as red lines.

geometric simplicial complex has an underlying abstract simplicial complex which is

obtained by forgetting any geometric information.

In most settings, abstract simplicial complexes are more amenable to computa-

tions while geometric simplicial complexes, perhaps unsurprisingly, contain geometric

information. The organoid boundaries extensively studied in the following section are

all equivalent when modelled as abstract simplicial complexes. We use filtrations to

study and compare geometric simplicial complexes representing organoid boundaries.

Definition 2.8. A filtration of a simplicial complex K is a function f : K → R such

that f(σ) ≤ f(τ) for σ ⊆ τ . For j ∈ R, we then define

Kj = {σ ∈ K | f(σ) ≤ j} .

All Kj are simplicial complexes in their own right and Kj ⊆ Ki for j ≤ i.

2.5.5 The Euler Characteristic and Euler Characteristic
Transform

The Euler characteristic is an invariant of topological spaces. Any two topological

spaces that are (homotopy) equivalent have the same Euler characteristic. Conversely,

if two topological spaces have different Euler characteristics, we can conclude that

they are topologically different (i.e. not homotopy equivalent).

Definition 2.9. The Euler characteristic of a topological space X with finitely gen-

erated homology is defined as the following alternating sum

χ(X) :=
∞∑
i=0

(−1)i rank Hi(X;Z).
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Here, the rank of a finitely generated abelian group is the number of Z summands in

its canonical decomposition.

If a topological space X is homeomorphic to the geometric realisation of a simpli-

cial complex K, we can compute the Euler characteristic entirely from the combinat-

orial information of an abstract simplicial complex. We define the Euler characteristic

of K to be the Euler characteristic of its geometric realisation.

Lemma 2.10 (E.g. Theorem 2.44 in [70]). Let K be a geometric simplicial complex.

Then its Euler characteristic is

χ(K) =
∞∑
i=0

(−1)i · | Ki |.

Given a subset X ⊂ Rd, such as a simplicial complex K embedded in Rd, us-

ing a sequence of Euler characteristics induced by a sub-level sets yields additional

discriminative information:

Definition 2.11. For a subset X ⊆ Rd, we define the Euler characteristic transform

(ECT) of X to be the following map:

ECTX : Sd−1 × R −→ Z

(v, t) 7−→ χ({x ∈ X : ⟨x, v⟩ ≤ t}).

In words, the Euler characteristic transform of a shape X encodes the Euler char-

acteristic of the intersection of X with every closed half-space with affine boundary.

When ECTX(v, t) is not well defined, we set ECTX(v, t) = ∞. In this context, we

set ∞+∞ =∞, ∞−∞ =∞, and ∞+ n =∞ for any integer n.

If X is an embedded simplicial complex K, we can compute the ECT of X as

follows: Let v ∈ Sd−1 be a fixed direction in Rd. We then call the filtration on K

induced by

fv : K → R, σ 7→ max
x∈σ
{⟨x, v⟩}

the sub-level set filtration of K in direction v, where ⟨ · , · ⟩ is the standard inner

product in Rd. We denote the above filtration K⟨ · ,v⟩ and each sub-level-set at t ∈ R

as K⟨ · ,v⟩≤t. Then, using Lemma 2.10, we have that
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ECTK : Sd−1 × R −→ Z

(v, t) 7−→ χ
(
K⟨ · ,v⟩≤t

)
.

Assume that a ∈ R is larger than the diameter of X in Rd. Then {x ∈ X : ⟨x, v⟩ ≤

−a} = ∅ and {x ∈ X : ⟨x, v⟩ ≤ t} = X for all v ∈ Sd−1 (similar statements hold for

fv if X is a simplicial complex). We can now define the smooth Euler characteristic

transform and related constructions [146]:

Definition 2.12. First, let the Euler characteristic curve in a fixed direction v be

ECCv
X : [−a, a]→ Z, t 7→ χ ({x ∈ X : ⟨x, v⟩ ≤ a}) .

Secondly, this curve is smoothed by defining the smooth Euler characteristic curve

(SEC) as follows:

SECv
X : [−a, a]→ R, t 7→

∫ t

−a

(
ECCv

X(x)− ECCv
X

)
dx,

where ECCv
X is the mean of the function ECCv

K over the interval [−a, a].

Finally, we can define the smooth Euler characteristic transform (SECT):

SECTX : Sd−1 × [−a, a]→ R, (v, t) 7→ SECv
K(t).

Turner and colleagues have shown that both the ECT and SECT are injective on

a broad class of shapes (including embedded simplicial complexes) embedded in R2

and R3 [146]. Ghrist et al. [59] and Curry et al. [41] independently extended this in-

jectivity result to general Rd. The ECT or SECT therefore also discriminate between

embedded simplicial complexes that are equivalent up to translation, rotation, reflec-

tion and combinations thereof. The issue of discriminating between shapes equivalent

up to translation can be overcome by re-centring simplicial complexes by subtracting

the mean of all vertices from each vertex in the simplicial complex. However, resolv-

ing rotation and reflection requires more care. Fortunately, Curry et al. [41] present

a result on the ECT which yields a sufficient statistic on the space of embedded

simplicial complexes modulo actions of the orthogonal group O(d).

Before introducing their result, we recall the notion of a pushforward measure:
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Definition 2.13. Let (X1,Σ1) and (X2,Σ2) be measurable spaces, f : X1 → X2 be

a measurable function, and µ : Σ1 → [0,∞] be a measure on X1. Then f∗µ, the

pushforward of µ along f , is the measure on X2 defined by (f∗µ)(U) = µ(f−1(U)) for

each U ∈ Σ2.

Then Theorem 6.6 in [41] states:

Theorem 2.14. Let K and K′ be generic simplicial complexes embedded in Rd. Let

µ be the Lebesgue measure on Sd−1. If (ECTK)∗ (µ) = (ECTK′)∗ (µ), then there exists

a ϕ ∈ O(d) such that K = ϕ (K′).

Note that the converse implication of the above theorem is trivial, as the Lebesgue

measure on Sd−1 is invariant under the action ofO(d). Note that the function mapping

ECC to SEC is injective. Therefore, Theorem 2.14 generalises to the SECT.

For any x ∈ [−a, a], define δx : L2([−a, a]) → R by δx(f) = f(x) for all f ∈

L2([−a, a]). Then if two embedded simplicial complexes, K and K′ say, satisfy K =

ϕ(K′) for some ϕ ∈ O(d), we get∫
Sd−1

δx ◦ SECTK dµ =

∫
L2([−a,a])

δx d((SECTK)∗(µ))

=

∫
L2([−a,a])

δx d((SECTK′)∗(µ)) =

∫
Sd−1

δx ◦ SECTK′ dµ

for all x ∈ [−a, a] by the change of variable formula for integrals with measure push-

forwards and Theorem 2.14. Hence, the mean of such SECT evaluations, or collec-

tions thereof, form a statistic that can be used for distinguishing shapes modulo O(d)

actions.

2.5.6 Kernels and Kernel Approximations

Finally, we briefly discuss kernels and their associated Hilbert spaces - a theory we

will use in later chapters when comparing topological signatures. Kernels are general-

isations of inner products. The motivation for generalising inner products is twofold.

First, we may want to use data science methods requiring an inner product (e.g. sup-

port vector classification, principal component analysis or k-means) on data in spaces
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Figure 2.6: Standard ECT pipeline visualised on segmented organoid boundaries. 1)
Segmented input data (in blue) over a video frame. 2) Illustration of the sub-level-set
filtration in the direction given by the arrow. 3) The ECT in the direction given in
2). 4) The SECT in the direction given in 2).

not endowed with an inner product. Second, even if it is possible to define an inner

product in data space, features in the data may not be linear. For example, not every

labelled data set can be separated by a plane, resulting in inaccurate classification.

In such an instance, support vector classification (SVC) in combination with kernels

could, by contrast, allow a separation.

Definition 2.15. Let X be a non-empty set. A kernel on X is a symmetric function

k : X ×X → R such that for all x1, ..., xn ∈ X and all a1, ..., an ∈ R we get

n∑
i,j=1

aiajk (xi, xj) ≥ 0. (2.4)

Given finite subsets X ′ = {x′1, ..., x′m} and X∗ = {x∗1, ..., x∗n} of X, we denote by

K(X ′, X∗) the m× n matrix with i, j-entry K(X ′, X∗)ij = k
(
x′i, x

∗
j

)
, which is called

the Gram matrix of k at X ′ and X∗.

Note that Equation (2.4) is equivalent to each Gram matrix of the form K(X ′, X ′)

being positive-definite.

For general X , the Kronecker delta gives a kernel. If X is a subset of an inner

product space, the inner product is a kernel. If X ⊆ Rd, then the function

k(x, y) := exp

(
−∥x− y∥

2

λ

)
,

where λ > 0 is a hyperparameter, is a kernel called the Gaussian kernel, which we

employ later in this thesis.
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Definition 2.16. Let k be a kernel on some set X . If we define H0 =

spanR{k(x, · ) |x ∈ X}, then H0 is a vector space of functions from X to R.

Note that

⟨k(x, · ), k(y, · )⟩H0 := k(x, y) (2.5)

defines an inner product on H0 by bi-linear extension. We define Hk = H0, the

completion of H0. Then Hk is a Hilbert space, called the Reproducing Kernel Hilbert

Space (RKHS) of k.

In the above construction, Hk is still a Hilbert space of functions from X to

R (rather than a Hilbert space of equivalence classes of functions) by the Moore-

Aronszajn theorem [120]. The name RKHS derives from the fact that for any f ∈ Hk

and x ∈ X , we have ⟨k(x, · ), f⟩Hk
= f(x), which is called the reproducing property

of k. In particular, the reproducing property of an RKHS together with the Cauchy-

Schwarz inequality gives that the linear functionals δx : Hk → R defined by δx(f) =

f(x) at f ∈ Hk are continuous for all x ∈ X .

The main point - in the context of this work - of defining an RKHS is to illustrate

that applying a kernel to elements of X can be viewed as first embedding X into some

Hilbert space of functions Hk (by x 7→ k(x, · )) and then taking an inner product

of such embedded elements. While Hk may be infinite-dimensional and thus the

embedding of X into Hk is intractable in general, we never need to compute the

(exact) embedding itself - computing k(x, y) for all x, y ∈ X is sufficient for any

downstream method relying on the inner product of Hk only. This insight is called

the kernel trick.

If X is of finite size n, then computing k(x, y) for all pairs k(x, y) requires only

finitely many computations and scales as O(n2). To enable computations for large

n, a number of approximation methods of lower computational complexity have been

developed. One such method is the Nystroem approximation:
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Definition 2.17. Let X = {x1, ..., xn} be of finite size n and let m < n, where m is

a natural number. Denote by K the n × n-matrix with i, j-entry k(xi, xj). Then K

can be written in block-form as

K =

[
K11 K12

K21 K22

]
.

For C := [K11, K12]
T , the m-th Nystroem approximation of K is the matrix

K̃ = CK†
11C

T ,

where † denotes the Moore-Penrose pseudo-inverse.

If K is of approximate rank m (or less), then K̃ ≈ K [89]. In practice, the

approximate rank of a Gram matrix is in many cases much less than n if n is large

[89]. Computing K̃ only requires O(mn) evaluations of k, where m is typically fixed.

In practice, we only compute C(K†
11)

1/2 (to save computer memory), as the standard

inner product of the i-th and j-th rows of C(K†
11)

1/2 approximately gives k(xi, xj).

This matrix C(K†
11)

1/2 can be used as a non-linear transformation and can be further

analysed. In particular, we take the row vectors and feed them to a method using

inner products. Computing C(K†
11)

1/2 has a runtime complexity of O(nm2 + m3).

There exist sampling heuristics for picking an optimal set of m points from X [89].

Previous Studies Using ECTs and Kernel Methods

Kernel methods have been used successfully in conjunction with the SECT for both

shape regression and classification problems [39, 155, 139]. Both of these studies

use Gaussian process models. Gaussian processes include the inversion of a Gram

matrix and thus have a runtime of O(n3). Hence, the Nystroem method we employ

scales better to large data sets. These models are also conceptually more complex

than linear regression and random forest classification, which we use for regression

and classification. To the best of our knowledge, neither the ECT nor SECT have

previously been used in combination with kernel approximation methods.
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2.6 Summary

In this chapter, I introduced organoids, how they are grown, how they have been used

in cancer research and what potential they might have for the future. I highlighted the

interplay of the tissue composition, which to a large extent determines organoid mor-

phology, and scRNA-seq data. Further, I gave an overview of previous studies using

morphology or scRNA-seq data of organoids. I then introduced some mathematical

preliminaries which are used throughout this thesis: Firstly, Mapper and UMAP are

two TDA-related methods that create graph representations of data. Further, I intro-

duced random walks on graphs and how these can be used for (multiscale) community

detection on graphs. These methods are used and extended in Chapter 3 to struc-

ture scRNA-seq data and genes that drive the differentiation of cells along lineages.

Finally, I explained the Euler characteristic transform, a sufficient statistic of shapes

embedded in Rd, and the fundamentals of kernel methods. The Euler characteristic

transform is extended in Chapter 4 to a new method called DETECT and used in

conjunction with kernel methods to classify organoids with cancer mutations, seg-

mented from videos of experiments in a 2D view, into treated and untreated groups.

I show that DETECT generalises to 3D data by using synthetic data generated by

a mechanistic model of organoid growth in Chapter 5. I prove a new result on the

stability of the ECT in Chapter 6.
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TDA of Single Cell RNA
Sequencing Data
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Single-cell RNA sequencing (scRNA-seq) provides an unprecedented level of detail

about the dynamic process of transcription in cells. The high-resolution data chal-

lenges the traditional notion of cell types as discrete entities and suggests that instead

they should be viewed as a continuum [60, 122]. Differential expression (DE) tests are

commonly used to analyse transcriptomic data. However, DE tests rely on clustering

algorithms to assign cells to discrete categories on such data sets, which are unstable
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on high-resolution scRNA-seq data. Govek et al. propose a clustering-independent

Laplacian score to generalise DE tests for scRNA-seq data with a continuous under-

lying structure [60]. I extend their single-scale method to a multiscale method. To

this end, I propose a novel multiscale Laplacian score (MLS) in this chapter. The

MLS combines ideas from network and random walk theory to perform generalised

DE tests at multiple resolutions. I propose to use variation of information (VI), a

common method in community detection on networks, to identify at which scales a

data set exhibits an interesting structure.

Trajectory inference (TI) methods assume a continuous structure of single-cell

data and aim to infer continuous trajectories between different cell states [125]. The

performance of such methods varies significantly across data sets and depends on

both the topology underlying a data set and the topology a trajectory inference

can model [125]. One method for trajectory inference is a TDA algorithm called

Mapper (see Section 2.5.1), which can model a range of different data topologies

and has been successfully used in practice [118, 122]. In these studies, the cover, a

key hyperparameter in the Mapper algorithm, is chosen manually rather than by a

biological or computational principal. The results, therefore, may be biased. I propose

a novel heuristic called the UMAP diffusion cover, inspired by network theory and

random walks, that can be used to algorithmically specify the cover in Mapper for

TI.

In this chapter, I first introduce the raw data structure of scRNA-seq data, its

pre-processing methods and review common DE tests and TI methods (Section 3.1).

After introducing the MLS and the UMAP diffusion cover (Section 3.2), the new

methods are applied to two scRNA-seq data sets (introduced in Section 3.3). The

results demonstrate that the MLS identifies differentially expressed genes at multiple

resolutions, including genes that have not been identified by the Laplacian score or

a classical DE test. Furthermore, I show that the VI identifies resolutions of interest

and relates them to cell types and genetic conditions. The UMAP diffusion cover

in conjunction with Mapper gives promising results on two data sets compared to

the state-of-the-art method PAGA (all in Section 3.4). The chapter finishes with a
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discussion of the results and potential directions for future research (Section 3.5).

3.1 scRNA-seq Data Structure and Analysis

Methods

3.1.1 Unique Molecular Identifiers and Raw Data Structure

In RNA sequencing, it is common to break up the molecular strands of RNA into

short fragments before counting the occurrences of each gene (i.e. fragments with

an identical sequence of nucleotides). For technical reasons, it is not feasible to read

the genetic material of a single, isolated cell directly. Hence, the genetic material is

amplified first using polymerase chain reaction (PCR) protocols.

PCR protocols amplify some genes at a higher frequency than others which biases

the data. The technique of unique molecular identifiers (UMIs) addresses this prob-

lem: short RNA sequences, called UMIs, are attached to each fragment at random

prior to PCR amplification. When sequencing is performed, multiple occurrences of

the same gene with the same UMI attached are counted as a single occurrence. The

resulting counts are called UMI counts and the collection of all UMI counts for all

genes of interest forms the raw version of our data.

The total number of UMI counts measured for a single cell (summed over all

genes) is called the sequencing depth. It represents the amount of genetic material

that has been sequenced from a cell. Random effects and technical details mean that

the sequencing depth can vary significantly between cells. Thus, UMI counts should

always be interpreted in the context of the sequencing depth of each cell. For this

and other reasons, such as batch effects, it is essential to pre-process the raw UMI

count data prior to its analysis. We describe a state-of-art pre-processing procedure

that accounts for variable sequencing depth and batch effects in the next subsection.

3.1.2 Variance Stabilizing Transform

The variance stabilising transform (VST), introduced by Hafemeister and Satija in

[67], attempts to learn the distribution of each UMI count. It uses information such
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as sequencing depth and experimental batch to transform each count so that the

distribution of the resulting data only depends on biological information present in

the data. When describing the VST, we write kij ∈ N for the raw UMI count of gene

i for cell j. The VST outputs a transformed zij corresponding to each kij.

The UMI counts are commonly assumed to follow a negative binomial (NB) dis-

tribution [67, 4]. This assumption allows for a negative binomial regression in a

generalised linear model (GLM), a regression model commonly applied to count data

[108, Documentation Chapter 326]. The negative binomial regression is an extension

of the Poisson regression. The Poisson regression model assumes that the variance

equals the mean of the explained data at each value of the independent variable.

Similar to the Poisson distribution, NB random variables can be interpreted as the

number of events occurring in a fixed time period, each event occurring at the same

rate, independently of other events. For a Poisson random variable, this rate is de-

terministic, whereas, for an NB random variable, the rate is sampled at random from

a Gamma distribution. As a result, variance and mean do not need to be equal in the

NB distribution and are independent parameters. The work of [67] interprets sequen-

cing depth as time and occurrences as detections of UMIs in any NB distributions

they employ.

Let mj denote the sequencing depth of cell j. Formally, the negative binomial

regression under a generalised linear model then assumes for each gene i,

kij ∼ NB(µij, σij)

with

µij = exp (αi + βi log10mj) , σij =

√
µij +

µ2
ij

θi
, (3.1)

where αi, βi and θi, the regression model parameters, are to be inferred [67]. We call

θi the dispersion parameter associated with gene i. The negative binomial model then

predicts that for cells of sequencing depth m on average µi = exp (αi + βi log10m)

UMIs of gene i are detected. In practice, the parameters of the negative binomial
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regression can be inferred for each gene i using a generalised linear model (GLM) and

maximum likelihood methods [67].

Hafemeister and Satija [67] find that performing a negative binomial regression for

each gene typically results in overfitting. They demonstrate, via bootstrapping, that

such a procedure leads to unsatisfactory results on benchmark data sets, especially

for genes with low average expression levels [67]. They pool information across genes

with similar average expressions. Their procedure can be summarised in three steps:

1. Infer αi, βi, and θi for each gene i.

2. For all αi obtained in Step 1., perform a kernel regression against the average

expression value ki :=
∑N

j kij/N using a Gaussian kernel. The bandwidth of

the kernel is fixed using the Sheather and Jones method [133]. Repeat this

process for βi and θi.

For each gene i, denote by α∗
i , β

∗
i and θ∗i the parameters predicted for gene i un-

der the above regression models. Let µ∗
ij and σ∗

ij be defined as in Equation (3.1),

but using the starred expressions for the negative binomial model parameters

instead.

3. Transform the UMI counts as

zij =
kij − µ∗

ij

σ∗
ij

.

The above procedure is called the variance stabilising transform (VST). Since its

inception, it has been included in the standard genetics R-package Seurat [68] and

in many peer-reviewed studies [81, 66, 64, 20, 82].

Performing the VST on distinct batches of the same experiment separately is

sufficient for removing batch effects [67]. Hafemeister and Satija [67] demonstrate on a

benchmark data set that the VST effectively removes the correlation of (transformed)

UMI counts with sequencing depth and gene abundance. The VST also removes the

effects of the sequencing depth on downstream analyses [67].

47



3.1.3 Differential Expression and Its Generalisations

A common problem in biology, and science more generally, is establishing whether

a measurable quantity varies significantly across two or more experimental groups.

In the case of gene expression, such a test is called differential gene expression. The

experimental groups may be determined by the experimental set-up (e.g. different

treatments or different mutations), meta-data or through clustering algorithms.

Common methods for differential gene expression, such as DESeq [4], assume that

the UMI counts are distributed according to a parameterised probability distribution

(often following an NB distribution, similar to Sub-Section 3.1.2). Testing for dif-

ferential expression is then equivalent to testing the statistical hypothesis that the

parameters are the same across experimental groups. Alternatively, a non-parametric

test can be performed, which typically requires the counts to already be corrected for

sequencing depth, but is considered to be more stable [166].

Laplacian Score

Differential gene expression requires a partition of the cells into discrete groups or

clusters. However, scRNA-seq data is typically continuous in nature, leading to un-

stable clusterings and, by extension, to unstable downstream differential gene expres-

sion analyses [60, 122]. I.e., even small perturbations to the input data or clustering

parameters could lead to different clusterings and, by extension, to different DE ana-

lyses. To overcome this issue, Govek et al. [60] propose to first construct a graph on

the scRNA-seq data (e.g. through a neighbourhood graph or by trajectory inference)

which models scRNA-seq data as a continuous, connected structure. In particular,

the graph endows cells with a continuous notion of similarity via the graph distance,

as opposed to a discrete, binary notion of similarity (cells being either in the same

cluster or not). Their method, a variation of the Laplacian score first defined in [71],

tests the ‘consistency’ of a gene’s expression with the graph structure. A gene is con-

sidered to be consistent with the graph structure if cells that are nearby on the graph

have similar expression levels of this gene. While the score favours genes which have

48



locally similar expression levels in every neighbourhood of the graph, it also penalises

genes with low variance (and thus express at similar levels across the whole data set).

Mathematically, the method of Govek et al. works as follows: Given a graph

G = (V,E) with N nodes, let f ∈ ℓ2(V ) be a signal on G. We define the graph mean

of f as

µG(f) =
1∑

v∈V dv

∑
v∈V

dvf(v)

and the graph variance of f as

VarG(f) =
∑
v∈V

dv (f(v)− µG(f))2 .

The graph mean of a signal f can be interpreted as the expected value of f(v), where

v is the (random) location of a random walker at steady-state. Similarly, the graph

variance is
∑

v dv times the variance of this random variable. For any signal f on G,

we then introduce its re-centred form

f̃(v) := f(v)− µG(f).

Definition 3.1. Let G = (V,E) be a graph with adjacency matrix A and f : V → R

a signal on G. Then the Laplacian score of f (in the sense of [60]) is defined as

LS(f) =

〈
D1/2f̃ , D1/2Lrwf̃

〉
〈
D1/2f̃ , D1/2f̃

〉 =

∑
v,w∈V Avw (f(v)− f(w))2

VarG(f)
.

Remark. When the Laplacian score was first introduced in [71] its definition used

an adjacency matrix of a k-nn graph with a specific weighting. Govek et al. [60]

used a generalised version of the Laplacian score (without the weighting of [71]) on

scRNA-seq data. We use the weighting of the UMAP graph, which is key to all of

our scRNA-seq data analyses.

We interpret the Laplacian score as the expected squared difference in the signal

f when a random walker at steady-state takes one (discrete time) step, divided by

the variance of the signal at the node at which the walker is based at steady state.

The Laplacian score is low if the signal f takes similar values on nodes connected

by an edge and exhibits high variance. Equivalently, the score is low whenever the
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signal on the node at which a discrete-time random walker is located is expected to

change by a small amount whenever they walk for time t = 1 (and the graph variance

of the signal is high). In such a case, we say that the signal f is consistent with the

graph structure of G.

In community detection, one-step discrete-time Markov stability is known to fa-

vour clique-like structures [129]. However, real-world networks often contain com-

munities with large diameters, which are thus not cliques. Similarly, favours signals

which are consistent on cliques. Most importantly, the Laplacian score cannot capture

consistent expressions at different scales.

3.1.4 Trajectory Inference Methods

Single-cell RNA sequencing enables researchers to study dynamic molecular processes

at a cellular level. Such processes include the cell cycle, cell differentiation and cell

activation [125]. To model and infer such processes from the data, a range of trajectory

inference methods have been developed. These methods typically order cells along a

tree- or graph-like structure according to their levels of gene expression. Arranging

cells in such a way can reveal temporal evolution (e.g. in differentiation or activation)

or periodicity (e.g. in a cell cycle1).

Recent methods for trajectory inference vary significantly with respect to the

topology they can model (ranging from being restricted to a linear or tree-like topology

to any topology that can be represented by a graph or simplicial complex), the format

of their output and their scalability.

In this chapter, I focus on PAGA [160], a scalable method that returns a weighted

graph. In this graph, each node represents a cluster of cells and weighted edges

between nodes capture the similarity between clusters. There are no restrictions on

the structure of the returned graph. PAGA was identified as one of the most flexible

and well-performing methods [125] and has been widely used [2, 6, 116, 137, 165]. A

summary of alternative methods can be found in Table 3.1.

1A series of periodic events as cells grow and undergo mitosis.
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Method Platform Topology Accuracy Scalability Stability

PAGA Python Graph Very Good Excellent Very Good
RaceID R Graph Sufficient Poor Good
Slingshot R Tree Excellent Good Very Good
pCreode Python Tree Very Good Poor Good
Monocle ICA R Tree Very Good Poor Good
STEMNET R Multifurcation Very Good Very Good Good
SCORPIUS R Linear Excellent Good Excellent
Wanderlust Python Linear Good Good Excellent

Table 3.1: Comparison of some common trajectory inference methods. Based on
Figure 2 in [125]. Here, ‘Multifurcation’ means a tree with one main branch in which
all other branches connect to the main branch and do not have branches of their
own. Each method was tested on synthetic and real data. Each method has only
been tested on synthetic data with underlying ground truth it can infer. E.g. while
SCORPIUS has a better accuracy result than PAGA, it has only been tested on data
with linear topology. By contrast, PAGA has also been tested on data with a more
complex topology. Stability was tested by sub-sampling real and synthetic data sets
and assessing the resulting changes in output. See [125] for details.

Initially, PAGA constructs a neighbourhood graph (i.e. a k-nearest-neighbour

graph; c.f. Section 2.5.2) from a pre-processed scRNA-seq data set and then clusters

nodes in this graph based on their connectivity. The original paper [160] suggests

using the Louvain method [18] (c.f. Section 2.5.3), but the documentation of the

main implementation [159] now uses the Leiden method [143] as default.

With both community detection methods, PAGA proceeds to construct a new

graph in which the nodes are given by the clusters obtained in the previous step. It

then uses a random model on the original graph to determine the probability that for

any two clusters A and B, there are fewer than n edges connecting nodes in A with

nodes in B. Using the true number of edges connecting A and B in the original graph,

the random model is then used to assign a probability to the pair of nodes A and B in

the new graph. If this probability is larger than some user-defined threshold, (i.e. if

the two clusters have stronger connectivity than what one would expect at random),

PAGA inserts an edge between A and B in the new graph. The resulting graph, also

called a PAGA graph, is then returned.

The hyperparameters PAGA requires are the k-nn parameter k, the probability
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threshold, the clustering algorithm and all hyperparameters of that algorithm. Typ-

ically, k is set to some value between 15 and 40 and the original publication of PAGA

suggests that 0.025 is generally a good value for the probability threshold [160]. The

packages scanpy [159] and Seurat [68] use the Louvain [18] or Leiden [143] algorithm

as default clustering algorithms.

3.2 New Topological Analysis Methods for

scRNA-seq Data

3.2.1 Multiscale Laplacian Score

As with the application of random walk-normalised Laplacians to finding community

structures on G, there is reason to believe that the Laplacian score favours consist-

ent expression on clique-like structures. While these clique-like structures exist in

scRNA-seq data, they only represent a single scale and it has been suggested that in

scRNA-seq data clique-like structures are often distorted by common pre-processing

methods [33]. Moreover, it cannot capture consistent expression at different scales.

However, many data sets exhibit structure at multiple scales. Classical DE tests, in

which cell types are typically determined by clustering algorithms, easily generalise

to a multiscale analysis: Clustering can be performed at multiple resolutions (many

clustering algorithms, including k-means and single-linkage, have a parameter con-

trolling how coarse the resulting clustering is) and the DE test is applied to each

clustering to obtain a multiscale description of the data. We, therefore, introduce the

novel multiscale Laplacian score (MLS), which extends the definition of [60]:

Definition 3.2. Let G = (V,E) be a graph with adjacency matrix A, f : V → R

be a signal (e.g. the expression of a gene) on G and t ∈ R≥0. Then the multiscale

Laplacian score of f at resolution t is defined as

MLS(f, t) =

〈
D1/2f̃ , D1/2(I − P (t))f̃

〉
〈
D1/2f̃ , D1/2f̃

〉 =

∑
v,w∈V dvP (t)vw (f(v)− f(w))2

VarG(f)
,

where P (t) := exp (−tLrw).
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Remark. The multiscale Laplacian graph kernel (MLGK) by Kondor and Pan [86]

has a similar name to the MLS, but uses different constructions and serves a different

purpose. The MLGK is multiscale by considering a sequence of nested sub-graphs,

while the MLS is multiscale by considering random walks of different lengths. The

MLGK compares different graphs while the MLS compares different signals on the

same graph.

The MLS of a signal f at time t can be interpreted as the expected squared

difference in signal a continuous-time random walker at steady state walking for time

t is exposed to, divided by the variance of the signal such a random walker is exposed

to. As for the original Laplacian score, the multiscale score of f at time t is low if the

signal to which a continuous-time random walker is exposed is expected to change

only by a small amount whenever they walk for time t (and the graph variance of the

signal is high). In such a case, we say that the signal f is consistent with the graph

structure of G at scale t. An example of different signals that are consistent with a

graph at different scales, and thus can be identified by the MLS, is given in Figure

3.1.

In our MLS analysis pipeline, we take a pre-processed transcriptomic data set

and construct a k-nn graph, with each node representing a cell. We then calculate

partitions of the graph into communities at a large number of different resolutions

(Markov times) using the Louvain algorithm [18]. We re-calculate the partitioning

at each resolution several times, to obtain a mean pairwise variation of information

(VI) at each Markov time. Next, we select a small set of resolutions at which the

VI attains local minima. Finally, we calculate the MLS at each of these resolutions

for each gene in the data set. By plotting the MLSs at subsequent resolution against

each other it is possible to identify genes which are particularly consistent with the

topological structure at a given scale by observing deviation from mean behaviour.

3.2.2 UMAP Diffusion Cover

When analysing data with Mapper, a key hyperparameter is the cover. When the

lens f maps into a one-dimensional space, then the choice of cover is straightforward:
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a sequence of intervals between the minimum and maximum values. The only choices

which remain to be set are the number and size of the intervals and the amount of

overlap between consecutive intervals (typically chosen manually).

In practice, however, Mapper graphs obtained through one-dimensional filter func-

tions are not as expressive as those obtained through two-dimensional filter functions,

and, indeed, a large number of publications use Mapper with two-dimensional filter

functions (e.g. [94, 122, 126, 142]). However, using intervals as covers does not

generalise well to the 2D setting (using cubes instead of intervals), as the resulting

Mapper graphs vary significantly with the rotation of the image of the filter function

(e.g. in UMAP this rotation is arbitrary) and Mapper graphs are more likely to be

disconnected. Therefore, a cover is often selected manually [122]. Such judiciously

chosen covers are undesirable as they increase the risk of reverse-engineering the de-

sired result. I propose a novel heuristic for choosing covers in high dimensions, which

uses ideas from random walks and is invariant under rotations of the filter function

image.

The heuristic starts by considering the UMAP weighted k-nn graph. The UMAP-

weighted k-nn graph is a good model for the manifold structure of scRNA-seq data, as

it can model the continuous structure of the data. Furthermore, re-scaling distances

to account for local changes in density reduces the likelihood of rare cell states being

treated as outliers. The UMAP graph is also fast to compute [102].

After constructing the UMAP graph, we pick a node at random and calculate the

continuous-time or discrete-time transition probabilities to all nodes in the graph for

a random walker that walks for some pre-defined amount of time t. We then take the

m nodes with the highest transition probabilities and place them into a new cover

element. We repeat this procedure by sampling from the remaining nodes which are

not in a cover element until all nodes are covered.

Repeated simulations suggest that this method is stable with respect to the in-

troduced randomness. It also performs better than sampling nodes at random and

creating cover elements with their m nearest neighbours, as it is more stable with

respect to outliers. The heuristic is summarised by Algorithm 3. While in theory,
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we do not have to compute a filter function when using this cover, there is a direct

analogy to using UMAP as a filter. The UMAP algorithm (c.f. Section 2.5.2) consists

of two parts: the construction of a k-nn graph and its embedding. The first part can

be viewed as the actual dimension reduction, while the second part is merely a trans-

formation of the dimension-reduced sample to Euclidean coordinates. The UMAP

diffusion cover places samples which are ‘close’ in the dimension-reduced sample into

the same cover element. While the embedding of this graph gives a filter function in

a classical sense, the cover described here is invariant with respect to this embedding.

Algorithm 3 Random Walk Cover

1: procedure RandomWalkCover(G (UMAP graph), m, t)
2: N ← list containing {yi}, the nodes of G
3: T ← exp(−tLrw

G ) or (I − Lrw
G )t # cont. or disc. random walk

4: C ← ∅
5: while N not empty do
6: y ← random sample from N
7: P ← eyT # Here ey is a vector with 1 in y-entry and 0’s elsewhere
8: C ′ ← {y′1, ..., y′m−1, y}, # the m− 1 largest indices in P and y.
9: for y′ ∈ C ′ do

10: Remove y′ from N
11: end for
12: C ← C ∪ {C ′}
13: end while
14: return C
15: end procedure

3.3 Data Sets

I illustrate the UMAP diffusion cover and the multiscale Laplacian Score outlined

above on two experimental scRNA-seq data sets. First, I analyse a data set of 24,911

human T cells infiltrating lung tumours and adjacent normal tissue, published in

[91]. This T cell data set was originally used to demonstrate the utility of the stand-

ard Laplacian score in [60] and is, therefore, useful for benchmarking the multiscale

Laplacian Score. Second, I study scRNA-seq data derived from mouse colon orga-

noids. The organoids, grown and sequenced by the Lu Lab at the Ludwig Institute at
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the University of Oxford, have different genetic backgrounds (Wild Type, APCmin,

KRAS, p53 Null, p53 Mutant) and contain different cell types. This data set contains

3,958 cells.

Pre-processing of Data Sets

We normalised the T cell and mouse colon organoid scRNA data sets using the Vari-

ance Stabilizing Transform (VST) [67]. Compared to log-normalisation,2 the VST

has been shown to be more effective at removing noise induced by factors such as

differences in sequencing depth across cells while retaining biological heterogeneity

[67]. For each data set, the VST returns the 3,000 genes with the highest dispersion.

The variance stabilised data set is then reduced to the 30 principal components

with the highest variance using PCA. We use 30 components following the recom-

mendation given in the manual of the R-library Seurat [68]. We then construct UMAP-

weighted k-nn graphs on both data sets, using k = 15 and the umap-learn Python

package (k = 15 is the recommended default in both Seurat and umap-learn). Fol-

lowing [60], we use the Pearson correlation distance for both data sets. We sample

3,000 cells at random between the PCA and k-nn graph steps in the T cell data set

to improve runtime. Notably, our UMAP plots (see Figure 3.2) of the T cell data

look somewhat different from the t-SNE3 plots presented in [91, 60]. This difference

is mainly a result of using the VST instead of log-normalisation, rather than UMAP

instead of t-SNE. As we use the UMAP graphs, we present the UMAP plots instead

of the t-SNE plots for consistency.

3.4 Results

In this section, I apply Mapper [32] with a UMAP diffusion cover and the multiscale

Laplacian score (MLS), as described in the previous sections, to the T cell and orga-

noid data sets for trajectory inference and feature selection. I compare the trajectory

inference obtained using Mapper with the novel diffusion cover to trajectories ob-

2Equivalent to zij := log(1 + kij · 104/mj) in the notation of Section 3.1.2.
3A non-linear dimension-reduction method, see [152].
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tained using PAGA [160]. I also apply the MLS to both data sets and compare the

results to the standard Laplacian score presented in [60]. The multiscale Laplacian

score allows for feature selection at different scales and naturally separates consist-

ently expressed genes into different resolutions, which is not possible (without further

analysis) when using the standard Laplacian score alone. For the organoid data, the

resolutions identified by the MLS correspond to partitionings into cell types and ge-

netic conditions. We conclude that the MLS provides a natural way to identify genes

that are consistently expressed by different cell types and across different genetic

backgrounds. I use scanpy [159] to compute the PAGA graphs and KeplerMapper

[153] to compute the Mapper graphs.

T Cell Data

First, we apply the MLS to the human T cell data set [91]. This data does not

partition into stable clusters, as remarked by [60] and highlighted by the UMAP

plots in Figure 3.2. We identify three resolutions of interest based on the variation

of information. Genes with a relatively low MLS at the finest resolution, t1, include

IGKC and IFI27. Both are highly expressed by a small group of cells (in the centre

of the left-hand side and top right of the UMAP plot respectively, compare Figure

3.2 (B)). The gene IGKC is an immunoglobulin gene, an antibody component found

in B cell subsets, particularly plasma cells [95]. Cells expressing IGKC are also

JCHAIN+ and positive for antibody subtypes suggestive of class switching (e.g.,

IGHG1 and IGHA1). Since this data set comprises T cells, this switching behaviour

suggests that the cells in question are doublets (two cells in the same experimental

droplet), specifically T cells binding B cells. While not representing single-cell states,

it is important that these readings are picked up in the analysis. The gene IFI27

is part of an antiviral/interferon-induced (IFI) response signature. It is particularly

interesting that MLS can detect a specific transcriptional programme shared across

multiple cell types (CD4+ and CD8+ T cells). This programme could be a shared T

cell programme directed against viruses or induced during stress responses (e.g., for

scRNA-seq processing) [149].
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Similarly, at resolution t2 AREG and GZMB show high consistency with the to-

pological structure, both in relation to other genes and to other time scales. In

particular, AREG is expressed highly on a group of cells which connects a cluster

of natural killer T cells (bottom centre in UMAP plots) with most of the remaining

cells. Within the immune system, AREG is expressed by subsets of NK cells and

other types of innate lymphoid cells (ILCs) [40, 105], where it plays an important

role in mediating type 2 immunity [105, 164]. Despite bridging different clusters in

our global clustering and that of the original authors [91], this population likely rep-

resents cells in various states of transition between two previously described AREG+

NK cell phenotypes: one with high levels of secreted molecules associated with effector

functions (CCL3, CCL4) and the other expressing homing receptors associated with

a more circulatory phenotype (CD44, SELL) [40] (see Figure 3.2). Therefore, while

the original authors identified these two subsets as discrete NK and type 1 ILC-like

cell types, respectively (Figure S13 in [91]), the MLS-informed approach highlights

AREG as a shared feature, supporting the notion that these two populations may

be consistent with a more continuous transition between CCL3+ and SELL+ states

within the NK cell population. This interpretation is further supported by the pre-

served expression of NK cell markers (e.g., CD94/KLRD1, NKG2A/KLRC1) in the

SELL+AREG+ cells, which is often considered to be a feature of NK cells that is not

shared by otherwise closely related type 1 ILCs [10, 13].

Similarly, GZMB is highly expressed on the intersection of exhausted and prolif-

erating T cells, two clusters which are visible in the community structure at t2 but

merge at t3.

Finally, at Markov time t3 FGFBP2 and NKG6 are examples of genes with re-

latively low expression that are highly and consistently expressed on the cluster of

natural killer T cells.

A comparison to a standard differential expression test is given in Table A.1 and

Figure A.1 in the appendix.

Next, we compare the trajectory inference obtained by Mapper (with a UMAP

Diffusion cover with t = 1, m = 1000 and an agglomerative clustering algorithm
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using cosine dissimilarity, average linkage, and a distance threshold of 0.85) and the

trajectory obtained by PAGA (with k = 15, the Leiden algorithm [143] with resolution

parameter 0.8 and edge threshold 0.3). These graphs can be seen in Figure 3.3. The

PAGA graph places a large number of cells in a single node, while Mapper places the

same cells into several nodes connected by more edges. While this arguably makes

the visualisation more crowded, as a result, the nodes placed further away from the

main body of cells correspond to genuine outliers in the UMAP plot. Most notably,

the group of five sparse nodes on the top of the Mapper plot corresponds to the group

of cells with high IGKC expression (c.f. Figure 3.2). In contrast, the majority of leaf

nodes in the PAGA graph do not seem to exhibit markedly different gene expression

patterns and seem to instead correspond to outer areas of the main body of cells in

the UMAP plots.

An advantage of the PAGA graph is that it contains fewer nodes and edges.

While it is theoretically possible to reduce the number of nodes in the Mapper graph

by increasing the number of cells in each cover element, the resulting graph does not

capture much structure on this data set.

Mouse Colon Organoid Data

We perform the same analysis as for the T cell data on the mouse colon organoid

data set. While this data set is smaller than the T cell data set, we have access to

meta-data for the organoid data. In particular, we know which mutations are present

in each organoid and can distinguish different cell types (see Figure 3.4).

Note that the APCmin cells form a cluster which is distinct from the rest of

the data. The main cluster (of non-APCmin cells) contains cells of multiple different

genotypes and cell types. These conditions do not form distinct clusters in the UMAP

plot and there is a continuous transition between these genetic backgrounds and cell

types.

When partitioning the UMAP graph into communities at different scales, we again

observe three Markov times at which the variation of information attains a local

minimum (see Figure 3.5). At the finest resolution, t1, there is a correspondence
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between clusters and (groups of) cell types. At the intermediate resolution, t2, there

is a correspondence between (groups of) genetic conditions and communities. The

coarsest resolution, t3, gives a partition into APCmin and non-APCmin cells. We

conclude that the resolutions found by minimising the variation of information are

biologically meaningful.

The multiscale Laplacian score also identifies a number of genes that are expressed

at different resolutions: for example, at resolution t1 (see Figure 3.5) Tff3 and Agr2 are

expressed consistently at high levels on the Goblet-like cells. Agr2 and its associated

protein are involved in metastasis and promote invasive behaviour of gastric cancer

cells [145], while Tff3 is known to correlate with poor survival rates of gastric cancer

patients [77, 103], but its function in cancer cells seems to be less well understood.

At the intermediate resolution, t2, Krt18 and Krt7 are consistently expressed in a

(connected) subset of the APCmin cluster. Krt7 supports the progression of cancerous

cells in gastric cancers [75]. Moreover, Krt18, a gene involved in the activation of

the MAPK pathway in gastric cancers [58], is expressed highly at the intersection

between the Wild Type and KRAS cells, which merge into one community at the

coarsest resolution t3.

Finally, at resolution t3, H2afj and Ccng1 have a relatively low MLS (compared

to the standard Laplacian score). Both are expressed consistently on the APCmin

cluster. H2afj is known to be involved in resistance to chemoradiation in human

colorectal cancers and high H2afj expression correlates with significantly worse

relapse-free survival in patients [156]. Similarly, Ccng1 is known to be a key gene

involved in drug resistance and cell proliferation in gastric cancers [132, 76].

A comparison to a standard differential expression test is provided in Table A.2

and Figure A.2 in the appendix.

For the trajectory inference, both PAGA and Mapper identify the APCmin cells

as a distinct cluster. However, the Mapper graph (parameters are identical to those

used on the previous data set) seems to outperform the PAGA graph at capturing

the linear arrangement of the main cluster of cells, as is clearly visible in the UMAP

plots. Mapper also infers the circular arrangement of cells, seen in the UMAP plots
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(Figure 3.4) between the Wild Type and KRAS cells.

3.5 Discussion

Single-cell RNA sequencing data allows us to study cell transitions between genotypes

and disease states at an unprecedented resolution. With increasing resolution, we are

increasingly able to detect the continuity of such transitions. Continuous transitions

between cell states question the standard model of the cell type as a discrete notion.

In this chapter, I have presented two novel solutions to analyse the continuous

structure of scRNA data. First, I present a novel method for selecting a cover in

Mapper that is well-motivated for scRNA data: it is based on the UMAP graph,

which can model the continuous structure of the data, and adapts for locally varying

sampling density, thereby decreasing the likelihood of rare intermediate cell states

getting lost in the analysis. Crucially, the cover is not picked by hand, as in previ-

ous applications to scRNA data [122], and uses only two hyperparameters. Visual

inspection of the resulting trajectories on the lung-infiltrating T cell data [91] and

the mouse colon organoid data shows that Mapper in conjunction with the proposed

heuristic for picking a cover can infer trajectories that are similarly informative than

analyses with PAGA, an established state-of-art trajectory inference algorithm.

Second, I proposed a novel method for feature selection, which takes into account

the continuous data structure and extends work by Govek et al. [60]. The method,

called the multiscale Laplacian Score, can select features consistent with the con-

tinuous structure of scRNA data sets at multiple resolutions. It also comes with a

heuristic of identifying resolutions in a data set at which the data exhibits a stable

structure. By applying this new method to two data sets, I demonstrated that it

identifies a number of biologically relevant genes at each resolution and thus yields

additional information to the method of Govek et al. [60].

While I compared the output of the Mapper graph using a UMAP diffusion cover

to PAGA, a state-of-art method for trajectory inference, further benchmarking on

additional data sets and additional methods is important for future work. The review

61



by Saelens et al. [125] provides a general framework and a number of metrics and data

sets for such benchmarking. Unfortunately, comparison to existing Mapper methods,

such as [122, 118], will be difficult as the covers are chosen by hand (and are not

disclosed to the best of our knowledge) and use proprietary software.

When applying the multiscale Laplacian score on scRNA-seq data, I focused on

modelling the geometry of cell space with a specific k-nn graph constructed using

UMAP. The MLS is flexible for use on other graphs, such as Mapper graphs [122,

118], but the resulting analysis would change if the underlying cell graph changes.

Similarly, a graph could be fitted to be most consistent with the graph signals given by

the genes using a Laplacian, with such a graph fitting procedure having been proposed

by Daitch, Kelner and Spielman [43]. The effects of using different graphs to model

data geometry on the MLS remain future work. Some of these suggested graphs,

including Mapper graphs, aggregate several cells into a node. Different methods

for aggregating expression values and their effects on downstream analyses could be

explored.

Recently, a method for automated scale detection in multiscale community detec-

tion has been proposed [131]. This method could also be applied to the MLS. The

choice of resolution(s) for the MLS is not limited to Markov stability times (e.g. graph

wavelets [144] could be an alternative). Future directions include extending these sig-

nal selection approaches to other signals more generally (e.g., epigenetic factors),

other complex single-cell network structures [79] or other higher-order networks [130,

14], with a view towards data integration [88].
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Figure 3.1: We construct a graph with three communities, all of different sizes. (A)
the VI (on y-axis, VI is 0 except for a brief spike around t = 3.35) identifies resolutions
t1, at which all three communities are identified, and t2, at which two communities
are identified (note that due to the simplicity of the graph, there are intervals of
local minima instead of points; we pick t1 before the spike and t2 after). In (B),
we calculate the MLS at t1 and t2 (given by black circles) of three signals that are
equal to 1 on one of the t1-communities (constant part of the signal is highlighted
by arrows) and uniformly random elsewhere, and one completely random signal. The
signal that is constant on the largest cluster (bottom left) is identified as highly
consistent at both times. The random signal (top right) is identified as inconsistent
at both times. Conversely, the signal constant on the smallest community (top left)
has a high MLS at t2 relative to the MLS at t1, separating it from the signal constant
on the community of intermediate size (centre).
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Figure 3.2: (A) The graph of the variation of information of the community struc-
tures returned by 100 iterations of the Louvain algorithm at each Markov time. The
algorithm is run on the UMAP-weighted k-nn graph associated with the T cell data
set. Local minima indicate stable community structures and thus scales of interest.
The community structures at three such minima are by colourings of UMAP plots.
(B) Left: three scatter plots comparing the multiscale Laplacian scores of genes (grey
dots) at successive times to one another and of the final time to the combinatorial
Laplacian score. We highlight 6 genes of interest (black dots; annotated). Middle
and Right: UMAP plots visualising the expression of the genes of interest.
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(a) Mapper graph (b) PAGA graph

Figure 3.3: The Mapper graph (a) and the PAGA graph (b) as examples of inferred
trajectories on the T cell data from [91]. In the Mapper graph, each node contains
a similar amount of cells, while the number of cells in a node of the PAGA graph
varies significantly (size of node indicates number of cells contained). The five sparse
nodes visible at the top of the Mapper graph correspond to the group of cells with
high IGKC expression (see Figure 3.2), while most leaves in the PAGA graph do not
correspond to outliers visible in the UMAP plots.
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(a) UMAP plot of mouse colon organoid scRNA data coloured by genotype.

(b) UMAP plot of mouse colon organoid scRNA data coloured by cell-type.

Figure 3.4: UMAP plots of mouse colon organoid scRNA data.

66



Figure 3.5: (A) The graph of the variation of information of the community struc-
tures returned by 100 iterations of the Louvain algorithm at each Markov time. The
algorithm is run on the UMAP-weighted k-nn graph associated with the mouse colon
organoid data set. Local minima indicate stable community structures and thus
scales of interest. The community structures at three such minima are by colourings
of UMAP plots. (B) Left: three scatter plots comparing the multiscale Laplacian
scores of genes (grey dots) at successive times to one another and of the final time
to the combinatorial Laplacian score. We highlight 6 genes of interest (black dots;
annotated). Middle and Right: UMAP plots visualising the gene expression of the
genes of interest.
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(a) Mapper graph (b) PAGA graph

Figure 3.6: The Mapper graph (a) and the PAGA graph (b) as examples of inferred
trajectories on the mouse colon organoid data.
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An organoid is typically approximately circular in shape at the start of an experi-

ment (in the 2D, top-down view). As organoids grow and stem cells differentiate, they

can adopt different shapes that are altered by various pathological conditions [78].

Understanding how the morphology of an organoid changes over time can provide

important insights into disease progression and treatment as well as an inexpensive

and non-invasive quantification of tissue health. Previously, simple measures such

as cell numbers, organoid volume, and shape factor were used to analyse organoid

morphology [27, 69, 84, 161], but they often lack discriminative power. Deep learn-

69



ing methods can extract morphological features [62, 83], but they are not easily

interpretable. Mechanistic models have been developed [69, 140, 161] and fitted to

experimental data, but this approach lacks computational scalability.

In this chapter, I first introduce statistical methods used in this chapter (Section

4.1). I then propose a new signature called DETECT (DEtecting Temporal shape

changes with the Euler Characteristic Transform; Section 4.2) that can accurately

predict classical shape descriptors and classify organoids based on their morphology.

DETECT is a novel extension of the SECT (see Section 2.5.5) and is scalable and

interpretable through theoretical underpinnings from topology. I demonstrate the

efficacy of DETECT using a data set of mouse small intestine organoids (introduced

in Section 4.3) and show that DETECT outperforms simple shape descriptors at

classifying organoids based on their morphology (Section 4.4). The chapter concludes

with a discussion of the results and the potential implications of DETECT for future

research in organoid morphology (Section 4.5).

4.1 Statistical Analysis Methods

4.1.1 Random Forest Classification

Random forests are an ensemble classification technique using a collection of tree-

structured classifiers [23].

Definition 4.1. Let X = Rd be a Euclidean space and C = {1, ..., c} be a discrete set

of categories. A decision node is a tuple (i, t, p, n) where i = 1, ..., d is a feature index,

t ∈ R is a decision threshold and p and n both either decision nodes or a category.

A collection of decision nodes G = {(i, t, p, n), ...}, we can endow G with a graph

structure by adding a directed edge from v = (i, t, p, n) ∈ G to v′ = (i′, t′, p′, n′) ∈ G

whenever p = v′ or n = v′.

A collection of decision nodes T = {(i, t, p, n), ...} is called a decision tree if its

corresponding graph has the structure of a tree and has exactly one node with in-

degree 0 (called the root).

A decision tree T classifies a data point x ∈ X into categories C as follows:
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1. Find the root node v = (i, t, p, n) ∈ T .

2. If x(i) ≤ t, then v = p. Else, set v = n.

3. If v ∈ C, terminate the classification and return the category v. Else, if v is a

decision node, return to step 2.

This classification process is illustrated in an example in Figure 4.1.

Figure 4.1: An example of a decision tree determining if a US national (represented as
a tuple of their age and the duration for which they have held citizenship) is eligible
to serve as a Representative. First, it is determined whether they are older than 25
years. If not, they cannot serve. If yes, the tree checks if they have held citizenship
for more than 7 years, in which case they are eligible to serve.

Given a training data set X ⊂ X , a decision tree can be trained by identifying the

feature i and decision threshold t that minimises the overall classification error. The

pair (i, t) splits the data into two: one subset of the data in which feature i is less or

equal to t and another on which it is larger. As long as these subsets are of size two

or larger, we can train further nodes on the two respective subsets by finding splits

along a feature minimising the classification error. These two nodes are added to the

pair (i, t) as p and n respectively. If all points in one of the two subsets are of the

same category, we insert that category instead of inserting a new node. We iteratively

apply this principle to all new nodes until the training procedure terminates.
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In practice, early termination is often enforced in the above procedure. E.g. the

procedure is halted at a node if the depth of a node (i.e. distance to the initial node)

has reached a certain threshold or the size of the (iteratively split) data set at a node

has fallen below a threshold. In that case, the category most frequent in the sub-

data set at that node is inserted instead of a new node. Similarly, the optimisation

problem of finding (i, t) with a minimal classification error may be further constrained

to having to split the data into two subsets of at least some minimum size. All of the

above rules regularise the training of decision trees.

However, even with regularising training procedures in place, single decision trees

tend to overfit the training data [73]. To overcome this issue, Ho [73] introduced the

method of random forests:

Definition 4.2. A random forest is a classifier consisting of multiple decision trees

RF = {Ti}i=1,...,k. At each input data x ∈ X , RF returns the category most frequently

returned by the decision trees Ti when they are applied to x.

In other words, RF decides the class of x by a majority vote of its trees. The name

random forest derives from the common method for training random forests: For a

given training data set of size n with m features, fix n′ < n and m′ ≪ m. Then each

Tk is trained, using the procedure described above, on a random subsample of the

data of size n′ (sampled uniformly with replacement) and on m′ random features of

the data (sampled uniformly without replacement). Additional rules may still apply

in the training of the individual trees Ti.

Training individual trees Ti on random subsets of the data and the features and

then taking a majority vote makes random forests much more robust to outliers while

retaining the capability of learning complex decision boundaries [73]. In particular,

it can be proven that the generalisation error of random forests converges [23]; i.e.,

random forests do not overfit to training data.
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4.1.2 Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a method for both identifying and quantifying

the association of two sets of random variables [80]. It does so by maximising the

correlation between linear combinations of both sets of variables. We can place both

sets of random variables into vectors X = [X1, ..., Xp]
T ∈ Rp and Y = [Y1, ..., Yq] ∈ Rq.

Then, assuming that all Xi and Yj have finite second moment, we define

µX = E[X] ∈ Rp, µY = E[Y] ∈ Rq,

ΣXX = E
[
(X− µX) (X− µX)T

]
∈ Rp×p, ΣY Y = E

[
(Y − µY ) (Y − µY )T

]
∈ Rq×q,

ΣXY = E
[
(X− µX) (Y − µY )T

]
∈ Rp×q, ΣY X = ΣT

XY ∈ Rq×p .

In the first instance, CCA seeks (deterministic) coefficient vectors a ∈ Rp and

b ∈ Rq such that

Corr
(
aTX,bTY

)
=

aTΣXY b√
aTΣXXa

√
bTΣY Y b

(4.1)

is maximised. As the above formula clearly is scale-invariant in a and b, we can

introduce the further requirement that ∥a∥2 = ∥b∥2 = 1. Call the vectors maximising

Equation (4.1) a1 and b1 and define U1 = aT
1X and V1 = bT

1Y. We call the maximal

value of (4.1), denoted by ρ1, the first canonical correlation of X and Y. The variables

U1 and V1 are called the first canonical variables.

We then iteratively define Uk and Vk by maximising Equation (4.1) with the

additional constraints that Cov
(
aT
kX, Ui

)
= Cov

(
bT
kY, Vi

)
= 0 for all i = 1, ..., k−1.

Similarly, the k-th canonical correlation ρk is defined to be the correlation of the k-th

canonical variables Uk and Vk. We can compute min{p, q} canonical correlations in

this fashion (assuming that ΣXX and ΣY Y are both invertible).

The coefficients ai and bi can be computed as follows:

Lemma 4.3 (Result 10.1 in [80]). Let ei and fi be eigenvectors corresponding to

the i-th largest eigenvalues of Σ
−1/2
XX ΣXY Σ−1

Y Y ΣY XΣ
−1/2
XX and Σ

−1/2
Y Y ΣY XΣ−1

XXΣXY Σ
−1/2
Y Y ,

respectively. Then,

ai ∝ Σ
1/2
XXei, bi ∝ Σ

1/2
Y Y fi.
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Further,

fi ∝ Σ
−1/2
Y Y ΣY XΣ

−1/2
XX ei.

Interpreting canonical variables

Let A be the matrix with columns ai and E the orthogonal matrix with rows ei. Then

using the above result and the spectral decomposition of ΣXX = P TΛP , we get

A = EΣ1/2 = EP TΛ1/2P

up to a constant scalar. We can thus interpret the action of the matrix A on X as

follows: it first transforms X to its principal components, then standardises the along

the principal axes, before applying a rotation [80].

Further, CCA can be viewed as a generalisation of other correlation analyses, such

as Pearson correlation, multiple correlations and principal component analysis (PCA)

[80, p. 547].

Via the interpretation of CCA as a generalised multiple correlation analysis, it

can be shown that ρ2k gives the proportion of the variance of Uk that can be explained

by (linear combinations of) Y (and vice-versa between Vk and X). However, Uk need

not represent a lot of the variance in X, which needs to be checked separately. The

proportion of the variance in X that can be explained by Ui, i = 1, ..., k can be

computed by

RX =
tr
(∑k

i=1 aia
T
i

)
tr (ΣXX)

.

The formula for RY is defined analogously. These quantities should be checked by

investigators before drawing conclusions from a CCA.

4.2 Temporal Shape Detection with DETECT

The SECT transforms a fixed, static shape into a functional signature. We now

extend the definition of the SECT to get a rotationally invariant temporal signature

of a sequence of shapes:
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Definition 4.4. Let T = [0, c] or T = {0, 1, ..., n − 1}, where c ∈ R and n ∈

N, be a set of time points. Let {K(t)}t∈T be a sequence of simplicial complexes

embedded in Rd. Then the DETECT (DEtecting Temporal shape changes with the

Euler Characteristic Transform) of this sequence is the transform

DETECT ({K(t)}) : T → L2([−a, a]), t 7→
(
x 7→

∫
Sd−1

SECTK(t)(v, x) dv

)
.

Here, we use DETECT with T = {0, ..., n− 1}. In practice, after integrating out

the dependence on the direction, DETECT is a function from T to L2([−a, a]). Such

functions form an infinite dimensional vector space and thus a finite presentation is

not possible in general. We, therefore, evaluate DETECT at any fixed t ∈ T on a

finite number of evenly spaced points P in [−a, a]. DETECT is then represented

approximately by a |T | × |P |-matrix. In this chapter, we apply DETECT to two

time-course data sets of organoid boundaries. We consider the space of such matrices

to be endowed with the ∥ · ∥2-norm.

4.3 Data Set

We first acquired a set of imaging data derived from time-lapse imaging of mouse

small intestine organoids. In total, we have 176 organoids and 320 video frames for

each organoid. The data set comprises of 74 wild-type (WT) and 102 p53 knock-

out (KO/mutant) genetics organoids. Both groups of organoids further split into

untreated organoids (CNT) and organoids treated with valproic acid and GSK3 in-

hibitor CHIR99021 (VC). These organoids have been filmed throughout their growth

and the resulting videos have been segmented. After segmentation, we have 100 points

summarising the boundary of each organoid at each video frame (frames starting at

the beginning of the experiment and are taken every 15 minutes henceforth). We

discard some videos which for technical reasons have fewer than 320 video frames, as

most videos below this threshold still seem to change their morphology at the end of

the video.

The organoid boundaries in this data set are, in the 2D video view, close to being

perfectly circular in the early stages of the videos across all experimental conditions.
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This simple geometry is a result of cellular homogeneity in the early phases. As time

progresses, cells proliferate and differentiate. Through proliferation, organoids grow

in size, and through stem-cell differentiation, the cellular composition of organoids

changes. As different cell types have different mechanistic properties and differenti-

ation is not spatially uniform, organoids cease to be spherical. Most notably, they

elongate and their boundary buckles, possibly leading to the growth of finger-like pro-

trusions. Such growth behaviour is illustrated by the examples of final video frames

presented in Figure 4.2.

Figure 4.2: Phenotype effect of VC treatment to intestinal organoids. Static video
snapshots of the final frame. One example is shown for each condition.

Each collection of boundary points is transformed into a simplicial complex repres-

enting the organoid boundaries, yielding a sequence of simplicial complexes indexed

by t = 0, ..., 319 for each organoid. We re-centre each simplicial complex such that

the mean of all vertices is the origin. We then compute the radius of the simplicial

complex at t = 0 (i.e. the largest norm of all vertices after re-centring) and divide all

vertices in the sequence of simplicial complexes by that value. We translate and scale

the data in this way to simplify it, given its limited size. As a result, the initial size

of organoids or any movement throughout time is not considered by any downstream

analysis, including DETECT.

4.4 Results

We analyse the shape of organoid boundaries of experimental (2D) data by first

building a simplicial complex representation. We then compute the SECT of each

organoid at each time point and integrate out its S1 component to obtain DETECT.
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When computing DETECT, we use a = 6 for the 2D organoids and P to be 100 evenly

spaces points in [−a, a]. We then compute a 100-dimensional feature embedding. We

apply a Gaussian kernel with λ = |N | × |P |).

4.4.1 Regressing SECT to Classical Shape Statistics

We first compute the SECT of static images of experimental organoids and demon-

strate that the SECT (after its S1 component has been integrated out) includes

information conveyed by classical shape statistics. Henceforth, we call this signa-

ture the marginalised SECT. The classic shape statistics, diameter, mean and max

centroid distances, the equivalent diameter, the major and minor axis lengths and

the area of the convex hull, quantify the geometric properties of a 2D shape. These

statistics are widely used and invariant under translation and O(2)-actions. As each

of these statistics is calculated for a static shape, i.e. for an organoid boundary at a

fixed time frame, we compare these statistics to the marginalised SECT at fixed time

frames.

To compare the aforementioned shape statistics with the marginalised SECT, we

apply a standard linear regression model. The marginalised SECT of each organoid at

each time is represented by a Nystroem feature (c.f. Section 2.5.6; we set m = 100).

We project the feature embedding to 50 dimensions using PCA [114]. The PCA

vectors give the independent variables, while the classic shape statistics listed above

are viewed as the dependent variables. We pass the square-root values of the convex

hull area to the regression model, as it has a squared relationship with the remain-

ing metrics in the (default) symmetric cases. An illustration of the main notions is

given in Figure 4.3. We perform a 50-fold cross-validation for each metric and re-

port mean coefficients of determination and standard deviations of the coefficient of

determination in Table 4.1.

We find that the marginalised SECT regresses multiple classical shape statistics

with high accuracy. The marginalised SECT has high predictive accuracy of equival-

ent diameters and perimeter and, as a result, can also detect symmetry breaking. The

lower accuracy of the minor axis length and convex area suggests that the marginal-
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R2-scores std

equivalent diameter 0.880 0.073
max. centroid distance 0.916 0.041
mean centroid distance 0.894 0.067

major axis length 0.880 0.052
minor axis length 0.630 0.246

perimeter 0.972 0.024√
convex area 0.868 0.105

Table 4.1: Mean coefficients of determinations (R2-scores) and their standard devi-
ations (std) in a 50-fold cross-validation of a Linear regression in which the Nystroem
embedding of the marginalised SECT gives the independent variables and the 8 vari-
ables above give the dependent variables.

Figure 4.3: Left: The red point gives the centroid (point which minimises mean
squared distance to boundary) of the organoid and the green line gives the distance
to a boundary point. The maximal and mean lengths of such green lines give the
max. and mean centroid distance. Centre: The red ellipse gives the ellipse with the
best fit to the boundary. The purple line gives the major axis and the green line the
minor axis. Right: the area of the convex hull (convex area) is visualised in opaque
red.

ised SECT is more limited in its ability to capture the (mean) size of indentations,

compared to detecting size and elongation. We remark that this limitation may be

related to segmentation accuracy, and therefore, we consider organoid shapes with

known segmentation (i.e. synthetic data) in Chapter 5.

In addition to the above regression analysis, we can decompose the covariance

matrix of the aforementioned classical shape statistics by its singular values. We

remark that we standardise the data in each feature before computing the covari-

ances. We observe that the first four principal components of the classical shape

statistics explain over 90% of the variance in this data set (see Figure 4.4). We then
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perform a canonical correlation analysis (see Section 4.1.2) [157] between these four

principal components and the PCA-transformed marginalised SECT data. We find

that the first four pairs of canonical variables have a perfect correlation score of 1.0

and conclude that the marginalised SECT can explain over 90% of the variance in

the classical shape statistics on the given data set.

Figure 4.4: The eigenvalues (y-axis) of the covariance matrix of the classical shape
descriptors in decreasing order (indices of eigenvalues on x-axis). The data was stand-
ardised in each component before the covariance matrix was computed. The first four
eigenvalues (to the left of the dashed line) account for approximately 90.5% of the
variance in the data.

4.4.2 Classification of Organoids with DETECT

We focus on classifying p53-knock-out organoids into treated and untreated groups.

Before training a classifier, we seek to exclude some organoids where the segmenta-

tion does not accurately trace the organoid boundary in the video. In these cases, the

segmented boundary is significantly larger than the true organoid boundary. There-

fore, we exclude organoids whose radius grows by a factor of more than two. For

p53-knock-out organoids, this procedure excludes two out of 98 organoids. Of the

remaining 96 organoids, 55 are untreated and 41 are treated.

We use random forest classification (see Section 4.1.1) [23] to classify p53-knock-

out organoids into untreated and VC-treated experimental groups. Random forest

79



classification then trains an ensemble of decision trees trained on random subsets of

the Nystroem-transformed DETECT data. The trees classify data points by majority

vote. We use the scikit-learn [115] implementation of random forest classification

and optimise the hyper-parameters of the maximum tree depth, the minimum number

of samples allowed to define a split and the minimum number of samples per tree leaf

by cross-validation grid search (GridSearchCV in scikit-learn). Based on this

optimisation, the maximum tree depth is five, the minimum number of samples to

define a split is five and the minimum number of samples per tree leaf is three. The

5-fold cross-validation for these parameters gives a mean classification accuracy of

68.8% with a standard deviation of 2.7%. We remark that setting the number of

Nystroem features to m = 500 increases the mean accuracy further to 70.0% but also

increases the standard deviation to 7.5%. The higher standard deviation suggests

that setting m = 500 could result in overfitting.

The accuracy of classification results based on DETECT exceeds those based on all

classical statistics (e.g. area and perimeter) which give a mean classification accuracy

of 60.5% and a standard deviation of 4.8% when we use the pipeline and cross-

validation method described above. Classification based on DETECT also exceeds

the baseline accuracy associated with guessing, which is 57.4% as there are slightly

more untreated than treated organoids in our data set. Further, we have shown that

combining DETECT with machine learning can distinguish organoids treated with

valproic acid and GSK3 inhibitor based on quantification of their shape dynamics as

well as regress out classical shape statistics.

4.5 Discussion

In this chapter, I have introduced a new technique from the field of topological data

analysis for detecting temporal shape changes with the Euler characteristic trans-

form (DETECT). I have highlighted its utility by studying organoid morphology. I

first showed that several classical shape descriptors, including the diameter, the mean

and maximum centroid distances, the equivalent diameter, the major and minor axis
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lengths and the area of the convex hull, can be regressed from the (marginalised)

smooth Euler characteristic transform (SECT) with high accuracy. Then I applied

DETECT, with kernel approximation methods and random forests, to a data set of

experimental p53 knock-out mouse small intestine organoids and showed that this

approach can distinguish VC-treated organoids from untreated organoids. This in-

tegration with kernel approximations enables larger data sets to be analysed as when

kernel methods are used the runtime complexity of ECT can be reduced from being

cubic to approximately linear in the number of data points. Such improvements in

runtime also allow for the application of a wider range of statistical methods.

It remains future work to extend our findings to data sets of different types of

organoids (derived from different organs, with different genetic backgrounds and/or

cultured under different conditions). Further, it is important to study information

loss between 3D data and their 2D projections. One possible way of approaching this

problem is by considering synthetic data generated from 3D mechanistic models (such

as [161]) and comparing it to 2D projections of the same data by using DETECT.

However, these models neglect certain biophysical processes (e.g. the effects of gravity,

the production of extracellular matrix, mechanical stress) [161]. Such a comparison

is further complicated by the fact that even if there were no information loss between

3D data and its 2D projection, the DETECT signatures of 3D and 2D would be very

different (due to S2 and S1 having different Euler characteristics).

Further worthwhile research includes extending this analysis to other types of

morphological data that do not have regularised and smooth boundaries. In practice,

data sets analysed by the ECT and its extensions may be noisier than the data set

analysed in this chapter.

Finally, a feature selection in (kernelised) DETECT space followed by a recon-

struction of a dynamic shape along that feature would be worthwhile future research:

One would first identify features which vary most across different organoid categories.

Second, one would then reconstruct how the temporal evolution of an organoid shape

changes along that feature. Wang et al. [155] give a blueprint for such an analysis

in their SINATRA pipeline. However, further theoretical work is needed to extend
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their method to DETECT to account for both a shape changing over time and the

signature being rotationally invariant. Once such a theoretical extension is accom-

plished, such an inversion of DETECT would help to gain further information on how

genetics and treatments are associated with organoid morphology.
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Chapter 5

TDA of Synthetic 3D Organoid
Data
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Organoids are inherently three-dimensional entities. Thus, the 2D view given by the

videos in Chapter 4 may lose information about organoid morphology and growth.

Experimental 3D segmentations of organoids have already been collected (e.g. [78]).

Although we did not have access to such data for our studies, it is likely that 3D seg-

mentations will become the predominant type of experimental organoid morphology

data.

In this chapter, I analyse 3D data generated by a mechanistic model developed by

Yan et al. [161] to illustrate how DETECT generalises to 3D shapes. Further, I use

this data set, in which we have tight control over the factors driving perturbations to

the morphology, to show that DETECT captures biologically meaningful information.

In particular, I show that we can accurately cluster organoids by the proliferation rates

of their constituent cells based on the DETECT signature of their 3D shape evolution.
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This chapter is structured as follows: I first give a summary of the model used to

generate the organoid data (Section 5.1). I then describe the data set and how it has

been pre-processed (Section 5.2) before presenting the results of applying DETECT

to this data set (Section 5.3). The chapter concludes with a brief discussion of the

results and potential future work (Section 5.4).

5.1 The Model

The data analysed in this chapter has been generated from a continuum mechanistic

model published by Yan, Konstorum and Lowengrub in [161] which describes the

growth of intestinal organoids in 3D. In contrast to agent-based models (e.g. [27, 92,

140]), which resolve individual cells of an organoid and their interactions, continuum

models describe organoids in terms of volume fractions of different cell types. These

volume fractions are continuous functions of space and time, which can be thought of

as the fraction of cells of a given type occupying an infinitesimally small neighbour-

hood of a point in space. Their evolution is described by a set of partial differential

equations (PDEs).

The model described in [161] distinguishes three cell types:

Stem Cells (SCs): They proliferate slowly and secrete short-range self-renewal pro-

moters (e.g. Wnt) and corresponding long-range inhibitors (e.g. Dkk). When

SCs differentiate, they produce committed progenitor cells.

Committed progenitor cells (CPs): They proliferate more rapidly than SCs.

When they differentiate, they produce terminally differentiated cells.

Terminally differentiated cells (TDs): They secrete differentiation promoters,

forming a negative feedback loop on SC and CP renewal.

In addition to the cell types listed above, volume can also be occupied by dead

material (D) and the host region in which the organoid is being cultured (H). The

host region may be gel. Volume can also be occupied by non-solid material, such

as water (W). The volume fraction of each material is summarised in functions
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ϕi(x, y, z, t), where the subscript i indicates one of the aforementioned abbreviations

(i = SC,CP, TD,D,H,W ).

For i = SC,CP, TD,D, the model assumes

∂ϕi

∂t
= −∇ · (usϕi)−∇ · Ji + Srci,

where Ji is a mass flux taken to be the generalised Fick’s law (see [161, Eq. (3)]) and

us is the mass-averaged velocity of all solid components (see [161, Eq. (5)]). Thus, the

first term on the right-hand-side of the above equation, ∇· (usϕi), models passive cell

movement (advection), i.e. motion induced by movement of other nearby material.

The second term, ∇ ·Ji, models active movement of the cells, i.e. movement induced

by the cells themselves. The terms Srci represent net the net rate of production of

new material. All parameters that we vary in our data set are included in these source

terms. In particular,

SrcSC =λSCm nϕSC(2p0 − 1)− λSCn H (ñSC − n)ϕSC

SrcCP =λSCm nϕSC2(1− p0) + λCP
m nϕCP (2p1 − 1)− λCP

n H (ñCP − n)ϕCP

SrcTD =λCP
m nϕCP2(1− p1)− λTD

n H (ñTD − n)ϕTD − λTD
a ϕTD,

SrcD =λSCn H (ñSC − n)ϕSC + λCP
n H (ñCP − n)ϕCP + λTD

n H (ñTD − n)ϕTD

+ λTD
a ϕTD − λLϕD.

In the above, H denotes the Heaviside function1 and λij denotes the mitosis (m),

necrosis (n), apoptosis (a) and lysis (L) (i = m,n, a, L) rates of the various cell types

j, respectively. These rates are assumed to be constant in space and time. Mitosis

refers to the proliferation (or self-renewal) of cells, necrosis to cell death induced

by external factors (e.g. lack of nutrient availability) and apoptosis is self-induced,

‘natural’ cell death. Lysis refers to the disintegration of dead cells into non-solid

material (here: water).

In the definition of Srci, p0 and p1 denote the self-renewal probabilities of SCs

and CPs, respectively, and ñi denote the minimal nutrient levels needed to support

1H(x) = 1 if x > 0, H(x) = 0 otherwise.
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cell viability. The term n represents the overall nutrient concentration and satisfies

a reaction-diffusion equation [161, Eq. (14)]. Unlike the rate parameters λ, these

probabilities and concentrations are not assumed to be constant and are governed

by PDEs depending on additional model parameters. As we keep these parameters

constant, I will not give further details about these PDEs, which can be found in

[161, pp. 6–8]. The PDEs governing these probabilities follow a model for Turing-

type pattern formation and depend on the spatial distribution of cell types as well as

the availability of activators, inhibitors and feedback regulators [161].

5.2 Data Set

The authors of [161] generated a synthetic data set to verify our findings on the

experimental data using their model. All but two of the parameters presented in

the publication [161] are fixed. They vary λL = 0.5, 1, 2, the lysis parameter, and

λSCm = λCP
m = 0.35, 0.71, 1.42, cell mitosis parameters for stem cells and committed

progenitor cells, respectively (all parameters are dimensionless). All other parameters

are left at the default values reported in [161, Table 1]. The data set comprises

the boundaries of the aforementioned organoids at times t = 20, 40, 60, 80, 100 (t is

dimensionless).

The initial conditions are defined via

ϕT (x, 0) = 1−
3∏

i=1

1

2

(
1 + tanh

(
ri − 2

2
√

2ε

))
r1 =

√
(x− 0.1)2 + (y + 1.2)2 + (z + 1.3)2

r2 =
√

(x− 0.2)2 + (y − 0.7)2 + (z + 1.3)2

r3 =
√

(x+ 0.8)2 + (y + 0.2)2 + (z − 0.8)2,

where ε = 0.05. We then set ϕSC = 0.1ϕT , ϕSC = 0.1ϕT , ϕCP = 0.25ϕT , ϕTD = 0.6ϕT

and ϕSC = 0.05ϕT at time t = 0. Any remaining volume is occupied by host region

and water. This setup gives an initial configuration of three overlapping spheres

around the centre of the computational domain [161].
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As we observe all possible combinations of death and proliferation parameters,

we get time-course data for nine different computationally modelled organoids. We

visualise examples of the simulated organoid development in this data set in Figure

5.1.

Figure 5.1: Spatio-temporal shape changes in 3D of synthetic organoids. Top column:
Low (LO) mitosis rate. Middle column: Medium (MD) mitosis rate. Bottom column:
High (HI) mitosis rate. In all organoids visualised, the lysis rates are at the lowest
values given in the data set.

Unlike the experimental data, the number of 3D boundary points varies propor-

tionally with the size of the simulated organoid. To ensure computational tractability,

we restrict ourselves to 300 boundary points sampled uniformly at random at each

time point. Different 300 samples do not lead to any notable perturbations in the

downstream analyses. As some of the organoids disconnect, we first cluster the 300

points using DBSCAN [52] (with ε = 2, min samples=5) to identify connected com-

ponents. To triangulate the boundary surface at a given time point, we first re-centre

(each connected component of) the organoid such that the mean of all boundary

points is the origin. We then perform a stereographic projection into the xy-plane

and perform a Delaunay triangulation and identify those points bordering an infinite

area 2-cell. After projecting the finite components of the triangulations back onto the
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sphere, we add a further point, which is the mean of all points bordering an infinite

area cell in the previous step, and insert 1 and 2-cells to fill the north-pole area of

our organoid. We credit [44] with this pre-processing procedure. Unlike in the ex-

perimental data, re-scaling is not needed as all simulated organoids are identical at

t = 1.

We perform this pre-processing step to ensure that the resulting simplicial com-

plex has a geometric realisation homeomorphic to a sphere (or a union thereof, if

an organoid disconnects). This pre-processing is a necessary step to ensure that

faithful topological features (e.g. the correct number of components or holes) are

present before computing Euler characteristics. Random rotations of the data ahead

of pre-processing lead to negligible differences in DETECT and thus suggest this

pre-processing does not introduce artificial geometric features.

5.3 Results

Finally, we apply our methodology to the synthetic data generated by the model of

Yan, Kostorum and Lowengrub [161]. As described in Section 5.2, this data set con-

tains 9 organoids and thus is too small to apply linear regression or random forest

classification. We therefore only report the first two principal components of the

Nystroem-transformed DETECT signatures. These outputs demonstrate that our

methods generalise well to 3D shapes and identify important structures in the syn-

thetic data, for which we know the ground truth.

This analysis, visualised in Figure 5.2, shows that organoids cluster together by

their mitosis rates. This behaviour is consistent with watching the videos for these 9

organoids. We see that low-mitosis-rate organoids exhibit little growth and virtually

no symmetry breaking (see Figure 5.1). Medium-mitosis-rate organoids show a little

more growth than low-proliferation organoids and notable buckling of their boundary

(see Figure 5.1). Finally, high-mitosis-rate organoids exhibit a large degree of growth

and strong development of protrusions. In fact, the development of protrusions is so
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(a) (b)

Figure 5.2: (A) The first two principal components of the Nystroem-transformed
DETECT for the 3D analysis. We see that these kernelised DETECT signatures
cluster by mitosis rate, which is the dominant signal in the data. (B) Example of 2D
projections of an organoid with given mitosis rate at the final time-point.

pronounced that several protrusions disconnect from the main organoid at later time

points (see Figure 5.1).

The principal components in Figure 5.2 therefore appear to pick up the major

signal in the synthetic 3D data set. We hypothesise that the first principal com-

ponent is proportional to the size of the organoid. Similarly, we conjecture that the

second principal component corresponds to the geometric complexity of the organoids.

In particular, low-mitosis-rate organoids have the lowest geometric complexity while

medium-mitosis-rate exhibit significant symmetry breaking. The high-mitosis-rate

organoids lie in between the two former groups of organoids in terms of geometric

complexity, as their protrusion development is so pronounced that protrusions dis-

connect. The resulting connected tissues are relatively spherical.

5.4 Discussion

From the results in Figure 5.2, we see that DETECT captures biologically relevant

information from organoid morphology on this data set: The organoids clearly cluster

by mitosis rate, which is the parameter in our data explaining most of the variance in

shape (see Figure 5.1). These findings support the use of DETECT on experimental

data as described in Chapter 4. It remains future work to replicate the findings
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described in this chapter on a larger synthetic data set, but unfortunately, we did

not manage to obtain such data in time. Similarly, it would be desirable to apply

DETECT to data generated by models describing the growth of different types of

organoids. Further, the analysis pipeline of this data could be applied to other types

of morphological data that do not have regularised and smooth boundaries. For

example, there are no random perturbations in the synthetic data studied here. As

we know the true organoid morphology in the case of synthetic data, one could thereby

study and quantify the effects of random noise on DETECT.

The analysis of the data presented in this chapter also demonstrates that DE-

TECT generalises to 3D data. First studies, such as [78], study 3D experimental

segmentations of organoids. As organoids are inherently three-dimensional, such 3D

experimental data is likely to become increasingly prevalent.
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Chapter 6

ECT Stability and Inference

Chapter Content

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1.1 Problem Statement and Contributions . . . . . . . . . . . . . 92

6.1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.2 Topological Preliminaries . . . . . . . . . . . . . . . . . . . . . 96

6.2.3 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 ECT Stability of Non-Random Data . . . . . . . . . . . . . . . . . . 101

6.3.1 Stability for Smooth Curves . . . . . . . . . . . . . . . . . . . 101

6.3.2 Stability of Piece-wise Linear Interpolation . . . . . . . . . . . 103

6.4 ECT Stability of Random Data . . . . . . . . . . . . . . . . . . . . . 104

6.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Declaration of Authorship

The research presented in this chapter is a collaboration with David Beers. David

conceptualised and proved all results in Section 6.3. I conceptualised and proved all

results in Section 6.4, created all figures and created and implemented the example in

91



Section 6.5. All remaining sections are joint work. I present both mine and David’s

work in this section, as together our results yield a consistent estimator of the ECT

(c.f. Theorem 6.12), which is a significant novel result.

6.1 Introduction

Classifying shapes is a ubiquitous task in data science and machine learning. A

wealth of theory has been developed to distinguish different shapes and a large array

of applications of these methods in the natural sciences exist [21, 48, 57, 155]. In

particular the Euler characteristic transform (ECT) [146], arising from topological

data analysis (TDA) and introduced in Section 2.5.5, provides a sufficient statistic

for a large class of shapes [41, 59] (e.g., compact semi-algebraic sets), lies in a Hilbert

space and is fast to compute. By contrast to other TDA methods, such as persistent

homology [38] and the persistent homology transform [146], we are not aware of any

general stability results for the ECT which are independent of the triangulation of a

shape.

6.1.1 Problem Statement and Contributions

We propose a new metric on the embeddings of a finite one-dimensional CW complex

that is sensitive to changes in arc length. Next, we introduce a norm on Euler

characteristic transforms, in a similar vein to the norm introduced in Meng et al. [104,

Equation 3.1], defined by taking first the 1-norm over the R component, and then the

∞-norm over the Sd−1 component of the ECT. We then prove a novel stability result

for the ECT, showing that the ECT is continuous in our metric of embedded spaces

and the proposed norm (Theorem 6.3). In other words, if two embeddings of the same

one-dimensional CW complex are sufficiently close in our metric, their corresponding

ECTs are also close. To the best of our knowledge, our result is the first stability

result for the ECT which is independent of the triangulation of a shape. Using similar

ideas, we also show that the ECT of a smooth underlying shape can be approximated

using sufficiently fine triangulations (Theorem 6.8). Further, we propose a smoothing
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method for embeddings of one-dimensional CW complexes that were perturbed by

independent Gaussian noise in ambient space. We use the two previous results to

prove that our smoothing method does not only yield stability but also provides a

consistent statistical estimator for the ECT of a noisy data set (Theorem 6.12), i.e.

the ECT of the smoothed shape converges to the ECT of the underlying shape in

probability as we increase the number of noisy observations.

The well-known stability results in applied topology for Čech and Vietoris-Rips

filtrations of point clouds are stated in terms of the Hausdorff distance [34]. Proving

stability results for the ECT is complicated by the fact that this metric is too coarse

for the ECT to be continuous. Crucially, it is straightforward to construct examples

of two shapes embedded in Euclidean space which are close in Hausdorff distance but

whose ECTs are far apart. We loosely classify such instabilities into two categories.

The first type of instability arises when two shapes are close in Hausdorff distance,

yet not homeomorphic to each other. Counterexamples can be constructed by adding

a single point to a shape at an arbitrarily close distance, as visualised in Figure 6.1

for the case of an embedded simplicial complex. We point out that classical persistent

homology and the persistent homology transform (PHT) [146] suffer from the same

instability. However, extended persistence [37] and the extended persistent homology

transform [147] can be used to partially overcome this type of instability. In this

chapter, we resolve the described type of instability by restricting ourselves to shapes

that are homeomorphic. Restricting an ECT analysis to a homeomorphism class of

shapes is common in applications [3, 98, 106, 139].

Secondly, the ECT can suffer from instability through excessive curvature. For

example, in the case of shapes homeomorphic to S1 or I = [0, 1], which can be

parameterised as curves, this type of instability occurs when two curves are close

in the embedded space, but one curve changes curvature much more rapidly. An

example of such curves is given in Figure 6.2. Such instability is expected to occur if

a shape is approximated based on points which are perturbed independently of each

other by ambient noise.

Our work resolves instabilities of the second type for one-dimensional shapes by
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Figure 6.1: We visualise two embedded simplicial complexes (top) which differ by
a single vertex. Their SECTs (bottom), visualised for a filtration in the bottom-
to-top direction, are significantly different. The illustrated behaviour persists when
we move the disconnected vertex in the top right panel (indicated by the arrow)
arbitrarily close to the larger connected component.

Figure 6.2: Two shapes homeomorphic to [0, 1] embedded into R2: A straight line
(blue) and a wave (red) closely following the straight line with a small amplitude
ε and high frequency. As long as the frequency is high enough for the wave to go
through n := ⌈1/ε⌉ amplitudes, the distance of the ECTs of the two curves is at least
1 (fix the S1-component of the ECTs to be the bottom-up direction and compute the
1-norm over R), while the Hausdorff distance between the curves is ε.
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proposing a new metric which is sensitive to curvature. We also provide a statist-

ical estimator of the ECT which is consistent under perturbations by independently

distributed Gaussian noise. These perturbations are likely to produce changes in

curvature. While the PHT and extended PHT do not suffer from instabilities as

illustrated in Figure 6.2, neither method provides a consistent estimator. Further-

more, the ECT arguably provides signatures more amenable to the application of

further statistical and machine learning methods and are, by themselves as well as in

conjunction with our new method, faster to compute.

6.1.2 Outline

This chapter is structured as follows: We start by introducing background on previous

work, one-dimensional CW complexes and generalisations of the ECT and SECT in

Section 6.2. Further, we introduce Gaussian processes. In Section 6.3 we propose a

novel metric on the space of embeddings of a finite one-dimensional CW complex and

prove that the ECT is stable against this metric for C2-embeddings in Theorem 6.3.

Then we propose a method for approximating the ECT of such an embedding by

interpolating points in a finite subset in Theorem 6.8. In Theorem 6.11 of Section 6.4

we prove the probabilistic convergence of Gaussian processes on finite one-dimensional

CW complexes, given a suitable kernel. Next, we construct a statistical estimator of

the ECT for a shape perturbed by independent Gaussian noise. In Theorem 6.12 we

combine our deterministic stability results with our probabilistic convergence result

to prove that the estimator is consistent. Finally, we illustrate the power of our

estimator and results on an example in Section 6.5 before concluding the chapter

with a discussion in Section 6.6. The proofs of the results of this chapter can be

found in Appendix A.3.

95



6.2 Background

6.2.1 Related Work

Already the work of Berkouk [12] shows that there is no metric on Euler curves

that is stable against the interleaving distance of underlying persistence modules and

satisfies a few mild, desirable conditions. We note that the stability of the Wasserstein

distance proved by Skraba and Turner [135] provides a straightforward stability result

for the ECT. Further, D lotko and Gurnari [47] prove a similar result for the Euler

characteristic curve. Nadimpalli et al. [106] prove a stability result for the ECT on

binary image data, which is linear in the number of voxels at which two images differ.

However, these stability results depend on the number of simplices in the underlying

simplicial complex and the bound on the ECT becomes increasingly loose as the

number of data points increases. Meng et al. [104] provide results that imply stability

of the ECT when a shape is perturbed by rotations and translations but not for more

general perturbations. Tameness assumptions, which are not needed in our results, are

required for the stability they prove to hold. They also provide a statistical inference

pipeline for shapes using the SECT. However, their pipeline considers parameterised

families of shapes and random perturbations only happen in parameter space. As a

result, the perturbations of points in shape space are correlated. By contrast, our

results on the estimation of the ECT and SECT allow independent perturbations in

ambient space.

6.2.2 Topological Preliminaries

One-Dimensional CW Complexes

A topological space Z is called a one-dimensional CW complex if it is of the form

Z =

(
Z0 ⊔

⊔
λ∈Λ

[0, 1]

)
/ϕ, (6.1)

where Z0 is a set with the discrete topology and ϕ is some map from the endpoints

of the intervals in
⊔

λ∈Λ[0, 1] to Z0. We refer to the map sending the λth copy of

[0, 1] into Z by Φλ (note that Φλ must be injective everywhere except possibly the
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endpoints of the interval). The space Z is said to be a finite one-dimensional CW

complex if it can be written as in Equation (6.1) with Z0 and Λ finite. We refer to

points in Z that are in the image of Z0 → Z as 0-cells and subsets of Z that are the

image of a map Φλ as 1-cells. For convenience, we denote the set of 1-cells of Z by Z1.

It may be possible for a space Z to be written as in Equation (6.1) in many different

ways. For instance, the circle admits the structure of a one-dimensional CW complex

with n 0-cells and n 1-cells for any natural number n. Sometimes, we need to fix a

cellular decomposition of a shape. When fixing a choice of Z0 and {Φλ}λ∈Λ, we refer

to Z∗ = (Z,Z0, {Φλ}λ∈Λ) as a CW structure on Z.

We are primarily interested in shapes with this structure that are subsets of Rd.

To this end, we say that f : Z → X ⊆ Rd is a Cr map under Z∗ if Φλ ◦ f is

Cr (i.e., r-times continuously differentiable) for each λ ∈ Λ. We denote the set of

such maps f by F r(Z∗, d). We denote the subset of F r(Z∗, d) of maps that are also

homeomorphisms by Er(Z∗, d) and the set of images of these homeomorphisms by

Gr(Z∗, d).

For r ≥ 2, we say that f ∈ F r(Z∗, d) has curvature bounded by M if the curvature

of each map Φλ ◦ f is bounded by M for every λ ∈ Λ. By compactness of the

unit interval, it follows that every f ∈ Gr(Z∗, d) has curvature bounded by some

constant M whenever Z is a finite one-dimensional CW complex and r ≥ 2. We say

X ∈ Gr(Z∗, d) has curvature bounded by M under Z∗ if the curvature of any map

h ∈ Er(Z∗, d) with image X has curvature bounded by M . It is straightforward to

show that if X has curvature bounded by M under Z∗, then every map h ∈ Er(Z∗, d)

with image X has curvature bounded by M .

The Euler Characteristic Transform: Recap and Extension

Similarly to the result stated in Lemma 2.10, the Euler characteristic of a space

homeomorphic to a finite one-dimensional CW complex containing ck cells of dimen-

sion k for k = 0, 1, can be computed as.

χ(X) = c0 − c1.
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For a proof of this equation, see for example [70, Theorem 2.44]. In particular, if every

path-component of X is contractible, then χ(X) is the number of path-components

of X. This formula can then be used to efficiently compute the Euler characteristic

of a finite one-dimensional CW complex.

The ECT and SECT of a finite one-dimensional CW complex embedded in Rd

are then defined as in Section 2.5.5. Often one restricts to constructible families of

subsets of Rd when studying theoretical properties of the ECT, however, for the results

presented in this chapter these assumptions are unnecessary and further mention of

constructible sets will be limited. However, we will focus on Cr-embeddings of finite

one-dimensional CW complexes, which are always bounded subsets of Rd. Thus, it is

always possible to define the SECT of such an embedded shape.

For the remainder of this chapter, we endow the ECT (viewed as a function on

Sd−1 × [−a, a]) with the norm

∥ECTX∥ := sup
v∈Sd−1

∫ a

−a

|ECTX(v, t)| dt. (6.2)

The norm is defined and considered analogously for the SECT.

It is also useful for us to define Euler characteristic transforms of functions f from

topological spaces into Rd. We define

ECTf : Sd−1 × R −→ Z

(v, t) 7−→ χ
(
f−1{x ∈ Rd : ⟨x, v⟩ ≤ t}

)
.

Note that if f is a homeomorphism it is immediate that ECTf = ECTim f . We

prescribe norms to Euler characteristic transforms of functions as before: restricting

to functions bounded in norm by a, we let

∥ECTf∥ := sup
v∈Sd−1

∫ a

−a

|ECTf (v, t)| dt.

6.2.3 Gaussian Processes

Gaussian processes (GPs) are a model for random functions. Recalling the definition

of a kernel from Section 2.5, we define a GP as follows:
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Definition 6.1. Let X be a non-empty set, µ : X → R a function and k : X×X → R

be a kernel. The Gaussian process (GP) on X with mean function µ and kernel

k is defined to be the random function f : X → R such that for each finite set

X ′ = {x′1, ..., x′n} ⊆ X we getf(x′1)
...

f(x′m)

 ∼ N

µ(x′1)

...
µ(x′n)

 , K (X ′, X ′)

 . (6.3)

The theory of GPs can be used to estimate a deterministic function f : X → R

given noisy observations of f at points {x1, ..., xn} ⊆ X. Most commonly this is done

by a Gaussian process regression (GPR), a non-parametric Bayesian method, which

models f as a random function. When performing a GPR with a given kernel k, one

typically constructs a prior distribution by assumingf(x′1)
...

f(x′m)

 ∼ N (0, K (X ′, X ′)) (6.4)

for any finite subset X ′ ⊆ X [120]. Assume we make n observations of the form

yi = f(x∗i ) + ζi, where ζi ∼ N (0, σ2) i.i.d, for i = 1, ..., n and σ > 0. Importantly,

ζi does not depend on f in any way. Then, by our prior assumption and by the

introduction of the shorthand f(X ′) := (f(x′1), ..., f(x′m))T and ζ := (ζ1, ..., ζm)T we

get that [
f(X∗) + ζ
f(X ′)

]
∼ N

(
0,

[
K(X∗, X∗) + σ2In K(X∗, X ′)

K(X ′, X∗) K(X ′, X ′)

])
.

Thus, by conditioning the above multivariate normal distribution of f on the obser-

vations y := (y1, ..., yn)T , we get [120]

f(X ′)|f(X∗) + ζ = y ∼ N (K(X ′, X∗)(K(X∗, X∗) + σ2I)−1y,

K(X ′, X ′)−K(X ′, X∗)(K(X∗, X∗) + σ2I)−1K(X∗, X ′)).
(6.5)

The above distribution, for any finite X ′ ⊆ X, is the posterior distribution of f

at X ′ given observations y. In the context of Bayesian modelling, we first summarise

our knowledge in the values of f by the prior distribution: unless we gain further
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information, we assume f to be mean 0 with covariance K (Equation (6.4)). For

any (noisy) observation of f we make, we update our belief in the values of f by

conditioning our prior distribution on our observations. The posterior density at

inputs X ′ can then be interpreted as how strongly we believe an output value to be

the true output of f at X ′, given our observations and modelling assumptions.

If m = 1 (i.e., X ′ = {t} for some t ∈ X), we denote the mean of the above

conditional normal distribution by f̂n(t) and its variance by vn(t). We henceforth

call f̂n(t) the Gaussian smoothing of f (on the set X∗ of size n). When needed, we

explicitly denote the dependence of f̂n(t) on X∗ and f by writing f̂n(t,X∗, f). From

Equation (6.5), it follows that f̂n always lies in Hk, the RKHS of k.

Under certain assumptions, one can show that f̂n → f in mean. In this chapter,

we use results by Koepernik and Pfaff [85], which give strong probabilistic conver-

gence results in the case of X being a compact metric space. Note that finite one-

dimensional CW-complexes are always metrisable [55] and compact. Hence the results

of Koepernik and Pfaff apply to all of the cases we look at.

We note that computing f̂n requires the inversion of an n×n-matrix and thus has

a runtime of O(n3). By using the ECT on f̂n we thus lose some of the ECTs runtime

advantage (compared to the PHT and extended PHT). However, both versions of the

PHT require O(n3
s) computations per direction [50], where ns ≥ n is the number of

simplices in the triangulation of a shape, which still gives a combined Gaussian pro-

cess and ECT pipeline an edge in terms of runtime. More importantly, it is common

practice to approximate the (inverse) Gram matrix by a low-rank matrix approxim-

ation method, such as the Nystroem method [158] or random Fourier features [119].

Such methods run in O(l3 + l2n), where l ≪ n is the approximate rank of the Gram

matrix and thus are significantly faster than O(n3).
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6.3 ECT Stability of Non-Random Data

6.3.1 Stability for Smooth Curves

As we observed in the introduction, controlling the proximity of two different one-

dimensional shapes is not enough to control the difference between their ECTs. This

motivates the definition of a metric between such shapes which is also concerned with

perturbations to arc length.

Definition 6.2. Let Z be a finite one-dimensional CW complex with a fixed CW

structure Z∗ = (Z,Z0, {Φλ}λ∈Λ). Fix r ≥ 1. For X, Y ∈ Gr(Z∗, d), we define

dZ∗(X, Y ) to be the infimum of all ε such that there exists hX , hY ∈ Er(Z∗, d), whose

images are X and Y respectively, satisfying:

1. The difference of arc lengths between hX ◦Φλ and hY ◦Φλ is less than or equal

to ε for each λ ∈ Λ.

2. Both hX ◦ Φλ and hY ◦ Φλ are curves of constant velocity for each λ ∈ Λ.

3. ∥hX − hY ∥∞ ≤ ε.

By using the compactness of Z it is not difficult to show that dZ∗ is a metric on

Gr(Z∗, d). For the remainder of this chapter, we endow Gr(Z∗, d) with this metric

and the topology arising from it. A key goal of this chapter is to show that the ECT

is a continuous map on Gr(Z∗, d) for r ≥ 2.

Theorem 6.3. Let Z be a finite one-dimensional CW complex with a fixed CW

structure Z∗ = (Z,Z0, {Φλ}λ∈Λ). The map X 7→ ECTX is continuous on Gr(Z∗, d)

for r ≥ 2.

In particular, if X has curvature bounded by M , and the image of the λth 1-cell

in X has arc length Lλ, then whenever dZ∗(X, Y ) < ε, we have

∥ECTX − ECTY ∥ ≤ |Z0|ε+
∑
λ∈Λ

Gλ(ε),

where

Gλ(ε) :=

{
8
√
Lλnλε+ nλε Lλ/nλ > 2ε

11nλε Lλ/nλ ≤ 2ε
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and

nλ := max

(⌈(
M2L3

λ

24ε

)1/3
⌉
,

⌈
LλM

π

⌉)
.

We prove this theorem via the following proposition, which is useful when consid-

ering functional information in Section 6.4.

Proposition 6.4. Let Z be a finite one-dimensional CW complex with a fixed CW

structure Z∗ = (Z,Z0, {Φλ}λ∈Λ). Let f, g ∈ F r(Z∗, d), with r ≥ 2, and suppose that:

1. The curves f ◦ Φλ and g ◦ Φλ have arc lengths that differ by at most ε for each

λ ∈ Λ.

2. The curves f ◦ Φλ and g ◦ Φλ have constant velocity for each λ ∈ Λ.

3. ∥f − g∥∞ ≤ ε.

Then if f has curvature bounded by M and f ◦ Φλ has arc length Lλ, we have∥∥ECTf − ECTg

∥∥ ≤ |Z0|ε+
∑
λ∈Λ

Gλ(ε),

where Gλ and nλ are defined as above.

The idea of the proof of this proposition is as follows. We show that the norm

of the ECT of a curve can be controlled using its differential properties. Using this

observation, we can bound the difference in ECT of two curves that are nearly straight

lines. We can also refine the structure of a finite one-dimensional CW complex Z∗

with a map f : Z → Rd into enough pieces that the image of every 1-cell is a nearly

linear curve. The above proposition then follows from a glueing argument.

In this chapter, we let I denote the unit interval [0, 1] and say that f : I → Rd

is piece-wise C1 if it is continuous and there exists a collection T1, . . . , Tk of closed

intervals covering I, on the interiors of which f is C1.

Proposition 6.5. Let γ : I → Rd piece-wise C1 map, with X being the image of γ.

Fix any v ∈ Sd−1. Let a and b be the minimal and maximal values of f : x 7→ ⟨v, γ(x)⟩

on I respectively. Then ∫ b

a

|ECTγ(v, t)| dt ≤ V (f),
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where V (f) denotes the variation of f :

V (f) :=

∫ 1

0

|f ′| dt.

For t ≥ b we have ECTγ(v, t) = 1. For t < a we have ECTγ(v, t) = 0. In particular,

ECTγ(v, t) is defined almost everywhere.

6.3.2 Stability of Piece-wise Linear Interpolation

If we are given X ⊆ Rd, the C2-image of a homeomorphism h from some one-

dimensional CW complex Z, it may not be easy to exactly compute ECTX . The

main goal of this section is to show that a dense subset of Z can be used to approx-

imate ECTh = ECTX . First, we make precise the kind of dense subset we need to

properly estimate the ECTh.

Definition 6.6. Let Z∗ = (Z,Z0, {Φλ}λ∈Λ) be a connected finite one-dimensional

CW complex with some fixed cellular decomposition and f be a C2 map f : Z → Rd.

We say that an = {a1, . . . , an} ⊆ Z is a compatible subset of Z∗ if the following hold:

1. Z0 ⊆ an and

2. an − Z0 contains a point in each 1-cell of Z.

These requirements ensure that Z − an is a union of disjoint open intervals. If ad-

ditionally, the length of the image of each of these intervals under f is less than ε,

we say that an is an ε-dense subset for f . An infinite subset of Z is compatible and

dense for f if it contains a finite ε-dense subset for all positive ε.

Definition 6.7. Let f be as in the previous definition and an = {a1, . . . , an} be a

compatible subset of Z∗. Let aij denote the line segment from ai to aj. We define

a multiset E with elements in the set of unordered pairs in {1, . . . , n}. E contains a

copy of (i, j) for each open curve in Z − an whose endpoints are ai and aj. We define

ECTan
f (v, t) =#{1 ≤ i ≤ n : ⟨f(ai), v⟩ ≤ t}

−#{(i, j) ∈ E : max(⟨f(ai), v⟩, ⟨f(aj), v⟩) ≤ t}.
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The main theorem of the section says that we can use dense subsets to approximate

the Euler characteristic transform of a one-dimensional CW complex:

Theorem 6.8. Let Z∗ = (Z,Z0, {Φλ}λ∈Λ) be a connected finite one-dimensional CW

complex with some fixed cellular decomposition and f be a C2 map f : Z → X ⊆ Rd.

Suppose that f has curvature bounded by M and let an be an ε-dense subset of Z,

where 0 < ε < π/M . Let L be the sum of the arc lengths of the images of 1-cells of

Z under f . Then ∥∥ECTf − ECTan
f

∥∥ ≤ 1√
12
MLε.

6.4 ECT Stability of Random Data

In this section, we consider observations taken from an embedded finite one-

dimensional CW complex Z which are perturbed by ambient Gaussian noise. We

show that the Gaussian smoothing of these observations converges to satisfy the

assumptions of Proposition 6.4. In particular, we show that the ECT and SECT

of the Gaussian smoothing give consistent estimators of the ECT and SECT of Z,

respectively. To provide the theorems, we first need to introduce technical conditions

on the kernel we use in the Gaussian smoothing:

Definition 6.9 (Definition 5 in [85]). Let Z be a topological space and k : Z×Z → R

be a continuous kernel. Define

dk(t, s) =
√
k(t, t) + k(s, s)− 2k(t, s).

For any ε > 0 let N(Z, ε, dk) be the minimal numbers of dk-balls with radius ε needed

to cover Z. Then define

J(Z, dk) =

∫ ∞

0

√
logN(Z, ε, dk) dε.

Definition 6.10. Let Z∗ = (Z,Z0, {Φλ}λ∈Λ) be a connected finite one-dimensional

CW complex with some fixed cellular decomposition. Let k : Z × Z → R be a

continuous kernel. We say k is r-times differentiable on Z∗ if
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1. for each λ ∈ Λ the map kλ : I × I → R given by (s, t) 7→ k(Φλ(s),Φλ(t)) is

r-times continuously differentiable and

2. for each λ ∈ Λ and z ∈ Z the map kλ,z : I → R given by s 7→ k(Φλ(s), z) is

r-times continuously differentiable.

Differentiability is defined by one-sided limits at the boundaries of I × I and I.

Remark 1. For a given connected finite 1 one-dimensional CW complex

Z∗ = (Z,Z0, {Φλ}λ∈Λ) with fixed cellular composition there is a straightfor-

ward way to construct an r-times differentiable kernel on Z∗: let f : Z → Rd

be a continuous injective function such that f ◦ Φλ is r-times differentiable for

each λ ∈ Λ. Then if k is an r-times differentiable kernel on Rd, it follows that

k′(s, t) := k(f(s), f(t)) is an r-times differentiable kernel on Z by the chain rule.

While it might be tempting to define a geodesic distance on Z and then apply a

stationary kernel (such as the Gaussian kernel) to this distance, it should be noted

that, even in the case of Z being a manifold, the resulting function does not give a

positive-definite kernel in general [53].

We can now state the first theorem of this section:

Theorem 6.11. Let Z∗ = (Z,Z0, {Φλ}λ∈Λ) be a connected finite one-dimensional

CW complex with some fixed cellular structure. Let k : Z × Z → R be a continuous,

four-times differentiable kernel on Z∗. Assume k satisfies J(Z, dk) <∞.

Let f : Z → R be a function in the RKHS of k. Let a ⊂ Z be a sequence which

is dense. Denote by an the first n terms of a and by an the n-th term of a. Let f̂n

denote the Gaussian smoothing of f based on observations yi = f(ai)+ζi using kernel

k, where i = 1, ..., n and ζi ∼ N (0, σ) i.i.d. for some σ > 0. Then

E
[∥∥∥f̂n(t, an, f)− f(t)

∥∥∥
∞

]
→ 0

as n→∞. Moreover, for each λ ∈ Λ define f̂n,λ(t) = f̂n(Φλ(t)) and fλ(t) = f(Φλ(t)).

Then

E
[∣∣∣V (f̂n,λ)− V (fλ)

∣∣∣2]→ 0
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for each λ ∈ Λ as n → ∞; i.e. the variation of f̂n,λ converges to the variation of fλ

in mean square.

Using the above theorem, we can prove that the ECT of the Gaussian smoothing

f̂n of f , denoted ECTf̂n
, is a consistent estimator of the ECT of X:

Theorem 6.12. Let Z∗ = (Z,Z0, {Φλ}λ∈Λ) be a finite one-dimensional CW complex

with some fixed cellular structure and f : Z → X ⊆ Rd be a C2 homeomorphism

with bounded curvature. Further, assume that all components of f are functions in

the RKHS of k, where k is a kernel satisfying the assumptions of Theorem 6.11.

Moreover, assume that ∥f ′
λ(t)∥2 = Lλ is constant on all 1-cells λ ∈ Λ. Let a be a

dense sequence in Z. Let

f(t) :=
(
f 1(t), ..., fd(t)

)T
, f̂n :=

(
f̂ 1
n, ..., f̂

d
n

)T
,

where for j = 1, ..., d and i = 1, ..., n the function f̂ j
n is the Gaussian smoothing of f j

given observations yij = f j(ai) + ζij using kernel k and ζij ∼ N (0, σj) i.i.d for some

σj > 0. Then for each ε > 0

lim
n→∞

P
(∥∥∥ECTf̂n

− ECT f

∥∥∥ < ε
)
→ 1.

Note that as f is a homeomorphism, ECTf = ECT im f = ECTX and we thus

have constructed a consistent estimator for ECTX . If for given observations yn the

curvature of f̂n is bounded on each 1-cell, an is compatible with Z∗ and dense for f ,

we can approximate ECTf̂n
by ECTam

f̂n
arbitrarily closely for a sufficiently large m

by Theorem 6.8. We conjecture that for sufficiently well-behaved kernels k, ECTam

f̂n

converges to ECTf̂n
in probability, where m is some function in n. Proving this

conjecture will involve bounding the curvature with high probability and is beyond

the scope of this thesis.

Furthermore, our consistency result extends to the SECT of X:

Lemma 6.13. Define the ECT on some interval [−a, a]. Assume the distance between

the ECTs of two shapes X and Y is δ. Then the distance between their SECTs is at

most (2a+ 1)δ.
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The main limitation of our results is that the topology of our embedded space is

assumed to be known and the results only work for a restricted class of CW complexes.

Extending our statistical estimator and the related results to perturbations in the

topology of the underlying shape remains future work.

6.5 Example

We now illustrate our methods by means of a simulated example. In our simulation,

we focus on a single simple closed curve in R2 and sample different numbers of noisy

points from the curve. Our curve has been constructed by judiciously choosing com-

plex Fourier coefficients. The samples are then taken by evenly spaced evaluations

of our curve and are corrupted by adding independent multivariate Gaussian noise

with mean 0 and covariance (0.002)2I2. The curve, together with the noisy samples,

is visualised in Figure 6.3.

As a kernel in our Gaussian smoothing, we pick the sine-squared exponential ker-

nel. Assuming our curve is parameterised by γ : [0, 2π] → R2 with γ(0) = γ(2π), it

is given by

k(s, t) = exp

(
−2 sin

(
s− t

2

)2
)
.

It satisfies the conditions of Theorems 6.11 and 6.12 (see Lemma A.22; it is infinitely

differentiable as it is the composition of infinitely differentiable functions). Its RKHS

contains the curve we generated (see Lemma A.23).

In Figure 6.4, we visualise the SECT of our true curve (in a fixed direction) and

compare it to the SECT of curves sampled from Gaussian process regression (GPR)

posterior distributions based on 20, 50 and 100 noisy evaluations of our original curves,

respectively. In addition, we plot the distributions of the distance (given by the norm

introduced in Equation (6.2)) of the SECTs of the posterior samples with the SECT

of the true curve.

In both types of plots, we see the posterior curves’ mean moving closer to the

true SECT as the number of samples increases, which illustrates the results of our

theorems. We furthermore report that the distance between the SECT of the true
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Figure 6.3: The Gaussian smoothings (red lines) of a simple closed curve (blue line)
based on noisy samples (green crosses). The number of samples is 20 in the left panel,
50 in the middle panel and 100 in the right panel. All samples have been independently
corrupted with mean zero Gaussian noise with standard deviation σ = 0.002 in each
component.

curve and the SECTs of Gaussian smoothings are approximately 0.0627 (n = 20),

0.0366 (n = 50) and 0.0214 (n = 100), respectively. However, while Figure 6.4

illustrates that our results provide a consistent estimator of the SECT, the estimator

need not be unbiased.

The example in this section illustrates how our estimator naturally gives rise to a

posterior distribution over the space of SECT curves. We believe that there is poten-

tial to use this posterior distribution in a statistical inference or classification pipeline.

Proving convergence rates for estimators like ours would help with quantifying the

confidence of statistical ECT analyses.

6.6 Discussion

In this chapter, we provide stability results for the Euler characteristic transform

under independent, random perturbations of underlying point cloud data. We proceed

by first proving in a deterministic setting that if two embedded CW complexes are

close in some well-defined sense, then their ECTs are also close. Crucially, we provide

bounds on how far the two output ECTs can be apart. We also show that the ECT of

such a shape can be well-approximated by simplicial complexes. Second, we propose a

smoothing technique for randomly perturbed CW complexes which builds on insights

from Gaussian process theory. We then prove that the smoothed shape is close to
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Figure 6.4: Top: The SECT in a fixed direction of the true shape (in red) compared to
the SECTs of GPR posterior samples (in opaque blue) based on 20 (left), 50 (middle)
and 100 (right) samples. The fixed direction corresponds to left-to-right in Figure 6.3.
The SECTs are based on interpolations on the samples. Bottom: The distribution of
the distance between the SECT of the true curve to SECTs of GPR posterior curves
based on 20 (left), 50 (middle) and 100 (right) noisy samples from the underlying
curve.
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the unperturbed in the sense of our deterministic theorem with high probability, thus

providing a consistent statistical estimator for the ECT. Finally, we illustrate the

utility of our method and results on a synthetic data set.

The main limitation of our results is that the topology of our embedded space is

assumed to be known and the results only work for a restricted class of CW complexes.

Extending our statistical estimator and the related results to perturbations in the

topology of the underlying shape remains future work. Further, our example in

Section 6.5 illustrates how our estimator naturally gives rise to a posterior distribution

over the space of SECT curves. We believe that there is potential to use this posterior

distribution in a statistical inference and classification pipeline. Proving convergence

rates for estimators like ours would help with quantifying the confidence of statistical

ECT analyses.
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Chapter 7

Discussion and Outlook

Organoids are a useful in vitro model for studying tissue development, drug testing

and, more broadly, understanding the response of tissues to genetic and environmental

changes. Organoids share favourable characteristics with in vivo experimental mod-

els while providing a more cost-effective and ethical alternative. Organoids have

successfully aided the study of cancer development in tissues [99, 49, 56], tumour

microenvironments [109, 15, 46], and precision medicine [96, 72, 141, 154, 113], which

may lead to advances in drug discovery, immunotherapy and individualised cancer

treatments [148].

Dynamic changes in the shape, cellular composition and gene expression of orga-

noids can be used to understand the effect of mutations and treatments on healthy

and diseased tissue. The tissue composition, closely linked to the morphology, af-

fects the microenvironments of cells, including cell-to-cell signalling and, thus, gene

expression. Conversely, the gene expression of the cells drives stem cell differentiation

into distinct cell types, which rearrange in a spatially non-uniform manner. These

processes lead to morphogenesis and direct dynamic changes in the organoid shape.

Thus, both RNA sequencing data and organoid morphology imaging data reflect the

underlying genetic composition of an organoid and its response to environmental per-

turbation and, therefore, yield insights into disease progression and treatment effects.

In this thesis, I developed and presented new methods from TDA to analyse both

scRNA-seq and morphology data of organoids.

In Chapter 3, I developed the multiscale Laplacian score, a multiscale feature
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selection method on scRNA-seq data, and the UMAP diffusion cover, a heuristic that

improves Mapper for use in trajectory inference. I discussed the need for new analysis

methods for scRNA-seq data. First, differential expression tests use a discrete notion

of cell type (i.e., they assign a unique label to each cell). Typically, cell types are

assigned by applying a clustering algorithm to the data. However, the high resolution

of state-of-art single-cell sequencing methods puts discrete notions of cell type into

question, as it is possible to observe continuous trajectories connecting different cell

types [60]. In such a setting, many cells could be described as an intermediate cell

type. In particular, assigning discrete labels corresponds to determining an arbitrary

cut-off along such a trajectory, leading to unstable downstream analysis. Govek et

al. [60] proposed the Laplacian score as a generalised DE test which considers the

topology underlying scRNA-seq data and, by extension, the notion of cell type to

be continuous. The LS is inherently single-scale, while classical DE tests can easily

perform multiscale analyses. To bridge this gap, I introduced a novel multiscale

Laplacian score, which is motivated by random walk theory on simplicial complexes.

Unlike classical DE tests, trajectory inference methods explicitly assume a con-

tinuous notion of cell type and attempt to infer continuous trajectories along which

cells change their function. Many trajectory methods may be limited by their to-

pological modelling assumptions or biased by the large number of user-determined

hyperparameters [125]. The Mapper algorithm, a TDA method, ha successfully in-

ferred trajectories on scRNA-seq data [122, 118]. However, a key step, the so-called

cover selection, is performed manually in these studies, leading to potential overfit-

ting and bias. In Chapter 3, I proposed an unsupervised heuristic for picking the

cover, called the UMAP diffusion cover. The UMAP diffusion cover is theoretically

well-motivated and based on the UMAP graph, a method widely used in scRNA-seq

analyses. I applied both the UMAP diffusion cover (in conjunction with Mapper) and

the MLS to two scRNA-seq data sets: a benchmark data set of lung tumour infilt-

rating T cells and a mouse colon organoid data set. The MLS validated previously

identified genes and detected additional biologically meaningful genes with coherent

expression patterns. The UMAP diffusion cover (in conjunction with Mapper) identi-
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fied complex trajectories in both data sets and outperformed the state-of-art method

PAGA.

When applying the MLS on scRNA-seq data, I focused on modelling the geometry

of cell space with a specific k-nn graph, the UMAP graph. The MLS is flexible for

use on other graphs, such as Mapper graphs [122, 118], but the resulting analysis

could be sensitive to the underlying graph structure. Studying these changes could

be the subject of future research. Recently, a method for automated scale detection

in multiscale community detection has been proposed [131]. This method could also

be applied to the MLS to further automate the analysis pipeline. The choice of

resolution(s) for the MLS is not limited to Markov stability times (e.g. graph wavelets

[144] could be an alternative). It would be interesting future work to extend these

signal selection approaches to other signals more generally (e.g., epigenetic factors),

other complex single-cell network structures [79] or other higher-order networks [130,

14], with a view towards multi-modal data integration [88].

In Chapter 3, I also compared the output of the Mapper graph using a UMAP

diffusion cover to PAGA, a state-of-art method for trajectory inference. Further

benchmarking on additional data sets and against additional trajectory inference

methods is important future work. The review by Saelens et al. [125] provides a

general framework, several metrics and data sets for such benchmarking.

In Chapter 4, I developed DETECT, a rotationally invariant signature capturing

the temporal evolution of a shape. DETECT, an extension of the Euler characteristic

transform [146], is theoretically well-motivated, interpretable and fast to compute. I

applied DETECT to an experimental data set of mouse small intestine organoids.

For this data set, organoid experiments were filmed over a period of 80 hours and the

boundary of each organoid was segmented at each video frame, yielding a sequence of

shapes summarising the morphological evolution of each organoid for a given experi-

ment. On this data set, DETECT captured information contained in multiple classical

shape descriptors (e.g. diameter, area, centroid distances, major axis length). We

regressed these descriptors from DETECT with high accuracy. Further, we classified

organoids into treated and untreated groups using DETECT, thereby demonstrating
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that the given treatment has a significant effect on the dynamic changes of organoid

morphology. By contrast, the predictive accuracy of classical shape descriptors did

not exceed guessing on the same task.

In future work in we could apply our methods to data sets of different types of

organoids (derived from different organs, with different genetic backgrounds and/or

cultured under different conditions). Future research could involve selecting features

in (kernelised) DETECT space and reconstructing dynamic organoid shapes along

those features. We would first identify those features which vary most across dif-

ferent organoid categories (e.g. experimental conditions). Second, we would then

reconstruct how the temporal evolution of an organoid shape changes along that fea-

ture. While Wang et al. [155] give a blueprint for such an analysis in their SINATRA

pipeline, further theoretical work is needed to extend their work to account for the

temporal component and rotational invariance of DETECT. Such an inversion of

DETECT could yield further information about how genetics and treatments affect

organoid morphology.

In Chapter 5, I validated the DETECT method of Chapter 4 on a synthetic data

set. This data set was generated from a 3D mechanistic continuum model describing

the growth of mouse colon organoids [161]. DETECT clustered organoids by mitosis

rate, the dominating biological signal in the data set. We concluded that DETECT is

capable of extracting biologically meaningful information from organoid morphology.

This analysis also demonstrated that DETECT generalises to 3D data. As such, we

could apply DETECT to 3D experimental data in the future.

In the future, we could also study information loss between 3D data and their 2D

projections. One possible approach to this problem would be to consider synthetic 3D

data generated from mathematical models (such as the one presented in Chapter 5.2)

and to compare the generated 3D data to its 2D projections. However, these models

neglect certain biophysical processes (e.g. the effects of gravity, the production of

extracellular matrix, mechanical stress) [161] and the analysis would be complicated

by the fact that DETECT signatures of 3D and 2D organoids are markedly different,

even in the absence of information loss. Other future work may include replicating the
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findings described in Chapter 5 on a larger synthetic data set, generated on a larger

set of parameter values and with different initial conditions. Due to time constraints,

we did not manage to obtain such data in time. Similarly, applying DETECT to

data generated by models describing the growth of different types of organoids or

to perturb boundaries of in silico organoids would be desirable to test the effects of

noise on DETECT in a controlled setting.

Finally, in Chapter 6, I proved that ECT can be consistently estimated from

noisy data by smoothing the boundary by taking weighted averages. The smoothing

method was inspired by Gaussian process theory. If a given shape is perturbed by

independent Gaussian noise, it is likely that the ECT of the smoothed perturbed shape

is close to the ECT of the true shape. I did not apply this smoothing method to the

experimental data of Chapter 4 as it had already been regularised by a segmentation

algorithm. However, the results of Chapter 6 showed that a heuristic as simple as

taking weighted averages of vertices is sufficient to remove noise from the ECT in the

probabilistic limit. These insights further justified applying the ECT to smoothed

experimental data.

A future research direction based on the work from Chapter 6 would be to general-

ise the results to a larger class of CW complexes and to perturbations in the topology

of the underlying shape. Further, the example in Section 6.5 illustrates how the ECT

estimator naturally gives rise to a posterior distribution over the space of ECT/SECT

curves. This posterior distribution could be useful, more generally, in a statistical in-

ference and classification pipeline. Proving convergence rates for estimators, like the

one proposed in Chapter 6, could assist with quantifying the confidence of statistical

ECT analyses.

In the broader context of this thesis, important future work involves conducting

an integrated analysis of scRNA-seq and morphology data once generated from the

same organoid. The methods and approaches presented in this thesis could serve as

a roadmap towards such an integrated analysis once such data becomes available in

the future. One approach for such an analysis could be:

115



1. Identify genes that are consistently expressed at a number of scales using the

MLS and VI.

2. Compute the DETECT signatures of the same organoids.

3. Perform a canonical correlation analysis between the expression levels of the

genes found in 1. and the (kernelised) DETECT computed in 2.

This analysis would allow us to identify correlations between gene expression and

(changes in) morphology. More research is needed to detect causality between mor-

phology and gene expression (likely they both interact with each other in a feedback

loop).

The canonical directions on the DETECT signatures could be used to detect ex-

perimental times at which a gene drives morphological changes. A possible future

analysis could involve reconstructing the shape changes which correspond to the ca-

nonical directions in the DETECT signature. Wang et al. [155] provide a framework

for such a reconstruction with the Euler characteristic transform, which DETECT

extends. However, the rotational invariance of DETECT may demand a theoretical

extension of their work.

Alternatively, a Mapper graph (or another graph generated by a trajectory in-

ference method) could be constructed on the SECT signatures of boundaries of indi-

vidual organoid boundaries in individual video frames. Such a graph would summarise

the developmental trajectories of organoid morphologies. In a second step, the MLS

could be used to identify genes that are consistent with these developmental traject-

ories, possibly identifying genes that correlate with different morphological changes.

Regardless of whether such an integrated analysis follows the blueprint suggested

above, it would enable genes to be associated with morphological changes with higher

confidence than analyses made on distinct scRNA and morphology data sets alone.

116



Bibliography

[1] Abdul L, Xu J, Sotra A, Chaudary A, Gao J, Rajasekar S, Anvari N, Mahyar
H and Zhang B. ‘D-CryptO: deep learning-based analysis of colon organoid
morphology from brightfield images’. In: Lab on a Chip 22.21 (2022), pp. 4118–
4128.

[2] Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, Chu SG,
Raby BA, DeIuliis G, Januszyk M et al. ‘Single-cell RNA-seq reveals ectopic
and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis’.
In: Science advances 6.28 (2020), eaba1983.

[3] Amezquita EJ, Quigley MY, Ophelders T, Landis JB, Koenig D, Munch E
and Chitwood DH. ‘Measuring hidden phenotype: Quantifying the shape of
barley seeds using the Euler Characteristic Transform’. In: in silico Plants
(Dec. 2021). doi: 10.1093/insilicoplants/diab033.

[4] Anders S and Huber W. ‘Differential expression analysis for sequencecount
data’. In: Genome Biology 11.R106 (2010).

[5] Barahona M. The stability of a graph partition. url: https : / / www . ma .

imperial.ac.uk/~mpbara/Partition_Stability/ (visited on 23/05/2022).

[6] Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K,
Kokkaliaris KD, Mercier F, Tabaka M, Hofree M et al. ‘A cellular taxonomy of
the bone marrow stroma in homeostasis and leukemia’. In: Cell 177.7 (2019),
pp. 1915–1932.

[7] Beck LE, Lee J, Cote C, Dunagin MC, Lukonin I, Salla N, Chang MK, Hughes
AJ, Mornin JD, Gartner ZJ et al. ‘Systematically quantifying morphological
features reveals constraints on organoid phenotypes’. In: Cell Systems 13.7
(2022), pp. 547–560.

[8] Beguerisse-Diaz M, Garduno-Hernandez G, Vangelov B, Yaliraki SN and
Barahona M. ‘Interest communities and flow roles in directed networks: the
Twitter network of the UK riots’. In: Journal of The Royal Society Interface
11.101 (2014), p. 20140940.

[9] Beguerisse-Diaz M, Vangelov B and Barahona M. ‘Finding role communities
in directed networks using Role-Based Similarity, Markov Stability and the
Relaxed Minimum Spanning Tree’. In: 2013 IEEE Global Conference on Signal
and Information Processing (Dec. 2013). doi: 10.1109/globalsip.2013.
6737046. url: http://dx.doi.org/10.1109/GlobalSIP.2013.6737046.

117

https://doi.org/10.1093/insilicoplants/diab033
https://www.ma.imperial.ac.uk/~mpbara/Partition_Stability/
https://www.ma.imperial.ac.uk/~mpbara/Partition_Stability/
https://doi.org/10.1109/globalsip.2013.6737046
https://doi.org/10.1109/globalsip.2013.6737046
http://dx.doi.org/10.1109/GlobalSIP.2013.6737046


[10] Bennstein SB, Weinhold S, Manser AR, Scherenschlich N, Noll A, Raba K,
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A.1 Differential Expression Analyses

Table A.1: The top 10 differentially expressed genes in each cluster of the T cell data
set. For each cluster, 10 pairs of gene names and adjusted p-value are given. The
clusters are given in Figure A.1 and are determined using a 20-nn graph on the first
30 PCs on the variance stabilised data via the Louvain algorithm. The differential
expression test is a Wilcoxon Rank Sum test and the p-values are adjusted using the
Benjamini-Hochberg procedure with a false-discovery rate of 25%.
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Figure A.1: Seurat clusters for differential expression testing on T cell data.

Figure A.2: Seurat clusters for differential expression testing on mouse colon organoid
data.
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Table A.2: The top 10 differentially expressed genes in each cluster of the mouse colon
organoid data set. For each cluster, 10 pairs of gene names and adjusted p-value are
given. The clusters are given in Figure A.2 and are determined using a 20-nn graph
on the first 30 PCs on the variance stabilised data via the Louvain algorithm. The
differential expression test is a Wilcoxon Rank Sum test and the p-values are adjusted
using the Benjamini-Hochberg procedure with a false-discovery rate of 25%.

A.2 UMAP Theory

In this section of the appendix, I provide more theoretical motivation for the UMAP

algorithm, as well as a generalisation of the algorithm which uses filtered simplicial

complexes instead of weighted graphs. This motivation follows the theoretical part

of the UMAP paper [102]. However, I present their motivation in terms of Vietoris-

Rips filtrations, a central construct in topological data analysis. This presentation

in terms of Vietoris-Rips filtrations is novel (the paper [102] presents the motivation

in terms of fuzzy simplicial sets, a related construction [138]). Further, I provide

a concrete generalisation of the UMAP algorithm that uses higher-order interaction

between data points to construct a dimension reduction. Such a generalisation is not

provided by McInnes et al. [102] nor, to the best of my knowledge, elsewhere.
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Extended Pseudometric Spaces and Neighbourhood Graphs

As mentioned in Section 2.5.2, the Euclidean metric is often a good approximation

of the Riemannian metric on an embedded manifold (M, g) (up to multiplication by

a positive scalar) for points that are close to each other. By contrast, the Euclidean

metric yields no conclusive insight on the value g takes for points that are far apart.

McInnes et al. use extended pseudometric spaces to formalise the intuition of a metric

space with an ‘inconclusive’ option.

Definition A.1. Let X be a set and d : X×X → R≥0 ∪{∞} a function. If d satisfies

1. d(x, x) = 0,

2. d(x, y) = d(y, x), and

3. d(x, z) ≤ d(x, y) + d(x, z) or d(x, z) =∞

for all x, y, z ∈ X, then the pair (X, d) is called an extended pseudometric space.

Given two extended pseudometric spaces (X, dX) and (Y, dY ), a map f : X → Y

is called non-expansive if dY (f(x1), f(x2)) ≤ dX(x1, x2) for all x1, x2 ∈ X. The

collection of all extended pseudometric spaces (considered as objects) and all non-

expansive maps between them (considered as morphisms) define a category, denoted

EPMet.

If (X, d) is an extended pseudometric space and X is finite, we call it a finite

extended pseudometric space. Analogously, all finite extended pseudometric spaces

and the non-expansive maps between them form a category, denoted fEPMet.

All finite extended pseudometric spaces considered by UMAP are constructed

from a finite metric space (X, d). The metric d(x, y) is then updated by being scaled

(and possibly translated, hence the need for the possibility d(x, y) = 0 for x ̸= y) for

points x and y which are ‘close’ and set to d(x, y) = ∞ for points which are distant

to obtain a pseudometric. This extended pseudometric can then be constructed from

a k-nearest-neighbour (k-nn) graph with weights in (0, 1] (such as in Section 2.5.2):
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For an x ∈ X, let Ex denote its k-nearest-neighbours (again, excluding x itself).

Given w̃ as in Section 2.5.2, we define c : X ×X → R≥0 ∪{∞} (mnemonic for cost)

by

c(x, y) = − log (w̃(x, y)) .

Subsequently, define d : X ×X → R≥0 ∪{∞} by

d(x, y) =


0 if x = y,

min {
∑n

i=1 c(zi−1, zi) | zi ∈ X, z0 = x, zn = y} if y ∈ Ex or x ∈ Ey,

∞ otherwise.

Lemma A.2. The function d defines an extended pseudometric on X.

We will prove the above lemma later in this section.

Filtrations of Simplicial Complexes Revisited

As noted before, UMAP assumes a discrete sample from a continuous manifold. To

approximate and describe the topology of the underlying manifold, it uses simplicial

complexes and filtrations, which were introduced in Section 2.5.4. In this section, we

endow filtered simplicial complexes with the structure of a category:

Definition A.3. We call a map f : K → K′ between two simplicial complexes on

vertex sets X and X ′ a simplicial map if there exists a map g : X → X ′ such that

f(σ) = {g(x) |x ∈ σ} for all σ ∈ K.

The collection of all simplicial complexes (objects), together with all simplicial

maps between them (morphisms), form a category, denoted SC.

Given two filtrations of simplicial complexes (K, ϕ) and (K′, ϕ′) and a simplicial

map f : K → K′, we call f a morphism of filtrations if ϕ(σ) ≥ ϕ′(f(σ)) for all σ ∈ K.

The collection of all filtrations of simplicial complexes and all morphisms between

them form a category, denoted fSC. Moreover, we write fSC[0,1) for the full subcat-

egory containing filtrations (K, ϕ) such that 0 ≤ ϕ(σ) < 1 for all σ ∈ K.

An Adjunction As An Optimisation Problem

Finite extended pseudometric spaces can be related to filtrations of simplicial com-

plexes by constructing two functors between fEPMet and fSC[0,1):
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Definition A.4. We define the functor Sing : fEPMet→ fSC[0,1) by action on finite

extended pseudometric spaces (X, d) as

Sing((X, d)) =
(
{{x0, ..., xn} ⊆ X | d(xi, xj) <∞∀0 ≤ i, j ≤ n} ,

ϕ(σ) = max
x,y∈σ

{
1− e−d(x,y)

})
.

Given a non-expansive map f : (X, dX)→ (Y, dY ), we define

Sing (f) (σ) = {f(x) |x ∈ X} .

Additionally, for λ ≥ 0, we define Singλ : fEPMet→ fSC[0,1) as Singλ((X, d)) =

Sing((X, d′)), where d′(x, y) = max{0, d(x, y)− λ} for all x, y ∈ X.

UMAP uses (constructions equivalent to) Singλ for performance reasons [102].

Note that while d′ need not satisfy the triangle inequality and thus need not be an

extended pseudometric, Singλ is still well-defined.

Lemma A.5. The maps Sing (f) defined in Definition A.4 are morphisms of filtra-

tions.

Proof. Let f : (X, dX) → (Y, dY ) be non-expansive and let σ ∈ KX where

Sing((X, dX)) = (KX , ϕX) and Sing((Y, dY )) = (KY , ϕY ).

Then for any x, y ∈ σ we have dY (f(x), f(y)) ≤ dX(x, y) < ∞. Hence, Sing

maps f into KY and is a well-defined simplicial map. Furthermore, x 7→ 1 − e−x is

monotonically increasing. Thus, for the x′, y′ ∈ σ which maximise 1− e−dY (f(x′),f(y′))

we have

ϕY (f(σ)) = 1− e−dY (f(x′),f(y′)) ≤ 1− e−dX(x′,y′) ≤ max
x,y∈σ

{
1− e−dX(x,y)

}
= ϕX(σ).

Hence, Sing (f) is a morphism of filtrations of simplicial complexes.

The above proof readily generalises to Singλ. We note that Sing((X, d)) is

also called the Vietoris-Rips filtration of X with (updated) extended pseudometric

d′(x, y) = 1 − e−d(x,y).1 In Euclidean space, Vietoris-Rips filtrations approximate

1Note that d′ is again an extended pseudometric as x 7→ 1 − e−x is monotonically increasing,
concave, and maps 0 to 0.
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Čech filtrations, which are homotopy equivalent to a thickening of the underlying

discrete space X [111].

Definition A.6. Let K be a simplicial complex. We call an ordered sequence of

elements of K, (σ0, σ1, . . . , σn), a path in K if, for all i, we have σi ∈ K, |σi| = 2,

|σi−1 ∩σi| = 1 and |σi−1 ∩σi ∩σi+1| = 0. Denote the set of all paths in K by Π(K). If

x and y are in the vertex set of K, we denote by Π(K, x, y) all paths of K such that

x ∈ σ0, x ̸∈ σ1, y ∈ σn and y ̸∈ σn−1.

We define the functor Real : fSC[0,1) → fEPMet by mapping a filtration (K, ϕ) ∈

fSC[0,1) to an extended pseudometric space (X, d) with X = {x ∈ σ |σ ∈ K} and

d(x, y) =


0 if x = y,

min {
∑n

i=0− log (1− ϕ(σi)) | (σ0, . . . , σn) ∈ Π(K, x, y)} if {x, y} ∈ K,
∞ otherwise.

Let f : (K, ϕ)→ (K′, ϕ′) be a morphism of filtrations of simplicial complexes. Recall

that f is a simplicial map, thus there exists a map g between the vertex sets of K

and K′ respectively which extends to f . We define Real(f) to be g.

Lemma A.7. For any morphism of filtrations of simplicial complexes f : (K, ϕ) →

(K′, ϕ′) the map Real (f) as defined in Definition A.6 is non-expansive.

Proof. Let X be the vertex set of K and thus also the set of the extended pseudometric

space (K, ϕ) gets mapped to by Real. Let x, y ∈ X. The cases x = y and {x, y} ̸∈ K

are trivial. We, therefore, focus on the remaining case, in which x ̸= y but {x, y} ∈ K.

Let (σ0, ..., σn) ∈ Π(K, x, y) a the path that minimises
∑n

i=0− log (1− ϕ(σi)) in

the definition of d(x, y). Note that (f(σ0), ..., f(σn)) ∈ Π(K′,Real(f)(x),Real(f)(y))

(after removing all f(σi) with cardinality 1).

As x 7→ − log(1− x) is monotonically increasing, we find

n∑
i=0

− log (1− ϕ(σi)) ≥
n∑

i=0

− log (1− ϕ′(f(σi))) .

Thus, d′(Real(f)(x),Real(f)(y)) ≤ d(x, y).

Lemma A.8. The function d defined in Definition A.6 is an extended pseudometric.
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Proof. Condition 1 of Definition A.1 is satisfied by construction. To see that condition

2 is met, note that for any path (σ0, ..., σn) in K the reverse sequence of simplices,

(σn, ..., σ0) is also a path in K. Hence, the definition is symmetric.

Assume that x, y, z ∈ X are such that {x, z}, {x, y}, {y, z} ∈ K. Let

(σ0, ..., σn) ∈ Π(K, x, y) a the path that minimises
∑n

i=0− log (1− ϕ(σi)) in

the definition of d(x, y). Define (σ′
0, ..., σ

′
n′) ∈ Π(K, y, z) analogously for d(y, z). Note

that (σ0, ..., σn, σ
′
0, ..., σ

′
n′) ∈ Π(K, x, z). This implies d(x, z) ≤ d(x, y) + d(y, z).

Theorem A.9. The functors Sing and Real form an adjunction Real ⊣ Sing.

One can view Theorem A.9 as an insight on an optimisation problem: if a functor

F is left-adjoint to functor G, then F can be interpreted as the most efficient solution

to the problem posed by G. Conversely, G represents the hardest problem F can

solve [121]. To put this in the context of UMAP, we now return to Lemma A.2 and

give its proof:

Proof of Lemma A.2. Define a simplicial complex K on vertex set X such that {x} ∈

K for all x ∈ X and {x, y} ∈ K whenever w̃(x, y) > 0. Define ϕ : K → [0, 1) by

ϕ({x}) = 0 for all x ∈ X and ϕ({x, y}) = 1− w̃(x, y) for all {x, y} ∈ K.

Then the metric space described in Lemma A.2 is Real((K, ϕ)). It is an extended

pseudometric space by Lemma A.8.

The construction of the filtration in the above proof can be viewed as applying

Singρx to the neighbourhood of each point x (defined by the k-nn graph), rescaling

the extended pseudometric by σx and patching all of these local filtrations together

in a compatible way [102]. More concretely, for a fixed point x and a point y in its

neighbourhood, w̃(x, y) represents the probability of an edge (i.e., the simplex {x, y})

existing between the two points. The probability is modelled in a neighbourhood of

a point x and, in general, the probability that the same edge exists is, in general,

different if the probability is modelled by y. These inconsistencies are handled by

the definition of w̃(x, y), which is the probability that the edge {x, y} is modelled by
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the neighbourhood of x or that of y. A higher-order simplex is added whenever all

1-simplices it contains are contained in the k-nn graph.

Theorem A.9 states that there exists a most efficient way of turning such a filtra-

tion into an extended pseudometric space, which uses the functor Real. The UMAP

algorithm approximates this extended pseudometric space by embedding its points

into low-dimensional Euclidean space.

Remark. Given K as in the above proof, Sing(Real(K, ϕ)) should be approximately

the same as K for a well-behaved data set. Large discrepancies in filtration values

between these two filtrations are typically an indication of outlier points or rapidly

changing density in the original embedding in RN . Both phenomena should usually

be investigated separately.

Proof of Theorem A.9. To prove this theorem, we need to show that

hom(Real((K, ϕ)), (X ′, d′)) ≃ hom((K, ϕ), Sing((X ′, d′))

naturally for all (K, ϕ) ∈ fSC[0,1) and (X ′, d′) ∈ fEPMet. We do this by explicit

construction:

Assume f : Real((K, ϕ)) → (X ′, d′) is non-expansive. We map it to g : (K, ϕ) →

Sing((X ′, d′)) given by σ 7→ {f(x) |x ∈ X} where X is the vertex set underlying

K. Fix σ and let x, y ∈ σ be such that 1 − e−d′(f(x),f(y)) is maximised. As f is non-

expansive and d(x, y) ≤ − log(1 − ϕ({x, y})), we find ϕ′(f(σ)) ≤ ϕ(σ). Thus, the

mapping is well-defined.

Conversely, assume that g : (K, ϕ) → Sing((X ′, d′)), a morphism of simplicial

complexes, is given. We map it to f : Real((K, ϕ)) → (X ′, d′) defined by f : x 7→

∗g({x}), where ∗ is the operator that replaces a one-element set with the element it

contains. Let {x, y} ∈ K and assume for contradiction that d(x, y) < d′(f(x), f(y)).

Then

ϕ({x, y}) ≤ 1− e−d(x,y) < 1− e−d′(f(x),f(y)) ≤ ϕ′(g({x, y}),

a contradiction.

139



To see that the two mappings described are inverses to each other, observe that

they are entirely determined by the action of f on points and of g on singletons. Ap-

plying the two mappings in order fixes points and singletons. By the same reasoning,

they satisfy the naturality axioms of an adjunction too.

The UMAP Algorithm Revisited

The UMAP algorithm first approximates the geodesic distance between samples X =

{xi}i=1,...,n locally. The distance between two close points (i.e., points that are k-

nearest neighbours of each other) is rescaled and then symmetrised (see Equation

(2.2)). In particular, the metric d in Lemma A.2 yields an extended pseudometric

which (up to a scalar constant) approximates the geodesic distance of two close points

on M. Equivalently, the functor Real is applied to a k-nn graph weighted by w̃.

To retain computational tractability, UMAP makes the simplifying assumption that

n = 1 always in the definition of the extended pseudometric used in Lemma A.2.

To embed the sample X = {xi}i=1,...,n, UMAP turns the above extended pseudo-

metric space into a filtered simplicial complex Sing((X, d)). UMAP then aims to find

coordinates {yi} ⊂ Rd (with xi corresponding to yi) such that an extended pseudo-

metric space constructed from {yi} would yield a similar realisation to Sing((X, d)).

In particular, if we define

d′(xi, xj) =

{
∥yi − yj∥2 if d(xi, xj) <∞,
∞ otherwise,

the filtered simplicial complexes Sing((X, d)) and Singλ((X, d′)) for user-defined λ :=

min-dist should be ‘close’. The measure UMAP uses to define the closeness of filtered

simplicial complexes is the Kullback-Leibler divergence:

Definition A.10. Let K be a simplicial complex and let ϕ and ψ be two filtrations

of K in fSC[0,1). Their Kullback-Leibler divergence is defined as

DSC((K, ϕ), (K, ψ)) =
∑
σ∈K

ϕ(σ) log

(
ϕ(σ)

ψ(σ)

)
+ (1− ϕ(σ)) log

(
1− ϕ(σ)

1− ψ(σ)

)
. (A.1)

Similarly to D defined in Section 2.5.2, we note that while DSC is differentiable

for changes in ψ, but ψ is not differentiable for small changes in its inputs in the
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low-dimensional space Rd as Singλ is not differentiable. For a one-simplex connecting

y, y′ ∈ Rd, we have that its filtration value is

v(y, y′) = 1− exp (−max{0, ∥y − y′∥ −min-dist}) .

The filtration value of any higher-order simplex is again the maximal filtration value

of the one-simplices it contains.

UMAP approximates v by the smooth function

Φ(y, y′) = 1−
(
1 + a∥y − y′∥2b

)−1
,

where a and b are determined by least-squares fitting against v. To generalise Φ to

an n-simplex σ ∈ K, I propose to define the Cn
2 -dimensional vector Pσ which contains

the Euclidean distance of all pairs of embedded vertices of σ in its coordinates. Then

Φ(σ) := 1−
(
1 + a∥Pσ∥2bq

)−1

for a user-defined q (q should be large in order to approximate the ∞-norm).

Then Algorithm 1 generalises to simplicial complexes to give Algorithm 4. By

extension, UMAP generalises to filtered simplicial complexes. In this case, only the

one-skeleton K1 of K is used for the initialisation of {yi} by the spectral embedding.

To the best of my knowledge, no implementation of UMAP in the public domain

currently implements the version of UMAP generalised to simplicial complexes, which

is presented in this section. The Python UMAP implementation umap-learn justifies

its use of only the 1-skeleton of K by improved runtime [102]. While Algorithm 4 uses

the rigorous motivation of McInnes et al. in full, due to the lack of an implementation

there is currently no evidence that it performs better in practice than the algorithm

only using K1.

A.3 ECT Stability Proofs

Proofs of ECT Stability

Proof of Proposition 6.5. The last two statements follow from the fact that I has

Euler characteristic one and the empty set has Euler characteristic zero. We now

prove the remainder of the proposition.
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Algorithm 4 Stochastic gradient descent on filtered simplicial complexes

1: procedure OptimiseEmbedding((K, ϕ), {yi}, min-dist, n-epochs,
n-neg-samples)

2: α← 1.0
3: Φ is fitted from min-dist
4: for i← 1, ..., n-epochs do
5: for σ ∈ K\K0 do
6: for a ∈ σ do
7: if Random() ≤ 1− ϕ(σ) then
8: ya ← ya + α · ∇(log(1− Φ))(σ)
9: for j ← 1, ..., n-neg-samples do
10: c← random vertex in K1

11: ya ← ya + α · ∇(log(Φ))(ya, yc)
12: end for
13: end if
14: end for
15: end for
16: α← 1.0− i/n-epochs
17: end for
18: return {yi}
19: end procedure

The main goal of the proof is to establish the following two equalities:∫ b

a

|ECTγ(v, t)| dt =

∫ b

a

∣∣∣π0[f−1(−∞, t]
]∣∣∣ dt

V (f) =

∫ b

a

∣∣∣π0[f−1(t)
]∣∣∣ dt.

The first of these equalities follows from the fact that every subset of the unit

interval is component-wise contractible. Hence, the Euler characteristic of any subset

of I is the number of path-components it has. The second of these equalities is more

difficult to show, and its establishment is the bulk of the proof. Once both equalities

are shown, demonstrating that the first integrand on the right is less than or equal

to the second integrand on the right completes the proof.

To begin, notice that f is piece-wise C1 since γ is. For the proof, we let G(f) be

the set of points where f ′ is defined and positive, D(f) be the set of points where f ′

is defined and negative, and C(f) be the set of points in I neither in G(f) or D(f).

Since f is piece-wise C1, G(f) and D(f) are both open. Meanwhile, all but finitely
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many points of C(f) satisfy f ′(x) = 0. Clearly, G(f), D(f), and C(f) partition I.

Hence,

V (f) =

∫
G(f)

f ′(x) dx+

∫
D(f)

−f ′(x) dx+

∫
C(f)

|f ′(x)| dx

=

∫
G(f)

f ′(x) dx+

∫
D(f)

−f ′(x) dx,

since f ′ = 0 almost everywhere on C(f). Since both G(f) and D(f) are open, each is

a countable union of open sub-intervals of I, which we denote by {Ik}k∈Ξ and {Jl}l∈Θ
respectively. On each Ik f is increasing and on each Jl, f is decreasing. Hence, we

get

V (f) =

∫
G(f)

f ′(x) dx+

∫
D(f)

−f ′(x) dx

=
∑
k∈Ξ

∫
Ik

f ′(x) dx+
∑
l∈Θ

∫
Jl

−f ′(x) dx

=
∑
k∈Ξ

∫
R

∣∣∣π0[(f |Ik)−1(t)
]∣∣∣ dt+

∑
l∈Θ

∫
R

∣∣∣π0[(f |Jl)−1(t)
]∣∣∣ dt

=

∫
R

∣∣∣π0[(f |G(f))
−1(t)

]∣∣∣ dt+

∫
R

∣∣∣π0[(f |D(f))
−1(t)

]∣∣∣ dt

=

∫
R

∣∣∣π0[(f |G(f)∪D(f))
−1(t)

]∣∣∣ dt.

Here, the last line follows from the fact that if x and y have the same f value, each

point in G(f) or D(f), then by the definition of these sets there must be a point

between them that obtains either a smaller or larger value of f . The line before

follows from similar reasoning. If it is granted that f(C(f)) has measure zero we

then have

V (f) =

∫
R

∣∣∣π0[(f |G(f)∪D(f))
−1(t)

]∣∣∣ dt

=

∫
R

∣∣∣π0[(f |G(f)∪D(f))
−1(t)

]∣∣∣ dt+

∫
R

∣∣∣π0[(f |C(f))
−1(t)

]∣∣∣ dt

=

∫
R

∣∣∣π0[f−1(t)
]∣∣∣ dt

=

∫ b

a

∣∣∣π0[f−1(t)
]∣∣∣ dt.

Here, the second to last equality follows from the fact that if x is in C(f) and y is in

G(f) or D(f), then by definition of G(f) and D(f) there is a point between x and
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y with an f value not equal to f(y). In particular, the integrand at the end of this

equation must be finite almost everywhere.

Now we show that indeed f(C(f)) has measure zero. Since f is piece-wise C1, let

T1, . . . , Tk be closed intervals covering I on the interiors of which f is C1. Consider

Zi, the subset of the interior of Ii with f ′ = 0. By Sard’s Theorem (see for example

[127, Theorem 7.2]), f(Zi) has measure zero. We have that C(f) is a subset of

Z1∪ . . .∪Zk ∪∂T1∪ . . .∪∂Tk, whose image under f has measure zero. Thus f(C(f))

has measure zero.

Hence, the desired result follows once we establish that for any t ∈ [a, b],∣∣∣π0[f−1(−∞, t]
]∣∣∣ ≤ ∣∣∣π0[f−1(t)

]∣∣∣.
This inequality implies that ECTf (v, t) is defined for almost all t since ECTf (v, t) is

just the left-hand side of this inequality, which is positive-valued, and bounded by a

function that is finite for almost all t.

To prove this statement, it suffices to show that any path-component of f−1(−∞, t]

contains a point with f value t. Suppose otherwise, that there is a path-component C

of f−1(−∞, t] with f(C) < t. By continuity of f , C must also be a path-component

of f−1(−∞, b]. Indeed, suppose α is a path from the complement of C to C. Thus,

every neighborhood of α−1(C) must intersect (f ◦ α)−1(t, b]. But this produces a

contradiction of the intermediate value theorem. So C is a path-component of I =

f−1(−∞, b] and hence is I. The fact that f(C) < t ≤ b thus contradicts the definition

of b as the maximum of f , completing the proof.

Remark 2. Suppose γ : I → Rd is continuous and definable with respect to an o-

minimal structure on R. By [151, Chapter 7, Theorem 3.2]), γ is piece-wise C1 and

hence the above result applies.

Remark 3. In the case where f is tame, this result is implied by a stronger result of

[17, Corollary 4.6] for tame functions. The main contribution of this proposition is

that the stated bound still holds when f is not tame.

With the previous result in mind, we establish a bound on the variation of a curve

that is approximately straight.
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Lemma A.11. Suppose γ : I → Rd is a piece-wise differentiable path with length L

and the first coordinate γ1 satisfies |γ1(1) − γ1(0)| = Lx. Then the variation of any

other coordinate function γn of γ is bounded by

V (γn) ≤
√
L2 − L2

x. (A.2)

Proof. Without loss of generality, we can assume that γ(0) = 0, γ1(1) = Lx, and we

can show this bound holds for γ2 only.

From γ we can construct another function γ̄ by

γ̄(t) :=

∫ t

0

(γ′1(t), |γ′2(t)|, γ′3(t), . . . , γ′d(t)) dt.

Put differently, γ̄ has the same coordinate functions as γ except in the second co-

ordinate, where γ̄2 has the same absolute value of its derivative as γ, but is never

decreasing. It is immediate that γ and γ̄ have the same length, the same value of

γ1(1), and variation in the second coordinate. Hence, it suffices to show that the

lemma holds for γ2 for curves γ with length L, γ(0) = 0, γ1(1) = Lx, and γ′2(t) ≥ 0

for all t.

The fact that γ has length L implies that γ(1) lies in the closed d-disk of radius

L centred at the origin. The fact that γ1(x) = Lx implies that γ(1) lies on the

hyperplane of points with the first coordinate Lx. Elementary geometry shows that

the intersection of the disk and the hyperplane is

{(y1, y2, . . . , yn) ∈ Rd : y1 = Lx, y
2
2 + . . .+ y2d ≤ L2 − L2

x}.

It is easily seen that the greatest value of y2 on this set is
√
L2 − L2

x. So γ2(1) is

bounded above by this value. Hence,

V (γ2) =

∫ 1

0

∣∣γ′2(t)∣∣ dt =

∫ 1

0

γ′2(t) dt = γ2(1)− γ2(0) = γ2(1) ≤
√
L2 − L2

x.

We can now bound the L1 distance between Euler characteristic transforms of

nearby curves, assuming one of them is approximately straight.
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Proposition A.12. Let α : I → Rd be a piece-wise C1 map such that the distance of

α(0) to α(1) is L, with arc length no greater than L + ε. Let β : I → Rd be another

piece-wise C1 map with arc length no greater than L+ 2ε, and endpoints within ε of

the corresponding endpoints of α. Then

∥∥ECTα − ECTβ

∥∥ ≤ {8
√
Lε L > 2ε

10ε L ≤ 2ε.

Proof. Let v be an arbitrary unit vector, w = α(1)−α(0), and θ be the angle between

w and the hyperplane normal to v. After potentially applying a rotation to α and

β, we may assume that v = (0, 1, 0, . . . , 0). By applying another rotation we may

assume also that w is only non-zero in the first two coordinates.

Let f denote the inner product with v and let a and b be the minimum and

maximum of f ◦α and c and d be the minimum and maximum of f ◦ β. Throughout

the proof, we use the fact that if both ECTα(v, t) and ECTβ(v, t) are non-zero, then

|ECTα(v, t)− ECTα(v, t)| ≤ ECTα(v, t) + ECTβ(v, t)− 2,

as both Euler characteristic transforms must be positive (since subsets of the interval

are component-wise contractible) and greater than 1.

First, suppose max(a, c) ≤ min(b, d). Then∫
R
|ECTα(v, t)− ECTβ(v, t)| dt =

∫ max(a,c)

min(a,c)

|ECTα(v, t)− ECTβ(v, t)| dt

+

∫ min(b,d)

max(a,c)

|ECTα(v, t)− ECTβ(v, t)| dt

+

∫ max(b,d)

min(b,d)

|ECTα(v, t)− ECTβ(v, t)| dt.

Suppose also that b ≤ d. Then the above expression is bounded by∫ max(a,c)

min(a,c)

ECTα(v, t) + ECTβ(v, t) dt+

∫ b

max(a,c)

ECTα(v, t)

+ECTβ(v, t)− 2 dt+

∫ d

b

ECTβ(v, t)− 1 dt,
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where we have only had to approximate the middle term. If we additionally suppose

a ≤ c, then our bound is equal to∫ c

a

ECTα(v, t) dt+

∫ b

c

ECTα(v, t) + ECTβ(v, t)− 2 dt+

∫ d

b

ECTβ(v, t)− 1 dt.

Rearranging and by the linearity of the integral, the above is equal to∫ d

c

ECTβ(v, t) dt+

∫ b

a

ECTα(v, t)dt− 2(b− c)− (d− b).

Similar analysis when a > c and/or b > d shows that when max(a, c) ≤ min(b, d),∫
R
|ECTα(v, t)− ECTβ(v, t)| dt ≤

∫ d

c

ECTβ(v, t) dt+

∫ b

a

ECTα(v, t) dt

− 2|min(b, d)−max(a, c)| − |max(b, d)−min(b, d)|.
(A.3)

Note that |b − a| = L| sin θ|. By hypothesis ∥α(0) − β(0)∥ ≤ ε, so |a − c| ≤ ε.

Similarly |b− d| ≤ ε. Hence,

|min(b, d)−max(a, c)| ≥ L| sin θ| − 2ε

by the triangle inequality. Of course, the quantity on the left is also positive, so

|min(b, d)−max(a, c)| ≥ max(0, L| sin θ| − 2ε).

Trivially, we also have |max(b, d)−min(b, d)| ≥ 0. Applying these inequalities, Pro-

position 6.5, and Lemma A.11 to Equation (A.3), we have∫
R
|ECTα(v, t)− ECTβ(v, t)| dt ≤

√
(L+ 2ε)2 −max(0, L| cos θ| − 2ε)2

+
√

(L+ ε)2 − L2| cos2 θ|

− 2 max(0, L| sin θ| − 2ε).

(A.4)

In the application of Lemma A.11 for the first term, we use that |β1(1) − β1(0)| ≤

max(0, L| cos θ| − 2ε).
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Otherwise, max(a, c) ≥ min(b, d), so either a ≤ b ≤ c ≤ d or c ≤ d ≤ a ≤ b.

In either of these cases, we must have that L| sin θ| ≤ ε. Consider the first of these

cases. We observe∫
R
|ECTα(v, t)− ECTβ(v, t)| dt =

∫ b

a

|ECTα(v, t)− ECTβ(v, t)| dt

+

∫ c

b

|ECTα(v, t)− ECTβ(v, t)| dt

+

∫ d

c

|ECTα(v, t)− ECTβ(v, t)| dt.

This quantity is equal to∫ b

a

ECTα(v, t) dt+

∫ c

b

1 dt+

∫ d

c

ECTβ(v, t)− 1 dt,

Bounding from above, we have∫
R
|ECTα(v, t)− ECTβ(v, t)|dt ≤

∫ b

a

ECTα(v, t) dt+

∫ d

c

ECTβ(v, t) dt

+ (c− b)− (d− c)

≤
∫ b

a

ECTα(v, t) dt+

∫ d

c

ECTβ(v, t) dt+ (c− b).

Similar analysis when c ≤ d ≤ a ≤ b shows that in general, if max(a, c) ≤ min(b, d),

then ∫
R
|ECTα(v, t)− ECTβ(v, t)| dt ≤

∫ b

a

ECTα(v, t) dt+

∫ d

c

ECTβ(v, t) dt

+ min(|c− b|, |d− a|).

By the triangle inequality, min(|c − b|, |d − a|) ≤ ε − L sin θ. Applying Proposition

6.5 and Lemma A.11 once again, we see∫
R
|ECTα(v, t)− ECTβ(v, t)| dt ≤

√
(L+ 2ε)2 −max(0, L| cos θ| − 2ε)2

+
√

(L+ ε)2 − L2| cos2 θ|

+ max(0, ε− L| sin θ|).

In summary,
∫
R |ECTα(v, t)− ECTβ(v, t)| dt is bounded by

√
(L+ 2ε)2 −max(0, L|cos θ| − 2ε)2+

√
(L+ ε)2 − L2|cos2 θ|−2 max(0, L|sin θ|−2ε)
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whenever L| sin θ| ≥ ε. Otherwise, either we still have max(a, c) ≤ min(b, d) and the

above bound still holds or max(a, c) ≥ min(b, d) and we instead have the bound√
(L+ 2ε)2 −max(0, L| cos θ| − 2ε)2 +

√
(L+ ε)2 − L2| cos2 θ|+ max(0, ε−L| sin θ|).

Hence, in general,∫
R
|ECTα(v, t)− ECTβ(v, t)| dt =

√
(L+ 2ε)2 −max(0, L| cos θ| − 2ε)2

+
√

(L+ ε)2 − L2| cos2 θ|

− 2 max(0, L| sin θ| − 2ε) + max(0, ε− L| sin θ|).

The proof is complete once we have established the following tedious lemma.

Lemma A.13. The function

f(θ) =
√

(L+ 2ε)2 −max(0, L| cos θ| − 2ε)2 +
√

(L+ ε)2 − L2| cos2 θ|

− 2 max(0, L| sin θ| − 2ε) + max(0, ε− L| sin θ|)

is bounded above by

f(θ) ≤

{
8
√
Lε L > 2ε

10ε L ≤ 2ε.

Proof. Thanks to the symmetries of the sine and cosine functions and the absolute

values present in the formula for f , we have that f(−θ) = f(θ) and f(π/2−θ) = f(θ).

So f(θ) = f(π/2 + θ). Therefore it suffices to bound f on the interval [0, π/2]. On

this interval, we can remove the absolute values in the formula for f , giving

f(θ) =
√

(L+ 2ε)2 −max(0, L cos θ − 2ε)2 +
√

(L+ ε)2 − L2 cos2 θ

− 2 max(0, L sin θ − 2ε) + max(0, ε− L sin θ).

With the exception of finitely many values of θ, the derivative of f exists and is equal

to

I(L cos θ > 2ε)
L sin θ(L cos θ − 2ε)√

(L+ 2ε)2 − (L cos θ − 2ε)2
+

L2 sin θ cos θ√
(L+ ε)2 − L2 cos2 θ

−I(L sin θ > 2ε)2L cos(θ)− I(L sin θ < ε)L cos θ,

where I denotes the indicator function.

Notice that

L2 sin θ cos θ√
(L+ ε)2 − L2 cos2 θ

≤ L2 sin θ cos θ√
L2 − L2 cos2 θ

= L cos θ,
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and similarly

L sin θ(L cos θ − 2ε)√
(L+ 2ε)2 − (L cos θ − 2ε)2

≤ L2 sin θ cos θ√
L2 − L2 cos2 θ

= L cos θ.

Using these identities, we get that

f ′(θ) ≤I(L cos θ > 2ε)L cos θ + L cos θ

− I(L sin θ > 2ε)2L cos(θ)− I(L sin θ < ε)L cos θ.

Hence f is weakly decreasing whenever L sin θ > 2ε. When ε < L sin θ < 2ε, every

non-zero term in f ′ is positive, and so f is increasing. We now bound f ′ in absolute

value when L sin θ < ε. In this case,

|f ′(θ)| ≤ I(L cos θ > 2ε)
L sin θ(L cos θ − 2ε)√

(L+ 2ε)2 − (L cos θ − 2ε)2
+

L2 sin θ cos θ√
(L+ ε)2 − L2 cos2 θ

+ L cos θ

≤ 3L cos θ

≤ 3L,

using our approximations for the first and second terms from earlier.

Further, if L > 2ε,

f(0) =
√

(L+ 2ε)2 −max(0, L− 2ε)2 +
√

(L+ ε)2 − L2 − ε

=
√

8Lε+
√

2Lε+ ε2 − ε

≤ (
√

8 +
√

3)
√
Lε− ε.

Otherwise L ≤ 2ε and,

f(0) =
√

(L+ 2ε)2 −max(0, L− 2ε)2 +
√

(L+ ε)2 − L2 − ε

= L+ 2ε+
√

2Lε+ ε2 − ε

= L+ ε+
√

2Lε+ ε2

≤ (3 +
√

5)ε.
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Hence, we can bound f(θ) for θ on the interval [0, sin−1(ε/L)] (or [0, π/2] if ε > L)

by using our upper bounds for f(0) and |f ′(θ)| on this interval. By additionally using

the inequality sin−1(x) ≤ πx/2 for positive x, we obtain that when L sin θ ≤ ε,

f(θ) ≤


(
√

8 +
√

3)
√
Lε+ (3π/2− 1)ε L > 2ε

(3 +
√

5 + 3π/2)ε ε ≤ L ≤ 2ε

(3 +
√

5)ε+ (3π/2)L L < ε

≤

{
(
√

8 +
√

3)
√
Lε+ (3π/2− 1)ε L > 2ε

(3 +
√

5 + 3π/2)ε L ≤ 2ε

≤

{
(
√

8 +
√

3 + (3π/4− 1/2)
√

2)
√
Lε L > 2ε

(3 +
√

5 + 3π/2)ε L ≤ 2ε

≤

{
8
√
Lε L > 2ε

10ε L ≤ 2ε.

Otherwise, we know f is weakly increasing until L sin θ > 2ε, after which point it is

weakly decreasing. Hence, if f is not maximised where L sin θ ≤ ε, it must attain its

maximum when L sin θ = 2ε, or equivalently θ = sin−1(2ε/L). Note that this implies

2ε ≤ L. We compute

f(sin−1(2ε/L)) =

√
(L+ 2ε)2 −max(0,

√
L2 − 4ε2 − 2ε)2 +

√
(L+ ε)2 − L2 − 4ε2

=

√
(L+ 2ε)2 −max(0,

√
L2 − 4ε2 − 2ε)2 +

√
2Lε− 3ε2

=

{√
4Lε+ 4ε2 + 2ε

√
L2 − 4ε2 +

√
2Lε− 3ε2 L > 2

√
2ε

L+ 2ε+
√

2Lε− 3ε2 2ε ≤ L ≤ 2
√

2ε

≤

{√
6Lε+ 4ε2 +

√
2Lε L > 2

√
2ε

(2 + 2
√

2)ε+
√

2Lε 2ε ≤ L ≤ 2
√

2ε

≤

{
(
√

6 +
√

2 +
√

2)
√
Lε L > 2

√
2ε

(2 + 2
√

2)
√
Lε 2ε ≤ L ≤ 2

√
2ε

≤ 5
√
Lε.

Hence, to totally bound f(θ) on the interval [0, π/2] we need only use our earlier

bound, namely

f(θ) ≤

{
8
√
Lε L > 2ε

10ε L ≤ 2ε.
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The goal of the following proposition is to bound from below the chord length of

a short segment of a curve given that it has bounded curvature.

Proposition A.14. Suppose γ : [0, L]→ Rd is a twice differentiable curve paramet-

erised by arc length with curvature κ bounded in norm by M . Let 0 < ε < π/M .

Then for any t ∈ [0, L− ε],

ε ≥ ∥γ(t+ ε)− γ(t)∥2 ≥
2

M
sin

(
M

2
ε

)
.

In particular,

∥γ(t+ ε)− γ(t)∥2 ≥ ε− M2

24
ε3.

To prove this we make use of the following theorem of Schwarz, which we cite

from [35]:

Theorem A.15 (Schwarz). Let C be an arc joining two given points A and B with

curvature κ(s) ≤ 1/R, such that R ≥ 1
2
δ, where δ is the distance between A and B.

Let S be a circle of radius R through A and B. Then the length of C is either less

than, or equal to, the shorter arc AB or greater than, or equal to, the longer arc AB

on S.

Proof of Proposition A.14. The first inequality is clear since γ is parameterised by arc

length. Now fix t. For the second inequality, consider the optimisation problem of

minimising ∥α(t+ε)−α(t)∥2 subject to the constraints that ∥α′∥2 = 1 and ∥α′′∥2 ≤M .

Consider an arc of length ε on the circle of curvature M , which has radius 1/M .

Elementary geometry shows that the distance between the endpoints of such an arc

is 2
M

sin(Mε/2). We claim that this arc provides an optimal solution. Indeed, let γ

be any curve that performs at least as well as this arc in the sense that

∥γ(t+ ε)− γ(t)∥2 ≤
2

M
sin
(M

2
ε
)
,

while ∥γ′∥2 = 1, ∥γ′′∥2 ≤M .
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Let S be a circle of radius 1/M crossing both γ(t) and γ(t + ε). Such a circle

must exist since ∥γ(t + ε) − γ(t)∥2 ≤ 2/M . The curve γ on the interval [t, t + ε] is

of length ε < π/M while the longer arc on S connecting γ(t) and γ(t+ ε) has length

greater than π/M . Hence, by the theorem of Schwarz, ε is less than or equal to the

length of the shorter arc on S from γ(t) to γ(t+ε). If this inequality is strict, we may

take a shorter portion of the circular arc with length ε, which has a shorter distance

between endpoints. This proves that an arc of length ε on a circle of radius 1/M is

an optimal solution of the optimisation problem.

Thus for potentially suboptimal γ, we have

∥γ(t+ ε)− γ(t)∥2 ≥
2

M
sin

(
M

2
ε

)
.

For the last statement of the proposition, by the Lagrange remainder theorem

sinx− x+ x3/6 =

∫ x

0

cos t
(x− t)5

5!
dt.

The right side is clearly positive provided that 0 < x ≤ π/2. Since 0 < M
2
ε < π/2,

we have
2

M
sin

(
M

2
ε

)
≥ 2

M

[
M

2
ε− M3

48
ε3
]

= ε− M2

24
ε3.

We now use the results we have already proven about curves that are approxim-

ately straight to obtain a stability result for the Euler characteristic transform of more

general shapes. To do this, we prove a lemma that allows us to glue together Euler

characteristic transforms of functions restricted to different regions of a domain.

Definition A.16. Let V ∗ = (V, V0, {Φλ}λ∈ΛV
) andW ∗ = (W,W0, {Φλ}λ∈ΛW

) be finite

one-dimensional CW complexes, each with a fixed CW structure. Suppose there exist

maps fV ∈ F r(V ∗, d) and fW ∈ F r(W ∗, d), a subset S ⊆ V0 and an injective map

m : S → W0 such that fV = fW ◦m on S. We define the glue of V ∗ and W ∗ under

m to be a finite complex with structure:

Z∗ = (Z,Z0, {Φλ}λ∈ΛZ
) :=

(
(V ⊔W )/m, (V0 ⊔W0)/m, {Φλ}λ∈ΛV ⊔ΛW

)
.
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We define the glue of fV and fW under m to be the map fZ : Z → Rd which restricts

to fV on V and fW of W . This map is well defined (since fV = fW ◦m on S) and is

an element of F r(Z∗, d).

Lemma A.17. Using the notation of the previous definition, suppose ECTfV (v, t)

and ECTfW (v, t) are defined for almost all t for any fixed v. Then

ECTfZ (v, t) = ECTfV (v, t) + ECTfW (v, t)− ECTfS(v, t) (A.5)

for almost all t when v is fixed, where fS is the restriction of fV to S.

Proof. Fix a unit vector v in Rd. Let p1, . . . , pk be the points of S. We denote by

V (v, t) the subset of points x in V satisfying that ⟨v, fV (x)⟩ ≤ t. We define W (v, t)

and Z(v, t) analogously. We let S(v, t) denote the intersection of S and V (v, t).

Via the inclusions of V and W into Z, we can view Z as the union of V and W ,

with V and W intersecting in Z at S. Similarly, we can view Z(v, t) as the union

of V (v, t) and W (v, t), with these two subsets intersecting at S(v, t). For almost all

t ∈ R, ⟨v, fV (pi)⟩ ̸= t for all i. Fix any such t. Hence, we have that the interiors

of V (v, t) and W (v, t) cover their intersection S(v, t), by continuity of fV and fW .

Therefore, we have a Mayer-Vietoris exact sequence of homology groups [70, p. 149]:

. . .→ Hi

(
S(v, t)

)
→ Hi

(
V (v, t)

)
⊕Hi

(
W (v, t)

)
→ Hi

(
Z(v, t)

)
→ . . . .

A routine argument then deduces the identity

χ
(
Z(v, t)

)
= χ

(
V (v, t)

)
+ χ

(
W (v, t)

)
− χ

(
S(v, t)

)
,

whenever all Euler characteristics on the right-hand side are defined. This happens

for almost all t and is another way of writing the identity of Equation (A.5).

We now have the prerequisites to prove Proposition 6.4.

Proof of Proposition 6.4. Let αλ := f ◦Φλ and βλ := g ◦Φλ. Since the index set Λ is

finite, we let Λ = {1, . . . , k}. We define Z0 := Z0, and inductively, Zλ = Zλ−1∪ im Φλ

for λ ∈ Λ. We then let fλ = f |Zλ and gλ = g|Zλ .
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Inductively, we assume that

∥∥ECTfλ−1
− ECTgλ−1

∥ ≤ |Z0|ε+
λ−1∑
k=1

Gk(ε).

Indeed, as a base case, it is easily observed that∥∥ECTf0 − ECTg0

∥∥ ≤ |Z0|ε.

We can split αλ into n pieces by restricting αλ,i : [ i−1
n
, i
n
] → Rd. Analogously we

can split βλ into curves βλ,i. By Proposition A.14, the arc length of each αλ,i is at

most M2L3
λ/24n3 greater than the distance between its endpoints if n > LλM/π. We

now apply Proposition A.12. Thus, provided

M2L3
λ

24n3
≤ ε, or equivalently, n ≥

(M2L3
λ

24ε

)1/3
,

we observe ∥∥ECTαλ,i
− ECTβλ,i

∥∥ ≤ {8
√
Lλε/n Lλ/n > 2ε

10ε Lλ/n ≤ 2ε.

Let mλ ∈ {1, 2} be the number of 0-cells (i.e. elements of Z0) in the image of Φλ. By

repeatedly applying Lemma A.17 we have that

ECTαλ
(v, t) = (mλ − 2)ECTαλ(0)(v, t) +

n∑
i=1

ECTαλ,i
(v, t)−

n−1∑
i=1

ECTαλ,i(i/n)(v, t),

for almost all t when v is fixed. By the same argument, a similar equality holds

for ECTβλ
. Hence, by the triangle inequality, we deduce that ∥ECTαλ

− ECTβλ
∥ is

bounded above by

(mλ − 2)
∥∥ECTαλ(0) − ECTβλ(0)

∥∥+
n∑

i=1

∥∥ECTαλ,i
− ECTβλ,i

∥∥
+

n−1∑
i=1

∥∥ECTαλ,i(i/n) − ECTβλ,i(i/n)

∥∥
≤

{
8
√
Lλnε+ (n+mλ − 3)ε Lλ/n > 2ε

(11n+mλ − 3)ε Lλ/n ≤ 2ε.

In particular, this bound hold when we let

n = nλ := max

(⌈(
M2L3

λ

24ε

)1/3
⌉
,

⌈
LλM

π

⌉)
.
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Applying Lemma A.17 again, we have

ECTfλ(v, t) = ECTfλ−1
(v, t) + ECTαλ

(v, t)−ECTαλ(0)(v, t)− (mλ− 1)ECTαλ(1)(v, t),

for almost all t when v is fixed. Similarly, such an equation holds involving gλ, gλ−1,

and βλ.

Applying the triangle inequality as before, along with our bound for ∥ECTαλ
−

ECTβλ
∥, we deduce∥∥ECTfλ − ECTgλ

∥∥ ≤ ∥∥ECTfλ−1
− ECTgλ−1

∥∥+
∥∥ECTαλ

− ECTβλ

∥∥+ (2−mλ)ε.

The last two terms sum to Gλ(ε)− ε, so in particular we have the bound

∥∥ECTfλ − ECTgλ

∥∥ ≤ |Z0|ε+
λ∑

k=1

Gk(ε).

Induction then proves the proposition.

From Proposition 6.4, Theorem 6.3 follows easily.

Proof of Theorem 6.3. Fix some X, Y ∈ Gr(Z∗, d) and suppose dZ∗(X, Y ) < ε.

Hence, we may choose hX , hY ∈ Er(Z∗, d) with the properties given in Definition 6.2.

Suppose that X has curvature bounded by M under Z∗. It follows that hX also has

curvature bounded by M . Proposition 6.4 gives that

∥ECThX
− ECThY

∥ ≤ |Z0|ε+
∑
λ∈Λ

Gλ(ε),

but ECTX = ECThX
and ECTY = ECThY

since hX and hY are homeomorphisms.

The second statement of the theorem follows.

For the first statement, note that every X ∈ Gr(Z∗, d) has a bound M on its

curvature and that Gλ(ε)→ 0 as ε→ 0 for all λ ∈ Λ.

Proofs of ECT Stability under Piece-wise Linear Interpola-
tions

In practice, the Theorem 6.8 implies that the ECT of a function on a one-dimensional

CW complex can be computed approximately via a dense subset. The proof of this

theorem is similar to the proof of Theorem 6.3, but requires two additional lemmas.
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Lemma A.18. Using the notation Definition 6.7, let bi := f(ai), and bij denote the

line segment from bi to bj, and let ci denote the number of pairs in E containing i.

Then

ECTA
f =

∑
(i,j)∈E

ECTbij −
n∑

i=1

(ci − 1)ECTbi .

Proof. Fix some v and t. If max(⟨bi, v⟩, ⟨bj, v⟩) ≤ t, then ECTbij(v, t) = χ(bij) = 1.

If instead min(⟨bi, v⟩, ⟨bj, v⟩) > t, then ECTbij(v, t) = χ(∅) = 0. Otherwise, without

loss of generality, suppose ⟨bi, v⟩ ≤ t and ⟨bj, v⟩ > t. Again, we have that ECTbij(v,t)

is equal to the Euler characteristic of a line segment, which is equal to 1.

Define the submultisets

Eup = {(i, j) ∈ E : min(⟨bi, v⟩, ⟨bj, v⟩) > t},

Edown = {(i, j) ∈ E : max(⟨bi, v⟩, ⟨bj, v⟩) ≤ t},

Emid = {(i, j) ∈ E : max(⟨bi, v⟩, ⟨bj, v⟩) > t, min(⟨bi, v⟩, ⟨bj, v⟩) ≤ t}.

Note E = Eup ⊔ Edown ⊔ Emid. Therefore,

∑
(i,j)∈E

ECTbij(v, t)−
n∑

i=1

(ci − 1)ECTbi(v, t)

=
∑

(i,j)∈Eup

ECTbij(v, t) +
∑

(i,j)∈Edown

ECTbij(v, t)

+
∑

(i,j)∈Emid

ECTbij(v, t)−
n∑

i=1

(ci − 1)ECTbi(v, t)

=
∑

(i,j)∈Edown

1 +
∑

(i,j)∈Emid

1−
n∑

i=1

(ci − 1)ECTbi(v, t)

=
∑

(i,j)∈Edown

(2− 1) +
∑

(i,j)∈Emid

1−
n∑

i=1

(ci − 1)ECTbi(v, t)

=
∑

(i,j)∈Edown

2 +
∑

(i,j)∈Emid

1−
n∑

i=1

(ci − 1)ECTbi(v, t)−
∑

(i,j)∈Edown

1

=
n∑

i=1

ciECTbi(v, t)−
n∑

i=1

(ci − 1)ECTbi(v, t)−
∑

(i,j)∈Edown

1

=
n∑

i=1

ECTbi(v, t)−
∑

(i,j)∈Edown

1 = ECTA
f (v, t).
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Lemma A.19. Let f : R≥0 → R≥0 be any differentiable function with increasing

positive derivative satisfying f(0) = 0. For positive numbers L and ε consider the set

S(L) =

{
(x1, . . . , xk) ∈ Rk : 0 ≤ xi ≤ ε,

k∑
i=0

xi = L

}
.

If S(L) is non-empty, then
k∑

i=1

f(xi) ≤ Lf(ε)/ε

on S(L) (note that S(L) is always non-empty if k > L/ε).

Proof. Let a ≤ c and b ≥ 0. We have

f(b+ c)− f(a+ b)−
(
f(c)− f(a)

)
=

∫ c

a

f ′(b+ t)− f ′(t) dt ≥ 0

and so

f(a+ b) + f(c) ≤ f(a) + f(b+ c) when a ≤ c and b ≥ 0. (A.6)

Suppose S(L) is non-empty. Since S(L) is compact, f must attain a maximum on

S(L). Pick any such maximiser x = (x1, . . . , xk) ∈ S(L). By potentially reordering

entries, we may assume the xi are in decreasing order without affecting the value of∑
i f(xi). Let j be the smallest index with xj ̸= ε and l be the largest index with xl

not equal to zero.

If l > j, let m = min(xl, ε− xj). Equation (A.6) shows that if we replace xj with

xj +m and replace xl with xl−m, the value of
∑

i f(xi) does not decrease. Therefore,

by applying this replacement procedure several times, we can always find a maximiser

of
∑

i f(xi) on S(L) with j ≥ l. This condition forces the value of
∑

i f(xi) to be

⌊L/ε⌋f(ε) + f
(
L− ⌊L/ε⌋ε

)
.

If L is divisible by ε, the result is immediate. Otherwise, since f is convex,

f(L− ⌊L/ε⌋ε) = f
((
⌈L/ε⌉ − L/ε

)
0 +

(
L/ε− ⌊L/ε⌋

)
ε
)

≤
(
⌈L/ε⌉ − L/ε

)
f(0) +

(
L/ε− ⌊L/ε⌋

)
f(ε)

=
(
L/ε− ⌊L/ε⌋

)
f(ε).
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Thus

⌊L/ε⌋f(ε) + f
(
L− ⌊L/ε⌋ε

)
≤ ⌊L/ε⌋f(ε) +

(
L/ε− ⌊L/ε⌋

)
f(ε) = Lf(ε)/ε.

Since the value on the left is the maximum of
∑

i f(xi) on S(L), we are done.

Proof of Theorem 6.8. For each e = (i, j) ∈ E, we let be = bij. Each e ∈ E cor-

responds to some open interval in Z − A. We can always fix a finer CW structure

Z† = (Z,A, {Φe}e∈E) of Z, and still have that f ∈ F r(Z†, d). Let γe = f ◦ Φe. Ad-

opting the notation of Lemma A.18, induction on the number of elements in E with

Lemma A.17 applied to Z† gives that for fixed v,

ECTf (v, t) =
∑
e∈E

ECTγe(v, t)−
n∑

i=1

(ci − 1)ECTbi(v, t),

for almost all t.

Therefore, again fixing v and using Lemma A.18,∫
R

∣∣ECTf (v, t)− ECTA
f (v, t)

∣∣ dt

=

∫
R

∣∣∣∣∑
e∈E

ECTγe(v, t)−
n∑

i=1

(ci − 1)ECTbi(v, t)−

[∑
e∈E

ECTbe(v, t)−
n∑

i=1

(ci − 1)ECTbi(v, t)
]∣∣∣∣ dt

=

∫
R

∣∣∣∑
e∈E

ECTγe(v, t)−
∑
e∈E

ECTbe(v, t)
∣∣∣ dt

≤
∑
e∈E

∫
R

∣∣∣ECTγe(v, t)− ECTbe(v, t)
∣∣∣ dt.

(A.7)

Focusing on any particular e = (i, j) ∈ E, let d1 be the minimum of ⟨γe(s), v⟩ over

s, and d4 be the maximum of the same function over s. Let d2 = min(⟨bi, v⟩, ⟨bj, v⟩))

and d3 = max(⟨bi, v⟩), ⟨bj, v⟩)). It follows that d1 ≤ d2 ≤ d3 ≤ d4.
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Since subsets of I and be always consist of contractible components, ECTγe and

ECTbe never have negative values. We have

t ≥ d1 =⇒ ECTγe(v, t) ≥ 1,

t ≥ d4 =⇒ ECTγe(v, t) = 1,

t < d1 =⇒ ECTγe(v, t) = 0,

t ≥ d2 =⇒ ECTbe(v, t) = 1,

t < d2 =⇒ ECTbe(v, t) = 0.

Combining these observations, we see∫
R

∣∣∣ECTγe(v, t)− ECTbe(v, t)
∣∣∣ dt =

∫ d4

d1

ECTγe(v, t)− ECTbe(v, t) dt

≤
∫ d4

d1

ECTγe(v, t) dt− (d3 − d2).

After applying a rotation, we may assume that v = (0, 1, 0, . . . , 0). After applying

another rotation about v we may assume that be is parallel to the plane spanned by

the first two coordinates. Let le be the arc length of γe. By Proposition A.14, the

length of be is at least le − M2l3e/24. Suppose that the line segment be meets the

hyperplane perpendicular to v at an angle θ ∈ [0, π/2].

Applying Proposition 6.5 and Lemma A.11 to this scenario, we observe

∫ d4

d1

ECTγe(v, t) dt− (d3 − d2) ≤

√
l2e −

(
le −

M2

24
l3e

)2

cos2 θ −
(
le −

M2

24
l3e

)
sin θ.

We refer to the right side of this inequality as f(θ). Let G = le −M2l3e/24. G is

positive since le < ε < π/M <
√

24/M . We have

f ′(θ) =
G2 sin θ cos θ√
l2e −G2 cos2 θ

−G cos θ.

A routine calculation shows that f ′ is either zero only when θ = π/2 or for every θ.

Meanwhile f ′(0) = −G. Since this value is negative, f must be maximised at θ = 0.
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Hence,∫
R
|ECTγe(v, t)− ECTbe(v, t)| dt ≤

∫ d4

d1

ECTγe(v, t) dt− (d3 − d2)

≤

√
l2e −

(
le −

M2

24
l3e

)2

=

√
M2

12
l4e −

M4

242
l6e

≤ M√
12
l2e .

(A.8)

For λ ∈ Λ, let Lλ denote the arc length of f ◦Φλ. Now for λ ∈ Λ, denote by Γ(λ) the

submultiset of e ∈ E such that im Φe is a subset of im Φλ. By Equations (A.7) and

(A.8), along with Lemma A.19, we get that∫
R

∣∣∣ECTf (v, t)− ECTA
f (v, t)

∣∣∣ dt ≤ M√
12

∑
e∈E

l2e

=
M√
12

∑
λ∈Λ

∑
e∈Γ(λ)

l2e

≤ M√
12

∑
λ∈Λ

Lλε
2/ε

=
MLε√

12
.

Since this bound holds for any v, we are done.

Proof ECT Stability for Random Data

When proving Theorem 6.11, we write kx and ky for the partial derivatives in the

first and second components, respectively, and Kx and Ky for their corresponding

Gram matrices. In particular, for fixed t ∈ I, λ ∈ Λ, and a, we write Kλ
x (t, an) =

[kλ,a1x (t), ..., kλ,anx (t)] and Kλ
y for its transpose. A repeated subscript indicates repeated

differentiation in that variable.

Let g : X → R be a GP with kernel k and a deterministic function h : X ′ → X.

Then g ◦ h is a GP with kernel k′(x, y) := k(h(x), h(y)) for all x, y ∈ X ′. This insight

immediately follows from the definition of a GP in Definition 6.1. In particular, for

the GP f in the statement of this theorem and any λ ∈ Λ, the composition f ◦Φλ is

a GP for any number of observations n.
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The derivative of a Gaussian process on I with a differentiable kernel is almost

surely differentiable. As differentiation is a linear operator, the derivative of a Gaus-

sian process is again a Gaussian process in such a case [120]. In particular, this

derivative GP has kernel kxy and for any t ∈ I we have the joint distribution[
g(t)
g′(t)

]
∼ N

([
µ(t)
µ′(t)

]
,

[
k(t, t) ky(t, t)
kx(t, t) kxy(t, t)

])
. (A.9)

In Theorem 6.11, we consider the GP regression of fλ based on observations at a

for fixed λ. Even if not all elements in the sequence a need to be in the image of Φλ,

the GP posterior pre-composed with Φλ defines a GP on I. We are interested in the

convergence of the derivative of this GP.

For fixed λ ∈ Λ, we denote the variance of this derivative GP at t ∈ I by v′n,λ(t)

(which is not the same as the derivative of vn,λ(t) in t). In particular, we have

v′n,λ(t) = kλxy(t, t)−Kλ
x (t, an)(K(an, an) + σ2I)−1Kλ

y (an, t).

Lemma A.20. Given the Gaussian processes of Theorem 6.11, we get that for each

λ ∈ Λ the v′n,λ satisfy

v′n,λ(t) = E
[∣∣∣f̂ ′

n,λ(t, an, f)− f ′
λ(t)
∣∣∣2] .

Furthermore, v′n,λ(t) is monotonically decreasing in n for all t ∈ I.

Proof. The first statement follows from Lemma 11 of [85]. In particular,

Ef ′
λ

[∣∣∣f̂ ′
n,λ(t)− f ′

λ(t)
∣∣∣2]

= Eζn

[
Ef ′

λ

[∣∣∣f̂ ′
n,λ(t)− f ′

λ(t)
∣∣∣2] ∣∣∣f(an) + ζn = yn

]
= Eζn

[
Ef ′

λ

[∣∣f ′
λ(t)− Ef ′

λ
[f ′

λ(t)|f(an) + ζn]
∣∣2] ∣∣∣f(an) + ζn = yn

]
= Eζn

[Var(f ′
λ(t)|f(an) + ζn)]

= Eζn
[v′n,λ(t)] = v′n,λ(t).

For the second statement, we can write

v′n,λ(t) = kλxy(t, t)−Kλ
x (t, an+1)

[
B−1

n 0n×1

01×n 0

]
Kλ

y (an+1, t),
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where Bn := (K(an, an)+σ2In). Using the bordering method to obtain an expression

for B−1
n+1 in terms of Bn, we get

v′n,λ(t)− v′n+1,λ(t)

= νKλ
x (t, an+1)

[
B−1

n K(an, an+1)K(an+1, an)B−1
n −B−1

n K(an, an+1)
−K(an+1, an)B−1

n 1

]
Kλ

y (an+1, t)

= ν((Kλ
x (t, an)B−1

n K(an, an+1))
2−2Kλ

x (t, an+1)K
λ
x (t, an)B−1

n K(an, an+1)+k
λ
x(t, an+1)

2)

= ν(Kλ
x (t, an)B−1

n K(an, an+1)− kλx(t, an+1))
2,

where ν := 1/(k(an+1, an+1)+σ−K(an+1, an)B−1
n K(an, an+1)) is the reciprocal of the

Schur complement of Bn inside Bn+1. As ν−1 is the Schur complement of a positive-

definite matrix inside a positive-definite matrix, it is positive. As the second factor in

the final line above is a square and thus positive too, we conclude that the sequence

of functions v′n,λ(t) is monotonically decreasing.

Proof of Theorem 6.11. The first statement follows from Theorem 8 in [85].

To prove the remainder of the theorem, we recall from Equation (A.9) that the

covariance matrix of the distribution of (fλ(t), f ′
λ(t))T given n noisy observations of

f is [
k(t, t)−K(t, an)B−1

n K(an, t) kλy (t, t)−K(t, an)B−1
n Kλ

y (an, t)
kλx(t, t)−Kλ

x (t, an)B−1
n K(an, t) kλxy(t, t)−Kλ

x (t, an)B−1
n Kλ

y (an, t)

]
.

As this matrix needs to be positive-definite, by taking the determinant and using the

symmetry of k we get

(k(t, t)−K(t, an)B−1
n K(an, t))(k

λ
xy(t, t)−Kλ

x (t, an)B−1
n Kλ

y (an, t)) (A.10)

≥ (kλx(t, t)−Kλ
x (t, an)B−1

n K(an, t))
2 ≥ 0. (A.11)

Thus, kλx(t, t) − Kλ
x (t, an)B−1

n K(an, t) → 0 uniformly on I as the first factor of

(A.10) converges uniformly by Proposition 10 of [85] and the second factor of (A.10)

is bounded by the monotonicity established in Lemma A.20 and the compactness
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of I. Repeating the same procedure with f̂ ′′
n,λ in place of f̂ ′

n,λ gives kλxx(t, t) −

Kλ
xx(t, an)B−1

n K(an, t) → 0 uniformly: in this case, the second factor is kλxxyy(t, t) −

Kλ
xx(t, an)B−1

n Kλ
yy(an, t), which equals v′′n,λ(t), the variance of the second derivative of

the GP fλ. We can show that v′′n,λ(t) monotonically decreases by a proof analogous

to the case v′n,λ(t) given in Lemma A.20. For v′′n,λ(t) to be well-defined we require k

to be four times differentiable.

Then, by Jensen’s inequality and Lemma A.20, we can bound the expected value

of the squared difference V
(
f̂n,λ

)
− V (fλ):

E

[∣∣∣∣∫ 1

0

|f ′
λ(t)| −

∣∣∣f̂ ′
n,λ(t, an, f)

∣∣∣ dt

∣∣∣∣2
]
≤ E

[(∫ 1

0

∣∣∣|f ′
λ(t)| −

∣∣∣f̂ ′
n,λ(t, an, f)

∣∣∣∣∣∣ dt

)2
]

≤ E
[∫ 1

0

∣∣∣|f ′
λ(t)| −

∣∣∣f̂ ′
n,λ(t, an, f)

∣∣∣∣∣∣2 dt

]
=

∫ 1

0

v′n,λ(t) dt

=

[
kλx(t, t)−Kλ

x (t, an)B−1
n K(an, t)−

∫ t

0

kλxx(s, s)−Kλ
xx(s, an)B−1

n K(an, s) ds

]1
0

.

The final equation above converges to 0 as n→∞, as both the left-hand term and the

function under in the integral of the right-hand term in the above difference converge

uniformly to 0 by Equation (A.11) and its analogue for v′′n,λ(t).

Lemma A.21. Let f and f̂n be as in the statement of Theorem 6.12. Denote the

arc-lengths of f̂λ,n := f̂n ◦ Φλ and fλ := f ◦ Φλ by Ln,λ and Lλ respectively for each

λ ∈ Λ. Then Ln,λ → Lλ and∫ 1

0

∣∣∣∥∥f ′
n,λ(t)

∥∥
2
− ∥f ′

λ(t)∥2
∣∣∣ dt→ 0

in probability.
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Proof. First, note that
√
x+ y ≤

√
x+
√
y and |

√
x−√y| ≤

√
|x− y| for all x, y ≥ 0.

We have∣∣∣∣∫ 1

0

∥∥f ′
n,λ(t)

∥∥
2
− ∥f ′

λ(t)∥2 dt

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∥∥f ′
n,λ(t)

∥∥
2
− ∥f ′

λ(t)∥2
∣∣∣ dt

≤
∫ 1

0

√∣∣∣∥∥f ′
n,λ(t)

∥∥2
2
− ∥f ′

λ(t)∥22
∣∣∣ dt

≤
d∑

j=1

∫ 1

0

√∣∣|(f j
n,λ)′(t)|2 − |(f j

λ)′(t)|2
∣∣ dt

≤
d∑

j=1

[∫ 1

0

|(f j
n,λ)′(t)|+ |(f j

λ)′(t)|dt
]
×[∫ 1

0

∣∣|(f j
n,λ)′(t)

∣∣− ∣∣(f j
λ)′(t)|

∣∣ dt] .
The first inequality follows from the triangle inequality for integrals. The second and

third inequalities follow from the inequalities for square roots introduced at the start

of the proof. The final inequality is the Cauchy-Schwarz inequality for integrals.

The first factor in the final line converges to 2V (fλ) and the second factor converges

to 0 for each j = 1, ..., d by Theorem 6.11 in probability.

Proof of Theorem 6.12. We recall that convergence in mean implies convergence in

probability. By applying Theorem 6.11 to each component of f , we find that f̂n

converges to f in mean in the ∞-norm. Note that f̂n,λ need not be parameterised

to constant velocity. Denote the arc length of f̂n,λ by Ln,λ and the arc length of fλ

by Lλ. By Lemma A.21, Ln,λ → Lλ in probability for each λ ∈ Λ. Let sn,λ be the

re-parameterised of f̂n,λ to constant-velocity on I, which is given by

sn,λ(t) =
1

Ln,λ

∫ t

0

∥∥∥f̂ ′
n,λ(x)

∥∥∥
2

dx

and satisfies

∥∥∥∥(f̂n,λ ◦ s−1
)′

(x)

∥∥∥∥
2

= 1 on I. Thus,

|sn,λ(t)−t| =
∣∣∣∣∫ t

0

∥∥∥f̂ ′
n,λ(x)

∥∥∥
2
/Ln,λ − 1 dx

∣∣∣∣ ≤ ∣∣∣∣∫ t

0

∣∣∣∥∥∥f̂ ′
n,λ(x)

∥∥∥
2
/Ln,λ − ∥f ′

λ(x)∥2 /Lλ

∣∣∣ dx∣∣∣∣

≤ 1

Ln,λ

∫ 1

0

∣∣∣∥∥f ′
n,λ(x)

∥∥
2
− ∥f ′

λ(x)∥2
∣∣∣ dx+ ∥f ′

λ(x)∥2

∣∣∣∣ 1

Lλ,n

− 1

Lλ

∣∣∣∣ . (A.12)
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As both terms in Equation (A.12) converge to 0 in probability independently of t by

Lemma A.21, we get ∥sn,λ(t)− t∥∞
p.−→ 0.

We then define sn : Z → Z as

sn(z) =

{
z if z ∈ Z0,(
Φλ ◦ s−1

n,λ ◦ Φ−1
λ

)
(z) if z ∈ Φλ((0, 1)).

The map sn is continuous as each s−1
n,λ is continuous, s−1

n,λ(0) = 0 and s−1
n,λ(1) = 1.

The result of the theorem then follows from Proposition 6.4:∥∥∥ECTf̂n
− ECT f

∥∥∥ ≤ ∥∥∥ECT f̂n
− ECT f̂n◦sn

∥∥∥+
∥∥∥ECT f̂n◦sn − ECTf

∥∥∥ . (A.13)

Note that the first term is 0 as re-parameterisation does not change the image of a

function. For the second term, we find that f̂n ◦ sn converges to satisfy the conditions

such that Proposition 6.4 yields increasingly tight bounds: the arc lengths of f̂n ◦ sn ◦

Φλ = f̂n,λ ◦ s−1
n,λ converge to those of f ◦Φλ = fλ by Lemma A.21 (the composition of

fλ with s−1
n,λ does not change its arc length). Further, both aforementioned functions

have constant velocity and∥∥∥f̂n ◦ sn − f∥∥∥
∞
≤
∥∥∥f̂n ◦ sn − f̂n∥∥∥

∞
+
∥∥∥f̂n − f∥∥∥

∞

p.−→ 0.

In the above, the second term converges in probability by Theorem 6.11. The first

term converges in probability as∥∥∥f̂n,λ ◦s−1
n,λ− f̂n,λ

∥∥∥
∞
≤
∥∥∥f̂n,λ ◦s−1

n,λ−fλ ◦s
−1
n,λ

∥∥∥
∞

+
∥∥∥fλ ◦s−1

n,λ−fλ
∥∥∥
∞

+
∥∥∥fλ− f̂n,λ∥∥∥

∞

p.−→ 0

on each 1-cell λ ∈ Λ. The first term converges in probability by Theorem 6.11 (as

re-parameterisation does not change the ∞-norm). Note that fλ is continuous on

I, which is compact, and therefore uniformly continuous. The second term equals∥∥∥fλ ◦ sn,λ − fλ

∥∥∥
∞

by pre-composition with sn,λ(t) and thus converges by Equation

(A.12) and the uniform continuity of fλ. The last term converges in probability by

Theorem 6.11.

Proof of Lemma 6.13. Fix v ∈ Sd−1. Then

∥SECTX(v, · )− SECTY (v, · )∥1
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=

∫ a

−a

∣∣∣∣∫ t

−a

ECTX(v, x)− ECTY (v, x) dx− t+ a

2a

∫ a

−a

ECTX(v, x)− ECTY (v, x) dx

∣∣∣∣ dt
≤
∫ a

−a

∫ t

−a

|ECTX(v, x)− ECTY (v, x)| dx+
t+ a

2a

∫ a

−a

|ECTX(v, x)− ECTY (v, x)| dx dt

≤ 2aδ + δ = (2a+ 1)δ.

Since the above is independent of v, we are done.

Characterisation of the sine-squared exponential kernel

Lemma A.22. For the sine-squared kernel, we have J(S1, dk) <∞.

Proof. For the sine squared kernel k, the metric dk is given by

dk(s, t) =
√

2− 2 exp(−2 sin2((s− t)/2).

It can be shown that dk is strongly equivalent to the angular metric d: let

f(x) =
√

2− 2 exp(−2 sin2(x)).

Then

f ′(x) =
4e−2 sin2(x) cos (x) sin (x)√

2− 2 exp
(
−2 sin2 (x)

) .
In particular, f ′(x) ≥ 0 on 0 ≤ x ≤ π/2 (we can show that limx→0+ f

′(x) = 2 by

L’Hopital’s rule). Further, f is concave as it is the composition of non-decreasing

concave functions. Thus, dk(s, t) = f(d(s, t)/2), we get d ≥ dk ≥ (2
√

2− 2e−2/π)d

on S1, where the first factor is f ′(0)/2 and the second factor is the difference quotient

of f between 0 and π/2.

As S1 is bounded and d and dk are strongly equivalent, it is thus sufficient to show

that J(S1, d) <∞. For d and ε > 0, we get

N(S1, d, ε) =
⌈π
ε

⌉
≤ π

ε
+ 1.
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Hence,

J(S1, d) =

∫ ∞

0

√
logN(S1, d, ε) dε

≤
∫ π

0

√
log
(π
ε

+ 1
)

dε

= π

∫ ∞

1

√
log (x+ 1)

x2
dx

≤ π

∫ ∞

1

1

x
3
2

dx = π
[
−2x−

1
2

]∞
1

= 2π <∞.

Lemma A.23. Define the Hilbert space H′ of sequences wab ∈ R, a, b ∈ N0, satisfying

∞∑
n=0

n!
∑

a≥0, b≥0
a+b=n

w2
ab

Cn
a

<∞,

where Cn
a denotes n choose a. For {wab}, {vab} ∈ H′, the inner product of H′ is given

by

⟨{wab}, {vab}⟩H′ := γ
∞∑
n=0

n!
∑

a≥0, b≥0
a+b=n

wabvab
Cn

a

where γ > 0 is a constant. Define V to be the closed subspace of sequences {wab} ∈ H′

such that∑
(a,b)∈N2

0

wab cosa(t) sinb(t) = 0 (A.14)

for all t ∈ [0, 2π). Then the Hilbert space H given by the functions

f(t) =
∑

(a,b)∈N2

wab cosa(t) sinb(t) (A.15)

with {wab} ∈ V ⊥ and inner product induced from H′ is isometrically isomorphic to

the RKHS of the sine-squared-exponential kernel, denoted by Hk.

Proof. By using standard trigonometric identities, we see that the sine-squared kernel

is proportional (by a positive constant) to the kernel

k(s, t) = exp (cos(s) cos(t) + sin(s) sin(t)) .
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Thus, by using the Taylor expansion of exp, k( · , t) ∈ H for all t with coefficients

wab =
Ca+b

a

(a+ b)!
cosa(t) sinb(t).

Moreover, for f ∈ H with coefficients vab and fixed t, we get

⟨k( · , t), f⟩H =
∞∑
n=0

n!
∑

a≥0, b≥0
a+b=n

Cn
a cosa(t) sinb(t)vab

n!Cn
a

=
∑

(a,b)∈N2

cosa(t) sinb(t)vab = f(t). (A.16)

Thus, the inner product ⟨ · , · ⟩H has the reproducing property and coincides with the

inner product induced by the kernel k (i.e. the inner product ofHk) given in Equation

(2.5). Further, the coefficients of k( · , t) lie in V ⊥: let {vab} ∈ V and let {wab} be

the coefficients of k( · , t). Then by Equation (A.16), ⟨{vab}, {wab}⟩H′ = 0. As V ⊥ is

closed as it is perpendicular to V , so is H, implying that H is a Hilbert space. We

have that Hk ⊆ H. As Hk is complete by definition, we get H = Hk ⊕W for some

closed subspace W . Let f ∈ W . Then ⟨g, f⟩H = 0 for all g ∈ Hk and in particular

f(t) = ⟨k( · , t), f⟩H = 0 for all t ∈ [0, 2π). Thus, W = 0 and H ∼= Hk.

Lemma A.24. Every f ∈ H is continuous and the inclusion H ↪→ C(S1, d∞) is

continuous, where C(S1, d∞) is the space of continuous real-valued functions on S1

endowed with the ∞-norm. Further, cos(nt) and sin(nt) are elements of H for all

n ∈ N.

Proof. Note that ∥k( · , t)∥H = 1 for all t. Thus, by the reproducing property of k and

the Cauchy-Schwarz inequality, for all f ∈ H and any t ∈ S1 we get

|f(t)| = |⟨k( · , t), f⟩H| ≤ ∥f∥H.

Hence, convergence in the H-norm implies convergence in the ∞-norm. As f can be

written as a series of continuous functions converging in the H-norm (c.f. Equation

(A.15)), it follows that f is continuous. As for any f ∈ H with ∥f∥H ≤ ε and any

t ∈ S1 we have |f(t)| ≤ ε, we get that the inclusion H ↪→ C(S1, d∞) is continuous.
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Further, we can expand

cos(nt) =
n∑

k even

(−1)
k
2

(
n

k

)
cosn−k(t) sink(t),

sin(nt) =
n∑

k odd

(−1)
k−1
2

(
n

k

)
cosn−k(t) sink(t).

Thus, cos(nt) and sin(nt) can be expanded as powers of cos and sin with coefficients

in {wab} ∈ H′ (as in Lemma A.23). We can project these coefficients into V ⊥ without

changing the value of our series at any t ∈ S1: the difference in the series we observe

by subtracting from elements of V from {wab} is 0 for all t (c.f. Equation (A.14)).

Thus, cos(nt), sin(nt) ∈ H for all n ∈ N.
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