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a b s t r a c t

Over the years, the separate fields of motion planning, mapping, and human trajectory prediction
have advanced considerably. However, the literature is still sparse in providing practical frameworks
that enable mobile manipulators to perform whole-body movements and account for the predicted
motion of moving obstacles. Previous optimisation-based motion planning approaches that use dis-
tance fields have suffered from the high computational cost required to update the environment
representation. We demonstrate that GPU-accelerated predicted composite distance fields significantly
reduce the computation time compared to calculating distance fields from scratch. We integrate this
technique with a complete motion planning and perception framework that accounts for the predicted
motion of humans in dynamic environments, enabling reactive and pre-emptive motion planning
that incorporates predicted motions. To achieve this, we propose and implement a novel human
trajectory prediction method that combines intention recognition with trajectory optimisation-based
motion planning. We validate our resultant framework on a real-world Toyota Human Support Robot
(HSR) using live RGB-D sensor data from the onboard camera. In addition to providing analysis on
a publicly available dataset, we release the Oxford Indoor Human Motion (Oxford-IHM) dataset and
demonstrate state-of-the-art performance in human trajectory prediction. The Oxford-IHM dataset is
a human trajectory prediction dataset in which people walk between regions of interest in an indoor
environment. Both static and robot-mounted RGB-D cameras observe the people while tracked with a
motion-capture system.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In this work, we focus on the deployment of mobile ma-
ipulators in dynamic indoor workspaces, such as a household
nvironment. When robots operate in real-world environments,
articularly where humans may co-occupy the workspace, safety
s paramount. There is an extensive literature base in the space
f ‘autonomous road vehicles’ for understanding and predicting
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‘pedestrian’ trajectories to assist motion planning and collision
avoidance [1–4]. In contrast, less work has focused on accounting
for the predicted trajectories of humans when planning whole-
body robot motions in indoor environments, motivating the work
presented here.

Compared to the static case, dynamic environments pose
many additional challenges that need to be addressed for robots
to operate safely and efficiently. To perform tasks in the presence
of moving obstacles, motion planning calculations must be per-
formed online and quickly for a robot to react to environmental
changes that would otherwise result in collisions. For reactive
behaviour to take place, the robot’s perception pipeline must be
continuously updated online so that changes can be perceived
sufficiently fast for the motion planning pipeline to react in time.
In our previous work [5], we presented an integrated framework
to enable such reactive behaviour by using a receding-horizon
implementation of GPMP2 [6] in conjunction with the fast GPU-
based perception pipeline within GPU-Voxels [7,8]. While this
work enabled reactive whole-body motion planning in response
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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o a dynamic environment, it lacked understanding of dynamic
lements in the environment and any reasoning about how they
ay move in the future. We further introduced the concept
f predicted composite distance fields [9] as a fast method of
ncorporating the predicted motion of moving obstacles directly
nto a distance field (signed or unsigned) representation of the
nvironment for time-configuration space planning. Using this
ethod, separate environment representations are maintained

or each timestep in the planned robot trajectory and moving
bstacles are propagated using a motion prior, most commonly
constant-velocity model (CVM). We hypothesised that further

mprovements could be achieved by firstly leveraging parallelism
n the problem and utilising GPUs to perform the ‘compositing’,
nd secondly by incorporating additional scene insights for more
ealistic obstacle trajectory predictions.

In this paper, we propose an integrated framework for pre-
ictive whole-body motion planning in dynamic environments.
or motion planning, we propose the Receding Horizon And
redictive Gaussian Process Motion Planner 2 (RHAP-GPMP2)—
receding-horizon motion planner that uses composite distance

ields to account for the predicted motion of humans in the
orkspace. We use a state-of-the-art image segmentation method
o identify humans and remove dynamic objects from the main-
ained voxelmap of the static scene. We investigate the task of
uman motion prediction and propose a planning-based human
rajectory prediction method that combines human intention
ecognition with trajectory optimisation. The proposed method
fficiently calculates human trajectory predictions on a 2D grid.
e subsequently embed these predictions in a 3D environment

epresentation used for collision avoidance by considering hu-
ans as cylinders. To explore the problem and aid our analysis
f the methods, we further produce and release a dataset for
uman trajectory prediction that includes robot-perspective RGB-
sensor data. We validate our complete framework in hard-
are experiments and demonstrate effective collision avoidance
cross multiple scenarios using a trajectory optimisation-based
pproach to whole-body motion planning in the presence of
oving obstacles; one such scenario is shown in Fig. 1.
The key contributions of this paper are:

• A receding-horizon motion planner that uses composite dis-
tance fields to perform time-configuration space motion
planning – Receding Horizon And Predictive Gaussian Pro-
cess Motion Planner 2 (RHAP-GPMP2).

• A novel goal-oriented planning-based human trajectory pre-
diction method that combines human intention recognition
with trajectory optimisation.

• A comparison of the performance boost provided by GPU-
calculated predicted composite distance fields with a state-of-
the-art algorithm (PBA).

• Experimental verification of our integrated framework on
an 8-DoF mobile manipulator in 3D dynamic environments
using live sensor data.

• Release of the Oxford Indoor Human Motion (Oxford-IHM)
dataset which comprises human-motion trajectories in an
indoor environment, including motion-capture ground truth
trajectories, static RGB-D camera images, and RGB-D data
captured from the perspective of a moving robot.

• An open-source release of our framework which combines
human motion prediction with GPU-optimised predicted
composite distance fields for trajectory optimisation-based
motion planning.2

2 Code available at: https://github.com/ori-drs/integrated-dynamic-motion-
lanning-framework.
2

Fig. 1. A Toyota Human Support Robot (HSR) is given a whole-body goal to place
an object on a table at the other end of the room. A wall obstructs the robot’s
path and, during execution, a person walks towards a goal located behind the
robot. Using our proposed approach and accounting for the predicted trajectory
of the person, the robot re-plans to pre-emptively move out of the person’s path
before continuing towards the goal.

2. Related work

In this research, we focus on the development of an inte-
grated framework at the intersection of environment mapping,
whole-body motion planning in dynamic environments, and hu-
man motion prediction. In the following sections, we review the
relevant work across these areas.

2.1. Perception and motion planning in dynamic environments

Although much of the mapping literature has focused on static
environments [10–12], there have been works that consider dy-
namic environments. Static-Fusion [13] uses geometric clustering
to segment and filter out dynamic obstacles from RGB-D im-
ages and fuse observations into a dense static reconstruction of
the environment. PoseFusion [14] combines OpenPose [15] with
ElasticFusion [12] to reconstruct the static scene while removing
humans from the reconstruction. While OpenPose can be used to
estimate the positions of body joints of humans within an RGB
image, other dynamic scene reconstruction methods consider
instance segmentation or optical flow techniques to separate
dynamic parts of the scene from the static background. For exam-
ple, [16] perform feature-based RGB-D Simultaneous Localisation
and Mapping (SLAM) in dynamic environments using Mask R-
CNN [17] image segmentation and optical flow-based motion
detection. While their approach demonstrates state-of-the-art
localisation accuracy, they report an average processing time
per frame of 0.42 s and ‘‘up to 1.10 s when mask inpainting’’ is
required. As these numbers show, image segmentation is gener-
ally an expensive process and such long computation times may
result in behaviours that lack reactivity when deployed on robots
in real dynamic environments. Zhang et al. (2019) [18] similarly
use Mask R-CNN as a method of detecting potentially dynamic
obstacles with a SLAM framework.

To achieve real-time run-rates for SLAM in dynamic envi-
ronments, MaskFusion [19] supplements semantic instance seg-
mentation (Mask R-CNN) with geometric segmentation. ReFusion
uses a Truncated Signed Distance Field (TSDF) based mapping

approach to build static maps of the environment and filter out

https://github.com/ori-drs/integrated-dynamic-motion-planning-framework
https://github.com/ori-drs/integrated-dynamic-motion-planning-framework
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ynamic objects by using the residuals ‘‘from the registration
nd the representation of free space’’ [20]. As with most of the
LAM literature, the aforementioned mapping systems consider
he SLAM problem in isolation and do not consider integration
ith a motion planner. The reverse is also typically true, whereby
otion planners in dynamic environments neglect the need for
apping to take place concurrently with live sensing.
Park et al. (2012) [21] propose a parallel optimisation ap-

roach to motion re-planning in dynamic environments with
TOMP. To perform collision avoidance, they utilise pre-computed
uclidean Distance Transforms (EDTs) for static obstacle costs
nd use geometric collision detection to assign dynamic obsta-
le costs. However, their method was only tested in simulation
nd neglects consideration of the need to reconstruct the static
nvironment using live sensor data in the presence of dynamic
bstacles.
Voxblox [22] and FIESTA [23] propose incremental mapping

rameworks and demonstrate them online. While FIESTA uses
kinodynamic path search method [24], Voxblox is integrated
ith a trajectory optimisation-based motion planner similar to
HOMP [25]. In both cases, only 3D path planning for aerial
ehicles is performed rather than whole-body motion planning
s we propose.
GPU-Voxels [7] is a GPU-optimised framework for multiple

nvironment data structures that can be used for collision avoid-
nce. In [7], the authors combine their perception pipeline with
D*-Lite motion planner to demonstrate a mobile robot re-

lanning in response to newly observed objects. However, they
o not demonstrate reactive whole-body behaviour in dynamic
nvironments; this is likely due to the ‘curse of dimensionality’
osed by search-based motion planners.
In [8], the authors built upon the GPU-Voxels framework to

xplore fast, exact 3D EDT implementations, such as the Par-
llel Banding Algorithm (PBA) [26]. They use this work to per-
orm fast motion planning for aerial robots with potential field
nd wavefront planners, integrated with a GPU-based perception
ramework that leverages the parallelism in EDT computations.

Of particular interest for our research is the additional aspect
f accounting for predicted trajectories. In [27], the authors used
earnt human motions to predict the workspace occupancy for
sage with STOMP [28] in simulation experiments. Park et al.
2019) [29] proposed I-Planner which similarly uses offline learn-
ng of human actions to generate predicted human motions for
se in motion planning within the workspace of a 7-DoF robot
rm.
To the best of our knowledge, there does not yet exist a fully

ntegrated perception, motion planning, and prediction pipeline
hat can enable mobile manipulators to predict the trajectories
f moving obstacles and subsequently avoid them in whole-body
otion planning tasks. We address this in the work presented
ere.

.2. Human motion prediction

Motion prediction plays an important role in ensuring the
afety of robots and autonomous systems; anticipating how ob-
ects will move in a scene enables robots to act in a pro-active
anner and pre-emptively respond to changes in a dynamic envi-

onment to avoid collisions. For inanimate dynamic objects, such
s a rolling ball, we can commonly rely on a purely physics-based
odel, where simple kinematic models (e.g. constant velocity,
onstant acceleration) often suffice for enabling collision-free
obot operation [30]. However, when robots operate in envi-
onments alongside humans, safety is of paramount importance
nd there is a need for more advanced motion prediction to
apture the complexity of human behaviour. This complexity
3

stems from both internal (goal intent, semantics) and external
stimuli (environmental priors, actions of surrounding agents) that
influence human motion. The multitude of human motion predic-
tion methods can be categorised by their modelling approach as
physics-based, pattern-based and planning-based methods [31].

Physics-based methods predict human motion by propagating
the current state through an explicit dynamical model [32–37].
These methods are typically efficient, interpretable, and work
very well for short-term prediction. However, in most cases they
do not capture the complexity of the real world, ignoring envi-
ronmental cues and the possible goals of a person. Notably, [34]
propose a physics-based method that considers a future destina-
tion and the surrounding environment. However, their approach
relies on a bird’s-eye view and is thus not deployed on a real robot
using live sensor data. Van den Berg et al. (2011) [38] present
a concept of velocity-based reciprocity, where each agent takes
into account the observed velocity of other agents in order to
avoid collisions with them. While the method scales well for
hundreds of agents, they did not demonstrate its effectiveness
in real-world robot experiments. Hermann et al. (2015) [37]
integrate human trajectory prediction with motion planning and
perception by using swept-volume based extrapolation on live
RGB-D data. However, they use the obtained motion prediction
only for stopping a robot’s movement when potential collisions
are detected, rather than performing motion re-planning and
adapting the robot’s trajectory.

Pattern-based methods attempt to capture human motion be-
haviour by training function approximators, e.g. neural networks
or Gaussian processes, on pre-recorded data [39–46]. These mod-
els have become dominant in recent years due to their perfor-
mance for long-term prediction in complex, semantically-rich
environments. However, they require offline learning with large
amounts of training data and offer limited transferability to novel
environments due to poor generalisation capabilities. Cao et al.
(2020) [44] generate a diverse synthetic dataset to bypass the
tedious data collection and propose a learning framework that
exploits scene context to improve generalisation; however, their
method is computationally demanding and is not deployed on
a real robot. Kratzer et al. (2020) [45] utilise a recurrent neural
network for encoding short-term dynamics and account for envi-
ronmental constraints with trajectory optimisation; this method
disregards the existence of multiple possible goals and is not
demonstrated in real environments.

Planning-based approaches assume that a person is mov-
ing through an environment towards an existing goal while
avoiding obstacles [47–53]. These approaches offer a good bal-
ance between long-term prediction performance and capacity
for generalisation, but in most cases they require an explic-
itly defined static map of the environment with the possible
goal locations provided, making them difficult to apply on a
real robot in an unknown environment. In [51], the authors
present a Bayesian framework for intention estimation and use
probabilistic roadmaps to obtain trajectory predictions. However,
as a consequence of using a sampling-based planning method
that does not account for smoothness, the predicted trajectories
exhibit rapid changes of direction that are uncharacteristic of hu-
mans. Ziebart et al. (2009) [47] predict goal-directed behaviours
of pedestrians by solving a soft-maximum Markov Decision Pro-
cess (MDP) with maximum entropy inverse reinforcement learn-
ing [54]. They demonstrate real-time robot operation that ac-
counts for human motion prediction but their method has limited
generalisation capabilities since it relies on learning human re-
ward functions from observed data. Kretzschmar et al. (2016) [55]
presented a probabilistic framework that learns the behaviour of
interacting agents such as pedestrians from demonstration using
inverse reinforcement learning. Their method was able to cap-
ture the complex cooperative navigation behaviour of multiple
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Fig. 2. Flowchart of our integrated framework.
Fig. 3. Photos of the marker arrangements used for motion capture tracking of the robot, environment, and humans. Left: A custom 3D-printed frame for mounting
arkers on the head of an HSR robot. Middle: Multiple objects were tracked and placed in the environment to provide human ‘goal’ markers. Additional markers
ere placed at the two entrance/exit locations of the arena. Right: An example setup of the static RGB-D camera within the scene. A custom camera housing was
ade to attach and calibrate the Vicon markers.
umans, but since it also requires learning, the generalisation
apacity is limited.
To ensure safe robot operation in indoor environments, we

tilise context-specific information and devise a novel trajectory
ptimisation-based method for human motion prediction that re-
pects the underlying dynamical model and environmental cues.
ur proposed method, as detailed in Sections 7.1 and 7.2, offers a
ybrid approach that can be deployed in unknown environments
ithout any prior knowledge but can also incorporate informa-
ion acquired both offline and online by learning possible human
oals from observed data.

. Proposed framework overview

In this section, we outline the modular nature of our proposed
ramework, as illustrated in Fig. 2, before examining each module
n greater detail.

The first part of our proposed framework processes RGB -D
mages from the camera sensor to extract the information re-
uired by other modules. Using a neural network-based instance
egmentation method (described in Section 5) on the RGB images,
e generate masks of objects that are detected in the scene.
hile our method can be trivially adapted to other identified
bstacles, in this research, we focus solely on utilising the masks
f detected humans. If masks are produced above a user-specified
hreshold score, αmask, we apply the masks to their corresponding
depth images; we do this to first extract the estimated position of
the humans in the scene, and secondly as a method of removing
4

dynamic obstacles from the scene prior to converting depth im-
ages to point clouds. The filtered pointclouds are used to provide
live updates to the maintained voxelmap of the static scene, while
the extracted positions of people in the scene are passed to the
trajectory prediction module.

Using the estimated human positions provided by the image
processing module, we perform human trajectory prediction. As
described in Section 2.2, being able to account for the predicted
motion of humans is important for safe robot task execution.
While the future trajectory of an inanimate object can often be
predicted using constant-velocity or constant-acceleration mod-
els, human behaviour is more complex and requires a different
modelling approach. We propose a hybrid trajectory prediction
module (detailed in Section 7) that uses a lightweight planning-
based approach to perform prediction while retaining the ability
to incorporate ‘learnt’ or prior information. The proposed trajec-
tory prediction method can rely solely on information obtained
from live sensor data, requiring no prior training or initialisa-
tion. As shown in Fig. 2, our trajectory prediction module can
be divided into Intention Recognition (Section 7.1) and Human
Trajectory Optimisation (Section 7.2).

After predicting trajectories for humans in the scene, we for-
ward these predictions to the mapping module so that the pre-
dicted positions of people in the scene can be composited into
distance fields that are maintained for each timestep in our
proposed motion planning algorithm, Receding Horizon And Pre-
dictive Gaussian Process Motion Planner 2 (RHAP-GPMP2). With
the composite distance fields being continuously updated from
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Fig. 4. An example map configuration used in the Oxford-IHM dataset. As
the Vicon-tracked person walks between goals in the scene, the HSR robot
is manually controlled by a human operator to move around the scene and
maintain vision of the person.

the latest observations and trajectory prediction information, our
motion planning algorithm is able to re-plan and enable reactive,
pre-emptive robot behaviours to avoid moving people in the
workspace (see Fig. 4).

4. Human motion dataset

For this research, we are concerned with robots that operate in
ndoor environments co-occupied by humans. In order to evaluate
ny proposed method for human motion prediction, we require
n appropriate dataset that, in line with our ambitions for robot
utonomy, contains sensor data from the robot’s perspective.
While there are a number of publicly available RGB-D datasets,

he majority are aimed at applications of SLAM [56,57], object
etection [58,59], or human activity recognition [60,61]. Sturm
t al. (2012) [56] present an RGB-D dataset where sensor data is
ollected from the robot’s perspective for the purpose of evalu-
ting SLAM systems. However, the dataset lacks the presence of
oving humans and their ground truth trajectories for which we
an try to predict.
Munaro et al. (2014) [62] released the most relevant dataset

or our purposes, the Kinect Tracking Precision (KTP) Dataset.
he dataset comprises RGB-D images recorded from a robot’s
erspective in a scene where humans are moving around while
he robot performs locomotion. Totalling only four minutes of
ideo recording, we do not believe that the KTP dataset captures
n accurate representation of human motion over a wide enough
ange of behaviours for prediction purposes. In their recordings,
umans move either in a linear or random manner. While this
ay be how human motion appears sometimes, we believe that
umans usually have intent, i.e. a destination and task in mind.
or example, people will often travel to their desks, a bookcase,
r exit through a door in an office environment. Before people
nter a room, we could intuitively generate a prior map of where
hey will go and refine our belief as their trajectory progresses.

The concept of intent motivates a dataset in which humans
re performing tasks relevant to the environment. The THÖR
ataset [63] provides human motion trajectories and broad goal
ocations within an indoor experiment; however, it uses 3D LiDAR
cans from a stationary sensor rather than RGB-D data from a
obot perspective. To address the need for a robot perspective
GB-D dataset with task-based human motion trajectories, we
 d

5

propose and release the Oxford Indoor Human Motion (Oxford-
IHM) Dataset.3 We summarise a selection of the most relevant
publicly available datasets that include human trajectories, along-
side our own, in Table 1.

4.1. Data acquisition

Our dataset was recorded in a large indoor laboratory within
which we constructed an arena similar to an office environment.
Under a Vicon motion capture setup, we created the arena of
interest, measuring 7.1m× 4.2m, with perimeter walls and two
ntrance/exit locations. Within the arena, multiple large objects,
uch as a desk, were arranged in multiple configurations to act
oth as potential goals and static obstacles. As a tracked human
alks between goals in the arena, we recorded RGB-D images

rom both a static Intel Realsense D435 camera (Fig. 3(c)) and
Toyota Human Support Robot’s head-mounted ASUS Xtion Pro
ive camera. Additionally, we recorded the robot’s tf data which
details the robot’s 3D pose and joint transformations over time.

While the robot supports an Ethernet connection for data
transfer, to avoid trailing cables and maintain recording band-
width, we opted to control the robot wirelessly and record robot
data locally. We used chrony time-synchronisation between the
robot’s onboard clock and an external laptop (Intel Core i7-
10875H CPU, 32GB 2666MHz RAM, and an NVIDIA GeForce RTX
2070 SUPER GPU). The external laptop was used to record Vicon
marker data and RGB-D image data from the static Realsense
camera.

During recording, the robot was remotely controlled and nav-
igated around the arena, generally in such a manner that it
maintained vision of the tracked person. The overhead motion
capture setup was used to record the ground truth locations of
goals, entrance/exit locations, the robot, and the person in the
scene. The motion capture arrangement consisted of 18 Vicon
Vero 2.2 cameras (2.2MP with 850nm IR emitters). We calibrated
the cameras using a Vicon Active Wand v2 to achieve a sub-
millimetre average residual tracking error. For accurate tracking,
unique IR marker configurations were affixed to each trackable
object. For person tracking, reflective markers were attached to
helmets and calibrated to align each helmet’s orientation with the
direction of a person’s gaze when looking straight ahead. In the
cases of the robot and the external camera, custom mounts were
3D printed (Fig. 3) and used to calibrate each object’s tracked pose
with its respective internal camera frame.

Our dataset consists of ≈ 60 min of rosbag data split approx-
imately equally across four different map configurations, each
with three runs. For each map configuration, we used the ROS
hector_mapping package [67] and the robot’s onboard
Hokuyo UST-20LX laser range sensor to produce a 2D map of
the arena. To provide additional variation, our dataset uses two
people with the map configurations split equally between them.

5. Image processing

As discussed in Section 2.2, numerous approaches have been
explored in previous efforts to perform dense environment map-
ping in dynamic environments [13–15,20], with many employing
image segmentation techniques [16,18,19].

5.1. Image segmentation

A commonly used state-of-the-art method of image segmen-
tation is Mask R-CNN [17]. Mask R-CNN is an extension of Faster

3 Dataset available at https://ori-drs.github.io/oxford-indoor-human-motion-
ataset.

https://ori-drs.github.io/oxford-indoor-human-motion-dataset
https://ori-drs.github.io/oxford-indoor-human-motion-dataset
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Table 1
A Comparison of Publicly Available Indoor Datasets with Ground Truth Human Trajectories.
Dataset Environment Duration External Sensors Robot Perspective Motion Capture Goals Map

KTP [62] Empty Room 4 m 40 s ✘ RGB-D ✓ ✘ ✘

ATC [64] Shopping Centre 41 days RGB-D ✘ ✘ ✓ ✘

THÖR [63] Laboratory 60 min 3D LiDAR, RGB, Eye Tracking ✘ ✓ ✓ ✓

L-CAS [65] Office 49 min ✘ 3D LiDAR ✘ ✘ ✘

MoGaze [66] Laboratory 180 min Eye Tracking ✘ ✓ ✓ ✓

Oxford-IHM Laboratory/Office 60 min RGB-D RGB-D ✓ ✓ ✓
Table 2
Image Processing and Human Position Estimation Benchmarking. For comparison, the KTP performance metrics are replicated from
[62].
Task MOTP (m) MOTA (%) FP (%) FN (%)

Ours KTP Ours KTP Ours KTP Ours KTP

Back and Forth 0.176 0.196 91.7 88.97 5.9 2.4 1.1 8.5
Random Walk 0.171 0.171 76.0 70.93 2.3 9.8 8.6 18.9
Side-by-Side 0.151 0.146 85.9 87.22 0.7 1.2 6.7 11.6
Running 0.136 0.143 91.6 94.57 0.0 1.1 4.2 4.4
Group 0.198 0.181 59.4 47.91 1.7 9.1 15.8 42.53
R-CNN [68] that predicts the mask of an object in parallel with
bounding box recognition. Image segmentation is typically an
expensive operation to perform – [17] reported a frame rate of
5Hz on an NVIDIA Tesla M40 GPU. For our purposes of using on-
line environment reconstructions for motion planning in dynamic
environments, we require minimal latency between making sen-
sor observations and them being reflected in a motion planner’s
collision-checking ability. As such, in this work we build on recent
advances in image segmentation performance.

While numerous works have sought to improve Mask R-
NN, few works focus on improving the speed of the instance
egmentation [69]. In [69], the authors introduced CenterMask
nd CenterMask-Lite, anchor-free one-stage instance segmenta-
ion methods that outperform the current state-of-the-art—the
uthors report that CenterMask-Lite with a VoVNetV2-39 back-
one achieves a frame rate of 35Hz on an NVIDIA Titan Xp
PU. We performed a local benchmarking of the latest release,
enterMask2-Lite, against Mask R-CNN on an RGB-D camera
tream and found the lightweight CenterMask2-Lite to run 3.2×
faster than Mask R-CNN – 13.4Hz compared with 4.2Hz. This test
was performed using: NVIDIA RTX 2060 GPU, 8-core Intel Core
i7-9700 CPU @ 4.50GHz and 2133MHz DDR4 RAM.

Due to the importance of fast perception and motion plan-
ning when operating in a dynamic environment, we elected to
exploit the enhanced performance provided by CenterMask2-Lite
for image segmentation in our perception pipeline.

5.2. Human position estimation

As described previously, and illustrated in Fig. 2, we perform
image segmentation on a stream of RGB images and use the
results for both maintaining the static representation of the envi-
ronment and for estimating the position of humans in the scene.
For each RGB frame that contains masks labelled as a person
with a score above the specified threshold, αmask, we apply the
masks to the corresponding time-synchronised depth image. In
this work, we found αmask = 0.7 to perform well in consistently
masking people even when partially obstructed by obstacles.
Using the masked depth image, we extract a depth to associate
with the person. In this work, we use the median depth and pixel
position of a person’s mask to calculate the person’s 3D position
in the workspace—this position is passed onto the tracking and
prediction module.
6

5.3. Object masking and pointcloud conversion

To filter out the dynamic element of the scene, we apply valid
person masks to their corresponding depth images. The filtered
depth images are converted to pointclouds for integration into
the maintained voxelmap of the static environment. We found
that it is beneficial to apply a dilation to the person masks
before converting to pointclouds. By enlarging the segmentation
masks, we reduce leakage from the dynamic masks into the static
voxelmap. We use OpenCV to perform four iterations of dilation
with a 5 × 5 kernel.

5.4. Evaluation

To validate our image processing pipeline and demonstrate its
effectiveness, we evaluate our method on the KTP Dataset [62],
using the same metrics as used in their evaluation [70]. Due to the
ground truth positions in this dataset corresponding to a person’s
tracked head location, [62] use the ‘‘centroid of the cluster points
belonging to the head of the person’’ and add a 10 cm offset in the
viewpoint direction. To provide a similar comparison, rather than
using the entire person mask for position extraction, we use the
top 10% of the mask to correspond with the head. We similarly
add an offset in the viewpoint direction and found 12.5 cm to give
the best results.

The Multiple Object Tracking Precision (MOTP) metric indi-
cates the ability of a ‘tracker’ to estimate object positions ac-
curately. The Multiple Object Tracking Accuracy (MOTA) metric
indicates the reliability of a tracker to identify objects in an image
frame. While we explore instance segmentation in this work, we
do not perform ‘tracking’ between frames—as such, we assume no
incorrect object associations in the calculation of the MOTA met-
ric. Additional recorded metrics of interest are the False Positive
(FP) and False Negative (FN) rates. Our benchmarking results are
presented in Table 2.

Importantly for this research, we produce similar MOTP val-
ues, indicating that our method achieves a similarly competitive
accuracy in estimating the position of people in a scene while
additionally providing masks for use in the environment recon-
struction. In the following section, we discuss how the extracted
positions of people feed into our trajectory prediction pipeline.

6. Mapping - predicted composite distance fields

In our preliminary work on predicted composite distance fields

[9], we suggested that further computational gains could be
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Fig. 5. Top: An example scene in simulation (Gazebo) in which a person is
etected by the robot’s onboard RGB-D camera. Bottom: The resultant 3D
ccupancy grid after thresholding the composite distance field for the scene; the
istance field of a cylinder is has been composited onto the detected position
f the person.

chieved by performing compositions within a GPU-leveraged
ramework since the core operation of the method is the min
peration and thus highly parallelisable. In this work, we explore
he gains achievable with such an implementation.

Two components are required to generate composite distance
ields. Firstly, one needs to maintain a distance field for the
nvironment. Depending on the problem, this may be a static
istance field that is computed once at the start of the experiment
r continuously updated and maintained as in our framework.
econdly, we require a distance field associated with each (mov-
ng) object that is to be composited onto the environment distance
ield. These distance fields can similarly be continuously updated
o represent a live model of the obstacles being tracked. In this
ork, we are interested in human collision avoidance and so
he fine voxelised detail of a human is not necessary; instead,
e represent humans with similarly sized cylinder shape prim-

tives. The use of primitive shapes is beneficial since we do not
eed to be concerned with monitoring the shape of the humans
nd maintaining a live model; rather, we only need to compute
he distance field of the primitive shape once and subsequently
rack the human positions. However, we note that using shape
rimitives is a choice in this work rather than a limitation—the
istance field could equally be continuously updated to represent
n accurate model of a dynamic obstacle as it is observed. There is
 s

7

a large literature base on the dense reconstruction of deformable
objects [71,72].

Given the predicted positions for all dynamic obstacles in the
scene for a given time, we can perform a composition of the afore-
mentioned distance fields. This is achieved with a parallel min
operation between the environment distance field and those of
the humans at their predicted positions. An example composition
is shown in Fig. 5.

In the case of only considering a single distance field of the
environment for each observation update, i.e. no prediction, our
method will not be of benefit since only one distance field com-
putation is required. The benefit of our composition approach is
apparent when multiple subsequent distance fields are required
for each environment update loop, such as our motion planning
approach as detailed in Section 8 which considers multiple pre-
dicted distance fields of the environment for each update loop. As
such, we perform benchmarking with respect to the calculation
time for subsequent distance fields against PBA. Hardware spec-
ifications used were: NVIDIA RTX 2060 GPU, 8-core Intel Core
i7-9700 CPU @ 4.50GHz and 2133MHz DDR4 RAM. Benchmark-
ing results are shown in Fig. 6 where we provide comparisons
both including and excluding the time to transfer distance fields
from the GPU to the host device. Excluding the transfer times
from GPU to host, Fig. 6(b) shows our composite method to re-
duce computation time by 89% to 93%. Unfortunately, at the short
timescales that we achieve, the transfer time becomes a dominant
factor, accounting for over 90% of the overall update time for the
composite distance field. However, our composite method still
provides a significant performance boost, even after accounting
for the transfer time, when compared to a full PBA calculation,
cutting the computation time for the resultant distance field by
40% to 53%.

7. Human trajectory prediction

In indoor environments, a person typically moves towards
an intended goal, such as a door to exit through or towards an
object to pick up, rather than in a random manner. Therefore, the
first component of our trajectory prediction module is intention
recognition in which we try to determine a person’s intended goal.

7.1. Intention recognition

Suppose there exists a set, G, of K possible goals for a person
n the environment, gk ∈ G, where a goal is represented by a
2D position vector gk = [xgk , ygk ]

T . The purpose of the intention
recognition module is first to recognise the possible goal locations
in the environment that might be of interest to the person, i.e. G,
nd secondly to identify which of these goals is a person’s current
ntended goal, g .

In practice, we believe that G can be learnt over time as objects
nd areas of interest are observed and identified. Similarly, we
elieve that we can infer possible goal locations by observing
uman motion data over time. To explore this idea, we consider
simple occupancy analysis method. Given the recorded posi-

ions of a person over time, we discretise the positions across
2D grid of arbitrary size and monitor the number of visita-

ions for each cell, ni, where the corresponding velocity is less
han some threshold, vthres. In the rest of this paper, we use
thres = 0.3ms−1 which we empirically found to be effective
n indoor, household-like environments; this value is much less
han the average human walking velocity meaning that grid states
hich are frequently passed through will not be mislabelled as
ossible goals. Using a threshold value closer to zero would lead
o poor identification of goals where a person is not completely

tatic but has slowed down, e.g. doors. Using the aforementioned
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Fig. 6. A comparison of the compute times for composite distance fields and full PBA calculations across a range of voxelmap sizes. The plotted line (green)
corresponds to the ratio between the bars, i.e. the resultant speed-up of using composite distance fields. While we see an order of magnitude speed-up in the
underlying distance field generation, we find that the device-host transfer time dominates the update time, reducing our overall speed-up from ∼ 9.1–13.6× to
∼ 1.7–2.1×. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
frequency grid, where the most visited cell has Nmax visitations,
we identify possible goal locations as those cells with ni > Nmax

2 .
f there are multiple adjacent states identified as goals, we take
he mean position of those states as a single goal location. By
mplicitly learning social context cues, our method can also learn
dditional goals that cannot easily be identified from semantics,
.g. particular gathering points without identifiable objects at
hose locations. Note that the described goal estimation method
an be supplemented with semantic information from the per-
eption pipeline to use identified objects such as desks, sofas, and
oors as possible goals, even if they were not visited during the
bservation time.
We demonstrate our occupancy analysis method on both the

xford-IHM and THÖR datasets; the results are shown in Fig. 7
nd indicate that the most commonly occupied grid states pro-
ide accurate estimates of the ground truth goal locations in each
ataset. For both datasets, we analysed segments ∼ 5 min long.
or the THÖR dataset, we tracked all the subjects marked as visi-
ors [63]. On the Oxford-IHM dataset, all ground truth goals were
dentified, although with an offset due to the ground truth goals
eing objects that humans maintain a distance from, e.g. a person
its in front of a desk rather than on it. On the THÖR dataset,
e identified three out of the five labelled goals; our method did
ot identify two of the goals for several reasons. Firstly, these
oals were in areas with frequent motion capture track drops, a
roblem that does not occur with live robot sensor data. Secondly,
hese goals represented exit and entrance locations but without
oors; as a result, people passed through without slowing down.
ne could argue that in this instance, these do not represent
ccurate goal locations since the people will continue to walk to
heir true goal locations.

For a given determination of G, we want to determine the
robability of each goal, gk, being the human’s intended goal, g ,
iven that we have observed a history of the person’s trajectory,
h(t), where t is the current time. We use Xh(t) to denote the
atrix formed by the past N vector measurements of the human’s

position, xh(ti) = [xh(ti), yh(ti)] for times ti < t .
By framing the human intention recognition problem in this

probabilistic manner, we can use Bayes’ rule to derive a posterior
distribution for goal locations as

p
(
G|Xh

)
∝ p(G)p

(
Xh|G

)
, (1)

where p(G) is a distribution that encodes prior knowledge of
goal probabilities and p

(
X |G

)
is a conditional distribution that
h

8

represents the likelihood of the recorded past human trajectory
for a set of a given goal.

If there is no prior knowledge about the probability distribu-
tion for goals, i.e. no goal visitation history, the prior p(G) is set
as the uniform distribution. On the other hand, if we have an
observed (or pre-recorded) history of motion data and perform
the occupancy grid analysis described previously, p(G) can be set
as a categorical distribution where the prior probability for each
identified goal is proportional to its number of visitations, Nk:

p(G = gk) =
Nk∑K
l=1 Nl

. (2)

Note that in practical applications, the prior goal distribution p(G)
can be initialised as a uniform distribution when a robot first
begins to operate in an environment. As information about the
environment and human movement is collected during operation,
the prior distribution can be altered online after performing the
grid occupancy analysis.

Lastly, we calculate the likelihood, p
(
Xh(t)|G

)
, i.e. given the

human’s recent history, what is the likelihood of each possible
goal being the intended one? Intuitively, a person is likely to
look at the object they want to reach or move towards in the
near future, i.e. the intended goal. As shown by [45], for a set
of objects that represents possible goal locations in the environ-
ment, a person’s gaze is a great predictor of intention. While
we could build on this idea directly and use the difference in
angle between a person’s gaze and each object to determine the
probability of each goal, determining a person’s gaze in practice
is challenging. Wearable gaze tracking equipment is shown to
work very well [45]; however, it is impractical to assume that
this is available in everyday applications such as in a household
environment. On the other hand, alternative methods that try to
estimate the human gaze from images [73,74] require significant
computational resources to work in real-time and have degraded
performance when a person is turned away from the robot.

For the aforementioned reasons, we use the human’s esti-
mated orientation, obtained from the history of positions, as a
predictor of intent. While the use of estimated orientation as a
motion cue may not be as effective as using a person’s gaze,
it does not require observability of the human’s face and can
suffice when other motion cues are unavailable due to hardware
constraints. We estimate the human body orientation θ̂h(ti) from
the difference between two subsequent positions

θ̂h(ti) = arctan
(
yh(ti) − yh(ti−1)

)
, (3)
xh(ti) − xh(ti−1)
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Fig. 7. By performing our occupancy analysis method on recorded motion data, we can estimate a person’s possible goals. We demonstrate this technique using
the Oxford-IHM (Figs. 7(a) and 7(b)) and THÖR datasets (Figs. 7(c) and 7(d)). We monitor the frequency of visitations to each grid state after applying a velocity
threshold, resulting in the heatmaps shown. The most occupied states provide a reliable estimate of possible goal locations. Figs. 7(b) and 7(d) show maps of example
environments from each dataset with the actual (red) and estimated (blue) goal locations. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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where we use the ‘h’ subscript to denote human positions. The
relative orientation between a particular goal location and a
person is then given by

δθgk (ti) = arctan
(
ygk − yh(ti)
xgk − xh(ti)

)
− θ̂h(ti). (4)

In practice, there is likely to be noise in individual estimates of the
orientation either due to sensor measurements or because a per-
son may briefly look away from their goal without changing their
intent. As a result, the relative orientation δθgk (ti) can quickly vary
between subsequent timesteps without an actual change in the
person’s body motion. Therefore we calculate the average over
the past N relative orientations

δθgk (ti) =
1
N

N−1∑
j=0

δθgk (ti−j), (5)

We achieve more stable estimates for the relative orientation
by aggregating the recent trajectory history. When the average
relative orientation, δθgk (ti), is zero, it implies that a person is
moving in the direction of the goal gk . Conversely, when δθgk (ti) is
qual to π , it implies that a person is moving directly away from
he goal gk . We thus formulate the likelihood p

(
Xh|G = gk

)
by

alculating the softmax function of the average of past N relative
rientations δθgk (ti)

p
(
Xh|G = gk

)
=

eλδθgk (ti)∑K
l=1 e

λδθgl (ti)
, (6)

where λ is a constant that determines the sensitivity of the
exponentiated cost. We use λ = 1 throughout the rest of this
work, as we empirically found that it provides good performance
in the problems we considered. For practitioners looking to sim-
ilarly use our this method in indoor, household environments,
we expect this choice of hyperparameter to remain suitable. Fol-
lowing Eq. (1), the intended goal position is simply extracted by
calculating the maximum a posteriori probability (MAP) estimate

ĝMAP = argmax
G∈G

p(G)p
(
Xh|G

)
. (7)

The estimated goal, ĝMAP, has the corresponding probability,
p
(
G = ĝMAP|Xh

)
, that represents how sure we are that the

stimated goal is the intended one.

.2. Trajectory optimisation

Once we have determined a person’s intended goal, we want
o anticipate their motion towards it in order to safely steer the
9

robot away from a person and avoid potential collisions. We make
several assumptions about human behaviour in our trajectory
prediction method.

Our first assumption is that a person, unobstructed by other
factors, will move according to a constant-velocity kinematic
model; a person walking directly towards a goal will tend to
maintain the same velocity. While we could employ a higher-
order kinematic model, such as constant-acceleration, it is un-
likely that a person will quickly change their movement speed
under normal circumstances, and so a constant-velocity mo-
tion model is sufficient for modelling human motion in open
spaces [30]. The second assumption that we make is that a
person, unlike a moving inanimate object, is generally aware of
obstacles in the environment and will try to avoid colliding with
them. As such, a robot can use information that it has accumu-
lated about the map of the environment as an environmental
prior when predicting a person’s trajectory. Our third assumption
is that a person is aware of robots operating in the environment
and will tend to avoid the space that it occupies.

Using these assumptions, we formulate the human trajec-
tory prediction problem as non-linear trajectory optimisation;
although primarily used for robot motion planning, in our imple-
mentation, we use GPMP2 [6] as a state-of-the-art trajectory op-
timisation method. Since human trajectory prediction and robot
motion planning share similarities, we believe that GPMP2, with
minor adaptations, is suitable for our prediction problem.

In GPMP2, the motion planning problem is framed as a proba-
bilistic inference problem whereby the aim is to formulate the
posterior density of a trajectory and solve for the maximum a
posteriori (MAP) estimator, just as we did in the previous section.
Using Bayes’ rule, the posterior distribution of a trajectory, x,
given the likelihood on a collection of events, e, is given by

p(x|e) ∝ p(x)p(e|x), (8)

where p(x) represents the prior that encourages trajectory
moothness, while p(e|x) represents the probability of the events
occurring given x. In the case of motion planning, e corresponds
o binary events that a trajectory x is collision-free at a particular
tate.
In GPMP2, robot trajectories are represented as samples from a

ontinuous-time Gaussian Process (GP), x(t) ∼ GP(µ(t),K(t, t ′)),
where µ(t) is the vector-valued mean trajectory and K(t, t ′)
is the matrix-valued covariance. By carefully choosing a struc-
tured kernel, one can show that the resultant precision matrix is
exactly-sparse [6]. Consequently, [6] show that the probabilistic
inference problem in Eq. (8) can be efficiently solved on a factor
graph.
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We adopt a similar factor graph formulation and adapt it for
human trajectory prediction. Using a structured kernel as in [6],
the prior and the likelihood functions can be written as a product
of functions
p(xh)p(e|xh) ∝ f prior (Xh) f like (Xh)

=

∏
i

fi
(
Xh,i

) (9)

where Xh = {xh,0, . . . , xh,N} represents the set of future hu-
man positions along the predicted trajectory. The factors F =

{f0, . . . , fM} are functions that act on variable subsets of the
trajectory. As shown by [75], the posterior distribution can be
represented by a bipartite factor graph G = {X,F, E}, where E
is the set of edges that connect variable and factor nodes.

To encourage smoothness in our predicted human trajectories
and account for the tendency to move according to a constant-
velocity motion model, we adopt the GP prior proposed in [6],

p(xh) ∝ exp{−
1
2

xh − µh

2
Kh

}, (10)

given in terms of the mean trajectory µh and covariance Kh.
We initialise the mean as a constant-velocity straight line, while
the covariance is obtained by solving the Linear Time-Varying
Stochastic Differential Equation (LTV-SDE) with constant-velocity
model system matrices, as in [6]. Due to the structured kernel
choice, this GP prior has a Markovian structure; as such, it can be
written as a product of GP prior factors that depend only on two
neighbouring states, f gp(xh,i, xh,i+1).

In addition to GP priors that describe how our trajectory
behaves, we want to impose knowledge of a person’s start and
intended goal states. In the context of the human trajectory
prediction, the start state is the current position of a person in
the environment, while the intended goal state is obtained by our
intention recognition method described in Section 7.1. We encode
start and goal states by using the following factors:

f start
(
xh,0

)
= exp{−

1
2

xh,0 − xcurrent
2
Σh,0

}, (11)

goal(xh,N)
= exp{−

1
2

xh,N − xgoal
2
Σh,N

}, (12)

here N represents the final support state of the trajectory.
h,0 and Σ h,N are the isotropic covariance matrices for the

tart and goal states. Smaller values along the diagonals of these
atrices result in higher costs for deviating from the specified
tart and goal states, encouraging the optimised human trajectory
rediction to adhere to the start and goal state constraints.
The motion prior part of the factorisation in Eq. (9) thus

ecomes a product of factors that takes into account the current
osition of a person, their intended goal and the constant-velocity
ovement assumption

prior (Xh) =

start(xh,0)f goal(xh,N) N−1∏
i=0

f gp
(
xh,i, xh,i+1

)
. (13)

The remaining product of factors represents the likelihood
like(Xh) and encodes all other state-dependent costs and con-
traints. In the case of human trajectory prediction, we partition it
nto separate factors that encode collision avoidance with respect
o the environment, f obs, and collision avoidance with respect to
he moving robot, f robot . The likelihood thus becomes

like(Xh) =

N−1∏
i=1

f obsi

(
xh,i

)
f roboti

(
xh,i

)
. (14)

For environment collision avoidance factors, we adopt the
ormulation from GPMP2 [6] which uses a hinge loss function
10
n the Euclidean distance field of the environment to penalise
tates that are close to obstacles. As described in Section 8, in
ractice, this distance field is provided by the perception part of
ur pipeline and updated online; this is in contrast to previous
orks which pre-compute it [6,21].
For the robot avoidance factor, f robot , we propose

robot
i

(
xh,i

)
= exp{−

1
2

h(xh,i)2
Σ r

}, (15)

here h(xh,i) is the hinge loss function of the distance between
a person and the robot at the current position, xr . The hinge loss
function is defined as

h(xh,i) =

{
εr −

xh,i − xr

2 if

xh,i − xr

2 ≤ εr

0 if
xh,i − xr


2 > εr .

(16)

εr is a tolerance parameter of our formulation which indicates
how close a person is likely to get to a robot before altering
their trajectory to avoid collision. If a person is sufficiently far
away from the robot, we assume that they will not change their
behaviour. However, if the robot comes within the safety distance,
εr , our assumption is that a person will change their behaviour to
move away from the robot and avoid collision.

The complete factor graph that we propose for human trajec-
tory prediction can be written as

p(xh|e) ∝ f start f goal
N−1∏
i=0

f gpi,i+1

N−1∏
i=1

f obsi f roboti , (17)

If we cannot determine a person’s intended goal, for instance, if
we do not have a set of possible goals or the estimated goal’s
probability is low, we can omit the goal prior factor. Our pro-
posed prediction method will then work as a constant-velocity
model that considers collisions via the robot and obstacle factors.
We perform inference on the factor graph using the Levenberg–
Marquardt optimisation method implemented in GTSAM [76]
with an initial damping parameter of 0.01.

7.3. Evaluation

We evaluate the proposed trajectory prediction method on
our human motion dataset described in Section 4 and on the
THÖR public dataset of human motion trajectories [63]. On both
datasets, we predict over four different prediction horizons: 1.6 s,
3.2 s, 4.8 s, and 8.0 s. These prediction horizons cover both short-
term and long-term human motion prediction and have previ-
ously been used in multiple evaluation pipelines, including the
ATLAS benchmark [77]. We thus use them for retaining consis-
tency with the existing body of work in human motion prediction
evaluation.

7.3.1. Oxford-IHM dataset
Our dataset comprises three different sensor measurements

on which we evaluate trajectory prediction performance: the
Vicon motion capture data, a static RGB-D camera and an HSR’s
head-mounted RGB-D camera. The Vicon motion capture data
serves as the ground truth against which we compare our pre-
dicted trajectories for each type of sensor data. Evaluation of
prediction methodologies on the motion capture data gives an
indication of their potential performance when given accurate,
high-frequency streams of data for the robot’s pose, person’s
pose and goal locations. On the other hand, evaluation of each
method on the data obtained using static and robot-mounted
RGB-D cameras indicates their respective prediction performance
when operating in real-world environments. Predictions on these
data sources account for errors in human position estimation
arising from factors such as measurement noise, misdetections,
and occlusions.
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Further, we compare the performance of our proposed method
on the motion capture data with two ablations: (1) without the
intention recognition proposed in Section 7.1, (2) without the
robot avoidance factor proposed in Eq. (15). These two ablation
studies enable us to assess the respective impact of the two
features on human motion prediction performance. For each data
source, we compare the performance of our proposed method
against two baselines: (1) Constant Velocity Model (CVM), (2) Lin-
ear Velocity Model (LVM), similar to the ATLAS benchmark [77].
The CVM generates predictions by forward propagating the ve-
locity of the person’s last observed state, while the LVM model
generates predictions by forward propagating the observed av-
erage velocity of the person. We evaluate trajectory prediction
performance using commonly used geometric metrics: Average
Displacement Error (ADE) and Final Displacement Error (FDE) [31].
ADE measures the average error across predicted trajectories
and the ground truth trajectory, while FDE measures the error
of the final predicted point. Since motion capture and RGB -D
measurements are inherently asynchronous, for evaluation on
RGB-D data sources, we use GP interpolation [6] between states
that are temporally closest to the ground truth measurements.
For the two baselines methods, we use linear interpolation.

The results of evaluating across all 12 runs in the Oxford-
IHM dataset, are shown in Tables 3 and 4. From the results,
our proposed method outperforms the baseline methods for each
type of sensor data and every prediction horizon. For the short-
est prediction horizon (1.6 s), our proposed method performs
similarly to the CVM baseline; this is expected since our pro-
posed method has a smoothness factor that is initialised with
a constant-velocity motion model. For short prediction horizons,
goal and environmental factors have a marginal impact on human
motion in absolute terms, meaning that simple kinematic models
can often suffice. However, as we predict over longer horizons,
our proposed method significantly outperforms the baselines,
in line with our expectations, since the CVM and LVM models
o not predict goal-oriented behaviour and disregard environ-
ental cues. Without intent recognition, our method achieves
imilar performance to the CVM and performs significantly worse
han our complete proposed method, demonstrating the impor-
ance of intention recognition for human motion prediction in
ndoor environments. Our proposed method performs similarly
ith and without using the robot avoidance factor, with only
inor improvements being achieved with the robot avoidance

actor. However, we believe that this factor may become more
ignificant when operating in cluttered environments since it
chieves better prediction in specific cases, for example, when the
obot blocks a direct path to the intended goal. Fig. 8 shows an
nstance of such a situation in the Oxford-IHM dataset.

Using data from the static and robot-mounted RGB -D cam-
ras, we see similar performance trends to those achieved using
otion capture measurements, albeit with a greater error. How-
ver, the dominant source of this error arises from our position
stimation approach applied to the RGB-D images. By compar-
ng the position estimates obtained using our image processing
ith ground truth measurements, we observe average position
stimation errors of 15.9 cm and 30.4 cm respectively for the
SR RGB-D and Static RGB-D data sources. These results suggest
hat by further improving the position estimation method, similar
rajectory prediction performance can be achieved on RGB-D
ources to that achieved using high-frequency motion capture.
hile the static sensor had fewer measurement drops due to
aving the whole environment in its field of view, the robot-
ounted camera achieved better performance since the robot
as usually closer to the person and thus more in accordance
ith the camera’s recommended ‘distance of use’ for the camera.
he results indicate that our proposed human trajectory predic-
ion method works effectively with live sensor data and can be
ntegrated within our proposed perception and motion planning
ramework as described in previous sections.
11
Fig. 8. An instance in the Oxford-IHM dataset that highlights the impact of
using a robot avoidance factor. Without the proposed robot avoidance factor,
the predicted human trajectory significantly deviates from the ground truth and
collides with the robot.

7.3.2. THÖR dataset
We further benchmark our proposed trajectory prediction

method on the THÖR dataset [63] in which ten human subjects
are tracked in an indoor environment with static obstacles and
perform four different social roles that imitate typical activities
found in populated spaces (e.g. offices). Enacting these roles
results in various motion patterns, and nine out of the ten sub-
jects exhibit goal-oriented behaviour. The dataset includes five
labelled goals with known ground truth positions. The motion
capture data provides ground truth trajectories against which we
compare our predictions.

We use the ATLAS benchmark [77] to compare the perfor-
mance of our proposed method against five different meth-
ods, including two baselines (CVM and LVM). The other three
methods are local interaction models, namely the Social force
model (Sof ) [32] and its two predictive extensions Zan [35] and
Kara [36]. These models consider that multiple people are moving
in the same environment and will anticipate and evade collisions
with each other. As with the Oxford-IHM dataset, we evaluate
trajectory prediction performance using the ADE and FDE.

The results of benchmarking for all subjects, across all four
runs of the THÖR One obstacle experiment, are shown in Table 5.
In contrast to the Oxford-IHM dataset, the THÖR dataset fea-
tures fewer obstacles and a larger environment, resulting in more
straight-line trajectories with constant velocity. Consequently, we
achieve better performance than on the Oxford-IHM dataset. Our
method is shown to outperform the baseline methods for all
prediction horizons. While the CVM baseline achieves a similar
level of performance on the shortest prediction horizon, our
proposed method significantly outperforms on longer horizons
for the reasons explained in Section 7.3.1 and in line with our
expectations. Our method marginally outperformed the local in-
teraction models (Sof, Zan and Kara) on the ADE metric, but was
marginally worse on the FDE metric.

The relatively high standard deviations of the proposed
method can be explained by the different social roles assigned
to subjects on the THÖR dataset. For the Lab Worker and Utility
Worker roles, the proposed method achieves superior perfor-
mance in both ADE and FDE because these roles operate in a
very goal-oriented manner with no social interactions. In con-
trast, subjects in the social role, Visitor, exhibited behaviours
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Table 3
Average Displacement Error (ADE) on the Oxford-IHM dataset.

Method Prediction horizon (s)

1.6 3.2 4.8 8.0

Vicon

LVM 0.5 ± 0.02 1.08 ± 0.04 1.7 ± 0.05 2.98 ± 0.07
CVM 0.28 ± 0.03 0.75 ± 0.04 1.35 ± 0.07 2.75 ± 0.11
Ours 0.28 ± 0.02 0.66 ± 0.06 0.99 ± 0.09 1.54 ± 0.11
Ours w/o Factor 0.28 ± 0.03 0.68 ± 0.07 1.04 ± 0.09 1.59 ± 0.12
Ours w/o Intent 0.28 ± 0.03 0.74 ± 0.05 1.25 ± 0.08 2.54 ± 0.12

Static RGB-D
LVM 0.78 ± 0.03 1.38 ± 0.06 2.02 ± 0.09 3.28 ± 0.1
CVM 0.59 ± 0.03 1.03 ± 0.06 1.65 ± 0.1 3.03 ± 0.13
Ours 0.59 ± 0.04 0.95 ± 0.08 1.13 ± 0.1 1.86 ± 0.14

HSR RGB-D
LVM 0.66 ± 0.03 1.26 ± 0.06 1.89 ± 0.09 3.12 ± 0.09
CVM 0.44 ± 0.03 0.91 ± 0.05 1.54 ± 0.08 2.99 ± 0.10
Ours 0.43 ± 0.03 0.81 ± 0.07 1.13 ± 0.1 1.71 ± 0.13
Table 4
Final Displacement Error (FDE) on the Oxford-IHM dataset.

Method Prediction horizon (s)

1.6 3.2 4.8 8.0

Vicon

LVM 1.03 ± 0.03 2.29 ± 0.07 3.6 ± 0.09 6.09 ± 0.18
CVM 0.64 ± 0.04 1.82 ± 0.08 3.26 ± 0.14 6.41 ± 0.2
Ours 0.65 ± 0.04 1.36 ± 0.18 1.98 ± 0.14 2.88 ± 0.15
Ours w/o Factor 0.65 ± 0.04 1.38 ± 0.18 2.02 ± 0.14 2.94 ± 0.16
Ours w/o Intent 0.65 ± 0.04 1.82 ± 0.08 3.2 ± 0.14 6.11 ± 0.21

Static RGB-D
LVM 1.34 ± 0.04 2.6 ± 0.08 3.88 ± 0.11 6.38 ± 0.2
CVM 0.92 ± 0.05 2.1 ± 0.07 3.54 ± 0.13 6.59 ± 0.22
Ours 0.92 ± 0.05 1.63 ± 0.14 2.24 ± 0.16 3.13 ± 0.18

HSR RGB-D
LVM 1.18 ± 0.04 2.45 ± 0.09 3.75 ± 0.09 6.17 ± 0.18
CVM 0.80 ± 0.04 1.98 ± 0.1 3.41 ± 0.16 6.51 ± 0.16
Ours 0.81 ± 0.04 1.42 ± 0.13 2.12 ± 0.18 3.02 ± 0.18
Table 5
ADE and FDE on the THÖR dataset.

Prediction horizon (s)

Method 1.6 3.2 4.8 8.0

ADE

CVM 0.15 ± 0.09 0.38 ± 0.24 0.71 ± 0.45 1.51 ± 0.91
LIN 0.29 ± 0.18 0.60 ± 0.38 0.99 ± 0.63 1.84 ± 1.08
Sof 0.18 ± 0.10 0.36 ± 0.20 0.60 ± 0.35 1.13 ± 0.67
Zan 0.15 ± 0.09 0.34 ± 0.20 0.59 ± 0.36 1.16 ± 0.70
Kara 0.16 ± 0.08 0.35 ± 0.19 0.60 ± 0.36 1.16 ± 0.69
Ours 0.15 ± 0.09 0.33 ± 0.26 0.57 ± 0.41 1.12 ± 0.83

FDE

CVM 0.28 ± 0.18 0.86 ± 0.54 1.64 ± 1.05 3.54 ± 2.11
LIN 0.49 ± 0.31 1.20 ± 0.75 2.07 ± 1.30 3.97 ± 2.27
Sof 0.29 ± 0.16 0.72 ± 0.42 1.27 ± 0.79 2.48 ± 1.54
Zan 0.26 ± 0.16 0.72 ± 0.43 1.31 ± 0.82 2.62 ± 1.61
Kara 0.28 ± 0.15 0.73 ± 0.42 1.31 ± 0.82 2.59 ± 1.59
Ours 0.28 ± 0.17 0.78 ± 0.64 1.41 ± 0.99 2.98 ± 1.89
i

not currently modelled by our method, such as slowing down
to interact with other people. For these roles, our proposed
method had performed worse than the local interaction models
which consider the social component of human behaviour. By not
accounting for people slowing down, our proposed method often
predicted people travelling further than the ground truth, mainly
affecting the FDE performance.

7.3.3. Parameters
Since we use GPMP2 as the backbone for trajectory optimi-

ation, our trajectory prediction method depends on a similar
et of parameters. Its parameter Qc specifies the uncertainty in
he prior distribution and determines how heavily states are
enalised for deviating away from the mean. Σobs represents the
bstacle cost weight with smaller values more strongly penalising
ollisions with obstacles. Since we introduce the robot avoidance
actor in Eq. (15), we have the additional parameter, Σr , that
e set to the same value as Σobs throughout this paper, equally
enalising collisions with the robot and the static environment.

he parameter ε represents a safety distance from static obstacles.

12
For larger values of ε, optimised trajectories will deviate more
from a straight line to maintain a larger distance from obstacles.
The proposed robot avoidance factor has a similar parameter, εr ,
ndicating a desired safety distance from the robot.

For our evaluation, we performed a grid search over parame-
ters Qc and Σobs for the Oxford-IHM and THÖR datasets. We found
that good trajectory performance was achieved for parameters in
the following ranges; Qc ∈ [0.01, 0.5] and Σobs ∈ [0.02, 0.3].
We used Qc = 0.2 on Oxford-IHM and Qc = 0.05 on the
THÖR dataset. Since ground truth human trajectories on the
Oxford-IHM dataset were less smooth than on THÖR due to its
environment being smaller and more cluttered, a larger value of
Qc was needed to better account for obstacle avoidance in tight
spaces. On both datasets we used Σobs = 0.1 and ε = 0.4,
resulting in collision-free trajectories for most predictions. Note
that ε also considers the radius of a person since the obstacle
cost looks at the distance between the centre of a person and
the nearest obstacle. The safety distance from the robot was set

as εr = 0.8, double the distance from static obstacles because we
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Fig. 9. The assignment of composite distance fields to the obstacle factors (blue) in RHAP-GPMP2. Given a long time horizon of N timesteps, we assign independent
distance fields to the first n timesteps, where n is our dynamic obstacle prediction horizon. For time-indexed obstacle factors greater than n, we assign the nth
distance field. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
account for the robot’s radius and also that a person is likely to
move farther from a moving robot than a static obstacle.

Due to the underlying continuous-time trajectory represen-
tation, we must define the total duration of a trajectory, cor-
responding to an estimation of the time required for a person
to reach their intended goal. We estimate this time by calcu-
lating the distance between the person’s current position and
their intended goal and dividing it by their current velocity. For
estimated times shorter than the prediction horizon used for
evaluation, we use the goal state to predict a person’s position
for timestamps after the estimated trajectory time.

8. Receding horizon and predictive Gaussian process motion
planner 2

This section describes how we integrate the methods and con-
cepts discussed in previous sections within a single framework to
be deployed on a physical robot. We build upon the integrated
perception and motion planning framework described in [5]; we
use the GPU-Voxels framework to maintain a voxelmap of the
scene and compute distance fields [7,8], while motion planning is
performed using GPMP2 in a receding-horizon manner. However,
we introduce several extensions.

Firstly, as discussed in Sections 3 and 5, we introduce image
segmentation to remove dynamic obstacles prior to generating
pointclouds for integration into the maintained voxelmap of the
static scene. At this point, the voxelmap can undergo further
filtering if necessary. In the presence of dynamic obstacles, we
found it beneficial to filter out voxels that have fewer than five
connected voxels; this reduced the instances of spurious voxels
being designated as occupied in the voxelmap of the static scene.

Secondly, we propose the Receding Horizon And Predictive
Gaussian Process Motion Planner 2 (RHAP-GPMP2). As described
in Section 7.2, GPMP2 formulates the motion planning problem
as probabilistic inference on a factor graph. In RHAP-GPMP2, we
continuously monitor the validity of the current trajectory, re-
estimate the expected time-to-goal, and re-optimise trajectories
to re-evaluate their cost as we observe the environment. If the
current trajectory becomes invalid or a re-optimised trajectory
significantly lowers the cost, we generate a new factor graph
for trajectory optimisation. We use a straight-line trajectory ini-
tialisation for the first optimisation and in recovery behaviours;
otherwise, we re-use and re-optimise the previously planned
trajectory to maintain smoothly executed trajectories. In previous
work, we used a singular voxelmap that is maintained, converted
to a distance field, and sent to all obstacle factors within the
factor graph used for motion planning. However, RHAP-GPMP2

builds upon the concepts presented in [9] and extends the motion
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planning work to time-configuration space planning. To achieve
this, we maintain:

1. A static voxelmap of the scene
2. A distance field (static or maintained) for each dynamic

obstacle (discussed in Section 6)
3. A sequence of n composite distance fields.

The variable n is determined by how far into the future we
wish to incorporate predicted positions for moving objects in
the scene. In this work, we use a time-discretisation between
factor graph support states of 0.5 s and so choose a value of
n = 20, corresponding to a time horizon of 10 s. Each time-
indexed obstacle factor in the factor graph is associated with a
corresponding time-indexed composite distance field. For time-
indices greater than n, we assign the composite distance field
for time index n. Distance field assignment for RHAP-GPMP2 is
illustrated in Fig. 9.

During each update loop, the static voxelmap is updated us-
ing the latest observations of the scene (with the dilated dy-
namic obstacle masks removed) and composite distance fields
are generated using the latest trajectory predictions for dynamic
obstacles in the scene, as predicted by our trajectory prediction
module described in Sections 3, 7.1, and 7.2. To integrate the
human prediction module, we additionally calculate a 2D EDT of
the environment by collapsing the maintained 3D voxel grid to
2D and using PBA to calculate the corresponding EDT on the GPU.
The EDT is then transferred to the CPU for use in the trajectory
prediction module.

9. Live hardware experiments

To demonstrate the robustness and capabilities of our whole
integrated framework, we deploy our implementation on a physi-
cal Toyota Human Support Robot and explore both base-only and
whole-body tasks across a range of dynamic scenarios as follows:

1. Change of Places
2. Change of Places with Obstacle
3. Multi-Goal
4. Narrow Passage
5. Change of Places with Half-Wall

Note that in base-only tasks, the motion planner still opti-
mises in the high-dimensional space of whole-body motions. The
baselines of interest for this work are: (1) No Prediction and
(2) Prediction using CVM.

In [5], the robot was able to adapt to changes in the environ-
ment; however, the human’s trajectory was not aimed directly
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Fig. 10. Change of Places—the robot is tasked with a base-only goal in front of a person. During execution, the person walks towards a goal behind the robot,
equiring the robot to react and move out of the way. All trajectories initially follow a straight line (purple), but as the person approaches, the replanned trajectories
or each method diverge as highlighted by the different colours for No Prediction (red), CVM with Prediction (yellow), Proposed Method with Prediction (green). We
ind that without accounting for the prediction trajectory of the person, the robot collides with the person. In contrast, our proposed framework can avoid collision
nd complete the task. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
d
a
s
m
m

owards the robot in any of the tasks. Hence, the robot was able
o perform sufficiently well without prediction. In contrast, for
ost tasks presented in this work, the robot is required to move
ut of the way of a person in order to avoid collision.
In our hardware experiments, we perform calculations on an

xternal laptop connected to the HSR via an Ethernet connec-
ion to provide sufficient bandwidth for the transfer of images.
ardware specifications for the laptop are: NVIDIA RTX 2070
uper GPU, 8-core Intel Core i9-10980HK CPU @ 5.30GHz and
667MHz DDR4 RAM.

esults. Due to the relatively high speed of the human motions
n our hardware experiments, we found that the robot always
nded up in collision without accounting for the human’s pre-
icted motion. We provide supplementary video footage of these
xperiments4 and describe the results of each experiment in the
ollowing subsections.

.1. Change of places - prediction is needed

In our simplest task, Change of Places, we do not provide
tatic obstacles, and the robot is tasked with a base-only goal in
ront of a person. During the task, the person walks towards a
oal behind the robot. The resultant task is illustrated in Fig. 10.
e observed that in the No Prediction case, without predicting

he human’s trajectory, re-planned robot trajectories repeatedly
ecome invalid, resulting in collision. Due to the straight-line
ature of this task, we found that the CVM performed equally as
ell as our full prediction method. For brevity, in further tasks,
e only consider the CVM baseline.

.2. Change of places with obstacle - limitations of the CVM

With the addition of a central obstacle to the previous task,
oth the robot and human must take curved paths. Results are
llustrated in Fig. 11. This experiment highlighted the limitation
f the CVM—when a person follows a curved path, the resultant
rediction is tangential to the actual path. In this task, this er-
oneous prediction results in collision. In contrast, our method
ccurately predicted the person’s trajectory, enabling the robot
o follow a collision-free trajectory.

4 Supplementary video available at https://youtu.be/gdC3mpZNjG4.
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Fig. 11. Change of Places with Obstacle—a person walks around a static obstacle
towards the robot’s starting location. Meanwhile, the robot is tasked with a
whole-body goal to place a canister on top of a table on the other side of the
room. Fig. 11(a) shows the trajectories taken by our method (green) and using
the CVM (yellow). While our methods avoided the person, the CVM trajectory
id not move out of the way in time, requiring the human to slow down to
void a collision. The reason for this is explained by Figs. 11(b) and 11(c) which
how superposed 2D projections of the 3D composite distance fields used for
otion planning at two given moments in time. While our prediction method
ore accurately predicts the human’s trajectory, the CVM predicts a trajectory

tangential to the actual one taken. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

9.3. Multi-goal - robust to intention recognition

While the goal-based aspect of our prediction framework is
more extensively evaluated in Section 7.3, we provide a hardware

https://youtu.be/gdC3mpZNjG4
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Fig. 12. Multi-Goal—the robot is tasked with a whole-body goal to place a
canister on a table on the other side of a static obstacle. A person in the scene
has two possible goal locations—the first is behind the robot’s starting location,
the second is at a hand-wash station in front of the robot. This experiment
demonstrated our framework’s ability to adapt and update human trajectory
predictions even when the human’s intended goal is deemed to have changed.
Fig. 12(b) shows the initial planned robot trajectory superposed on an aerial
view of the ground distance field. Fig. 12(c) shows the updated trajectory as the
human is deemed to be moving towards the hand-wash station while Fig. 12(c)
shows the updated trajectory as the prediction module correctly identifies that
the person’s intended goal is the one behind the robot.

experiment in which the person is determined to have two po-
tential goals: one behind the robot’s starting position, the other at
a hand-wash station across the robot’s path. The robot is tasked
with a whole-body motion to place a can on the table opposite.
Across multiple trials, the robot successfully predicts the person’s
intended goal and adapts its motions appropriately to execute the
task collision-free. Fig. 12 illustrates these results.

9.4. Additional capabilities

We additionally tested our approach in a Narrow Passage task
and a variant of the Change of Places with Obstacle experiment in
which the central obstacle was replaced with a wall across half
of the room. In both tasks, the robot successfully adapted to the
predicted trajectory of the person and moved to the side of the
person’s path before continuing towards the goal. Images from
the two tasks are shown in Figs. 1 and 13.

10. Discussion

One advantage of our proposed human trajectory prediction
approach is that it bridges the gap between model-based and
learning-based prediction methods. A major limitation of learnt
models is their ability to transfer to scenarios that differ from
those in which it was trained. In contrast, an appealing attribute
of our human trajectory prediction method is that it can be
readily deployed in any environment by defaulting to a constant-
velocity model while retaining the ability to improve over time
as a prior distribution is learnt over likely human goal intentions.
Moreover, employing methods such as deep neural networks to
15
Fig. 13. Narrow Passage—the robot is tasked with a whole-body goal to place
a canister on top of a table that is on the other side of a narrow passage.
During execution, a person walks through the narrow passage to act as a
dynamic obstacle. Our method achieved a successful collision-free trajectory by
re-planning to move to the side while the person walked past.

learn the intricacies of human movement comes at the cost of
large data acquisition and annotation, in addition to the compu-
tational burden. Since one of the main concerns in our work is
the ability to execute in real-time on a mobile manipulator, we
require our method to be lightweight since it is run concurrently
with other parts of the pipeline. An interesting direction for fur-
ther research would be to explore the online-learning of human
intentions further and incorporate scene semantics. This could
also include accounting for social rules and human patterns of
behaviour [78] when extending to the case of multiple humans
in a scene.

In [5], no additional filtering was applied to the maintained
voxelmap to remove ‘lingering’ voxels that a moving obstacle may
leave. In this work, we found that these lingering voxels provided
a substantial disadvantage for motion planning compared to our
proposed method; the proposed method uses dilated segmenta-
tion of dynamic obstacles, resulting in a cleaner static voxelmap.
As such, to provide an appropriate No Prediction baseline in line
with our previous work, we introduced the segmentation pipeline
such that the human obstacle is tracked and composited into the
singular distance field used for the motion planning.

While we obtained robust re-planning and collision avoidance
behaviours across various tasks, there are several limitations in
the presented work that are worth noting. Firstly, we do not ex-
plicitly model uncertainty in our current method of compositing
the predicted positions of moving obstacles. Instead, we account
for a margin-of-safety via the ϵ parameter within the GPMP2-
based obstacle factors – ϵ determines the upper distance used for
hinge-loss obstacle costs. While further exploration of this was
beyond the scope of the presented work, we could enlarge the
volume of the person/cylinder over the course of the prediction
time horizon to appropriately account for a growing uncertainty
in future position as time increases.

In this work, we demonstrated that GPU implementations
of predicted composite distance fields can provide a significant
performance boost compared to calculating distance fields from
scratch. However, as shown in Fig. 6, the key bottleneck for
further composite distance field performance gains is the device-
host transfer time. Future work could explore alternative ap-
proaches to minimise data transfer between device and host.

While this research focused on performing motion planning,
trajectory prediction, and collision avoidance in the presence of
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single human, our methodology can scale to multiple dynamic
bjects which remains a topic for future work. The proposed
rajectory prediction method could account for multiple agents
y the addition of factors between each agent similar to the pro-
osed robot avoidance factor, in which case the assumption would
e that the agents would try to avoid collisions between them.
ote that the modularity of the proposed framework allows for
ntegration of trajectory prediction methods that can account for
ore complex ways of interaction between agents. The computed

rajectory predictions would then be straightforwardly included
n the composite distance field and considered during motion
lanning. Similarly, our modular framework allows for the ex-
ension towards more collaborative robot tasks, such as motion
lanning in the presence of articulated human motions. While
rajectory prediction and collision avoidance of such motions
ere beyond the scope of this work, it is fully compatible with
ur method of using composite distance fields for embedding
his information and remains an interesting direction for future
ork. The computation time for composite distance fields with
ultiple dynamic obstacles is both relatively computationally
heap (Fig. 6) and scales linearly with the number of dynamic
bstacles. As previously mentioned, the computation will still
e dominated by the device-host transfer time for household
nvironments.
A natural limitation of our motion planning implementation

s that the optimisation is prone to get stuck in local minima
y only optimising a single trajectory. While this did not result
n collisions in our experiments, the phenomenon is evident in
rajectories such as Figs. 11(c) and 12(c) —rather than planning
o travel on the other side of the static obstacle to the human,
he re-planned trajectory avoids the human but stays within
he same homotopy class. To address this, one could consider
aintaining and optimising multiple trajectories at a time in
ifferent homotopy classes, such as work by [79,80], however,
his is likely to increase the planning time and limit the robot’s
bility to react.
It is worth noting that we use two different motion plan-

ing approaches in our proposed framework. For robot motion
lanning, we use predicted versions of the environment for each
ime step, while for human trajectory prediction, we only use the
atest observation of the environment. Our reasoning for this is
wo-fold; firstly, the walking speed of a human is significantly
igher than that of the robot’s mobile speed, so a human has
ess need to account for the predicted trajectory of the robot as it
ppears relatively static. We expect this assumption to hold true
n household-like environments. Secondly, from our experience,
umans will readily travel much closer towards the path of a
oving robot, while from the robot’s perspective, we need to

etain a more cautious approach to collision avoidance. There are
ertain cases in which a robot’s trajectory, rather than just its
tatic position, will affect human motion. For example, consider
hen a human would follow the robot in a narrow passage

nstead of taking another path. Consideration of the robot’s future
ovement would incur additional computational cost while, in
ractice, we likely do not need to account for such cases since
he knowledge that a human is following the robot through a
arrow passage will not affect the robot’s trajectory; accounting
or the human’s possible needs and timing constraints is beyond
he scope of this work.

A final limitation of our implementation is that we only pre-
ict trajectories for dynamic obstacles that have been ‘recently’
bserved by the robot. In our experiments, we use a threshold
alue of 2 s —if the dynamic obstacle is not re-observed within
his time, no trajectory prediction for the object is used in the
obot’s motion planning. An instance of this can be seen in the

ulti-Goal section of the supplementary video. After the human
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reaches the hand-wash station, it remains outside the camera’s
field-of-view on the robot for a significant period of time; the
predicted collision object for the human thus disappears. While
heuristic methods could be employed here, such as assuming
that a dynamic object remains on its last known trajectory or
position, we believe that a more appropriate solution would be to
optimise the robot’s sensing behaviour for more effective collision
avoidance and dynamic obstacle tracking. The integration of such
methods is beyond the scope of this work but is explored in our
previous work [81].

11. Conclusion

To enable predictive whole-body motion planning in dynamic
environments, we introduced several novel methods and inte-
grated them within a novel framework that can account for
the predicted trajectories of humans in a scene. We firstly pro-
posed an intention-aware trajectory prediction model for humans
in indoor environments and demonstrated state-of-the-art per-
formance on both a publicly available dataset as well as our
own goal-oriented dataset, the Oxford Indoor Human Motion
(Oxford-IHM) dataset, that we make publicly available.

For predictive and reactive motion planning, we proposed the
Receding Horizon And Predictive Gaussian Process Motion Plan-
ner 2 (RHAP-GPMP2), a receding-horizon motion planner that
utilising predicted composite distance fields to embed the pre-
dicted trajectories of moving obstacles. To this end, we demon-
strated the viability and effectiveness of composite distance fields
in a GPU-based perception framework and show that composite
distance fields can reduce distance field computation times by
89% to 93%, underpinning our integrated framework’s ability to
avoid moving obstacles in real-world environments.

We verified our proposed framework on a physical Toyota
Human Support Robot (HSR) and demonstrated that our system
can use live sensor measurements to predict and incorporate the
trajectories of humans in a robot’s workspace, enabling it to avoid
collisions when performing whole-body motion planning across
a variety of challenging and dynamic environments.
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