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Learning meaningful latent space
representations for patient risk
stratification: Model development
and validation for dengue and other
acute febrile illness
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Background: Increased data availability has prompted the creation of clinical decision
support systems. These systems utilise clinical information to enhance health care
provision, both to predict the likelihood of specific clinical outcomes or evaluate
the risk of further complications. However, their adoption remains low due to
concerns regarding the quality of recommendations, and a lack of clarity on how
results are best obtained and presented.
Methods: We used autoencoders capable of reducing the dimensionality of complex
datasets in order to produce a 2D representation denoted as latent space to support
understanding of complex clinical data. In this output, meaningful representations of
individual patient profiles are spatially mapped in an unsupervised manner according
to their input clinical parameters. This technique was then applied to a large real-
world clinical dataset of over 12,000 patients with an illness compatible with
dengue infection in Ho Chi Minh City, Vietnam between 1999 and 2021. Dengue is
a systemic viral disease which exerts significant health and economic burden
worldwide, and up to 5% of hospitalised patients develop life-threatening
complications.
Abbreviations

ALT, alanine transaminase; AST, aspartate aminotransferase; CDSS, clinical decision support system; CNS, central
neural system; DENV, DENgue virus; DSS, dengue shock syndrome; EHR, electronic health records; GMM,
Gaussian mixture models; HTD, hospital of tropical diseases; IgM, immunoglobulin M; IQR, interquartile range;
LMIC, low- and middle-income country; NRR, normal reference range; NS1, non structural protein 1; OUCRU,
Oxford University Clinical Research Unit; PCA, principal component analysis; ReLU, rectified linear unit; RT-
PCR, reverse transcription polymerase chain reaction; SOM, self-organising map; t-SNE, t-distributed stochastic
neighbor embedding; UMAP, uniform manifold approximation and projection; WHO, World Health Organisation.
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Results: The latent space produced by the selected autoencoder aligns with established clinical
characteristics exhibited by patients with dengue infection, as well as features of disease
progression. Similar clinical phenotypes are represented close to each other in the latent space
and clustered according to outcomes broadly described by the World Health Organisation
dengue guidelines. Balancing distance metrics and density metrics produced results covering
most of the latent space, and improved visualisation whilst preserving utility, with similar patients
grouped closer together. In this case, this balance is achieved by using the sigmoid activation
function and one hidden layer with three neurons, in addition to the latent dimension layer,
which produces the output (Pearson, 0.840; Spearman, 0.830; Procrustes, 0.301; GMM 0.321).
Conclusion: This study demonstrates that when adequately configured, autoencoders can
produce two-dimensional representations of a complex dataset that conserve the distance
relationship between points. The output visualisation groups patients with clinically relevant
features closely together and inherently supports user interpretability. Work is underway to
incorporate these findings into an electronic clinical decision support system to guide
individual patient management.

KEYWORDS

autoencoder (AE) neural networks, unsupervised learning, similarity retrieval, visualisation, clinical

decision support system (CDSS), dengue
Introduction

The adoption of electronic health records (EHRs) in routine clinical

practice has led to an increase in the availability and quality of medical

data in an electronic format. In addition, large datasets obtained from

healthcare delivery or as the result of research studies contribute to

an increasingly large knowledge base. Data availability allows for

development of some advanced clinical decision support systems

(CDSSs) which aid clinicians in making faster, better informed, and

cost-effective decisions at the point of use (1): these systems can

provide clinicians with electronic alerts or reminders, patient-specific

diagnostics, and automated treatment recommendations (2–5).

Specific tools have also been designed to predict the likelihood of

infection (6, 7), automate drug dosing and prescriptions (8, 9), and

evaluate a patient’s risk of complications (10–12) or even death (13).

Whilst some CDSSs have demonstrated the ability to improve the

quality of clinical care (14, 15), overall adoption remains low partly

due to inherent issues with EHRs and the automation of healthcare

decisions (16, 17). EHR platforms and CDSSs are typically

implemented independently, leading to incompatibilities and

inconsistencies in how data is recorded (18). Furthermore, the black-

box approaches taken by some systems have induced concern from

clinicians regarding the quality and interpretability of such

recommendations (19, 20). Clinicians typically rely on existing

knowledge when making decisions and consider previous patients

when diagnosing or formulating a treatment plan (21, 22)—therefore

clarity on how CDSS recommendations are produced and conveyed

to the clinician are essential aspects which affect utility and uptake (23).

To circumvent these challenges, the use of dimensionality

reduction techniques often coupled with visualisation strategies have

been widely used. These techniques transform the original high-

dimensional space into a low-dimensional representation which

retains the most relevant properties of the original data (24) and can

be used for noise reduction, data visualization or as an intermediate

step to facilitate other analyses. The transformations are commonly

divided into linear and non-linear approaches. A well-known linear
02
approach is Principal Component Analysis (PCA) which has been

widely used to visualise health care data (25). Similarly, t-distributed

Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold

Approximation and Projection (UMAP) have been proposed as

non-linear alternatives focusing on visualisation (26, 27). In the last

years, given the success achieved by deep learning models, the use of

Autoencoders to extract information from complex electronic health

care data has grown considerably (28–30). While some studies have

demonstrated that these representations can capture relevant clinical

insights from raw data, the results and visualisations produced are

often ineffective for use in routine clinical practice.

This study proposes a methodology which relies on unsupervised

techniques of reducing data complexity in a meaningful way such that

complex information can be relayed to the end user through accessible

and comprehensible graphical representations. In this manuscript,

autoencoders, a type of neural network, has been employed on a

real-world dataset of patients with dengue and acute febrile illness to

serve as an exemplar to demonstrate its role and utility.
Clinical picture of dengue infections

Dengue is a systemic viral disease which exerts a significant health

and economic burden worldwide. There are an estimated 51 million

symptomatic cases each year, with seasonal epidemics and high

caseloads imposing a huge strain on local healthcare services (31).

The wide spectrum, and non-specific nature of clinical presentations

pose further challenges to effective healthcare planning (32).

The course of infection typically exhibits three distinct phases:

febrile, critical, and recovery (33, 34). The febrile phase involves

high fever and is associated with generalised muscle pain lasting

around two to seven days (34). Nausea, vomiting and abdominal

pain may also occur (35). In a small proportion, the disease

proceeds unpredictably to a critical phase associated with

resolution of fever with an increase in blood haematocrit and a

decrease in platelet levels (34). During this period, the leakage of
frontiersin.org
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plasma from the blood vessels may result in fluid accumulation in

sites including the chest and abdominal cavity (34). There may

also be associated organ dysfunction and severe bleeding such as

from the skin or gastrointestinal tract (36). Shock (dengue shock

syndrome) and haemorrhage occur in less than 5% of all cases of

dengue; (36) however, those who have previously been infected

with other serotypes of dengue virus (secondary infection) are at

an increased risk (37). These outcomes occur relatively more

commonly in children and young adults (34, 37). This is usually

followed by the recovery phase with resorption of the leaked fluid

into the bloodstream and resolution of illness.

Strategies to identify patients at increased risk of complications

such as dengue shock syndrome (DSS) during the early febrile phase

of illness are important priorities to improving healthcare

organisation and delivery (38, 39). A widely adopted approach

appropriate in low- and middle-income countries (LMICs) is the use

of clinical warning signs outlined in the World Health Organisation

(WHO) 2009 dengue guidelines (33). These guidelines have

relatively few requirements for implementation, needing only clinical

examination findings and results from basic haematological tests.

While absence of these signs provides a high negative predictive

value for severe dengue (40), real world findings using these systems

have shown variability in performance (41), and the systems have

not resulted in lower rates of potentially unnecessary admissions (42).
FIGURE 1

Graphical abstract. On the left, the dataset with metadata, features and phenotyp
that transforms a patient stay with one or more daily profiles (Pi) into a two dim
describe the worst patient status using the aggregation functions shown in Tab
latent space where similar patients are grouped together. Each point represent
the concentration of patients for which the phenotype of interest occurs. Note
interest.

FIGURE 2

Latent space analysis. From left to right, the latent space produced can be desc
(e.g. mucosal bleeding) or categories (e.g. category which is associated with the w
distribution. In addition, it is possible to visualise the evolution of the patient over
decision making (similarity retrieval).
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Materials and methods

Learning a meaningful representation of high dimensional data in

two dimensions (latent space) has two potential benefits. First, it

enables a better, more intuitive understanding of an otherwise complex

dataset to clinician end-users through visualisations (see Figure 1). As

an example, the latent space produced can be thoroughly described in

terms of training features, phenotypes of interest, categories used for

patient stratification, or individual patient trajectories over time.

Second, it facilitates the projection of unseen observations into the

latent space which can be used for efficient similarity retrieval (see

Figure 2).
Dataset

The dataset used in the study consists of an aggregation of

prospective clinical data conducted at the Hospital of Tropical

Diseases (HTD) and collaborator hospitals in Ho Chi Minh City,

Vietnam by Oxford University Clinical Research Unit (OUCRU)

between 1999 and 2021. The studies were carried out in both

outpatient and inpatient settings with varying patient populations

(43–45). Only children (under 18 years old) have been considered,
es where each row represents a daily patient profile. In the middle, the model
ensional embedding (LPi) for visualisation. The aggregation step is used to
le 1. The embeddings are obtained using autoencoders. On the right, the
s a patient and the shaded areas represent the density distribution; that is,
that the latent space can be used to visualise any feature or phenotype of

ribed in terms of features using the average value (e.g. age) and phenotypes
arning signs defined in the WHO 2009 dengue guidelines) using the density
time (patient trajectory) and retrieve previous past similar patients to support
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TABLE 2 Compound phenotypes and categories.

Name Phenotypes

Fluid
accumulation

Ascites, pulmonary oedema and/or pleural effusion

Vascular leakage Ascites, pulmonary oedema, respiratory distress and/or pleural
effusion

Significant
bleeding

Considerable mucosal (e.g. gastrointestinal) bleeding

Organ
impairment

Abnormality in central nervous system (CNS) and/or liver
(AST . 1000 or ALT . 1000)

Category A Any vascular leakage, significant bleeding, organ impairment
and/or shock

Category B Abdominal pain or tenderness, persistent vomiting, ascites,
pleural effusion, bleeding mucosal, lethargy, restlessness and/or

Hernandez et al. 10.3389/fdgth.2023.1057467
since they were the most commonly represented in the datasets and

there are separate paediatric and adult dengue guidelines.

The included data is derived from 12,884 patients and their 19516

complete daily profiles (where all input features were available)

attending a healthcare facility with an acute febrile illness compatible

with dengue. Overall, 4,344 (33.7%) of the patients in the dataset

were ultimately diagnosed with dengue infection through laboratory

investigations. Dengue diagnosis was defined as one of: (i) a positive

NS1 point of care assay or NS1 ELISA, (ii) positive reverse

transcriptase polymerase chain reaction (RT-PCR), (iii) positive

dengue IgM through acute serology, (iv) or seroconversion of paired

IgM samples where available. A complementary dataset with the

“worst patient status” during the study period has been created using

the aggregation functions defined in Table 1. Exclusively patients

with all the selected features available were included in the analysis.

liver enlargement over 2 cm

Category C No complications or warning signs

CNS, central neural system; AST, aspartate aminotransferase (U/L); ALT, alanine

transaminase (U/L).

Selected features, phenotypes and
categories

After reviewing the scientific literature and discussion with

dengue infectious disease experts, five features were selected (see

Table 1) meeting the following criteria: (i) routinely available at

early stages of the disease, (ii) collected regularly over the

assessment period and (iii) deemed to provide appropriate

information for patient evaluation.

The three main categories for patient risk stratification are: (i)

Category A where vascular leakage, significant bleeding, organ

impairment or shock occurs, (ii) Category B which includes some

of the clinical warning signs outlined in the WHO 2009 dengue

guidelines (33) and (iii) Category C for those patients not included

in the two previous categories. Note that categories A and B are

not mutually exclusive; that is, a patient might be in both. On the

contrary, category C is mutually exclusive with categories A and B.

A detailed description of the previously mentioned compound

phenotypes and risk stratification categories is included in Table 2.
Selected dimensionality reduction algorithm

During the algorithm selection process we have considered linear

algorithms such as Principal Component Analysis (PCA), non linear

algorithms from the manifold family such as T-distributed

Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold

Approximation and Projection (UMAP) and neural network based
TABLE 1 Input features.

Name Unit NRR Aggregation

Age year — First

Weight kilograms — Mean

Body Temperature celsius 36.1–37.8 Max

Platelets k/mL 150–450 Min

Haematocrit % 36–50 Max

NRR, normal reference range; k/mL, kilocounts per microliter.
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algorithms such as Self-Organising Maps (SOM) and Autoencoders.

For the proposed methodology, the algorithms selected must meet

the following requirements: (i) are unsupervised and therefore do

not require ground truth labels, (ii) the latent space produced is

continuous and (iii) unseen samples can be projected on the latent

space. The latter two points are particularly important to enable

similarity retrieval (see Table 3). In addition to these requirements,

autoencoders were selected for the versatility in configuration and

data formats and the approach to reduce the dimensionality by

encoding-decoding the data and measuring the loss.

Autoencoders are a type of neural network which aim to learn

an encoding of the input data (46). They do so by attempting to

copy their input to their output, having gone through a hidden

layer h which has fewer neurons than the input has features. This

hidden layer h, often called a bottleneck, forces the model to

extract the essential features present in the input data to then be

able to reconstruct the input as faithfully as possible. Basic

autoencoders are composed of two main elements, an encoder

and a decoder, as seen in Figure 1. The encoder is used to map

the input data to a code or encoding, often called the latent

representation. The decoder uses this code to produce a

reconstruction of the input. This structure makes autoencoders

ideal for dimensionality reduction, as the latent representation

will contain only the most important features of the input data.

An autoencoder with two neurons in its bottleneck can then be

used to visualise data in two dimensions.
Evaluating performance for model selection

Dimensionality reduction methods extract the meaningful

properties of a dataset and, in the process, lose some of the

information. Over 1700 hyperparemeter configurations were

explored using grid search and their performance evaluated using

both distance and density metrics (see Table 4). In addition, the

latent space of the best performing model was further analysed to
frontiersin.org
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TABLE 4 Evaluation metrics.

Type Metric Aim

Distance Sheppard Distance preservation na

Pearson Distance preservation "

Spearman Similarity retrieval "

Procrustes Information loss #

Density Convex hull ratio Good visualisation #

Concave hull ratio Good visualisation #

GMM ratio Good visualisation #
GMM, Gaussian mixture model; ", higher values are better; #, lower values are better.

TABLE 3 Overview of dimensionality reduction algorithms.

Algorithm Unsupervised Continuous
space

Unseen
data

Comments

PCA ✓ ✓ ✓ The performance is likely to decrease as dimensionality increases due to its linear nature.

t-SNE ✓ ✓ Its inability to reduce the dimensionality of unseen data points makes a real-time similarity
retrieval system impossible.

UMAP ✓ ✓ It allows to reduce the dimensionality of unseen data points yet the performance is
considerably worse than other transfomers.

SOM ✓ ✓ The limitations imposed by the discrete space limits the applicability to similarity retrieval.

Autoencoders ✓ ✓ ✓ The ability to encode unseen samples and its support for higher-dimensional data, including
also time-series or images, make it really flexible and ideal for similarity retrieval.

PCA, principal component analysis; t-SNE, T-distributed stochastic neighbor embedding; UMAP, uniform manifold approximation and projection; SOM, self-organising map.
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verify its alignment with established characteristics of the dengue

disease progression (see Figure 2). Distance metrics can be used to

determine how well the distances between points are preserved.

The stronger the relationship between the distances in the reduced

space and the distances in the high-dimensional space, the less

information has been lost. Computing the distances from each

point to every other point can be highly computationally intensive.

Therefore, sampling points at random from the dataset to be used

in the evaluation is sometimes necessary.

There are applications where maintaining the ordering of

distances is more important than having a linear relationship

between the distances in the original and reduced spaces. Similarity

retrieval, for example, will provide the same results in the original

space and the two-dimensional space if the Spearman rank

correlation coefficient of the distances in both spaces is one.

Distance metrics alone are not sufficient when comparing

different dimensionality reduction algorithms or models. Indeed, as

dimensionality increases, the distance from a point to its nearest

neighbour nears the distance to the farthest data point (47). This

effect was shown to arise in datasets with as few as ten dimensions

(48). As this happens, all points in the dataset will be at a similar

distance from one another, which poses issues when using

distances between points to assess performance. Similarity retrieval

techniques that rely on distance metrics such as Euclidean distance

will also become flawed. Therefore, where available, metrics which

make use of labels associated with data points should be used in

conjunction with distance metrics when evaluating dimensionality

reduction algorithms.
Frontiers in Digital Health 05
Sheppard diagram
Sheppard diagrams are scatter plots of two measurements of

distances between objects. In dimensionality reduction analysis, the

first measurement or collection of distances corresponds to the

points in the original dimension. The second measurement is the

distances in the reduced space. Plotting one measurement against

the other can be used as a visual indication of any distortion

incurred when reducing the dimensionality. In other words, it

shows how well distances have been preserved relative to one

another. Collinear points indicate that there has been no distortion.

The more points which do not lie on this line, the more the

distances have been distorted and information lost whilst reducing

the dimensionality.

Pearson’s correlation coefficient
The Pearson correlation coefficient is a statistical measure that

gives the linear correlation between two variables. The result is

given in the [� 1, 1] range where 0 indicates no linear correlation

(49). A value of 1 indicates that every increase in one variable is

accompanied by a rise of fixed proportion in the other. Conversely,

a value of �1 indicates that every increase in one variable is

accompanied by a decrease of fixed proportion in the other.

Spearman’s correlation coefficient
The Spearman’s rank correlation coefficient measures the

dependence between the rankings of two variables (50). Values of

1, �1 and 0 respectively indicate a monotonically increasing

relationship between the variables, a monotonically decreasing

relationship and no relationship.

Procrustes analysis
Ordinary or classical Procrustes analysis is a statistical method

typically used to compare the shapes of two or more objects. The

comparison is achieved by performing Procrustes superimposition,

which finds a set of translation, rotation and uniform scaling

operations which optimally superimposes the objects (51). An

optimal superimposition minimises the Procrustes distance d

between objects, typically defined as the square root of the sum of

the squared pointwise differences between two objects (see

Equation 1) where x and y denote two groups of n points in p

dimensions. When comparing points with different dimensionality,

the dataset with fewer dimensions should have columns of zeros
frontiersin.org

https://doi.org/10.3389/fdgth.2023.1057467
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Hernandez et al. 10.3389/fdgth.2023.1057467
appended to match the dimension p.

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xp

j¼1

(xij � yij)
2

( )vuut (1)

Procrustes analysis can be used to evaluate the performance of

dimensionality reduction algorithms by applying Procrustes

superimposition to the original dataset and the data in the reduced

space. The final Procrustes distance obtained after the optimal

superimposition has been found can be used as a disparity

measure between the two sets of points. In this report, the squared

disparity is used. A value of zero indicates that the points can be

perfectly superimposed and that no information has been lost

during the dimensionality reduction process.
GMM ratio
The GMM ratio uses Gaussian Mixture Models with one

component. The metric takes the ratio of the area of the

confidence ellipsoid of a model fitted to data points with a given

label to the area of the confidence ellipsoid of a model fitted to all

data points. In comparison to the convex hull ratio and the

concave hull ratio, this metric is the most robust to outliers as the

areas of the ellipsoids are not severely impacted by points that lie

far away from the probability distribution’s mean.
Hyperparameters

Autoencoders have multiple parameters which can impact a

model’s performance, including but not limited to the learning

rate, batch size, number of layers and layer sizes, and the number

of training epochs. In this study, different hyperparameter

configurations were explored using grid search and compared using

the previously described metrics (see Table 4). In total, 1,728

different configurations were tested using all combinations of

hyperparameters shown in Table 5.
Software

The Python programming language was used in this research.

The models and performance metrics from Scikit-learn (52) and
TABLE 5 Grid search hyperparameters.

Parameter Values

Layersa []b, [5], [4], [3], [5,4], [5,3], [4,3], [5,4,3], [4,4,3,3]

Activation “ReLU,” “Sigmoid”

Learning rate 0.005, 0.001, 5� 10�4, 1� 10�4, 5� 10�5, 1� 10�5

Epochs 10, 30, 50, 100, 150, 250, 350, 500

Batch size 16, 32

aLayers refers to the hidden layers used in the encoder. The input layer and latent

layer are not included. The decoder layers are the mirror image of the encoder layers.
bNo hidden layers other than the latent dimension.
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PyTorch (53) were employed. Data handling was done with Pandas

(54) and data visualisation using Matplotlib (55).
Results

Data insights

Demographics and clinical characteristics are described in

Table 6 for the overall data and three different categories. The

median age was 8 years (IQR, 5–11 years) for all patients in the

dataset with 4,344 (33.7%) patients with a subsequent laboratory-

confirmed diagnosis of dengue. Patients experiencing complications

from dengue in Category A tended to be older with a median age

of 10 years (IQR, 8–13 years) whereas the gender was distributed

evenly across groups, with 7203/12884 [55.9%] male patients. The

median maximum haematocrit across groups was 39.8% (IQR,

36.9–44.0%) with higher values seen in Category A 45% (IQR, 41–

49%). In contrast, the median minimum platelet count was 184 k/L

(IQR, 81–250) with lower values for the Category A 68 k/L (IQR,

36–143).

Commonly reported symptoms for all patients in the dataset

include persistent vomiting (5384/10717 [50.2%]), abdominal pain

(3048/10821 [28.8%]) and tenderness (1587/12601 [12.6%]) which

consistently appear in patients assigned to Category A with 90.8%,

60.1% and 31.5% of patients experiencing these symptoms

respectively. These symptoms are part of the standardised warning

signs defined in the WHO 2009 dengue guidelines. Among cases

with bleeding, this amounted to minor skin bleeding (2715/10334

[26.3%]), mucosal haemorrhage (656/9066 [6.7%]) and significant

bleeding (e.g. gastrointestinal) (128/4863 [2.6%]). Within the

dataset, (1960/10903 [15.2%]) of patients experienced shock. It is

important to note that although all patients included experienced

an acute febrile illness, they are subject to specific study inclusion

criteria which mean that they are not representative of the overall

patient population in Vietnam.
Model selection

The learning rate dictates the degree to which the neural

network’s weights will be updated, with higher values such as 0.1

leading to unstable training, preventing the model from converging

and producing satisfactory results. The number of hidden layers in

the autoencoder impacts how complex a function it can learn. This

directly influences the preservation of distances, with simpler

models with fewer layers obtaining distance metric results

approaching and exceeding PCA’s (see Table 7). The non-linearity

provided by the ReLU function allowed the model to obtain a

Pearson coefficient value of 0.940, exceeding the value of 0.916

obtained by PCA. Distance preservation is, however, not the only

goal. Points with similar labels should be located near to one

another, making similarity retrieval applications more meaningful.

Models with more hidden layers produced better density metric

results, in particular for the shock label. The added complexity

introduced to the model by the layers and activation functions

allows it to represent high-dimensional data in 2D better but does
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TABLE 6 Characteristics of patients for the overall worst patient status data and categories A, B and C.

Missing Overall Category A Category B Category C

n 12,884 4,866 6,809 4,486

Agea, year 0 8.0 [5.0, 11.0] 10.0 [8.0, 13.0] 8.0 [5.0, 11.0] 6.0 [3.0, 9.0]

Gender Female 0 5,681 (44.1) 2,180 (44.8) 3,073 (45.1) 1,915 (42.7)

Male 7,203 (55.9) 2,686 (55.2) 3,736 (54.9) 2,571 (57.3)

Weight, Kg 0 25.0 [18.0, 35.0] 30.0 [24.0, 40.0] 26.0 [19.0, 36.0] 21.0 [15.0, 31.0]

Platelet countb, k/mL 0 184.0 [81.0, 250.0] 68.0 [36.0, 143.0] 139.0 [52.0, 232.0] 225.0 [177.0, 277.0]

Haematocrit, % 0 39.8 [36.9, 44.0] 45.0 [41.0, 49.0] 41.0 [37.7, 46.2] 37.6 [35.4, 39.9]

Body Temperature, celsius 0 37.5 [37.2, 38.0] 37. [37.0, 38.4] 37.5 [37.0, 38.0] 37.4 [37.2, 37.8]

Mucosal bleeding False 3,162 9,066 (93.3) 1,268 (72.3) 4,016 (86.0) 4,469 (100.0)

True 656 (6.7) 487 (27.7) 656 (14.0)

Vomiting False 2,167 5,333 (49.8) 253 (9.2) 813 (13.1) 4,439 (100.0)

True 5,384 (50.2) 2,499 (90.8) 5,384 (86.9)

Abdominal pain False 2,063 7,773 (71.8) 1,117 (39.9) 2,670 (46.7) 4,486 (100.0)

True 3,048 (28.2) 1,686 (60.1) 3,048 (53.3)

Abdominal tenderness False 283 11,014 (87.4) 3,176 (68.5) 5,114 (78.0) 4,470 (100.0)

True 1,587 (12.6) 1,459 (31.5) 1,442 (22.0)

Shock False 21 10,903 (84.8) 2,891 (59.6) 5,091 (75.0) 4,486 (100.0)

True 1,960 (15.2) 1,960 (40.4) 1,700 (25.0)

Vascular leakage False 0 12,249 (95.1) 4,231 (87.0) 6,222 (91.4) 4,486 (100.0)

True 635 (4.9) 635 (13.0) 587 (8.6)

Significant bleeding False 0 12,756 (99.0) 4,738 (97.4) 6,691 (98.3) 4,486 (100.0)

True 128 (1.0) 128 (2.6) 118 (1.7)

Organ impairment False 0 8,175 (63.5) 157 (3.2) 3,653 (53.6) 4,486 (100.0)

True 4,709 (36.5) 4,709 (96.8) 3,156 (46.4)

PCR Dengue serotype <LOD 2,068 6,748 (62.4) 790 (27.4) 3,099 (54.3) 3,464 (78.1)

DENV-1 1,957 (18.1) 1,131 (39.3) 1,305 (22.9) 373 (8.4)

DENV-2 1,066 (9.9) 643 (22.3) 725 (12.7) 206 (4.6)

DENV-3 321 (3.0) 125 (4.3) 187 (3.3) 99 (2.2)

DENV-4 706 (6.5) 173 (6.0) 381 (6.7) 297 (6.7)

Mixed 18 (0.1) 18 (0.7) 12 (0.2)

sbp, systolic blood pressure; dbp, diastolic blood pressure; GI, gastroinstestinal; CNS, central nervous system; LOD, limit of detection.

Continuous features are provided as median [Q1, Q3] and categorical features as n (%). Categories A and B are not mutually exclusive.
aPatients over the age of 18 were filtered out due to the low number of samples in the dataset.
bIQR rule was applied to remove outliers.
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it at the expense of distance preservation. However, models with too

many hidden layers produced representations with data points very

densely grouped in the latent space, impacting visualisation and

utility. The goal of the encoder is to reduce the dimension of the

data with each new layer. In this case, where only five input

features are reduced to two dimensions, introducing new layers has

diminishing returns and can negatively impact the model.

Similarly, a network that uses only linear activation functions will

produce results similar to those obtained using PCA (56). However,

when other activation functions are used, such as ReLU or sigmoid,

the model can learn more complex, non-linear mappings. While
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distance and density metrics are not heavily impacted by the use of

ReLU over sigmoid or vice versa, the two-dimensional

representation of the points is affected. Using the ReLU activation

can cause neurons to be deactivated, producing straight edges in

the latent dimension, which can be hard to interpret (see

Figure 3D). The sigmoid activation avoids this as it does not

entirely deactivate neurons by not producing zero values.

Balancing distance preservation and the density metric results

produces results covering more of the latent space, improving

visualisation whilst preserving utility, with similar points grouped

closer together. In this case, this balance is achieved by only using
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FIGURE 3

Sheppard diagrams (left) and shock label projections (right). On the left, Sheppard diagrams obtained for autoencoders with A) no hidden layers and ReLU
activation, B) one hidden layer with 3 nodes and Sigmoid activation, and C) three hidden layers with 5, 4, and 3 nodes respectively, and ReLU activation.
On the right, the distribution of patients in the latent space using an autoencoder with D) one hidden layer with 3 nodes and ReLU activation and E) one
hidden layer with 3 nodes and Sigmoid activation. The color indicates whether the patient experienced (orange) or not (blue) an episode of shock during
their hospital stay.

TABLE 7 Evaluation metrics for various representative hyperparameter configurations.

Layers Activation Pearson Spearman Procrustes GMM Comments

- - 0.916 0.896 0.272 0.814 PCA

[ ] ReLU 0.940 0.920 0.226 0.695 The approximate linearity of the ReLU activation function of this model favours
distance preservation

[ ] Sigmoid 0.917 0.906 0.240 0.543 The non-linearity of the Sigmoid activation affects distance metrics slightly and
improves density metrics

[3] Sigmoid 0.840 0.830 0.301 0.321 It balances distance preservation and density metric results

[5,4,3] ReLU 0.635 0.622 0.505 0.104 It is a complex model with good density metric results but produces dense points in
the latent dimension not apt for visualisation of patient trajectories over time. In
addition, distance metric results show that distances are not preserved and therefore
it is inadequate for similarity-based retrieval
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one hidden layer with three neurons in addition to the latent

dimension layer, which produces the output. The Sheppard

diagrams in Figures 3A,B,C illustrate differences in the distance

preservation achieved by different models.
The latent space

The latent space is a representation of compressed data in which

similar data points are closer together in space and was initially

created using data from all patients in the dataset. In order to

validate its application for patient risk stratification in the case of

dengue it is necessary to properly understand how the features,

phenotypes and categories behave in this newly reduced 2D space.
Analysis of features
The distribution of the input features over the selected latent

space is presented in Figure 4. Age and weight monotonically

increase from the bottom-right corner towards the top-left corner.

Note that this similitude is sensible since older patients, and more

specifically in the case of children, tend to weigh more than

younger patients. For platelet count, values monotonically increase

from top towards bottom. On the contrary, haematocrit values

increase from bottom towards top. It is important to highlight that

body temperature does not present a monotonic increase and there

is a horizontal region in the latent space around the y-axis value of
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0.6 in which values are the highest. Further laboratory results are

included in Figure A1 (Appendix).
Analysis of phenotypes
The distribution of some interesting phenotypes of patients over

the selected latent space is presented in Figure 5. Firstly, phenotypes

describing similar conditions are shown to cover similar regions of

the latent space—such as leakage related phenotypes (ascites,

pleural effusion and pulmonary oedema) or bleeding-related

phenotypes (nose bleeding, gum bleeding and other mucosal

bleeding). Note that, in contrast to other bleeding sources, skin

bleeding occurs more commonly in younger patients. The

compound phenotypes for vascular leakage, significant bleeding,

and organ impairment also occupy a very similar area, with

leakage showing the highest density whereas organ impairment

covers a larger area. This is reasonable since the latter is a broader

classification as it includes abnormalities in the central nervous

system (CNS), liver or kidney.

Dengue shock syndrome results in circulatory collapse

(haemodynamic shock) and commonly occurs alongside abdominal

pain and haemorrhage (bleeding). The corresponding density

distributions are aligned on the right side of the latent space,

which represents younger patients. There is also a clear bias

towards collecting the features that have been defined as warning

signs by the WHO dengue guidelines resulting in better estimated

densities. For instance, vomiting and abdominal pain cover most of

the latent space and are present in two areas with higher densities.
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FIGURE 4

Latent space description: Features. The graphs represent the density distribution using hexagonal binning over the latent space for the five features selected to
train the Autoencoder. The title includes the name and the number of daily profiles. The value on each hexagonal bin represents the mean value of all the daily
profiles that have been projected on that bin. A detailed set of graphs describing other laboratory results has been included in Figure A1 (Appendix).

FIGURE 5

Latent space description: Phenotypes. The graphs represent the density distribution using contour lines estimated using a Gaussian kernel over the latent
space. The title includes the phenotype and the number of patients in which it occurs. The definition of the compound categories (vascular leakage,
significant bleeding and organ impairment) are defined in Table 2. A detailed set of graphs describing other phenotypes has been included in Figure A2
(Appendix).
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Analysis of categories
The categories for patient risk stratification have been

represented using density distributions in the latent space in

Figure 6. Firstly, the Category A has been defined using those
FIGURE 6

Latent space description: Categories. The graphs represent the density distributi
Gaussian kernel. These categories are defined as a compendium of various phen
the colorbar represents the estimated density on that bin for which one or mor
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patients in which vascular leakage, significant bleeding, organ

impairment or shock occurs (see Table 2). This region is also

associated with those areas in which platelet levels are low and

haematocrit levels are high (see Figure 4) which have been
on over the latent space for three categories (A, B and C) estimated using a
otypes (see Table 2) and therefore the value on each bin (pixel) described in
e of the conditions associated to the category occurs.
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FIGURE 7

Latent space description: Trajectories. The graph represents the trajectory
of a patient over the latent space using the density distribution for
Category A, which associated with severe disease, as a background
reference. Each marker represents a daily profile where the number
indicates the day from admission. Filled markers indicate days in which
the patient suffered an episode of shock. Further examples have been
included in Figure A3 (Appendix).
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previously associated with severe dengue (33, 34). Category B has

been defined using those patients in which any of the warning

signs defined by WHO in the 2009 dengue guidelines (33) occur.

There are two well differentiated regions with higher densities; the

top region which overlies the Category A and the bottom region

which overlies the Category C. Finally, the Category C category is

defined by those patients who did not suffer any complication

associated with either Categories A or B. This region is also

associated with those areas in which platelet, haematocrit and body

temperature values lie within their corresponding normal reference

ranges. The region of the space with the higher density is shifted

towards the right-hand side of the graph because the median age

of patients in the overall data is 8 (see Table 6) and age increases

from bottom-right to top-left (see age in Figure 4).

The course of the dengue infection is divided into three phases:

febrile, critical, and recovery. The febrile phase is commonly

associated with fever and, in some patients, the disease proceeds to

a critical phase where fever resolves and an increase in haematocrit

and a decrease in platelet levels are seen (34). This progression is

clearly reflected in the latent space where in order to transition

from Category C to Category A the patient tends to traverse a

region in which body temperature values are the highest (see

Temperature in Figure 4). This region of the latent space is

therefore associated with the febrile phase.

Patient trajectories
Dengue is a dynamic acute illness and althoughanaccurate snapshot

is important, defining the changes over time is necessary. The selected

autoencoder configuration preserves distances, therefore the latent

space can also be used to visualise patient trajectories; that is, their

evolution over time. Note that we could have more apparent clusters

by increasing the complexity of the model, but it would affect the

preservation of distances, and limit its usability for this particular

scenario. An example of a patient trajectory is shown in Figure 7

where each marker represents a daily profile and the number indicates

the day from admission. The filled markers indicate that the patient

suffered an episode of shock on that day. The pattern that emerges in

most patient trajectories is consistent; they are usually in the region

associated with severe disease on admission to hospital (especially if

they were admitted with shock) and move towards the mild region as

they improve with treatment. Additionally, it is important to note that

this is a descriptive method and should be used as such; assumptions

regarding predicting patient states in the future are not made.
Discussion

This study provides a proof-of-principle for the role of

autoencoders to reduce the dimensionality of complex healthcare

data into two dimensions to produce a latent space whereby regions

are associated with specific clinical phenotypes. This descriptive tool

provides visualisations of the latent space which subsequently allows

for an intuitive and meaningful understanding of complex

relationships between features for a given dataset. The clinical

domain selected as an exemplar for this study was management of

acute febrile illness including dengue, and the data an aggregation of

various prospective clinical studies conducted between 1999–2021.
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The inclusion of over 12000 patients admitted to hospital represents

the largest sample size used for this purpose to our knowledge.

The features used include routine clinical and laboratory

parameters, selected based on expert consensus, data completeness

and pragmatic utility suited to a LMIC healthcare setting. Although

we have applied this technique to an infection condition using a

limited set of clinical input parameters, this technique will likely be

useful for a multitude of clinical conditions whereby the interplay

between complex interacting patient and disease features need to be

understood and classified to allow for clinical decision-making.

For the development of the method, it is necessary to clearly define

the main objective of the model and chose adequate evaluation

metrics. For similarity retrieval, distance metrics such as Pearson

(distance preservation) or Spearman (rank preservation) should be

used, whereas for visualisation density metrics are more suitable. For

our purposes, which is a combination of both similarity retrieval

and visualisation, balancing distance metrics and density metrics

produces results covering most of the latent space, improving

visualisation whilst preserving utility, with similar patients grouped

closer together. In this case, balance is achieved by using the

sigmoid activation function and one hidden layer with three neurons

(Pearson, 0.840; Spearman, 0.830; Procrustes, 0.301; GMM 0.321).

The latent space produced by the selected autoencoder aligns with

established characteristics of dengue disease progression, such as an

increase in haematocrit levels, decrease in platelet levels and a

decrease in body temperature from febrile to critical phase (33, 34).

The same occurs for other laboratory tests not used during training

which are often indicators of disease severity such as high AST, high

ALT, respiratory distress (respiratory rate), high pulse and low pulse

pressure (see Figure A1 in Appendix). Moreover, similar

phenotypes are represented close to each other, and the categories
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defined are consistent with both the magnitude features (e.g.

abdominal pain magnitude) which are subject to clinicians

interpretation and the clinical warning signs outlined in the WHO

2009 dengue guidelines (33).
Benefits

In supervised learning the objective is to learn a function that

maps an input (features) to an output (phenotypes) based on

input-output pairs. This imposes the need to define a standardised

output label for which the model is optimised. The models

produced are therefore more prone to overfit and predictions are

constrained to the selected output. The use of unsupervised

learning by means of autoencoders overcomes these limitations as

it finds patterns within the data based exclusively on the input.

The latent space produced can be easily described without the need

for model retraining. In this manuscript, we have described the

latent space in terms of features and phenotypes. Moreover,

compound features and even categories can be defined “online”

without retraining which provides immense flexibility. In addition,

the visualisation aspect considered during the development of the

model and the thorough description of the latent space improves

understanding and confidence - with the ultimate aim of

promoting a superior adoption among clinicians in comparison

with conventional approaches. The understanding of the

relationships between patients through the input features when

reduced to a latent space representation could also offer additional

insights and understanding of relationships hitherto not explicitly

defined – this is useful for research particularly when

complemented with additional investigations such as through

biomarker and genomic methodologies.
Limitations

Since there is no target or outcome variable, unsupervised

learning is more technically challenging than supervised learning

and requires more input from subject-matter experts. This is true

especially for feature selection and validation of the produced

latent space. In addition, as with other approaches that rely on a

voting system, predictions are not recommended if the phenotype

of interest is highly imbalanced. The nature of this technique is to

depict representations of data relationships and not to provide

inference/predictions of future patient states. Note however that

there are other strategies that can be used to raise alerts. For

instance, by assessing whether the density (number of patients) for

which a certain phenotype occurs is considerably higher in the

region surrounding the query patient compared to the rest of the

space. There were limitations on the dataset used—patient data was

collected on the basis of enrolment to a clinical study and

therefore subject to a selection bias according to the inclusion

criteria, and clinical information for patients not diagnosed with

dengue were relatively sparse compared with those with laboratory-

confirmed dengue. The input features (5 parameters) were also

relatively limited - additional features collected longitudinally

would likely be able to provide increased specificity and
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performance. However, we have shown that despite the use of

minimal features, meaningful representations of outcome categories

in dengue can be constructed and displayed.
Conclusion

Autoencoders, when adequately configured, can produce a two-

dimensional latent space representation of a complex dataset of

dengue patients collected over 20 years which (i) conserves the

distance and rank relationships between patients, (ii) aligns with

important clinical characteristics in patients with dengue and (iii)

groups patients with similar phenotypes close together. The data

used in this study was collected manually by clinicians and the

features have been selected to maximize the number of patients

based on expert consensus and data availability. However, one of

the strengths of this method is that it has the potential to perform

well with higher dimensional data including time-series or even

images. The parametric model produced during training in the

form of weights and biases can be used to encode new, previously

unseen data points and thus represent these patients in the latent

space. The encoding is done in constant time, making a real-time

patient similarity retrieval system possible. Work is underway to

evaluate its utility in facilitating end user data interpretation by

incorporating these findings into an electronic clinical decision

support system to guide individual patient management.
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Appendix
Appendix A1

Latent space description: Biomarkers. The graphs represent the density distribution using hexagonal binning over the latent space for the most frequent
features in the dataset. The title includes the name and the number of daily profiles. The value on each hexagonal bin represents the mean value of all
the daily profiles that have been projected on that bin. The magnitude values are subject to the clinicians interpretation and have been included for reference.
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Appendix A2

Latent space description: Phenotypes. The graphs represent the density distribution using contour lines estimated using a Gaussian kernel over the latent
space. The title includes the phenotype and the number of patients in which it occurs.
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Appendix A3

Latent space description: Trajectories. The graphs represent trajectory of patients over the latent space using the density distribution for the Category A (which
is associated with higher severity) as a background reference. Each marker represents a daily profile where the number indicates the day from admission. Filled
markers indicate days in which the patient suffered an episode of shock.
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