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1 Introduction

Among the greatest challenges in physics is obtaining a microscopic understanding of the
expanding universe. While this is presently out of reach for the observed universe, an
intriguing example of such an expanding spacetime is the interior of black holes, which in
turn can be studied in the framework of the AdS/CFT correspondence [1–3]. It has been
proposed by Susskind and collaborators that the growth of the black hole interior is dual
to the growth of complexity, the minimal number of gates required for a quantum circuit
to prepare the corresponding time evolved state in the dual CFT [4, 5]. One version of
this proposal is that complexity equals the volume of a maximal slice in the black hole
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interior [6].1 The most important rationale behind this conjecture is that the black hole
interior grows for a very long time, past when conventional probes, like correlation functions
or entanglement entropy, have already reached their thermal equilibrium value. Complexity,
on the other hand, is expected to grow in chaotic systems at the same rate as the volume
of the interior, until times exponentially large in the entropy, after which it saturates in
a complexity plateau [11–16]. Up to this point, it has been an open problem to establish
whether the volume of the black hole interior exhibits a similar saturation at late times.

A priori, there is no reason to expect that a geometrical description of the interior
could capture the late time saturation of complexity. However, recent developments show
that the gravitational path integral has a surprisingly large regime of validity, with the
exponentially small corrections coming from summing over topologies being capable of
capturing fine details of spectral statistics [17–19], or the unitary Page curve of the entropy
of an evaporating black hole [20, 21]. Emboldened by this success, in this paper, we calculate
the corrections coming from higher topologies to the volume of the black hole interior in a
wide class of models of two-dimensional gravity, including the widely studied theory of JT
gravity [22–24]. Importantly, this requires us to give a nonperturbative definition of the
length of the black hole interior and to complete the sum over surfaces of higher topology to
the matrix model of Saad-Shenker-Stanford [17] (or its generalizations [25, 26]). We indeed
find that the length of the black hole interior saturates at a time and length exponentially
large in the entropy. Our result thus provides a non-perturbative version of the complexity
equals volume conjecture.

In section 2 we propose a natural candidate for the length 〈`〉 of the Einstein-Rosen
(ER) bridge. In a two-dimensional theory, the volume of the black hole interior is given
by length of the geodesic going from one side to the other. While the definition of this
length is unambiguous on surfaces with trivial topology, on manifolds of higher genus there
are an infinite number of geodesic spanning between the two sides of the ER bridge. We
explore various definitions for this length and settle on one that is well defined on surfaces
of arbitrary topology, causes minimal backreaction on the metric, and can be analytically
continued between Euclidean and Lorentzian geometries:

〈`〉 = lim
∆→0

〈∑
γ

`γ e
−∆`γ

〉
, (1.1)

where γ is labeling non self-intersecting geodesics, 〈. . .〉 evaluates the gravitational path
integral by summing over surfaces with any topology and where ∆ acts as a regulator.
Since the free field boundary-to-boundary propagator on hyperbolic surfaces is given by the
sum over geodesics (including self-intersecting ones), 〈`〉 is closely related to the two-point
function 〈χχ〉, with an operator of dimension ∆ inserted on each side of the two-sided black
hole, as a probe for the black hole interior.

In section 3, we turn to the analysis of this quantity. In the limit in which χ is a probe
field and when we approximate the two-point function by summing over non self-intersecting

1Both the definition of complexity and the size of the black hole interior suffer from many ambiguities,
which have lead to many versions of this proposal [7–10]. However, these ambiguities are believed not to
affect the late time universal scaling properties.
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Figure 1. We show the numerical evaluation of the Einstein-Rosen bridge length (see (4.6)) in JT
gravity for β = 15 in orange, while the early and late time asymptotics (4.9) are shown by the blue
dashed and gray dotted curves, respectively.

geodesics, we prove that at arbitrary order in eS0 (with S0 being the leading order entropy
of the black hole) the two-point function is simply given by

〈χ(x1)χ(x2)〉non-int. ∼
∫ ∞

0
dE1dE2 〈ρ(E1)ρ(E2)〉 e−E1(x1−x2)−E2(β−x1+x2)M∆(E1, E2) ,

(1.2)
whereM∆(E1, E2) = |〈E1|χ|E2〉|2 can be computed analytically. This result can be viewed
as a generalization to arbitrary genus and dilaton potential of the genus 1 result for JT
gravity of [17]. The expression (1.2) is also consistent with a conjectured formula for the
matter two-point function in gravity that was obtained by studying operator insertions in
the matrix integral that is dual to the JT theory [17, 27].

In section 4 we obtain the main result of our paper, that is, up to an overall additive
constant2

〈`(t)〉 ≈

C1t+ . . . t� eS0 ,

C0 − . . . t� eS0 ,
(1.3)

in a large class of theories of dilaton gravity, including JT gravity. Here, the coefficients
C1 is O(1) while C0 is O

(
eS0
)
and depend on the spectral density ρ(E) in each dilaton

gravity model and on the inverse-temperature β of the thermofield double state in which
the system is prepared at t = 0. For a plot of 〈`(t)〉 in the case of JT gravity, see figure 1.

In section 5 we remark on the late-time differences between the ER bridge length, the
spectral form factor, and the two-point function. While all three quantities exhibit a period
of growth and then a plateau at later times, the physics of the growth and plateau periods
for the bridge is widely different from that for the latter two quantities. While the period of
growth for the ER bridge length is due to the contribution from the classical solution, the

2The linear growth of the black hole interior at time scales t� eS0 but exactly in the temperature was
first obtained in [28].
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“ramp” in the spectral form factor and two-point function is due to the leading Euclidean
wormhole geometry. More importantly, while the “plateau” in the spectral form factor
and two-point function occurs due to a cancellation between the wormhole geometry and
other non-perturbative corrections to the spectral two-point function 〈ρ(E1)ρ(E2)〉, the
saturation of the bridge length is due to novel cancellations between the classical disconnected
contribution and non-perturbative contributions in 〈ρ(E1)ρ(E2)〉. To our knowledge, these
types of cancellations have not been noticed in the random matrix literature before and are
universal in all one matrix models.

To further probe the relation between complexity and the late time length of the ER
bridge, we compute the variance of the latter quantity in section 6. We start by deriving a
geometric formula for the variance in terms of the spectral four-point function. We then
show that at late times

σ` ∼ eS0/2 , for t ∼ eS0 , and σ` ∼
√
t , for t� eS0 . (1.4)

In contrast to the plateaus for the spectral form factor and the two-point function, on
the plateau for the ER bridge, the “signal” is much larger than the “noise” in the regime
t� e2S0 . However, we find that as opposed to 〈`〉, the variance σ` does not have a plateau,
instead it grows forever, in particular, it becomes the same order as the signal when t ∝ e2S0 .
We will discuss some possible explanations for this unexpected behavior.

Finally, in section 7 we discuss the interpretation of our results beyond the theories
of dilaton gravity and their matrix integral dual. Our geometric computation suggests
the importance of a new spectral quantity, called spectral complexity, which we expect to
closely track the volume of the black interior in any chaotic system with a holographic dual.
We confirm this expectation in a numerical study of the SYK model.

2 Nonperturbative length

We want to define the length 〈`〉 of the ER bridge in two-dimensional models of gravity.
Our definition needs to take into account that in higher genus geometries, there are multiple
geodesics connecting two boundary points. Furthermore, when we probe this length we do
not wish to experience strong back-reaction from the measurement since that might spoil
the growth of the ER bridge.

One is first tempted to consider the minimal length geodesic spanning between the two
sides of the ER bridge as the definition of `. On higher genus surfaces, there are multiple
geodesics connecting two points, and as we move the endpoints, the minimal geodesic
changes abruptly. Consequently, the minimum geodesic length cannot be analytically
continued to Lorentzian signature.

Alternatively, one might imagine computing the minimal length of the ER bridge by
considering the two-sided two point function 〈χL(t)χR(0)〉 and taking the limit

− lim
∆→∞

1
∆ log〈χL(t)χR(0)〉 = lim

∆→∞

1
∆

〈∑
γ

e−∆`γ

〉
, (2.1)
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which seemingly picks the geodesic with minimal real part from the sum.3 However, due
to the backreaction of the operator insertion on the metric the measurement of the ER
bridge length is spoiled: as shown in [28] for any ∆ > 0, the two-point function decays
exponentially up to a time t ∼ O(1), past which it transitions to a power law decay due
to quantum corrections coming from JT gravity (∼ 1/t3, regardless of the value of ∆).
Because of this, − lim∆→∞

1
∆ log〈χL(t)χR(0)〉 does not see the growth of the ER bridge

past the thermalization time (which is ∼ β). Therefore, we dismiss these candidates when
defining the length of the bridge.

A candidate that resolves the issues above is the regularized sum4

〈`〉 = lim
∆→0

〈∑
γ

`γ e
−∆`γ

〉
, (2.2)

where γ is labeling non self-intersecting geodesics and 〈. . .〉 evaluates the sum over geodesics
within the JT gravity or dilaton gravity path integral, including the contribution of surfaces
of arbitrary genus. The prescription for choosing geodesics without self-intersections is
natural since, if we cut the manifold open along such curves, we obtain a state in which
the boundary points are separated by geodesic length `γ .5 From the quantum information
perspective, this choice makes contact with the original motivation of interpreting 〈`〉
as a length of a minimal tensor network that can create the state. We will nevertheless
present an argument in appendix A that choosing to include geodesics that self intersect
does not change the qualitative time dependence at late times. This quantity can be
analytically continued and has minimal backreaction on the metric.6 However, one might
worry that (2.2) could be divergent since it involves an infinite number of geodesics on all
surfaces with g > 1. As we show shortly, we find that the time-dependent piece in (2.2) is
finite, independent of the regularization scheme, and is precisely the probe of the late time
physics that we are interested in: i.e., it is sufficient to study 〈`(t)〉 − 〈`(0)〉.

We can re-express e.q. (2.2) for 〈`(t)〉 by taking the ∆ derivative of the two-sided corre-
lation function, computed in an approximation, where we drop self-intersecting geodesics.
Explicitly,

〈`(t)〉 = − lim
∆→0

∂ 〈χL(t)χR(0)〉non-int.
∂∆ . (2.3)

This formula was previously used for the disk topology in pure JT gravity in [28] and in JT
gravity coupled to matter fields in [30]. The novelty here is that we apply this formula at
all orders in the genus expansion.

Two-sided correlation functions can be obtained by analytic continuation from Euclidean
correlators, and it will be convenient to obtain 〈χL (t)χR (0)〉 from a Euclidean computation

3Here, L/R denotes operators inserted on the left/right sides of the bridge.
4We will specify the exact meaning of 〈. . .〉 shortly.
5The cut that separates the manifold into two disjoint parts will in general also create some accompanying

baby universes.
6We can think about this quantity as inserting a tensionful defect and extracting the leading correction

in the tensionless limit. This is similar to how the minimal surface is obtained from the gravitational Rényi
entropies using the replica trick [29].
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performed in section 3. The analytic continuation that we use is valid in any quantum
system

〈OL(t)OR(0)〉 ≡ 〈TFDβ | OL(t)OR(0) |TFDβ〉 = 〈TFDβ | OL(t/2)OR(−t/2) |TFDβ〉

= Tr
[
O (β/2 + it)O(0)e−βH

]
≡ 〈O (β/2 + it)O(0)〉β .

(2.4)

where in the first line we used the two-sided (thermofield double) and in the second the
Euclidean representation. The last expression in the first line is the most intuitively
connected to the ER bridge length where we evolved both the left and right boundary
points forward in time equally by t/2.7 The equality between the first and second lines
can be established by inserting a complete set of states in the second line and using that
the thermofield double state is |TFDβ〉 =

∑
n e
−βRn/2 |En〉L |E∗n〉R. The dilaton gravity

theories considered in this paper are famously ensembles of quantum systems, random
matrix theories, so when we apply (2.4) in our context, the gravity computation gives the
ensemble average of the above quantities.

In section 3, we will shown that 〈χ(x1)χ(x2)〉non-int. is a particularly nice quantity
in JT gravity and other theories of dilaton gravity, as it can be computed to all orders
in the genus expansion and can even be computed non-perturbatively using the matrix
model representation for such gravitational theories. We will therefore use (2.3) to extract
〈`(t)〉 − 〈`(0)〉.

3 The two-point function in JT gravity

JT gravity is a theory of two-dimensional gravity with a metric gµν , coupled to a dilaton φ,
whose Euclidean action is given by [22–24]

IJT =−S0χ(M)− 1
2

∫ √
gφ(R+2)−

∫
∂M

√
hφ(K−1) , Z =

∫
DgµνDφ

Diffeos e
−IJT . (3.1)

The first term is purely topological, as it only accounts for the Euler characteristic of the
manifoldM. The bulk term fixes the geometry to be a patch of hyperbolic space whose
boundary has fixed, large, proper length L = β/ε and dilaton value φ = 1/ε.8 These
boundary conditions require the presence of the Gibbons-Hawking-York term, which gives
an action for the boundary fluctuations in each such hyperbolic patch. While the model
exhibits great simplicity since it only depends on topological data and boundary fluctuations,
it still has black hole solutions and, in particular, we will be interested in studying two-sided
black holes, which have an ER bridge between the two sides.

In this section, our goal is to probe the length of the ER bridge when one includes the
contribution of surfaces with arbitrary topology to the gravitational path integral in (3.1).
The probe that we shall consider is the boundary-to-boundary two-point function of a probe
matter field χ, with scaling dimension ∆, which only couples to the metric in the JT theory.

7Recall that in the thermofield double in the right system the natural time direction runs backwards.
8Since we set the boundary value of the dilaton to one, times and inverse temperatures in the rest of the

paper are measured in these units. In particular the Schwarzian theory is strongly coupled when β � 1.
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In the probe limit, the two-point function on any hyperbolic surface can be schematically
expressed as

〈Trβ (χ(x1)χ(x2))〉 =
∑
M

∑
γ

〈Trβ(e−∆`γ )〉M , (3.2)

where the sum overM is a sum over all surfaces, obeying the boundary conditions discussed
above, and the sum over γ is a sum over all geodesics connecting the points at boundary
times x1 and x2, each of length `γ .

To clarify our notation for expectation values of observables in the gravitational
path integral, Trβ(. . . ) ≡ Tr

(
e−βH . . .

)
is a mnemonic for the insertion of a gravitational

boundary with the boundary conditions described above while the . . . will indicate what
operators are inserted on each boundary. Finally, the 〈. . .〉 will represent the evaluation of
the gravitational path integral with a number of boundaries given by the number of traces
inside, each with its own specified operator insertions.

On a hyperbolic surface of genus g ≥ 1, there will be an infinite number of geodesics γ,
some of which will self-intersect. Since we are interested in the two-point function in order
to probe the length `γ of the ER bridge in a two-sided black hole, we shall restrict ourselves
to geodesics that do not self-intersect and set x1 = 0 and x2 = β

2 + it; for each surfaceM
we will denote such geodesics going from x1 to x2 by Gx1,x2 and will denote correlators that
solely account for these geodesics by 〈. . .〉non-int..9

In JT gravity, the path integral over all metrics reduces to an integral over boundary
wiggles which we denote by D(W) and an integral over the moduli space of hyperbolic
surfaces [17]. Therefore, the two-point function can be rewritten as

〈Trβ (χ(x1)χ(x2))〉non-int. =
∑
g

eS0(1−2g)
∫

Tg,1
Mod(Mg,1)

ω

∫
D(W)e−IJT, bdy(W) ∑

γ∈Gx1,x2

e−∆`γ ,

(3.3)
where ω =

∑3g−3+n
j=1 dbj ∧ dτj is the Weil-Peterson symplectic form on the moduli space of

hyperbolic surfaces, and Tg,1 represents the moduli space of all hyperbolic surfacesMg,1 of
genus g with 1 asymptotic boundary. Due to the redundancy of large diffeomorphism in the
gravitational path integral, we are supposed to quotient this moduli space by the mapping
class group Mod(Mg,1) ofMg,1. As in the example shown in figure 2, cutting along each
geodesic γ in the sum above, we can either obtain two disconnected manifolds, each with a
single boundary,Mh,1 andMg−h,1 with 0 ≤ h ≤ g, or a single connected manifold with two
boundariesMg−1, 2. The mapping class group acts by relating all boundary-to-boundary
geodesics within a given cutting class as well as all closed geodesics on Mh,1 andMg−h,1
(orMg−1, 2 in the latter case) which do not intersect the boundary-to-boundary geodesic.
Therefore, following a similar strategy as in [27, 31, 33], we can rewrite the integral over

9Since we discarded self-intersecting geodesics, 〈Trβ (χ(x1)χ(x2))〉non-int. is only an approximation to the
full two-point function. It was argued by Saad [31] that this approximation gives the leading behavior of the
function for large Lorentzian times, and he computed this modified two-point function to the first subleading
order in eS0 given by the genus 1 geometry. The leading disk contribution (which does not suffer from this
ambiguity) was obtained in [32]. Since in this paper, our focus is on studying the length of the ER bridge
and not on the full two-point function, we will not discuss further whether self-intersecting geodesics are
important in its late-time behavior.
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Figure 2. An example (with genus 2) of the type of hyperbolic surfaces which the path integral (3.3)
sums over. The green curves represent the wiggly asymptotic boundaries, while the red curve
represents the boundary to boundary geodesic. While there are an infinite number of non-self-
intersecting boundary-to-boundary geodesics on such surfaces, above, we have drawn an example of
all possible surface topologies that can result by cutting a genus two surface along the geodesics.
The purple curves represent the closed geodesics which we use to glue the trumpet wavefunctions
in (3.7) to different bordered Riemann surfaces.

the moduli space as∫
Tg,1

Mod(Mg,1)

ω
∑

γ∈Gx1,x2

e−∆`γ = e−∆`
∫

Tg−1,2
Mod(Mg−1,2)

ω +
∑
h≥0

e−∆`
∫

Th,1
Mod(Mh,1)

ω

∫
Tg−h,1

Mod(Mg−h,1)

ω ,

(3.4)
where ` is the length of a geodesic which is now part of the boundary ofMh,1 andMg−h,1
(or part of both boundaries ofMg−1,2) and where for the remainder of the paper the sum
over h is bounded such that disconnected surfaces of genus h and g − h are not counted
twice. When the genus g = 2, we can use figure 2 to better understand (3.4). The first
term on the r.h.s. sums over the moduli space of the genus one surface with two boundaries
obtained after cutting the rightmost figure along the red geodesic. The h = 0 term in (3.4)
corresponds to the sum over the moduli space of the leftmost figure after a cut along the
red geodesic which results in a one boundary genus zero and a one boundary genus one
surface, while the h = 1 term correspond to summing over the moduli space of the two
genus one surfaces obtained after the cut in the center figure.

As drawn in figure 2, we can now cut each such surface along the closed geodesic which
is closest to the asymptotic boundary to separate the manifolds, into two bordered Riemann
surfaces with a geodesic boundary (or a single such surface in the case ofMg−1,2), and two
trumpets which, on one end, have a closed geodesic boundary, and, on the other end, have
a boundary with fixed proper length and fixed dilaton glued to a geodesic of fixed length, `.
Following the wavefunctional formalism discussed in [28], we denote the path integral for
such an object as ψTrumpet,x(`, b). The expression for the trumpet wavefunction was derived
in [31] in terms of the Hartle-Hawking wavefunction for a disk with a fixed ADM mass E,
cut by a geodesic boundary of length `, ψDisk, E(`):

ψTrumpet, x(`, b) = b

`

x

=
∫ ∞

0
dE ρTrumpet(E)ψDisk, E(`)e−xE , (3.5)

– 8 –
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where the density of states of the trumpet ρTrumpet(E) = cos(b√2E)
π
√

2E can be computed from
fermionic localization [34], while ψDisk,E(`) is given by ψDisk,E(`) = 4e−`/2Ki

√
8E(e−`/2) [28].

Here, E can be interpreted as the ADM mass observed on the asymptotic boundary and
the conservation of this mass follows from the orthogonality relation∫ ∞

−∞
d` e` ψDisk,E(`)ψ∗Disk,E′(`) = δ(E − E′)

ρDisk(E) . (3.6)

Above, ρDisk(E) is the density of states in JT gravity on the disk, given by ρDisk(E) =
sinh

(
2π
√
E
)
[35]. Using (3.4) we can thus rewrite the genus g contribution,10

〈Trβ (χ(x1)χ(x2))〉non-int., g

∼ eS0(1−2g)
∫
d` e`

∫
db1b1 db2b2 ψTrumpet,x(`, b1)ψTrumpet,β−x(`, b2)e−∆`

×
[
Volg−1,2(b1, b2) +

∑
h≥0

Volg−h,1(b1)Volh,1(b2)
]
,

(3.7)

where, in order to compactly write (3.7), and not have to consider cuts which involve the
disk wavefunction separately, we have formally chosen Vol0,1(b) to be such that, after the
integral over b, the disk wavefunction is recovered11

ψDisk,x(`) ≡
∫ ∞

0
dE ρDisk(E)ψDisk, E(`)e−xE ≡

∫ ∞
0

db b ψTrumpet,x(`, b)Vol0,1(b) . (3.8)

This formula can be seen as a generalization of the result from [17] which computed
the boundary-to-boundary two-point function up to genus one, up to arbitrary genus.
Inserting (3.5) into (3.7), using the orthogonality relation (3.6) and performing the integral
over ` explicitly, we can more conveniently rewrite (3.7) as

〈Trβ (χ(x1)χ(x2))〉non-int. =

= 4e−S0

Z(β)

∫ ∞
0

dE1dE2 〈ρ(E1)ρ(E2)〉JT e−E1(x1−x2)−E2(β−x1+x2)M∆(E1, E2) ,

M∆(E1, E2) = |Γ (∆ + i(s1 + s2))|2

22∆+1 × |Γ (∆ + i(s1 − s2))|2

Γ(2∆) , with s1,2 ≡
√

2E1,2 .

(3.9)

where 〈ρ(E1)ρ(E2)〉JT is the spectral two-point function in JT gravity. The leading disk
contribution of (3.9) has been derived using a variety of techniques [28, 32, 36–38], while

10The integral over ω in (3.4) can thus be rewritten by separating the integral over the moduli of
the two closed geodesics separating the trumpets from the bordered Riemann surfaces,

∫
Th,1

Mod(Mh,1)
ω =∫∞

0 db
∫ b

0 dτ
∫

T̃h,1(b)
Mod(M̃h,1(b))

ω

(
and

∫
Tg−1,2

Mod(Mg−1,2)
ω =

∫∞
0 db1

∫ b
0 dτ1

∫∞
0 db2

∫ b
0 dτ2

∫
T̃g−1,2(b1,b2)

Mod(M̃g−1,2(b1,b2))

ω

)
where the ˜ signifies that we are considering the moduli space of surfaces with one (or two) geodesic
boundary of fixed length b (or b1 and b2).

11This is possible since Vol0,1(b) (or its Laplace transform) does not enter the topological recursion used
to determine Volg,n.
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the arbitrary genus generalization found in (3.9) was hinted at by studying two-point
function insertions directly in the matrix integral dual to JT gravity [27, 31]. In these
worksM∆(E1, E2) was identified with the squared matrix element |χ|2E1,E2

= |〈E1|χ|E2〉|2,
evaluated in the energy basis. The formula (3.9) can also be derived using a matrix model
description of JT gravity coupled to a scalar field [39].12

The spectral two-point function has been the subject of intense study in JT gravity
and its matrix integral dual [17, 27, 40] (and in more general matrix integrals: see [41–43]
for useful reviews) and, as we shall review shortly, when E1 → E2, it can be estimated even
at the non-perturbative level.

A small consistency check of this formula is that for ∆ = 0, at leading order in the
genus expansion we should get 〈χ(x1)χ(x2)〉∆→0

non-int. = 1, since for the disk there is a unique
geodesic.13 Indeed,

M0(s1, s2) = |Γ (i(s1 + s2))|2

2 × 2πδ(s1 − s2) = δ(s1 − s2)
4 r
( s1+s2

2
) ,

r(s) ≡ s

2π2 sinh(2πs) ,
(3.10)

where the latter coincides with the leading order density of states in JT gravity, ρ(JT)
0 (s) =

eS0r(s), with ρ(JT)
0 (s)ds = eS0r(s)ds = eS0ρDisk(E)dE.14 Since to leading order in eS0 (LO)

the spectral two-point function factorizes, we get

〈χ(x1)χ(x2)〉∆→0
non-int.|LO

= 4e−S0

Z0(β)

∫ ∞
0

ds1ds2 ρ
(JT)
0 (s1)ρ(JT)

0 (s2)e−
1
2(s21(x1−x2)+s22(β−x1+x2)) δ(s1 − s2)

4 r
( s1+s2

2
)

= 1
Z0(β)

∫ ∞
0

ds1 ρ
(JT)
0 (s1) exp

[
−β s

2
1
2

]
= 1 .

(3.11)

Finally, we should mention that the above analysis can be extended for more general
theories of dilaton gravity, with a dilaton potential V (φ), such as those considered in [25, 26].
As we shall explain shortly, this will be particularly useful in exhibiting the generality of
our results for the time dependence of the ER bridge. For a particular class of dilaton
potentials, these theories were shown to have a matrix integral dual, with a matrix potential
that is modified from the one encountered in JT gravity. This results in a modified spectral
two-point function 〈ρ(E1)ρ(E2)〉V (φ). In appendix B, we show that, by restricting to the
same class of dilaton potentials as those considered in [25, 26], the above result for the
two-point function that only accounts for non-intersecting geodesics (3.9), still holds in
these more general class of dilaton gravity theories, provided we replace 〈ρ(E1)ρ(E2)〉JT

with 〈ρ(E1)ρ(E2)〉V (φ). Since (3.9) is now correct for more generic matrix integrals, we

12We thank Daniel Jafferis for explaining this to us.
13At higher genus in JT gravity there are an infinite number of geodesics and therefore the insertion of

the sum over geodesics is not equivalent to the insertion of the identity operator.
14Even though r(s) happens to be related to the JT density of states, it will turn out to have a more

general role in our story and we will therefore denote it differently.
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will use 〈ρ(E1)ρ(E2)〉 to denote the spectral two-point function in a generic one-cut matrix
integral.15

4 The length of the Einstein-Rosen bridge in dilaton gravity

We are primarily interested in the time dependence of

〈`(t)〉 ≡ 〈Trβ(ˆ̀)〉 ≡ − lim
∆→0

∂
〈

Trβ
(
χ
(
β
2 + it

)
χ (0)

)〉
non-int.

∂∆ (4.1)

Since 〈χ(x1)χ(x2)〉non-int. only depends on ∆ throughM∆, we take the ∆ derivative inside
the integral in (3.9) and evaluate it onM∆:

ω ≡ s1 − s2 , s̄ ≡ s1 + s2
2 ,

− lim
∆→0

∂M∆
∂∆ = #δ(ω)− 1

16π2r(s̄)r
(
ω
2
) . (4.2)

From the exercise in (3.11) we learned that the δ(ω) only gives time independent contribu-
tions, which we do not compute explicitly.16 Finally, we obtain a compact expression for
〈`(t)〉:

〈`(t)〉 = const− e−S0

4π2Z(β)

∫ ∞
0

ds1ds2
〈ρ(s1)ρ(s2)〉
r(s̄)r

(
ω
2
) exp

[
−β

(
s̄2

2 + ω2

8

)
− is̄ ωt

]
. (4.3)

For all one-cut matrix integrals, including those that describe the theories of dilaton
gravity discussed in section 3, the form of 〈ρ(s1)ρ(s2)〉 is universal as s1 → s2 (E1 → E2).
Ref. [17] give the following approximate formula for the spectral correlations:

〈ρ(s1)ρ(s2)〉 = e2S0 ρ̂(s1)ρ̂(s2)︸ ︷︷ ︸
Semi-classical

disconnected piece

+ eS0 ρ̂(s̄)δ(ω)︸ ︷︷ ︸
Contact term

− 1
π2ω2 sin2

(
eS0πρ̂(s̄)ω

)
︸ ︷︷ ︸
Non-perturbative contribution

,
(4.4)

where we made all factors of eS0 manifest by defining ρ0(s) = eS0 ρ̂(s), we used that E = s2/2
and ρ transforms as a density, and in the last term that |s1 − s2| � 1. While there could
be different non-perturbative completions for the matrix model associated to JT or other
models of dilaton gravity, we emphasize that the formula (4.4) is universal and common
among all non-perturbative completions. Furthermore, given that (4.3) only depends on the

15The attentive reader may have noticed that (3.11) does not give 1 for dilaton gravities beyond JT, since
we get 1

Z0(β)

∫∞
0 ds ρ0(s)2

r(s) exp
[
−β s

2

2

]
6= 1. The reason for this is that inserting defects to the disk geometry

leads to multiple geodesics, hence this quantity gives an average of the number of geodesics weighted by the
number of defect insertions. Nevertheless we continue to normalize 〈`(t)〉 with Z(β), since it is the norm of
the Hartle-Hawking state, and not by 〈χ(x1)χ(x2)〉∆→0

non-int..
16This constant piece actually diverges as 1/∆2. In the computation where we take ∆ → 0 first, this

divergence shows up as [δ(ω)]2, where one factor of δ(ω) comes from (4.2), while the other comes from a
contact term in 〈ρ(s1)ρ(s2)〉, see (4.4). A divergence was expected from the start: we had to work with a
regularized sum (2.2) because higher genus surfaces have infinitely many geodesics of increasing length, and
when the regulator ∆ is removed a divergence arises.
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spectral two-point function, one could in principle compute it even beyond random matrix
theory in any quantum mechanical system and we will speculate further about the role that
it has in chaotic systems in the discussion section.

We can now perform the integrals in (4.3). The second term in (4.4) gives a t-
independent contribution, and can be absorbed into the constant term. In fact this constant
is divergent, since it is proportional to

∫
dω δ(ω)/ω2. As previously mentioned, a convenient

renormalization prescription is to consider the quantity `(t)−`(0), which is free of divergences.
While this prescription will play a very important role in the computation of the variance
in section 6, for ease of presentation here we will proceed without keeping track of the
time-independent constant.

The contribution of the first term to the length of the ER bridge was considered in [28],
where it was evaluated using a saddle point approximation and found to grow linearly in
time. We proceed differently. First, we notice that because of the exp [−is̄ ωt] factor for
large t the integral will be dominated by ω ∼ 1/t, and implement this through the rescaling
ω = ω̂/t. Using that r

(
ω
2
)
≈ ω̂2/(4πt2), also defining t = eS0 t̂ and dropping the bar from s,

we arrive at the expression valid at leading order in t for both nontrivial terms in (4.4):

〈`(t)〉 = const− e2S0 t̂

πZ0(β)

∫ ∞
0

ds

∫ ∞
−∞

dω̂
ρ̂2(s)
r(s)ω̂2 e

−βs2/2−is ω̂

×
[

1︸︷︷︸
Semi-classical
disconnected

piece

−
(

t̂

πρ̂(s)ω̂

)2

sin2
(
πρ̂(s) ω̂

t̂

)
︸ ︷︷ ︸

Non-perturbative contribution

]
.

(4.5)
The ω̂ integral can now be evaluated exactly. Remarkably, the semi-classical and non-
perturbative contributions conspire such that the integrand is regular at ω̂ = 0. Because of
this remarkable cancellation, for 2π ρ̂(s)

s < t̂ (i.e. sinh(2πs) < πt̂ in the case of JT gravity)
the integral can be evaluated by closing the contour for the ω̂ integral using the arc at
complex infinity in the lower-half plane. Since the arc does not contribute to the contour
integral and the contour does not enclose any poles, we conclude that for 2π ρ̂(s)

s < t̂ the ω̂
integral vanishes for any density of states ρ̂(s), hence any dilaton gravity model.

For 2π ρ̂(s)
s > t̂ one can start by slightly deforming the contour of ω̂ in the lower

half-plane to avoid the point ω̂ = 0.17 Expanding the sine-kernel into exponentials, one can
now enclose the ω̂ integral in the upper or lower half plane in such a way that the arc at
complex infinity never contributes; i.e. for terms containing ei#ω with # < 0 the contour is
enclosed in the lower-half plane while for # > 0 it is enclosed in the upper-half plane. Each
term can contain a pole at ω̂ = 0 however only the integrals enclosing the upper-half plane
receive contributions from the pole. Adding the contribution of the appropriate residues we
find that

〈`(t)〉 = const− 2πe2S0

3Z0(β)

∫ ∞
s∗(t̂)

ds
ρ̂3(s)
r(s) exp

[
−βs2/2

] (
1−X(t̂, s)

)3
,

X(t̂, s) ≡ st̂

2πρ̂(s) , Z0(β) = eS0

∫ ∞
0

dsρ̂(s)e
−βs2

2

(4.6)

17This does not have any effect on the value of the integral since the integrand is regular at ω̂ = 0.
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where s∗(t̂) is such that 2π ρ̂(s∗(t̂))
s∗(t̂)

= t̂. In the specific case of JT gravity,

X(t̂, s) ≡ πt̂

sinh(2πs) , s∗(t̂) = 1
2πarcsinh(πt̂) . (4.7)

We can easily evaluate this expression for 〈`(t)〉 numerically, see figure 1 for the case of
JT gravity.

We can also compute the asymptotics of 〈`(t)〉 for small and large t̂. To be concrete,
we can consider the particular example of JT gravity even though the asymptotics for small
and large times will qualitatively be the same.18 For large t̂ the integral goes to zero, since
the lower limit of the integral s∗(t̂) → ∞ and the integrand decays as exp

[
−βs2/2

]
for

large s.19 The leading late time asymptotics is obtained by replacing the sinh functions
with exponentials, and evaluating the integral explicitly to obtain:

〈`(t)〉 = const− eS0A
t̂2 exp

[
−β log2(2πt̂)

8π2

]
log2(2πt̂)

+ . . . ,

A = 32
√

2π9/2e−2π2/β

β5/2

(4.8)

At small times, we evaluate the integral by changing variables to ξ = t̂X(s), expanding
the resulting integrand for small t̂ and evaluating the resulting integrals. We get that
〈`(t)〉 = const− C0 + Ĉ1t̂+O(t̂2). We then absorb C0 in const to obtain the final result:

〈`(t)− `(0)〉 ≈


Ĉ1t̂+ . . . t̂� 1 ,

C0 − eS0A
t̂2 exp

[
−β log2(2πt̂)

8π2

]
log2(2πt̂) + . . . t̂� 1 ,

(4.9)

where the explicit formulas for the constants are:

C0 = eS0

12π2

[
e6π2/β

(
1 + 16π2

β

)
− e−2π2/β

]
,

Ĉ1 = eS0

e−2π2/β√
πβ/2

+
erf
(√

2π√
β

)
2π

(
1 + 4π2

β

) .
(4.10)

In particular, the early-time linear growth is controlled by Ĉ1. At temperatures high
compared to the boundary value of the dilaton (which we have set to one), we have
Ĉ1 = 2πeS0/β, and hence 〈`(t)〉 ≈ 2π

β t, which is the expected linear growth of the extremal
volume in the classical regime [44].20 At low temperatures, the Schwarzian theory becomes
strongly coupled, and the early time growth coefficient receives loop corrections. In
particular, at low temperatures, 〈`(t)〉 ≈ 4√

2πβ
t at early times.

18The large asymptotics will be the same if s∗(t̂)→∞ for t̂→∞. This occurs if ρ̂(s) grows faster than
linearly as s→∞.

19Note that 0 ≤ X(s) ≤ 1 and hence 0 ≤ (1−X(s))3 ≤ 1, and ρ̂2(s) ∼ exp(4πs).
20By early-time here we mean t̂ = e−S0 t� 1, but t� 1. Transient effects at t ∼ β have been dropped

in (4.5).
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5 A comparison to the spectral-form factor and the two-point function

It is insightful to compare 〈`(t)〉 to other related quantities, the spectral form factor (SFF)
and the two-point function. The approximation to the two-point function is given in (3.9),
while the spectral form factor (with inverse temperature β/2) is proportional to the same
formula with the replacementM∆(s1, s2)→ 1. Applying the same logic as for 〈`(t)〉, we
can expand the integrand for small ω = ω̂/t, and obtain the formula as in (4.5)

F (t) ∝ const +
∫ ∞

0
ds

∫ ∞
−∞

dω̂ ρ̂2(s)

1−
(

t̂

πρ̂(s)ω̂

)2

sin2
(
πρ̂(s) ω̂

t̂

) e−βs2/2−is ω̂ ×

×


1

r(s)ω̂2 for 〈`(t)〉,
1 for SFFβ/2(t),
|Γ(∆+2is)|2

22∆+1 × Γ(∆)2

Γ(2∆) for 〈χL(t)χR(0)〉.

(5.1)

While these formulas are very similar, the presence of the 1/ω̂2 singularity in the integrand
of 〈`(t)〉 leads to dramatic differences from the case of the SFF and the two-point function.
For these latter two, the disconnected contribution represented by the 1 in the brackets
vanishes after performing the ω̂ integral.21 Famously, it is the sine kernel that gives rise to
both the ramp and plateau in the SFF and the two-point function. In contrast, for 〈`(t)〉,
the initial linear growth was given by the disconnected contribution, and the role of the
sine kernel was to cancel this contribution at very late times, giving rise to the plateau.22

Curiously, after adding the disconnected and sine kernel contributions for all our
quantities, we again get very similar s integrals. Compare

F (t) ∝ const−
∫ ∞
s∗(t̂)

ds ρ̂2(s) exp
[
−βs2/2

] (
1−X(t̂, s)

)

×

1 for SFFβ/2(t),
|Γ(∆+2is)|2

22∆+1 × Γ(∆)2

Γ(2∆) for 〈χL(t)χR(0)〉,

(5.2)

to (4.6). The close connection between the behavior of the SFF and the two point function
was emphasized in [31, 45].

We also note that we were surprised to find how slowly the integrals (4.6) and (5.2)
reach their asymptotic values for small β. It is easy to repeat the analysis leading to (4.8),
and we find exp

[
−β log2(2πt̂)

8π2

]
asymptotics for all three quantities, as has been found before

for the spectral form factor in the SYK model in [46].
Finally, we analyze the microcanonical versions of these quantities. These are obtained

by replacing the canonical density matrix e−βH with averaging over a microcanonical
21The ω̂ integral gives a δ(s), which gets multiplied by an s dependent function that vanishes at s = 0.
22One may wonder whether our approximation scheme can capture the slope of the SFF through

the disconnected contribution to the spectral correlator. While, as explained above, at leading order
in the ω̂/t expansion we got zero, at fourth-order in this expansion we encounter the Fourier integral∫
dω̂ ω̂4 exp [−is ω̂] = 2πδ(4)(s), which integrated against ρ̂2(s) = s4/π + . . . gives the first nonzero

contribution. This is indeed the 1/t3 asymptotics of the slope of the SFF and higher orders of the 1/t
expansion can be similarly recovered.
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window (E − δ, E + δ) with δ � E. Exploiting the identity

1
2π

∫
c+iR

dβ eβE+β2δ2
e−βE = 2π e

−(E−E)2/(4δ2)
√

4πδ2
≈ δ(E − E) , (5.3)

we can convert each of our answers obtained in the canonical ensemble (or thermofield
double state) by the integral transformation

Fmicro
(E,δ) (t) =

∫
c+iR

dβ eβE+β2δ2
Fβ(t) . (5.4)

Then for all three quantities considered so far we get rid of the remaining s integral:

〈`(t)〉(E,δ) ∝ const−Θ(s− s∗(t̂))
ρ̂3(s)
s r(s)

(
1−X(t̂, s)

)3
,

SFF(E,δ)(t) ∝ const−Θ(s− s∗(t̂))
ρ̂2(s)
s

(
1−X(t̂, s)

)
,

〈OL(t)OR(0)〉(E,δ) ∝ const−Θ(s− s∗(t̂))
ρ̂2(s)
s

(
1−X(t̂, s)

) |Γ (∆ + 2is)|2

22∆+1 × Γ (∆)2

Γ(2∆) ,

(5.5)

where E = s2/2 and the extra s in the denominator comes from the Jacobian when changing
variables from s to E in the integral.23 Both the ER bridge length and the two-sided
correlator are best thought of as being calculated in a microcanonical thermofield double
state (considered also in [48])

∣∣∣TFD(E,δ)
〉

=
∫
c+iR

dβ eβE+β2δ2 |TFDβ〉 . (5.6)

Recall that X(t̂, s) (defined in (4.6)) is linear in time, hence before saturation 〈`(t)〉(E,δ)
is a cubic and the other two quantities are linear functions of time. Up to unimportant E
(or s) dependent factors, the microcanonical versions the SFF and the two point function are
the same functions of time, while the SFF is the second time derivative of 〈`(t)〉(E,δ) up to
the addition of a constant setting the size of the plateau.24 To emphasize this relationship,
we plot these functions in figure 3. Nevertheless, this relationship does not imply that
〈`(t)〉(E,δ) exhibits a plateau — instead, the special cancellation discussed above is necessary
for that to occur.

23We note that SFF(E,δ)(t) is sometimes denoted by Y (E, δ, t) in the literature [31, 47].
24This can already be anticipated from (5.1), where in the ω̂ integral the only difference between the ER

bridge length and the SFF is the 1/ω2 factor in the former, roughly corresponds to double integration in
time. The integral over s however is nontrivial, so in the canonical ensemble ER bridge length and the SFF
are not related in any simple way.
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Figure 3. We show 〈`(t)〉micro (blue) and SFFmicro(t) (orange) for JT gravity with s = 1 (or
E = 1/2). We are plotting the expressions in (5.5), so we have dropped inessential prefactors. 〈`(t)〉
is a cubic polynomial in time, while the SFF is its second time derivative (up to the addition of a
constant). We have normalized 〈`(t)〉micro and SFFmicro(t) in such a way that their plateau values
are the same.

6 Variance in the length of Einstein-Rosen bridge

Having computed the time dependence in the length of the ER bridge, we can use similar
techniques to compute its variance. As usual, to compute the variance, we consider
geometries with two asymptotic boundaries, with the geodesics ending on the two pairs
of points located on the two boundaries. However, the definition of the variance suffers
from several ambiguities: (i) in the connected geometries, it is unclear whether to sum
over geodesics which connect the different asymptotic boundaries, and (ii) since we have
restricted ourselves to geodesics that do not self-intersect, should we also only be considering
geodesics that do not intersect with each other. While we believe that the qualitative
time-dependence of the variance is not heavily affected by these choices, we will only
consider geodesics that go between the same asymptotic boundaries, and we will restrict to
non-intersecting geodesics.

6.1 Geometric computation

To probe the variance for the length of the ER bridge we again use a modified boundary-
to-boundary two-point function inserted on each asymptotic boundary, one for an op-
erator χ, with scaling dimension ∆, and another for an operator χ′, with scaling di-
mension ∆′. We will denote the pair of boundary-to-boundary two-point functions
(with the assumptions about which geodesics contribute to the correlator as above) by
〈Trβ(χ(x1)χ(x2)) Trβ(χ(x′1)χ(x′2))〉non-int.. To compute the variance of the length, we
will use

σ2
〈`(t)〉 = lim

∆→0,∆′→0
∂∆∂∆′

[
〈Trβ (χ(x1)χ(x2)) Trβ

(
χ′(x1)χ′(x2)

)
〉non-int.

− 〈Trβ(χ(x1)χ(x2))〉non-int.〈Trβ(χ′(x1)χ′(x2))〉non-int.

]
.

(6.1)
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Figure 4. An example (with genus 3) of the type of hyperbolic surfaces which the path integral (6.2)
sums over. The figures represent the cutsMg,2 →Mh1,1 ⊕Mh2,1 ⊕Mg−h1−h2,2 with h1,2 ≥ 0 and
h1 + h2 ≤ g (top left),Mg,2 →Mh,1 ⊕Mg−h−1,3 (top right),Mg,2 →Mh,2 ⊕Mg−h−1,2 (bottom
left), andMg,2 →Mg−2, 4 (bottom right).

The contribution coming from connected geometries is given by

〈Trβ (χ(x1)χ(x2)) Trβ
(
χ′(x′1)χ′(x′2)

)
〉 connected

non-int.

=
∑
g

eS0(1−2g)
∫

Tg,2
Mod(Mg,2)

ω

∫
D(W)D(W ′)e−IJT, bdy(W)e−IJT, bdy(W ′) ∑

γ∈Gx1,x2,
γ′∈Gx1′,x2′ ,

γ∩γ′=∅

e−∆`γ−∆′`γ′

(6.2)

where the integral over W and W ′ are the integrals over wiggles on the two asymptotic
boundaries and the integral over ω is over the moduli space of hyperbolic manifolds with
two asymptotic boundaries. Just like we discuss in section 3 for the disconnected case or
as we illustrate through an example in figure 4, cutting along the pair of geodesics γ and
γ′ in the sum above, we can either obtain three or two disconnected manifolds or a single
connected component. In the first case, after cutting,Mg,2 →Mh1,1⊕Mh2,1⊕Mg−h1−h2,2
with h1,2 ≥ 0 and h1 + h2 ≤ g, in the second case, we can either obtain Mg,2 →Mh,1 ⊕
Mg−h−1,3 or Mg,2 → Mh,2 ⊕Mg−h−1,2, and finally when obtaining a single connected
componentMg,2 →Mg−2, 4.25 Once again, the mapping class group acts by relating all
pairs of boundary-to-boundary geodesics within a given cutting class as well as all closed
geodesics (which do not intersect the boundary-to-boundary geodesics) on the surfaces,
Mh1,1 ⊕Mh2,1 ⊕Mg−h1−h2,2 in the first case, Mh,1 ⊕Mg−h−1,3 in the second case, or
Mg−2, 4 in the third case. Therefore, as shown in appendix C, we present a generalization
of (3.4) for pairs of boundary-to-boundary geodesics. Putting together the results from

25g = 1 requires special consideration, since in the third case we obtain two disconnected manifolds, thus
reducing to the second case.
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that appendix, we find that

〈Trβ (χ(x1)χ(x2)) Trβ
(
χ′(x′1)χ′(x′2)

)
〉 non-int.

= 4e−S0

〈Z(β)Z(β)〉

∫ ∞
0

dE1 . . . dE4 〈ρ(E1)ρ(E2)ρ(E3)ρ(E4)〉 e−E1x12−E2(β−x12)−E3x′12−E4(β−x′12)

×M∆(E1, E2)M∆′(E3, E4) , (6.3)

where 〈ρ(E1)ρ(E2)ρ(E3)ρ(E4)〉 is the spectral four-point function in JT or dilaton gravity
and xij ≡ xi − xj . By subtracting the product of two-point functions from (6.3) we obtain
the variance. Of course, in the matrix integral interpretation of the theories of dilaton
gravity, (6.3) is the natural candidate for computing the square of (3.9) in an ensemble
average. More generally, as discussed in appendix C, using the same geometric techniques
we can compute any higher moments for 〈Trβ (χ(x1)χ(x2))〉non-int..

6.2 Evaluating the variance of the ER bridge length

Given that the dual of JT gravity is an ensemble, we want to quantify the size of the
fluctuations in the volume. We therefore wish to evaluate 〈`(t)2〉 using (6.3). We take
∆ 6= ∆′ in the regularization and therefore geodesics connecting distinct boundaries do not
contribute. We take a ∆ and a ∆′ derivative of (6.3) and set ∆ = ∆′ = 0. This results in
the average of the square of complexity 〈`(t)2〉. To simplify the formulas and to incorporate
the renormalization, we define the renormalized volume “operator”

Trβ(ˆ̀(t)− ˆ̀(0)) =
∫
dE1dE1ρ(E1)ρ(E2)G(E1, E2) (6.4)

where the time dependence is in the function G(E,E′) and it reads as

G(E1, E2) = e−S0

4π2Z(β)
1

r(s̄)r
(
ω
2
) exp

[
−β

(
s̄2

2 + ω2

8

)]
[1− cos(s̄ ωt)] . (6.5)

This kernel is obtained from formula (4.3), after we have symmetrized the integrand in
ω = s1 − s2 (the antisymmetric part does not contribute). Finally, we made a time
independent subtraction so that the operator is 0 at t = 0. This takes care of all the
divergences, which we have seen to be time independent. Physically, it means that we set
the volume of the ER bridge to be zero at zero time in all members of the matrix ensemble.

Now we want to evaluate 〈[Trβ(ˆ̀(t)− ˆ̀(0))]2〉. We need the four point density correlation
in order to do this. In general, for a one matrix model, the n eigenvalue marginals are given
in terms of the Christoffel-Darboux kernel K(E1, E2) (see [43] for a concise pedagogical
review):

Rk(E1, . . . , Ek) ≡
N !

(N − k)!

∫
dEk+1 . . . dENP (E1, . . . , EN ) = detK(Ei, Ej)|i,j=1,...,k,

(6.6)
for instance 〈ρ(E)〉 = R1(E) = K(E,E) and

〈ρ(E1)ρ(E2)〉 = R2(E1, E2) + δ(E1 − E2)R1(E1)
= 〈ρ(E1)〉〈ρ(E2)〉+ 〈ρ(E1)〉δ(E1 − E2)−K(E1, E2)2.

(6.7)
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From this and (4.4), we read the kernel in the scaling regime E1 → E2, relevant for the sine
kernel:

K(s1, s2) ≈ 1
πω

sin
(
eS0πρ̂(s̄)ω

)
, ω = s1 − s2. (6.8)

The easiest way to deal with contact terms in density correlators is to write (6.4) as a
sum over the discrete spectrum in a single member of the matrix ensemble

Trβ(ˆ̀(t)− ˆ̀(0)) =
∑

i,j|Ei 6=Ej

G(Ei, Ej) (6.9)

and directly integrate this expression against the joint distribution P (E1, . . . , EN ). Then
we can use that the function G is symmetric for exchange of its variables, and the P and
the Rk are also totally symmetric. This way, we get that

σ2
` =

∫
dE1 . . . dE4[R4(E1, . . . , E4)−R2(E1, E2)R2(E3, E4)]G(E1, E2)G(E3, E4)

+ 4
∫
dE1dE2dE3R3(E1, E2, E3)G(E1, E2)G(E2, E3)

+ 2
∫
dE1dE2R2(E1, E2)G(E1, E2)2.

(6.10)

where the second and third lines yield the contribution of contact terms in 〈ρ(s1)ρ(s2)
ρ(s3)ρ(s4)〉, and we have already subtracted the disconnected contribution 〈Trβ(ˆ̀(t)− ˆ̀(0))〉2.
The dominant contribution to all these integrals come from the region where all energies
are nearby. Therefore, we can use (6.8) along with (6.6). Evaluating the integrals at large
times results in26

σ2
` = e3S0

π2Z(β)2

[∫ ∞
s∗(2t̂)

ds
e−βs

2

r(s)2
s5t̂5

60π +
∫ s∗(2t̂)

s∗(t̂)
ds
e−βs

2

r(s)2
(2πρ̂− t̂s)3(7s2t̂2+2πst̂ρ̂+8π2ρ̂2)

60π

+
∫ s∗(2t̂)

0
ds
e−βs

2

r(s)2
2
15π

3ρ̂4(5st̂−7πρ̂)
]
, (6.11)

with s∗(t̂) as in (4.6). The most important property of this expression is that for t̂ =
e−S0t = O(1), it is O(eS0). Since this is the square of the noise, we find that the signal to
noise ratio is

σ`
`
∝ e−

S0
2 . (6.12)

This is to be contrasted with the spectral form factor, for which this ratio is order one. At
early times t = O(1), the first integral dominates and the expression starts as ∝ eS0 t̂5 =
e−4S0t5, so at early times, the volume is reliably calculated by semi-classical gravity, as
expected.27 At late times, the last integral dominates, and we get a linear growth ∝ eS0 t̂.
Somewhat surprisingly, this growth never stops, and the signal to noise ratio becomes O(1)
at t̂ ∝ eS0 , or t ∝ e2S0 . We show this growing noise on the late parts of the plateau for

26The limit of the last integral is not a misprint, we changed it from s∗(t) to s∗(2t) so that the integrand
of the middle term simplifies.

27This is a non-trivial check of our prescription to calculate a non-perturbative volume by summing over
all non-intersecting geodesics.
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Figure 5. We show 〈`〉 and the band 〈`〉 ± σ`, which at long times goes as eS0 ±
√
t giving the

graph above on a log-log plot. We put β = 15 and S0 = 10 on this plot. The opening time of the
band in t̂ = e−S0t can be made arbitrarily late by increasing S0.

JT gravity in figure 5.28 This might be because of the ambiguity in the definition of the
variance since in our calculation we have not included the contribution of intersecting (but
not self-intersecting) geodesics. Such intersecting configurations start existing for the genus
one two-boundary geometry so we might expect them to affect the very late-time value of
the variance.

The findings above present some tension with the interpretation of the volume as
complexity. First, we expect complexity to have time independent fluctuations until the
Poincaré recurrence time, which is ∝ exp(exp(S0)). Second, for times t ∝ eS0 , we expect
complexity to have O(1) fluctuations, instead of eS0/2 that we have found here.29 However,
we should emphasize that the distribution of `(t) seems to be highly non-Gaussian, since it is
dominated by the region where all energies are nearby. This is opposed to the spectral form
factor, where the four boundary correlator 〈ρρρρ〉 is well approximated by Wick contractions
(two boundary wormhole contributions), indicating Gaussian noise. Because the noise is
highly non-Gaussian, one should be careful in interpreting σ`. For example it could come
from a distribution which has fixed noise near the origin, but has a growing bump for
certain very large fluctuations. Resolving this requires one to study higher moments of `.
This is in principle possible, but we leave it to future work. In any case, to resolve this
tension between the variance of the ER length and the expected variance of complexity,
it would be interesting to explore all alternate definitions of the variance which we have
described above.

28Note that we can understand the source of this linear growth quite explicitly. Is is coming from the last
term in (6.10) involving R2. At small ω relevant for late time, R2, and its contribution to σ2

` , read as

1
ω4

(
ρ2 − sin2 πρω

π2ω2

)
≈ π2ρ4

3ω2 ,

∫
dω

π2ρ4

3ω2 [cos(sωt)− 1]2 = π3ρ4

3 |st| ,

respectively.
29We thank Adam Brown and Leonard Susskind for explaining this to us.

– 20 –



J
H
E
P
0
7
(
2
0
2
2
)
0
7
3

7 Discussion

7.1 Summary

To recapitulate, we have proposed a definition of the length of the ER bridge at all times. At
early times, this length grows linearly with time, as expected from a semi-classical analysis.30

At late times, it saturates at a time and value both proportional to eS0 . This saturation is
due to a universal cancellation between the classical contribution and the non-perturbative
corrections to the spectral two-point function. This type of saturation is distinct from the
cancellation between the leading wormhole geometry and the non-perturbative corrections
that is responsible for the plateau in the spectral form factor and in the probe matter
two-point function. Also, as opposed to these latter quantities, we have found that for
the length of the ER bridge, the “noise” on the plateau is much smaller than the signal,
i.e. σ` � ` for t ∝ eS0 . However, we have also found that σ` grows forever and that
it becomes the same size as the signal at t ∝ e2S0 . This raises some challenges in the
interpretation of the volume as complexity. A possible resolution is that our geometric
prescription to compute the variance breaks down at very late times. Indeed, in summing
over pairs geodesics in two boundary geometries, we made a choice to only include geodesic
pairs that do not intersect. It is possible (but somewhat unlikely, due to a similar argument
to the one discussed appendix A) that the contribution of these intersecting geodesics would
change the picture at very late times and it would be interesting to investigate this in the
future. We have defined the non-perturbative length of the ER bridge by summing over all
non self-intersecting geodesics connecting the two sides. We have discussed the pitfalls of
some other potential definitions. However, there may be other non-perturbative ambiguities
to the definition, which would be interesting to explore in the future.

7.2 A new spectral quantity

Regarding the relation between the length of the ER bridge and complexity, one can take
several different perspectives. The first perspective, which we present in this subsection,
is that we can use the results in this paper to define the dual for the volume of the ER
bridge in the boundary theory. Since our final formula solely depends on the spectral data
in the matrix ensemble dual to dilaton gravity, one can imagine defining a similar quantity
to (4.3) for any quantum system. Explicitly, for systems with discrete energy levels, one
can define31

C(t) ∼
∑

E1 6=E2

1
(E1 − E2)2 exp

[
−β2 (E1 + E2)

]
(1− cos [(E1 − E2)t]) , (7.1)

where we changed from the s parametrization of energy to energy itself, which also changes
the argument of the cosine compared to previous formulas (e.g. (6.5)). We shall call this
quantity the spectral complexity of the thermofield double state. We believe that most

30Even when accounting for the backreaction of the operator insertion on the metric [28].
31Note that we replaced the function r(s1 − s2) in the denominator of (4.3) simply by (E1 − E2)2 since,

at sufficiently late times both (4.3) and (7.1) are dominated by closely spaced energy pairs. Clearly, the
spectral complexity can be defined for any ensemble of theories by averaging (7.1).
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chaotic systems have spectral statistics which closely follow that of random matrices, and
hence, we expect C(t) to have a similar behavior to the ER length computed in this paper.
Once again, we expect it to start with a linear growth and, at a late time (order eS), way
past the thermalization time, asymptotes to a constant. Thus, just like the complexity
defined in [4, 5], C(t) grows past when conventional probes reach their thermal equilibrium.

While C(t) is defined when preparing the t = 0 state by the Hartle-Hawking prescription
and is given by the thermofield double state in the boundary theory, one can also consider
generalizing the formula for the length of the ER bridge for different states that are prepared
by the Euclidean path integral with different boundary conditions. In turn, this would lead
to a generalization of (7.1) for the spectral complexity of various states in the boundary
theory. For instance, one generalization already discussed in this paper is described in
section 5 where we have defined the length of the ER bridge in the microcanonical ensemble,
i.e., when in gravity one fixes ∂nφ, instead of its canonical conjugate √guu on the boundary
of the dilaton gravity theory [49].

7.3 Other Dyson ensembles

We can generalize the results in this paper to compute the spectral complexity in any
random matrix ensemble. The spectral correlators of dilaton gravity theories investigated
above are universally governed by the Gaussian unitary ensemble (GUE) for small energy
separations (or late times). It is an interesting question to ask, what is the behavior of C(t)
in the other orthogonal (GOE) and symplectic (GSE) ensembles. While these ensembles
are related to versions of JT gravity that includes a sum over unoriented surfaces, one
encounters divergences for higher genus surfaces [35]. At the level of the matrix integral
this appears due to the double-scaling limit necessary in order to compute observables in
two-dimensional gravity. Unless this divergence can somehow be resolved, this means that
the computation below will not have the obvious interpretation of an ER bridge length in a
theory of gravity. Nevertheless, it is interesting to understand the behavior of this quantity
in matrix models.

Towards that end, it is sufficient to work with the microcanonical version of the spectral
complexity or ER bridge length discussed around (5.5). Up to inessential overall factors
this is given by

Cmicro(t) =
∫ ∞
−∞

dω
〈ρ(E + ω/2)ρ(E − ω/2)〉

ω2 〈ρ(E)〉2
[1− cos(ωt)] . (7.2)

Comparing with the microcanonical SFF

SFFmicro(t) =
∫ ∞
−∞

dω 〈ρ(E + ω/2)ρ(E − ω/2)〉 [cos(ωt)− 1] , (7.3)

it is clear that
SFFmicro(t) = const + 〈ρ(E)〉2 d2

dt2
Cmicro(t) , (7.4)

as was already discussed in section 5. We give the density two point functions and the
explicit formulas for both of these quantities in appendix D, and plot them on figure 6. At
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Figure 6. We show Cmicro(t) and SFFmicro(t) for GOE (blue), GUE (orange) and GSE (green).

early times, Cmicro is dominated by the disconnected part of the spectral density two point
function, and therefore all ensembles display the same linear growth. At late times, the
behaviour depends on the symmetry class. Curiously, Cmicro does not exhibit a plateau
in GOE, but grows logarithmically forever as 〈ρ(E)〉π2 log(t)/3. This can be anticipated
from the fact that, while the SFF in GUE and GSE reaches a constant at finite t, in
GOE its asymptotics is given by SFFmicro(t) = 〈ρ(E)〉

[
1− π2 〈ρ(E)〉2 /(3t2) + . . .

]
and

combining this fact with the relation (7.4). Note however, that for all ensembles there
is still a significant cancellation between the disconnected piece of the density two point
function giving linear growth and the connected piece cancelling this at late times with
the very slow asymptotic logarithmic growth remaining. Nevertheless, it is important to
better understand the significance of this logarithmic growth in UV complete gravitational
theories that can be related to individual members in the GOE ensemble.32

7.4 The quantity in SYK

Yet another concrete example in which we can compute the spectral complexity (this time
numerically) that is different from the random matrix examples discussed throughout this
paper, is the SYK model, a chaotic system with q-local interacting fermions [46, 53–55]. In
figure 7 we show the spectral complexity for the N = 18 and q = 4 SYK model at inverse
temperature βJ = 23. For this value of N the corresponding ensemble is GUE [46]. Before
thermalization time ∼ β the gravitational results suggest that the spectral complexity grows
quadratically with time, after which it has a linear period of growth, followed by the plateau
at later times.

In accordance with expectations, our results for C(t) in SYK show an early time growth
period followed by a plateau period. Due to the lower value of N (due to computational
constraints) as well as the higher value of β (because we wish to see the plateau appear
at a time which is computationally reachable) that we have simulated, the time difference
between the thermalization time and plateau time is not parametrically large. Inspired by

32It would also be interesting to study the behavior of the spectral complexity in supersymmetric
ensembles [50], which should capture the behavior of the ER birdge in theories of supergravity [35, 51, 52].
A first step in that direction was taken in [52] who showed that the length of the ER birdge also grows
linearly with time in N = 1 JT super-gravity.
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Figure 7. The spectral complexity in the SYK model with N = 18, q = 4 and βJ = 23, averaged
over 90 members of the ensemble. Like in the random matrix theory example, the spectral complexity
grows at early times as # log cosh(#t/β) and plateaus at late times. The inset shows the linear
scaled plot around t = 0 to better emphasize the validity of the logarithmic fit.

the semi-classical result for the ER bridge length we therefore fit the simulated values of
C(t) at early times to `(t) ∝ log cosh(#t/β).

7.5 Relation to circuit complexity

The second perspective on the relation between the ER bridge length and the complexity of
the state is that C(t) could be a good proxy for the circuit complexity of the thermofield
double state in a variety of quantum systems.33 If this is indeed the case, C(t) would be
a much easier quantity to compute since it only depends on the spectral statistics of the
system. This brings up two challenges. The first is to check, at least in some systems where
complexity is computable, whether the temperature dependence of C(t) matches that of
complexity. The second challenge is that in the models of dilaton gravity discussed in this
paper, there is no obvious notion of k-locality in the matrix integral duals. In the context of
complexity, k-locality means that the Hamiltonian is a sum of terms that are products of at
most k operators that are considered to be simple (or local). In a theory without k-locality,
one expects complexity to grow much faster than in k-local systems and saturate at its
maximal value at much earlier times (perhaps not exponential in the entropy). Since C(t)
does not have such a behavior, it is difficult to see how it would be a proxy for complexity
in such systems.34 Nevertheless, it would be interesting to understand if in k-local chaotic
systems the spectral complexity indeed approximates the circuit complexity of the state.

33Some previous efforts for defining complexity or a proxy for it in field theory with an eye towards
holography include [56–63].

34The definition of complexity in such matrix models is unclear. To define complexity, one needs to define
a set of simple gates that can be used to produce the time-evolved state. In the ensemble average over
random matrices, it is unclear whether to start with a unique set of gates for all members of the ensemble or
whether to use a different set of gates for each member.
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7.6 Back to gravity

Finally, it would be interesting to understand the geometric origin of the plateau. In the
case of the SFF [17] and the two-point function [31], a possible understanding of the plateau
came from studying the effects of spacetime D-branes on the non-perturbative corrections
to these observables in the matrix integral. In the case of the volume of the interior, we
would need to understand the origin of the cancellation between the classical contribution
and the non-perturbative contributions that come from D-branes.

It would also be important to understand if 〈`(t)〉 can be understood as the expectation
value of a linear operator acting on some gravitational Hilbert space. This is a subtle
question in gravity [64, 65], and the circuit complexity in the dual boundary theory is
certainly not a linear operator.

An interesting extension of our work would be to consider single sided black holes that
could be modeled by considering JT gravity with end of the world branes [21, 66, 67]. Finally,
given that the models of two-dimensional gravity that we have studied are closely related
to higher dimensional near-extremal black holes [68–75], we expect that our conclusions
extend to the volume of such bridges for these more realistic black holes. However, it
would be important to make this precise, since there are a plethora of geometries that the
dimensionally reduced two-dimensional gravity theory does not take into account. Since
black holes are chaotic systems, we believe that their spectral complexity defined in (7.1)
will behave in the same way as analyzed in this paper.
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A Contribution of self-intersecting geodesics

Here we present an argument that adding geodesics that do self-intersect to (2.2) does not
affect the late time behaviour. This argument has been made in [27] in the context of
correlation functions in JT gravity, here we review the argument and point out that it also
applies to our definition of non-perturbative length.

Our discussion in section 3 involves cutting the single boundary geometries along
the geodesics that do not self-intersect, which results in geometries with two boundaries.
Summing over these geometries then contributes a spectral two point function 〈ρ(E1)ρ(E2)〉,
with a spectral density insertion corresponding to each of the boundaries. Now consider a
geodesic with k self-intersections. Cutting a surface with one boundary along such a geodesic
will introduce k+2 boundaries, see figure 8. So the picture is that we have to count bordered
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Figure 8. An example of a genus 4 geometry with a self-intersecting geodesic. Cutting along the
geodesic results in a geometry with three boundaries and genus 2.

Riemann surfaces glued to k + 2 modified trumpet wave functions. Besides knowing these
wave functions, the main issue in precisely describing these contribution is that we do not
know how formula (3.4) would generalize in this case, that is, how the sum over geodesics
in a given intersection class turns the one boundary moduli space into the k + 2 boundary
moduli spaces. Assuming, however, that there exists an appropriate generalization of the
formula (3.4), we find that the contribution of geodesics with k intersections is controlled
by the k + 2 spectral density correlator in RMT.

However, only 2 of the k + 2 boundaries will contain a part of the original asymptotic
boundary. This means that in the spectral correlator 〈ρ(E1)ρ(E2)ρ(M1) . . . ρ(Mk)〉, the
“internal” energies M1, . . . ,Mk, while integrated over, do not couple to the Boltzmann
factors exp[−E1(x1 − x2)− E2(β − x1 + x2)] that contain the temperature and the position
of the boundary anchoring points x1 and x2 of the geodesics. As was key in the analysis in
section 4, at late Lorentzian times, these Boltzmann factors force E1 → E2 and the late
time behaviour is controlled by the singularities of the integrand in this limit. On the other
hand, nothing forces the internal Mi energies to be close to each other, or the energies
E1,2 in the late time limit. This suggests that their contribution is either relevant at all
times (introducing unwanted change in the classically known behaviour at early times),
or can be neglected at all times. We have the latter case if the internal energies Mi are
not forced to be close to each other at any time, since the k + 2 density can be factorized
as 〈ρ(E1)ρ(E2)〉〈ρ(M1)〉 . . . 〈ρ(Mk)〉, up to corrections that are O(e−S0). The former case
could be realized if the ∆→ 0 limit would introduce additional singularities when different
Mis meet, in a fashion similar to how the double pole arose in (4.2).

In conclusion, we expect that adding self-intersecting geodesics to (2.2), either has
exponentially small effect in S0 at all times, or already spoils the early time behavior of the
volume. Since we do not want to spoil the behavior of the volume at early times, i.e. we
want the classical result to dominate, this suggests that even including the self-intersecting
geodesics in the definition of the length should not change of the conclusions of this paper.
It would be interesting to confirm this in future work.
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B The modified two-point function for dilaton potential V (φ)

To emphasize the universality of our JT gravity results, we can consider the two-point
function as probe for the length of the ER bridge in more general models of dilaton gravity.35

Our analysis will follow closely that of [25, 77], combined with some of the basic building
blocks discussed in section 3. We will start with models of dilaton gravity where the JT
action is modified,36

Idilaton = IJT − λ
∫
d2x
√
ge−2π(1−α)φ , (B.1)

and as in [25, 77], for reasons that we shall review shortly, our techniques will solely apply
when 0 < α ≤ 1/2.37

Expanding the exponential, exp(−Idilaton), that appears in the path integral for the
theory (B.1) in powers of λ, we have that

e−Idilaton ⊃ e−IJT
λk

k!

∫
d2x1
√
g· · ·

∫
d2xk
√
g
(
e−2π(1−α)[φ(x1)+...φ(xk)]

)
. (B.2)

Integrating out φ(x) in the path integral of this dilaton gravity theory and pulling the
integrals over coordinates out of the path integral, we find that

R(x) + 2 = 2π(1− α)
k∑
i=1

δ2(x− xi) . (B.3)

Thus, the term in (B.2) can be understood as the insertion of k conical-defects in a theory
of JT gravity, where we then integrate the defects over the entire manifold [78].

More generally, we can deform JT gravity by adding the potential

U(φ) =
r∑
i=1

λie
−2π(1−αi)φ . (B.4)

By expanding e−Idilaton in powers of λi and once again integrating-out the dilaton φ, the
term of order k are equivalent to inserting k defects in JT gravity whose deficit angles are
among {α1, . . . , αr}. To simplify some of the formulas in this appendix, we will however
focus on the theory (B.1) from which the generalization to any U(φ) in (B.4) (once again,
with 0 < αi < 1/2) will immediately follow.

We can now study the insertion of the two-point function in the path integral of (B.1).
Once again expanding in powers of λ we find that to evaluate the term ∼ λk we have to
compute the two-point function in JT gravity in the presence of k defects. This term is
schematically given by

〈Trβ (χ(x1)χ(x2))〉k = λk

k!
∑
g

eS0(1−2g)
∫

Tg,1,k
Mod(Mg,1,k)

ω

∫
D(W)e−IJT, bdy(W) ∑

γ∈Gkx1,x2

e−∆`γ ,

(B.5)
35Such toy models of gravity also have two-sided black hole solutions with an ER bridge [76].
36We follow the convention for α in [77], which is related to the convention for α in [25] by 2π(1−α)→ α.
37However, some of the results of [25, 77] were extended to 0 < α < 1 by using the equivalence between

the theory of dilaton gravity and deformation of the (2, p) minimal string theory [77]. It would be interesting
to see if the two-point function which we shall discuss below could also be understood as an observable in
the deformed (2, p) minimal string theory. For the disk with a defect, this point was addressed in [78].
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Figure 9. An example (with genus 1 and 1 defect) of the type of hyperbolic surfaces which the
path integral with defect insertions sums over. Once again, while there are an infinite number of
non-self-intersecting boundary-to-boundary geodesics on such surfaces, above we have drawn an
example of all possible surface topology that can result by cutting a genus 1 and 1 defect surface
along the geodesics. Once again, the purple curves represent the closed geodesics which we use to
glue the trumpet wavefunctions in (3.7) to different bordered Riemann surfaces. Compared to our
computation in section 3, in the center figure we encounter a new ingredient as the decomposition of
the manifold includes a “defect wavefunction”.

where the first sum is over surfaces of genus g, with k defects, the first integral is over
the moduli space of such surfaces

∫
Tg,n,k ω =

∫
Tg,n,k

∑3g−3+n+k
j=1 dbj ∧ dτj . We once again

have to quotient this space by the mapping class group of each manifold, and, as before,
the integral over D(W) gives the integral over the boundary wiggles in the presence of
these defects. Finally, since we are interested in probing the volume of the ER bridge, we
will only sum over geodesics that do not self-intersect, whose set we denote by Gkx1,x2. As
in section 3, cutting along the boundary-to-boundary geodesic separates the surface into
two disconnected components or yields a single connected component. In the former case,
Mg,1,k →Mh,1,p ⊕Mg−h,1,k−p where the geodesic can separate the set of defects to p on
one side (with 0 ≤ p ≤ k), and k−p on the other side. In the latter case,Mg,1,k →Mg−1,2,k
(see figure 9 for an example of both cases).38 Once again, we have a trade-off between the
integral over the moduli space and the sum over geodesics and can rewrite∫

Tg,1,k
Mod(Mg,1,k)

ω
∑

γ∈Gx1,x2

e−∆`γ = e−∆`
∫

Tg−1,2,k
Mod(Mg−1,2,k)

ω

+
∑
p≤k

∑
h≥0

e−∆`
∫

Th,1,p
Mod(Mh,1,p)

ω

∫
Tg−h,1,k−p

Mod(Mg−h,1,k−p)

ω ,
(B.6)

where the geodesic of length ` is now on all the boundaries appearing for surfaces in (B.6).
Having performed (B.6) we now want to break down all surfaces into further building
blocks. For 0 < α < 1/2, surfaces of the type Mh,1,p (with h 6= 0 or p > 1) or Mg−1,2,k
appearing in (B.6) always have a closed geodesic (or two closed geodesics in the latter
case) which separates all the defects and holes from the asymptotic boundary and the

38We do not expect the case, when the geodesic passes through a defect (or a set of defects) to significantly
contribute to the path integral in (B.6). This is because we are already summing over configurations in which
the geodesics pass arbitrarily close to the defect and the geodesic length is continuous as the geodesic passes
through the defect (since it is the length and not its derivative that appears in the action it is unimportant
that the latter is discontinuous).
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boundary-boundary geodesic.39 In such a case, we can again separate our surface into
trumpet wavefunctions and bordered Riemann surfaces of some genus g, with some number
of boundaries n, and some number of defects p. The integral over the moduli space of such
bordered Riemann surfaces with defects gives the Weil-Peterson volume

Volg,n,k(b1, . . . , bn;α1, . . . , αk) = Volg,n+k(b1, . . . , bn, bn+1 = 2πiα1, . . . , bn+k = 2πiαk) ,
(B.7)

which can be viewed as an analytic continuation of the usual Weil-Peterson volumes [80].40

There is however one exception to the decomposition above, when it involves a surface of
the typeM0,1,1; in such a case, there is no closed geodesic separating the defect from the
asymptotic boundary. We call this object, that has one defect and an asymptotic boundary
glued to a boundary-to-boundary geodesic, a “defect wavefunction”. The integral over the
wiggles in (B.6) for such an object can be evaluated in precisely the same way as for the
trumpet wavefunction. One finds,41

ψDefect,x(`, α) = α

`

=
∫ ∞

0
dEρDefect, b(E)ψDisk, E(`)e−xE

= ψTrumpet,x(`, b = 2πiα) ,

(B.8)

with ρDefect, α(E) = ρTrumpet, b=2πiα(E). Putting all these building blocks together we find
that

〈Trβ(χ(x1)χ(x2))〉g,k

∼ eS0(1−2g)
∫
d`e`

∫
db1b1 db2b2ψTrumpet,x(`,b1)ψTrumpet,β−x(`,b2)e−∆`

×λk
[

1
k!Volg−1,2,k(b1, b2;α, . . . , α︸ ︷︷ ︸

k times

)

+
∑
p≤k

∑
h≥0

1
p!(k−p)!Volg−h,1,p(b1;α, . . . ,α︸ ︷︷ ︸

p times

)Volh,1,p−k(b2;πiα, . . . ,2πiα︸ ︷︷ ︸
k−p times

)
]
,

(B.9)

39This follows from a straightforward use of the Gauss-Bonnet theorem. Using the same theorem we can
prove that this closed geodesic never intersects the boundary-to-boundary geodesics; if that is not the case,
the resulting surface would include a bigon which would be disallowed in hyperbolic space [79].

40Hyperbolic surfaces have a natural PSL(2,R) connection. The holonomy g around a cycle homotopic to
a closed geodesic is given by hyperbolic PSL(2,R) elements. Similarly, one finds that the holonomy g′ around
a cycle homotopic to a defect is given by elliptic PSL(2,R) elements. Since the Weil-Peterson volumes only
depend on the conjugacy classes of the holonomies and the analytic continuation of the eigenvalues for an
element in the hyperbolic class can yield an element in the elliptic class, (B.7) follows.

41As in footnote 40, this follows from the fact that the result for the wavefunction can only depend on the
conjugacy class of the holonomy around the closed geodesic of the trumpet or around the defect. Since the
latter can be viewed as an analytic continuation of the former (B.8) follows.
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where, in order to not separately consider the decomposition into surfaces which involve a
defect wavefunction, we will formally define Vol0,1,1(b;α) such that∫

dbbVol0,1,1(b;α)ψTrumpet,x(`, b) = ψDefect,x(`, α) . (B.10)

(B.9) can then be compactly rewritten as

〈Trβ(χ(x1)χ(x2))〉=
∫ ∞

0
dE1dE2 〈ρ(E1)ρ(E2)〉dilaton e−E1(x1−x2)−E2(β−x1+x2)M∆(E1,E2) ,

(B.11)
where 〈ρ(E1)ρ(E2)〉dilaton is the spectral two-point function for the dilaton gravity the-
ory (B.1), which at order λk has a genus g contribution given by

〈ρ(E1)ρ(E2)〉dilaton
g,k

∼ λk
∫
db1b1db2b2ρTrumpet, b1(E1)ρTrumpet, b2(E2)

[
1
k!Volg−1,2,k(b1, b2;α, . . . , α︸ ︷︷ ︸

k times

)

+
∑
p≤k

∑
h≥0

1
p!(k − p)!Volg−h,1,p(b1;α, . . . , α︸ ︷︷ ︸

p times

)Volh,1,p−k(b2;πiα, . . . , 2πiα︸ ︷︷ ︸
k−p times

)
] (B.12)

Following precisely the same cutting and gluing algorithm, the formula (B.11) follows for
any theory of dilaton gravity with a potential U(φ) as in (B.4).

C Details about the geometric computation of the variance

In this section we will provide more details about the derivation of (6.3). The possible
surfaces obtained from cutting along the two non-intersecting geodesics and the action of
the mapping class group on geodesics on such surfaces in discussed in section 6. Just like
in (3.4), we can rewrite∫

Tg,2
Mod(Mg,2)

ω
∑

γ∈Gx1,x2,
γ′∈Gx1′,x2′ ,

γ∩γ′=∅

e−∆`γ−∆′`γ′ = e−∆`−∆′`′
∫

Tg−2,4
Mod(Mg−2,4)

ω (C.1)

+
∑
h≥0

e−∆`−∆′`′
∫

Th,1
Mod(Mh,1)

ω

∫
Tg−h−1,3

Mod(Mg−h−1,3)

ω+
∫

Th,2
Mod(Mh,2)

ω

∫
Tg−h−1,2

Mod(Mg−h−1,2)

ω


+

∑
h1,h2≥0

e−∆`−∆′`′
∫

Th1,1
Mod(Mh1,1)

ω

∫
Th2,1

Mod(Mh2,1)

ω

∫
Tg−h1−h2,2

Mod(Mg−h1−h2,2)

ω

where the geodesics ` and `′ are once again always on the boundaries of the manifolds
resulting from the cut and where the sum over h is again bounded such that disconnected
surfaces of genus h and g− h are not counted twice and the sum over h1,2 are also bounded
such that all three disconnected surfaces within the same genus configuration are not counted
multiple times. As before, we can once again then decompose our manifold into trumpet
(or disk, when a component has g = 0) wavefunctions and bordered Riemann surfaces.
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Peforming the integrals in (C.1) explicitly to obtain the volumes of these bordered Riemann
surfaces, we find that the genus g contribution to 〈Trβ (χ(x1)χ(x2)) Trβ (χ(x′1)χ(x′2))〉,
coming from connected geometries, is given by

〈Trβ (χ(x1)χ(x2)) Trβ
(
χ(x′1)χ(x′2)

)
〉connected, g ∼ e−2S0g

∫
db1b1 db2b2db3b3 db4b4

×
∫
d` e`

∫
d`′ e`

′
ψTrumpet,x(`, b1)ψTrumpet,β−x(`, b2)ψTrumpet,x(`′, b3)ψTrumpet,β−x(`′, b4)

× e−∆`−∆′`′Vconnected(b1, b2, b3, b4) (C.2)

where, we define Vconnected(b1, b2, b3, b4) as,42

Vconnected(b1, b2, b3, b4) = Volg−2,4(b1, b2, b3, b4)

+
∑
h≥0

[Volh,1(b1)Volg−h,1(b2, b3, b4) + Volh,1(b1)Volg−h,1(b2, b3, b4)]

+
∑

h1,h2≥0
[Volh1,1(b1)Volh2(b2)Volg−h1−h2,2(b3, b4)] (C.3)

Putting together the connected and disconnected contributions, writing the trumpet wave-
functions as in (3.5), and integrating over the b’s and `’s we can compactly rewrite the total
two-boundary correlator 〈Trβ (χ(x1)χ(x2)) Trβ (χ(x′1)χ(x′2))〉non-int. as

〈Trβ (χ(x1)χ(x2)) Trβ
(
χ(x′1)χ(x′2)

)
〉non-int.

= 4e−S0

〈Z(β)Z(β)〉

∫ ∞
0

dE1 . . . dE4 〈ρ(E1) . . . ρ(E4)〉

× e−E1x12−E2(β−x12)−E3x′12−E4(β−x′12)M∆(E1, E2)M∆′(E3, E4) .

(C.4)

More generally, using the same techniques to address the issues related to the mapping class
group, we can compute even higher “moments” of the length of the ER bridge by using43

〈
Trβ

(
χ(1)(x(1)

1 )χ(1)(x(1)
2 )
)
. . .Trβ

(
χ(n)(x(n)

1 )χ(n)(x(n)
2 )

)〉
= 4e−S0

〈Z(β)Z(β) . . . Z(β)〉︸ ︷︷ ︸
n copies

×
∫ ∞

0
dE1 . . . dE2n 〈ρ(E1) . . . ρ(E2n)〉M∆(1)(E1, E2) . . .M∆(n)(E2n−1, E2n)

× e−E1(x(1)
1 −x

(1)
2 )−E2(β−x(1)

1 +x(1)
2 ) . . . e−E2n−1(x(n)

1 −x
(n)
2 )−E2n(β−x(n)

1 +x(n)
2 ) ,

(C.5)

and by taking lim∆(1), ... ,∆(n)→0 ∂∆(1) . . . ∂∆(n) for the above expression.

42We once again have to treat the components that have genus g = 0 separately.
43The same ambiguities that exist for the variance, also exist for the higher moments and for the result (C.5)

we make the same choices as for the variance.
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D Explicit formulas in Dyson ensembles

We largely follow the notation of [42]. The density two point functions in Dyson ensembles
are given by〈

ρ

(
E + Ω

2 〈ρ(E)〉

)
ρ

(
E − Ω

2 〈ρ(E)〉

)〉
= 〈ρ(E)〉2 (1− Y (Ω)) ,

Y GOE(Ω) = s2(Ω) + s′(Ω)
∫ ∞

Ω
dν s(ν) ,

Y GUE(Ω) = s2(Ω) ,

Y GSE(Ω) = s2(2Ω)− s′(2Ω)
∫ Ω

0
dν s(2ν) ,

s(Ω) ≡ sin(πΩ)
πΩ .

(D.1)

The SFF is given by formula (7.3) and evaluates to

SFFGOE
micro(2π 〈ρ(E)〉T ) = 〈ρ(E)〉

2T − T log (2T + 1) (T ≤ 1) ,
2− T log

(
2T+1
2T−1

)
(T > 1) .

SFFGUE
micro(2π 〈ρ(E)〉T ) = 〈ρ(E)〉

T (T ≤ 1) ,
1 (T > 1) .

SFFGSE
micro(2π 〈ρ(E)〉T ) = 〈ρ(E)〉


1
2T −

1
4T log |1− T | (T ≤ 2) ,

1 (T > 2) .

(D.2)

where we used a rescaled time variable t = 2π 〈ρ(E)〉T . We can similarly compute C(t)
using (7.2) with the result

CGOE
micro(2π 〈ρ(E)〉T )

= 〈ρ(E)〉π
2

18


(30T − 48T 2 + 34T 3) + (3 + 9T − 12T 3) log (2T + 1) (T ≤ 1) ,
(4 + 12T 2) + (3− 9T + 12T 3) log (2T − 1)
+(3 + 9T − 12T 3) log (2T + 1) (T > 1) .

CGUE
micro(2π 〈ρ(E)〉T ) = 〈ρ(E)〉2π

2

3

3T − 3T 2 + T 3 (T ≤ 1) ,
1 (T > 1) .

CGSE
micro(2π 〈ρ(E)〉T )

= 〈ρ(E)〉4π
2

9


1
16
[
(60T − 60T 2 + 17T 3)− (12− 18T + 6T 3) log |1− T |

]
(T ≤ 2) ,

1 (T > 2) .
(D.3)

The relation (7.4) is now easily verified.
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