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ABSTRACT

This paper presents a novel, fully-automatic framework for
fetal echocardiography analysis of full-length routine first-
trimester fetal ultrasound scan video. In this study, a new
deep learning architecture, which considers spatio-temporal
information and spatial attention, is designed to temporally
partition ultrasound video into semantically meaningful seg-
ments. The resulting automated semantic annotation is used
to analyse cardiac examination workflow. The proposed 2D+t
convolution neural network architecture achieves an A1 accu-
racy of 96.37%, F1 of 95.61%, and precision of 96.18% with
21.49% fewer parameters than the smallest ResNet-based ar-
chitecture. Automated deep-learning based semantic annota-
tion of unlabelled video scans (n=250) shows a high correla-
tion with expert cardiac annotations (ρ = 0.96, p = 0.0004),
thereby demonstrating the applicability of the proposed anno-
tation model for echocardiography workflow analysis.

Index Terms— first trimester, spatio-temporal analysis, fe-
tal heart, ultrasound, echocardiography.

1. INTRODUCTION
Detection of cardiac abnormalities during prenatal screening
is a challenging task. In accordance with NHS UK guidelines,
cardiac anatomy should be evaluated in the second trimester
of pregnancy. However, technological advancements have
sparked a recent interest in earlier detection of congenital car-
diac abnormalities [1]. The first-trimester fetal US scan (also
known as the dating or nuchal scan) is carried out between
11+0 to 13+6 weeksdays of gestation to assure pregnancy via-
bility, accurately date the pregnancy, and assess chromosomal
anomalies risk [2]. The NHS Fetal Anomaly Screening Pro-
gramme (FASP) [3] guidelines dictate the acquisition of two
standard planes: Nuchal Translucency (NT) and Crown Rump
Length (CRL). In addition, sonographers may scan additional
fetal structures, depending on their training or personal pref-
erences. The degree of routine first-trimester screening for
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cardiac anomalies varies between operators and centres and
may involve any of the following: assessment without car-
diac examination; routine visualization of the four chambers
(4C); detailed examination involving outflow-tract visualiza-
tion and Doppler evaluation; or demonstrating a heart beat
(spectral Doppler (SD)). The early detection of cardiac ab-
normalities in the first trimester complements the overarching
objective of earlier diagnosis of chromosomal abnormalities.

This study aimed to investigate fetal echocardiography
workflow from automated analysis of full-length first-trimester
US scan videos by identifying the duration and sequence of
standard imaging plane acquisition. The prerequisite for such
analysis is the semantic temporal partitioning and anatomical
level labelling of full-length scans. It is infeasible to carry out
manual labelling of very large video datasets. Therefore, we
have developed a time-efficient and accurate deep learning
(DL) based model to automatically label first-trimester full-
length video scans with consideration of its spatio-temporal
context.

Contribution. The contribution of the paper is two-fold:
1) An original spatio-temporal DL architecture is trained to
provide semantic labels for first trimester US video. We ex-
perimented with various deep neural networks to determine
the best spatio-temporal (2D+t) model. We also investigated
the effect of introducing spatial attention during training
video frames. The proposed model with the highest perfor-
mance, was assessed for similarity with expert labelled video
scans. 2) To demonstrate clinical applicability, the trained
model is used to semantically partition unlabelled full-length
first-trimester US video scans and assess the proportion of
time spent on performing fetal echocardiography tasks. For
the first time, the proposed framework will describe the pre-
ferred approach/scanning-mode of sonographers to assess
abnormalities. Furthermore, we will analyze the trends in
echocardiography between newly qualified (NQ) and experi-
enced sonographers (EX).

Related Work. There have been a number of approaches
to automate second and third trimester US scan tasks such



Table 1: Dataset distribution for deep learning experiments.

Dataset Frames Distribution(%)
Training 20,520 77.9
Test 4,970 22.1

Fig. 1: First-trimester fetal echocardiography: A, a: Spectral
Doppler. B, b: Sagittal cardiac view. C, c: Four-chamber view and
D, d: Doppler evaluation. Lowercase letter represents a graphical
abstraction, and the uppercase letter represents the equivalent ultra-
sound image.

as standard plane detection [4], segmentation [5], and fe-
tal biometry [6]. Regarding ultrasound workflow analysis,
Sharma et al. [7] proposed a spatio-temporal VGG variant
CNN model for second trimester US partitioning and de-
scription. We include that architecture in our comparison.
However, few works [8, 9] have studied the first-trimester
fetal heart and none have considered echocardiography work-
flow analysis. According to Karim et al. [1], a detailed sono-
graphic examination of the fetal heart in the first trimester
can optimize the detection of fetal cardiac anomalies. Ac-
cording to the study by Bardi et al. [10], 91% of cardiac
defects can be diagnosed prenatally, and 9% are detected in
the first trimester. This finding is not surprising given that
first-trimester anatomical screening programs do not include
cardiac screening. It is observed that cardiac defects are more
subtle and only identifiable by the trained eye when scanning
the heart in a systematic way and by use of Doppler flow [1].
Thus, the proposed study aims to conduct a machine learning-
based analysis of routine ultrasound scans performed during
the first trimester in order to determine the time and method
employed for echocardiography in practice.

2. DATA ACQUISITION AND PRE-PROCESSING
Routine clinical first-trimester fetal US scans were available
from a large-scale study PULSE [11]. US video was acquired
through screen-grab signals at 30 frames per second of a GE
Voluson E8 version BT18 (GE Healthcare, Zipf, Austria)
US machine. The echocardiography US frames were ex-
tracted from full-length first trimester scans of 250 subjects
and manually annotated by experienced clinical and engineer-
ing researchers. Four anatomical categories [“classes”] were
defined: ‘sagittal cardiac view evaluation’ [SV] (17.9%),
‘Four-Chamber view’ [4C] (26.4%), ‘Doppler evaluation’
[DP] (19.6%), ‘Spectral Doppler (heartbeat)’ [SD] (19.8%)
and Other anatomy (CRL, NT, Brain) [OT] (16.3 %). For

Fig. 2: Proposed spatial attention-based CNN architecture.

the spatial CNN training, images were sampled every eighth
frame of a video to incorporate a wide variety of anatomical
views and spatial diversity to concurrent frames. Table. 1
summarizes the dataset.

3. METHODS

We experimented with different CNN models for US video
partitioning. We investigated;

1. Spatial modelling (2D CNN),
2. Spatio-temporal modelling (Recurrent Neural Networks

(RNN/LSTM)) (2D+t).

For 2D spatial modelling, we trained and tested VGG [12],
ResNet [13] and RegNet[14] architectures due to their estab-
lished high benchmark classification performance on public
datasets. The quantitative results in Table 2 show RegNet2D
consistently outperforms the other CNN benchmarks (pre-
cision score=0.91) with a significant reduction in trainable
parameter overhead (2.32 M). Hence, it was selected as the
2D backbone for subsequent spatio-temporal analysis. Reg-
Net2D is designed through an optimized neural architecture
search, resulting in a low-dimensional design space that leads
to a simple and efficient network architecture. The detailed
network architecture is shown in Figure 2. To incorporate
temporal information, long-short term memory (LSTM) ar-
chitecture was considered. We also considered both 2D
(RegNet2Dt) and 3D (RegNet3D) convolution kernels for
training a 2D+t architecture. We also considered adding an
attention module for one model variant (RegNet2Dt-At) to
encourage that model to focus on salient anatomical features.
Specifically, we adopted a spatial attention block (SAB)
[15] that generates a spatial attention map by utilizing the
inter-spatial relationship of features. The detailed structure
of SAB is shown in Figure 2, where x ∈ RC×H×W in an
input feature map sent to a convolutional layer to produce
{θ, φ} ∈ R1×h×w. The input feature maps are reshaped to
R1×N , where N = h × w is the number of pixels. The
transposes of θ and φ are multiplied at the Softmax layer to



Table 2: Quantitative Analysis of Proposed Network.

Network P R F1 A1 Pr GFlops

Sp
at

ia
l

VGG-16 [12] 0.78 0.73 0.69 68.63±0.01 134.7m 15.55
ResNet-18 [13] 0.82 0.80 0.81 90.10±0.03 11.18m 1.83
ResNet-50 [13] 0.89 0.86 0.87 93.09±0.11 23.90 4.14
RegNet2D [14] 0.91 0.90 0.89 93.76±0.08 2.32m 0.20
RegNet2D-At 0.94 0.92 0.92 94.59±0.18 2.45m 0.37

Sp
t.

T. RegNet-LSTM 0.81 0.74 0.72 81.22±0.02 4.78m 0.58
RegNet-3D 0.95 0.94 0.94 95.01±0.03 3.56m 0.54

Sharma et al. [7] 0.96 0.94 0.95 96.11±0.01 23.0m 15.36
RegNet2Dt 0.95 0.93 0.92 95.41±0.08 4.78m 0.65

RegNet2Dt-At 0.96 0.95 0.95 96.37±0.03 4.91m 0.76

compute the intermediate spatial-attention-map c ∈ RN×N ;

cij =
exp(θi · φj)∑N
i=1 exp(θi · φj)

, (1)

where cij calculates the impact of the ith position on the jth
position. Correlation is substantial if both positions have a
similar surrounding texture. Matrix multiplication between c
and the transpose of g results in the final spatial attention map:

α̂ =

N∑
j=1

(cijgj). (2)

Implementation Details: The CNN architectures were im-
plemented using PyTorch v1.8.0. US video frames were
scaled to 224 × 224 pixels. Standard data augmentation was
used (rotation [−30◦, 30◦], horizontal flip, Gaussian noise,
and shear (≤ 0.2)). Images were normalised to zero-mean
and unit variance. Batch size was adjusted according to model
size and GPU memory restrictions. All CNN models were
trained using a cross-entropy loss function for 200 epochs,
constantly reducing the learning rate (× 0.1 every 20 epochs).

4. RESULTS AND DISCUSSION
4.1. Quantitative Evaluation of Trained Models

Recall (R), Precision (P), F1-score (F1), and Top-1 accuracy
(A1) were used to assess the performance of the classifica-
tion models. Table 2 reports the quantitative performance
and the number of trainable parameters for each model. We
observe that RegNet2D outperforms the other 2D vanilla
CNNs. Adding an attention model to RegNet gives further
improvement and the best 2D result (F1-score (3.0%) and
A1(0.83%)). Spatio-temporal models that use video frame
sequences, such as 2D+t, perform better than the LSTMs and
3D-Conv (2D+t) representations. The best performing model,
for all evaluation metrics, is RegNet2Dt which describes the
spatio-temporal properties of video clips trained using ran-
dom initialization weights. The Sharma et al. [7] 2D+t model
offers competitive results with the pre-trained weight model
but has 23.0 million trainable parameters, making it a slow
inference model for large scale US video datasets.

Fig. 3: Confusion matrix for automated semantic annotations vs
manual annotations (a) RegNet2Dt, (b) RegNet2Dt-At.

Table 3: Dataset distribution for deep learning experiments.

Cardiac Views Total Time Spent(%)
Four-Chamber View [4C] 52.75
Spectral Doppler (heartbeat) [SD] 33.34
Doppler Evaluation [DP] 13.76
Sagittal Cardiac View Evaluation [SV] 0.15

Automated annotation of the test set revealed a high cor-
relation (ρ = 0.96, p = 0.0004) with manual expert an-
notations. The confusion matrix in Figure 3 shows an ex-
cellent agreement with manual and automatic semantic la-
belling. Note that even classes with few samples (e.g. SV)
are detected with high accuracy.

4.2. Clinical Workflow Analysis
Despite the advancements in fetal echocardiography, the ef-
fectiveness of first-trimester fetal heart screening has not been
adequately investigated. This study investigated the opera-
tor’s echocardiography workflow analysis for routine first-
trimester US scans. We have investigated different visualiza-
tion methods used by sonographers to visualize fetal cardiac
structures. The RegNet2Dt-At model was applied to label 250
unseen full-length US video scans. This shows which cardiac
views the operator was viewing as a time-line and thus pro-
vides a description of clinical work flow. The subjects ana-
lyzed in study had an average maternal age ± SD = 31.6 ±
5.4 years and average body mass index (BMI) 25.3 ± 5.8.

On average, a recorded first-trimester US video scan takes
15.7±4.2 minutes, with an average of 28, 237±7, 534 frames
per video scan. In order to assess only cardiac workflow, we
have excluded other anatomical views from the analysis. The
total amount of time spent on echocardiography during the
first trimester is 18.91 percent (2.97 minutes) of total scan
time. Table 3 illustrates the distribution of time between dif-
ferent views during echocardiography. According to our find-
ings, 4-chamber heart views are the most commonly observed
views (52.75 %) for fetal heart assessment. In addition, we
observed that spectral Doppler is also an important method
for observing the heartbeat of the fetus. The reason is that
sonographers typically look for a 4C view of the fetal heart to
observe a beating heart to ensure the fetus is alive. Spectral
Doppler helps sonographers to check fetal heartbeat (regular



Fig. 4: Average time duration spent on the key cardiac views for EX
and NQ groups. This shows that the NQ group spends more time
locating cardiac planes. Conversely, the EX group spends less time.

heartbeat between 110 and 160 beats per minute). The use
of Doppler evaluation (DP) is the least significant (counts for
only 13.76 %) because in the early weeks of first-trimester
pregnancy sometimes the heart is not fully developed, there-
fore Doppler based evaluation is not possible. There were 9
sonographers involved in the study, however eight (n= O1,
O2...O8) of those looked at the fetal heart. These operators
were divided into two groups based on experience (2 years);
expert (EX) and newly qualified (NQ). Figure 4 shows that
NQ operators take more time to scan the fetal heart compared
to EX operators.

Table 4: The Apriori algorithm used to extract the most frequent
anatomical workflows adopted by operators.

No. Antecedents Consequents Antecedent
support (%)

1 (4C, SD) (DP) 93.91

2 (4C, DP) (SD) 87.14

3 (4C, SD) (SV) 41.29

Task-occurrence probability is calculated using the Apri-
ori algorithm [16] to extract the most frequent anatomi-
cal task-occurrence probability for each scan. The Apriori
is a fitting choice to extract the most frequent anatomical
task-occurrence probability of each operator’s (O) task I =
{i1, i2, . . . , in} and task transition matrix T = {t1, t2, . . . , tm}
named as database of anatomical transactions. Here, each
transaction tx in T has a unique transaction-ID with the sub-
set of item sets in I . The Apriori rule for any two anatomical
activities (X,Y ) stated as X ⇒ Y , where, X is ‘Antecedent’
and Y is ‘Consequent’ such as X,Y ⊆ I . Table 4 shows a
different combination of operators’ preferences for starting
the first-trimester scan. The task-occurrence probability from
4C-SD or 4C-DP has the highest confidence (Table 4). It
appears that in most scans, 4C and SD appear sequentially;

Fig. 5: A visualisation derived from a task transition matrix for op-
erators US workflow.

this can be explained by the fact that SD is usually observed
in the same plane as 4C. The chord diagram in Figure 5 il-
lustrates the resultant workflow association of most frequent
fetal cardiac analysis activities. Each view is represented by
a fragment on the outer part of the circular layout. The arcs
drawn between these anatomical structures show the work-
flow patterns of operators. The thickness of these arcs is
proportional to the frequency of transition between a certain
view or task to another that the operator follows during US
scanning. The thicker the arc, the more common and ‘tradi-
tional’ this workflow pattern is. The purpose of this study was
to observe routine first-trimester ultrasound examination from
a cardiac perspective. The results demonstrate that despite the
fact that observing the fetal heart is not part of the FASP [3]
protocol for trimester scans, sonographers nonetheless do so
in practice. This observation also implies that NHS-trained
sonographers tend to look into the fetal heart due to their
training history or personal preferences.

5. CONCLUSION

This paper shows that spatio-temporal modelling with attention-
based feature refinement gave the best performing model for
automatically labelling full-length routine first-trimester fetal
US scan videos. The best performing model was applied to
a large-scale first-trimester clinical video dataset to provide
quantitative insight on echocardiography work flow. First-
trimester fetal echocardiography is a very useful method
for the detection of fetal cardiac abnormalities. Although
second-trimester cardiac scanning remains the gold standard
for anomaly detection, we have observed that most of oper-
ators scanned cardiac structures during the first trimester as
well. Additionally, this study indicates that 4C and SD are
the most preferred fetal heart assessment tasks performed by
sonographers during the first trimester scan. In the future, we
intend to use insights from this study to develop a standard
echocardiography assessment protocol for the early detection



of fetal heart anomalies.
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