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Abstract

The transition from larval to adult locomotion in the anuran,
Xenopus laevis, involves a dramatic switch from axial to
appendicular swimming including intermediate stages when
the tail and hindlimbs co-exist and contribute to propulsion.
Hatchling tadpole swimming is generated by an axial central
pattern generator (CPG) which matures rapidly during early
larval life. During metamorphosis, the developing limbs are
controlled by a de novo appendicular CPG driven initially by
the axial system before segregating to allow both systems to
operate together or independently. Neuromodulation plays
important roles throughout, but key modulators switch their
effects from early inhibitory influences to facilitating locomo-
tion. Temperature affects the construction and operation of
locomotor networks and global changes in environmental
temperature place aquatic poikilotherms, like amphibians, at
risk. The locomotor control strategy of anurans differs from
other amphibian groups such as salamanders, where evolution
has acted upon the thyroid hormone pathway to sculpt different
developmental outcomes.
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Introduction

Swimming in tadpoles, as in fish, requires contractions
of axial muscles (myotomes) and neural circuitry to
generate left/right tail bending and coordinate a rostro-
caudal sequence of contractions to produce forward
propulsion. However, whilst still within the egg,
amphibian embryos have already developed this neuro-
muscular  machinery [1]. The neural circuitry
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comprising the swim CPG is thus constructed 7 ovo,
partly through an intrinsic programme of gene expres-
sion, but with shaping by extrinsic influences. Under-
standing how this network operates and adapts to
environmental and organismal demands during subse-
quent metamorphosis from tadpole to frog derives
mainly from experiments on the clawed frog Xenopus
laevis, which is the centrepiece of this review. However,
the diversity of amphibian developmental programmes,
body formats and locomotor strategies also provides
fruitful avenues for probing the evolution of vertebrate
locomotor control strategies in general, and the transi-
tion from the aquatic to terrestrial ecosystems.

Early tadpole locomotor development

Xenopus tadpoles hatch 2—3 days post-fertilization at
developmental stage 37/38 [2], by which time well-
coordinated swimming occurs in response to stimula-
tion. The tadpole swim CPG is among the most
completely described vertebrate locomotor circuits
(reviewed in the study by Roberts et al. [3] and Sillar
and Li [4]). The core network, which involves
descending ipsilateral excitation and reciprocal cross-
cord inhibition, is phylogenetically conserved from fish
to mammals [5]. The same transcriptional coding
system described in fish and mice likely specifies neuron
subtypes during Xenmopus tadpole development. The
basic CPG network extends into the hindbrain and
comprises ipsilaterally projecting descending in-
terneurons (dINs) [6], interneurons with crossing pro-
jections (cINs) [7], ascending ipsilateral interneurons
(aINs) [8], homologues of V3 interneurons [9], and
myotomal motor neurons (MNs) [10]. The dINs pro-
vide the excitatory drive for swimming and appear to be
Chx10™"¢ suggesting they are homologues of V2a in-
terneurons in fish and mammals [11]. Glycinergic cINs
mediate cross-cord reciprocal inhibition, like the V0d’s
in fish and mice. The dINs are rapidly adapting, firing
reliably but only once per swim cycle. cIN inhibition of
contralateral dINs at mid-cycle is, therefore, critical to
rhythm generation because it removes Na' channel
inactivation allowing dINs to fire on rebound. If the
inhibition is weak and dINs cannot fire, swimming
abruptly ceases [12]. Increases in CPG output cycle
frequency are controlled by the recruitment of MNs,
cINs and aINs. Interestingly, cIN and aIN recruitments
have recently been shown to correlate inversely with
input resistance [13], the opposite to that predicted by
Henneman’s size principle [14].
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From hatching, the duration and variability of axial MN
rhythmic output increases progressively along the spinal
cord [15], in correspondence with the growing tadpole’s
need for greater swimming strength and flexibility. This
early transition to more typical vertebrate ‘burstiness’
reflects changes in the firing properties of spinal MNs
[16,17] which can now discharge multiply in each half-
cycle. This change is accompanied by a decrease in
electrical coupling within individual motor pools,
thereby enabling de-synchronized firing [18].

The initial period post-hatching also witnesses changes
in the sensory systems that influence locomotor
behaviour. Some systems operate as interim structures
appropriate for a predominantly sessile lifestyle,
including the cement gland (CG) pathway that inhibits
swimming [19,20] and head skin mechanoreceptors that
induce a concussion-like response [21] to keep the
tadpole motionless. Skin mechanosensory Rohon-Beard
neurons, which trigger escape if the tadpole is touched
[22], will gradually disappear [23] once free swimming
occurs, as does the CG pathway. A functional lateral line
(LL) system is also present after hatching [24] and re-
mains throughout life. The activation of the LL afferent
pathway triggers an abrupt turn and rapid swim away

from potential danger, mediated by the recruitment of a
sub-population of sensory interneurons located in the
hindbrain LL nucleus [25].

Roles of neuromodulation

Neuromodulation plays important roles in tadpole CPG
development and the eventual emergence of the
appendicular system during metamorphosis [26].
Initially, between hatching and continuous free-
swimming, the tadpole is especially vulnerable to pre-
dation. Whilst rapid changes are occurring to equip the
animal for an independent existence, the modus operandi
is to remain motionless, presumably as an anti-predatory
strategy since many predators respond to movement. In
association, various neuromodulatory signalling path-
ways become established, including dopamine (DA),
serotonin (5-H'T'), noradrenaline (NA) and nitric oxide
(NO), which alter particular facets of CPG output
(Figure 1). Immediately after hatching, they mainly
promote a sessile existence (Figure 1a), but then switch
later in development to swim facilitating roles [27]. For
example, the effects of D1-like and D2-like DA receptor
(R) activation on spontaneous bouts of swimming at pre-
metamorphic  Xenopus tadpole stages are dose-
dependent. High affinity D2Rs inhibit swimming, an
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Multiple and opposing modulation of Xenopus locomotor CPG network output from hatching through metamorphosis. In larvae (a), exogenous
NO and DA, acting on D2-like receptors, reduce (downward arrows) the occurrence of spontaneous fictive swim episodes (a1), whilst NA decreases swim
cycle frequencies (a2). In premetamorphic larvae (b), both NO and DA switch modulatory effects to promote (upward arrows) episode occurrences (b1).
Whereas low DA still activates inhibitory D2-like receptors, high DA levels activate low-affinity, newly incorporated excitatory D1-like receptors that
facilitate swimming activity. 5-HT now decreases cycle frequencies (b2). During prometamorphosis (c), limb CPG network output is initially coordinated
with the axial CPG rhythm. At metamorphic climax (d), co-existing axial and limb CPGs can operate independently at different rhythm frequencies. 5-HT
can coordinate the two rhythms, by decelerating and accelerating the axial and limb CPGs, respectively. In contrast, NA, can uncouple already coupled
rhythms. In the postmetamorphic frog (e), locomotion is solely limb-based. NO and DA exert similar effects on the limb CPG as the tadpole’s axial CPG
(E1), whilst 5-HT and NA maintain their opposing effects as during metamorphosis (E2). Figure adapted from the study by Sillar et al. [26].
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effect that is overcome by higher DA concentrations
that activate low affinity D1Rs to exert the opposite,
excitatory effect (Figure 1al, b1, el) [28]. Interestingly,
at early stages (37/38 to 42), only D2Rs are expressed in
the swim circuit so the effects of DA are inhibitory
regardless of dose, consistent with promoting non-
motility [29]. NO signalling undergoes a similar devel-
opmental switch, inhibiting swimming after hatching
(by potentiating inhibitory transmitter release within
spinal circuitry [30]), but producing the opposite effect
of increasing spontaneous swim episode occurrences
once free swimming begins.

In hatchling tadpoles, exogenously applied 5-HT in-
creases axial MN bursts during fictive swimming, in part
via presynaptic inhibition of glycine release from cINs
[31], while reducing episode durations, but without
affecting swim cycle frequency. NA exerts opposite ef-
fects in that it strengthens glycinergic transmission
presynaptically and reduces swim frequency [29]. Sub-
sequently, the amines’ effects mirror, in a stage-specific
manner, the normal rostrocaudal emergence of MN
bursting that occurs during early larval development.
Coincident with, but just preceding, the arrival of
descending serotonergic innervation from the brainstem
raphe nucleus [32], the burst-inducing effects of exog-
enous 5-HT extend progressively after hatching from
rostral-most only to more caudal cord regions [16]. Ev-
idence supporting a causal link between the ingrowth of
brainstem raphespinal projections and swimming
rhythm development was provided by neurotoxic abla-
tion of serotonergic neurons during pre-hatching
development with 5,7 DHT leading to stage 42 larvae
restricted to embryonic-like swimming [32]. These
findings, therefore, indicate that 5-H'T as for other
neuromodulators (DA [28,29] and NO [30,33]), plays a
developmental role in the maturation of the tadpole’s
spinal CPG circuitry, in addition to exerting acute
modulatory influences.

Acute neuromodulation in the tadpole takes place on
multiple time scales, from milliseconds to minutes, via
actions on diverse targets. These include a sub-type of
‘dynamic’ Na®/K" pumps that are only recruited
following intense firing, leading to a prolonged post-swim
hyperpolarization, the ultra-slow AHP. The usAHP is
expressed in all CPG neurons, including excitatory dINs,
where it is normally masked by a counteracting, hyper-
polarization-activated inward current, lh [34]. The
usAHP encodes the intensity and duration of swim bouts
in a swim interval-dependent manner and underlies a
form of short-term motor memory (STMM) that links
past to future locomotor behaviour. This pump-mediated
hyperpolarization can be increased or decreased by the
endogenous activation of specific modulatory receptors
to strengthen (SHT7) or weaken (S5H'T2a, likely sGC for
NO) STMM [27]. Such complexity is not often
acknowledged for vertebrate networks but is reminiscent
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of many invertebrate neural systems [35]. In Xenopus
tadpoles, the usAHP also undergoes developmental
changes that parallel the increase in spontaneous swim-
ming behaviour leading up to metamorphosis, becoming
expressed in a higher proportion of spinal CPG neurons
[36]. Although seemingly counterintuitive to the emer-
gence of continuous swimming, it is relevant that NO’s
reduction of the usAHP may contribute to the modula-
tor’s switch to overall excitation at free swimming stages.

Acquisition of limb-based locomotion

The fascinating transition from axial to limb-based
locomotion during metamorphosis in amphibians is a
highly species-specific process. In fully aquatic Xenopus,
for example, the two locomotor systems appear
sequentially during development (Figure 1), necessi-
tating a critical period when they co-exist and must be
coordinated simultaneously (Figures 1c,d); reviewed in
the study by Combes et al. [37]). As in earlier stages,
swimming of the pre-metamorphic tadpole is generated
by left/right alternating ventral root bursts with a
rostrocaudal  phase-delay [38].  During  pro-
metamorphosis, motor output to each new limb bud
consists of synchronous flexor-extensor motor bursts
that alternate between the left and right sides, similar
to, and in strict coordination with, the axial rhythm
(Figure 1c¢). Later, around the metamorphic climax, the
tail and the now more developed limbs both contribute
to locomotor propulsion, with the limb CPG activity
having switched coordination such that intralimb
extensor and flexor bursts now alternate and occur in
synchrony across the two sides. Now the two co-existing
CPGs are fully functional, but they can operate with
different cadences (Figure 1d). The lower frequency
limb CPG rhythm can occur either completely inde-
pendently or accelerate to become transiently coordi-
nated with the faster axial rhythm. Post climax, the tail
has disappeared, and the solitary limb rhythm remains to
drive left/right synchronized appendicular swimming,
akin to human breaststroke (Figure le). How is the
coupling between the two systems regulated when they
co-exist at mid-metamorphosis? Exogenous 5-H'T and
NA can couple or uncouple the axial and limb CPG
outputs, respectively (Figure 1d) [39], but how this is
achieved remains a mystery since the coupling mecha-
nism itself is unknown. Presumably, there are connec-
tions between secondary limb and primary axial CPG
neurons, but the nature of these interactions, whether
they are chemical or electrical and how they are modu-
lated at different points along the metamorphosis
timeline have yet to be investigated.

Further progress in understanding changes in spinal
CPG function during metamorphosis awaits the avail-
ability of techniques suitable for cellular and molecular
level analyses. At the MN level, investigating the tem-
poral expression of Hox genes that define the specifi-
cation of motor pools for the limb and axial systems [40]
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would be very illuminating. Patch clamp recordings from
isolated preparations [36] have allowed intriguing initial
insights, for example on the incorporation of functional
D1Rs, the persistence of a usAHP and its negative
modulation by NO. However, more advanced methods
are now needed, such as calcium imaging that should
allow real-time mapping of groups of neurons associated
with the two CPGs when they are active. Associated
neuromodulatory control mechanisms may be more
difficult to explore given the additional complexities
anticipated as the metamorphic transition proceeds. A
conceptual framework is also needed that considers the
changing physical distances over which modulation
takes place. This is especially relevant to NO signalling
whose neuronal sources in the early stages are restricted
to the brainstem, in close proximity to rostral swim CPG
neurons, but as the tadpole grows, nitrergic neurons
appear within the future spinal appendicular CPG
centres [41].

Evo-devo of metamorphosis

Amphibian metamorphosis effectively compresses into a
few weeks transitional events that spanned ~ 300
million years in evolutionary time to allow aquatic an-
cestors to exploit terrestrial habitats. Metamorphosis is
driven by increasing plasma concentrations of thyroid
hormone (TH) and remarkably, without sufficient TH,
or if TH receptors are compromised, metamorphosis is
arrested. A key step in metamorphosis is the transport of
circulating THs across cell membranes in target tissues,
with a key transporter thought to be monocarboxylate
transporter 8 (MCTS8). However, a recent study found
that mutant frogs devoid of MCT8 did not have
impaired metamorphosis, suggesting the involvement of
additional transport mechanisms [42].

Comparative studies on metamorphosis have shed light
on the evolution and development of vertebrate loco-
motor movement strategies [43] and on how the forces
of natural selection have acted on the TH pathway to
shape amphibian diversity. In some species, such as
salamanders, metamorphosis is incomplete with the two
systems co-existing in adulthood; the axial system drives
undulatory aquatic swimming while the limbs are used
for terrestrial quadrupedal walking [44]. However, in
contrast to Xenopus, left/right limb alternation is
employed in both behaviours, perhaps indicative of a
single axial CPG capable of driving the two modes of
locomotion. During urodele evolution, changes in the
TH pathway underpin the retention of neotenous
characteristics. In axolotls, for example, the thyroid
gland produces insufficient TH for metamorphosis, but
it can be induced in key tissues by exogenous TH [45],
so the cellular machinery, including intracellular 'TH
receptors, must be present. Other salamanders like the
mudpuppy, Necturus, are paedomorphic because
although the thyroid gland produces TH, target tissues
are unresponsive, even though functional TRs are

expressed [46]. This suggests that genes linked to
metamorphosis but downstream of TR receptor activa-
tion are compromised. Among some anurans, meta-
morphosis is completed directly  ovo, as in the Puerto
Rican coqui tree frog which emerges from the egg having
never previously generated axial locomotor behaviour
[47]. The challenges this animal faces during its early
development include the need for extremely large eggs
(~3 mm versus ~1 mm in Xenopus) to provide suffi-
cient yolk-derived energy for iz ovo metamorphosis. The
emerging froglet is also tiny as a result, easily fitting on a
US penny. Similarly, in marsupial frogs, which have the
largest of all (up 10 mm) amphibian eggs, the animals
develop in and hatch from special brood pouches on
their mothers back as froglets or developmentally
advanced tadpoles [48].

While comparative studies of different amphibian spe-
cies offer clues regarding the transition from water to
land, recent research on fish has also provided fasci-
nating insights into the evolution of the vertebrate limb.
The little skate Leucoraja uses its pectoral fins to swim
in the familiar skate-like fashion but uses its pelvic fins
to walk bipedally along the seafloor [49]. Interestingly,
the use of molecular approaches to examine transcrip-
tion factor expression revealed the same Hox genes as
used to construct the mammalian hindlimb [50,51],
indicating a conservation of gene regulatory machinery
across vertebrates with paired lateral append-
ages (Figure 2).

Environmental impact on tadpole development

As ectotherms, amphibians are exposed to the elements
throughout development which, for fully aquatic spe-
cies, spans the entire larval phase from hatching to
metamorphosis. In Xenopus, the effects of temperature
on metamorphosis are dramatic, taking 12 days at 22 °C
but 36 days at 15 °C [52]. Correspondingly, the Q10
effect on the proteins and pathways involved, including
the TH system, are slowed and can even arrest meta-
morphosis with cooler temperatures. In addition,
because locomotor activity itself contributes to motor
system development, the developmental programmes
that generate and adapt movements are also
temperature-dependent. Accordingly, if movements are
slower in colder conditions, there will be negative con-
sequences for the developmental progression of the
animal’s behavioural repertoire.

Early tadpole development is especially sensitive to
changes in ambient temperature, and even # ovo, loco-
motor circuit construction is profoundly affected. A
recent study [53] explored how abiotic stress regulates
myotomal MN development by rearing embryos from
early blastula stages (stages 7—8) in relatively cool
(14.5 °C) or warm (22.5 °C) environments and then
examining their locomotor behaviour from hatching up
to stage 40. Somewhat counterintuitively, cold-reared
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Figure 2
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Proposed phylogenetic conservation of motor neuron (MN) subtypes subserving ambulatory movements in vertebrates. In ancestral vertebrates,
fin MNs, defined by expression of the transcription factor FoxP1, are distributed longitudinally in the Lateral Motor Column (LMC; top left) and divided into
adductor (flexor homologue) and abductor (extensor homologue) motor pools (top right). In the little skate, LMC MNs innervating the adjacent pectoral
and pelvic fin muscles also express specific Hox genes and FoxP1 to control swimming and pelvic fin walking. Similarly, in quadrupeds like frogs and
mice, fore- and hindlimb locomotor control involves flexor and extensor muscles innervated by LMC MNs in cervical and lumbar cord regions, respectively.
In inter-limb (thoracic) regions, FoxP1 expression is repressed by Hoxc9 so that thoracic segments are innervated only by axial MNs. In skates, a natural
deletion of the HoxC cluster led to a lack of Hoxc9 along the spinal cord and thus to an inability for LMC Hoxc9-related specification. Together these
findings suggest that the gene regulatory system required for appendicular motor control evolved from a common ancestral vertebrate possessing paired
appendages. Figure adapted from the studies by Gillis et al. [49] and Jung et al. [50].

larvae displayed more forceful escape swimming re-
sponses when stimulated, correlated with an increased
number of spinal MNs (Figure 3). Thus, the response to
a more challenging environment appears to be the
development of a more robust motor control system.
Mechanisms underlying this cold hardening response
involves activation of a cold receptor, TRPMS, which
increases Ca”*™ waves during development, facilitating
expression of the transcription factor Hb9 resulting in
increased MN numbers. Whether there are additional
effects on the motor circuitry is unknown but
seems likely.

The effects of raised temperature on the developing
ectothermic brain also have important consequences for
locomotor behaviour and hence survival, so aquatic an-
imals like amphibians and fish may be particularly
vulnerable to the impact of global warming [54]. In
principle, rising water temperatures could have the

opposite effect to cold hardening, producing tadpoles
with fewer MNs that are less able to escape from
predators and transition to adulthood. With respect to
metamorphosis, warmer temperatures profoundly affect
its duration; Xenopus tadpoles exposed to higher tem-
peratures tend to metamorphose quicker (the drying
pond effect), but consequently, they are smaller [55].
Whilst this strategy can help to avoid desiccation and
death, there are adverse outcomes for an individual’s
fitness. In Rana chensinensis, warm temperatures not only
accelerate the time to metamorphosis but they also
impair skeletal development and ossification such that
froglets have reduced bone length, affecting their
jumping capability [56]. Furthermore, the thyroid gland
is significantly smaller in warm-reared tadpoles and
larger in cold-reared animals. Thus, multiple factors
influencing the growth rate and size of the newly
metamorphosed froglet can be affected, impacting the
animal’s survival. A recent study demonstrated in the
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Figure 3
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Developmental adaptation to cold temperature. In animals grown in cold temperatures (left), cold-sensitive TRPM8 channels are activated and trigger
higher frequency Ca* spikes (blue insert), which increases Hb9-dependent MN differentiation and survival. Consequently, MN numbers are greater than
in animals grown in warm temperature (right). This developmental temperature-dependent adaptation allows tadpoles to escape more quickly in cold

water than if they had been reared in warm water, increasing their chances of escaping predators. Figure adapted from the study by Spencer et al. [53].

tropical Pacific horned frog Ceratophrys stolzmanni that
locomotor performance is negatively affected by animals
being relatively small after metamorphosis [57]. Jump-
ing distances post-metamorphosis were >50% greater in
larger juveniles than smaller ones, an outcome associ-
ated with hindlimb length and affecting the ability to
evade predators and access food resources. Moreover,
even with no risk from predators and ample food avail-
able, smaller froglets still showed a higher mortality. The
ultimate consequence of rising temperatures is, there-
fore, a lower survival rate, suggesting that amphibians
are especially susceptible to climate change, making
them highly relevant indicators of global warming.

Conclusions and future prospects
The Xenopus locomotor system has been an influential
model in motor control research, providing many insights

of general importance in neuroscience. In this organism,
the underlying CPG mechanisms can be studied in detail
from embryos and hatchling tadpoles through the various
stages of metamorphosis. LLocomotion can be investi-
gated on a broad range of levels (molecular, cellular and
synaptic, neuromodulatory and behavioural), using a wide
variety of methods. The studies on how tadpoles are
transformed into frogs also afford an important evolu-
tionary perspective, providing clues about the evolution
of the vertebrate limb and appendicular locomotion.

On hatching, the stage 37/38 axial swim CPG is un-
derstood in remarkable detail, but in contrast, only the
surface has been scratched regarding later stages from
pre-metamorphosis through the climax to the froglert,
and despite some tantalising glimpses, progress has
temporarily stalled. We know little about how the limb
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control systems are constructed within the framework
of a pre-existing axial CPG circuit. The future appli-
cation of molecular genetics and cellular-resolution
population imaging techniques will enable initial
observations to mature into a more detailed under-
standing of the mechanisms underpinning the devel-
opment of amphibian locomotion, especially during the
dramatic process of metamorphosis.
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