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Passive acoustic monitoring is a promising method for surveying wildlife populations
that are easier to detect acoustically than visually. When animal vocalisations can be
uniquely identified on an array of sensors, the potential exists to estimate population
density through acoustic spatial capture–recapture (ASCR). However, sound classifica-
tion is imperfect, and in some situations, a high proportion of sounds detected on just a
single sensor (‘singletons’) are not from the target species. We present a case study of
bowhead whale calls (Baleana mysticetus) collected in the Beaufort Sea in 2010 con-
taining such false positives. We propose a novel extension of ASCR that is robust to false
positives by truncating singletons and conditioning on calls being detected by at least
two sensors. We allow for individual-level detection heterogeneity through modelling
a variable sound source level, model inhomogeneous call spatial density, and include
bearings with varying measurement error. We show via simulation that the method pro-
duces near-unbiased estimates when correctly specified. Ignoring source-level variation
resulted in a strong negative bias, while ignoring inhomogeneous density resulted in
severe positive bias. The case study analysis indicated a band of higher call density
approximately 30km from shore; 59.8% of singletons were estimated to have been false
positives.
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1. INTRODUCTION

In recent decades, passive acoustic monitoring (PAM) has increasingly been used to
study both terrestrial (Sugai et al. 2019) andmarine animals, particularly cetaceans (Zimmer
2011). Compared with more traditional visual survey methods, acoustic monitoring works
day and night, is robust to variation in environmental conditions such as weather, and in
some habitats has the potential to detect animals at greater distances, hence increasing the
area surveyed (Marques et al. 2011). It has enabled studies of rare and elusive species such
as the vaquita (Thomas et al. 2017) and several species of beaked whale (Hildebrand et al.
2015; Yack et al. 2013) which, despite being visually cryptic, produce frequent sounds that
can be detected by PAM systems.

One important application of PAM is to estimate population density or abundance (Mar-
ques et al. 2013). In the situation where multiple acoustic sensors are deployed simulta-
neously with a spatial separation such that some vocalisations can be detected on multiple
sensors then an appropriate statistical framework for estimating density is spatial capture–
recapture (SCR; also known as spatially explicit capture–recapture) (e.g. Borchers et al.
2015; Stevenson et al. 2015). SCR is an extension of long-established capture–recapture
(otherwise known as mark-recapture or mark-resight) methods where data on the detection
(‘capture’) of individually identified animals are supplemented by data on the spatial loca-
tion of the survey effort and the detections (Borchers and Efford 2008; Royle et al. 2009;
Kidney et al. 2016). Recording not just whether but also where each animal was detected
increases the accuracy of abundance and density estimates and potentially allows estimation
of a spatially inhomogeneous animal density surface.

Acoustic spatial capture–recapture (ASCR) is a special case of SCRwhere the detections
are of individual animal vocalisations or ‘cues’. Standard SCR relies on animals moving
between detection locations and hence typically requires multiple capture occasions, while
in ASCR, the sound travels almost instantaneously from its source and hence can be detected
on multiple sensors in a single occasion. Estimation is of cue spatial density; to convert to
animal density, an estimate of average cue production rate is required (Marques et al. 2013;
Stevenson et al. 2021). As well as the location of detection, additional information is often
available about the location of the vocalisation, e.g. the bearing, received sound level or
time of arrival on multiple sensors. Borchers et al. (2015) showed that using this additional
information further improved estimation accuracy.

PAM data can also present challenges that require accounting for to avoid bias in ASCR
analysis. First, sound classification is imperfect, leading to false positive detections of sounds
not originating from the target species. Second, vocalisation source level can vary consider-
ably, causing heterogeneity in detectability. Third, there can be considerable measurement
error in the additional information, particularly the bearings. Fourth (in common with other
SCR studies), spatial density of source locations can vary substantially.

The methods presented here are motivated by a case study that demonstrates all four
of the above issues: estimation of call density of bowhead whales (Baleana mysticetus)
migrating through the Beaufort Sea. Multiple arrays of acoustic sensors were deployed in
the Beaufort Sea during the migration season and recorded millions of bowhead whale
calls (see Fig. 1). Automated detection and classification methods were therefore used to
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Figure 1. Map of the DASAR deployment locations for 2008–2014, with a detailed view of site 5. In 2010, sensor
F at site 5 was lost, and its data were not available for analysis. This image is originally presented in Thode et al.
(2020). .

process the data, yielding call detections, received sound levels and bearings, and linking
calls across detectors. However, a high proportion of the detections made on only one
sensor (‘singletons’) were thought to be false positives. Naively including these singletons
in the analysis would lead to a positive bias in the estimated abundance of unknown but
likely substantial magnitude. To avoid this, we excluded all singletons from the analysis
and conditioned the ASCR likelihood to only include calls detected on multiple sensors
(‘multiply-detected calls’). Truncating the data in this manner, rather than attempting to
model the proportion of false positives, is a good strategy when data are plentiful (see Sect.
6). Conn et al. (2011) proposed a similar procedure in a mark-resight study as a way to
differentiate between resident and transient bottlenose dolphin populations, assuming that
transients were never detected more than once. To our knowledge, this is the first time this
approach has been used in SCR.

Our case study features some additional complications that may commonly appear in
real-world data but are not typically all dealt with. Call source level was thought to vary
substantially and so we include source level as a random effect in our model. Exploratory
analysis showed that while most estimated bearings were accurate, some appeared to be
very inaccurate. We therefore developed a two-part discrete mixture model for bearing
error, extending the bearing error methods of Borchers et al. (2015). Finally, we allowed for
an inhomogeneous density model to accommodate the spatial preference of the migrating
whales (and thus their calls).

In Sect. 2, we describe the case study in more detail. We then present the extended ASCR
model in Sect. 3. In Sect. 4, we evaluate the model performance via simulation, and show
how ignoring some of the real-world issues can result in substantial bias. Section5 gives
results from a proof-of-concept application of the model to a single day of data. Finally, in
Sect. 6, we discuss results, limitations and alternatives.
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2. CASE STUDY

Every year from August to October, the Bering-Chukchi-Beaufort population of bow-
head whales (Baleana mysticetus) migrates westwards through the Beaufort Sea to their
wintering areas in the Bering Sea (Blackwell et al. 2007). They travel mainly over the conti-
nental shelf in waters less than 25ms deep, approximately 10–75km offshore (Greene et al.
2004). During this migration, bowhead whales are known to produce a wide variety of calls
(Ljungblad et al. 1982). The purpose of these calls remains largely unknown, although they
may be used for long-range communication (Thode et al. 2020) or to navigate through ice
(George et al. 1989).

Between 2007 and 2014, up to 35 Directional Autonomous Seafloor Acoustic Recorders
(Greene et al. 2004, DASARs;) were deployed at several sites off the north coast of Alaska
to monitor the calling behaviours of the migrating whales during seismic surveys. An auto-
mated detection and classification procedure was developed to handle the more than one
million detected calls over the period 2007–2014 (Thode et al. 2012, 2020). This procedure
could identify discrete sounds as bowhead whale calls, and subsequently link them with
detections from other DASARs within the array if they were the same call (Thode et al.
2012).

Even though it was not the original purpose of the monitoring, the detection and linking
of calls created detection histories for every detected call, making these data suitable for
ASCR.ASCR theory assumes capture historieswithout errors, i.e. calls can bemissed but not
incorrectly positively identified or matched. Several data cleaning procedures were required
to meet this assumption as far as possible. Sometimes, calls would be wrongly identified as
other discrete sounds. Distant airgun signals were occasionally misidentified as bowhead
whale calls; bearded seals (Erignathus barbatus) and walruses (Odobensu rosmarus diver-
gens) could appear similar as well, but these were generally rare and much quieter (Thode
et al. 2012). Moreover, if bowhead whale calls overlapped in time, they could be incorrectly
matched as being the same call. Cheoo (2019) showed that the number of detection histo-
ries that involved just one sensor (‘singletons’) in the automated data was not in line with
expectations based on sound propagation theory (see Fig. 2). It was therefore hypothesised
that these singletons contain a high-degree of incorrectly classified calls (‘false positives’),
mostly consisting of random fluctuations in the noise field or reverberations of whale calls,
which were unlikely to be associated among multiple detectors. The solution we present
here is to exclude singleton detection histories all together and modify the ASCR likelihood
to be conditional on the capture histories involving at least two sensors. To ensure that
the multiply-detected calls would contain no false positives, we cleaned the remaining data
using a procedure described in Appendix A in Supplementary Materials.

In this study, we focus on the data from one specific day, 31 August 2010, from site 5, the
most eastward site. Calls accumulated somewhat evenly across the day, resulting in a low
expected rate of overlapping calls. The array consisted of six functioning sensors spaced
at 7kms from each other (see Fig. 1). For every call, the following data were recorded:
a detection history as well as bearings, received sound levels, and noise levels for every
involved DASAR. The source level and origin of the call are unobserved, and hence treated
as latent variables. Throughout this manuscript, all sound measurements are denoted on
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Figure 2. Counts of detected calls by number of DASARs (sensors) involved per call at site 5 on 31 August 2010.
Detections were included if the received level was at least 96 dB. The high proportion of singletons (detections
on a single DASAR; 1417) raised concerns about the validity of those calls. The dashed line shows the number of
singletons (570) that were estimated to be valid using the methods developed in this paper .

the decibel scale (RMS; dB re 1 μPa). More details on the background, availability, and
pre-processing of the data are presented in Appendix A in Supplementary Materials.

3. MODEL

In this section, we first introduce the full likelihood. Following that, we derive each
element of the likelihood individually. Consider an acoustic survey of an array of K sensors
operating within a survey region A ⊂ R

2 over a period of time T . A total of n unique
animal calls are detected by at least two sensors. For any multiply-detected call i ∈ 1, ..., n,
let ωi j be 1 if the call was detected at sensor j ∈ 1, ..., K , and 0 otherwise. We define
the matrix containing all detection histories as � = (ω1, ...,ωn)

�, where the detection
history for call i is denoted ωi = (ωi1, ..., ωi K )� and � denotes the transpose. For every
call i that was detected at sensor j , we also observe the bearing yi j , measured in degrees
clockwise relative to true north, and the received sound level ri j . These data are contained
in Y = ( y1, ..., yn)

� and R = (r1, ..., rn)�, respectively. Latent variables are the spatial
origins of calls, denoted by X = (x1, ..., xn)� where xi is a location in the Cartesian
plane, and the source levels, denoted by s = (s1, ..., sn)�. The support for s is denoted S.
Throughout this manuscript, we do not distinguish explicitly in notation between random
variables and specific observations/realisations—this should be clear from the context.

The parameter vectors used in the model are (following previous literature as closely
as possible): φ for parameters associated with the spatial density of emitted calls, ν for
those associated with the source levels of calls, η for those associated with source sound
propagation and received levels, θ for those associated with detectability of calls, and γ for
those associated with measurement error of the bearings. For notational convenience, we
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Table 1. Summary of notation

Symbol Description Type

General
n Number of multiply-detected calls Observed
p Detection probability of an emitted call Function
tr Detection threshold for calls Known
w Detection indicator Observed
r Received level Observed
y Bearing Observed
x Spatial origin Latent
s Source level Latent
S Support for source level Support
f Probability density/mass function Function
L f ,Lc Full likelihood, conditional likelihood Function

Quantities related to the survey
K Total number of sensors Observed
A Study area Support
T Study period Observed

Estimable parameters
φ Spatial density of emitted calls Parameter vector
η Source sound propagation Parameter vector
ν Distribution of source levels Parameter vector
θ Detectability of calls Parameter vector
γ Measurement error of bearings Parameter vector
ξ All estimable parameters Parameter vector

Subscript and sets
i Call index
j Sensor index
R Set of all received levels Observed
� Set of all detection histories Observed
Y Set of all bearings Observed
X Set of all spatial origins Latent
s Vector of all source levels Latent

define the joint parameter vector ξ = (φ, ν, η, θ , γ ). An summary of notation is presented
in Table 1. A list of model assumptions is presented in Sect. 3.10.

3.1. LIKELIHOOD SPECIFICATION

The likelihood is formed from the joint distribution of all observed and latent variables
introduced above. We denote this likelihood L f (ξ) where the subscript f stands for ‘full’
to distinguish it from the conditional likelihood Lc(ξ) which is conditional on the observed
number of detections. Denoting both probability mass and density functions as f (.), we
define the full likelihood as

L f (ξ) = f (n,�,Y , R, X, s; ξ)

= f (n;φ, θ , ν) × f (�,Y , R, X, s|n; ξ)

= f (n;φ, θ , ν) × Lc(ξ). (1)
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Aswedonot observe the call locations and source levels,wemarginalise over the unobserved
X and s to obtain

Lc(ξ) = ∫
S

∫
A f (�,Y , R, X, s|n; ξ)dXds. (2)

The double integral in Eq. (2) is of dimension 3n, making this likelihood intractable. We
follow Stevenson et al. (2015) in assuming calls to be independent of each other in all
respects, allowing us to specify Eq. (2) as the product of n three-dimensional integrals:

Lc(ξ) ≡
∏

i∈{1:n}

∫

S

∫

A
f (ωi , yi , r i , xi , si |ω∗

i ≥ 2; ξ)dxidsi

=
∏

i∈{1:n}

∫

S

∫

A
f (ωi |xi , si , ω∗

i ≥ 2; θ)

× f ( yi |ωi , xi ; γ ) × f (r i |ωi , xi , si ; η)

× f (xi |si , ω∗
i ≥ 2;φ, θ)

× f (si |ω∗
i ≥ 2;φ, θ , ν)dxidsi

(3)

where we assume independence between yi and r i given xi , and ω∗
i := ∑

j∈1:k wi j denotes
the total number of sensors involved in the detection of call i . The separation of the joint
distribution inside the integrals in (3) follows from repeatedly applying Bayes’ formula.
Note that conditioning the joint distribution on n in (2) is equivalent to conditioning every
marginal distribution on involving at least two sensors in (3); for the second and third
element, this conditioning is implicit in conditioning on detection history ωi . If we were
to assume a constant spatial density of calls, it would be sufficient to simply maximise Lc,
as the parameter estimates from the conditional MLE are identical to those obtained by
maximising the full likelihood—a Horvitz Thompson-like estimator could then be used to
derive the mean density (Borchers and Efford 2008). In our case study, however, the spatial
density of calls is known to be inhomogeneous, so the full likelihood is required.

In the following sections, we specify in further detail f (n;φ, θ , ν) and the five compo-
nents in Equation (3). For readability, we will henceforth omit the indexing of parameters
in the probability functions.

3.2. DETECTION PROBABILITY, p(xi , si )

A fundamental part of ASCR is the concept of a detection probability, which is the
probability that an emitted call is detected by a sensor—this is thewayASCR accommodates
for missed calls, i.e. false negatives. The function that relates this probability to covariates
is called the detection function, denoted p(.).

For ASCR, it was proposed to be most appropriate to use a detection function based on
the received (sound) level, also known as signal strength, which is primarily a function of
source level s and range (i.e. distance to the origin of the sound, d(x)) (Efford et al. 2009;
Stevenson et al. 2015). We propose a detection function for sensor j where g0 ∈ (0, 1)
denotes the detection probability when the true received level of a call surpasses threshold
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tr , and zero probability else, as follows:

p j (xi , si ) = g0 ×
(

1 − �

(
tr − E[ri j |xi , si ])

σr

))

, (4)

where � denotes the standard normal cumulative density function (cdf) and σr denotes the
measurement and propagation error on received level (see Sect. 3.4). The threshold tr should
be set by the analyst, and in this study, it is roughly equal to the maximum level of ocean
background noise. As there is error on the received levels, calls with an expected received
level close to tr can have a detection probability between 0 and g0.

3.3. DETECTED CALLS, f (n)

To construct a probability function for the number of detected calls, we start with the
distribution of emitted calls, which are assumed to occur independently of one another in
space and time. Thus, let the number of emitted calls at point x in period T be a realisation of
a spatially inhomogeneous Poisson point process with intensity D(x). As we only observe
multiply-detected calls, we take the product of this intensity and the probability of multiply
detection, denoted by

p.(xi , si ) = P(ω∗ ≥ 2|xi , si )
= 1 − P(ω∗ = 0|xi , si ) − P(ω∗ = 1|xi , si ), (5)

where ω∗ := ∑
j∈1:k ω j . Note that Eq. (5) is the part of the method that deviates from con-

ventional ASCR and allows us to exclude all singletons. We rewrite Eq. (5) and marginalise
over source level to get the filtered Poisson point process with spatially varying rate parame-
ter

∫
S D(x)p.(x, s) f (s)ds. Lastly, we marginalise over x to get the distribution of the total

number of multiply-detected calls over time T :

n ∼ Poisson

(∫

A

∫

S
D(x)p.(x, s) f (s)dsdx

)

. (6)

The expected total number of emitted calls is then derived by integrating the density over
the study area, such that E[N ] = ∫

A D(x)dx.

3.4. RECEIVED LEVEL, f (r i |ωi , xi , si ; η)

Sound waves propagating through water lose strength through various mechanisms
(Jensen et al. 2011), a process known as ‘transmission loss’. We approximate this pro-
cess by allowing a single parameter βr to determine the acoustic transmission loss, such
that

E[ri j |xi , si ] = si − βr log10(d j (xi )), (7)

where d j (xi ) returns the distance from sensor j to location xi . Here, βr = 20 would reflect
purely spherical spreading loss, while βr = 10 would reflect cylindrical spreading loss; in
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reality, the dominant process will be range- and depth-dependent, with other factors also
playing a role (Jensen et al. 2011). To capture potential error in the propagation model and
the measurement of received level, we follow Stevenson et al. (2015) and assume Gaussian
error on the received levels, giving

ri j |xi , si ∼ N
(
E[ri j |xi , si ], σ 2

r

)
(8)

whereN (
μ, σ 2

)
denotes a normal distributionwithmeanμ and varianceσ 2. Unlike Steven-

son et al. (2015), we do not assume all calls above threshold tr to be detected with certainty.
Instead, we allow for a single detection probability for calls with received levels above the
threshold, since the signal processing used in our case study meant that other factors also
determined detectability (see Sect. 3.2). As ri j is only recorded if sensor j detected the call,
we condition the indexing on the j th DASAR detecting the call. Assuming independence
between the sensors, the third component of Equation (3) becomes

f (r i |ωi , xi , si ; η) =
∏

j∈{1:K |ωi j=1}

1

σr

φ
(
(ri j − E[ri j |xi , si ])/σr

)

1 − �((tr − E[ri j |xi , si ])/σr ) ,
(9)

where φ denotes the standard normal probability density function (pdf). This is in effect a
normal distribution truncated at tr .

3.5. BEARINGS, f ( yi |ωi , xi ; γ )

DASARswere designed to record the direction to discrete sounds; these recordedbearings
contain measurement errors. Following Stevenson et al. (2015) and Borchers et al. (2015),
we capture this error by assuming a von Mises distribution with concentration parameter
κ on the bearings. Analogous to the received levels, we only record bearings at DASARs
that detected a call. Assuming that the sensors are independent of each other, the second
component of Eq. (3) would therefore be

f ( yi |ωi , xi ; γ ) =
∑

j∈{1:K |wi j=1}

exp{κ cos(yi j − E[yi j |xi ])}
2π I0(κ)

,
(10)

with I0 denoting the modified Bessel function of degree 0. Exploratory research found
that while most bearings appeared relatively accurate, a small proportion seemed highly
inaccurate, which could have been the result of (i) only a fraction of the call getting captured
by the measurement window of the sensor, or (ii) a low signal-to-noise ratio at the sensor.
(The latter should be rare as we truncated the data at a sound level equal to the highest noise
observed.) Moreover, some of the mismatched calls could still have been present in the
data, thus leading to disagreement among the bearings. To accommodate these inaccurate
bearings, we apply a two-part discrete mixture model on the bearings. In effect, we fit a
von Mises distribution with a lower accuracy (dispersion is κ) for some proportion of the
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bearings,ψκ , and a vonMises distribution with higher accuracy (dispersion is κ +δκ , where
increment δκ is non-negative) to the remaining proportion of the bearings, 1 − ψκ . The
second component of Eq. (3) thus becomes

f ( yi |ωi , xi ; γ ) =
∑

j∈{1:K |wi j=1}
ψκ

exp{κ cos(yi j − E[yi j |xi ])}
2π I0(κ)

× (1 − ψκ)
exp{(κ + δκ) cos(yi j − E[yi j |xi ])}

2π I0(κ + δκ)
.

(11)

3.6. CALL LOCATION GIVEN s AND AT LEAST TWO DETECTIONS,
f (xi |si , ω∗

i ≥ 2;φ, θ)

To evaluate the pdf of call locations, we assume independence between call location xi
and source level si , and use Bayes’ formula to obtain

f (xi |si , ω∗
i ≥ 2;φ, θ) = f (ω∗

i ≥ 2|xi , si ) f (xi |si )∫
A f (ω∗

i ≥ 2|x, si ) f (x|si )dx
= p.(xi , si ) f (xi )∫

A p.(x, si ) f (x)dx
.

(12)

Although f (xi ) is unknown, we do know that it is proportional to the emitted call density,
such that f (xi ) = D(xi )/

∫
A D(x)dx. Thus, we can simplify Equation (12) as

f (xi |si , ω∗
i ≥ 2;φ, θ) = p.(xi , si )D(xi )/

∫
A D(x)dx

∫
A p.(x, si )D(x)/

∫
A D(q)dqdx

= p.(xi , si )D(xi )∫
A p.(x, si )D(x)dx

.

(13)

3.7. SOURCE LEVEL GIVEN AT LEAST TWO DETECTIONS, f (si |ω∗
i ≥ 2;φ, θ , ν)

Analogous to above, we assume independence between and among call location and
source level, to derive

f (si |ω∗
i ≥ 2;φ, θ , ν) = f (ω∗

i ≥ 2|si ) f (si )
f (ω∗

i ≥ 2)

=
∫
A p.(x, si )D(x)dx × f (si )∫
A

∫
S p.(x, s) f (s)D(x)dsdx

.

(14)

Note that a part of the numerator in Eq. (14) cancels out against the denominator in Eq.
(13), and that the denominator of Eq. (14) denotes the effective sampled area. Thode et al.
(2020) estimated source levels using the estimated origin of the call, the received level on
the sensor nearest the origin, and a transmission loss parameter βr of 15. Based on the
observed distribution of these estimated source levels, we assume a normal distribution on
si truncated at 0, such that

s ∼ N∞
0 (μs, σ

2
s ). (15)
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3.8. DETECTION HISTORY, f (ωi |xi , si , ω∗
i ≥ 2; θ)

If we assume sensors to be independent, we can view the detection history of a call
as a realisation of a binomial process with size K and non-constant probability p j with
j = 1, . . . , K , where the order is relevant, and hence, the binomial coefficient is absent.
This gives

f (ωi |xi , si , ω∗
i ≥ 2; θ) =

∏K
j=1 p j (xi , si )ωi j (1 − p j (xi , si ))1−ωi j

p.(xi , si )
, (16)

where p.(xi , si ) appears in the denominator to account for the conditioning on at least two
sensors in every call detection history (see Eq. (5)).

3.9. VARIANCE ESTIMATION

We do not use the Hessian matrix to extract standard errors, as these are only asymp-
totically normal. Instead, we estimate uncertainty using a nonparametric bootstrap, where
we re-sample the calls with replacement (Borchers et al. 2002) and fit the model every
time. Following that, we estimate the standard error by taking the standard deviation of all
bootstrapped parameter estimates, and we take the 2.5% and 97.5% percentiles to estimate
their 95% confidence intervals.

3.10. ASSUMPTIONS

The method presented in this manuscript relies on several assumptions, as follows. (1)
Call origins are a realisation of a Poisson point process, thus calls are spatially and temporally
independent given this process. (2) Calls are omnidirectional and equally detectable given
only the received level (i.e. no unmodelled heterogeneity). (3) Sensors are identical in
performance and operate independently; (4) Calls are matched without error and identified
correctly, but can be missed (i.e. no false positive, but false negatives are allowed). (5) The
transmission loss model is correctly specified. (6) Uncertainty on bearings and received
levels are independent. (7) Source level of a call is independent of space and time. These
assumptions are discussed in more detail in Appendix B in Supplementary Materials.

3.11. PRACTICAL IMPLEMENTATION

We fitted the model using maximum likelihood estimation (MLE) in R 4.1.0 (R Core
Team 2021) with some components written in C++ and linked to R through the Rcpp library
(Eddelbuettel 2013). We standardised the covariates in the density model to improve the
convergence. The estimates were found through optimisation with the function nlminb()
(R Core Team 2021). We used a spatial mesh with non-uniform grid spacing to reduce
run-time, with increased grid spacing farther from the sensor array (see Appendix C in
Supplementary Materials for details).
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Table 2. Parameter values used for the simulation study. These were based on initial fits to the real data, in order
to keep the simulations as realistic as possible

Parameters Variable SL Constant SL

g0 0.6 0.6
βr 18.0 14.5
σr 2.7 4.5
μs 163.0 155.0
σs 5.0 –
κ 0.3 0.3
δκ 36.7 34.7
ψκ 0.1 0.1
β0 −12.0 −16.0
β1 45.0 57.0
β2 −53.0 −68.5

4. SIMULATION STUDY

Weused simulations to evaluate the performance of themodel under variable source levels
(scenario 1) and fixed source levels (scenario 2). Both scenarios featured measurement error
on bearings simulated from a two-part mixture model, and inhomogeneous call density
specified as follows:

log(D) = β0 + β1d + β2d
2, (17)

where d denotes the (scaled) shortest distance to the coast. The parameter values used were
chosen to match those from the case study data analysis and are given in Table 2.

For each scenario, we simulated 100 data sets and analysed each data set with five
models: (a) the true model, i.e. that corresponding to the simulated scenario; (b) a model
with incorrect assumption about source level, i.e. for scenario 1, the model assumed fixed
source level, and for scenario 2, the model assumed variable source level; (c) a simpler
bearing model assuming a von Mises distribution on bearing error but no two-part mixture;
(d) a model that omitted the bearing information altogether; and (e) a model assuming a
homogeneous spatial density. We did not include a simulation scenario where we naively
fit model to false positives, as the effect on the estimates is already known; it will induce a
positive bias that will increase with increasing false positive rate.

For each scenario and model combination (1a-e and 2a-e), we evaluated performance
by calculating the coefficient of variation (CV), relative error and relative bias in estimated
total abundance. Further details are given in Appendix D in Supplementary Materials.

4.1. RESULTS

Both correctly specified models (1a and 2a) gave near-unbiased results (Fig. 3). Fitting
a single source level model in the variable source-level scenario (1b) introduced a strong
negative bias with low variance; fitting a variable source level in the fixed source-level
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Figure 3. Relative error, relative bias and coefficient of variation for N̂ from 100 simulations. The black dots
correspond to the relative bias (RB; the mean relative error) and the grey shading shows the spread of relative error
per scenario. The RB and coefficient of variation (CV) for every scenario and model combination are shown just
above the x-axis. Simulation scenario 1 is variable sound source level and 2 is fixed sound source level. Analysis
model (a) is the true model, (b) the incorrect source level model, (c) an incorrect simple bearing model, (d) a
model with bearing data, and (e) an incorrect homogeneous spatial density model .

scenario (2b) introduced a strong negative bias, although this bias could be explained by a
flat likelihood surface and resulting sensitivity to starting values, i.e. that the true optimum
was not found. Using an incorrect, simple bearing model (1c and 2c) did not induce bias but
did increase variance. Ignoring the bearing information induced a small positive bias and
greater variance in the variable source level scenario (1d) but had little effect on the fixed
source level scenario (2d). Lastly, using an incorrectly specified constant spatial density
model (1e and 2e) resulted in severe overestimation of abundance (> 300% and > 200%
bias for variable and fixed source level scenarios, respectively).

5. BOWHEAD WHALE ANALYSIS

We used the proposed method to estimate bowhead whale call density and abundance at
site 5 on 31 August 2010. We used data from a single day, and as we present our estimate
as call density per day, we did not need to adjust for our study time (T = 1). We set tr at
96 dB, as the observed background noise never surpassed this level. The true call density
surface is unknown, and therefore, we fitted several candidate models, which we compared
using Akaike’s information criterion (AIC; Akaike (1998)). As the bowhead whales are
thought to exhibit a spatial preference based on their distance from the coast and ocean
depth during fall migration (Greene et al. 2004), we fitted a candidate set of 35 models
containing combinations of distance and depth as linear, quadratic or smooth covariates—
see Appendix E in Supplementary Materials for full details. Measures of uncertainty in
abundance (standard error, CV, and quantile coefficient of dispersion (QCD)) were derived
by bootstrapping the calls 999 times, refitting the AIC-best model each time. The QCD is a
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Table 3. Point estimates and associated uncertainties.

Quantity Estimate SE CV (%) Single SL

N 5741.39 576.01 10.55 1916.06
g0 0.55 0.02 2.73 0.67
βr 17.05 0.33 1.91 13.86
σr 2.75 0.11 4.06 4.64
μs 158.46 1.50 0.95 151.04
σs 5.47 0.26 4.90 –
κ 0.77 0.17 21.95 0.62
δκ 45.49 3.02 6.54 40.23
ψκ 0.12 0.01 10.75 0.09
βintercept −265.65 7.92 2.99 −146.81
βs(depth).1 42.43 18.07 45.55 80.65
βs(depth).2 302.26 6.72 2.23 8.25
βs(depth).3 41.14 22.32 58.22 88.65
βs(depth).4 −141.57 6.88 4.89 −8.78
βs(depth).5 154.60 6.19 4.01 24.23
βs(d2c).1 159.48 4.47 2.82 59.19
βs(d2c).2 −449.58 15.55 3.47 −185.40
βs(d2c).3 101.06 4.29 4.26 33.88
βs(d2c).4 −109.30 5.10 4.69 5.14
βs(d2c).5 −224.66 11.13 4.96 −142.24

SE is standard error, CV stands for coefficient of variation, and Single SL are point estimates from the equivalent
model without source level heterogeneity. N is a derived quantity; g0 through ψκ are the observation parameters
presented on the real scale; and the remainder are the density parameters presented on their log link scale

relative measure and insensitive to outliers, and is defined as (Q3 − Q1)/(Q3 + Q1), where
Q1 and Q3 are the first and third quartile, respectively. To further illustrate the potential
benefits of modelling source level heterogeneity, we included point estimates of the best
model equivalent with a fixed source level.

5.1. RESULTS

The lowest AIC model included density modelled as a smooth function of distance to
coast and a quadratic relation with depth. We observe an increase in density, followed by a
decrease, as we increase the distance from the coast (Fig. 4, left panel). Moreover, density
is higher just east of the sensor array, potentially due to some effect of ocean depth. Even
though we observe increases in uncertainty in the southern regions and slightly in the north,
overall QCD estimates are low (Fig. 4, right panel). Total abundance of bowhead whale
calls was estimated at 5741 in the study area, and the CVs of the parameter estimates varied
considerably, ranging from 0.95% for μ̂s to 58.22% for ̂βs(depth).3 (Table 3).

6. DISCUSSION

We have developed and tested a novel extension of acoustic spatial capture-recapture
by conditioning on a minimum of two detections per individual call. Removing single
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detectionsmay be necessarywhen the validity of these calls is challenged, and our simulation
study shows that the method gives unbiased results in both variable and single source-
level scenarios. Even though this model applies to (marine) acoustic data, the extension
proposed can be applied to all forms of SCR. Fitting a single source level model to variable
source level data, thus ignoring heterogeneity in the detectability of the calls, resulted in
severe underestimation of abundance. This represents a cautionary tale for other applications
of SCR, both terrestrial and aquatic, when it is hypothesised that there is some random
variable affecting individual detectability—it does not have to be something as tangible as a
source level. Moreover, we confirmed results from Stevenson et al. (2015) on adding bearing
information to a SCR model and found a further increase in precision when allowing for a
mixture of ‘good’ and ‘bad’ bearings. Finally, we also confirm that incorrectly assuming a
constant call density surface can lead to severe overestimates of the abundance. The notion
that density of bowhead whale(s) (calls) is the highest 10–75km from the coast (Greene
et al. 2004) seems to be confirmed by the best model, which finds a density that is highest
a bit away from the coast, but not too far. The high spatial call density in the north-eastern
part of the study area (Fig. 4) was unexpected, but could have been a consequence of using
only data from one day. This likely strongly violated the Poisson assumption about call
spatial location, since whale location is spatially autocorrelated, especially on small time
scales (Wursig et al. 1985). Alternatively, it has been hypothesised that the higher estimated
density of calls in the east could be due to the directionality of the calls or the effect of water
depth on sound propagation (Blackwell et al. 2012). In this study, the authors observed
2.1 times as many calls east of the array as west. Future research could explore whether a
more gradual increasing/decreasing density slope is found if more days were included in
the analysis, resulting in reduced autocorrelation among the call origins. Another extension
could be to use a longer time series and consider a two-dimensional spatial density surface,
e.g. through splines on latitude and longitude. However, the biological pattern of migration
along the coast combined with limited sensor spacing in the east–west direction means this
may not produce improved inferences.

The model-based expected number of singletons was 570, whereas there were 1417
observed singletons, which is 149% more than expected and confirmed our suspicions
regarding false positives (see Fig. 2).

An alternative to truncating singletons would be to retain all data and try to model the
occurrence of false positive detections. For example, one could assume that an unknown
proportion of detections are false positives and include a parameter for this proportion in an
analogous way to the Mt,α model presented by Yoshizaki (2007). Detection at any detector
j could have three outcomes: no detection with probability 1 − p j , false detection with
probability αp j , and correct detection with probability p j . Moreover, we would have to
implement some modification of the Mb model (Otis et al. 1978) to account for a change
in α for the multiply-detected calls, which would likely involve an additional parameter.
A benefit of this Mb,α model would be that it could allow for false positives in multiply-
detected calls; however, it increases complexity and introduces hard-to-test assumptions on
the false positive rate. Given that a large amount of acoustic data are potentially available
(we used data from just one day), including poor-quality data seemed undesirable given the
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additional complexity and run time. Hence, we consider the truncation approach developed
here to be best for our application of ASCR.

The main model in our study conditions on at least two positive detections for every
detection history, but can readily be extended to condition on a minimum of three or more
involved sensors. This requires generalising Eq.5 to

p.(x, s) =P(ω∗ ≥ ω∗
min|x, s)

=1 − P(ω∗ = 0|x, s) − P(ω∗ = 1|x, s)

− ... − P(ω∗ = ω∗
min − 1|x, s),

(18)

where ω∗
min denotes the minimum number of sensors involved. Preliminary simulations

showed no apparent bias, although depending on the situation, conditioning this way can
rapidly reduce the amount of data available and hence decrease estimator precision. This is
illustrated by the relative frequencies in Fig. 2.

Weestimated variance empirically bybootstrapping the calls. This assumes independence
between the calls, which we know is violated as the calls are produced by whales and whales
are spatially autocorrelated. Moreover, calls can potentially trigger responses from nearby
whales, leading to temporal correlation between them (Thode et al. 2020). Someof the spatial
and temporal dependence was eliminated by removing all detections with a received level
below 96 dB, as this thinned the data, assuming independence between call characteristics
and ocean noise. To create more accurate variance estimates, one could stratify the data by
time and bootstrap these time chunks, thereby removing some of the autocorrelation. Even
better, one could sample short time frames from several days and combine those to obtain the
desired amount of data to analyse, in which case the analysed observations themselves could
be assumed independent and likelihood-based variance estimates are acceptable (given a
large enough data set). The length and frequency of these time chunks will be case specific,
as this will depend on the calling behaviour of the studied species.

We estimated model parameters using MLE as opposed to in a Bayesian inferential
framework, with MLE having coding simplicity and reduced run time as the main benefits.
We did find that convergence was sometimes slowed due to flat likelihood surfaces as a
consequence of the many sources of variation in our model. A benefit of using a Bayesian
framework would be the possibility to include informative prior distributions based on
previous research, especially on the latent variable source level, which would likely improve
convergence and may improve precision of density and abundance estimates.

Our method derives a call abundance, which can be converted into an animal abundance
by correcting this estimate for the call rate, similarly to Marques et al. (2013). Ideally, this
call rate is estimated for the same population and alongside the collection of the data, but
this is not always possible. Blackwell et al. (2021) estimated a call rate for the Bering-
Chukchi-Beaufort population over a longer period of time. Naively dividing our estimate or
total calls by their median call rate estimate of 31.2 calls/whale/day (interquartile range of
12−129.6 calls/whale/day) gives us N̂whales = 5741.39/31.2 ≈ 184 individuals.We present
this number for illustration alone; for correct inference, one should properly account for the
variance around call rate and call abundance estimates. Alternatively, there are methods that
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directly estimate animal density based on cues (for more information, see e.g. Fewster et al.
(2016) and Stevenson et al. (2019)).

When background noise is highly variable, selecting a truncation level that ensures that
noise (almost) never surpasses the received level might result in most data being discarded.
When data are scarce, it may then be beneficial to use a detection function based on the
signal-to-noise ratio (SNR). Here, detection probability is assumed to depend on the ratio of
the received level to the background noise, and could increase either step-wise or gradually
as a function of SNR. This way, no data will be lost due to truncation. However, using an
SNR detection function requires a random sample of accurate noise measurements for an
additional Monte Carlo integration in the likelihood, and noise measurements at all sensors
for every cue with a detection history to be able to estimate the detection probabilities. A
detailed description of the SNR likelihood is presented in Appendix F in Supplementary
Materials.

A potential weakness of the model is the fact that we assume the same propagation loss
model for the entire study area. For most of the study site, this assumption is reasonable, as
it concerns a shallow plateau with little variation in ocean depth. However, the ocean floor
drops in the northern part of the study site, resulting in altered propagation conditions. It is
assumed that the bowheadwhalesmigratemainly over the shallowplateau, and hence, depth-
induced inhomogeneous propagation is not a practical issue in our case study. In general,
however, it is something that should be considered when modelling sound propagation in
variable (ocean) landscapes. Phillips (2016) and Royle (2018) presented ways in which it
is possible explicitly to model variable sound attenuation. Such a model requires accurate
and sometimes high-resolution information on environmental variables that affect sound
attenuation, such as ocean depth.

The model presented here extends the scope of SCR to provide reliable inference on
spatial density and abundance from passive acoustic data. Removing single detections will
also be of use in other SCRapplicationswhere single detections are unreliable—for example,
when association between detections is not perfect such that repeat detections of the same
individual are sometimes incorrectly classified as single detections of a new individual. This
can happen in situationswhere natural animal characteristics are used for identification, such
as photo- and genetic-ID.
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