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ABSTRACT Vision Transformers (ViT) are commonly utilized in image recognition and related 

applications. It delivers impressive results when it is pre-trained using massive volumes of data and then 

employed in mid-sized or small-scale image recognition evaluations such as ImageNet and CIFAR-100. 

Basically, it converts images into patches, and then the patch encoding is used to produce latent embeddings 

(linear projection and positional embedding). In this work, the patch encoding module is modified to produce 

heterogeneous embedding by using new types of weighted encoding. A traditional transformer uses two 

embeddings including linear projection and positional embedding. The proposed model replaces this with 

weighted combination of linear projection embedding, positional embedding and three additional embeddings 

called Spatial Gated, Fourier Token Mixing and Multi-layer perceptron Mixture embedding. Secondly, a 

Divergent Knowledge Dispersion (DKD) mechanism is proposed to propagate the previous latent information 

far in the transformer network. It ensures the latent knowledge to be used in multi headed attention for 

efficient patch encoding. Four benchmark datasets (MNIST, Fashion-MNIST, CIFAR-10 and CIFAR-100) 

are used for comparative performance evaluation. The proposed model is named as SWEKP-based ViT, 

where the term SWEKP stands for Stochastic Weighted Composition of Contrastive Embeddings & 

Divergent Knowledge Dispersion (DKD) for Heterogeneous Patch Encoding. The experimental results show 

that adding extra embeddings in transformer and integrating DKD mechanism increases performance for 

benchmark datasets. The ViT has been trained separately with combination of these embeddings for encoding.  

Conclusively, the spatial gated embedding with default embeddings outperforms Fourier Token Mixing and 

MLP-Mixture embeddings.  

INDEX TERMS vision transformer, patch encoding, spatial gated unit, Fourier token mixing, MLP-mixture 

embedding, computer vision
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I. INTRODUCTION 

Deep learning has led to significant advancements in 

computer vision, such as object detection and image 

classification, but these models often rely on fixed 

architectures like convolutional neural networks which may 

not be suitable for tasks that require processing non-grid 

structures like graphs and sequences [1]. One of the key 

architectures used in deep learning for computer vision tasks 

is the CNN that are designed to process grid-like data, such 

as images, by applying a series of convolutional and pooling 

operations to the input data [2]. This allows the model to 

learn hierarchical features of the image, such as edges, 

textures, and shapes. CNNs have been used to achieve state-

of-the-art performance on many image-classification 

benchmarks.  

One of the key advantages of CNNs is their ability to 

learn spatial hierarchies of features [1]. As the data is passed 

through the layers, the model can learn more complex and 

abstract features from the lower layers, such as edges and 

textures, while still preserving the spatial information of the 

image. This allows the model to make more accurate 

classifications, especially when the features of the objects in 

the image are spatially related. 

The transformer architecture, originally proposed for 

natural language processing tasks, was introduced by Google 

in the paper “Attention is All You Need” in 2017 [3]. The 

transformer architecture uses self-attention mechanisms to 

learn relationships between different parts of the input data, 

such as words in a sentence [4]. 

In 2020, Google researchers proposed a new method 

called “Patch-based Predictive Coding”, where they adapted 

the transformer architecture for computer vision tasks by 

breaking an image into a sequence of patches and treating 

them as tokens in a sentence [5]. This method was dubbed as 

Vision Transformer (ViT) and was introduced in the paper 

“An Image is Worth 16x16 Words: Transformers for Image 

Recognition at Scale” [6]. The authors proved that a simple 

ViT model can achieve good results on several image 

classification benchmarks. 

Since the introduction of ViT, it has been adapted and 

improved upon by several researchers in the field. In 2021, a 

new variant of ViT was proposed called Distilled Vision 

Transformer (DeiT) which shows that a smaller and more 

efficient version of ViT can achieve similar performance to 

the original one [7]. Researchers at other institutions also 

proposed their own variations of ViT such as Patch-based 

Vision Transformer (PVT) and Residual Vision Transformer 

(R-ViT) which also show the good performance in various 

computer vision tasks. 

The transformer architecture, originally designed for 

natural language processing, has been adapted for computer 

vision tasks and the ViT is a variant that processes images as 

a sequence of patches, allowing the model to learn 

relationships between regions of the image using self-

attention [8][9]. These architectures use self-attention 

mechanisms to learn relationships between different regions 

of the input data, such as images. 

One of the main advantages of ViTs is their ability to 

handle images of different sizes and aspect ratios without the 

need for cropping or resizing [10]. Additionally, the self-

attention mechanism allows the model to learn global 

dependencies between the patches, which can be beneficial 

for image classification tasks. 

In addition to their performance, ViT are also highly 

modular and can be easily adapted to different tasks and 

architectures. This makes them a versatile tool for 

researchers and practitioners in the field of computer vision 

and has led to a growing number of papers and studies being 

published on the use of vision transformers for a wide range 

of tasks [4], [11]. Another reason for the popularity of vision 

transformers is their ability to handle large-scale image 

datasets.  

Traditional CNNs are often limited by the fixed 

architecture and the need to down sample images to fit within 

memory constraints. ViT, on the other hand, can handle 

much larger image sizes and can be trained end-to-end on 

large-scale datasets. This allows for more accurate and 

robust models to be trained, which can then be used for a 

wide range of computer vision applications. 

The primary objective of this study is to develop a patch 

encoding mechanism that is efficient and effective in 

extracting meaningful information from data. Previous 

transformer models have relied solely on a simple projection 

and positional embedding to summarize all significant patch 

information into an N-dimensional vector. However, more 

robust transformations are needed to extract complex 

patterns from the data while minimizing information loss. To 

address this issue, we proposed the use of a SWEKP, which 

is a weighted and contrastive patch encoding method 

integrated in transformers. Following is the description of the 

main components of transformers and how they have been 

updated to propose the given mechanism. 

ViT divide images into small non-overlapping patches, 

which are then processed through a transformer network. 

Patch encoding in ViT involves converting each patch into a 

vector representation using a linear projection layer, which 

maps each patch to a lower-dimensional embedding space. 

The output of this layer is concatenated with a positional 

encoding vector to provide the transformer network with 

spatial location information for each patch. 

The resulting patch embeddings are fed into a multi-head 

self-attention mechanism to capture the relationships 

between different patches. Finally, the transformer network 

produces a fixed-length vector representation of the input 

image, which can be utilized for various downstream tasks, 

including image classification, object detection, and 

segmentation. Patch encoding and the encoder block of the 

transformer are crucial steps in the ViT architecture. In the 

patch encoding phase, the traditional approach of simple 

projection and positional embedding of patches is replaced 
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with a weighted composition of five types of embeddings: 

projection, positional, mixture, Gated Multi-Layer 

Perceptron (GMLP), and Fourier. This change helps the 

patch encoding mechanism to extract more meaningful 

information from patches and fuse them together. 

After patch encoding, the encoding is fed to the encoder 

block of the transformer for meaningful representation 

learning for downstream tasks. The use of multiple 

embeddings in the previous stage enables deep knowledge 

dispersion, which means that these embeddings are utilized 

further in the architecture. 

Furthermore, the key, query, and value in the self-

attention mechanism of the encoder block are replaced with 

mixture embedding, GMLP embedding, and Fourier 

embedding. By doing so, the previous knowledge gained in 

self-attention is utilized for more robust representations. 

Finally, a simple classifier takes the learned representations 

as input and predicts the target. The combination of these 

steps enhances the representation learning of ViT and makes 

it suitable for various downstream tasks such as image 

classification, object detection, and segmentation. 

The proposed SWEKP-ViT model employs weights that 

control the flow of information extracted by the multiple 

patch-encoding approaches including mixture Multi-Layer 

Perceptron (MLP), Fourier MLP, and GMLP. By defining 

weights, the model can regulate the information flow from 

each encoding approach to the overall model output. This 

approach improves the performance of the model by 

allowing it to extract the most relevant information from the 

input data. The term hybrid describes the combination of 

different encoding techniques which are combined in a 

single mechanism, called SWEKP. By combining these 

techniques, the model can extract complex patterns and 

relationships from the input data.  

The proposed architecture has been evaluated using 

several benchmark datasets, such as MNIST, Fashion-

MNIST, CIFAR10, and CIFAR100. The objective is to 

specify that it be applied to a range of visual recognition 

tasks, including medical imaging, by evaluating the 

performance of the proposed model on the benchmark 

datasets. However, it can be applied in multiple applications 

beyond these datasets, such as medical imaging data to assist 

in the computer-aided diagnosis of different diseases, as well 

as in security or surveillance and remote sensing 

applications. 

The main contributions of this work are summarized as 

follows. 

A. CONTRIBUTION 

1) A supervised SWEKP-based ViT is proposed which 

consist of heterogeneous patch encoding mechanism. 

In traditional ViT, linear projection and positional 

embedding are applied. However, the proposed 

SWEKP-based ViT model uses multiple types of 

latent embeddings including Mixture, Gated MLP 

and Fourier.  

 

2) Divergent Knowledge Dispersion (DKD) is proposed 

for encoding process in ViT. It propagates all 

previous divergent knowledge to multi-headed 

attention mechanism at every iteration. 
 
3) Lastly, a Mix-Up data augmentation technique is used 

with SWEKP transformer. It combines different 

features and their corresponding labels, to prevent a 

network from becoming too confident in the 

relationship between the features and labels.  

II. LITERATURE REVIEW 

The ViT has been a popular topic of research in recent years, 

particularly for its application in image classification tasks. 

In this section, we study different state of the art transformer 

methods developed in literature for benchmark dataset 

including MNIST, FASHION-MNIST, CUFAR10 and 

CIFAR100. 

Traditional transformer, initially used for Natural 

Language Processing (NLP), is a deep neural network 

relying mainly on self-attention. Its robust representation 

capabilities have sparked interest in applying it to computer 

vision. Transformer-based models have shown comparable 

or superior results compared to convolutional and recurrent 

neural networks in various visual benchmarks [12]. Due to 

its high performance and reduced requirement for vision-

related inductive bias, the computer vision community is 

increasingly exploring transformer. In this paper, authors 

classify vision transformer models based on task and 

evaluates their strengths and weaknesses. 

The ViT architecture proposed has been applied to 

several image classification tasks, including the popular 

fashion-MNIST and MNIST datasets [6]. Before, that, in 

2010, Zhai X et. al. introduced Multiscale Vision 

Transformers (MViT) for video and image recognition, 

combining the concept of multiscale feature hierarchies with 

transformer models [4][13]. It has multiple channel-

resolution scale stages. Starting with a small channel 

dimension at the input resolution, the stages incrementally 

increase channel capacity while decreasing spatial 

resolution, resulting in a multiscale feature pyramid. Early 

layers handle simple low-level visual information at high 

spatial resolution, while deeper layers process complex high-

dimensional features at coarser spatial resolution. It 

outperformed then state-of-the-art vision transformers that 

require large-scale pre-training and have 5-10 times higher 

computation and parameter cost when tested on various 

video recognition tasks.  

Transformers with strong global relationship modeling 

capabilities have been applied to basic computer vision tasks 

recently, such as the ViT, which directly uses a pure 

transformer architecture for image classification by dividing 
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images into fixed-length tokens and learning the 

relationships between them. However, this straightforward 

tokenization can harm object structures, assign grids to 

irrelevant regions like the background, and cause 

interference.  

To address these issues, Yue X et al proposed an iterative 

and progressive sampling strategy that identifies distinctive 

regions [11]. The proposed Parallel Sequence Vision 

Transformer (PS-ViT) network includes a transformer 

encoder layer that receives embeddings from each iteration 

and predicts a set of sampling offsets to update the sampling 

locations for the next iteration. This approach of progressive 

sampling is differentiable and when combined with the ViT, 

it forms a powerful and efficient network called PS-ViT that 

can learn where to focus. PS-ViT has shown great 

effectiveness and efficiency. 

R. Ranftl et al presented Dense Prediction Transformers, 

a model that uses ViT instead of convolutional networks as 

a backbone for dense prediction tasks [14]. The multi-

resolution image representations are formed by combining 

tokens from various phases of the ViT, which are later 

merged into full-resolution predictions through a 

convolutional decoder. The transformer backbone is 

responsible for continuously processing high-resolution 

representations at each stage, having a global receptive field. 

As compared to fully convolutional networks, this results in 

finer-grained and more coherent predictions. 

ViT have been highly successful in various vision tasks, 

but require significant computational resources, making 

them challenging to use on resource-limited devices. To 

overcome this, W. Li et. al., adopted the concept of depth-

wise separable convolution to design the Separable Vision 

Transformer (SepViT) [15]. It uses depth-wise separable 

self-attention to interact with information within and 

between windows. It employs novel window token 

embedding and grouped self-attention to model the attention 

relationship between windows efficiently and capture long-

range visual dependencies. Results from experiments on 

various benchmark tasks show that SepViT offers a balance 

of accuracy and latency and achieves state-of-the-art results. 

P. Zhang et. al., introduces the Multi-Scale Vision 

Longformer, a new ViT architecture that improves encoding 

of high-resolution images [16]. The architecture uses two 

techniques: a multi-scale model structure for image 

encodings at multiple scales with efficient computation, and 

the Vision Longformer attention mechanism, a variant of 

Longformer originally developed for NLP, with linear 

complexity relative to input tokens. The proposed technique 

used for range of tasks like images classification, detection 

and segmentation. 

There are multiple benchmark datasets available for 

image recognition such as CIFAR10 and Fashion MNIST 

dataset. O. Khanday et. al., investigate the impact of filter 

size on the accuracy of (CNNs) [17]. The model architecture 

is kept unchanged and only vary the filter size among 

different sizes (3x3, 5x5, and 7x7). The CIFAR10 and 

Fashion MNIST datasets are used in this study. Our results 

show that the accuracy decreases as the filter size increases, 

with 3x3 filters achieving an accuracy of 73.04% on 

CIFAR10 and 93.68% on Fashion MNIST. 

In 2020. Kurt Ma et. al., proposed a Hilbert-Schmidt 

Independence Criterion (HSIC) bottleneck as a training 

method for deep neural networks [18]. Unlike the traditional 

cross-entropy loss and backpropagation, the HSIC 

bottleneck has numerous benefits. For example, it can solve 

the issues of exploding and vanishing gradients, enabling the 

training of deep networks without skip connections. Results 

show that the HSIC bottleneck performs similar to 

backpropagation with cross-entropy on MNIST, Fashion-

MNIST, and CIFAR10 classification, even without the need 

to make the output look like the classification labels. The 

accuracy on the test set is reported as 98.8%, 88.3%, and 

59.4% for the format-trained networks and 98.4%, 87.6%, 

and 56.5% for the backpropagation-trained networks for 

MNIST, Fashion-MNIST, and CIFAR10 datasets, 

respectively [19]. 

The Capsule Network (CapsNet) is a unique deep neural 

network structure that maps target instances to vectors and 

matrices instead of scalars, facilitated by the dynamic routing 

algorithm. This results in a more robust capacity with fewer 

parameters compared to traditional CNNs [20]. However, 

CapsNet has the drawback of considering everything in the 

image, which leads to poor performance when backgrounds 

are too diverse. In 2020, Chang S. et. al. proposed a Multi-

Lane Capsule Network with Strict-Squash (MLSCN) 

addresses this issue [21]. A new Capsule network structure 

is introduced replacing the Squash function, and optimizing 

dropout. Experiments on MNIST, affNIST, and CIFAR10 

datasets were conducted to validate MLSCN’s 

modifications, and ablation experiments were conducted to 

analyze the contribution of each component. The results 

showed that MLSCN outperforms the original CapsNet in 

multiple benchmarks. They achieve the accuracy of 98.42, 

76.79 on MNIST and CIFAR10 dataset against MLSCN 

achieving 73.472% accuracy. 

III. MATERIALS AND METHODS 

The ability of deep neural networks to learn complex 

representations from large amounts of data has led to 

significant improvements in a range of tasks, including 

image classification, object detection, semantic 

segmentation, and image generation [22]. With the 

increasing availability of large, annotated datasets and 

advancements in hardware, deep learning will continue to 

play a crucial role in advancing computer vision tasks.  

A. PROPOSED METHODOLOGY 

In this work, Stochastic Weighted Composition of 

Contrastive Embedding’s & Divergent Knowledge 
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Dispersion (SWEKP)-based ViT is proposed. This section 

presents detailed discussion about the different phases of 

proposed technique.  

In proposed methodology, depicted visually in Figure 1, 

a Mix-Up augmentation is used for data augmentation 

process. After data augmentation, data is fed to patch 

encoder to convert images into patches. Next step is to 

transform patches into latent representations or embeddings 

and present it to transformer layers for more efficient patch 

encoding. Transformer use multiple attention blocks and 

MLPs for encoding purpose. After multiple blocks, a concise 

representation for each image is obtained. Finally, a 

weightage to representation is given and fed to classifier for 

class prediction. 

B. DATA AUGMENTATION 

Mix-Up data augmentation is type of image data 

augmentation that involves mixing up the data. The 

implementation of mix-up is straightforward and its purpose 

is to prevent overfitting in neural networks by combining 

different features and labels [23]. This technique is 

particularly useful when there is uncertainty in choosing 

augmentation techniques, such as in medical imaging 

datasets [24]–[26]. 

𝑥𝑖 = 𝜆 . 𝑥𝑖 + (1 − 𝜆) . 𝑥𝑗                     (1) 

𝑦𝑖 = 𝜆 . 𝑦 + (1 − 𝜆) . 𝑦𝑗                     (2) 

where lambda 𝜆 values are picked between 0-1, and sample 

from beta distribution. And x and y are data features and 

labels, respectively. Equations 1 and 2 represent the Mix-Up 

augmentation technique, where 𝑥𝑖  and 𝑦𝑖  correspond to the 

image and its label of the ith sample, respectively. The 

parameter λ is a randomly drawn value from a beta 

distribution with alpha determining the degree of mixing 

between two images. The remaining portion of the image is 

formed by the second image, 𝑥𝑗, and its corresponding label 

𝑦𝑗. The mixing ratio is controlled by the value of λ, which 

ranges from 0 to 1. A value of 0.5 corresponds to an equal 

mix of both images, whereas a value closer to 0 or 1 produces 

an image that closely resembles one of the original images. 

Mix-Up augmentation is an effective technique for reducing 

overfitting and improving the generalization performance of 

 
FIGURE 2. Visual Diagram of Vision Transformer [31] 

 

 
FIGURE 1. Proposed Methodology 
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deep learning models. This is particularly useful when the 

appropriate set of augmentation transforms for a given 

dataset is uncertain, as in the case of medical imaging 

datasets. The Mix-Up technique can be applied to a wide 

range of data modalities, including computer vision, natural 

language processing, and speech. 

 

The versatility of Mix-Up makes it applicable to a range of 

data modalities, including computer vision, NLP, speech, 

and others. The equation below shows the beta function in 

integral form [27]. 

 

∫ 𝑥𝛼−1(1 − 𝑥)𝛽−1𝑑𝑥 =  
Γ(𝛼).Γ(β)

Γ(α+β)

1

0
 ,           (3) 

where α, β are the parameters in beta function. 

C. PREPROCESSING 

Scaling normalizes data by transforming each pixel value to 

fall between 0 and 1. This technique modifies the visual 

appearance of an image and adjusts the amount of 

information it contains. The scaled image is obtained by 

transforming the original image (I) with the minimum and 

maximum pixel values (𝐼𝑚𝑖𝑛  and 𝐼𝑚𝑎𝑥). 

 

𝐼𝑁𝑜𝑟𝑚 =  
(𝐼−𝐼𝑚𝑖𝑛)

(𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛)
             (4) 

 

Pixel Scaling is a normalization technique commonly used in 

image processing. It involves scaling the pixel values to a 

consistent range by dividing each value by the maximum 

value (255). This ensures standardized data and enhances 

model training. The overall visual appearance of the image 

remains unaffected as the relative differences in pixel 

intensities remain the same. The brightness, contrast and 

overall structure of the image are preserved. The only change 

is that pixel values are represented as floating-point numbers 

between 0 and 1 instead of integers between 0 and 255. 

D. DIFFERENT TECHNIQUES IN PROPOSED SWEKP-
ViT 

ViT is a type of deep neural network architecture designed 

for computer vision tasks. In next sections we briefly discuss 

the working of proposed SWEKP-based ViT. 

1) SIMPLE VISION TRANSFORMER  

The main idea behind ViT is to treat an image as a sequence 

of patches instead of a 2D matrix of pixel values. Each patch 

is then represented as a fixed-length vector of values that is 

fed into the network. The network is composed of multiple 

layers of multi-head self-attention mechanisms, which are 

used to capture long-range dependencies in the image. The 

self-attention mechanism allows each patch to attend to other 

patches in the sequence, thereby capturing relationships 

between different parts of the image. Figure 2 presents a 

visual representation of a simple ViT. 

After multiple layers of self-attention, the network 

applies a linear transformation to the sequence of patches to 

generate a higher-level representation of the image. This 

representation is then used to make predictions or perform 

other computer vision tasks, such as object recognition or 

segmentation. The use of self-attention mechanisms in ViT 

enables the network to learn about the relationships between 

the patches in an image, making it well-suited for tasks that 

require understanding of the entire image. The architecture 

of ViT has been shown to outperform traditional CNNs on a 

variety of computer vision benchmarks. Additionally, 

because the network is designed to process sequences of 

patches, it is more flexible than CNNs, which are limited by 

the structure of the convolutional filters. 

 

FIGURE 3. Working diagram of mixer MLP [31] 
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2) MIXTURE MLP  

The MLP-Mixer architecture is built entirely with MLPs. It 

consists of two types of layers: one that applies MLPs 

independently to image patches (i.e., combining per-location 

features), and another that applies MLPs across patches (i.e., 

mixing spatial information) [27]. 

The mixer architecture is designed to distinctly differentiate 

the channel-mixing operations, 1) at each location from the 

token-mixing operations, and 2) across locations. Figure 3 

illustrates the working of mixture MLP visually. 

The mixer architecture inputs a sequence of S non-

overlapping image patches, with each patch transformed to a 

desired hidden dimension C. This creates a two-dimensional 

real-valued input table X with dimensions 𝑋 𝜖 ℝ𝑆𝑋𝐶 . The 

number of patches is determined by the resolution of the 

original image and the desired patch size. The mixer consists 

of multiple layers of identical size, each with two MLP 

blocks. The first MLP block, also known as the token-mixing 

MLP, operates on columns of X and maps ℝ𝑆  →  ℝ𝑆, while 

the second block, called the channel-mixing MLP, operates 

on rows of X and maps ℝ𝐶  →  ℝ𝐶 . Both MLP blocks have 

two fully connected layers and apply nonlinearity 

independently to each row of their input data tensor. 

 
𝑈∗,𝑖 = 𝑋∗,𝑖 +  𝑊2 𝛿(𝑊1 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋)∗,𝑖),       𝑖 =

                               1,2,3 … … 𝐶                                          (5) 

 

𝑌𝑗,∗ = 𝑈𝑗,∗ +  𝑊4 𝛿(𝑊3 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋)𝑗,∗),       𝑖 =

                                  1,2,3 … … 𝑆                    (6) 

 
where 𝛿 is element-wise non-linearity Gaussian Error Linear 

Unit (GeLU).  

3) FOURIER MLP 

The Fourier-Net (FNet) architecture is a transformer without 

attention, where each layer is composed of a Fourier mixing 

sublayer and a feed-forward sublayer [28]. This architecture 

replaces the self-attention sublayer of a typical Transformer 

encoder layer with a Fourier sublayer, which performs a 2D 

discrete Fourier transform on its input a 1-dimensional 

Discrete Fourier Transform (DFT) along the sequence 

dimension (ℱ𝑠𝑒𝑞 ) and another 1D DFT along the hidden 

dimension (ℱℎ ) [29]. The structure of the FNet can be seen 

in Figure 4. 

FNet use Fourier transform instead of self-attention, as 

shown in Figure 4, and a function is broken down into its 

component frequencies. The formula for the DFT is given a 

sequence 𝑥𝑛 with n 𝜖 [0, N-1] is given as follows. 

 

𝑋𝑘 = ∑ 𝑥𝑛𝑒(
−2𝜋𝑖

𝑁
) 𝑛𝑘𝑁−1

𝑛=0  , 𝑤ℎ𝑒𝑟𝑒 0 < 𝑘 < 𝑁 − 1       (7) 

 

Let ℱ𝜗 represents the Fourier embedding, which is used in 

patch encoder, we will use this notation later in the paper. 

 

4) SPATIAL GATED MLP  

The Gated MLP (GMLP) model is made up of L blocks with 

the same structure and size. X represents the representation 

 
FIGURE 4. Working Diagram of Fourier-Net [32] 

 

 
FIGURE 5. Working Diagram of Spatial Gated MLP (GMLP) [33] 

 
FIGURE 6. Graph illustrating the process flow of Divergent 
Knowledge Dispersion (DKD) 
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of tokens with a length of n and a dimension of d, and it exists 

in 𝑋 𝜖 ℝ𝑛𝑋𝑑. 

 

𝑍 =  𝛿(𝑋𝑈)                     (8) 

𝑍~ =  𝛿(𝑍)                     (9) 

𝑌 =  𝑍𝑉                     (10) 

 

The activation function 𝜹, such as GeLU, is used in the 

formula. Linear projections along the channel dimension, U 

and V, are defined as in the feedforward networks (FFNs) of 

transformers, for example, their shapes are 768 x 3072 and 

3072 x 768 for  Bidirectional Encoder Representations from 

Transformer (BERT) base [30]. Shortcuts, normalizations, 

and biases are not shown for simplicity. Figure 5 depicts the 

schematic diagram of spatial GMLP. 

The core component of the GMLP model is a function s 

(·) that captures spatial interactions among tokens in a 

sequence. When s is an identity mapping, the model reduces 

to a standard FFN, processing each token independently 

without cross-token communication. The goal is to design an 

effective s for capturing complex spatial interactions. The 

model’s structure is influenced by inverted bottlenecks, 

where s (·) is defined as a spatial depth wise convolution. 

Unlike transformer models, GMLP does not require position 

embeddings as the spatial information is captured in s (·). Let 

Ω𝛿  represents the spatial gated embedding, we will use this 

notation later in the paper. 

5) DIVERGENT KNOWLEDGE DISPERSION (DKD) 

DKD is a knowledge propagation technique we used in ViT. 

When we use Mixer-MLP, Fourier and GMLP Embeddings 

for converting image patches into latent representations, 

these representations encode all information about image 

patches. In DKD mechanism we propagate this embedding 

far into the transformer network. Let Attention 

(𝑋𝑝𝑎𝑡𝑐ℎ, 𝑋𝑝𝑎𝑡𝑐ℎ , 𝑋𝑝𝑎𝑡𝑐ℎ) be the multi-headed attention with 

encoded patches as input where 𝑋𝑝𝑎𝑡𝑐ℎ is the encoded patch 

before going into the multi-headed attention block. We know 

ℳ𝜎 , ℱ𝜗 , Ω𝛿  are three embeddings, and we use this 

representation for more efficient encoding. Instead of using 

single multi-headed attention which only take weighted 

mixture of all embeddings as input, we use two multi-headed 

attentions. One is simple default attention 

(𝑋𝑝𝑎𝑡𝑐ℎ, 𝑋𝑝𝑎𝑡𝑐ℎ , 𝑋𝑝𝑎𝑡𝑐ℎ) and second attention take these three 

embeddings as input.  

 

 Attention (ℳ𝜎 , ℱ𝜗 , Ω𝛿) =  

SoftMax (
(ℳ𝜎 .𝒲ℳ).(Ω𝛿.𝒲Ω)

√𝑑𝑘
 ). ℱ𝜗. 𝒲ℱ        (11) 

 

In above equation 𝒲ℳ , 𝒲Ω, and 𝒲ℱrepresent the weight 

metrics. DKD use two attentions to propagate the previous 

latent knowledge in the next sections of vision transformer 

as shown in Figure 6. In DKD, initially, we incorporate four 

inputs: Fourier embedding, mixture embedding, GMLP 

embedding, and X (weighted patch encoding), which 

combines all the embeddings. The self-attention mechanism 

is implemented through Self-Attention-1 and Self-Attention-

2 blocks, both of which utilize multi-headed attention. 

Following the self-attention phase, we employ addition 

layers that act as residual connections, combining the output 

of the attention mechanism with the original weighted input, 

x. After the addition operation, we apply normalization 

layers. In the last, these representations or embeddings are 

then passed to the encoder section, as denoted by 

“ENCODER” in Figure 6. 

IV. EMBEDDINGS IN PROPOSED SWEKP-ViT 
ARCHITECTURE 

In this paper, we proposed a novel ViT which use 

heterogeneous patch encoding mechanism. There are two 

main contributions of this paper. Firstly, a mixture of 

embeddings is used. Let say LP∂ represents the linear 

projection and P𝐸𝑚𝑏  is positional embedding, then we can 

write the image patches as latent representations as follows. 

 

𝒵Default =  (LP𝜕 + P𝐸𝑚𝑏)                        (12) 

Different types of embeddings (Mixer, Fourier and GMLP) 

are applied to make patch latent representation more robust. 

Because, the three new embedding also use linear projection 

and positional embeddings, so they are represented as 

(LP𝜕, P𝐸𝑚𝑏). The proposed mixture function LP𝜕 is written 

as GLP𝜕 (Global Linear Projection) and P𝐸𝑚𝑏  is written as 

GP𝐸𝑚𝑏  (Global Positional Embedding) while (LP𝜕, P𝐸𝑚𝑏) 

are local embeddings inside in three advance embeddings. 

The proposed mixture function is written as, 

  

𝒵Σ,𝜙 =  λ . (GLP𝜕 + GP𝐸𝑚𝑏)

+ [𝜔1. ℳ𝜎 + 𝜔2. ℱ𝜗 + 𝜔3. Ω𝛿] 
                                           (13) 

 

Now GLP𝜕 + GP𝐸𝑚𝑏  is default term, we add new terms 

 ℳ𝜎 (𝑀𝑖𝑥𝑒𝑟), ℱ𝜗(𝐹𝑜𝑢𝑟𝑖𝑒𝑟), Ω𝛿(𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐺𝑎𝑡𝑒𝑑) in 

embedding mixture function. Where λ , 𝜔𝑖 is the weights, 

therefore, called weighted composition. 𝒵Σ,𝜙 represents 

latent final representation and Σ shows the linear sum, and 𝜙 

represents the parameters. The Equation 13 can be 

generalized for the 3 embeddings by modifying the 𝒵Σ,𝜙 as 

𝒵⨀,𝜙 and given as 

 

                               𝒵⨀,𝜙 = λ . (GLP𝜕 +

     GP𝐸𝑚𝑏) ⨁ [𝜓(ℳ𝜎 , ℱ𝜗 , Ω𝛿)  ⨀ 𝒲(𝜔1, 𝜔2, 𝜔3)].     (14) 
 

Now, there is no linear summation between embeddings 

and weights. There is some other non-linear relation between 

them represented as ⨀. Where 𝜓(ℳ𝜎 , ℱ𝜗 , Ω𝛿) is some non-

linear function applied on these embeddings. And 
(𝜔1, 𝜔2, 𝜔3) shows the weight function. For example, 

weights are drawn from some probability distribution. But 
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this idea not implemented in this paper, we only implement  

𝒵Σ,𝜙 simple linear summation of these representations and 

weights. 

Now another important thing is that we can even more 

generalized the above equation. In above equation we use 

total five embedding’s but if we have N embeddings. So, we 

can utilize 5 embeddings as 

  

𝒵⨀,𝜏 =  Η(ℰ𝜏) ⨀ 𝒲(𝜔𝑖)                          (15) 

 

Here H represents function of N embeddings, where ℰ𝜏 

shows N embedding’s ℰ1, ℰ2… ℰ𝑁. And 𝒲(𝜔𝑖) is weight 

function which generate weights for all N embeddings. We 

can also write our proposed scheme as Η(ℰ𝜏) ⨀ 𝒲(𝜔𝑖)   

Η(GLP𝜕, GP𝐸𝑚𝑏 , ℳ𝜎 , ℱ𝜗 , Ω𝛿) ⨀ 𝒲(𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5) 

                                                                                         (16) 

Now in the above equation, if ⨀ is Σ then it is our case where 

we take linear combination of weights and embedding 

representations. But we can fuse weights and latent 

embeddings as we want, so ⨀ is any generalized operation. 

We use word stochastic in our title because we also take 

weight function as a probability distribution and drawn 

weights from it. After writing patches as latent 

representations, next we use multi-headed attention. 

Multi-headed attention is a mechanism used in deep 

learning models to attend to multiple representations of input 

data simultaneously. In this technique, multiple attention 

mechanisms are applied to the input data in parallel and their 

outputs are concatenated and then fed into a fully connected 

layer to produce the final output. This allows the model to 

attend to different aspects of the input data and produce a 

more sophisticated representation compared to traditional 

single-headed attention models. This concept is widely used 

in state-of-the-art models for NLP tasks such as machine 

translation, text classification and question answering. In this 

work, SoftMax is used as non-linear function. First, we give 

encoded representations to attention and get.  

TABLE 1. Parameters for the Proposed SWEKP based ViT 

Parameter Value/Detail 

Transformer 

Layers 
8 

Datasets 
Fashion-MNIST, MNIST, CIFAR10, & 

CIFAR100 

Attention Heads 4 

Optimization Parameters 

Epochs 60 

No. of Classes 10 & 100 

Batch Size 32 
Learning Rate 0.001 

Optimization Adam 

Trainable 
Parameters 

1,407,527 

 

 
FIGURE 7. Proposed SWEKP based ViT 
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𝒜𝛼= SoftMax (
(𝒵⨀,𝜏.𝒲1).(𝒵⨀,𝜏.𝒲2)

√𝑑𝑘
 ). 𝒵⨀,𝜏. 𝒲3     (17) 

 

where 𝒵⨀,𝜏 is the encoded embedding and 𝒲i , i from 1to 3 

are wrights used in this attention block. We also propagate 

previous knowledge forward so another attention block is 

also used which take Mixer, Fourier and GMLP embedding 

as input. 

 

𝒜𝛽=SoftMax (
(ℳ𝜎 .𝒲ℳ).(Ω𝛿.𝒲Ω)

√𝑑𝑘
 ). ℱ𝜗. 𝒲ℱ     (18) 

 

After attention two addition layer is used, first layer adds 

encoded patches 𝒵⨀,𝜏  with 𝒜𝛼  and second addition layer is 

used to add 𝒵⨀,𝜏 with 𝒜𝛽. And after some normalizing 

technique, MLP is applied on each of addition layer outputs 

(𝑀𝐿𝑃𝛼𝛼
, 𝑀𝐿𝑃𝛽). Next step is to add the addition of 

𝓩⨀,𝝉 and 𝓐𝜶 with 𝑴𝑳𝑷𝜶, and add the addition of 

𝓩⨀,𝝉 and 𝓐𝜷 with 𝑴𝑳𝑷𝜷. And in the last we again add the 

two results come from these summations and give it to 

classifier for prediction. The working diagram shows each 

step in visual form. The Figure 7 shows the full working of 

proposed SWEKP-based ViT.  

 

In the last paragraph, we provide a summary of the 

proposed transformer using mathematical equations. This 

paper presents a novel ViT (Vision Transformer) model that 

incorporates a heterogeneous patch encoding mechanism.  

The first phase of the proposed model involves data 

augmentation and preprocessing of the input, which includes 

resizing and scaling as described in equations 1, 2, and 4. 

Firstly, a combination of linear projection (LP𝜕) and 

positional embedding (P𝐸𝑚𝑏) is utilized through equation 12 

to create more robust patch latent representations. To further 

enhance the representation power, different types of 

embeddings, including Mixer, Fourier, and GMLP 

embeddings, are incorporated addition with linear projection 

and positional embeddings. Equation 13 defines the 

proposed mixture function, which incorporates GLP𝜕 (Global 

Linear Projection) and GP𝐸𝑚𝑏  (Global Positional 

Embedding) as default terms. Additionally, new terms such 

as ℳ𝜎 (Mixer), ℱ𝜗  (Fourier), and Ω𝛿  (Spatial Gated) are 

introduced into the embedding mixture function. To 

generalize the equation when considering N embeddings, 

equation 15 can be expressed as Η(ℰ𝜏) ⨀ 𝒲(𝜔𝑖), where H 

represents a function of N embeddings (ℰ1, ℰ2… ℰ𝑁), and 

𝒲(𝜔𝑖) generates weights for all N embeddings (equation 

16). The paper introduces new parallel mechanism DKD, 

which applies multiple attention mechanisms in parallel. The 

outputs are then concatenated and fed into a fully connected 

layer to obtain the final output. Attention block, depicted in 

equation 18, is employed to incorporate previous knowledge 

and takes input from Mixer, Fourier, and GMLP 

embeddings. The next steps involve using two addition 

layers to combine the encoded patches (𝒵⨀,𝜏) with 𝒜𝛼  and 

𝒜𝛽, respectively. After normalization, MLP is applied to 

each output. The final stage includes adding 𝒵⨀,𝜏 and A_α 

with 𝑀𝐿𝑃𝛼  and adding 𝒵⨀,𝜏 and 𝒜𝛼  with 𝑀𝐿𝑃𝛽. The 

resulting summations are then passed through the classifier 

for prediction. A visual representation of the proposed 

SWEKP-based ViT can be found in Figure 7, which provides 

a comprehensive overview of the entire working process. 

V. RESULTS AND DISCUSSION 

The primary objective of this research is to create an efficient 

vision transformer for visual recognition tasks. In this 

section, we conduct a comprehensive comparison between  

SWEKP based ViT and multiple ViTs with default and 

advanced embeddings, excluding the DKD mechanism. 

These architectures were trained on the same data, with equal 

epochs and learning rates. A brief discussion of each of these 

architectures can be found in the following sections. In order 

to conduct a fair comparison between the different models, 

the experiments were carried out with a fixed set of 

hyperparameters. Hyperparameters are predetermined values 

that control the behavior of the model during both training 

and testing phases. This approach ensures that all the 

experiments were conducted under the same conditions, 

thereby enabling a more precise analysis and comparison of 

the results. Additionally, employing the same 

hyperparameters prevents any variation in the model's 

behavior due to the use of different parameter settings, which 

might lead to differences in the obtained results. 

A. Hyperparameters Configuration of Proposed 
Transformer 

The details of our proposed ViT are presented in the table 

provided below. The experiment was carried out on four 

benchmark datasets, namely, Fashion-MNIST, MNIST, 

CIFAR10, and CIFAR100. The proposed ViT consists of a 

total of 8 transformer layers, and the number of parameters 

in the model is 1,407,527, as shown in Table 1. During the 

experiment, the proposed algorithm was trained for up to 60 

epochs with a batch size of 32 and a learning rate of 0.001. 

One epoch refers to a single pass through the entire training 

dataset. The Batch Size refers to the number of training 

examples used in one iteration of the training process. In this 

case, the ViT model was trained using batches of 32 images 

at a time. The learning rate refers to the step size used to 

update the model's parameters during the training process. A 

lower learning rate typically results in slower but more stable 

convergence of the model during training. The four 

benchmark datasets utilized include Fashion-MNIST, which 

has 10 classes of shirts and pants; MNIST, which has 10 

classes of numbers ranging from 0 to 9; CIFAR10, which has 

10 classes of general images; and CIFAR100, which has 100 

classes of general images. All the experiments were 

conducted using the same hyperparameter settings. In the 

subsequent sub-sections, we will perform a comparative 

analysis between SWEKP based ViT and other versions of 
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SWEKP that have varying embedding settings for encoding 

purposes. 

B. COMPARATIVE ANALYSIS ON FASHION-MNIST 
DATASET 

Large amounts of data are crucial for deep learning models 

as they are highly dependent on data. To address this 

requirement, the Mix-up data augmentation technique is 

used to augment the data. The data was split into training and  

testing portions [80:20], with 50,000 images in the training 

set and 10,000 images in the testing set. After undergoing 

basic preprocessing, the algorithms were trained. Upon 

completion of training, the models were tested on the testing 

data to evaluate their performance on unseen data. The 

results clearly demonstrate the superiority of the proposed 

SWEKP based ViT over other architectures and are listed in 

Table 2. 

The first column in the table represents the different types 

of embeddings used for encoding the patches in the 

transformer. Initially, in the simple ViT, there were two types 

of embeddings: Linear Projection and Positional Embedding. 

However, we introduced three additional types of latent 

embeddings: Mixture, GMLP, and Fourier. This brought the 

total number of embedding types to five, allowing us to 

conduct multiple experiments by changing the embeddings. 

For example, we first used the default Linear  

Projection and Positional Embedding and analyzed the 

results. Then, we added the Mixture Embedding and 

recorded the performance. Similar experiments were 

conducted for each combination of embeddings. 

According to Table 2, we found that the SWEKP 

embedding performed exceptionally well in terms of 

accuracy, precision, f1-score, and recall. The accuracy 

achieved by the proposed weighted embeddings is 93.57%. 

In all other sub-versions of SWEKP-based ViT, we used a 

linear sum of embeddings. However, in SWEKP 

Embedding, we used a weighted sum of embeddings, where 

each embedding was assigned a weight. For more 

information on SWEKP, refer to Section 3 (Materials and 

Methods). The performance of the embeddings are visually 

represented in Figure 8. By examining figure, which displays 

the accuracy, recall, precision, and F1-score for each 

embedding method, including LP, P, GMLP, F, and M, 

representing linear projection, positional embedding, GMLP 

embedding, Fourier embedding, and Mixture embedding, 

respectively, we can observe that the SWEKP embedding 

proposed in this study performs significantly better than 

other embeddings. 

1) PERFORMANCE OF SINGLE EMBEDDING ON 
FASHION-MNIST 

In this section, we evaluate the performance of each 

advanced embedding separately. Firstly, we use the GMLP 

embedding and report the results, then we use the Mixture 

embedding, and finally, we use the Fourier embedding. We 

conduct this experiment on each of the four datasets. In this 

TABLE 2. Comparative Analysis on Fashion-MNIST data 

Type of Embeddings Accuracy Recall Precision F1-Score Loss AUC 

Linear Projection & Positional 90.56 89.24 92.02 90.59 0.2546 99.57 

Mixture, GMLP & Fourier 90.01 88.68 91.46 90.03 0.2614 99.51 

Linear Projection, Positional & Mixture 89.10 87.55 90.96 89.19 0.2888 99.43 

Linear Projection, Positional & GMLP 90.65 89.31 92.29 90.77 0.2490 99.56 

Linear Projection, Positional & Fourier 88.26 85.78 90.86 88.22 0.3158 99.35 

Linear Projection, Positional,  

Mixture, GMLP & Fourier (All) 
90.98 89.64 92.43 91.00 0.2425 99.54 

Weighted Embedding  93.57 91.67 92.76 92.21 0.2307 99.38 

 
TABLE 3. Comparative Analysis on Fashion-MNIST data with separate embeddings without local positional & projection embedding 

Embeddings Accuracy Recall Precision F1-Score Loss AUC 

Mixer Embedding 88.52 86.33 90.70 88.42 0.3110 99.38 

GMLP Embedding 89.97 88.67 91.63 90.10 0.2635 99.53 

Fourier Embedding 87.10 84.68 89.90 87.19 0.3365 99.25 

 

 
FIGURE 8. Comparative analysis of embedding on Fashion-MNIST 
dataset. 
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section, we compare the performance on the Fashion-

MNIST data, given in Table 3. The performance results lead 

to a conclusion that the GMLP performs the best compared 

to the other two embeddings.  

C. COMPARATIVE ANALYSIS ON MNIST DATASET 

MNIST is a benchmark dataset consisting of numbers 

between 0 and 9. The data is split into training and testing 

parts, with 60000 images in the training set and 10000 

images in the testing set. After basic preprocessing, the 

algorithms are trained. The models are then tested on the 

testing data to evaluate their performance on unseen data. 

The results clearly show that the ViT with only Mixture, 

GMLP, and Fourier embeddings, as well as the proposed 

SWEKP based ViT, perform very well. The results are listed 

in Table 4. 

We have discussed the embeddings in detail in Section 3, 

and from now on, we will only analyze and discuss 

performance. As seen in Table 4, the ViT with only Mixture, 

GMLP, and Fourier embeddings and the SWEKP 

Embedding (with DKD) perform exceptionally well 

compared to others in terms of all performance measures. 

The combined GMLP, Fourier, and Mixture embeddings 

achieved the highest accuracy of 99.69%.  It is important to 

note that the ViT with only Mixture, GMLP, and Fourier 

embeddings does not contain the DKD mechanism for 

knowledge dispersion. It can be concluded that the three new 

embeddings help the transformer to decode more efficiently 

compared to the default two embeddings (Linear projection 

and Positional). The performance of embeddings on MNIST 

data is visually presented in Figure 9. 

1) PERFORMANCE OF SINGLE EMBEDDING ON 

MNIST 

 In this section, we evaluate the performance of each 

advanced embedding separately. Firstly, we use the gMLP 

embedding and report the results, then we use the Mixture  

Embedding, and finally, we use the Fourier embedding. The 

results for the MNIST data are presented in Table 5 and the 

performance of each embedding can be observed. The 

GMLP performs the best compared to the other two 

embeddings. 

D. COMPARATIVE ANALYSIS ON CIFAR10 DATASET 

CIFAR10 is a benchmark dataset consisting of general 

images with 10 classes. The data is split into training and 

testing parts, with 50000 images in the training set and 10000 

images in the testing set. After basic preprocessing, the 

algorithms are trained. The models are then tested on the 

testing data to evaluate their performance on unseen data. 

The results clearly demonstrate the superiority of the 

proposed SWEKP based ViT over other architectures and are 

listed in Table 7. As seen in the table, the ViT with Linear 

Projection, Positional, and GMLP embedding and the 

SWEKP Embedding (with DKD) perform exceptionally well 

compared to others in terms of all performance measures. 

The combined Linear Projection, Positional, and GMLP 

embeddings achieved the highest accuracy of 78.71%. 

1) PERFORMANCE OF SINGLE EMBEDDING ON 

CIFAR10 

In this section, we evaluate the performance of each 

advanced embedding separately. Firstly, we use the GMLP 

embedding and report the results, then we use the Mixture 

embedding, and finally, we use the Fourier embedding. The 

results for the CIFAR10 data are shown in Table 6. The 

visual performance of the embedding on CIFAR10 is 

illustrated in Figure 10.  

 

  

 
FIGURE 11 Comparative analysis of embedding on CIFAR100 
dataset. 

 

 

 
FIGURE 9 Comparative analysis of embedding on MNIST dataset. 

 

 
FIGURE 10 Comparative analysis of embedding on CIFAR10 
dataset. 
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TABLE 4 Comparative Analysis on MNIST data 

Embeddings Accuracy Recall Precision F1-Score Loss AUC 

Linear Projection & Positional 98.78 98.67 99.04 98.85 0.0342 99.98 

Mixture, GMLP & Fourier 99.69 99.54 99.51 99.52 0.0262 99.98 

Linear Projection, Positional & Mixture 98.82 98.66 98.95 98.80 0.0341 99.97 

Linear Projection, Positional & GMLP 98.89 98.77 99.00 98.88 0.0305 99.98 

Linear Projection, Positional & Fourier 98.92 98.69 99.08 98.88 0.0334 99.98 

Linear Projection, Positional , Mixture,  

GMLP & Fourier (All) 
98.87 98.69 99.07 98.88 0.0363 99.98 

Weighted Embedding  99.09 98.98 99.22 99.10 0.0297 99.96 

 
TABLE 5 Comparative Analysis on MNIST data with separate embeddings without local positional & projection embedding 

Embeddings Accuracy Recall Precision F1-Score Loss AUC 

Mixer Embedding 98.72 98.53 98.85 98.69 0.0383 99.99 

GMLP Embedding 98.81 98.69 98.89 98.79 0.0380 99.93 

Fourier Embedding 97.53 97.12 97.89 97.50 0.0728 99.93 

 
TABLE 6 Comparative Analysis on CIFAR10 with separate embeddings without local positional & projection embedding 

Embeddings  Accuracy Recall Precision F1-Score Loss AUC 

Mixer Embedding 70.62 63.24 79.21 70.17 0.8441 95.84 

GMLP Embedding 74.80 69.60 80.60 74.57 0.7474 96.67 

Fourier Embedding 59.77 50.02 70.08 58.14 1.1289 92.89 

 
TABLE 7 Comparative Analysis on CIFAR10 Data 

Embeddings Accuracy Recall Precision F1-Score Loss AUC 

Linear Projection & Positional 73.82 67.30 81.13 73.44 0.7410 96.78 

Mixture, GMLP & Fourier 74.85 69.44 80.30 74.35 0.7492 96.69 

Linear Projection, Positional & Mixture 72.60 66.66 80.13 72.66 0.7888 96.35 

Linear Projection, Positional & GMLP 78.71 73.47 81.41 76.96 0.6915 98.54 

Linear Projection, Positional & Fourier 64.59 55.05 74.16 62.97 0.9999 94.34 

Linear Projection, Positional, Mixture,  

GMLP & Fourier (All) 
73.51 68.47 79.70 73.53 0.7957 96.29 

weighted Embedding  69.42 61.75 76.83 68.35 0.9375 98.43 

 
TABLE 8 Comparative Analysis on CIFAR100 Dataset 

Embeddings Accuracy Recall Precision F1-Score Loss AUC 

Linear Projection & Positional 44.76 30.32 70.94 42.13 2.1732 93.58 

Mixture, GMLP & Fourier 46.98 34.52 69.64 45.83 2.0617 93.77 

Linear Projection, Positional & Mixture 45.74 31.45 70.91 43.23 2.1164 93.79 

Linear Projection, Positional & GMLP 48.88 35.80 72.13 47.57 1.9936 94.35 

Linear Projection, Positional & Fourier 38.84 22.80 69.51 33.95 2.4206 92.36 

Linear Projection, Positional , Mixture,  

GMLP & Fourier (All) 
48.58 35.11 71.43 46.73 2.0108 94.17 

weighted Embedding  36.10 32.48 42.95 36.83 3.8518 82.72 
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The Table 7 shows the performance of each architecture, 

and upon analysis, we conclude that the proposed SWEKP-

ViT performs better than the other architectures. 

 

E. COMPARATIVE ANALYSIS ON CIFAR100 DATASET 

CIFAR100 is a benchmark dataset consisting of general 

images with 100 classes. The data is split into training and 

testing parts, with 50000 images in the training set and 10000 

images in the testing set. After basic preprocessing, the 

algorithms are trained. The models are then tested on the 

testing data to evaluate their performance on unseen data. 

The results clearly demonstrate the superiority of the  

 

proposed SWEKP-based ViT over other architectures and 

are listed in Table 8. 

Almost every model performs averagely on the 

CIFAR100 dataset. However, upon comparison of the 

performance of each model, it turns out that SWEKP based 

ViT, ViT with Linear Projection, Positional, and GMLP 

perform exceptionally well. The results are less than 50% 

due to the presence of 100 classes, some of which may have 

similar visual representations, causing confusion for the 

models. However, when compared to each other, SWEKP-

ViT, ViT with Linear Projection, Positional, and GMLP 

obtain very good results compared to the others. 

1) PERFORMANCE OF SINGLE EMBEDDING ON 

CIFAR100 

In this section, we evaluate the performance of each 

advanced embedding separately. Firstly, we use the GMLP 

embedding and report the results. Then, we use the Mixture  

embedding and lastly, we have the results for the Fourier 

embedding. The results for the CIFAR100 data are shown in 

Table 9. 

The table shows the performance of each embedding. 

Upon analysis, we conclude that the GMLP performs the best 

compared to the other two embeddings. The Figure 11 show 

the performance of embedding on CIFAR100 dataset. 

F. COMPARISON OF PREVIOUSLY PROPOSED 
ARCHITECTURE ON BENCHMARK DATASET 

In the last we compare our proposed architecture with 

previously proposed state of the art models. The Table 10 

showcases some results from previously proposed 

algorithms on benchmark datasets. Our results are highly 

competitive and could potentially be improved with an 

increased number of epochs and optimization of 

hyperparameters. The primary objective of this paper is to 

propose a heterogeneous patch encoding-based ViT. We 

conduct a comprehensive comparative analysis and multiple 

experiments, demonstrating that SWEKP mixtures performs 

exceptionally well on benchmark datasets. Through rigorous 

experimentation, we have reached the conclusion that our 

proposed set of modifications applied to the Vision 

Transformer (ViT) model has led to notable performance 

improvements when evaluated on benchmark datasets. The 

TABLE 9 Comparative analysis on CIFAR100 data with separate embeddings without local positional & projection embeddings 

Embeddings Accuracy Recall Precision F1-Score Loss AUC 

Mixer Embedding 45.13 31.61 69.98 43.18 2.1588 93.44 

GMLP Embedding 48.81 36.10 71.04 47.60 1.9881 94.31 

Fourier Embedding 36.90 20.80 69.10 31.62 2.5022 91.97 

 

TABLE 10 Comparison with state-of-the-art architectures in term of accuracy 

Reference Model CIFAR10 Fashion-MNIST MNIST CIFAR100 

Khanday O et al [17] Modified CNN 73.04% 93.68% - - 

Kurt M a W et al [18] 
HSIC (Hilbert-Schmidt 

Independence Criterion) 
59.4% 88.3% 98.8% - 

Kurt M a W et al[18] 
Simple CNN with back 

propagation 
56.5% 87.6% 98.4% - 

Chang S et al[21] MLSCN 76.79% - 98.42% - 

Hassani et al.[34] ViT-12/16 69.82% - 99.63% 57.97% 

Hassani et al.[34] ViT-Lite-7/16 71.78% - - 52.87% 

Hassani et al. [34] ViT-Lite 6/16 78.12% 93.09% 99.66% 52.68% 

Proposed SWEKP Embeddings 78.71 93.57% 99.69% 48.88% 
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results demonstrate the superiority of our enhanced approach 

compared to other existing state-of-the-art models. 

G. COMPLEXITY ANALYSIS 

In this study, the SWEKP patch encoding mechanism for 

transformers is introduced. With numerous transformer 

variations existing in the literature, we conduct a 

comprehensive complexity analysis of our proposed 

SWEKPT-based ViT in comparison to other state-of-the-art 

transformer models.  MNIST, Fashion-MNIST, CIFAR10, 

and CIFAR100 are among the benchmark datasets that 

were utilized for evaluation. Table 11 presents the 

complexity analysis of various transformer-based 

architectures, focusing on their parameter characteristics. 

The performance metrics of these architectures, as outlined 

in Table 10. 

The Table 11 clearly shows that state-of-the-art 

transformer models have a large number of trainable 

parameters. However, our proposed transformer architecture 

stands out with significantly fewer parameters, 

approximately 1.4 million. In terms of computational 

efficiency, our proposed architecture outperforms other 

state-of-the-art architectures. 

VI. CONSLUSION  

Vision transformers are state of the art architectures for 

image recognition tasks. A ViT consist of two parts firstly 

we break image into patches and then encode the patches into 

latent representations, and for encoding we have two 

embedding’s linear projection and positional embedding in 

simple ViT. In this research we proposed three new types of 

embeddings (Mixture, Spatial Gated and Fourier) for 

efficient patch encoding in vision transformer. The 

development of the proposed SWEKP-based ViT involves 

two distinct phases. First is weighted combination of 

previous two and new three embedding for patch encoding 

in transformer, and second is DKD for information 

propagation. Exploring different combinations of 

embeddings and conducting multiple experiments allows us 

to determine the optimal combination that gives the highest 

performance. We perform a massive comparative analysis on 

different combination of embedding. For example, firstly we 

use Mixture with default embedding’s (linear projection and 

positional embedding) to see the effect on patch encoding 

mechanism. Then we use some different combination and 

record the results. We come up with a conclusion that two 

types of combination perform very well. First is weighted 

combination of all embedding’s and second is GMLP with 

default embeddings (linear projection and positional 

embedding). We achieve higher results compared to other 

state of the art models present in literature. Based on our 

extensive testing and incorporating the suggested 

modifications, we observed a significant improvement in the 

performance of the enhanced ViT model. 
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