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Abstract—This paper proposes an elegant optimization frame-
work consisting of a mix of linear-matrix-inequality and second-
order-cone constraints. The proposed framework generalizes
the semidefinite relaxation (SDR) enabled solution to the typ-
ical transmit beamforming problems presented in the form of
quadratically constrained quadratic programs (QCQPs) in the
literature. It is proved that the optimization problems subsumed
under the framework always admit a rank-one optimal solution
when they are feasible and their optimal solutions are not
trivial. This finding indicates that the relaxation is tight as the
optimal solution of the original beamforming QCQP can be
straightforwardly obtained from that of the SDR counterpart
without any loss of optimality. Four representative examples of
transmit beamforming, i.e., transmit beamforming with perfect
channel state information (CSI), transmit beamforming with im-
perfect CSI, chance-constraint approach for imperfect CSI, and
reconfigurable-intelligent-surface (RIS) aided beamforming, are
shown to demonstrate how the proposed optimization framework
can be realized in deriving the SDR counterparts for different
beamforming designs.

Index Terms—Quadratically constrained quadratic program,
semidefinite relaxation, transmit beamforming, reconfigurable
intelligent surfaces.

I. Introduction

Quadratically constrained quadratic programs (QCQPs) are
typical optimization problems having objective functions and
constraints as quadratic functions of optimization variable vec-
tors [1], [2]. Indeed, QCQPs capture numerous classic research
problems in signal processing and communications such as
multiple-input, multiple-output detection, multi-user detection,
magnetic resonance imaging, transmit beamforming, etc. [1].
Unfortunately, most of the QCQPs are known as non-convex
problems which are generally NP-hard and cannot be solved
in polynomial time [1], [2]. To tackle these problems, a non-
convex QCQP is first transformed into an equivalent semidef-
inite programming by introducing a new positive semidefinite
optimization variable matrix as the product of the original
optimization variable vector and its hermitian. However, this
equivalent transformation also introduces a non-convex rank-
one constraint on the newly introduced optimization variable
matrix, i.e., the matrix has only one linearly independent
column/row. By dropping the rank-one constraint, the trans-
formed problem becomes a convex one and can be effectively
solved by numerical optimization packages, e.g., CVX [3].
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This technique is known as semidefinite relaxation (SDR) and
the dropped rank-one constraint problem is referred to as the
SDR counterpart. If solving the SDR counterpart results in a
rank-one optimal matrix, then the original QCQP and its SDR
counterpart are equivalent, i.e., the optimal solution to the SDR
counterpart is also the optimal solution to the original QCQP.
Therefore, the optimal vector for the original QCQP problem
can be attained as the product of the eigenvector of the rank-
one optimal matrix of the SDR counterpart and the square root
of its eigenvalue. Otherwise, some rank-one approximations
or the Gaussian randomize procedure [1] can be adopted to
extract an approximated solution to QCQP from the optimal
solution of the SDR counterpart. Indeed, extracting the ap-
proximated solution requires further computational resources
and the obtained solution is generally suboptimal.

The first work adopted the SDR technique in transmit
beamforming design can be dated back to the late 90’s in [4],
where the authors minimized the total transmit power subject
to guaranteeing the minimum required signal-to-interference-
plus-noise ratios (SINRs) for all the mobile users. In partic-
ular, Bengtsson and Ottersten stated in [4] that if the SDR
counterpart of the QCQP beamforming design is feasible,
then there exists at least one rank-one solution. Considering a
more general class of problems, i.e., separable homogeneous
QCQP, by introducing soft-shaping interference constraints
and individual shaping constraints to the problem considered
in [4], Huang and Palomar [2] derived tighten upper bounds on
the rank of extreme matrices in SDPs [5] and confirmed their
special case in [4]. They proved that if the original separable
homogeneous QCQP and its dual problem are solvable or
feasible and any optimal solution of the original problem
is non-trivial, i.e., containing non zero matrix component,
then the original separable homogeneous QCQP has a rank-
one optimal solution if there are maximum two soft-shaping
interference constraints and the matrices associated with the
individual shaping constraints are semidefinte. Unlike the
method in [2], Li and Ma exploited the Karush–Kuhn–Tucker
(KKT) conditions and matrix rank properties to show in [6]
that when the data matrices satisfyies certain matrix inequality
conditions, rank-one solutions for separable SDPs can be
found without any dependant on the number of constraints.
On the other developments, we used the Lagrange duality to
prove in [7] and [8] that if the corresponding SDR counterpart
is feasible, then it will admit a rank-one optimal solution.

Thanks to its capable of providing accurate or even near
optimal approximations [1], the SDR technique has been
exploited for QCQPs representing beamforming problems
for simultaneous wireless information and power transfer
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(SWIPT), e.g., [9], [10], physical-layer security for SWIPT,
e.g., [11], [12], intelligent reflecting surface (IRS), e.g., [13]–
[15], and IRS-Aided SWIPT, e.g., [16], [17]. With respect
to SWIPT scenarios, adopting an assumption that all users’
channel vectors are mutually and statically independent, ref-
erence [9] considered the maximization of a weighted sum-
power transferred to all the energy receivers while reference
[10] studied a wireless-information-transfer maximization with
both linear and non-linear energy-harvesting models. It was
shown in [9] and [10] when the considered channels are
statistically independent with each other, with probability one,
the beamforming matrices for the information receivers are
rank one while those for the energy receivers have rank
less or equal one. Considering physical-layer security for
SWIPT scenarios, it was proved that the SDR counterpart
of a QCQP proposed in [11], i.e., a total-transmit-power
minimization problem, and the SDR counterpart of a QCQP
introduced in [12], i.e., the maximization problem of the
intended signal power at every information receiver and the
total received power at each energy harvesting receiver, yield
rank-one optimal solutions if they are feasible. Investigating
an IRS scenario in [15], the authors showed that the optimal
beamforming rank-one matrix for their IRS SDR counterpart
can always be obtained for any positive transmit power budget
at BS. On the other hand, as for the IRS-Aided SWIPT
scenarios, the authors of [16] indicated that the optimal
solution of the information beamforming matrix of their SDR
problem always satisfies the rank-one requirement for a given
positive required SINR level. It is shown in [17] that there
always exists an optimal information beamforming matrix to
the SDR counterpart of the weighted-sum-energy-harvesting-
power maximization problem satisfying rank-one condition if
the SDR is feasible. Whereas, the SDR counterpart of the
weighted-sum-rate maximization problem proposed in [17]
yields optimal information beamforming matrix with rank less
or equal one if it is feasible.

QCQP can also capture a class of robust beamforming
where the input of the optimization, i.e., the channel state
information (CSI) between a wireless transmitter and its
mobile users, is impaired by some errors. In such cases, the
imperfection of the estimated CSI is modeled as a vector with
norm-bounded random error elements. To avoid handling an
infinite number of constraints due to the randomness and the
continuity of the error vectors, a worst-case approach adopts
the S-procedure [3] to transform the related QCQP constraint
into a robust linear matrix inequality (LMI) constraint, see
e.g., [18]–[20]. As such, a robust semidefinite program (SDP)
can be formed. In particular, the authors in [18] analytically
showed that the SDR counterpart of the transformed SDP
always yields rank-one optimal solution when the channel
norm-bounded value is small or the transmitter is equipped
with two antennas. Also, it is shown in [19] that when the
requirements in the robust SDR counterpart constraints are less
stringent, the SDR counterpart has higher chance of attaining
a rank-one matrix solution. Beside, adopting similar approach
as in [6], the authors of [20] proved that the robust counterpart
SDR of their robust secrecy beamforming problem always
yields rank-one optimal solution matrices when it is feasible.

The aforementioned worst-case approach is considered as a
conservative design as it requires an exceedingly large amount
of system resource to prevent rarely extreme cases [21]–[24].
Therefore, less conservative approaches have been proposed
for robust beamforming designs by tolerating the violation of
the constraints with certain chances or probabilities, e.g., [13],
[21]–[25]. Unfortunately, the newly introduced probabilistic
constraints neither admit convexity nor have simple closed
forms due to the sophisticated probability density functions.
To overcome the obstacle, safe approximation techniques
are applied to replace the original non-convex probabilistic
constraint by a convex constraint which is known as convex
approximation [25]. The problem adopting the safe approxima-
tion serves as a performance lower bound as a convex subset
of the original solution set is considered [25], [26]. To this
end, three safe approximation methods have been developed in
[25]. For the first method, chance or probabilistic constraints of
the original optimization problem are approximated by LMIs
based on the assumption of a norm-bounded of the error
vectors and exploiting the S-procedure. As for the other two
methods, large deviation inequalities for complex Gaussian
quadratic forms are adopted to safely approximate a chance
constraint by a set of LMI and second-order-cone (SOC)
constraints leading to the formulation of rank-constrained SDP.
The attempts towards the related rank-one issue of SDR
containing SOC constraints were firstly accounted for [23]
and latter for [24]. In these works, some inequalities have
been exploited to transform a SOC constraints into an LMI
constraint. The resulting transformed SDRs are safe approx-
imations, i.e., every feasible solution to the approximated
problem is also feasible for the corresponding original problem
[25], [26], and they are shown to yield rank-one solutions.
However, as a result of the employed transformations, the sizes
of the feasible regions of the transformed SDRs are reduced,
in comparison with the original problem, which may lead to
infeasibility, i.e., a feasible solution to the original problem
may be infeasible for the approximated problem. In [27], we
proposed a novel approach to transform an SOC constraint
into an LMI constraint without loss of optimality as we do not
reduce the feasibility region of the transformed SDRs. We then
proved that the transformed SDRs are tight, i.e., yielding rank-
one optimal solutions. The finding, however, only captures the
probabilistic optimization problem considered in [27].

The effectiveness of solving a non-convex QCQP depends
on how one can extract the optimal solution to the original
QCQP from the optimal solution to the SDR counterpart.
Having rank-one optimal solution for the SDR counterpart of
a QCQP implies that the relaxation is tight, i.e., the original
QCQP and its SDR are equivalent. The observation of rank-
one property of the optimal solution for several SDRs in
literature indicates the existence of a general optimization
framework. If a QCQP can be transformed into a SDR
problem subsumed under a general framework admitting rank-
one optimal solution, then the relaxation is tight and its
optimal solution can be efficiently obtained via solving the
corresponding SDR problem. Unfortunately, such framework
has not been formulated and investigated yet. Furthermore, as
the framework captures various types of constraints, proving
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the rank-one optimal solution to the general framework poses
a challenging task, i.e., any aforementioned techniques cannot
straightforwardly be utilized. Therefore, the novelty of this
work is to formulate and prove the rank-one optimal solution
of the general framework. Particularly, the contributions of this
paper are summarized as follows.

• This paper proposes a general optimization problem
framework including a mix of LMI and SOC constraints
which can serve as the SDR counterpart of several
beamforming QCQPs. The SDR counterparts considered
in previous works in [2], [4], [6]–[8], [11]–[13], [18]–
[20], [23], [24], [27] are special cases of our proposed
optimization problem.

• This paper proves that the proposed optimization problem
framework always yields rank-one optimal solution if it
is feasible and its optimal solution is non-trivial. The
technique developed in this paper is the generalization
of our previous works in [7], [8], and [27].

• This paper studies the transmit beamforming with four
illustrative examples to highlight possible applications of
the proposed optimization framework in developing SDR
counterparts for QCQP transmit beamforming designs
with both perfect and imperfect CSI. The applications of
the framework are beyond these four examples which are
only given to showcase how different types of constraints
can be handled by the framework.

Notation: Lower and upper case letter y and Y: a scalar; bold
lower case letter y: a column vector; bold upper case letter Y: a
matrix; ∥·∥: the Euclidean norm; ∥·∥F : the Frobenius norm; (·)T :
the transpose operator; (·)H: the complex conjugate transpose
operator; Tr (·): the trace operator; Pr (·): the probability of
an event; Y ⪰ 0: Y is positive semidefinite; y ≽ 0: all
elements of vector y are non-negative; Ix: an x × x identity
matrix; 0A×1: an A × 1 vector of all zero elements; 0A×B: an
A × B matrix of all zero elements; Re{·}: the real part of a
complex number; Eigmax (Y): the maximum eigenvalue of Y;
s+(Y) : max{Eigmax(Y), 0}; vec (Y): stacking all the entries of
Y into a column vector; R: the set of all real scalars ; CM×1: the
set of all M×1 vectors with complex elements; HM×M: the set
of all M ×M Hermitian matrices; y ∼ CN(0, σ2): y is a zero-
mean circularly symmetric complex Gaussian random variable
with variance σ2; y ∼ CN(0,Y): y is a zero-mean circularly
symmetric complex Gaussian random vector with covariance
matrix Y; Y1/2: the square root of matrix Y; diag (y): a
diagonal matrix whose diagonal elements are the entries of
vector y; and finally diag (Y): a vector whose entries are the
diagonal elements of matrix Y.

II. Proposed Optimization Framework

A. Rank-one Optimization Framework

Consider the following optimization problem framework
with a mix of LMI and SOC constraints:

min
{Wi}∈HM×M , αi≥0, ϱi, fi≥0

U∑
i=1

Tr (AiWi)

s. t. : C1,∀i ∈ {1, · · · , L1},

C2,∀i ∈ {1, · · · ,U},
C3, ∀i ∈ {1, · · · , L3},

C4, ∀i ∈ {1, · · · , L4},

C5, ∀i ∈ {1, · · · , L5},

C6, ∀i ∈ {1, · · · ,U},

(1)

where {Wi} = {W1,W2, · · · ,WU},

C1 : aiTr
(
Xi,iWi

)
+

U∑
j=1

b jTr
(
Xi, jWb j

)
+ ci ≥ 0, (2)

C2 : miTr (MiWi) + pi ≥ 0, (3)

C3 :
[
YiBiYi + αiIM YiBiyi

yH
i BiYi yH

i Biyi + di

]
⪰ 0, (4)

C4 :

∥∥∥∥∥∥
[

eiZiCizi

vec (ZiCiZi)

]∥∥∥∥∥∥ ≤ ϱi, (5)

C5 : fiIM + viDi

N∑
k=1

ΛkEiΨkD̃i ⪰ 0, (6)

C6 : Wi ⪰ 0, (7)

L1, L3, L4, L5, and U are the number of constraints with
{L1, L3, L4, L5} ≥ U; {Wi}, {αi}, {ϱi}, and { fi} are, respectively,
the sets of U, L3, L4, and L5 numbers of optimization
variables; M is the order/size/dimension of the variable square
Hermitian matrix Wi. The optimization data, i.e., given design
parameters, are as follows: {Ai,Xi,i,Xi, j,Λk,Ψk} ∈ C

M×M ,
{Yi,Zi,Di, D̃i} ∈ H

M×M , {yi, zi} ∈ C
M×1, and {ai, bi, ci, di,

ei, gi, vi, mi, pi, h j, g̃i, h̃ j, ḡi, h̄ j} ∈ R. In (1), Bi, Ci and Ei

are affine functions of {Wi}, i.e.,

Bi = giWi +

U∑
j=1

h jW j, (8)

Ci = g̃iWi +

U∑
j=1

h̃ jW j, (9)

Ei = ḡiWi +

U∑
j=1

h̄ jW j. (10)

Finally, ai = 0, gi = 0, g̃i = 0, and ḡi = 0, ∀i > U.
Exploiting the Schur complement with some mathematical

manipulations, one can rewrite C4 as:

C4(a) :


ϱiIM2+M

[
eiZiCizi

vec (ZiCiZi)

]
[

eiZiCizi

vec (ZiCiZi)

]H

ϱi

 ⪰ 0. (11)

Hence, the proposed optimization problem framework (1) can
be equivalently written as:
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min
{Wi}∈HM×M , αi≥0, ϱi, fi≥0

U∑
i=1

Tr (AiWi)

s. t. C1,∀i ∈ {1, · · · , L1},

C2,∀i ∈ {1, · · · ,U},
C3, ∀i ∈ {1, · · · , L3},

C4(a), ∀i ∈ {1, · · · , L4},

C5, ∀i ∈ {1, · · · , L5},

C6, ∀i ∈ {1, · · · ,U}.

(12)

We then introduce the following theorem.
Theorem 1: If problem (12) is feasible and each of its

optimal solution W⋆
i , 0, ∀i, then W⋆

i , ∀i, are rank-one
matrices.1

Proof: Please refer to Appendix C.
With a suitable selection of Ai, e.g., Ai = −IM , the

minimization can be turned into a maximization. For instance,
the proposed framework can capture the weighted sum-power
transfer maximization in [9], [17], the wireless-information
transfer efficiency maximization in [10], the intended signal
power maximization in [12], etc.

For a sum rate maximization problem, which can be con-
sidered as a fractional QCQP, one can follow similar steps
as in [17, Section IV] to cast it in the form of the proposed
framework. On the other development, a novel approach was
introduced in [28] to approximate the sum rate maximization
problem by a convex SOC form which does not require SDR
technique.2 Recently, elegant approaches have been introduced
in [30] and [31] to tackle factional QCQPs without the need
of SDR technique. As a result, the proposed approaches are
capable of solving sum rate optimization problems with both
perfect and imperfect CSI. It has been shown in [30] and [31]
that their proposed approaches offer better performances than
their SDR counterparts do.

Note that none of the SDR counterparts of the transmit
beamforming approaches in the literature considers all the con-
straints presented in the optimization framework. Constraints
C1, C2, C4/C4(a), and C6 usually appear on beamforming
problems with perfect CSI, see e.g., [2], [4]–[8], [11], [12].
As for imperfect CSI scenarios, constraints C3 and C6 are
adopted in robust conservative beamforming approaches, such
as [18]–[20], whereas constraints C4/C4(a), C5, and C6 are
exploited in probabilistic beamforming approaches, e.g., [13],
[21]–[25].

When {L1, L3, L4, L5} ≤ U, ai , 0, gi , 0, g̃i , 0, and ḡi , 0.
Hence, constraints C1, C3, C4/C4(a), and C5 are exploited
to represent the SINR constraints. When {L1, L3, L4, L5} > U,
ai = 0, gi = 0, g̃i = 0, and ḡi = 0. Therefore, constraints
C1, C3, C4/C4(a), and C5 can represent the soft-shaping
interference constraint, e.g., as in [2], [7], or the energy
transfer constraint, e.g., as in [20], [27]. Constraint C2 can
capture the individual shaping constraint of the SDR in [2].

1Since (12) is convex, W⋆i is a unique solution in the considered feasible
region.

2A similar approximation technique was adopted in [29] to find solution
for a energy efficiency maximization problem.

Let us define a sub-class optimization problem of the
general framework as an optimization problem including an
objective function as in (12), constraint C6 and at least one
constraint selected from {C1,C2,C3,C4(a),C5}. As the result
of Theorem 1, we have the following corollary.

Corollary 1: Sub-class optimization problems of the gen-
eral framework in (12) yield rank-one-matrix optimal solutions
if they are feasible and there is no trivial solution amongst their
optimal solutions.

Proof: The proof is the simplified version of that pre-
sented in Appendix C.

Remark 1: The rank-one results in Theorem 1 and Corol-
lary 1 are based on an assumption that the problem (12) or its
sub-class problem is feasible and there is no trivial solution.
However, the conditions for such assumption being held, e.g.,
the relationship between the number of constraints and the
number of variables, or the input data of the problem, or the
channel estimation errors, are out of the scope of this paper.
Theorem 1 and Corollary 1 indicate that the optimization
framework in (12) can serve as tight SDR counterparts for
its corresponding QCQPs. In other words, only those QCQPs
being able to convert into the general framework (12) or it
sub-class optimization problems have tight SDRs.

B. Complexity Analysis
Since the proposed optimization framework (12) is convex,

a standard interior point method (IPM) can be exploited to find
the optimal solution. To that end, we analyse the complexity
of solving (12) in a worst-case run time of the IPM. We start
by introducing the following definition.

Definition 1: At a given ε > 0, the set of {Wε
i } is an ε-

solution to problem (12), i.e., an acceptable solution with the
accuracy of ε, if

U∑
i=1

Tr
(
AiAεi

)
≤ min

Wi∈HM×M

U∑
i=1

Tr (AiWi) + ε. (13)

It can be seen that the number of decision variables of (12)
is M2. The complexity of (12) is described in the following
lemma.

Lemma 1: The computational complexity to attain ε-
solution to (12) is on the order of:

ln
(
ε−1

)√
β
(
M

)[
Cform +Cfact

]
, (14)

where β(M) = L1 +U +L3 +L4 +
(
L3 +L4 +L5 +U

)
M+L4M2,

Cform = M2
[
L1 +U +

(
L5 +U

)
M3 + L3

(
M + 1

)3
+ L4

(
M2 +M +

1
)3]
+M4

[
L1+U+L3

(
M+1

)2
+L4

(
M2+M+1

)2
+
(
L5+U

)
M2

]
,

and Cfact = 6M6.
Proof: We sketch some main steps to arrive at the lemma

due to space limitation. It can be observed that (12) has (L1 +

U) linear-matrix-inequality (LMI) constraints of size 1, (L5 +

U) LMI constraints of size M, L3 LMI constraints of size
(M + 1), and L4 LMI constraints of size (M2 + M + 1). One
can follow the same steps as in [25, Section V-A] to derive
the following facts: (i) the iteration complexity is on the order
of ln

(
ε−1

)√
β
(
M

)
, and (ii) the per-iteration complexity is on

the order of Cform +Cfact.
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In the following section, we present how the proposed
framework (12) can be adopted to solve transmit beamforming
QCQPs.

III. Applications to Transmit Beamforming

As discussed in the previous section, the constraints in
the optimization framework (12) can well represent several
constraint types of the SDR counterparts of most of the QCQP
transmit beamforming designs in the literature. In this section,
we consider a downlink beamforming scenario and present
four illustrative examples with either perfect or imperfect CSI.
Those examples show how these types of the constraints in the
proposed optimization framework can be adopted to obtain
the globally optimal solution of QCQP transmit beamforming
designs.

A. Transmit Beamforming with Perfect CSI

Consider a cellular system consisting of a base station (BS)
serving U mobile users. We assume that the BS is equipped
with M antenna elements and each mobile user has a single
antenna. The received signal at user i, i ∈ {1, · · · ,U}, is:

yi = hH
i wisi +

U∑
j=1, j,i

hH
i w js j + ni, (15)

where hH
i ∈ C

1×M is the channel coefficient between user i and
the BS; wi ∈ C

M×1 and si ∼ CN(0, 1) are the beamforming
vector and the data symbol associated to user i, respectively;
and ni ∼ CN(0, σ2

i ) is a zero mean circularly symmetric
complex Gaussian noise with variance σ2

i , at user i. We express
the SINR at any user i as:

SINRi =
wH

i hihH
i wi∑U

j=1, j,i wH
j hihH

i w j + σ
2
i

, ∀i. (16)

Our objective is to design downlink beamforming vectors
for the mobile users that minimize the BS’s transmit power
while maintaining the required SINR level for each user. The
optimization problem to design the beamforming vectors can
be stated as:

min
wi

U∑
i=1

∥wi∥
2

s. t.
wH

i hihH
i wi∑U

j=1, j,i wH
j hihH

i w j + σ
2
i

≥ γi, ∀i ∈ {1, · · · ,U},

(17)

where γi is the user i target SINR level.
Due to the SINR constraint, problem (17) is non-convex

with respect to wi. In this paper, we are interested in cast-
ing problem (17) in a QCQP form.3 Let us introduce a
new optimization variable Wi = wiwH

i where Wi ⪰ 0,
Wi ∈ H

M×M , and Wi is a rank-one matrix. Utilizing the
identities xHYx = Tr(YxxH) and ∥x∥2 = Tr(xxH) with some
mathematical manipulations, one can equivalently rewrite (17)

3Problem (17) can also be transformed into a second-order-cone program-
ming which is not a focus of this paper. Interested readers are referred to [32,
Section IV.B] for the detailed transformation.

as:

min
Wi∈HM×M

U∑
i=1

Tr (Wi)

s. t.
(
1 +

1
γi

)
Tr

(
hihH

i Wi

)
−

U∑
j=1

Tr
(
hihH

i W j

)
− σ2

i ≥ 0,

∀i ∈ {1, · · · ,U},
Wi ⪰ 0, ∀i ∈ {1, · · · ,U},
rank (Wi) = 1, ∀i ∈ {1, · · · ,U}.

(18)
In the following we show that the SINR constraint in (18)

can be expressed the form of C1 in (12). To that end, we map
the notations used in (18) to those used in (12) as follows.
Let us denote ai =

(
1 + 1

γi

)
, b j = −1, Xi,i = Xi, j = hihH

i , and
ci = −σ

2
i . Dropping the rank-one constraint on Wi, utilizing

those mappings, and letting Ai = IM , (18) can be rewritten as:

min
Wi∈HM×M

U∑
i=1

Tr (AiWi)

s. t. aiTr
(
Xi,iWi

)
+

U∑
j=1

b jTr
(
Xi, jW j

)
+ ci ≥ 0,

∀i ∈ {1, · · · ,U},
Wi ⪰ 0, ∀i ∈ {1, · · · ,U}.

(19)

It is clear that (19) is a sub-class optimization problem of
the general framework (12), i.e., containing C1 and C6 with
L1 = U. Hence, according to Corollary 1, (19) yields rank-
one optimal solution if it is feasible and its optimal solution
does not contain any trivial solution. Therefore, the optimal
solution of (19) is also the optimal solution of (18). In other
words, the SDR counterpart (19) is equivalent to the original
QCQP (18).

Keeping C1 and C6 in the general framework (12) with L1 =

U, one can derive the complexity of (19) from Lemma 1 as
follows.

Corollary 2: The computational complexity to attain ε-
solution to (19) is on the order of:

ln
(
ε−1

)√
β1

(
M

)[
Cform,1 +Cfact,1

]
, (20)

where β1(M) = U(M + 1), Cform,1 = M2
[
U(M3 + 1)

]
+

M4
[
U(M2 + 1)

]
, and Cfact,1 = 2M6.

B. Transmit Beamforming with Imperfect CSI

Consider the same system described in the previous sub-
section. However, we assume that there exist errors in the
estimation of the channel state information. Hence, the true
channel coefficient between the BS and user i is modeled
as ĥH

i + H1/2
i eH

i where ĥi is the estimate channel coefficient,
Hi ⪰ 0 and ei ∼ CN(0, IM) represent its estimation error.
We further assume that the error vector ei is confined to the
complex spherical sets {ei ∈ C

M×1 | ∥ei∥
2 ≤ r2} having M

dimensions and radius r. Our optimization for imperfect CSI
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is posed as:

min
wi

U∑
i=1

∥wi∥
2

s. t.
wH

i

(̂
hi +H1/2

i ei

) (̂
hi +H1/2

i ei

)H
wi∑U

j=1, j,i wH
j

(̂
hi +H1/2

i ei

) (̂
hi +H1/2

i ei

)H
w j + σ

2
i

≥ γi,

∀i ∈ {1, · · · ,U},

∥ei∥
2 ≤ r2, ∀i ∈ {1, · · · ,U}.

(21)
Introducing a new optimization variable Wi = wiwH

i where
Wi ⪰ 0, Wi ∈ H

M×M , and Wi is a rank-one matrix, we rewrite
the SINR constraint in (21) as an affine function of ei:

fi(ei) ≜ eH
i H1/2

i B̃iH1/2
i ei + 2Re{eH

i H1/2
i B̃iĥi} + ĥH

i B̃iĥi − σ
2
i

≥ 0, (22)

where

B̃i =

(
1 +

1
γi

)
Wi −

U∑
j=1

W j. (23)

We now equivalently rewrite (21) as:

min
Wi∈HM×M

U∑
i=1

Tr (Wi)

s. t. fi(ei) ≥ 0, ∀i ∈ {1, · · · ,U},

eH
i Iei ≤ r2, ∀i ∈ {1, · · · ,U},

Wi ⪰ 0, rank (Wi) = 1, ∀i ∈ {1, · · · ,U}.

(24)

The number of constraints in (24) is infinite4 due to the
randomness and continuous of the error vector ei. To proceed,
we introduce the following lemma.

Lemma 2 (S-Procedure [33]): Let mn(x) = xHYnx +
2Re{xHyn} + cn, n ∈ {1, 2}, where Yn ∈ H

M×M , yn ∈ C
M×1,

and cn ∈ R. If there exists an x̌ such that mn(x̌) < 0, then
∀x ∈ CM×1, the following statements are equivalent:

1) m1(x) ≥ 0 and m2(x) ≤ 0 are satisfied ∀x ∈ CM×1.

2) There exists a β ≥ 0 such that
[

Y1 y1
yH

1 c1

]
+β

[
Y2 y2
yH

2 c2

]
⪰

0.
Exploiting Lemma 1, one can transform the optimization
problem (24) into an equivalent standard convex SDP form
as:

min
{Wi}∈HM×M , β̃i≥0

U∑
i=1

Tr (Wi)

s. t.
[
H1/2

i B̃iH1/2
i + β̃iIM H1/2

i B̃iĥi

ĥH
i B̃iH1/2

i ĥH
i B̃iĥi − σ

2
i − β̃ir2

]
⪰ 0,

∀i ∈ {1, · · · ,U},
Wi ⪰ 0, rank (Wi) = 1, ∀i ∈ {1, · · · ,U}.

(25)
Note that the SINR constraint in (21) is now cast as the first

constraint in (25). In the following we show that the SINR
constraint in (25) can be expressed the form of C3 in (12).

4Problem (24) is a semi-infinite optimization problem, i.e., an optimiza-
tion problem with a finite number of variables and an infinite number of
constraints.

We denote Yi = H1/2
i , Bi = B̃i, yi = ĥi, αi = β̃i, and di =

−σ2
i − β̃ir2. Dropping the rank-one constraint on Wi, utilizing

those mappings, and letting Ai = IM , problem (25) can be
rewritten as:

min
{Wi}∈HM×M ,αi≥0

U∑
i=1

Tr (AiWi)

s. t.
[
YiBiYi + αiIM YiBiyi

yH
i BiYi yH

i Biyi + di

]
⪰ 0,

∀i ∈ {1, · · · ,U},
Wi ⪰ 0, ∀i ∈ {1, · · · ,U}.

(26)

It is obvious that (26) is a sub-class optimization problem of
the general framework (12), containing constraints C3 and C6
with L3 = U. Therefore, Corollary 1 indicates that (26) yields
rank-one optimal solution when it is feasible and its optimal
solution is not trivial. Hence, the optimal solution of (26) is
the same as that of (25). Therefore, the SDR counterpart (26)
is equivalent to the original QCQP (25).

Having only constraints C3 and C6 with L3 = U in general
framework (12), one can derive the complexity of (26) from
Lemma 1 as follows.

Corollary 3: The computational complexity to attain ε-
solution to (26) is on the order of:

ln
(
ε−1

)√
β2

(
M

)[
Cform,2 +Cfact,2

]
, (27)

where β2(M) = U(2M+1), Cform,2 = M2
[
U(M+1)3+UM3

]
+

M4
[
U(M + 1)2 + UM2

]
, and Cfact,2 = 2M6.

C. Chance-constraint Approach for Imperfect CSI

In this section, we relax the constraint on the bounded-norm
of the error vector to develop a probabilistic-constraint method.
To that end, we define a communication outage between the
BS and its users if the SINR level at the i-th user falls bellow
a required level γi, which is referred to as SINR outage, see
e.g., [25], [27], and the references therein. Aiming to design
a power-efficient beamforming scheme, we optimize the data
beamforming vector set {wi} for the minimization of the total
transmit power subject to probabilistic/chance constraint on
SINR outages. The design is formulated as the following
optimization problem:

min
{wi}

U∑
i=1

∥wi∥
2

s. t. Pr

 wH
i

(̂
hi +H1/2

i ei

) (̂
hi +H1/2

i ei

)H
wi∑U

j=1, j,i wH
j

(̂
hi +H1/2

i ei

) (̂
hi +H1/2

i ei

)H
w j + σ

2
i

≥ γi


≥ 1 − ρi,∀i ∈ {1, · · · ,U},

(28)
where ρi ∈ (0, 1] is the predefined maximum tolerable proba-
bilities/chances of SINR outages.

Similarly, introducing a new optimization variable Wi =
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wiwH
i , using (22), we cast (28) as:

min
{Wi}∈HM×M

U∑
i=1

Tr (Wi)

s. t. Pr ( fi(ei) ≥ 0) ≥ 1 − ρi,∀i ∈ {1, · · · ,U},
Wi ⪰ 0, rank (Wi) = 1, ∀i ∈ {1, · · · ,U}.

(29)

Although the event fi(ei) ≥ 0 is convex, the corresponding
probabilistic constraint in (29) is neither necessarily convex
nor admits a simple closed-form. To overcome the challenge,
our goal is to derive convex upper bounds for the chance
constraint in (29). This convex approximation approach is
based on the large deviation inequality, i.e., a Berstein-type
inequality, which bounds the probability that a sum of random
variables deviates from its mean [25]. To begin with, let us
recall the following lemma.

Lemma 3 (Bernstein-type inequality [34]): Consider the
following random variable f (x) = xHYx + 2Re{xHu}, where
x ∼ CN(0, IM),5 Y ∈ HM×M , and u ∈ CM×1. For all δ > 0, the
following statement holds:

Pr
(

f (x) ≥ Tr (Y) −
√

2δ
√
∥Y∥2F + 2∥u∥2 − δs+(Y)

)
≥ 1 − e−δ. (30)

With δi = − ln ρi and Lemma 3, the SINR outage constraint
Pr ( fi(ei) ≥ 0) ≥ 1 − ρi in (29) can be rewritten as:

Tr
(
H1/2

i B̃iH1/2
i

)
−

√
2δi

√
∥H1/2

i B̃iH1/2
i ∥

2
F + 2∥H1/2

i B̃iĥi∥
2

−δis+
(
H1/2

i B̃iH1/2
i

)
≥ σ2

i − ĥH
i B̃iĥi. (31)

Then, by introducing two auxiliary optimization variables
ϱi and ϑi, and adopting the identity

√
∥a∥2 + ∥A∥2F =

∥
[
aT , vec (A)T

]T
∥, (31) is further recast as the following

equivalent constraint:

Tr
(
H1/2

i B̃iH1/2
i

)
−

√
2δiϱi − δiϑi ≥ σ

2
i − ĥH

i B̃iĥi, (32)∥∥∥∥∥∥∥
 √

2H1/2
i B̃iĥi

vec
(
H1/2

i B̃iH1/2
i

)
∥∥∥∥∥∥∥ ≤ ϱi, (33)

ϑiIM +H1/2
i B̃iH1/2

i ⪰ 0, (34)
ϑi ≥ 0. (35)

From (32)-(35), we can equivalently cast (29) as:

min
{Wi}∈HM×M

U∑
i=1

Tr (Wi)

s. t. (32), (33), (34), (35), ∀i ∈ {1, · · · ,U},
Wi ⪰ 0, rank (Wi) = 1, ∀i ∈ {1, · · · ,U}.

(36)

Mirroring the discussions in the previous subsections, in the
following we will express the constraints of (36) in the
compact form as (12). First, substituting for B̃i in (23) after
some manipulations, one can rewrite (32) as:

aiTr
(
Xi,iWi

)
+

U∑
j=1

b jTr
(
Xi, jW j

)
+ ci ≥ 0, (37)

5Here, the errors are assumed to be uncorrelated. When the errors are
correlated, i.e., the covariance matrix of x is not an identity matrix, a novel
convex approximation approach is needed. This deserves a new research topic.

where ai =
(
1 + 1

γi

)
, b j = −1, Xi,i = Xi, j = Hi + ĥiĥH

i , and
ci = −

√
2δiϱi − δiϑi − σ

2
i . Next, letting ei =

√
2, Zi = H1/2

i ,
Ci = B̃i, zi = hi, fi = ϑi, vi = 1, Λk = Ψk = IM , and Ai = IM ,
using those mappings and relaxing the rank-one constraint on
Wi, we recast (36) as:

min
{Wi}∈HM×M

U∑
i=1

Tr (AiWi)

s. t. aiTr
(
Xi,iWi

)
+

U∑
j=1

b jTr
(
Xi, jW j

)
+ ci ≥ 0,

∀i ∈ {1, · · · ,U},∥∥∥∥∥∥
[

eiZiCizi

vec (ZiCiZi)

]∥∥∥∥∥∥ ≤ ϱi, ∀i ∈ {1, · · · ,U},

fiIM + viDi

N∑
k=1

ΛkEiΨkD̃i ⪰ 0, fi ≥ 0,

∀i ∈ {1, · · · ,U},
Wi ⪰ 0, ∀i ∈ {1, · · · ,U}.

(38)

Using the Schur complement on the second constraint with
some mathematical manipulations, one can rewrite (38) as:

min
{Wi}∈HM×M

U∑
i=1

Tr (AiWi)

s. t. aiTr
(
Xi,iWi

)
+

U∑
j=1

b jTr
(
Xi, jW j

)
+ ci ≥ 0,

∀i ∈ {1, · · · ,U},
ϱiIM2+M

[
eiZiCizi

vec (ZiCiZi)

]
[

eiZiCizi

vec (ZiCiZi)

]H

ϱi

 ⪰ 0,

∀i ∈ {1, · · · ,U},

fiIM + viDi

N∑
k=1

ΛkEiΨkD̃i ⪰ 0, ∀i ∈ {1, · · · ,U},

Wi ⪰ 0, ∀i ∈ {1, · · · ,U}.
(39)

It can be observed that problem (39) is a sub-class optimiza-
tion problem of the general framework (12), i.e., including
constraints C1, C4(a), C5, and C6 with L1 = L4(a) = L5 = U.
Therefore, Corollary 1 implies that (39) yields rank-one opti-
mal solution when it is feasible and its optimal solution is not
trivial. Hence, the optimal solution of (39) is also the optimal
solution of (36). Consequently, the SDR (39) is equivalent to
the original QCQP (36).

Keeping C1, C4(a), C5, and C6 with L1 = L4(a) = L5 = U
in the general framework (12), one can derive the complexity
of (39) from Lemma 1 as follows.

Corollary 4: The computational complexity to attain ε-
solution to (39) is on the order of:

ln
(
ε−1

)√
β3

(
M

)[
Cform,3 +Cfact,3

]
, (40)

where β3(M) = 2UM + U(M2 + M + 2), Cform,3 = M2
[
U +

2UM3+U
(
M2+M+1

)3]
+M4

[
U +2UM2+U

(
M2+M+1

)2]
,
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and Cfact,3 = 4M6.

D. Reconfigurable-Intelligent-Surface-Aided Beamforming

Consider a communication system consisting of an M-
antenna BS serving U single antenna mobile users in which the
direct communication link between the BS and its mobile users
is blocked, e.g., due to high building etc., [13]. To circumvent
the problem, an N-reflective-elements reconfigurable intelli-
gent surface (RIS) is utilized to support the communication.
Let H = [h1, . . . ,hN] ∈ CM×N and gi = [gi1, . . . , giN]T ∈ CN×1

denote the channel coefficients between the BS and the RIS
and those between the RIS and the i-th user, respectively.

Let xi, i.e., E[|xi|
2] = 1, and wi ∈ C

M×1, respectively,
represent the data symbol and the beamforming vector for the
i-th user. Each reflective element of the RIS generates a phase
shift to support the communication between the BS and the
mobile users. Let θn be the phase shift at the n-th reflective
element and let θθθ = [θ1, θ2, · · · , θN]T denote the phase-shift
coefficients generated by the IRS with |θn| ≤ 1,∀n = 1, . . . ,N.
The signal received by user i can be written as:

yi = gH
i diag(θθθ)HHHwixi + gH

i diag(θθθ)HHH
U∑

j=1, j,i

w jx j + ni,

= θθθHGH
i wixi + θθθ

HGH
i

U∑
j=1, j,i

w jx j + ni, (41)

where GH
i = diag(g∗i )HH ∈ CN×M and ni ∼ CN(0, σ2) is the

additive noise at the i-th user. Let {wi} = {w1,w2, · · · ,wU} be
the set of beamforming vectors, the SINR at user i, denoted
by SINRi({wi}, θθθ), can be stated as:

SINRi ({wi}, θθθ) =
|θθθHGH

i wi|
2

U∑
j=1, j,i

|θθθHGiw j|
2 + σ2

i

. (42)

The optimization is formulated as:

min
{wi}, θθθ

U∑
i=1

wH
i wi

s. t. SINRi ({wi}, θθθ) ≥ γi,∀i,

|θn| ≤ 1,∀n.

(43)

Let Wi = wiwH
i and Θ = θθθθθθH , after some manipulations, one

can rewrite (43) as:

min
{Wi}, Θ

tr

 U∑
i=1

Wi


s. t.

(
1 +

1
γi

)
Tr

(
GiΘGH

i Wi

)
−

U∑
j=1

Tr
(
GiΘGH

i W j

)
− σ2

i ≥ 0, ∀i ∈ {1, · · · ,U},
Wi ⪰ 0, rank(Wi) = 1, ∀i ∈ {1, · · · ,U},
diag

(
diag (Θ)

)
⪯ IN , Θ ⪰ 0, rank(Θ) = 1.

(44)

The problem is non-convex with respect to Wi and Θ due to
the fact that the first constraint affinelly depends on of both
Wi and Θ. As Wi and Θ are two independent variables, we
adopt an alternating optimization approach [13] to solve (44).

To that end, starting from an initial value of the reflecting
coefficients Θ(0), the following sub-problem will be solved at
the k-th iteration:

min
{Wi},

Tr

 U∑
i=1

Wi


s. t.

(
1 +

1
γi

)
Tr

(
GiΘ

(k−1)GH
i Wi

)
−

U∑
j=1

Tr
(
GiΘ

(k−1)GH
i W j

)
− σ2

i ≥ 0,∀i ∈ {1, · · · ,U}

Wi ⪰ 0, rank(Wi) = 1,∀i ∈ {1, · · · ,U}.
(45)

In the following we show that the SINR constraint in (45) can
be expressed the form of C1 in (12). To that end, we map the
notations used in (45) to those used in (12) as follows. First, we
denote ai =

(
1 + 1

γi

)
, b j = −1, Xi,i = Xi, j = GiΘ

(k−1)GH
i , and

ci = −σ
2
i . Relaxing the rank-one constraint on Wi, utilizing

those mappings, and letting Ai = IM , (45) can be rewritten as:

min
{Wi},

Tr

 U∑
i=1

AiWi


s. t. aiTr

(
Xi,iWi

)
+

U∑
j=1

b jTr
(
Xi, jW j

)
+ ci ≥ 0,

∀i ∈ {1, · · · ,U}
Wi ⪰ 0, ∀i ∈ {1, · · · ,U}.

(46)

It can be seen that (46) is a sub-class optimization problem
of the general framework (12). Hence, if the conditions stated
in Corollary 1 are met, (46) yields rank-one optimal solution
which is the same as that of (45).6 Therefore, the SDR (46)
is equivalent to the original QCQP (45).

The reflecting coefficients Θ(k) is then updated from the
optimal solution of (46) at k-th iteration, i.e., {W(k)

i }, by solving
the following subproblem:

find Θ

s. t.
(
1 +

1
γi

)
Tr

(
ΘGH

i W(k)
i Gi

)
−

U∑
j=1

Tr
(
ΘGH

i W(k)
j Gi

)
− σ2

i ≥ 0, ∀i ∈ {1, · · · ,U},
diag

(
diag (Θ)

)
⪯ IN , Θ ⪰ 0, rank(Θ) = 1.

(47)
We introduce the following problem to find optimal solution

6In a power-domain NOMA RIS system, where superposition coding and
successive interference cancellation are, respectively, implemented at the
transmitter and receiver, the corresponding power optimization problem, e.g.,
[35], can also be written in the form of (46). Hence, the result from Corollary 1
still holds true.
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for problem (47) [13]:

min
Θ

Tr (Θ)

s. t.
(
1 +

1
γi

)
Tr

(
ΘGH

i W(k)
i Gi

)
−

U∑
j=1

Tr
(
ΘGH

i W(k)
j Gi

)
− σ2

i ≥ 0, ∀i ∈ {1, · · · ,U},
diag

(
diag (Θ)

)
⪯ IN ,

Θ ⪰ 0.
(48)

Similarly, we can rewrite the SINR constraint in (48) as
C1 with ai =

(
1 + 1

γi

)
, b j = −1, Xi,i = GH

i W(k)
i Gi, Xi, j =

GH
i W(k)

j Gi, and ci = −σ
2
i . In the sequence, we express the

phase amplitude constraint, i.e., the second constraint, in (48)
as C5. One can write

diag
(
diag (Θ)

)
=

N∑
k=1

ΩkΘΩk, (49)

where Ωk is an N × N matrix contains all zeros but 1 at the
(k, k)-th entry. Therefore, the phase amplitude constraint can
be rewrite as:

IN −

N∑
k=1

ΩkΘΩk ⪰ 0. (50)

Let f = fi = 1, v = vi = −1, D = Di = IN , D̃ = D̃i = IN ,
Ψk = Λk = Ωk, and Ei = Θ, one can write the phase amplitude
constraint of (48) as C5. Finally, let Ai = A = IN , we rewrite
(48) as:

min
Θ

Tr (AΘ)

s. t. aiTr
(
Xi,iΘ

)
+

U∑
j=1

biTr
(
Xi, jΘ

)
+ ci ≥ 0, ∀i,

f IN + vD
N∑

k=1

ΛkEiΨkD̃ ⪰ 0,

Θ ⪰ 0.

(51)

It is clear that (51) is a sub-class optimization problem of
the general framework (12), i.e., including C1, C5, and C6.
Hence, according to Corollary 1, (51) yields rank-one optimal
solution if it is feasible and its optimal solution is not trivial.
Therefore, (51) is an approximation problem of (47) as every
feasible solution of (51) is also feasible for (47) [13], [27].

Let K be the number of iterations between solving two sub-
problems (46) and (51), TW be the complexity of (46), and TΘ
be the complexity of (51). The complexity of the alternating
optimization approach is given as follows.

Corollary 5: The computational complexity to attain ε-
solution to (46) and (51) is on the order of:

K
(
TW + TΘ

)
, (52)

where TW is calculated as in (20),

TΘ = ln
(
ε−1

)√
β4

(
M

)[
Cform,4 +Cfact,4

]
, (53)

β4(M) = U + 2M, (54)

Cform,4 = M2
[
1 + 2M3

]
+ M4

[
1 + 2M2

]
, (55)

Cfact,4 = 3M6. (56)

Proof: Since two sub-problems (46) and (51) are itera-
tively solved in K iterations, the complexity is K

(
TW + TΘ

)
.

Comparing (19) and (46), one can conclude that the two
problems have the same structure. Therefore, (19) and (46)
have the same complexity. Hence, TW can be calculated
as (20). Considering the general framework (12) with U
constraints C2, one constraint C5, and one constraint C6, using
Lemma 1, the complexity of (51) TΘ can be derived as in (53).

IV. Numerical Results

In this section, we show some numerical results to confirm
the findings of Theorem 1 and Corollary 1, i.e., to verify the
optimal rank-one solutions of the proposed framework. Par-
ticularly, we test the tightness, i.e., yielding rank-one optimal
solutions, of the transmit beamforming with perfect CSI as in
problem (19), hereafter referred to as Perfect CSI approach, the
transmit beamforming with imperfect CSI as in (26), hereafter
referred to as S-procedure approach, the chance-constraint
problem (39), hereafter referred to as Chance approach, and
the RIS-Aided beamforming approach as in problems (46) and
(51), hereafter referred to as RIS-Aided approach.

A. Evaluation Metrics and Setup

In order to evaluate the tightness of the SDR approach, we
adopt the rank one test (ROT) ratio for the beamforming matrix
defined as [18]:

ROTW = max
i

∑U
k=2 λk(Wi)
λ1(Wi)

, (57)

where λk(Wi) is the k-th largest eigenvalue of Wi. Wi is a
rank-one matrix if its ROT is close to zero. Similarly the ROT
for the phase-shift coefficient matrix as:

ROTΘ =
∑N

k=2 λk(Θ)
λ1(Θ)

. (58)

In our evaluations, the BS serves two users, i.e., U = 2.
The evaluations are carried out with different numbers of BS’s
antennas and RIS’s reflective elements. The coefficients of the
channels are modeled as hi ∼ CN(0,∆) where the diagonal
elements of the covariance matrix ∆i,i = 1, ∀i ∈ {1, · · · ,M}.
The proposed framework is investigated under uncorrelated
and correlated channel models. In an uncorrelated channel
model, it is assumed that the off diagonal elements of the
covariance matrix ∆i, j = 0, ∀i, k ∈ {1, · · · ,M} and i , j, i.e.,
Y = IM , [18], [25]. Whereas, in a correlated channel model,
it is assumed that ∆i, j , 0, ∀i, k ∈ {1, · · · ,M} and i , j.
Without loss of generality, the off diagonal elements are set
to be either 0.4 or 0.6 for the correlated channel model. The
channel estimation error covariance matrix Hi is modeled as
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Fig. 1: Feasibility rate versus user target SINR with different number
of BS’s antennas. Uncorrelated channel model.

ϵ2IM where ϵ2 is set to be 0.002. The noise variances of all
users are set to be 0.001. The SINR outage probability is
0.1, i.e., ρi = ρ = 0.1 ∀i ∈ {1, · · · ,U}. In order to provide
a fair comparison between the S-procedure and the Chance
approaches, the channel uncertainty bound in the S-procedure

approach, i.e., r, is set as r =
√
ϕ−1

m
(1−ρ)

2 where ϕ−1
m (·) is

the inverse cumulative distribution function of a Chi-square
random variable with m = 2M degrees of freedom [25].

B. Evaluation for Perfect CSI Approach, S-procedure Ap-
proach, and Chance Approach

1) Uncorrelated Channel Model: In this experiment, Monte
Carlo simulations are performed with 3,000 independently
channel realizations for each SINR target ranging from 0 dB
to 20 dB with a step of 2.

Fig. 1 shows the feasibility rate, i.e., percentage of feasible
channel realizations, versus the user target SINRs of the
under investigated approaches. Simulation results indicate that
the Perfect CSI approach is feasible for all 3,000 channel
realizations with all antenna setups of M = 3, M = 4, and
M = 6 over the observed SINR range. On the other hand,
depending on the system setup, e.g., the number of users,
the number of antenna elements or required SINR, the robust
beamforming approaches, i.e., the S-procedure and Chance
approaches, may have infeasible channel realizations due to
imperfect CSI. For example, at the required SINR of 20 dB, the
feasibility’s channel realization percentages of the S-procedure
and Chance approaches are, respectively, 77 % and 73.4 %
with 3 antenna elements while those are, respectively, 88.8 %
and 93.2 % with 4 antenna elements. Interestingly, when the
number of antenna elements increases to 6, the number of
feasible channel realizations of the Chance approach closely
follows that of the Perfect CSI approach. This is due to the
following facts. First, the derivation of the SDR for the Chance
approach does not introduce any extra constraint to the original
QCQP. Second, increasing the number of antenna elements
enlarges the feasibility region of the Chance approach hence
allows it to closely reach that of the Perfect CSI approach.

Fig. 2 illustrates the ROTs of the beamforming matrices of
the three approaches with different number of antennas versus
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the user target SINRs. Those ROTs are obtained when the
corresponding optimization problems of the three approaches
are feasible. It is clear from Fig. 2 that all ROTs are close to
zero which imply that the optimal solutions to problems (19),
(26) and (39) are all rank-one matrices. This confirms Theorem
1 and Corollary 1. Observing the SINR range beyond 12 dB in
Fig. 2 reveals a fact that a problem associated with C1 and C6
constraints has the lowest ROTs followed by a problem asso-
ciated with C3 and C6 constraints while a problem associated
with C4(a), C5, and C6 constraints has the highest ROTs. A
similar performance trend in terms of the feasibility rate can
aslo been seen from Fig. 1 where a problem with C3 and
C6 constraints has the highest feasibility rate followed by a
problem with C3 and C6 constraints and a problem with C4(a),
C5, and C6 constraints. The results in Figs. 1 and 2 again
confirm a fact in the literature that a beamforming approach
has the best performance, i.e., regarding the average transmit
power consumption and the feasibility rate, when perfect CSI
is available, see e.g., [25]. In the presence of imperfect CSI,
its performance degrades and the performance of the Chance
approach outperforms that of the S-procedure approach, see
e.g., [25].

Fig. 3 brings a different view of Fig. 2 where the ROTs are
shown for each beamforming approach. It can be observed
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of BS’s antennas and values of ∆i, j. Correlated channel model.
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from Fig. 3 that there are slightly differences in the ROT
with different setups of M for the observed SINR range. This
reveals the fact that the number of antennas and the SINR
level do not have significant impact on the ROTs.

2) Correlated Channel Model: In this experiment, Monte
Carlo simulations are performed with 500 independently chan-
nel realizations for each SINR target ranging from 0 dB to 20
dB with a step of 2.

Fig. 4 illustrates the feasibility rate versus the user target
SINRs of the three transmit beamforming approaches with
different number of BS’s antennas and values of ∆i, j. Simi-
lar behaviours the three beamforming approaches’ feasibility
rates, as in the uncorrelated channel model, are observed
here. The Perfect CSI approach is feasible for all channel
realizations under the observed setup. The S-procedure and
Chance approaches are feasible in the SINR range from 0 dB
to 14 dB. From 16 dB to 20 dB, a higher channel correlated
value ∆i, j results in a lower feasibility rate. For example, the
feasibility rate of the Chance approach decreases from 84.6 %
to 71 % when ∆i, j increases from 0.4 to 0.6 with M = 4.

Fig. 5 shows the ROTs of the three beamforming approaches
versus the user target SINRs with different numbers of BS’s
antennas and values of ∆i, j. It can be seen that all ROTs are
close to zero. For example, the ROTs of the worst-performance
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Fig. 6: ROT of the beamforming matrix versus user target SINR.
(a): with different numbers of BS’s antennas and a fixed number of
reflective elements N = 12. (b): with different numbers of reflective
elements and a fixed number of BS’s antenna M = 3. Uncorrelated
channel model.

approach, i.e., the S-Procedure approach, are in the order of
10−2 and 10−3, respectively, for ∆i, j = 0.6 and ∆i, j = 0.4.
The results confirm Theorem 1 and Corollary 1. The results
on Fig. 5 also indicate that C3 constraints, which associate
with the S-Procedure approach, are more sensitive with the
values of ∆i, j than the other constraints like C4a and C5,
which associate with the Perfect CSI and Chance approaches.
The other observations of these schemes in the uncorrelated
channel model, i.e., the discussions of Fig. 2, are still valid
for the correlated channel model.

C. Evaluation for RIS-Aided Approach

1) Uncorrelated Channel Model: In this experiment, the
RIS-Aided approach is investigated. Monte Carlo simulations
are performed with 1,000 independently channel realizations
for each SINR target ranging from 0 dB to 20 dB with a step of
2. The simulation results indicate that all channel realizations
are feasible for the observed SINR range.

Fig. 6 plots the ROTs of the beamforming matrices of
the RIS-Aided approach versus the user target SINRs with
different number of BS’s antennas and reflective elements of
the RIS. The results confirm Theorem 1 and Corollary 1 as
all ROTs are close to zero, i.e., in the order of 10−7 and 10−8,
indicating that the optimal solutions to problem (46) are all
rank-one matrices.

Fig. 7 illustrates the ROTs of the phase-shift coefficient
matrix of the RIS-Aided approach versus the user target SINRs
with different number of BS’s antennas and reflective elements
of the RIS. Near-zero values of the ROTs shown in the figure,
i.e., in the order of 10−6, imply that the optimal solutions to
problems (51) are all rank-one matrices. This again confirms
Theorem 1 and Corollary 1.

It can be seen from Figs. 6 and 7 that the ROTs of
the beamforming and the phase-shift coefficient matrices are
almost the same under the investigated SINR range. This
implies the fact that under uncorrelated channels, the number
of BS’s antennas, the number of IRS’s reflecting elements,
and the SINR level do not have a significant impact on the
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rank-one property of both the beamforming and the phase-shift
coefficient matrices.

2) Correlated Channel Model: In this experiment, Monte
Carlo simulations are performed with 500 independently chan-
nel realizations for each SINR target ranging from 0 dB to 20
dB with a step of 2. All channel realizations are feasible for
the observed parameters.

Fig. 8 illustrates the ROTs of the beamforming matrices of
the RIS-Aided approach versus the user target SINRs with
different number of BS’s antennas, RIS’s reflective elements
and values of ∆i, j. As all the ROTs are close to zeros, i.e., in
the order of 10−6, Theorem 1 and Corollary 1 are confirmed.
The results reveal a fact that the setup, i.e., the selection of
number of BS’s antennas, RIS’s reflective elements and values
of ∆i, j, does not make a significant impact on the ROTs of the
beamforming matrices. In other words, these parameters do
not have a significant impact on the ROTs of problems having
C1 constraints.

Fig. 9 plots the ROTs of the phase-shift coefficient matrix
of the RIS-Aided approach versus the user target SINRs with
different number of BS’s antennas, RIS’s reflective elements
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Fig. 9: ROT of the phase-shift coefficient matrix versus user target
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elements, and values of ∆i, j. Correlated channel model.

and values of ∆i, j. The results on Fig. 9 indicate that all the
ROTs are close to zeros, i.e., in the order of 10−2, hence,
Theorem 1 and Corollary 1 are confirmed. Fig. 9 also shows
that the ROTs of the phase-shift coefficient matrix of the RIS-
Aided approach increase as ∆i, j rises. This indicates a fact
that optimizations problems associated with constraints C5 are
sensitive to the values of ∆i, j. The ROTs also increase as the
number of reflective elements N grows. For example, the ROTs
are less than 0.01 when N = 4 while they are in the range of
0.02 to 0.05 when N = 8. At the same number of reflective
elements, the ROTs decrease if the number of BS’s antennas
increases. For instance, with N = 10 at the SINR level of 18
dB and ∆i, j = 0.6, the ROTs are, respectively, 0.08, 0.071,
0.065, and 0.06 for M = 8, M = 10, M = 12, and M = 16.
However, at a given number of BS’s antennas, the ROTs rise
as the number of reflective elements grows. For example, with
M = 8 at the SINR level of 10 dB and ∆i, j = 0.4, the ROTs
are, respectively, 0.0058, 0.038, and 0.065 for N = 4, N = 8,
and N = 10.

V. Conclusion

We proposed an optimization framework capturing a mix
of linear-matrix-inequality and second-order-cone constraints.
The proposed framework can be adopted as the semidefinite
relaxation counterpart of several quadratically-constrained-
quadratic programs in beamforming. We analytically proved
that the proposed optimization problem always yields rank-
one optimal solutions if it is feasible and its optimal solution
is not trivial. This in fact shows the tightness of the pro-
posed framework when serving as a semidefinite relaxation
counterpart. We took transmit beamforming as an example to
demonstrate possible adoptions of the proposed framework in
deriving semidefinite relaxation counterparts for quadratically-
constrained-quadratic-program beamforming problems with
both perfect and imperfect channel state information. Numer-
ical simulations have confirmed our analytical proof.
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Appendix A
Proposition 1: If an M×M Hermitian matrix Wi has a rank

of D ≤ M, then it can be expressed as

Wi =

D∑
d=1

λi,dwi,dwH
i,d, (59)

where λi,d and wi,d are the dth non-zero eigenvalue and the
corresponding eigenvector of Wi, respectively.

Proof: As Wi has a rank of D, its has D non-zero
eigenvalues, i.e., λi,d, d ∈ {1, · · · ,D}, and D eigenvectors, i.e.,
wi,d, d ∈ {1, · · · ,D}. Since Wi is a Hermitian matrix, its D
eigenvalues are real and its D eigenvectors are orthogonal.
Consequently, one can express Wi as in (59). This concludes
the proof.

Appendix B
Lemma 4: Given the set of U Hermitian and possitive

semidefinite matrices Wi ∈ H
M×M ,Wi ⪰ 0, i ∈ {1, 2, · · · ,U},

and the set of U possitive semidefinite matrices Φi ⪰ 0,
i ∈ {1, 2, · · · ,U}, if W⋆

i is the non-trival solution to the
following problem:

inf
{Wi}∈HM×M

U∑
i=1

Tr (ΦiWi) , (60)

then W⋆
i must be rank one ∀i.

Proof: We use contradiction to prove the lemma. We
assume that the solution of (60) W⋆

i has a rank of D > 1,
∀i. Proposition 1 implies that

W⋆
i =

D∑
d=1

λi,dwi,dwH
i,d, (61)

where λi,d , 0. Since W⋆
i is also a positive semidefinite matrix,

it is obvious that λi,d ≥ 0, ∀d. Therefore, λi,d > 0, ∀d.
Now, we form another feasible solution to (60) as

Ŵ⋆
i = λi,mwi,mwH

i,m, ∀i, (62)

where
m = arg min

d∈{1,··· ,D}
λi,dwH

i,dΦiwi,d. (63)

As Φi ⪰ 0, it is clear that

λi,dwH
i,dΦiwi,d ≥ 0, ∀i, d. (64)

Combining (63) and (64) leads to

λi,mwH
i,mΦiwi,m <

D∑
d=1

λi,dwH
i,dΦiwi,d, ∀i, (65)

⇔ Tr
(
Φiλi,mwi,mwH

i,m

)
< Tr

 D∑
d=1

Φiλi,dwi,dwH
i,d

 , ∀i, (66)

⇔ Tr
(
ΦiŴ⋆

i

)
< Tr

(
ΦiW⋆

i

)
, ∀i. (67)

Therefore,
U∑

i=1

Tr
(
ΦiŴ⋆

i

)
<

U∑
i=1

Tr
(
ΦiW⋆

i

)
. (68)

The inequality in (68) contradicts the assumption that W⋆
i is

the solution of (60). Hence, D ≤ 1. Furthermore, assumption

W⋆
i , 0 ∀i implies that D ≥ 1. Therefore, D = 1. In other

words, matrix W⋆
i must have a rank of one for all i.

Appendix C
Proof of Theorem 1

This proof is based on Lagrange duality. Particularly, as
the primary problem (12) is convex, the duality gap with its
dual problem is zero. Consequently, the optimal solution to the
primary problem (12) can be attain from the optimal solution
to the dual problem. Exploiting the result of Lemma 4, our aim
is to express the dual problem of (12) in the form of (60). To
that end, all the objective and constraints of (12) need to be
in the forms as affine functions, i.e., LMI, of Wi.

Our observations on the structure of (12) are as follows.
The objective function, C1, C2, C5, and C6 in (12) are already
affine functions of Wi. However, {Wi} appears in C3 and C4(a)
in (12) as sub-blocks of supper matrices. In this proof, we
introduce a novel technique to decompose C3 and C4(a) in
(12) into LMI of {Wi}.

With Yi ∈ H
M×M , i.e., Yi = YH

i , we first rewrite C3 in (12)[
YiBiYi + αiIM YiBiyi

yH
i BiYi yH

i Biyi + di

]
⪰ 0 (69)

as the following LMI constraint

F(αi) +GH
i BiGi ⪰ 0, (70)

where

F(αi) =

[
αiIM 0M×1
01×M di

]
, Gi =

[
Yi yi

]
.

We continue by decomposing the left hand side of C4(a) in
(12), i.e., 

ϱiIM2+M

[
eiZiCizi

vec (ZiCiZi)

]
[

eiZiCizi

vec (ZiCiZi)

]H

ϱi

 ⪰ 0, (71)

and rewrite the constraint as

K (ϱi) + Li + LH
i + Ji + JH

i ⪰ 0, (72)

where

K (ϱi) =

[
ϱiIM2+M 0(M2+M)×1

0H
1×(M2+M) ϱi

]
, (73)

Li =


0(M2+M)×(M2+M) 0(M2+M)×1[

eiZiCizi

0M2×1

]H

0

 , (74)

Ji =


0(M2+M)×(M2+M) 0(M2+M)×1[

0M×1
vec (ZiCiZi)

]H

0

 . (75)

Furthermore, matrix Li can be expressed as

Li = ei

[
0(M2+M)×1

1

]
zH

i CiZi

[
IM 0M×1 · · · 0M×1

]
= T (zi) CiP (Zi) , (76)
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where

T (zi) = ei

[
0(M2+M)×1

1

]
zH

i , (77)

P (Zi) = Zi

[
IM 0M×1 · · · 0M×1

]
, (78)

and
[
IM 0M×1 · · · 0M×1

]
is an M × (M2 + M + 1) matrix.

Let Ui =
[
0M×1 · · · 0M×1 ui

]T
present an (M2 +

M + 1) × M matrix in which an M × 1 vector ui con-
tains all zeros but 1 at the i-th entry. Moreover, let Vi =[
0M×M︸︷︷︸

1st

0M×M · · · IM︸︷︷︸
ith

· · · 0M×M︸︷︷︸
(M2+M)th

0M×1
]

present an

M×(M2+M+1) matrix with all zeros but IM at the i-th block.
We can rewrite Ji as

Ji =

M∑
p=1

UpZiCiZiVp. (79)

Using (72), (76), and (79), one can equivalently cast con-
straint (71) as the following LMI constraint

K (ϱi) + T (zi) CiP (Zi) + [T (zi) CiP (Zi)]H

+

M∑
p=1

UpZiCiZiVp +

 M∑
p=1

UpZiCiZiVp


H

⪰ 0. (80)

Using (70) and (80), we recast (12) as:

min
{Wi}∈HM×M ,αi≥0,ϱi , fi≥0

U∑
i=1

Tr (AiWi)

s. t. aiTr
(
Xi,iWi

)
+

U∑
j=1, j,i

b jTr
(
Xi, jW j

)
+ ci ≥ 0,

∀i ∈ {1, · · · , L1},

miTr (MiWi) + pi ≥ 0,
∀i ∈ {1, · · · ,U},

F(αi) +GH
i BiGi ⪰ 0, ∀i ∈ {1, · · · , L3},

K (ϱi) + T (zi) CiP (Zi) + [T (zi) CiP (Zi)]H

+

M∑
p=1

UpZiCiZiVp +

 M∑
p=1

UpZiCiZiVp


H

⪰ 0,

∀i ∈ {1, · · · , L4},

fiIN + viDi

N∑
k=1

ΛkEiΨkD̃i ⪰ 0, ∀i ∈ {1, · · · , L5},

Wi ⪰ 0, ∀i ∈ {1, · · · ,U}.
(81)

It is clear that problem (81) is convex as it is in a SDP form
[36]. Since problem (81) is convex and satisfies Slater’s con-
straint qualification [33], strong duality holds. Consequently,
the optimal solution of the primary problem (81) can be
attained via solving its dual problem. In the following, we
exploit the duality to investigate the property of the opti-
mal beamforming matrix. We proceed by establishing the

Lagrangian of (81) as

L ({Wi},Υ) =

U∑
i=1

Tr (AiWi)

−

L1∑
i=1

βi

aiTr
(
Xi,iWi

)
+

U∑
j=1

b jTr
(
Xi, jW j

)
+ ci


−

U∑
i=1

τi (miTr (MiWi) + pi)

−

L3∑
i=1

Tr
(
Qi

[
F(αi) +GH

i BiGi

])
−

L3∑
i=1

κiαi

−

L4∑
i=1

Tr (RiΞi)

−

L5∑
i=1

Tr

Si

 fiIN + viDi

N∑
k=1

ΛkEiΨkD̃i


−

U∑
i=1

Tr (NiWi) , (82)

where

Ξi = K (ϱi) + T (zi) CiP (Zi) + [T (zi) CiP (Zi)]H

+

M∑
p=1

UpZiCiZiVp +

 M∑
p=1

UpZiCiZiVp


H

, (83)

βi ≥ 0, τi ≥ 0, Qi ⪰ 0, κi ≥ 0, Ri ⪰ 0, Si ⪰ 0, and Ni ⪰ 0
are the Lagrange multipliers associated with the constraints
in (81), respectively. We represent these Lagrange multipliers
in compact forms as follows: α =

[
α1, · · · , αL3

]T
, β =[

β1, · · · , βL1

]T
, κ =

[
κ1, · · · , κL3

]T
, τ =

[
τ1, · · · , τU

]T
, {Qi} =

{Q1, · · · ,QL3 }, {Ri} = {R1, · · · ,RL4 }, {Si} = {S1, · · · ,SL5 },
{Ni} = {N1, · · · ,NU}, and Υ = {α,β, τ, κ, {Qi}, {Ri}, {Si}, {Ni}}

as the set of the dual variables.

Consider the dual function of (81) as

g (Υ) = inf
{Wi}∈HM×M

L ({Wi},Υ) . (84)

The corresponding dual problem of (81) is then expressed as

max
Υ

g (Υ)

s. t. α ≽ 0,β ≽ 0, κ ≽ 0,
Qi ⪰ 0,Ri ⪰ 0, Si ⪰ 0,Ni ⪰ 0, ∀i.

(85)

In the sequel, the optimal solution of the primary problem
(81) is attained via solving its dual problem (85). To that end,
let Υ⋆ = {α⋆,β⋆, τ⋆, κ⋆, {Q⋆i }, {R

⋆
i }, {S

⋆
i }, {N

⋆
i }} represent the

optimal solution to the dual problem (85), then the correspond-
ing optimal solution {W⋆

i } to the primary problem (81) can be
attained as

g(Υ⋆) = inf
{Wi}∈HM×M

L
(
{Wi},Υ

⋆
)
. (86)

Substituting for Bi = giWi +
∑U

j=1 h jW j, Ci = g̃iWi +∑U
j=1 h̃ jW j, Ei = ḡiWi+

∑U
j=1 h̄ jW j in (82) with ai = 0, gi = 0,

g̃i = 0, ḡi = 0, ∀i > U, after some mathematical manipulations,
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we can express (82) as

L
(
{Wi},Υ

⋆
)
=

U∑
i=1

Tr (ΦiWi) + η, (87)

where

Φi = Ai − β
⋆
i aiXi,i − bi

L1∑
j=1

X j − τ
⋆
i miMi

−giGiQ⋆i GH
i − hi

L3∑
j=1

G jQ⋆j GH
j

−g̃iP(Zi)R⋆i T(zi) − h̃i

L4∑
j=1

P(Z j)R⋆j T(z j)

−g̃iTH(zi)R⋆i PH(Zi) − h̃i

L4∑
j=1

TH(z j)R⋆j PH(Z j)

−g̃i

M∑
p=1

ZiVpR⋆i UpZi − h̃i

L4∑
j=1

M∑
p=1

Z jVpR⋆j UpZ j

−g̃i

M∑
p=1

ZH
i UH

p R⋆i VH
p ZH

i − h̃i

L4∑
j=1

M∑
p=1

ZH
j UH

p R⋆j VH
p ZH

j

−ḡivi

N∑
k=1

ΨkD̃iS⋆i DiΛk − h̄ivi

L5∑
j=1

N∑
k=1

ΨkD̃ jS⋆j D jΛk − Ni,

(88)

and

η = −

L1∑
i=1

β⋆i ci −

U∑
i=1

τ⋆i pi −

L3∑
i=1

Tr
(
Q⋆i F

(
α⋆i

))
−

L3∑
i=1

κ⋆i α
⋆
i

−

L4∑
i=1

Tr
(
R⋆i K (ϱi)

)
−

L5∑
i=1

Tr
(

f ⋆i S⋆i
)
. (89)

At the optimal point, it is clear that η is a constant. Hence,
we can equivalently cast (86) as

g(Υ⋆) = inf
{Wi}∈HM×M

U∑
i=1

Tr (ΦiWi) . (90)

We have decomposed two SOC constraints C3 and C4(a)
in (12), respectively, into two LMIs of Wi as (70) and
(80). Unlike the methods in [23] and [24], our novel SOC
decomposition method does not reduce the feasibility region
of the transformed SDRs. We have then equivalently expressed
(12) as (81). The technique used to transform (12) into (81)
is the generalization of our previous works in [7], [8], and
[27]. If (12) is feasible, then its equivalent form (81) is also
feasible. Therefore, the optimal value of (81) is non-negative.7

Moreover, the duality gap between the primary problem (81)
and its Lagrange dual problem (85) is zero. Consequently,
matrix Φi must be positive semi-definite, i.e., Φi ⪰ 0, ∀i, such

7Since (12) and its equivalent form (81) are both convex and feasible, a
unique optimal solution exits within the feasible region and can be efficiently
obtained by interior-point methods, e.g., using CVX package.

that the Lagrangian dual function is bounded from below.8

Let {W⋆
i } = {W

⋆
1 ,W

⋆
2 , · · · ,W

⋆
U} be the non trivial optimal

solution of the primary problem (12). Consequently, {W⋆
i }

is also the solution of (90). Since Φi ⪰ 0, ∀i, Lemma (4)
indicates that matrix W⋆

i must have a rank of one for all i.
This concludes the proof. ■
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