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This thesis considers the relationship between the size and structure of hos-
pital services and their costs. It is often assumed that service amalgamation ought
to yield lower costs through economies of scale. However, empirical evidence for
this is limited and often dated. This thesis is structured as a series of essays
evaluating scale and scope economies using parametric methods applied to cost and
activity data from the English National Health Service, covering April 2013 - March
2019. The first three empirical chapters consider the relationship between size and
average healthcare cost, whilst the last explores how the configuration of services
affects the cost of hospital healthcare provision. Several parametric specifications
and methods are used to evaluate scale economies using the dataset. Results show
small but positive economies of scale for various specifications up until around
1,000-1,200 beds, which constituted most hospitals in the sample. Scale economies
after this point varied according to the method used, suggesting that methodology,
particularly the choice of the functional form, may partly explain variation in the
literature. Differences are observed between the direct estimation of a long-run
cost function and a long-run function obtained from the envelope of short-run
functions. Scale economies were also lower in London and surrounding areas due to
higher wage rates for non-medical staff. The analysis of scope economies found that
general surgery demonstrated the highest degree of scope economies compared to
all other outputs, with general medicine and obstetrics/gynaecology also exhibiting
positive scope economies to a lesser degree. General surgery, general medicine and
obstetrics/gynaecology may benefit from lower costs when collocated with other
activities. This thesis updates prior estimates of hospital economies of scale using
rich data. It provides insights into methodological sources of variation, leading
to conclusions of interest for policy in planning hospital service provision and the
effects of scale and scope.
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Chapter 1

Introduction: Firm Theory and
Multiproduct Hospitals

1.1 Thesis Structure and Overview

This thesis is structured as a series of essays evaluating scale and scope economies
in English hospitals, using parametric methods and data from April 2013 - March
2019. The thesis as a whole aims to investigate the presence of, and limits to, scale
and scope economies in the provision of hospital healthcare.

Chapter 2 uses a multiproduct translog functional form to directly estimate
a long-run cost function and calculate scale economies using a multiproduct scale
economy index. The main result finds small but positive scale economies up to 1,200
beds, higher than previous estimates, with constant scale economies after that point.
The median organisation had a scale economy index of 1.04, indicating that a 1%
increase in the cost of inputs was associated with a 1.04% increase in outputs, with
smaller organisations having higher economies of scale. It was also noteworthy that
hospitals in London recorded lower economies of scale due to increased labour costs.
Higher wages in these areas with similar labour productivity means that expansion
does not give the same benefits as elsewhere.

Chapter 3 repeats the estimation, but this time using a quadratic functional
form, contrasting the results and evaluating whether there are any theoretical rea-
sons to prefer a particular functional form. Results for the quadratic form of the
cost function generated a distribution of scale economy estimates. However, the
relationship to size was less pronounced. Small positive scale economies were noted
amongst English hospitals but did not appear to have a strong association with size
measured by beds. Lower scale economies were again observed for hospitals in Lon-
don and surrounding areas. As identical data and variables were used for the two
chapters, differences may be due to the functional form of the cost function. The



1.1. Thesis Structure and Overview

choice of functional form may be a source of variation in results from studies that
use only one functional form.

Chapter 4 estimates scale economies via an indirect method to account for the
fact that observed values may not be on the frontier of the cost function. Hospitals
may not have optimal capital for their level of output and may not be producing
at the lowest cost. This chapter first estimates a short-run cost function contingent
on capital levels proxied by beds. An envelope of the short-run cost functions is
calculated to estimate a cost function and associated scale economies where capital
would be at the optimal level. Results returned higher estimates of scale economies,
as might be expected from the underlying theory. However, optimal capital values,
as computed, were sensitive to different functional forms and specifications, return-
ing implausible values, particularly for the quadratic functional form. Variation in
computed optimal capital values may represent weaknesses in using beds as a proxy
value of capital and a lack of convexity, meaning the partial derivatives of cost with
respect to beds may not reflect global minima. Future studies attempting to correct
for non-optimal current capital levels may need to demonstrate that bed numbers or
other proxy variables are appropriate capital measures and that calculated optimal
values are plausible.

Chapter 5 briefly explores scope economies, using clinical specialties as out-
puts. A cost function is estimated using activity aggregated by clinical specialties
rather than care settings. This output classification is a more natural subdivision
of activity which corresponds better to the natural construction of hospital depart-
ments or services. Scope economies are calculated according to the cost difference
between joint and separate production, with a subsequent discussion of policy impli-
cations. Of the specialty groups, general surgery demonstrated the highest degree of
scope economies compared to all other outputs, with general medicine and obstet-
rics/gynaecology exhibiting positive scope economies to a lesser degree. Diagnostic
and imaging services and orthopaedics did not exhibit notable scope economies.
This chapter provides evidence that specialties demonstrating scope economies are
cheaper to provide as part of a suite of hospital services and may, therefore, not be
amenable to centralisation in fewer units. Conversely, those specialities which did
not demonstrate scope economies, like diagnostic services, may be better candidates
for rationalisation in fewer providers.

The remainder of this chapter identifies some of the theoretical and measurement
issues with estimating the cost functions and deriving scale economy estimates. I
note common issues in the literature and datasets used in subsequent essays and doc-
ument the reasoning behind particular methodological choices. Many of the issues
identified stem from the complexity and heterogeneity of hospital inputs and out-
puts. Hospital care can cover many different medical specialties and sub-specialties
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- indeed, hospitals are where almost all specialist care is delivered. The interplay
of differing inputs and outputs in a single organisation means that hospital cost
analyses inevitably have to deal with the multiproduct environment. This multi-
product environment complicates analyses beyond the canonical textbook case of
single-product organisations. Costs are no longer allocable to individual products,
as joint production means that at least some costs cannot be allocated to individual
outputs. The effect of scale on output is also conceptually different in the multi-
product case, as it is necessary to consider which outputs are considered and what
is meant by ‘scale’. Measurement issues also arise, as the heterogeneous treatments
offered in hospitals need to be reasonably represented in cost models.

Below, some of the theoretical concepts used in subsequent chapters are set out,
together with short discussions of common measurement and estimation issues for
multiproduct hospital cost functions. Firstly, the basic case of single-product cost-
minimisation is defined in section 1.2, followed by how this changes in the multiprod-
uct case in section 1.3. The definition of multiproduct scale and scope economies are
discussed in section 1.3.3 and section 1.3.4 respectively. For parametric analysis, the
functional form of the cost equation is important. Some common functional forms
for cost equations are discussed in section 1.5.3. Measurement issues are discussed
in section 1.4, including definitions of a hospital, conception and measurement of
hospital outputs, and issues of casemix and coding. This measurement section also
deals with definitions of size and how well size can be measured. Finally, estimation
methods and other considerations are discussed in section 1.5, covering parametric
and non-parametric techniques and model specifications.

1.2 Single-Output Production

1.2.1 Definitions

A cost function c(w, y) expresses the minimum cost incurred by a firm producing
output y under a given technology, facing input prices w = (w1, ..., wn). As an
accounting identity, total costs are equal to the sum of all inputs qi multiplied by
their respective input prices wi,

∑
i qiwi. For cost-minimising organisations, demand

for inputs is a function of the desired level of output y. The relationship between
outputs and inputs is specified in the production function, dictated by the technology
used. Therefore, the cost function can be expressed in terms of output y, input prices
w as C(y, w) for a given production technology.

From the cost function, several useful concepts can be derived. Firstly, Shep-
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1.2. Single-Output Production

hard’s lemma gives us the cost-minimising input quantities for each level of output:

∂C(w, y)
∂wi

= xi(w, y) (1.1)

Secondly, differentiating with respect to output gives a marginal cost expression,
evaluating the incremental increase (or decrease) in total cost caused by an incre-
mental increase (decrease) in output:

MC = dC(w, y)
dy

(1.2)

Finally, when cost is plotted against output, the marginal cost is the slope of the
cost curve at that point. The average cost of output at a given point can be defined
as the slope of a ray extending from the origin. Average costs are consequently total
costs C divided by total output y:

AC = C(w, y)
y

(1.3)

1.2.2 Isocosts and Isoquants

Costs incurred by an organisation can be represented using isocost lines and outputs
using isoquant lines. Isocost lines show combinations of inputs yielding identical
total costs at the set input prices. Isoquant lines show identical output levels at
each bundle of inputs. Production decisions can be described using the relationship
of isocost and isoquant lines.

The two input case is illustrated in Figure 1.1. X and Y axes represent the
quantity of inputs q1 and q2 used. Equivalent costs are represented by linear isocost
lines C = q1 ·w1 +q2 ·w2. Each isocost line has slope dq1/dq2 representing the relative
price of the inputs −w2/w1. The slope is not affected by proportionate rises in all
input prices, only changes in relative prices. Higher isocost lines represent higher
input quantities used and higher total costs.
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f(q1, q2)

C ∗ = q1 ⋅ w1 + q2 ⋅ w2C1 = q1 ⋅ w1 + q2 ⋅ w2

C2 = q1 ⋅ w1 + q2 ⋅ w2
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Figure 1.1: Isocost and Isoquant Lines. Isocosts C(q,w) are linear
and represent bundles of inputs with identical total costs. Isoquants
f(q1,q2) are curved and represent bundles of inputs which produce the
same output. The organisation chooses input use at a point of tangency
between the two, for example, at q1 = 4, q2 = 12, on isocost line C*.
This output choice reaches the highest isoquant for a given cost or the
lowest isocost for a given level of production

The curved isoquant lines are convex and represent fixed levels of output y,
determined by the production function y = f(q1, q2). Isoquant lines also reflect
fixed levels of revenue py · y as the product of output and its price py, assuming the
organisation is price-taking with limited market power. The slope of each isoquant
is derived by taking the derivative of the production function with respect to each
input dq1/dq2 = −(∂y/∂q2)/(∂y/∂q1)

The standard model of rational behaviour requires the organisation to choose
an output level represented by a particular isoquant line. Having done so, the
organisation must minimise costs for that output level. To minimise cost, the or-
ganisation selects the position on the possible lowest isocost line for the selected
level of output. The optimal position is accomplished by choosing a point on the
isocost line tangential to the isoquant line, where no possible combinations of in-
puts yield the required production level at a lower cost. This point is achieved where
w2/w1 = (∂y/∂q2)/(∂y/∂q1). The slope of the isoquant line (the ratio of marginal
products of each input) must equal the slope of the isocost line (the ratio of costs
of each input). Isocost lines below this point, for example C1, are cheaper but do
not yield the required level of output. Isocost lines above this, for example C2, are
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1.2. Single-Output Production

more expensive. The organisation minimises costs subject to output at the point of
tangency between isocost and isoquant lines.

1.2.3 Short-run and Long-run Costs

The example above assumes that the organisation can immediately vary all inputs.
However, the organisation may be unable to vary some factors of production in the
short-run. For example, constructing a hospital building would take considerable
time. In the short-run, the supply (and associated cost) of these factors is fixed.
Fixed factors of production can be thought of as a sunk cost that does not vary with
output. In the long-run, a hospital organisation can construct new buildings, move to
new sites, or otherwise amend the capital stock embodied in the building. Changing
the capital stock employed will affect expenditure, and consequently, organisational
costs can differ in the short and long-run.

The short-run position is set out in Figure 1.2. If the input q1 is fixed at q1 = 5,
short-run total costs can be expressed as Csrun = FCq1=5 + q2 · w2. Here, FC is a
fixed cost associated with the current level of the fixed input, equal to 5w1. This
fixed cost FC is independent of the level of output chosen. The usable level of
q1 may be less than 5 if the production technology means the marginal product
of capital declines to 0 after a certain point. However, the organisation cannot
use more of input q1 than is available in the short-run. With q1 capped, the only
decision for the organisation is to choose the level of input q2 to obtain the desired
level of production on the relevant isoquant line. Mathematically, this decision can
be expressed as min q2 · w2 s.t. f(q1, q2) ≥ y′, where f(q1, q2) is the production
function and y′ the desired level of production. This optimisation decision yields
the short-run cost function C∗

srun(q2, y, w1, w2) which is expressible as a function of
the variable input q2, the required production level y and input prices w1, w2.
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f(q1, q2)

Csrun
1 = FCq1=5 + q2 ⋅ w2

Csrun
 ∗ = FCq1=5 + q2 ⋅ w2

Csrun
2 = FCq1=5 + q2 ⋅ w2
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Figure 1.2: Short-run Isocost Lines. Input q1 is fixed at q1 = 5. The
organisation chooses q2 to reach the desired isoquant f(q1, q2), achieved
with lowest cost at the isocost line C* srun

In the long-run, where all inputs are variable, the long-run cost function reverts
to C(y, w), the minimum cost required to produce output y given a production
technology and input prices w.

Having established that overall costs can differ in the short and long-run, it is
helpful to consider how average costs are likely to change dependent on the timeframe
considered.

1.2.4 Average Costs in the Short and Long-run

Average cost curves are assumed to be ‘U’ shaped when plotted against output,
starting at a higher level and then declining as y increases, before rising again after
a certain point. The rise and fall may be the result of scale effects. For example, low
output levels are dominated by large, fixed startup costs, which do not increase with
additional output. After a certain point, diminishing returns arise, perhaps due to
coordination problems at higher output levels. Average costs start to increase again,
creating the ‘U’ shape.

The ‘U’ shape of average cost curves will differ in the short and long-run. In the
short-run, the inability to amend fixed factors of production could cause marginal
and average cost curves to be higher than in the long-run, where all factors of
production are variable. In the long-run, all short-run positions are available to
the organisation, so the organisation can produce at an average and marginal cost
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1.2. Single-Output Production

that is as low as the best short-run curve. Therefore, long-run average costs should
be tangential to or below each of the short-run curves (Figure 1.3). The long-run
average cost function is an envelope of the short-run average costs.

SRAC1
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LRAC
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Figure 1.3: Long-run and Short-run Average Cost Curves. Each point
on the long-run average cost curve is the lowest point on a short-run
curve. In the long-run, the organisation can choose inputs and produc-
tion technology to do as well as the optimal short-run allocation.

1.2.5 Cost-Output Elasticities

It is useful to develop the concept of how cost changes with output to investigate
the relation of scale to cost. The elasticity of cost with respect to output tells us
the percentage change in cost associated with a 1% increase in output. Note that
this can also be expressed as the ratio of marginal costs MC = dC(w, y)/dy and
average costs AC = C(w, y)/y (Gravelle & Rees, 2004, p. 121).

dlnC(w, y)
dlny

= dC(w, y)
dy

· y

C(w, y) = MC

AC
(1.4)

The cost-output elasticity and the ratio of marginal and average costs can be used
to measure the degree of scale economies, as discussed below.
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1.2.6 Scale Economies

In the single-product case, the degree of scale economies is typically defined accord-
ing to the slope of the average cost curve over a particular output range. That is,
whether average costs are falling, constant or rising as output increases. Where the
average cost curve is falling with increases in output, higher output is associated
with lower costs per unit, implying positive scale economies. Where the average
cost curve is rising, increases in output are associated with higher costs per unit,
defined as negative scale economies. The range or point where average costs are flat
or do not change markedly with output is often referred to as the ‘minimum efficient
scale’ or MES. This minimum efficient scale can be equal to or greater than total
market demand if average costs do not rise before total market demand is met. This
scenario is often termed a ‘natural monopoly’.

The degree to which scale economies are present is measured by the Scale Econ-
omy Index S, defined by Baumol et al. (1982) as the ratio of average to marginal
cost AC/MC. This scale economy index is the reciprocal of the cost-output elas-
ticity equation defined at (1.4). This index tells us whether average costs rise or
fall at a given point. To see this, note that the average cost curve will rise where
marginal costs are higher than average costs and fall where marginal costs are lower
than average costs. The marginal cost curve will intersect the average cost curve at
the lowest average cost.

The ratio of marginal and average costs at each output level determines the
local behaviour of the average cost curve. Where the marginal cost curve is below
the average cost curve, costs decline with output. Each additional unit of output
adds a unit cost lower than the cumulative average cost, lowering average costs and
causing the AC curve to slope downwards. In this case, the index AC/MC is greater
than one, implying positive scale economies. If the marginal cost curve is above the
average cost curve, the reverse is true, with each additional unit of production added
at a cost greater than the current average. Where this is true, the average cost curve
rises with output, and there are negative scale economies as S < 1.

Under the standard microeconomic theory, average cost curves are expected
to have a ‘U’ shape with respect to output. Organisations exhibit positive scale
economies initially as fixed costs are spread over increasing output before flatten-
ing out and then showing diseconomies of scale. Diseconomies of scale may arise
where an organisation finds coordinating itself difficult or cannot operate efficiently
at higher output levels.

9



1.2. Single-Output Production

1.2.7 Desirable Properties of Cost Functions

It is helpful to define some properties of the cost function required for consistency
with microeconomic theory. Ideally, any estimated cost function should conform to
these desirable microeconomic properties. For example, Chambers (1988) sets out
six conditions:

1. Cost should be non-negative — c(w, y) > 0 where w > 0 and y > 0. This
condition can be evaluated by the form of the cost function.

2. Cost should be non-decreasing in input prices — ∂c(w, y)/∂wi ≥ 0.
This condition can be evaluated by differentiation of the estimated function.

3. Cost should be continuous and concave in input prices — c(w, y) is
continuous and concave for any wi. This condition follows from condition 2
and the possibility of input substitution and cost-minimisation. To see this,
consider the case of input i. In the event of a rise in price from wi to w∗

i and
no input substitution, total costs would increase by (w∗

i − wi).qi, where qi is
the quantity of input i employed. Total costs would increase by less than this
if the organisation can find alternatives which result in lower costs. However,
a cost-minimising organisation would never switch to an input bundle such
that the total cost increased by more than (w∗

i − wi).qi. This cost-minimising
assumption ensures weak concavity of c(w, y) with respect to any given wi.
This requirement can be evaluated by calculating the Hessian matrix of partial
derivatives with respect to input prices. Where the Hessian matrix is negative
semidefinite, the cost function is concave with respect to input prices.

4. Cost should be non-decreasing in any output — ∂c(w, y)/∂yi ≥ 0. This
condition follows from the assumption of a monotonically increasing produc-
tion function. Such a production function requires minimum inputs to rise
with increases in output, hence raising the minimum cost. This property can
be checked by computing the partial derivatives of cost with respect to each
input price or the relevant cost-output elasticity, which will have the same
sign. Where the result is positive, costs increase with output.

5. Cost should be linearly homogeneous in input prices — c(tw, y) =
tc(w, y). This condition states that minimum costs rise proportionately when
all input prices rise together. As any opportunities for input substitution are
conditional on changes in relative input prices, there can be no cost-minimising
substitutions where all input prices increase by the same amount. This condi-
tion could be enforced by restrictions on the estimation method, where econo-
metric software allows. However, it is worth noting that restrictions on coef-
ficients to enforce either this condition or condition #4 may result in distor-
tionary effects on marginal costs and scale economy estimates (Brown et al.,
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1979). There is perhaps a tradeoff between theoretical consistency and good-
ness of fit that may be as much a methodological preference as an ontological
question.

6. No fixed costs in the long-run — c(w, 0) = 0. Where all inputs are vari-
able, cost should equal zero when no output is produced. This condition can
be either evaluated by substitution of a zero vector into the output variables
and computing costs or tested asymptotically by taking the limits of the cost
function as lim∑ yi→0+

These properties can be used to evaluate how well estimated cost equations fit stan-
dard microeconomic theory and the internal consistency of their results. Ideally, all
these properties would be observed in estimated cost functions. Departures from
these properties would indicate that the estimated cost function was logically incon-
sistent, less likely to behave as expected, and consequently less desirable empirically.

1.3 Multiproduct Organisations

1.3.1 Multiproduct Average Costs

The definition of scale economies relating to the behaviour of average costs is
straightforward in the single-product case. However, this simple formulation cannot
be used where organisations produce more than one good. Following the work of
Baumol et al. (1982), it is noted that scale economy definitions based on average
costs become complex when there are multiple outputs. With multiple outputs, the
average cost curve becomes a multidimensional surface rather than a line. Defining
average cost as AC = C/y and marginal costs MC = dC/dy becomes complex
where y now represents a vector of multiple goods.

In the first instance, average costs need an alternate definition in the multi-
product case, as there is no natural way of combining a basket of outputs into
the denominator y to average. One common approach to this problem is to hold
the proportion of outputs constant at the current output mix. For example, see
Koenker (1977) for an early example applied to road transport. When the pro-
portion of outputs is fixed, percentage increases in this fixed basket of outputs are
easily computed. Following this method, the multiproduct case is redefined to a
single composite good. This redefinition allows average costs to be computed with
reference to the basket, usually defined as current output, as a ray average cost.

Ray Average Costs in this context were first defined by Baumol et al. (1982).
Where the bundle of goods has been defined as y′, a ray average cost is defined
as C(ty′, w)/t, with t as the number of units of the composite good in the bundle.
This expression measures the slope of the plane (or ray) from the origin to the
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defined bundle of goods multiplied by whatever level of output scalar t is used.
Consequently, average costs can be defined in the multiproduct case and elasticities
and scale economies can be computed. As the proportion of inputs along each ray is
unchanged, the bundle of goods remains the same across different outputs, avoiding
the difficulties of combining different outputs.

A disadvantage of this approach is that comparisons at the industry level are
problematic, as each organisation’s output mix will differ. A finding that ray average
costs for a particular organisation continually fall does not necessarily mean that
the industry is a natural monopoly, as another organisation with a different output
mix may experience a different cost curve. However, we can evaluate the general
behaviour of each organisation’s average costs relative to current outputs, and infer
sector-level behaviour from how each of these individual organisations’ cost curves
behaves locally.

1.3.2 Multiproduct Marginal Costs

The definition of marginal costs also becomes more complex in the multiproduct
case. In the single good case, marginal costs are the incremental costs of one more
unit of the only good. In the multiproduct case, the marginal costs of one good
can be affected by the production level of other goods. The analogous definition
for marginal costs becomes the partial derivative of cost with respect to the output
concerned ∂C(w, y)/∂yi. Whilst this retains the idea of measuring marginal changes
with respect to output, it makes multiproduct marginal costs conditional on the
cross-products of yi and other outputs yn ̸=i. Marginal costs thus defined depend on
the current level of other outputs, so they are no longer unique to particular levels
of yi.

1.3.3 Multiproduct Scale Economies

Adopting these definitions of (ray) average and marginal costs allows the construc-
tion of a scale economy definition analogous to the single-product case. Scale
economies are defined by whether average costs rise or fall over a defined output
level. However, because our definition of ray average cost includes multiple outputs,
it does not permit either a simple derivative test for whether overall average costs are
rising or falling, or a natural scale over which to evaluate this. Scale economies must
therefore be calculated based on elasticities and the ratio of average and marginal
costs. In the multiproduct case, the scale economy measure S = AC/MC becomes
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the inverse of the sum of individual cost-output elasticities, as follows:

S = AC

MC

=

(
C(w,y)∑

i
yi

)
∑

i
∂C(w,y)

∂yi

= C(w, y)∑
i yi · ∂C(w,y)

∂yi

= 1∑
i ϵC,yi

(1.5)

Where ϵC,yi
= ∂ ln C(w, y)/∂ ln yi is the cost elasticity of the ith output. This

equation gives us a definition of scale economies for the multiproduct case, avoiding
the issues of comparing qualitatively different goods.

1.3.4 Jointness and Economies of Scope

The multiproduct case also raises the complication of joint production, which would
not be applicable in the single good case. Joint production occurs where the cost
of simultaneously producing two or more outputs is less than the cost of producing
them separately. Mathematically, joint production for an organisation producing
two goods is present where the following inequality holds:

C(y1, y2, w) < C(y1, 0, w) + C(0, y2, w) (1.6)

Instances where this inequality applies are defined as ‘sub-additive’. If the inequality
is true over all values of y up to the market demand, then the cost function is globally
sub-additive and a natural monopoly. Costs are lower with production concentrated
than in the case of separate production.

If jointness is absent and the cost of independent production is equal to joint
production, the production costs of each good are independent of the output lev-
els of other goods. Here, production activities are functionally independent, and
the organisation could be separated into individual organisations or sites without
affecting the cost of production.

Jointness in production is closely related to economies of scope. Economies of
scope may be present where the production of different outputs can use shared re-
sources or gain benefits from colocation or co-production. For example, the marginal
costs of one surgical specialty may be affected by investment in theatres and post-
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operative beds for another surgical specialty. Diagnostic imaging equipment bought
for elective daytime work may be used for emergency out-of-hours cases at a lower
marginal rate than purchasing another set of equipment. Each of these examples cor-
responds to cases where inequality (1.6) applies. This definition is used in Chapter
5 as the test for the presence of economies of scale.

1.4 Measurement and Definition of Hospital Cost
Concepts

1.4.1 Defining a Hospital

It is first useful to define what a ‘hospital’ is, firstly as a means of defining an
appropriate study population, and secondly to define the ‘decision making unit’
(DMU) or the level at which scale economies are measured.

For the first criterion, I define a hospital as a provider of inpatient care across
multiple clinical specialties, including both emergency and planned care. In England,
these organisations are generally referred to as ‘acute providers’. In addition to
inpatient care, these organisations offer healthcare in outpatient settings, diagnostic
imaging, emergency department care and other services. Specialist organisations
offering only planned inpatient care in a restricted range of specialties are excluded
- see Appendix A for details. Also excluded are organisations that only provide
mental health services, private sector organisations that do not offer emergency care,
and community care organisations that only offer services such as health visiting and
district nursing. The organisations that fit this definition give a study population
offering comparable healthcare in a broad range of clinical specialties.

To see why the second criterion is important, note that acute provider organ-
isations may run more than one hospital site. In this respect, it is useful to de-
fine whether we are considering the site or the organisation level when estimating
economies of scale and scope. In other countries, a hospital organisation could op-
erate as a hospital chain or network, with several self-contained sites and significant
decision making delegated to each site. Where organisations span multiple sites,
it might be argued that the site should be considered as the DMU. However, it
is more natural to consider the organisation level as the unit of production where
decisions on output levels are centralised at the organisation level, or if each site is
not self-contained and specialises in different types of healthcare.

In the English case, many acute organisations run multiple sites. However, de-
cisions on capital investment and healthcare output are taken at the organisation
level. In addition, where an organisation has multiple sites, it may also centralise
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particular services to one of these sites. This centralisation minimises the costs of
staff moving between sites and the costs of duplicating smaller departments on each
site. A multi-site configuration means that the full range of hospital services is
provided at the organisation rather than the site level.

Finally, using a site-based definition of the DMU also means difficulties allocat-
ing output in rarer cases where departments span different units and patients may
receive treatment in both. For example, a patient may attend one site for surgery
and another site subsequently for outpatient follow-ups. For these reasons, in this
thesis, the organisation is the decision making unit and costs are examined at this
level of aggregation.

1.4.2 Healthcare or Health?

A fundamental issue of output measurement is whether to measure healthcare pro-
vided or health improvements realised. A more comprehensive discussion of each
side is in Butler (1995) pp 48-55. From the patient’s point of view, the desired end
state is an improvement in their health. A health improvement may need to be
set off against utility losses from side effects or other negative externalities such as
travel. However, assuming these utility losses are minimal, the health improvement
is the individual’s main ‘good’. Consequently, there is a school of thought which
argues that output should be measured in terms of the increase in health obtained
from each hospital visit.

Practically, measuring such a health improvement is difficult. Widespread
recording of health status measures such as EQ-5D (Euroqol, 2022) for each
treatment does not occur. Government institutions may model quality-of-life
improvements as part of cost-effectiveness analyses for new treatments. However,
there is no database or systematic retrospective measurement for existing treat-
ments. Measurement is even more difficult for complex pathways involving multiple
treatments, visits, and interactions. Average health improvements calculated at a
certain point may change with time as treatments are refined and life expectancies
change. Consequently, even if it is desirable to define hospital output in terms of
health, measurement and data deficiencies make this approach unfeasible.

The alternate view of measuring healthcare output could also be regarded as
more theoretically correct. The output of other industries is not usually measured
by their effects on the individual. Even if measurement were possible, there are
situations where output as health improvement results in apparently perverse im-
plications. For example, Butler (1995) notes that taking health state improvements
as output means that palliative care results in no output. However, the issue is
even more general than this. Palliative care could be said to offer a health improve-
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ment over the alternative of no palliative care if pain and discomfort are included
in the definition of health. However, health improvements (over time) need to be
evaluated against a hypothetical alternative. For example, a patient receiving treat-
ment for eye cataracts is expecting an improvement in vision compared to the day
before surgery. However, this health improvement is valued not only for its effect
at the time of surgery. The health status improvement is relative to the expecta-
tion that vision could deteriorate further without treatment. Such counterfactuals
are difficult to compare on any significant scale as they may be contingent on life
expectancies or other comorbidities. We would need to use an average treatment
effect per healthcare procedure to measure this, which takes us closer to measuring
healthcare in any case. It is theoretically arguable whether hospital outputs should
be measured as healthcare or health improvements. However, our need to measure
health outputs on a large scale means that measuring healthcare as the output is
the only practical empirical method.

1.4.3 Aggregating Healthcare Outputs

Having defined a hospital and the form of outputs, it is necessary to decide how to
aggregate outputs to a manageable level. Cost functions with few parameters have
the advantage of parsimony and are easier to estimate, but have the drawback that
the aggregated outputs are harder to relate to real-world policy interpretations and
do not capture nuances of differing patient casemix (Breyer, 1987). Some degree of
aggregation of differing healthcare goods is necessary, as individual patients can have
different treatments depending on their circumstances, comorbidities, and personal
preferences.

Early studies counted the number of cases or the number of bed days (Lave &
Lave, 1970). Counting bed days attempts to account for a degree of complexity
in casemix. More resource-intensive healthcare would be associated with a longer
stay in hospital. However, this association is not perfect, and counting outputs
by bed days only applies to inpatient care. Counting bed days cannot account for
complexity in other settings. Bed days may also be a poor proxy for complexity.
A long-staying patient may represent a greater intensity of healthcare usage than a
short-staying one, dependent on the qualitative details of the treatment and required
recovery time. Using bed days as output also makes no allowance for inpatient stays
that are longer than necessary due to organisational inefficiency rather than clinical
requirements. Where hospitals are inefficient, length of stay may be longer (Siciliani
et al., 2013). Even with the same treatment and identical hospital characteristics,
the length of hospital stay can also vary depending on the patient’s general health or
the availability of subsequent community or social care. Where stay lengths are long,
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the marginal difference in additional case cost may be minimal if the additional days
only provide nursing and ‘hotel’ costs with limited additional treatment. Using bed
days as outputs could mean that a hospital with longer average stays records higher
output and lower average costs, despite providing the same amount of treatment
except for accommodation and nursing. Using bed days as a method of accounting
for complexity or as the basis for measuring output may be better than crude counts
of cases, but it is still a poor means of categorising and measuring outputs. There
are alternative methods of aggregating and classifying similar types of healthcare
that can be used to take account of heterogeneity in healthcare provided, adjusting
for qualitative differences in care provided and differences in casemix.

1.4.4 Casemix and DRG/HRGs

Butler (1995) discusses two main casemix classification schemes, The International
Classification of Diseases (ICD) and Diagnosis Related Groups (DRG). The ICD
taxonomy organises and provides classifications based on diagnosis or the particular
health need to be met. For example, ICD-10 (the edition used in the UK at the time
of writing) includes 22 chapters (WHO, 2022). ICD groupings, based on diagnoses,
provide a means of classification based on health needs but not on the healthcare
provided.

DRG groups classify according to diagnosis and also treatment options. DRG
classifications are (in the US Medicare System) subdivided into Major Diagnostic
Categories based on diagnoses, and subdivided further based on the treatment of-
fered for that diagnostic group. Within this category are DRGs for Percutaneous
Cardiovascular Procedures involving artery stenting, with differing DRG codes de-
pending on whether the stent is drug-eluding, whether the patient has comorbidities,
and the degree of seriousness of these, and the number of stents used in the proce-
dure. Relatively detailed information is encoded within these DRGs, including the
patient’s general health and the healthcare to be provided.

In the UK, similar groupings to DRGs are used and named ‘Healthcare Resource
Groups’ or HRGs. HRG codes were developed with a similar intent to DRGs, as
a means of administering government payments to hospitals and incentivising cost
control, rather than funding via cost reimbursement or block grant. As in the US,
HRGs are determined by rules based on the appropriate diagnosis and procedures
carried out as part of care (NHS Digital, 2022a). UK HRGs also take into account
the degree of comorbidities present where applicable. Reimbursement is based on the
care setting and HRG used, so an HRG may attract a different payment depending
on whether an inpatient stay is required. HRGs are used in subsequent chapters to
weight and account for differences in casemix and output heterogeneity, as they can
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capture differences in treatment provided, as well as differences in healthcare needs.
The number of HRGs precludes using individual codes as output categories, but

it is possible to use historic costs or reimbursement amounts as a means of weighting
when aggregating to a higher level. Outputs can thus be aggregated to a level where
estimation becomes feasible and models are sufficiently parsimonious. Outputs are
aggregated to the care setting level in Chapters 2-4 and the specialty level in Chapter
5, dependent on the factor of interest, which is scale economies in the former and
scope economies in the latter.

1.4.5 Incentives and Coding Quality

Using HRGs as a means of aggregation offers a more granular method of dealing
with heterogeneity, but HRGs are not without drawbacks. The HRG classification
and reimbursement system is used primarily for cost control but also to incentivise
certain treatment types. Where this happens, an HRG-based weighting that uses
reimbursement values could be distorted. For example, certain day case surgery is
incentivised by being funded at the same amount as patients who stay in the hospital
overnight, despite the former arguably receiving more healthcare. This incentivised
pricing can lower costs (Gaughan et al., 2019), but also means that if reimbursement
values are used for weighting, healthcare outputs could be distorted.

HRG allocation can be affected by clinical coding practices. Hospitals that ‘un-
dercode’ or do not accurately record diagnoses, comorbidities, or treatments record
lower value HRGs than hospitals that better capture this information. Coding qual-
ity may also be lower at smaller hospitals, which may be a particular issue where
size is used as an explanatory variable. Smaller hospitals with limited resources may
lack funds to hire sufficient clinical coding professionals to record codes. They may
also be unable to purchase health records software to help automate the process.
Lacking resources could be a self-reinforcing situation. Where poor quality coding is
present, hospitals may not be reimbursed fully according to the healthcare supplied.
As well as undercoding hospitals not recording aspects of care, there are incentives
for ‘HRG Creep’, coding for higher value HRGs where rules are ambiguous. Evi-
dence for this occurring in practice is limited, though instances would be difficult to
detect (Rogers et al., 2005).

1.4.6 Non-Healthcare Outputs

As well as healthcare outputs, hospitals can also produce goods in the form of un-
dergraduate medical and nursing training. Hospitals that provide teaching have
higher costs (Farsi & Filippini, 2008). Many studies attempt to measure the impact
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of teaching on hospital costs, that is, they estimate the premium on overall cost
arising from teaching hospital status (Butler, 1995, pp. p217–248). I do not at-
tempt to add to these studies, as the cost dataset used attempts to exclude teaching
costs. A dummy variable for teaching costs is used to account for this exclusion
being only partially successful. Teaching activities are likely not entirely separa-
ble from treatment activities as instances of joint production. For example, ward
rounds with medical trainees and similar activities involve healthcare and teaching.
Teaching hospitals are also likely to be larger hospitals treating a wider variety of
more resource-intensive healthcare needs, so they have a confounding issue asso-
ciated with casemix. The alternative, constructing a dataset inclusive of teaching
costs and accounting for the joint nature of production, requires using financial
statement values which include other miscellaneous income and expense, accounting
adjustments and other potential sources of difference. Any attempt to model teach-
ing outputs alongside those of healthcare has to deal with the challenging issue of
devising a conceptual unit to measure teaching, other than crude indicators like the
number of students at the hospital.

Some hospitals also undertake significant research activities, which can also in-
crease costs (Linna & Häkkinen, 2006). Research activities also have a similar issue
to teaching activities in that activities must include an element of joint production.
A patient taking part in a trial or other treatment research must receive some treat-
ment, either a new intervention or standard care. As with teaching activities, higher
research activity is likely to occur at larger hospitals with more complex casemix
and other qualitative differences which facilitate research.

In subsequent chapters, data is taken from the English National Cost Collection
Exercise (NHS England, 2022b), formerly Reference Costs. This dataset attempts
to exclude teaching and research costs via a process based on apportionment and
staff timesheets. Given the presence of joint production, this is likely to cause
distortions, but there is no other cost dataset (such as financial statements) that does
not have similar issues separating the cost of non-healthcare goods from healthcare
production.

1.4.7 Defining Size and Measuring Capital

To investigate the relationship between cost and size, a definition of hospital size
is needed. Most studies avoid measuring scale economies directly against out-
put to avoid the version of the “regression fallacy” identified by Friedman (1955).
Friedman notes that organisations may have ‘random’ fluctuations in output in a
cross-sectional dataset despite constant fixed costs. The element of average cost
attributable to fixed factors of production would vary inversely with output, poten-
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tially biasing attempts to examine estimates of ‘optimum size’. Consequently, most
historic studies have used bed numbers to measure size (Giancotti et al., 2017).

However, bed numbers are imperfect measures of capacity, especially over time.
There has been a longer-term trend for non-admitted healthcare to increase as a
share of hospital output and an associated reduction in the length of hospital stay
and associated bed numbers (McKee, 2004). In addition, using beds as a proxy
could introduce other biases. For example, hospitals with many beds relative to
output may be inefficient rather than inherently ‘large’. Inefficiency amongst hospi-
tals with higher bed numbers could cause a potential bias in the opposing direction,
understating scale economies. Despite this, there are few alternative measures of
size available other than output measures, so bed numbers continue to be widely
used in the literature.

Some studies which employ an envelope method to derive long-run cost functions
use proxy variables for capital employed (Kristensen et al., 2012; Preyra & Pink,
2006). These studies have typically also used bed numbers as a proxy for capital.
Following a similar methodology in the case of England would also require a proxy
value for economic capital, as there are no established capital markets in the UK for
hospitals. Data available offers two possible measures to use as a proxy for a capital
or ‘size’ measure. Either bed numbers or financial statement fixed asset values can
be used as a proxy for capital or size. Data sources for capital measures are discussed
below.

1.4.7.1 Bed numbers

Hospital bed numbers are taken from publicly available data submitted by English
NHS hospitals. Each NHS hospital must complete a periodic audit of beds and
occupancy levels and submit these to NHS England, with data published on NHS
England’s statistical work areas website (NHS England, 2019). ‘Beds’ are defined
according to the NHS data dictionary definition (NHS England, 2022a), which sets
out the difference between beds, trolleys, and couches. Bed data is separated into
‘Day only’ beds and Overnight beds. Day beds are used for patients whose care is
planned so they can be admitted and discharged on the same day, with the bed being
unavailable overnight. Overnight beds are used for overnight stays, where a patient
is admitted and remains in the hospital for at least one night before discharge. Both
bed types are combined into a total bed number for analysis. Quarterly bed numbers
are extracted for each hospital and then averaged over each year to get an annual
average bed number for each hospital-year data point.

How the different types of beds are counted is open to debate. Arguably, day
beds could be weighted to a lower extent than overnight beds, as their capacity
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is limited by the hours they are available. However, day-case activity is already
weighted according to the HRG reference cost values. Hospitals with a large num-
ber of day beds relative to overnight beds will therefore have lower weighted activity
relative to hospitals with fewer day beds relative to overnight beds. I do not weight
beds according to type for three reasons. Firstly, any weighting of day beds relative
to overnight beds would be arbitrary. One option would be to count day beds as
50% of the value of an overnight bed, approximating the hours that they would be
‘open’. However, the hours that the day beds are open varies according to individ-
ual hospitals and even within hospitals. Even for overnight beds, most healthcare
activity would happen during the day. There is no obvious way to weight day beds
relative to overnight beds. Secondly, the capital embodied in the bed is the same
irrespective of usage. A day case ward would still require similar infrastructure and
capital investment. The main cost difference between the two types of beds is the
labour (predominantly nursing) used in conjunction with the bed. Day only beds
will not require nursing labour during the hours the beds are not in use. Finally,
hospitals can convert beds between day and overnight if desired, subject to need
and available staffing, making the distinction partly arbitrary in practice.

Using bed numbers as a proxy for capital has some drawbacks. Notably, bed
number requirements are set according to the amount of inpatient care required. If
a hospital has a higher than average requirement for inpatient care, its bed numbers
will be higher than those of an otherwise comparable hospital which provides more
ambulatory care in outpatient clinics. Nor are comparable bed numbers indicative
of the same level of capital intensity, even amongst inpatient care. For example,
critical care beds may be associated with higher capital levels than ‘standard’ beds.
This additional capital is due to critical care beds requiring more investment in
ancillary equipment than standard ward beds. Hospitals with higher numbers of
critical care beds are also likely to carry out higher numbers of surgical episodes, as
major surgery may require a period of postoperative critical care. More critical care
beds or beds for surgery will require additional capital embodied in surgical theatres.
Using total beds as a proxy for capital could therefore be misleading where there
are differences in the type of bed used.

Bed number requirements are additionally affected by clinical reasons which are
beyond the scope of the model presented here. Hospitals that treat a larger number
of non-elective patients (emergency care admissions and births) may need to keep a
higher ‘buffer’ of beds which may often be vacant but are available in the event of
a large number of simultaneous emergency cases requiring care. Such hospitals may
need a higher level of capital employed for a given activity level to deal with brief
periods of high demand. Hospitals with smaller numbers of non-elective patients
may not need to flex their capacity and may consequently have lower numbers of
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average beds, even if they treat comparable numbers of patients. Separating non-
elective and inpatient care in the model should at least partially account for this.
However, hospitals with more volatile demands for non-elective care could still have
higher bed numbers and capital requirements than hospitals with more predictable
or lower non-elective care demand.

Bed requirements can also be influenced by the capacity of community and social
care organisations. Patients who are medically fit to be discharged may have delayed
discharges if there is no social care resource to support them (Holmås et al., 2013).
Consequently, hospitals may require higher bed numbers depending on their region’s
community and social care capacity.

1.4.7.2 Financial Statement Asset Values

The alternate measure of size or capital would be to use capital values from published
financial accounts. Accounting measures of fixed assets can be obtained annually
from published financial statements. Financial statements include accounting mea-
sures of capital as part of their statements of financial position, freely available
via the Trust Accounts Consolidation (‘TAC’) datasets published annually by NHS
England (NHS England, 2022c). Financial statements include sections for long-run
assets, typically land and buildings, and short-run assets, such as debtors, stock,
and money in bank accounts. Many of these short-run assets would not typically
be considered assets in the economic definition of capital, so they were excluded.
Long-run assets in hospital financial statements are typically dominated by land
and buildings, whose valuation is much larger than short-run assets. Consequently,
capital values from the long-run assets section of the accounts are closest to the
economic definition of capital. Using long-run assets also ensures that the majority
of assets by value are included in the measure.

Financial statement valuations of capital are inherently problematic for several
reasons. Accounting definitions of capital may not correspond to economic concep-
tions and valuations of capital. Accounting valuations can be particularly sensitive
to cases where assets are rented and not owned, as financial statements only count
owned rather than rented assets. In some situations, accounting definitions of ‘own-
ership’ can be a grey area, for example, assets purchased through the Private Finance
Initiative (‘PFI’) scheme. The PFI scheme enabled hospitals to make large-scale in-
vestments funded by commercial finance rather than public investment. Often these
involved hospitals not taking ownership of an asset but paying a finance and service
charge each year. As the asset would not be under the hospital’s ownership, it would
not appear in the assets section of the hospital financial statements. Comparable
assets could be included for one hospital but excluded from another, depending on
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financing.
Even where ownership and financing are comparable, the financial valuation of

assets can also be a source of variation. Capital valuations for land and buildings
cannot use market valuations as no developed private markets exist for comparable
assets (hospital buildings) in the UK. Financial statements consequently include as-
sets at a value arrived at by a specialist valuer. These valuations are carried out by
specialist valuers who value property capital according to the cost of constructing
an equivalent asset generating equivalent utility. That is, they value according to
the cost of constructing a comparable hospital in a comparable location. Financial
capital values reflect a hypothetical alternative rather than a market value. Valua-
tions can also be affected by professional opinions on what is an ‘equivalent’ utility
or location. Taking all these factors together introduces an element of variation
according to the judgements of professional valuers. How well this reflects ‘true’
capital values has significant uncertainty. Using financial statement values of cap-
ital also has a practical drawback when comparing results across time or country.
There is no obvious deflator for hospital valuations across time, and cross-country
comparisons introduce additional uncertainty from exchange rate comparisons.

Both bed numbers and financial statement values have significant drawbacks as
proxy measures of capital. In this thesis, bed numbers are used as the preferred
measure of capital due to the inherent variability of financial statement capital
accounting and the artificial nature of hospital property valuation in the absence of
a developed market for hospital buildings.

1.5 Estimation

1.5.1 Parametric or Non-Parametric Methods

Studies considered thus far use parametric methods to estimate a cost function.
There is an extensive literature analysing hospital production and efficiency using
non-parametric methods, chiefly using Data Envelopment Analysis (DEA). Sur-
veys of this literature include Hollingsworth (2003); Hollingsworth (2008); Kohl et
al. (2019) and O’Neill et al. (2008). Few studies use both parametric and non-
parametric methods on the same data. Siciliani (2006) found comparable efficiency
results using constant returns to scale DEA models and Cobb-Douglas parametric
models, and more divergence between methods when using more flexible specifica-
tions such as DEA variable returns to scale and parametric Translog specifications.

Most of this efficiency literature uses DEA to measure the technical efficiency
of hospitals and the relationship of outputs and inputs via the production function
rather than scale economies per se. However, DEA models can estimate returns
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to scale, which can be easily related to scale economies. Any production function
which exhibits positive returns to scale implies positive scale economies in the cost
function, even where the production function is not homothetic (Bell, 1988). How-
ever, the reverse is not true - positive scale economies in the cost function, defined
by cost-output elasticities, can exist where the production function does not exhibit
positive returns to scale. If the production function is homothetic, the relative share
of inputs does not change with changes in output, and economies of scale and re-
turns to scale coincide at cost-minimising points. To use the absence of returns to
scale as evidence of the absence of scale economies requires assuming a homothetic
production function, which may not be justifiable. In older literature, a terminology
distinction is made between economies of size (scale economies in the cost function)
and economies of scale (returns to scale in the production function), though litera-
ture can also use the terms interchangeably. See Chambers (1988) pp. 68-77 for a
fuller discussion of terminology, the relationship between returns to scale and scale
economies, and their relationship.

DEA approaches estimate an efficient frontier from observed data points using
a linear programming approach. This approach derives the frontier of maximum
output associated with combinations of inputs, creating an envelope of production
possibilities. Efficiency is calculated by how close each DMU is to the frontier as a
ratio between 0 and 1. Whilst the basic model assumes constant returns to scale,
variable returns to scale can be built into the model by adding a convexity term.

Parametric approaches model the variable of interest (either maximum output yi,
or cost Ci) as a function of xi (inputs in the case of production functions, outputs and
prices in the case of cost functions). Efficiency-based Stochastic Frontier Analysis
(‘SFA’) models the error term with two components. vi is assumed to be normally
distributed with mean 0, and ui, which measures the distance to the frontier as
inefficiency. β are coefficients in the estimation.

Ci = f(xi, β) + vi + ui (1.7)

Much of the DEA and SFA literature is focused on the average efficiency of individual
DMUs and the consequent opportunity for efficiency gains. There are few UK-based
studies, with most studies looking at US data. To the best of my knowledge, none
of the UK-based DEA studies surveyed in Hollingsworth’s two review articles report
any scale effects at the level of individual hospitals. However, Tsai & Mar Molinero
(2002) use a DEA analysis at the medical specialty level, finding an optimal size for
surgery but constant returns to scale for maternity services.

The following essays use parametric techniques to estimate a cost function rather
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than employ DEA frontier approaches. DEA approaches lack the theoretic under-
pinnings in parametric techniques, simply estimating a frontier which best fits the
data. Whilst this flexibility is an advantage in some cases, it removes the ability
to apply constraints which may be economically desirable. For example, we may
wish to use a particular functional form for our cost function or easily compute
comparative statics that may be of interest.

The lack of an error term in DEA also means that DEA approaches can be sen-
sitive to outliers in the data. This issue may cause problems where there are many
inputs and outputs, and individual data points may be far away from other obser-
vations on the frontier. DEA error terms can be imputed retrospectively through
bootstrapping (Simar & Wilson, 1998), though using these methods to fully account
for measurement errors is complex.

Finally, though DEA techniques can be used to model returns to scale, their
primary use has been to quantify efficiency rather than the effects of scale on cost.
It is the latter question in which I am primarily interested. Whilst it is possible
to use non-parametric techniques to investigate this, these techniques are rarely
used. For the reasons above, parametric techniques are preferred to investigate this
question.

1.5.2 Short-run or Long-run Cost Function

Having decided on parametric methods, a subsequent issue is how to model the cost
function. The choice is whether to estimate a short or long-run function. Estimat-
ing a long-run cost function from direct observations of costs and outputs can be
problematic. By doing so, it is assumed that observed cost and output values are
cost-minimising for that level of output. However, observed points may not be cost-
minimising, for example, due to X-inefficiency (Leibenstein, 1966) or decisions made
for reasons other than cost-minimisation. This observation has been the basis for
other researchers to critique attempts to estimate long-run functions directly from
observed outputs and costs because direct long-term estimation assumes that the ob-
served output levels are short-run optimal points (Aletras, 1999). This assumption
is important as if it does not hold, estimates of average cost at each output point
could be overstated, reducing the apparent degree of scale economies and adding
uncertainty to the model.

Some studies since Aletras (Kristensen et al., 2010; Preyra & Pink, 2006) deal
with this issue by first estimating a short-run function where the capital stock is
fixed. Subsequently, these researchers generate a long-run function using the enve-
lope of the short-run functions, allowing the capital stock to vary in the long-run.
Preyra and Pink use this approach to find no significant long-run limit to scale
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economies. Kristensen, Olsen, Kilsmark, Lauridsen, and Pedersen reach similar
conclusions about long-run cost functions using Danish hospital cost and output
data. Estimation results may differ depending on whether a long-run cost function
is directly estimated (assuming existing output levels are optimal) or derived via
the short-run or variable cost function.

1.5.3 Specific Functional Forms

The final estimation question to be considered is the form of the cost function.
The choice of form conditions the behaviour of the cost function. Consequently, it
is important to choose a form that both accurately measures the phenomenon of
interest and also retains desirable theoretical properties.

Early studies attempting to model a cost function for hospital output tended
to use ‘ad-hoc’ specifications. Studies using this ad-hoc or ‘behavioural’ (Evans,
1971) approach included variables for any factor thought to significantly affect cost.
Specifications often included variables for bed utilisation, variables to adjust for the
heterogeneity of facilities, and other factors that could plausibly affect costs (Hefty,
1969; Mann & Yett, 1968).

After these early studies, most attempts to estimate cost functions used a speci-
fication based on economic theory, expressing cost as a function of output and input
prices only. Many functional forms have been used to represent cost functions, each
with particular characteristics which affect how derivatives such as elasticities be-
have. A summary of the main forms of cost functions is available in Heathfield
(1987). The choice of functional form can therefore affect what can be modelled in
the estimation and which properties our estimated cost function has.

Not all functional forms are appropriate for estimating variation in scale
economies. The function form needs to allow for the variation of scale economies
over outputs. Within the literature, there is a debate around the appropriateness of
different functional forms, though few studies test alternate specifications using the
same data. Different functional forms have advantages and disadvantages regarding
consistency with desirable properties derived from economic theory and the ease
or accuracy of their econometric estimation. Vitaliano (1987) finds that these
differences can affect estimations of scale economies. The choice of functional form
depends on the properties desired in the study, such as homogeneity or variable
returns to scale, but we must be mindful that results may change dependent on the
functional form used.
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1.5.3.1 Cobb Douglas

The Cobb-Douglas form expresses cost in the following form for n outputs and m

inputs:

C(y, w) = A yα1
1 yα2

2 ...yαn
n wβ1

1 wβ2
2 ...wβm

m (1.8)

This expression can be linearised to:

ln C = ln A +
∑

n

αn ln yn +
∑
m

αm ln wm (1.9)

More commonly used in production function studies (Sielska & Nojszewska, 2022),
using a Cobb-Douglas form has several drawbacks in cost studies. It implies no fixed
costs in the non-linear form, as cases where one yi = 0 yields a zero total cost. In
the linearised version, any yi = 0 is undefined due to logs. For the function to be
linearly homogeneous in input prices requires constraints such that ∑m αm = 1. The
Cobb-Douglas form is homothetic in that it can be written C(w, y) = A c1(w) c2(y),
where c1 = yα1

1 yα2
2 ...yαn

n and c2 = wβ1
1 wβ2

2 ...wβm
m . However, the Cobb-Douglas form

does not allow scale economies to vary with output, as returns to scale are a function
of the (fixed) coefficients on the output variables ∑n αn (Heathfield, 1987, p. 81).
Scale economies can be positive, constant or negative according to whether this
expression is above, equal to or below 1. However, these scale economies will not
vary with output and cannot be used to evaluate the effect of scale on average costs.

1.5.3.2 Flexible Forms

To investigate the relationship between scale economies and size, a functional form
that allows varying scale economies is necessary. It is also useful for investigating
scope for jointness to be tested after estimating a cost function (M. Fuss et al., 1978).
Since Diewert (1971), cost studies have used ‘flexible functional forms’, which can
be made to “approximate any function at a point by an appropriate selection of
values for the parameters” (Butler, 1995, p. 34).
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1.5.3.3 Translog

A widespread form used in cost studies is the transcendental logarithmic or translog
form, as outlaid by Caves et al. (1980). This cost function can be written as:

ln C(y, w) =α0 +
m∑
i

αi ln yi +
n∑
k

βk ln wk + 1
2

m∑
i

m∑
j

δij ln yi ln yj

+ 1
2

n∑
k

n∑
l

γklln wkln wl +
m∑
i

n∑
k

ρik ln yiln wk

(1.10)

Where yi is the amount of the ith output produced (of m total outputs), wi is the ith
input price (of n inputs), and αi, βk, δij, γk,l, and ρi,k represent coefficients estimated
in the model.

The translog has been a popular functional form used when estimating cost
equations. Advantages include the ability to model jointness in production and
varying scale economies. It is also possible to impose linear homogeneity in input
prices via suitable restrictions on the β, γ and ρ coefficients, where these obey the
restrictions below:

n∑
k

βk = 1

∀k = 1, ..., n :
n∑
l

γkl = 0

∀i = 1, ..., m :
n∑
k

ρik = 0

(1.11)

The main drawback in using the translog, which is true for all flexible forms, is
the number of parameters to be estimated. The interaction terms mean that in
the multiproduct case, the translog requires ((m(m + 1)/2) + (n(n + 1)/2) + mn

coefficients to be estimated, where linear homogeneity of prices is enforced (Caves
et al., 1980). The log terms also mean that cost is undefined where certain outputs
are zero.
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1.5.3.4 Quadratic

The quadratic form is very similar, essentially being a translog form without log
transformation:

C(y, w) =α0 +
m∑
i

αiyi +
n∑
k

βkwk + 1
2

m∑
i

m∑
j

δijyiyj

+ 1
2

n∑
k

n∑
l

γklwkwl +
m∑
i

n∑
k

ρikyiwk

(1.12)

Though similar, the lack of log transformation gives two key differences. Positively,
using a quadratic cost form means that it is possible to model scenarios where a
particular output yi = 0, as this is no longer undefined without the log terms. The
drawback is that it is no longer possible to enforce linear homogeneity of degree 1
in input prices through restrictions on coefficients. For the translog, this could be
achieved because the log transformation meant that coefficients expressed the effects
of percentage changes in input prices. Using the quadratic, this is no longer true,
so there is no a priori way of imposing restrictions to ensure homogeneity in input
prices.

1.6 Summary

This chapter summarises the key complexities, issues and decisions relating to the
evaluation of hospital cost functions. The multiproduct nature of hospital healthcare
means a more complex means of modelling costs is needed, compared with the
single-product case. The joint production of healthcare goods means costs cannot
be apportioned to individual products, and therefore average costs for each need an
alternate definition. The ray average cost definition offers a way of dealing with and
evaluating scale economies in this multiproduct environment.

Measurement and conceptual issues are also important in hospital cost studies.
The nature of how the decision making unit is defined appears initially trivial.
However, considering that sources of scale economies are typically thought of as
shared resources, it is not clear whether the site or organisation should be the
unit of analysis. In other contexts, the site level may be preferable, but in the
UK, ‘hospital chains’ are not present as in other countries, in the sense of large
organisations providing multiple hospitals across several cities. Therefore, in the
subsequent analysis, the organisation level is used as the unit of analysis.

We also need to consider whether to define outputs as health or healthcare.
Whilst there may be theoretical arguments for either, the practicalities dictate that
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healthcare is defined using outputs rather than health gains. There is simply not
enough data on health improvements for each treatment. Having decided to use
healthcare as the output, subsequent essays categorise healthcare by the number of
cases, not patient-days. The additional costs associated with longer stays should
have already been accounted for by HRG weighting. Counting bed days as outputs
also has a distortionary effect where stay lengths are protracted. Longer stays may
result from hospital inefficiency or capacity constraints in follow-on care rather than
reflecting additional treatment. Consequently, subsequent chapters take weighted
case numbers as the measure of output.

A degree of output aggregation is inevitable, given the vast heterogeneity of
hospital treatments. In the UK, the best means of aggregation and dealing with
casemix is to use HRG-based weightings. HRG codes include information on the
treatment offered by the hospital and relevant elements of the patient’s underlying
health. HRGs also have a ‘built-in’ weighting schema as they are used for tariff pay-
ments. In contrast, alternate means of weighting, such as ICDs, may not adequately
distinguish between outputs. Large numbers of patients with similar ICD codings
may receive different treatments. Patient treatment may differ dependent on the
subtleties of their need not captured by ICD codes or by the exercise of patient
choice.

Additionally, there is a question of how to measure ‘size’ or scale. Most studies
have followed Friedman (1955) and eschewed measuring size in terms of outputs due
to the bias engendered by higher-output hospitals having both higher output and
lower average costs. This thesis follows the approach of most prior studies by using
bed numbers as the best substitute. Book value of financial statement assets offers
an alternative, but valuation uncertainty and accounting practice mean this is as
much of an abstraction as bed numbers.

Methodologically, parametric methods are preferred in this thesis. The attrac-
tion of parametric over non-parametric methods lies in the ability to account for
measurement error and the relative robustness to outliers. Parametric methods
also allow the imposition of desirable economic foundations or at least render these
testable. Problems with the direct estimation of long-run cost functions can be ad-
dressed by taking an envelope of short-run costs. Both direct long-run estimation
and envelope methods are considered in the remainder of this thesis. Regarding the
choice of functional form, both translog or quadratic functional forms are used, as
is appropriate for investigating scale economies which vary with size.
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Chapter 2

Economies of Scale in English
Hospitals: A Translog Estimation

2.1 Introduction

Hospital care consumes half of UK government health expenditure (Pett, Tristan et
al., 2020). Much policy is devoted to identifying inefficiencies, but comparatively
little on the degree of scale economies in the provision of hospital care. Quanti-
fying the relation between size and cost is important to understand the financial
effects of current policy. Recent policy changes in England aim to supply services
at a regional, systemic level via ‘Integrated Care Systems’ (Ham, 2018). Though
this policy framework is primarily concerned with coordinating different health and
social care organisations, it has also helped to facilitate the centralisation of ser-
vices. Smaller services hitherto distributed over several providers are increasingly
consolidated within a larger hospital in the local area. The resulting fewer organisa-
tions can supply more healthcare services at scale than the preceding decentralised
‘district general hospital’ model.

Previous studies have suggested that, in certain circumstances, concentrating
care in fewer larger institutions improves the quality of care (Begg et al., 1998). How-
ever, evidence concerning the effect on the cost of care is limited, despite a frequent
assumption that larger-scale services ought to be able to realise scale economies
(Goudie & Goddard, 2011). Where prior studies of scale and cost have been com-
pleted, they are now dated, and no studies considering all hospital activity have
been successfully carried out using data for any of the UK nations. The English
National Health Service (‘NHS’) provides an interesting case study, having a higher
degree of concentration than most other healthcare systems. English hospitals are
also typically larger than those in other countries, as measured by the number of
beds, so they offer an opportunity to test a higher range than in other countries.



2.2. Previous Literature

I address this gap in the literature by examining scale economies in English hospi-
tals, using data from the English NHS’s National Cost Collection exercise showing
healthcare outputs and costs. This dataset is linked to summary wage data ex-
tracted from the national human resources database and capital costs from financial
statements. Using this linked data, a translog long-run cost function is estimated.
The translog form allows average costs to vary with output levels and therefore is
suited for estimating over what range of outputs scale economies are positive.

The results show that there are unexploited scale economies. Scale economies
are positive up to 1,200 beds, compared with the median hospital that had an
average of 741 beds between 2013/14 and 2018/19. To offer a more rounded picture
of the relationship between scale and average costs, two alternate measures of the
limit of scale economies are also computed using output measures. Scale economies
are exhausted at the level of 90,000 elective inpatients or 1,000,000 outpatients. For
comparison, the median hospital completes 47,000 elective care episodes and 531,000
outpatient appointments. An additional expansion of activity at hospitals below this
limit could be accomplished at a proportionately lower cost than those with activity
at the higher end of the distribution. Scale economies were also found to be larger
in lower wage areas outside of London and the South East of the country, and higher
for non-elective admitted care relative to ambulatory or elective admissions.

This study updates our understanding of the limits of hospital scale economies,
an area where the literature would benefit from updated estimates. It uses evidence
from a country rarely studied but with a high amount of integrated data available.
The additional data also allows the consideration of variation in input prices in the
cost specification, which not all prior studies can do, relying on the assumption that
centralised procurement or wage bargaining ensures hospitals face the same input
prices.

2.2 Previous Literature

Previous literature uses various methods and data to estimate hospital economies of
scale. There is an extensive literature using data envelopment analysis or stochastic
frontier to measure departures from optimal production levels, including the efficient
scale of operations (Giancotti et al., 2017). However, these studies typically report
variation from the optimal scale as an index for the sector as a whole rather than
estimating the minimum efficient scale. This approach makes it hard to find the
point at which scale economies are expected to become negative, assuming they
decline with size. This approach is followed in some parametric studies, for example
Carey et al. (2015), who are more concerned with differences between specialist
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hospitals and general hospitals, but report positive scale economies up until the
third quartile of their US dataset for general hospitals, and up to the median for
the case of for profit generalist hospitals. Li & Rosenman (2001) use a parametric
leontief cost function and find positive economies of scale over the sample, but do
not report the relationship with size or output.

Studies that do report particular values for limits to scale economies tend to find
limits that are low relative to the size of UK hospitals. Estimates have varied be-
tween 125 beds using a DEA approach on Greek data (Fragkiadakis et al., 2016), 230
beds (Azevedo & Mateus, 2014) in Portugal using parametric techniques, and 370
beds (Frech & Mobley, 1995) in the US, again using parametric methods. (Wilson &
Carey, 2004) used non-parametric techniques and found no evidence of limits to scale
economies using US data that covers hospitals up to a size of 400 beds. In contrast,
the median English hospital had 740 beds during the fiscal year 2018-19, far above
the limits found in previous studies. It is instructive to use data from this more
consolidated setting to test whether results differ. To my knowledge, no estimation
of hospital-level scale economies in the English NHS has been completed, though in-
dividual departmental level studies have been carried out (NHS Centre for Reviews
and Dissemination, 1996). Freeman et al. (2020) find evidence of scale economies
within inpatient care but do not consider care provided in other settings, such as
outpatient care. They also do not report an estimated limit to scale economies. A
previous attempt to measure scale economies in Scotland (Scott & Parkin, 1995)
was unable to estimate a cost function due to weaknesses in the data or accounting
methods used at the time. Since Scott and Parkin’s study, developments in the
availability of data now make estimation feasible.

Older papers, now likely affected by technological change since their publica-
tion, offer varying assessments of scale economies. (Dranove, 1998) used discharges
as a measure of scale, finding a limit at 10,000 discharges. Other papers typically
reported contemporaneous scale economy estimates present rather than noting lim-
its. Results varied from positive returns to scale using countrywide US data (Berry,
1967), constant returns to scale using data from North Carolina (Conrad & Strauss,
1983), to slight diseconomies using Californian data (Vita, 1990). No evidence for
long-run scale economies was found using Pennsylvanian data (Lave & Lave, 1970)
or data from Queensland (Butler, 1995, ch. 7). Consequently, a study providing
updated estimates from a country not often studied is a useful addition to the liter-
ature.

There is also a rich associated literature exploring factors affecting hospital costs
and productive efficiency. Asmild et al. (2013) use a DEA production function
analysis to find that productive efficiency and optimal scale can vary according to
the level of urbanisation. Additional requirements of teaching can also be associated

33



2.3. Data

with higher costs amongst hospitals involved in medical training (Culyer et al., 1978;
Sloan, Frank A et al., 1983), as can the requirement to produce a broader range
of specialised services (Farsi & Filippini, 2008), and local patient health (Clark,
2012). Other factors influencing cost include the degree of competition where this
is applicable (Fournier & Mitchell, 1992), quality of care outcomes (Gutacker et
al., 2013), the degree of surplus bed capacity (Keeler & Ying, 1996), waiting list
times (Siciliani et al., 2009), and the administrative model of the hospital (Weaver
& Deolalikar, 2004).

2.3 Data

2.3.1 Cost Data

Acute care cost and output data from the NHS National Cost Collection exercise
was accessed through the NHS England Reference Costs website (NHS Improvement,
2019). Under this exercise, each NHS healthcare provider is mandated by NHS Eng-
land to provide information on costs and healthcare outputs. Similar exercises are
carried out in the devolved administrations of Scotland, Wales and Northern Ire-
land. However, there are methodological differences in the data collection exercise
between nations and differences in the organisational structure for admitted health-
care. Consequently, to allow observations to be compared, data was only taken from
the largest nation (England).

To generate this data, providers take total expenditure from the same systems
that generate published financial statements and remove income and expenditure
items unrelated to patient care. Exclusions include training, research, private pa-
tient treatment, miscellaneous activities such as joint ventures, and accounting ad-
justments. The remaining expenditure is then allocated to individual treatment
episodes according to known information about that episode. For example, patients
spending a certain number of days in an inpatient ward are allocated a proportionate
amount of annual inpatient nursing expenditure. The data details expenditure split
according to several dimensions, including the medical or surgical specialty, the out-
put type, and the diagnosis or treatment requirement described by the Healthcare
Resource Group (‘HRG’) code, see Chapter 1. Healthcare outputs are categorised
in the dataset according to where the patient was treated or how the patient was
admitted. These categories form the basis of the split of output types in the multi-
product cost function estimated, which includes output categories such as admitted
patient care (elective and non-elective episodes), outpatient appointments, emer-
gency department attendances, critical care episodes and diagnostic services.

The dataset has an inherent advantage over expenditure data based on financial
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statements, as research, teaching, private patient and accounting adjustments are
excluded automatically by the collection method. Expenditure recorded in this
dataset is consequently closer to the underlying cost of healthcare than summary
expenditure recorded in organisation financial statements.

Outputs are restricted to acute care only by excluding irrelevant services and
organisations. As noted in Chapter 1, a hospital is defined as an organisation that
provides elective or non-elected acute inpatient care. In the UK, the legal entities
that provide such care may operate more than one hospital, though none would
have so many as to be reasonably thought of as a ‘hospital chain’. For conciseness,
such organisations are referred to as ‘hospitals’. Non-acute or community services
carried out by hospital providers are omitted, as are the costs of specialist medicines
prescribed in the hospital but taken at home. Specialised activities such as rehabil-
itation, renal dialysis, and cystic fibrosis treatment are also excluded due to their
more complex costing methods and associated cost structures. This dataset was then
filtered to include only organisations providing acute secondary care, excluding men-
tal health care providers, community care providers and specialist organisations, as
discussed in Chapter 1. These excluded organisations are likely to have different
technologies and cost profiles than a typical acute organisation and are not appro-
priate to include in the analysis. Specialist organisations excluded from the analysis
are listed in Appendix A.

One organisation was also excluded from the dataset because it did not use the
national NHS staff records system and consequently lacked wage data. Another
organisation had one observation removed where diagnostic services output was
zero, likely a recording error. These exclusions left a panel of comparable acute care
organisations and outputs recognisable as hospital acute care. The final dataset is
a panel of 141 acute organisations with at least one year of output data between
the 1st of April 2013 and the 31st of March 2019, the most recent data available as
of October 2022. In the period covered by the panel, the number of organisations
declined from 138 in 2013/14 to 127 in 2018/19. The reduction is the result of
organisations merging or closed either due to poor clinical standards, unsustainable
finances, policy changes about local healthcare supply, or some combination of these
factors.

Each output category is defined by the type of healthcare provided and the
setting in which it takes place. Elective and Non-Elective Episodes count periods of
care under a named senior doctor where the patient is admitted to the hospital for at
least one overnight stay, differing according to whether the admission was planned
(Elective) or unplanned (Non-Elective). Outpatient Attendances count attendances
at a hospital clinic where the patient is not required to use a bed, typically only
staying in the clinic for a short consultation. Emergency Department attendances
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count the number of attendances in the Emergency Department. Where the patient
requires a subsequent admission to the main hospital, an additional non-elective
episode would be recorded for the same patient. Critical Care episodes record the
times a patient requires an intensive care stay. Finally, Diagnostic Services comprise
a variety of tests and imaging, from blood tests to x-rays and CT scans.

Table 2.1 sets out summary statistics for output levels by the type of healthcare
provided. There is a right skew to all output types, with a long right tail of higher
output organisations. There are a greater number of lower-output organisations,
demonstrated by the median being lower than the mean across all output types.
The number of admitted care outputs, defined as Elective and Non-Elective care
episodes and Critical Care episodes, is much lower than the number of Outpatient
healthcare outputs.

Table 2.1: Annual Hospital Output Descriptive Statistics (April 2013 -
March 2019)

Healthcare Output Type Mean Median SD Q1 Q3

Critical Care Episode 19,091 13,592 16,362 8,484 22,592

Diagnostic Services 2,973,184 2,693,514 2,117,147 1,541,434 3,876,838

Elective Admission 50,422 45,667 25,159 31,504 64,240

Emergency Dept Attendance 129,432 112,520 64,773 86,049 153,076

Non-Elective Admission 69,921 62,642 32,438 47,117 87,996

Outpatient Attendance 579,893 520,824 285,127 369,222 726,010

N = 138 [2013/14], 134 [2014/15], 134 [2015/16], 133 [2016/17], 132 [2017/18], 127

[2018/19] hospitals

Table 2.2 sets out the shares of total expenditure incurred under each output
type in 2018/19, the most recent year in the dataset. Though individual outpatient
average costs are low, the large number of appointments carried out means they
are 27% of total costs. Analogously, the low cost of most diagnostic services means
that though raw output numbers are high, total costs for these services are com-
paratively low. The majority of expenditure is incurred in three main categories
of output: Non-Elective Episodes, Outpatient Attendances and Elective Episodes,
comprising 79% of total costs. Emergency Department Attendances, Critical Care,
and Diagnostic Services make up a lower proportion of the total cost.
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Table 2.2: Total Output Costs (£m, 2018/19 only)

Activity Type Cost Proportion

Non-Elective Admission 12,706 33%

Outpatient Attendance 10,385 27%

Elective Admission 7,427 19%

Emergency Dept Attendance 3,220 8%

Critical Care Episode 2,965 8%

Diagnostic Services 1,972 5%

Total 38,675 100%

N = 550,032,118 healthcare outputs

Summary descriptive average cost statistics for these output categories are set
out in Table 2.3, using observations from all years in the dataset. The most costly
output types are admitted inpatient episodes, as these outputs involve ward stays,
possibly including surgery. Non-Elective Episodes have more variation in cost as
these cases can involve greater treatment requirements at the upper end of the
distribution. Average costs for Outpatient and Emergency Department Attendances
are much lower as these types of output are much shorter in duration and do not
involve a hospital stay. If an emergency department attendance requires subsequent
admission to the hospital, then healthcare provided after this point is categorised
under ‘Non-Elective Episode’. The standard deviations show significant variation
in average costs and a long right tail of higher episodic costs. This large variation
arises due to differences in acuity and required treatment. Admitted care can range
from a day’s stay for a minor fracture with no required interventions to very complex
cranial or vascular repair surgery. This cost variation requires us to weight outputs
to account for cost differences even within these output groups.
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Table 2.3: Average Costs of each Activity Type (£s, April 2013 - March
2019)

Activity Type Mean SD Median Q1 Q3 95%

Critical Care Episode 1,067 574 995 600 1,431 2,021

Diagnostic Services 5 22 1 1 2 14

Elective Admission 1,259 2,028 642 364 1,288 4,697

Emergency Dept Attendance 156 87 143 99 193 313

Non-Elective Admission 1,552 2,119 738 401 2,021 4,938

Outpatient Attendance 122 98 106 69 151 269

N = 3,049,910,728 healthcare outputs

2.3.2 Weighting

Within the dataset’s output categories, there is considerable heterogeneity of care
and expected resource requirements. For example, elective care treatment can vary
from minor fractures to more complex reconstruction surgery. In the analysis below,
outputs are re-weighted within each category using an HRG-based index that adjusts
output levels to account for this heterogeneity, basing the weights on HRG average
costs in 2019/20. As the number and specificity of HRGs tends to increase over time,
the latest financial year in the dataset (2019/20) was used to ensure the maximum
number of HRG matches in prior years. To remove a potential source of endogeneity,
the year 2019/20 was subsequently excluded from the dataset. More than 95% of
outputs can be described using 2019/20 HRG codes. This approach was not possible
where codes changed between the recorded output and 2018/19. In these cases, the
successor code was used where there was a 1:1 relationship between the old and new
code. Assigning these codes took the percentage of outputs expressible in 2019/20
codes to more than 99% of the total output. Where there was no 1:1 relationship
to a 2019/20 code, the weighting from the latest year where that code existed was
used. Consequently, each output was assigned a weight that made it comparable to
other outputs.

The quantity of each healthcare output was multiplied by a weighting ratio to
construct the weighted output measure. This ratio was constructed as the 2019-20
average cost for that HRG and output category divided by the average cost for
that output category across all HRGs. For example, in 2019/20, the average cost
of an elective care episode coded “FF31D - Complex Large Intestine Procedures 19
years and over with CC Score 0-2” was £8,205. This figure was divided by the
average cost of an elective care episode across all HRGS in 2019/20, which was
£3,877. Consequently, that procedure receives a weight of 8205/3877 = 2.1 and
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outputs with this coding are multiplied by 2.1 to reflect the relative complexity of
this particular procedure. This approach results in healthcare outputs expressed in
terms of a numeraire good equal to the average cost for that combination of HRG
and output category in 2019-20. The weighting index isolates the variation in cost
explicable by differences in the type of healthcare supplied. This approach thereby
makes comparable organisations which treat many patients but for comparatively
minor ailments and those treating fewer patients but those requiring more complex
care.

This weighting of outputs was necessary to deal with the heterogeneity in health-
care goods and patient comorbidities. Early literature surveyed by Mann & Yett
(1968) and Hefty (1969) accounted for heterogeneity by splitting outputs into cate-
gories, such as admitted and outpatient care, or by modelling outputs as bed days
rather than discrete episodes of healthcare provided. These categorisations dealt
with some variation across output categories but failed to recognise the considerable
differences in output within such categories. Even where care outputs fall within the
same broad category such as ‘admitted care’, there can be large differences between
costs associated with the different production technologies used. For example, the
resource requirements to provide a week long stay in a medical ward may be less
than for a week long stay in a surgical ward, where the additional requirements
of surgery would have to be considered. Recognising this limitation, more recent
literature (Preyra & Pink, 2006) accounts for differences in healthcare outputs and
technologies by using an index or weight based on the expected resource require-
ment. Using HRG weights, healthcare output heterogeneity within each category is
accounted for, avoiding the issues in earlier literature.

2.3.3 Input Prices

2.3.3.1 Workforce and Wage Data

Aggregated staff numbers and average wages are taken from the NHS Electronic
Staff Record (‘ESR’), accessed via NHS England’s workforce statistics group. The
ESR database contains, for all NHS staff, data on employing organisation, profes-
sion, level of seniority, headcounts, working hours, and wages. Though wage rates
are set nationally, there is some variation in individual wage rates according to
seniority, being in high-cost areas proximate to London, and additional responsibil-
ities, including payments for working unsocial hours. An average wage rate for each
organisation’s doctors, nurses and administrative staff was computed by dividing
total wages by the sum of full-time equivalent staff.

Summary information on average earnings rates is presented in Table 2.4, setting
out the average organisational wage payments split by type of staff. Figures are
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adjusted to account for part-time staff and are presented as ‘full-time-equivalent’
payments. Payments are presented in cash terms, without adjustment for inflation.
Over the period considered, non-medical wages were stable in cash terms, with little
growth. The lack of wage growth in the period resulted from a public sector pay
cap imposed by the government. This cap was part of efforts to reduce public
spending following the 2007/08 financial crisis. Under the cap, annual pay awards
were restricted to 1% until 2017/18. The pay cap affected all staff other than doctors,
whose pay was not subject to the cap and is negotiated in a separate process.

Table 2.4: Earnings by Staff Group (£s)

Staff Measure 2012/13 2013/14 2014/15 2015/16 2016/17 2017/18 2018/19

Mean 101,104 102,802 104,119 104,527 105,719 106,643 107,538
Senior Doctor Wages

SD 6,411 6,445 6,513 6,505 6,956 7,340 7,450

Mean 46,950 46,072 46,582 46,570 47,567 48,799 50,210Training Grade Doctor

Wages SD 2,202 2,927 2,442 2,441 2,290 2,500 2,734

Mean 34,820 34,966 35,086 35,191 35,393 35,782 36,666
Nurse Wages

SD 1,893 1,871 1,862 1,795 1,780 1,848 1,926

Mean 20,684 20,840 20,920 21,109 21,227 21,414 22,298Healthcare Assistant Staff

Wages SD 1,612 1,602 1,595 1,511 1,506 1,540 1,596

Mean 29,396 29,597 29,923 29,992 30,258 30,817 31,808
Administrative Staff Wages

SD 4,723 4,699 4,772 4,519 4,448 4,638 4,622

Senior Doctors include consultant and associate specialists, Training Grade Doctors include

registrars and lower grades

Geographical variation in wage rates can be seen in Figures 2.1 - 2.4, which plot
wage quintiles for senior doctors, junior doctors, nurses and administrative staff
across England. Nurses and administrative staff are given higher wages in London
to reflect the higher local price level, as shown in Figures 2.3 - 2.4. Medical pay
uplifts for London are considerably smaller, so variation in medical wage rates is
more evenly distributed across the country.
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1 − Bottom (lowest wage) quintile

2 − Second quintile

3 − Third quintile

4 − Fourth quintile

5 − Top (highest wage) quintile

Figure 2.1: Geographical Variation in Senior Doctor Wages

1 − Bottom (lowest wage) quintile

2 − Second quintile

3 − Third quintile

4 − Fourth quintile

5 − Top (highest wage) quintile

Figure 2.2: Geographical Variation in Training Grade Doctor Wages
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1 − Bottom (lowest wage) quintile

2 − Second quintile

3 − Third quintile

4 − Fourth quintile

5 − Top (highest wage) quintile

Figure 2.3: Geographical Variation in Nurse Wages

1 − Bottom (lowest wage) quintile

2 − Second quintile

3 − Third quintile

4 − Fourth quintile

5 − Top (highest wage) quintile

Figure 2.4: Geographical Variation in Administrative Staff Wages

2.3.3.2 Capital Costs

An average weighted cost of capital is calculated by obtaining financing costs and
asset valuations from each organisation’s financial accounting statements. The cost
of capital is defined as the ratio of total financing costs to the value of revalued
plant, property and equipment. Summary statistics for this measure are set out
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in Table 2.5. Though most financing of English hospitals is provided through the
government, there are variations in the effective rate paid, either due to variations
in the public dividend rate charged to organisations or the use of non-state financing
by the respective organisation. Financing costs have remained broadly constant over
the period considered, with little change to the mean or median financing cost or
the variation observed between organisations.

Table 2.5: Weighted Average Cost of Capital (%)

Statistic 2013/14 2014/15 2015/16 2016/17 2017/18 2018/19

Mean 4.67% 4.73% 4.77% 4.92% 3.74% 3.84%

Median 4.20% 4.15% 4.19% 4.27% 3.03% 3.06%

SD 1.84% 1.95% 1.91% 2.09% 2.05% 2.19%

Q1 3.39% 3.36% 3.43% 3.41% 2.56% 2.53%

Q3 5.37% 5.55% 5.87% 5.84% 4.69% 4.31%

N (hospitals) 140 136 135 135 133 130

Capital costs are predominantly payments to central government in exchange for historically

gifted assets (’Public Dividend Capital’) but may also be augmented by commercial borrowing,

including lease payments. A weighted average cost of capital is derived by dividing total interest

by total relevant assets

2.3.3.3 Collinearity, Wage Rates, and Input Price Selection

In the English NHS, wage rates are set by central government rather than individual
hospitals. Consequently, some staff categories exhibit multicollinearity where they
are part of the same wage-setting framework. For example, administrative, nursing
and healthcare assistant wages are determined by the same framework, as are senior
and training grade doctors. Whilst multicollinearity will not bias the estimated
coefficients, it does mean that they are less accurate, with inflated standard errors,
and could be more sensitive to small changes in the underlying data.

To quantify the effect of multicollinearity amongst wage variables, I conduct a
principal component analysis of all input variables, noting the number of clusters
and the correlation of each input variable with the principal components generated.
Five components explained more than 95% of the variance. Figure 2.5 illustrates how
each principal component correlates with each input price. Component 1 comprises
all staff types covered by the same pay agreement (administrative, nursing and
healthcare assistant staff), while component 2 is predominantly made up of medical
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staff, also governed by a common pay framework. The capital rate measure is the
dominant item within component 3. In the subsequent analysis, input prices shown
to be highly collinear were dropped, as they do not add much additional information
to the model. For this reason, and to retain a parsimonious model, subsequent
analyses include the nursing staff wage variable, the training grade doctor variable
and the capital rate measure as input prices in the main model. Nursing staff are
also the most numerous staff members in the first pay framework category, as are
training grade doctors in the second.
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Figure 2.5: Correlation between Input Prices and their Principal Com-
ponents

2.3.4 Data Structure

The dataset for estimation was constructed from the cost and input price data above,
with the addition of a dummy variable for teaching hospital status. There are several
possible definitions for what constitutes a teaching hospital, with no universally
recognised demarcation in the UK. In the analysis below, organisations are classified
as teaching hospitals where they serve a medical school, have membership of the
Association of UK University Hospitals, or indicate teaching hospital status on their
website. This definition covered 51 organisations between 2013/14 and 2016/17 and
52 in 2017/18 and 2018/19.

The final dataset was an unbalanced panel covering 6 years, with 141 hospitals
being in operation for at least some of that period. The number of hospitals declined
from 138 to 138 between 2013/14 and 2018/19 due to reorganisations, the creation
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of new hospital organisations from mergers, and closures. There were 798 total
observations (hospital-year pairings) in the final panel.

2.4 Method

2.4.1 Defining Scale Economies

As discussed in Chapter 1, it is more complex to define economies of scale in the
multiproduct case than in the case of single good production. The definition of
scale economies is taken from that chapter, using ray average costs when evaluating
average and marginal cost ratios. The scale economy measure becomes:

S = AC

MC

=

(
C(w,y)

y

)
(

dC(w,y)
dy

)
= dy

dC(w, y) · C(w, y)
y

= d ln y

d ln C(w, y)

= 1
ϵC,y

(2.1)

To resolve the issue of how changes to the multiproduct vector y are treated, I make
the standard assumption that increases in inputs occur proportionately from current
output levels (M. A. Fuss & Waverman, 1981). In this case, total scale economies
can be expressed as the inverse of the sum of individual total cost elasticities for
each yi, ϵC,yi

= ∂lnC(w, y)/∂lnyi :

S = 1∑m
i ϵC,yi

= 1∑m
i ∂lnC(w, y)/∂lnyi

(2.2)

Overall scale economies can then be evaluated as the inverse of the sum of the
individual total cost elasticities, where each elasticity is calculated using total cost.
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2.4.2 The Translog Cost Function

Studies that attempt to determine specific ranges for scale economies typically use
parametric methods to estimate a cost function, usually in a ‘flexible form’ such as a
transcendental logarithmic or quadratic specification. The cost function estimated
in this chapter is a panel version of the multiproduct translog functional form outlaid
in Chapter 1, as follows:

ln Cht(y, w) =α0 +
m∑
i

αi ln yiht +
n∑
k

βk ln wkht + 1
2

m∑
i

m∑
j

δij ln yiht ln yjht

+ 1
2

n∑
k

n∑
l

γkl ln wkht ln wlht +
m∑
i

n∑
k

ρik ln yiht ln wkht + ϵht

(2.3)

yi is the amount of the ith output produced (of m total outputs), wi is the ith input
price (of n inputs), and αi, βk, δij, γk,l, and ρi,k represent coefficients estimated in
the model. Hospital index h and time period index t reflect the panel data nature
of the dataset. The error term ϵht = τh + vht comprises a term τh representing
hospital specific effects and a random noise term vit. For reasons of clarity, time and
individual subscripts are omitted from this point on in the chapter.

The random effects specification assists in controlling for unobserved factors
associated with specific hospitals. The alternate fixed effects specification would
perform poorly given the relatively short time period observed and the fact that
output and price variables are relatively time-invariant. Consequently, including
fixed effects would give rise to multicollinearity problems, and a random effects
model is preferred.

To measure the effects of changes in output quantities on overall costs, point cost
elasticities for a specific output i are computed according to the partial derivative
of the total (log) cost equation with respect to log yi:

ϵC,yi
= ∂ ln C(w, y)

∂ ln yi

= αi +
m∑
j

δij ln yj +
n∑
k

ρij ln wk (2.4)

Following on from the definition of total scale economies given in Equation (2.2), the
inverse of each individual total cost-output elasticity scale economy measurement
for yi is:

Si = 1
ϵC,yi

= 1
αi +∑m

j δij ln yj +∑n
k ρij ln wk

(2.5)
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Total scale economies S are the sum of these individual cost elasticities:

S = 1/
m∑
i

ϵC,yi

= 1∑m
i

(
αi +∑m

j δij ln yj +∑n
k ρij ln wk

) (2.6)

Where S > 1, economies of scale prevail, where S = 1 average costs are constant
with changes in output, and where S < 1, diseconomies are present.

2.4.3 Other Variables and Estimation

In addition to the output measures, input prices and cost products, a dummy vari-
able for teaching costs is also included. As discussed in Chapter 1, hospitals incur
additional costs because they are required to teach medical students. This expendi-
ture is independent of possible confounders like case complexity in various settings
(Culyer et al., 1978; Sloan, Frank A et al., 1983). According to the dataset method-
ology, hospitals should exclude teaching costs during collection. However, as it is
difficult for hospitals to identify the costs of staff time spent teaching, a teaching
hospital dummy is included as an explanatory variable in the estimation, to absorb
variation in teaching-related expenditure.

Costs may be affected by the quality of care offered. However, quality is difficult
to measure and account for in one variable. Whilst many different quality measures
are collected for each hospital, most are partial and also affected by unobserved
factors like the underlying health of the local population. The broadest measure
that attempts to take account of local population health would be the Summary
Hospital-level Mortality Indicator (SHMI). The SHMI is a ratio of observed and
expected hospital deaths occurring either in the hospital or shortly after discharge.
The SHMI is not a direct measure of quality of care. However, it could be used as
a proxy measure to isolate the variation in cost attributable to differences in care
quality.

The translog cost function is estimated using a random effects estimator with
heteroskedasticity-robust standard errors, using the plm package (Croissant & Millo,
2008) in R (R Core Team, 2022). After log transformation, output and price vari-
ables are also centred by subtracting the sample means. Output and price variables
are centred to deal with multicollinearity amongst these variables. Centring these
variables does not improve the overall variance and fit of the model but reduces the
size of correlations between the output and price variables and their cross-products
(Iacobucci et al., 2016).
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After the translog cost function is estimated, it is checked for consistency with
the desired theoretical properties. To confirm that the estimated cost function is
plausible, the goodness of fit is investigated, along with visualisations of average and
marginal cost curves. Finally, scale economies are computed according to Equation
(2.5), and the relation between size and scale is explored.

2.5 Results

Descriptive statistics for the output categories are set out in Table 2.6 below. In the
estimation, values are centred at the mean, but are presented prior to the transfor-
mation in the table.

Table 2.6: Descriptive Statistics

Non-Centred Values N = 798

A&E Attendance

Mean (SD) 127,483 (60,463)

Median (IQR) 112,013 (85,640, 152,096)

Range 33,545, 447,391

Critical Care Episode

Mean (SD) 19,988 (19,585)

Median (IQR) 12,709 (8,016, 21,496)

Range 2,001, 120,697

Diagnostic Services

Mean (SD) 4,297,133 (2,508,860)

Median (IQR) 3,777,083 (2,642,614, 5,255,448)

Range 333,272, 26,055,137

Elective Inpatient Episodes

Mean (SD) 51,604 (25,862)

Median (IQR) 46,910 (31,734, 64,884)

Range 9,333, 165,462

Non-Elective Inpatient Episodes

Mean (SD) 71,745 (34,026)

Median (IQR) 65,122 (47,133, 90,191)

Range 16,051, 231,458

Outpatient Attendances

Mean (SD) 591,701 (293,106)

Median (IQR) 530,505 (377,434, 738,400)

Range 134,484, 2,053,768

Cost of Capital

Mean (SD) 4.47 (2.06)

Median (IQR) 3.94 (3.04, 5.36)

Range 0.67, 13.91

Nursing Wages

Mean (SD) 35,501 (1,930)

Median (IQR) 34,923 (34,260, 35,970)
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Table 2.6: Descriptive Statistics

Non-Centred Values N = 798

Range 32,703, 42,253

Training Grade Doctor Wages

Mean (SD) 47,630 (2,828)

Median (IQR) 47,431 (45,632, 49,543)

Range 40,077, 55,880

Teaching Hospital Organisation

0 523 (66%)

1 275 (34%)

Estimation results for the cost function are set out in Table 2.7.

Table 2.7: Estimation results - Directly Estimated Translog Form

Term Estimate Std. Error

Intercept 19.356 (0.010)***

A&E Attendance 0.090 (0.015)***

Critical Care Episode 0.118 (0.011)***

Diagnostic Services 0.048 (0.008)***

Elective Inpatient Episode 0.303 (0.023)***

Non-Elective Inpatient Episode 0.251 (0.018)***

Outpatient Appointment 0.150 (0.021)***

Training Grade Doctor Wages 0.369 (0.068)***

Nurse Wages 0.504 (0.115)***

Cost of Capital 0.001 (0.008)

0.5 * A&E Attendance * A&E Attendance -0.088 (0.049)

A&E Attendance * Critical Care Episode -0.017 (0.032)

A&E Attendance * Diagnostic Services 0.059 (0.031)

A&E Attendance * Elective Inpatient Episode -0.126 (0.073)

A&E Attendance * Non-Elective Inpatient Episode 0.128 (0.051)*

A&E Attendance * Outpatient Appointment -0.057 (0.068)

0.5 * Critical Care Episode * Critical Care Episode -0.030 (0.026)

Critical Care Episode * Diagnostic Services -0.031 (0.018)

Critical Care Episode * Elective Inpatient Episode 0.037 (0.050)

Critical Care Episode * Non-Elective Inpatient Episode 0.022 (0.038)

Critical Care Episode * Outpatient Appointment 0.078 (0.046)

0.5 * Diagnostic Services * Diagnostic Services -0.042 (0.019)*

Diagnostic Services * Elective Inpatient Episode -0.020 (0.047)

Diagnostic Services * Non-Elective Inpatient Episode 0.041 (0.037)

Diagnostic Services * Outpatient Appointment 0.040 (0.044)

0.5 * Elective Inpatient Episode * Elective Inpatient Episode 0.188 (0.146)

Elective Inpatient Episode * Non-Elective Inpatient Episode -0.024 (0.084)

R2 = 0.9935 adj R2 = 0.993 AIC = -2,631 BIC = -2,368 N = 798 total observations from 141

hospitals, observations split as follows: 138 [2013/14], 134 [2014/15], 134 [2015/16], 133 [2016/17], 132

[2017/18], 127 [2018/19]

* - Statistically Significant at 5%, ** - Statistically Significant at 1%, *** - Statistically Significant at

0.1%
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Table 2.7: Estimation results - Directly Estimated Translog Form

Term Estimate Std. Error

Elective Inpatient Episode * Outpatient Appointment -0.075 (0.112)

0.5 * Non-Elective Inpatient Episode * Non-Elective Inpatient Episode -0.145 (0.091)

Non-Elective Inpatient Episode * Outpatient Appointment -0.009 (0.077)

0.5 * Outpatient Appointment * Outpatient Appointment 0.008 (0.127)

A&E Attendance * Training Grade Doctor Wages 0.596 (0.242)*

Critical Care Episode * Training Grade Doctor Wages 0.352 (0.156)*

Diagnostic Services * Training Grade Doctor Wages -0.077 (0.152)

Elective Inpatient Episode * Training Grade Doctor Wages -0.215 (0.345)

Non-Elective Inpatient Episode * Training Grade Doctor Wages -0.279 (0.285)

Outpatient Appointment * Training Grade Doctor Wages -0.299 (0.337)

A&E Attendance * Nurse Wages 0.032 (0.297)

Critical Care Episode * Nurse Wages -0.229 (0.179)

Diagnostic Services * Nurse Wages -0.256 (0.180)

Elective Inpatient Episode * Nurse Wages 0.881 (0.479)

Non-Elective Inpatient Episode * Nurse Wages -0.488 (0.345)

Outpatient Appointment * Nurse Wages 0.454 (0.459)

A&E Attendance * Cost of Capital -0.023 (0.028)

Critical Care Episode * Cost of Capital 0.053 (0.016)***

Diagnostic Services * Cost of Capital 0.028 (0.018)

Elective Inpatient Episode * Cost of Capital -0.028 (0.035)

Non-Elective Inpatient Episode * Cost of Capital -0.017 (0.029)

Outpatient Appointment * Cost of Capital -0.035 (0.037)

0.5 * Training Grade Doctor Wages * Training Grade Doctor Wages -2.520 (1.555)

Nurse Wages * Training Grade Doctor Wages -3.028 (1.780)

0.5 * Nurse Wages * Nurse Wages 7.028 (3.238)*

Cost of Capital * Training Grade Doctor Wages -0.024 (0.126)

Cost of Capital * Nurse Wages 0.239 (0.171)

0.5 * Cost of Capital * Cost of Capital 0.060 (0.019)**

Teaching Hospital Organisation 0.011 (0.016)

R2 = 0.9935 adj R2 = 0.993 AIC = -2,631 BIC = -2,368 N = 798 total observations from 141

hospitals, observations split as follows: 138 [2013/14], 134 [2014/15], 134 [2015/16], 133 [2016/17], 132

[2017/18], 127 [2018/19]

* - Statistically Significant at 5%, ** - Statistically Significant at 1%, *** - Statistically Significant at

0.1%

2.5.1 Regression Results

All non-interaction terms were statistically significant, except for the cost of cap-
ital variable and the teaching hospital dummy. The exponent of the intercept
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(£254,841,439) is comparable with the mean total hospital cost (£297,942,149),
as expected, with output and price variables centred. Each non-interacted output
coefficient was statistically significant and shows, in the absence of interaction ef-
fects, the proportionate increase in total cost from a 1% increase in that activity.
The outputs with the most impact on total cost were elective and non-elective inpa-
tients, with outpatient appointments and critical care episodes following and A&E
attendances having the lowest impact on cost. Effects ranged from a 1% increase
in elective inpatient activity increases total cost by 0.30%, absent interactions, to a
1% increase in A&E attendances increasing total costs by 0.09%. Of the input vari-
ables, nursing wages and medical wages were both statistically significant. Absent
interaction effects, a 1% increase in medical wages increased total costs by 0.37%,
the equivalent for nursing wages being 0.5. The constructed cost of capital variable
was not statistically significant from zero.

Within the interaction terms, the interaction between A&E attendance and non-
elective inpatients was positive and statistically significant. A 1% increase in A&E
attendances (ceteris parabis) increases the cost elasticity with respect to non-elective
inpatients by 0.13 percentage points. The self-cross product of diagnostic services
is also statistically significant and negative, with additional percentage point in-
creases in diagnostic service output associated with a -0.04% reduction in the cost
elasticity for diagnostic services, suggesting declining marginal costs as output in-
creases. Interactions between medical wages and A&E attendances were statistically
significant, with a 1% increase in medical wages raising the cost elasticity of A&E
attendances by 0.6%. A similar relationship was also the case between medical
wages and critical care episodes, with a 1% increase in medical wages raising the
cost elasticity of critical care episodes by 0.35%. A relationship between critical
care episodes and the cost of capital was noted, with a 1% increase in the cost of
capital increasing the cost elasticity of critical care episodes by 0.05%, perhaps due
to the capital intensity of critical care. Finally, the self-cross products for the cost of
capital variable and that of nursing wages were also statistically significant, which
is expected, as increases in input prices would lead to greater effects of subsequent
increases on total cost.

2.5.2 Consistency with Desired Theoretical Properties

The resulting cost function was evaluated according to the desirable cost function
properties in Chapter 1.

1. Non-negativity — using log-transformed variables on the right hand side of
the specification means that the underlying relationship between cost and the
output and price variables will always be positive. This feature is an inherent
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property of the translog specification that will be true irrespective of the model
fit.

2. Cost should be non-decreasing in input prices — To check this con-
dition, Shephard’s Lemma ∂C(w,y)

∂wk
can be used to yield the derived demand

function xk(x, y) for each input, differentiating the cost function with respect
to the input price. The resulting formula gives us the cost-minimising in-
put quantities for each input. For the multiproduct translog equation, this
becomes:

xk(w, y) = ∂C(w, y)
∂wk

= ∂ ln C(w, y)
∂ ln wk

.
C(w, y)

wk

=
(

βk +
n∑
l

γkl ln wl +
m∑
i

ρki ln yi

)
.
C

wk

(2.7)

Optimal cost shares sk of each input are given by the bracketed term, equal to
∂ ln C(w,y)

∂ ln wk
. These cost shares describe the cost-minimising share of total expenditure

each input should take up. Where the cost-minimising quantities and optimal cost
shares are positive, costs increase with input prices.

Each hospital has different optimal cost shares dependent on output and wage
levels. When these cost shares are evaluated, 6% of junior doctor cost shares are
negative, 12% of nurses, and 53% of capital prices. Many observations do not have
costs that increase with input prices. These observed departures from economic
theory are likely due to two factors.

Firstly, the model takes capital and wage costs as price inputs but does not
take material prices. Capital prices are derived from published financial statements
and therefore adopt a narrow measure of capital as defined by accounting practice
rather than a broader economic definition that would include working capital or
other intermediary goods used in the production of healthcare. The omission of
these inputs may create local departures from convexity.

Secondly, wage rate variations may reflect productivity differences within staff
groups. Hospitals with higher wage rates have more productive staff at greater
levels of seniority rather than higher wage rates due to local market conditions. As
national remuneration frameworks cover all types of staff, differences observed may
be attributable to differences in seniority and grade. Variation in wage rates may
be partially the result of heterogeneous labour with different productivity levels,
affecting the estimation results.
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3. Cost should be continuous and concave in input prices — A func-
tion is continuous and concave if the Hessian matrix is negative semidefinite.
Elements of the Hessian matrix Hkm are given by:

Hkm =∂2 C(w, y)
∂wk∂wm

=
∂
(
(βk +∑n

l γkl ln wl +∑m
i ρki ln yi) . C

wk

)
∂wm

=γkm

wm

.
C

wk

+
(

βk +
n∑
l

γkl ln wl +
m∑
i

ρki ln yi

)
.

1
wk

.∂C/∂wm

− ∆km

(
βk +

n∑
l

γkl ln wl +
m∑
i

ρki ln yi

)
.
C

w2
k

Where ∆km =

0 if k ̸= m,

1 if k = m.
(2.8)

is the Kronecker delta function. Substituting in the derived input demand function
from Equation (2.7) yields:

Hkm = γkm .
C

wkwm

+ xk.
wk

C
.

1
wk

.xm − ∆km.xk.
wk

C
.
C

w2
k

= γkm .
C

wkwm

+ xk xm

C
− ∆km.

xk

wk

(2.9)

The Hessian matrix will be negative semidefinite only where the diagonal elements
are negative. The main diagonal elements correspond to cases where k = m. 798 /
798 observations have negative elements for training grade doctors. However, only
48 / 798 capital observations and 0 / 798 nursing staff observations have negative
diagonal elements.

4. Cost should be non-decreasing in any output — This condition is eval-
uated by looking at the individual cost-output elasticities calculated for each
output category. Where these elasticities are negative, a percentage increase
change in output causes a percentage decrease in cost. There are 6 output cat-
egories and 798 observations, giving 4788 total cost-output elasticities. Neg-
ative cost-output elasticities are present in 49 / 798 A&E observations, 7 /
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798 critical care observations, 55 / 798 diagnostic observations, 0 / 798 elec-
tive inpatient observations, 0 / 798 non-elective inpatient observations, and 0
/ 798 outpatient appointment observations. Apart from A&E and diagnostic
services, there are few cases of non-compliance with this desired characteristic.
Cost-output elasticities for A&E and diagnostic services are more likely to be
negative than other outputs at particular observations as these elasticities are
generally lower than other outputs. Their low level may be either because their
outputs form a lower share of total costs or because they have low marginal
costs. Consequently, local violations of cost function convexity are more likely
to occur in these outputs, and these results are less concerning.

5. Cost should be linearly homogeneous in input prices — As the sum
of coefficients on the input prices is less than 1, proportionate increases in all
input prices do not raise the total cost by the same amount. This observation
suggests that relevant input prices are missing, for example, consumables such
as medicines. Assuming that each hospital faces similar prices in these areas
from national procurement efforts, this should not unduly affect the estimation.

6. No fixed costs in the long run — Where the output variables are zero, the
model’s intercept term and other non-zero variables will ensure that costs are
not zero. This condition can be tested asymptotically by considering the limit
of the right hand side of the translog equation as the ∑ yi approaches zero:

lim∑
yi→0+

(α0 +
m∑
i

αi ln yi +
n∑
k

βk ln wk + 1
2

m∑
i

m∑
j

δi,j ln yi ln yj

+ 1
2

n∑
k

n∑
l

γk,lln wkln wl +
m∑
i

n∑
k

ρi,k ln yiln wk)

= lim∑
yi→0+

 m∑
i

αi ln yi + 1
2

m∑
i

m∑
j

δi,j ln yi ln yj +
m∑
i

n∑
j

ρi,j ln yiln wi


(2.10)

The limit of ln 0 from above being −∞, this becomes

= −∞
m∑
i

αi + ∞1
2

m∑
i

m∑
j

δi,j − ∞
m∑
i

n∑
k

ρi,k ln wk

= −∞

 m∑
i

αi − 1
2

m∑
i

m∑
j

δi,j +
m∑
i

n∑
j

ρi,j ln wi

 (2.11)

The predicted cost from the multiproduct translog consequently asymptotically ap-
proaches zero only where the bracketed term is positive, which leads to ln C(w, y) =
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−∞ and C(w, y) = 0. The estimated translog cost function accordingly does not
meet this criterion.

Overall, the estimated cost function performs better with anticipated proper-
ties relative to output variables than price variables. However, to estimate scale
economies, it is more important that the function behaves better in the output
spaces. Due to their national determination, there is limited variation in wage rates
in the English case. Consequently, there is unlikely to be a relationship between
wages and scale that may be present in decentralised systems, for example, where
hospitals have a local monopsony on certain staff groups. The observed departures
from wage convexity and demand are, therefore, less salient for our purposes and
are acceptable given the flexibility of the translog form estimated.

2.5.3 Visualisation of Modelled Costs

Figures 2.6 - 2.10 show a close relationship between predicted and actual costs. This
close relationship stems from the number of terms in the model, so we should be
cautious about overfitting, given the high R2 statistic and the large intercept term.
The close relationship may impair the applicability of the function to output ranges
outside of those observed. However, looking at the ability of the estimated function
to model the observed costs, a close relationship can be observed in each year and
across each output type, covering all reasonable output ranges.
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Figure 2.6: Predicted Vs Actual Cost in each Year (Translog). Pre-
dicted costs are closely correlated to actual values. Predictions are
derived from the estimated cost function and actual output levels
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Figure 2.7: Actual and Predicted Costs vs Activity - A&E Attendances
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Figure 2.8: Actual and Predicted Costs vs Activity - Elective Inpatient
Episodes
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Figure 2.9: Actual and Predicted Costs vs Activity - Non-Elective In-
patient Episodes
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Figure 2.10: Actual and Predicted Costs vs Activity - Outpatient At-
tendances
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2.5.4 Average and Marginal Costs

As noted in Section 1.3, it is difficult to define average and marginal costs for multi-
product cost functions. Figures 2.11 - 2.16 show a version of firm-specific marginal
costs for each output, varying one of the output categories by increments of one
output unit whilst holding all other output categories constant at observed levels.
Predicted total costs for each output level are subtracted from the predicted costs
where that output is one unit lower, giving the marginal cost. In the plots, 30
randomly selected organisation-year observations are selected to examine the shape
of the marginal cost curves around observed output levels. Individual observations
are differentiated by colour, as each organisation-year observation has a different
marginal cost curve dependent on production levels of other outputs and the input
prices they face. Average costs are defined similarly, altering one output and com-
puting changes to predicted total costs divided by the cumulative departure from the
observed output. This method gives a ‘ray’ average cost defined by the expansion
of a plane from the current output along the chosen output axis. These definitions
can be used to examine how the cost curves change with variation in output levels.

Elective inpatient average and marginal costs are generally flat as output varies,
with minimal variation noted around current output levels. Non-elective average
and marginal costs decline with output, whilst outpatient costs tend to increase.
The greater decline of non-elective costs with output may reflect the nature of non-
elective care. Hospitals must maintain a greater capacity for non-elective admissions
than elective care, where small waiting lists can smooth out temporary demand and
supply mismatches and minimise costs (Siciliani et al., 2009). In addition, there are
fewer opportunities for amalgamating non-elective care services where travel time to
the hospital is important. The flat nature of outpatient costs reflects the nature of
the healthcare product supplied, typically a short, set interval of time in consultation
with a doctor. Consequently, the cost base is relatively simple and invariant with
output volume.
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Figure 2.11: Elective Inpatient Episode Marginal Cost Curves
(Translog). Marginal cost curves are derived from the estimated cost
function by calculating the marginal cost effects of incremental changes
in one output type, holding other outputs constant. The plot shows sec-
tions of cost curves generated from a random sample of 30 observations,
differentiated by colour

Figure 2.12: Non-Elective Inpatient Marginal Cost Curves (Translog).
See Fig 2.11 for details on derivation.
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Figure 2.13: Outpatient Marginal Cost Curves (Translog). See Fig
2.11 for details on derivation. Outpatient appointment costs are rela-
tively invariant to output levels. Appointments are a discrete period of
time in consultation with a doctor with consequent limitations on scale
economies.

Figure 2.14: Elective Inpatient Average Cost Curves (Translog). Aver-
age cost curves are derived from the estimated cost function by calcu-
lating the total cost effects of discrete changes in one type of output
and then dividing by the change in output, holding other outputs con-
stant. The plot shows sections of cost curves generated from a random
sample of 30 observations, differentiated by colour
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Figure 2.15: Non-Elective Inpatient Average Cost Curves (Translog).
See Fig 2.14 for details on derivation.

Figure 2.16: Outpatient Average Cost Curves (Translog). See Figure
2.14 for details on derivation. Outpatient appointment costs are rela-
tively invariant to output levels. Appointments are a discrete period of
time in consultation with a doctor with consequent limitations on scale
economies.
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2.5.5 Scale Economies

The scale economy index is computed according to Equation (2.6), using the coef-
ficient estimates in Table 2.7 and actual output and input prices observed for each
observation in the dataset. Standard errors for the scale economy index are derived
via the delta method as a combination of the coefficient estimates.

Figure 2.17 shows that the distribution of scale economies falls close to constant
scale economies, though more organisations lie above the line and have positive
economies of scale. The median scale elasticity is 1.04, so a proportional 1.04%
expansion of output for the median hospital would incur a 1% increase in cost.

A tabulation of average scale economies is set out in Table 2.8, showing the
mean average of the scale economy measure for each organisation over the years
in the dataset. 50 organisations have an average scale economy measure indicating
economies of scale. An organisation is defined as having economies of scale where
the low point of the 95% confidence interval is above 1 in the majority of obser-
vations. Analogously, an organisation is defined as having diseconomies of scale
where the high point of the 95% confidence interval is below 1 for the majority of
available observations. Where the 95% confidence interval spans 1 in the majority
of observations for that organisation, it is categorised as operating under constant
scale economies. According to this definition, 90 organisations have approximately
constant scale economies, 1 organisation had a mean high point of the 95% scale
economy measure below 1 and therefore experienced diseconomies of scale, and 50
organisations operated at a level of output with economies of scale.
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Figure 2.17: Distribution of Scale Economy Index (Translog). Most
organisations have small but positive estimated scale economies
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Figure 2.18: Range of Scale Economy Indices by Organisation across
Years (Translog). Scale Economies are relatively stable for each organ-
isation across the period
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Table 2.8: Average Scale Economies (2013/14 to 2018/19)

Average Scale Economies N Percentage

Constant economies of scale 90 64%

Diseconomies of scale 1 1%

Economies of scale 50 35%

Total 141 100%

Observed scale economies are plotted against outputs and other size measures
to investigate the relationship between size and scale economy. Measures of scale
other than outputs, such as bed numbers, are frequently used in the literature as
they avoid the “regression fallacy” identified by Friedman (1955). This issue, and
the wider validity of proxy capital measures, is discussed in more detail in Section
1.4.7. Scale economy results are presented against both output and beds below.
This approach has the advantage of offering multiple criteria to judge expected
scale economies. Where no definitive measure of size exists, using multiple measures
alleviates biases with particular measures of size.

Figure 2.19 visualises the relationship between scale economies and organisa-
tional size defined by bed numbers. A polynomial of degree 2 fitted to the data
in figure 2.19 crosses the boundary between positive returns to size and negative
returns at approximately 1,200 beds, though there is variation amongst organisa-
tions. Uncertainty in the estimates is quantified by plotting 95% confidence intervals
around each data point based on the linear combination of parameter values eval-
uated at actual output levels. Each observation has a large uncertainty interval,
but there are a consistent number of observations above the line of constant scale
economies before the minimum efficient scale is reached.

Using fixed asset valuations as an alternative measure of size returned similar
results, as bed numbers and fixed asset values are strongly correlated (Pearson’s r
- 0.729). Figures 2.20 and 2.21 plot scale economies against output levels for elec-
tive inpatient episodes and outpatient attendances. Polynomial curves are fitted
to the point scale economy estimates. Overall scale economies move from increas-
ing to decreasing at approximately 90,000 elective inpatient episodes and 1,000,000
outpatient attendances.
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Figure 2.19: Scale Economy Index vs Bed Numbers (Translog).
2018/19 observations only
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Figure 2.20: Scale Economies vs Inpatient Episodes (Translog).
2018/19 observations only
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Figure 2.21: Scale Economies vs Outpatient Attendances (Translog).
2018/19 observations only

Disaggregating the graphs by year also shows that the general result is consistent
across the years in the dataset. Figure 2.22 shows scale economies against average
beds in each dataset year, with similar results across years. This observation suggests
that technological change and relative prices were stable over the period and that
averaging scale economies over the years is reasonable and not likely to be affected
by any particular years with large outliers.
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Figure 2.22: Scale Economies vs Bed numbers in each Year (Translog):
The relationship is relatively consistent across each year in the panel

Scale economies are observed to be lower for organisations close to the high-cost
area of London, where labour costs attract a premium due to a higher local price
level and higher labour demand. Scale economies are lower irrespective of the size
of the organisation. Figure 2.23 illustrates this by plotting a version of Figure 2.19,
showing scale economies against beds with regions differentiated by colour. London
scale economies are consistently below other hospitals as they have higher labour
input prices. These higher labour prices mean that proportionate increases in output
raise total costs more than other hospitals.
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Figure 2.23: Scale Economies by NHS England Region (Translog). Or-
ganisations in London and neighbouring areas in the South East are
required to pay higher wages in the form of a wage supplement for
high-cost areas. This supplement is intended to compensate staff re-
quired to work in higher-cost areas, effectively raising variable costs for
organisations in London or proximate to it

2.6 Discussion

This chapter estimates scale economies for English NHS hospitals using a multi-
product translog cost function. Most organisations are operating either at constant
or positive scale economies. The results suggest that the point of diminishing scale
economies starts around 1,200 beds, or using other measures of scale, 90,000 ad-
mitted elective episodes or 1,000,000 outpatient episodes. This limit is in excess
of the median hospital, which had 740 beds in 2018/19. Limits to scale economies
are higher than previous estimates in the literature, perhaps attributable to tech-
nological developments since previous studies. Economies of scale were also lower
in higher cost areas (London) due to higher wage rates increasing costs to a greater
extent for comparable increases in output.

The obtained results update older estimations of hospital scale economies and
provide evidence from a country not often studied. This study also improves on pre-
vious estimates by using more detailed output and cost information and including
input prices. A fuller range of hospital outputs is considered, including admitted
and ambulatory care. Output homogeneity is dealt with by a more detailed cate-
gorisation of outputs and using HRGs to re-weight outputs according to expected
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resource intensity.
A possible limitation of this study arises from the lack of a control variable for

hospital quality, which could be a possible source of endogeneity if hospital quality
is associated with healthcare costs (in either direction). If hospitals supplying better
quality care can attract more patients, then size and care quality will be correlated.
Should healthcare quality and costs be related, then there is a potential source
of bias from the omission of a variable measuring care quality. The relationship
between quality and referral patterns is particularly complex, however. There are
many reasons why patients and their referring primary care doctors may choose a
particular hospital. Studies have found that the strongest effect on patient choice
is distance (Smith et al., 2018), though waiting times and local competition are
also explanatory factors, as well as quality (Moscelli et al., 2016). Choosing an
adequate quality measure is also difficult at an aggregated hospital level, especially
where unobserved factors such as the relative sickness of patients in the area can
affect quality measures such as mortality or readmission rates. Patients (or their
referring doctors) may be more influenced by condition-specific indicators that are
more detailed than overall measures of quality (Gutacker et al., 2016). Finally, when
the relationship between cost and quality is empirically tested, results are unclear or
non-linear (Gutacker et al., 2013), though some studies suggest that higher quality
care is associated with higher costs (Carey & Stefos, 2011). Given these difficulties
with finding a usable measure of quality, the inclusion of a quality variable is omitted
in the analysis.

A further limitation of the approach followed is that the estimation of a long-run
cost function assumes that organisations currently cost-minimise and have capital
levels that are optimal for their current output. Other authors have criticised the
approach of directly estimating long-run cost functions because the assumption is
not necessarily true (Aletras, 1999). Capital levels may be slow to respond to short-
run output changes, meaning that observed values used in the estimation may be
higher than the long-run optimal, where hospitals can choose the optimal capital
level.

Policymakers could look to realise some of these gains by consolidating smaller
and mid-size organisations into larger entities or removing services from organisa-
tions where diseconomies of scale apply. Differences between the high-cost area of
London and the rest of the country suggest that expansion outside of London is likely
to yield greater benefits, though there are obvious geographic limits to how far pa-
tients would be able or willing to travel. Average costs are observed to decline faster
with size in the case of non-elective cases, where proximity to immediate treatment
is necessary, suggesting that attempting to achieve benefits from increasing scale
may be further limited by the need to ensure access to hospital healthcare.
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Future research could generalise the approach to estimate short-run cost func-
tions by holding capital (proxied by beds or financial statement asset values) con-
stant, deriving optimal short-run capital levels and then adopting an envelope condi-
tion to estimate the long-run case. Other potential future research includes contrast-
ing translog results with those obtained by a quadratic cost function specification,
non-parametric methods such as data envelopment analysis, and estimating scope
economies using this dataset.
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Chapter 3

Economies of Scale in English
Hospitals: A Quadratic Estimation

3.1 Introduction

Two main functional forms are used in the literature for estimating scale economies.
Chapter 2 uses the more common translog form, which is used by most studies
estimating hospital scale economies. The typical alternative is the quadratic func-
tional form, particularly used in studies seeking to indirectly estimate long-run cost
functions via an envelope of short-run functions.

This chapter uses the same dataset and methodology from Chapter 2 to estimate
a quadratic rather than a translog cost function. Some a priori reasons to prefer the
quadratic or translog functional form are discussed, for example, the case of data
containing zero values which cannot be defined when log-transformed. The results
from both translog and quadratic estimations are compared against the desirable
theoretical properties of a cost function, followed by a discussion of the regression
results generally and an interpretation of marginal effects implied by these results.
Finally, scale economies are computed using the alternate quadratic specification
and investigate the relationship of scale economies with size, as measured by the
number of hospital beds.

The results show that both specifications fit the data in a comparable way and
return similar scale economy values overall. There are some differences in the re-
lationship between scale economies and size, with the quadratic function showing
lower scale economies than the translog amongst smaller trusts and higher scale
economies amongst larger trusts. Consequently, whilst the translog specification
showed scale economies declining with size, the quadratic form shows that more
hospitals currently operate under constant returns to scale, with no apparent limit
to scale economies as size increases.



3.2. Previous Literature

3.2 Previous Literature

Many studies have used translog functions to measure hospital costs (Azevedo &
Mateus, 2014; Conrad & Strauss, 1983; Cowing & Holtmann, 1983; Scott & Parkin,
1995). The alternative approach is the quadratic functional form, particularly used
in more recent studies seeking to indirectly estimate long-run cost functions (Kris-
tensen et al., 2012; Preyra & Pink, 2006). Like the translog form, the quadratic
cost function allows average costs to vary non-linearly with outputs, so estimates
for economies of scale can also vary with size. To the best of my knowledge, there
are no empirical studies which contrast results of two different functional forms.

Re-estimation using identical data but differing cost function forms is helpful for
two reasons. Firstly, it offers a robustness check for the main result in Chapter 2 in
case the observed results are highly variable with a different specification. If results
were observed, it would suggest that uncertainty in the main Chapter 2 result could
be high. Giannakas et al. (2003) found that the choice of form can affect results for
efficiency calculations, so scale economy calculations could also be similarly affected.
Secondly, it is useful in and of itself to investigate how changing the form could affect
results, so we can better understand the effects of using different cost function forms
and how studies that use only one method could be affected by the form choice.

3.3 Data

The data used in this chapter is identical to that of Chapter 2. This chapter considers
an alternate form of the cost function only.

3.4 Method

As set out in Chapter 1, the quadratic cost function is one of two commonly used
forms which allow scale economies to vary with size. The quadratic cost function
is similar to the translog form, specifying total cost as a function of outputs, input
prices, and cross-product terms. The quadratic principally differs from the translog
in the absence of logged variables on either side of the cost function.

To illustrate, the multiproduct translog form used in Chapter 2 is:

ln Cht(y, w) =α0 +
m∑
i

αi ln yiht +
n∑
k

βk ln wkht + 1
2

m∑
i

m∑
j

δij ln yiht ln yjht

+ 1
2

n∑
k

n∑
l

γkl ln wkht ln wlht +
m∑
i

n∑
k

ρik ln yiht ln wkht + ϵht

(3.1)
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Where yi is the amount of the ith output produced (of m total outputs), wi is the
ith input price (of n inputs), and αi, βk, δij, γk,l, and ρi,k represent coefficients
estimated in the model. Hospital index h and time period t reflect the panel data
nature of the dataset. The error term ϵht = τh +vht comprises a term τh representing
hospital specific effects and a random noise term vit.

In this chapter, the analogous quadratic form is used, identical other than the
lack of log transformation:

Cht(y, w) =α0 +
m∑
i

αi yiht +
n∑
k

βk wkht + 1
2

m∑
i

m∑
j

δij yiht yjht

+ 1
2

n∑
k

n∑
l

γkl wkht wlht +
m∑
i

n∑
k

ρik yiht wkht + ϵht

(3.2)

For reasons of clarity, time and individual subscripts are omitted from this point on
in the chapter.

As in Chapter 2, a dummy variable for teaching status is added to capture any
residual teaching costs. To deal with issues of colinearity, output and input variables
are centred, following the approach taken with the translog specification. The cost
function is estimated using a random effects estimator and robust standard errors.

As noted in Chapter 1, the choice of functional form of the cost function has
implications for cost function estimation. The translog and quadratic specifications
have different properties that make them more or less desirable depending on the
relative importance of each property. The logarithmic terms used in the translog
allow a constrained optimisation which preserves linear homogeneity in input prices.
This preservation is achieved by constraining the model such that the sum of co-
efficients on (log) input prices sum to one, so that total cost is homogeneous of
degree one in prices, and a set percentage increase in wages and prices is reflected
in the same percentage increase in total cost. This constraint is not possible in the
linearised quadratic. However, the quadratic form allows easier estimation of short-
run and long-run versions of the cost function, as the presence of logged values can
complicate partial derivatives. The use of a quadratic form, where values are not
logarithms, also allows us to model instances where certain outputs are zero. These
zero-level outputs would be undefined in the translog due to the log terms.

At the level of aggregation used in this and preceding chapters, there are no zero
output variables. However, were we to include the specialist trusts from Appendix
A, there would be 12 hospitals with zero values for A&E Attendances, as they have
no A&E department. 2 of the 12 also have no Critical Care activity, lacking Critical
Care wards. If activity were aggregated into categories based on clinical specialty,
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as is the case in Chapter 5 then 2 hospitals have zero values for Obstetrics and
Gynaecology. In this case, the quadratic needs to be used for the cost function to
be defined.

In the results section, marginal cost derivatives are discussed, along with an
evaluation of the estimated quadratic cost equation against the six desirable cost
function properties in Chapter 1. Average and marginal cost expressions are derived,
discussed and visualised. Scale economies are then computed from the cost function
and contrasted with prior results using a translog functional form. Scale economies
are derived using the same methodology as Chapter 2, except that the relevant
formula changes for the quadratic form. Rather than being ∑

i
∂ C
∂ yi

, in the case
where terms are not logged, the size elasticity used to calculate scale economies is∑

i

(
∂ C
∂ yi

∗ yi

C

)
. Apart from this difference, methods to calculate scale economies are

identical.

3.5 Results

3.5.1 Regression Results

Table 3.1 shows the estimation results. Centring the output and input variables
means the intercept term £302,301,208 is comparable to the mean hospital total
cost (£297,942,149). The coefficients on each output variable reflect marginal costs
evaluated at the sample mean. Similarly, these costs are comparable to the reim-
bursement values for each activity in the case of A&E admissions, Critical Care
episodes, elective and non-elective inpatients, and outpatient appointments. Not
all diagnostic services are directly remunerated as they are trivially inexpensive, as
reflected in the low coefficient in the regression. Though costs are low, the large vol-
ume of diagnostic tests mean that the contribution of this area is nontrivial, though
not as large a contributor as admitted care and outpatients the larger areas (see
Table 2.2). Coefficients on the doctor and nursing wage variables reflect marginal
effects on the total cost of a £1 rise in wages for each labour type. These coefficients
are comparable to the average number of staff covered by the relevant pay framework
for these groups. The cost of capital coefficient was not statistically significant.

Amongst interaction terms, A&E and Critical Care Episodes have a negative
coefficient, which was negative (as was the case in the translog specification - see
Table 2.7). In the quadratic specification this is statistically significant. As A&E
Attendances are likely to precede a critical care stay, those admitted to Critical Care
via A&E may have a less costly A&E treatment than others, perhaps because those
requiring critical care following an A&E attendance are unlikely to spend much
time in A&E itself before admission, in comparison with lower acuity cases who
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may receive ambulatory care in A&E. The sign on the interaction between Critical
Care Episodes and Non-Elective Episodes is positive, suggesting that those admitted
non-electively do have more expensive Critical Care overall. The interaction of A&E
with diagnostic services was also statistically significant and positive but was very
low in magnitude. A&E patients, who may not have a diagnosis on presentation,
are perhaps more likely to require expensive diagnostics.

The self-interaction term for Critical Care Episodes is negative, suggesting de-
creasing costs with scale, at least at the mean level of outputs. The sign on the
interaction between Critical Care Episodes and Non-Elective Episodes is positive,
suggesting that those admitted non-electively have more expensive critical care than
elective cases. Critical Care and Outpatients also had negative spillovers, which is
non-intuitive to explain but may be attributable to casemix, with those cases re-
quiring critical care having an extended period of convalescence and post-discharge
hospital care in an outpatient setting. Diagnostic services were associated with
higher costs amongst Non-Elective Inpatient Episodes and also had a positive term
on the self-cross-product. However, the magnitudes of these coefficients are very low,
so these effects may not be influential except at high levels of diagnostic activity.

Higher nursing wages were associated with higher cost A&E attendances, higher
costs in Elective Episodes, and lower costs in Non-Elective care. However, the
magnitude of the effect in non-elective care is much lower than that for elective
care. It may be that the relative share of nursing labour in output is higher in A&E
and Elective Inpatient care than in other forms of activity. Nursing wages were also
positively associated with a higher effect of the cost of capital on total cost, perhaps
an artifact of Hospitals in London facing higher nursing and capital costs.

Higher capital costs were associated with increases in the unit cost of Critical
Care Episodes, possibly due to the capital intensity of this care setting. A smaller
effect in the opposite direction was observed with A&E Attendances, which though
statistically significant, was slight in magnitude, a 1% increase in the effective bor-
rowing rate associated with a reduction of £37 in the average cost of an A&E
attendance.
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Table 3.1: Estimation results - Directly Estimated Quadratic Form

Term Estimate Std. Error

Intercept 302,301,208.050 (4,120,656.240)***

A&E Attendance 234.931 (40.114)***

Critical Care Episode 3,232.185 (183.919)***

Diagnostic Services 2.599 (0.844)**

Elective Inpatient Episode 1,689.908 (140.062)***

Non-Elective Inpatient Episode 679.698 (81.774)***

Outpatient Appointment 90.728 (11.343)***

Training Grade Doctor Wages 1,503.385 (495.716)**

Nurse Wages 5,352.794 (924.745)***

Cost of Capital 936,270.974 (653,431.459)

0.5 * A&E Attendance * A&E Attendance -0.001 (0.001)

A&E Attendance * Critical Care Episode -0.012 (0.003)***

A&E Attendance * Diagnostic Services 0.000 (0.000)*

A&E Attendance * Elective Inpatient Episode 0.001 (0.004)

A&E Attendance * Non-Elective Inpatient Episode 0.004 (0.002)

A&E Attendance * Outpatient Appointment 0.000 (0.000)

0.5 * Critical Care Episode * Critical Care Episode -0.080 (0.009)***

Critical Care Episode * Diagnostic Services 0.000 (0.000)

Critical Care Episode * Elective Inpatient Episode 0.020 (0.012)

Critical Care Episode * Non-Elective Inpatient Episode 0.014 (0.006)*

Critical Care Episode * Outpatient Appointment 0.004 (0.001)***

0.5 * Diagnostic Services * Diagnostic Services 0.000 (0.000)**

Diagnostic Services * Elective Inpatient Episode 0.000 (0.000)

Diagnostic Services * Non-Elective Inpatient Episode 0.000 (0.000)*

Diagnostic Services * Outpatient Appointment 0.000 (0.000)

0.5 * Elective Inpatient Episode * Elective Inpatient Episode -0.029 (0.018)

Elective Inpatient Episode * Non-Elective Inpatient Episode 0.004 (0.008)

Elective Inpatient Episode * Outpatient Appointment -0.002 (0.001)

0.5 * Non-Elective Inpatient Episode * Non-Elective Inpatient

Episode
-0.010 (0.007)

Non-Elective Inpatient Episode * Outpatient Appointment 0.000 (0.001)

0.5 * Outpatient Appointment * Outpatient Appointment 0.000 (0.000)

A&E Attendance * Training Grade Doctor Wages -0.010 (0.014)

Critical Care Episode * Training Grade Doctor Wages 0.045 (0.051)

Diagnostic Services * Training Grade Doctor Wages 0.000 (0.000)

Elective Inpatient Episode * Training Grade Doctor Wages -0.058 (0.055)

Non-Elective Inpatient Episode * Training Grade Doctor Wages 0.054 (0.032)

Outpatient Appointment * Training Grade Doctor Wages 0.003 (0.005)

A&E Attendance * Nurse Wages 0.046 (0.022)*

Critical Care Episode * Nurse Wages -0.089 (0.046)

R2 = 0.9817 adj R2 = 0.9804 AIC = 29,405 BIC = 29,667 N = 798 total observations from 141

hospitals, observations split as follows: 138 [2013/14], 134 [2014/15], 134 [2015/16], 133 [2016/17], 132

[2017/18], 127 [2018/19]

* - Statistically Significant at 5%, ** - Statistically Significant at 1%, *** - Statistically Significant at

0.1%
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Table 3.1: Estimation results - Directly Estimated Quadratic Form

Term Estimate Std. Error

Diagnostic Services * Nurse Wages -0.001 (0.000)

Elective Inpatient Episode * Nurse Wages 0.349 (0.065)***

Non-Elective Inpatient Episode * Nurse Wages -0.096 (0.041)*

Outpatient Appointment * Nurse Wages -0.005 (0.006)

A&E Attendance * Cost of Capital -36.837 (13.818)**

Critical Care Episode * Cost of Capital 238.069 (54.892)***

Diagnostic Services * Cost of Capital 0.647 (0.347)

Elective Inpatient Episode * Cost of Capital -1.135 (60.384)

Non-Elective Inpatient Episode * Cost of Capital 36.382 (34.546)

Outpatient Appointment * Cost of Capital -11.181 (5.775)

0.5 * Training Grade Doctor Wages * Training Grade Doctor

Wages
-0.340 (0.230)

Nurse Wages * Training Grade Doctor Wages 0.702 (0.323)*

0.5 * Nurse Wages * Nurse Wages 0.572 (0.629)

Cost of Capital * Training Grade Doctor Wages -372.352 (199.093)

Cost of Capital * Nurse Wages 1,039.379 (332.730)**

0.5 * Cost of Capital * Cost of Capital 219,203.714 (312,778.308)

Teaching Hospital Organisation -2,145,507.722 (2,757,286.238)

R2 = 0.9817 adj R2 = 0.9804 AIC = 29,405 BIC = 29,667 N = 798 total observations from 141

hospitals, observations split as follows: 138 [2013/14], 134 [2014/15], 134 [2015/16], 133 [2016/17], 132

[2017/18], 127 [2018/19]

* - Statistically Significant at 5%, ** - Statistically Significant at 1%, *** - Statistically Significant at

0.1%

Predicted costs fit well to the observed values, with a close association each year
between the actual and fitted values, shown in Figure 3.1. In common with the
translog specification, the high R2 value indicates that the estimation may overfit
the data and is difficult to apply to data outside the range covered in the sample.
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Figure 3.1: Predicted Vs Actual Cost in each Year (Quadratic). Pre-
dicted costs are closely correlated to actual values. Predictions are
derived from the estimated cost function and actual output levels

3.5.2 Marginal Effects

Taking the partial derivative of total cost with respect to each output, the marginal
costs can be calculated in each case. As input and output variables were centred
prior to estimation, these marginal costs are interpreted as changes from mean
output levels.

As an example, taking the partial derivative with respect to A&E attendances,
∂C

∂yae
yields:

235 − 0.001 ∗ A&E attendances −0.012 ∗ Critical Care Episodes

+ 0 ∗ Diagnostic Services + 0.001 ∗ Elective Inpatient Episodes

+ 0.004 ∗ Non-Elective Inpatient Episodes

+ 0 ∗ Outpatient Appointments − 0.01 ∗ Training Grade Doctor Wages

+ 0.046 ∗ Nurse W ages−36.837 ∗ Cost of Capital

Terms found to be statistically significant at the 5% level in the estimation are
marked in bold.

The constant term, which can be interpreted as the marginal cost of an A&E at-
tendance where all variables are at the mean, is £235. This cost level is comparable
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with the payment tariff range of £77-359 and the average cost in the dataset as a
whole (£156). Though the effect size is small, marginal costs also decrease slightly
with increases in the number of critical care episodes carried out. Hospitals with
larger critical care units may conduct more costly diagnostics or treatments after
admission rather than having diagnostics in A&E. Costs for these activities would
then be recorded under the critical care episode rather than the A&E attendance.
Additional diagnostic services increase the expected marginal cost of an A&E atten-
dance. Though the effect is statistically significant, the size of the coefficient is small
(0.00004), so it is not economically significant. Hospitals that supply high levels of
unbundled diagnostic services from non-A&E patients may mean patients attending
A&E spend more time in the department waiting for their scans. The marginal
cost of an A&E attendance also increases where nurse wages are higher, as higher
wages for nursing labour increases the cost of producing a unit of A&E healthcare.
Somewhat counterintuitively, the coefficient on the capital price is negative. A&E
attendances may be relatively labour-intensive, so they are less affected by increases
in capital cost than other outputs.

Taking the partial derivative of cost with respect to critical care episodes gives:

3232 − 0.08 ∗ Critical Care Episodes − 0.012 ∗ A&E attendances

+ 0 ∗ Diagnostic Services + 0.02 ∗ Elective Inpatient Episodes

+ 0.014 ∗ Non-Elective Inpatient Episodes

+ 0.004 ∗ Outpatient Appointments

+ 0.045 ∗ Training Grade Doctor Wages − 0.089 ∗ Nurse Wages

+ 238.069 ∗ Cost of Capital

The coefficient on the constant term (£3,232) is higher than the mean critical care
cost (£1,067), though the critical care term is both statistically significant and
negative (-0.08). This result suggests that, excepting interaction effects, scope effects
and other factors, additional critical care episodes reduce average critical care costs.
As mentioned above, critical care episodes and A&E attendances appear to have
economies of scope when colocated. Where hospitals have higher numbers of non-
elective care episodes, marginal critical care costs tend to be higher, perhaps because
hospitals that provide higher levels of non-elective care are likely to also deal with
patients requiring a more costly critical care stay. Similarly, hospitals supplying
higher levels of outpatient care may deal with higher requirements for follow-up and
rehabilitation after an inpatient stay involving critical care. Higher capital costs
increase marginal costs for critical care episodes, possibly due to critical care being
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capital-intensive and requiring specialist construction and equipment.
As well as taking derivatives of output variables for marginal costs of additional

outputs, the partial derivatives of input prices can be used to evaluate the effects
of marginal price changes. For example, taking the partial derivative of cost with
respect to nurse wages ∂C

∂wnursing
gives:

5353 + 0.046 ∗ A&E attendances − 0.089 ∗ Critical Care Episodes

− 0.001 ∗ Diagnostic Services + 0.349 ∗ Elective Inpatient Episodes

−0.096 ∗ Non-Elective Inpatient Episodes

− 0.005 ∗ Outpatient Appointments

+ 0.702 ∗ T raining Grade Doctor W ages + 0.572 ∗ Nurse Wages

+ 1039.379 ∗ Cost of Capital

Here, the constant term in the derivative (5,353) is broadly in line with the number
of staff in the median organisation who would be covered by the same pay conditions
as nurses. The relationship between A&E attendances and nursing costs has been
addressed above. Hospitals with larger numbers of elective care episodes will have
higher costs where the marginal cost of nursing increases. Inpatient care requires
higher numbers of nurses than other forms of care, so an increase in nursing wages is
likely to disproportionately affect hospitals providing greater amounts of inpatient
care, as they require higher numbers of nurses. The sign on non-elective care episodes
is the opposite, with higher numbers of non-elective care episodes being associated
with a reduction in the marginal effect of nurse wages on total cost. This finding
may result from non-elective cases often having shorter hospital stays, so the impact
of nursing wages on costs declines as these outputs increase. Hospitals with higher
capital costs also have higher marginal effects from increased nursing wages, perhaps
because trusts in London tend to have a higher capital cost and pay higher nursing
wages.

Similarly, with regard to capital costs, taking the partial derivative ∂C
∂wcapital

gives
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an expression for the marginal cost of capital as follows:

936271−36.837 ∗ A&E attendances + 238.069 ∗ Critical Care Episodes

+ 0.647 ∗ Diagnostic Services + −1.135 ∗ Elective Inpatient Episodes

+ 36.382 ∗ Non-Elective Inpatient Episodes

− 11.181 ∗ Outpatient Appointments

− 372 ∗ Training Grade Doctor Wages + 1039 ∗ Nurse W ages

+ 219204 ∗ Cost of Capital

Here, the counter-intuitive finding is the opposite signs on the coefficients for inter-
actions with Training Grade Doctor Wages and Nurse Wages. Hospitals that pay
higher than average nursing wages experience larger cost increases when the price of
capital increases. It is conceivable that hospitals paying higher nursing wages require
more nursing labour and capital for inpatient wards. Consequently, an increase in
the cost of capital is likely to affect these hospitals disproportionately as they have
higher amounts of capital in use. Increases in Training Grade Doctor wages reduce
the cost effects of increases in capital costs. Hospitals with higher training grade
doctor wages are likely to offer specialty training in addition to foundation programs
and could find it easier to substitute medical labour for capital where capital prices
are high.

3.5.3 Desirable Properties of the Cost Function

The regression results can be evaluated against the desirable properties of cost func-
tions set out in Chapter 1 :

1. Cost should be non-negative — Predicted costs are non-negative for all
organisations in the sample. The large intercept value will prevent small ac-
tivity values from leading to a negative cost, though it is worth noting that
the high R2 value suggests that the model is overfitted and may not represent
out-of-sample values well.

2. Cost should be non-decreasing in input prices — As wages and prices
increase ceteris parabis, so should total cost. The partial derivative of cost
(or log cost) with respect to each input price (the optimal cost share) ought
to be positive. Checking the signs on observed cost-minimising cost shares,
55% of training grade doctor cost shares are negative, 57% of nurses, and
44% of capital prices. These are less congruent with standard theory with
the translog results. The translog specification had negative cost shares for

81



3.5. Results

6% observations of junior doctors, 12% nurses, and 53% capital prices. Cost
shares (the partial derivative of log cost with respect to log input price) are
expected to be positive. The negative cost shares show observations where
this desirable property is violated.

3. Cost should be continuous and concave in input prices — It is easier
to evaluate concavity with input prices with the quadratic specification, as the
diagonal elements of the input prices are equal to the coefficient on the square
term multiplied by the input price. The input price being positive, negativity
is therefore determined by the sign on the coefficient. In this case, only train-
ing grade doctors have a negative coefficient on the squared term, with the
coefficients for squared nurse pay and the capital price both being positive.
Nursing wages and capital prices are, therefore, not concave with respect to
cost, so it cannot be said that the cost function as a whole is concave with re-
spect to input prices. For the translog specification, the calculation was more
complex, with 798 / 798 observations being concave with respect to train-
ing grade doctor wages, 0 / 798 observations concave with respect to nursing
wages, and 48 / 798 capital price observations. The translog specification is
consequently closer to being concave with respect to input prices.

4. Cost should be non-decreasing in any output — This property can be
evaluated by looking at the individual cost-output elasticities calculated for
each output category. Where these elasticities are negative, a percentage in-
crease change in output causes a percentage decrease in cost. There are 6
output categories and 798 observations, giving 4788 total cost-output elastici-
ties calculated. Negative cost-output elasticities are present in 66 / 798 A&E
observations, 4 / 798 critical care observations, 95 / 798 diagnostic observa-
tions, 25 / 798 elective inpatient observations, 6 / 798 non-elective inpatient
observations, and 13 / 798 outpatient appointment observations. Apart from
A&E and diagnostic services, there are few cases of non-compliance with this
desired characteristic. Cost-output elasticities for A&E and diagnostic services
are more likely to be negative than other outputs at particular observations as
these elasticities are generally lower than other outputs. Their low level may
be either because their outputs form a lower share of total costs or because
they have low marginal costs. Consequently, local violations of cost function
convexity are more likely to occur in these outputs, and these results are less
concerning. These results can be compared to the translog specification, which
had 49 / 798 negative elasticities in A&E outputs, 7 / 798 in A&E critical care
outputs, 55 / 798 in diagnostic service outputs, 0 / 798 in elective inpatient
episodes, 0 / 798 in non-elective inpatient episodes, and 0 / 798 amongst
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outpatient outputs.

5. Cost should be linearly homogeneous in input prices - In the translog
form, taking logs of input prices ensures that the resulting coefficient can be
interpreted as the percentage change in total cost for a 1% increase in the
coefficient value. If the sum of coefficients for (non-interacted) input prices
is equal to one, and the sum of cross-product terms for each output is zero,
then percentage increases in all input prices yield a proportionate percentage
increase in total cost. This property was not true of the translog cost func-
tion estimated in Chapter 2. It is theoretically possible to enforce this via a
constrained regression for the translog, but in the quadratic form, values are
not logged, so no equivalent interpretation exists. In contrast to the translog
specification, It is not possible in the quadratic case to a priori ensure the
estimated cost function is homogeneous of degree 1. A 1% rise in total input
prices in the quadratic form would raise the total cost by different percentages
depending on the coefficients estimated on input price terms.

6. No fixed costs in the long-run - The large intercept term observed in
the estimation results precludes the estimation returning zero costs where all
inputs are zero. This phenomenon was also a feature of the translog estimation.

Comparing the results above with the translog format, both functional forms meet
criterion 1. The translog specification is closer to the desired properties than the
estimated quadratic for criteria 2, 3 and 4 and can also be made compliant with
criterion 5. Neither estimated forms meet criterion 6 due to the inclusion of an
intercept term in the estimation. According to the above, there are grounds to
prefer the translog as more consistent with economic theory.

Both specifications are more consistent with respect to outputs than input prices.
Input prices have more departures from concavity and areas where price increases
are not associated with cost increases. This observation is particularly the case for
the capital price, suggesting that the construction of the weighted cost of capital
may struggle to fully capture variations in the cost of capital. The relatively worse
performance of input variables compared to output variables is also likely a function
of missing factors for which adequate data is unavailable, for example, agency staff
and consumables. Consequently, coefficients on input prices and their cross-products
may have high standard errors and are more vulnerable to omitted variable bias than
output variables.
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3.5.4 Marginal and Average Cost Visualisations

I visualise computed marginal and average costs below, using the same method as
Chapter 2. In contrast to the translog cost curves, the quadratic marginal and
average cost curves are linear rather than curved. The linear shape follows the
quadratic nature of the specification. Taking a partial derivative of a quadratic
function to define a marginal cost leaves an expression where no term has a higher
power than one. Cost curves shown below are constructed by holding all factors
other than one output constant. Consequently, marginal and average cost curves
are linearly related to that particular output. The shape of marginal and average
cost curves for the quadratic and translog specification is worthy of comment. The
log terms in the translog specification gave convex average and marginal cost curves
when computed for each observation. For the quadratic specification, taking the
partial derivative gives a linear expression for both average and marginal costs,
holding all but one output constant. As scale economies are defined as the ratio
of average costs to marginal costs, a quadratic specification where changes to scale
economies are linear may be less sensitive to changes in small outputs than a translog
specification. For a translog specification, small absolute output changes amongst
low-output hospitals may represent large percentage increases in output (and cost),
meaning the ratio of average cost and marginal costs could be more volatile.

It is possible to compare these to the translog specification to look at differences
in how costs vary with output. Figure 3.2 shows the marginal costs of elective
inpatients for a selection of 30 observations. The slope of the marginal cost curves is
steeper than the translog specification. Costs decline more with increases in output,
in contrast with the translog form that showed marginal costs of elective inpatient
work being flatter. The relationship also holds with average costs in Figure 3.5.
Scale elasticities in elective work are accordingly higher in the quadratic specification
than the quadratic one. Non-elective marginal and average costs are flatter using
the quadratic specification than were observed in the translog. Costs declined more
sharply with increases in output for the translog, whereas the curves are less steep
for the quadratic. Outpatient marginal and average costs are relatively flat in both
translog and quadratic specifications.

Comparing the two sets of visualisations, generated marginal and average cost
curves were of a comparable level for both the translog and quadratic forms. Ob-
served average costs were in line with the mean values for the dataset as a whole,
set out in Table 2.3.
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Figure 3.2: Elective Inpatient Episode Marginal Cost Curves
(Quadratic). Marginal cost curves are derived from the estimated cost
function by calculating the marginal cost effects of incremental changes
in one output type, holding other outputs constant. The plot shows sec-
tions of cost curves generated from a random sample of 30 observations,
differentiated by colour

Figure 3.3: Non-Elective Inpatient Marginal Cost Curves (Quadratic).
See Figure 3.2 for details on derivation.
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Figure 3.4: Outpatient Marginal Cost Curves (Quadratic). See Figure
3.2 for details on derivation. Outpatient appointment costs are rela-
tively invariant to output levels. Appointments are a discrete period of
time in consultation with a doctor with consequent limitations on scale
economies.

Figure 3.5: Elective Inpatient Average Cost Curves (Quadratic). Aver-
age Cost Curves are derived from the estimated cost function by cal-
culating the total cost effects of discrete changes in one type of output
and then dividing by the change in output, holding other outputs con-
stant. The plot shows sections of cost curves generated from a random
sample of 30 observations, differentiated by colour
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Figure 3.6: Non-Elective Inpatient Average Cost Curves (Quadratic).
See Figure 3.5 for details on derivation.

Figure 3.7: Outpatient Average Cost Curves (Quadratic). See Figure
3.5 for details on derivation. Outpatient appointment costs are rela-
tively invariant to output levels. Appointments are a discrete period of
time in consultation with a doctor with consequent limitations on scale
economies.
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3.5.5 Scale Economies

The scale economy estimate for each organisation remains relatively consistent over
the years, as was the case for the translog estimation, with few large changes year
on year for each organisation.
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Figure 3.8: Range of Scale Economy Indices by Organisation
(Quadratic). As with the translog form, scale economies are relatively
stable for each organisation across the period

Scale economy estimates are less related to size compared to the translog spec-
ification. Figure 3.9 plots scale economy measures against size as measured by the
number of beds in 2017-18. Most hospitals have constant economies of scale, but
scale economies are not related to the number of beds. A polynomial fitted to the
data has a broadly flat shape showing no apparent limit to scale economies over
the dataset range. Expanding or reducing scale does not affect the scale economy
calculation, so hospitals, irrespective of size, would see similar effects of expansion
at all sizes.
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Figure 3.9: Scale Economy Index Vs Bed Numbers (Quadratic) - 2017-
18 Observations only. Here the year 2017-18 is shown rather than the
most recent year in the dataset, as scale economies for that year appear
to be affected by data suppression

The relationship between scale economies and size was consistent over the years,
though estimated scale economies were slightly lower in 2018/19 than in other years.
This year has slightly less activity than other years as new data suppression rules
censored more data from the dataset. These censor the long tail of very infrequently
recorded HRG codes where case numbers were below 8 for the year. Low numbers
are suppressed to minimise risks of identification with released data. Suppression
was relatively higher in elective and non-elective care, where episode numbers are
lower overall and therefore have more categories where activity numbers were below
the threshold. Admitted care, particularly non-elective care, appears to have higher
scale economies than other care settings, so the change in the censoring may lower
calculated scale economies overall. This feature does not appear to be present in the
translog specification computed in Chapter 2, perhaps because the standard errors
on the point estimates are lower for the translog, and there is less volatility overall.
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Figure 3.10: Scale economies vs Bed numbers across Time (Quadratic).
Values are consistent apart from 2018/19, which is lower due to addi-
tional small number suppression in that year

Though the range of scale economies is compressed relative to the translog es-
timation, regional differences observed a similar pattern, with more rural or lower-
wage regions showing slightly more scale economies than higher-wage London.
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Figure 3.11: Scale Economies, by NHS England region (Quadratic).
Organisations in London and neighbouring areas in the South East
are required to pay higher wages in the form of a wage supplement
for high-cost areas. This supplement is intended to compensate staff
required to work in higher cost areas, effectively raising variable costs
for organisations in London or proximate to it. The quadratic form
displays a similar pattern to the translog form, with London having
lower scale economies than elsewhere

3.6 Discussion

Direct estimation of the cost function shows broadly comparable results for the
translog and quadratic forms. The main coefficients on output and input prices
are comparable with average costs in the case of output variables, and the average
number of staff in the case of the input variables. The large number of interaction
terms in the specification implies caution in interpretation of individual coefficients,
but there are suggestions that critical care unit costs may decline with output, but
are associated with higher costs in other settings, such as Non-Elective Inpatient
and Outpatient Appointments. Unit costs of activity were more affected by nursing
than medical wages, particularly in Elective Inpatient care and in A&E.

When used to derive scale economy estimates, the translog showed small but
positive scale economies up to around 1,200 beds. The quadratic estimation also
shows small and generally positive scale economies, with the median scale economy
index being 1.05. These results are comparable with estimates shown in Chap-
ter 2. However, the relationship to size as defined by bed numbers is less clear,
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with scale economies showing no obvious relation to size, and no apparent limit to
scale economies was observed. Under a quadratic specification, larger trusts still
record similar scale economies to smaller trusts, suggesting that the limit obtained
in Chapter 2 is sensitive to the form of the cost function used.

If a choice between the two functional forms is necessary, there are some theo-
retical reasons that the translog is preferable in this case. Input prices were more
consistent with expected theoretical properties, with fewer departures from con-
cavity. The translog estimates also had narrower standard errors on scale economy
calculations for each observation, giving more precise individual estimates. However,
there are few general reasons to prefer one form over the other.

This chapter extends the analysis from Chapter 2 to consider an alternate func-
tional form. Quadratic functional forms are typically less prevalent in the literature,
and few studies contrast multiple functional forms. Computing results from the same
data using different forms allows us to evaluate the effects of particular functional
forms. Studies that report results using only one form may omit uncertainty arising
from using only one specification. Estimating limits of minimum efficient scale may
be particularly affected by the choice of form if the ends of the size distribution are
affected in different ways.

Policymakers may take some assurance from these results that scale economies
in English hospitals are small but generally positive and that whilst results appear
variable based on functional form, most hospitals in the middle of the distribu-
tion have comparable results. There are some areas where gains could be realised,
though changes to hospital healthcare supply would be subject to equity and access
considerations. Policymakers may need to be aware that computed limits to scale
economies may be hard to quantify where there are few observations.

Future studies could consider using both forms to quantify uncertainty arising
from different functional forms, or at least compare how well each form fits the data,
justifying the particular functional form selected rather than using one form only.
Studies that do attempt to quantify limits to scale economies should compute results
using multiple functional forms. Using multiple forms may be particularly useful
where scale economies are low or do not vary much with size. Future studies could
also investigate why differences are observed between translog and quadratic func-
tional forms, whether the patterns identified here are generally true, and whether
there are any reasons to suppose one functional form is preferable to the other for
scale economy studies.
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Chapter 4

Economies of Scale in English
Hospitals: Estimation via a
Short-run Cost Function

4.1 Introduction

The previous analyses in Chapter 2 and Chapter 3 directly estimate long-run cost
functions from organisations and observed input prices. Directly estimating a cost
function from observed values implicitly assumes that these values are optimal. This
assumption may not be justifiable in the scenario where the capital stock has not
been fully adjusted to current output, or there are other factors inhibiting cost-
minimisation.

This chapter addresses this issue by using an envelope methodology, estimating
a short-run translog cost function including capital levels proxied by bed numbers.
The short-run function is then solved for optimal capital levels as described above
before substituting back into the cost function to yield a long-run cost function. This
way, the assumption of cost-minimisation and optimal capital levels at the observed
cost and output levels can be relaxed. The same envelope approach is used with a
quadratic cost function to see how this approach affects that functional form.

Results show that scale economies estimated using an envelope methodology are
higher in both the short and long run, as would be expected if currently observed
capital levels were not optimal. However, optimal capital values were observed to
be sensitive to the cost function’s functional form and specification. Using beds
as a proxy for capital may not adequately capture underlying capital levels and
consequently may not accurately adjust for hospitals not on the frontier of the
long-run cost function. Future studies should use this approach carefully and with
adequate sensitivity analysis.



4.2. Previous Literature

4.2 Previous Literature

Several authors, starting from Cowing & Holtmann (1983) and Vita (1990), note
that direct estimation assumes each observation is the lowest possible cost for that
particular combination of outputs. Observations would only be at that point if cap-
ital allocations were optimal at the point of measurement. These studies argue that
there is no guarantee that currently observed capital levels are optimal. Departures
from non-optimal capital levels could arise due to technological change, for example,
if hospitals have not been able to invest in new capital innovations or have capi-
tal endowments that have become obsolete. Alternatively, hospitals may have been
unable to adjust capital in time to match their current level of healthcare demand.
Mismatched capital levels may increase expenditure. For example, a hospital may
need additional buildings and facilities to deal with an increase in demand in a cost-
optimal way, but it may not be able to construct those buildings in the short-run.
To deal with the issue in the short-run the hospital may need to adopt a more ex-
pensive labour-intensive production technology. In the long-run, the hospital may
be able to construct additional buildings and produce at a lower cost, moving down
to an optimal position on the cost curve. Using current output and capital levels in
the estimation may misestimate potential scale economies by including non-optimal
average cost points in the final dataset.

Alternatively, hospitals may not be fully cost-minimising in the short-run, es-
pecially where management may have clinical or growth objectives that do not fit
into the paradigm of the cost-minimising neoclassical firm. Hospitals may also lack
incentives to minimise costs where they have no local competition. These are spe-
cific instances of the more general phenomenon of X-inefficiency (Leibenstein, 1966)
that could be present in observed cost values. Such considerations mean that the
observed cost profile may not be fully cost-minimising, and again, directly estimat-
ing long-run cost functions from observed production values may understate scale
economies.

To deal with these issues, some authors, including Cowing & Holtmann (1983),
restrict the estimation to short-run cost functions only. Other authors develop their
study by generating long-run functions from the short-run estimations rather than
estimating the long-run directly (Aletras, 1999; Kristensen et al., 2012; Preyra &
Pink, 2006; Vita, 1990). These authors follow a common methodology of first esti-
mating a short-run cost function. This short-run function will include fixed factors
of production (usually capital as proxied by beds) when the estimation is carried
out. An envelope of the short-run function is then taken by first differentiating the
short-run function with respect to capital, setting the result equal to zero, and then
solving for optimal capital levels in terms of outputs. The resulting optimal capital
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relationship can be substituted back into the short-run function to yield a long-run
cost function, allowing for cases where actual capital levels are non-optimal. Follow-
ing Cowing and Holtman, who used a translog form, Preyra & Pink and Kristensen
et al. use a quadratic form to estimate a short-run function before computing the en-
velope to derive the long-run cost function. These studies typically find that taking
the envelope of short-run cost functions returns a higher estimate of scale economies
than direct estimation of the cost function from observed values.

4.3 Data

This chapter uses the same cost and activity data used in previous chapters and
combines this with data on bed numbers and financial statement asset values. The
additional data is used to construct proxy measures for capital at each organisation.
The relative advantages and disadvantages of each as a proxy for capital are dis-
cussed in detail in Section 1.4.7. Both bed numbers and financial statement values
have significant drawbacks as proxy measures of capital. However, in the analysis,
beds are used as the preferred measure of capital. This decision is due to the in-
herent variability of financial statement capital accounting and the artificial nature
of hospital property valuation in the absence of a developed market for hospital
buildings.

4.4 Method

This chapter computes a long-run cost function via an envelope of short-run cost
functions. Firstly a short revised short-run cost function is estimated, including bed
numbers as a proxy variable for the level of the capital stock. The estimation uses a
random effects estimator and robust standard errors. The beds variable is interacted
with the output and price variables. An envelope of short-run functions is then
constructed by solving for optimal capital stock (beds), substituting the expression
for optimal capital stock into the short-run cost function. The new expression is a
long-run cost function which assumes that capital can be set to the cost-minimising
optimal value for that output level.

The sensitivity of results is explored by using slightly different specifications in
the translog form, as well as a quadratic functional form, to compare how the results
of the envelope method may differ with changes in the cost function specification
and form. For each functional form and specification, optimal beds are calculated
along with scale economy estimates.
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4.4.1 Estimating a Short-run Cost Function

A short-run translog cost function is estimated, including a variable for capital in
the specification. Including this capital variable makes the cost function conditional
on the level of capital employed. Capital is assumed to be fixed in the short-run. As
discussed in Section 1.4.7, bed numbers are used as the preferred proxy for capital
employed.

The short-run cost function, using a translog specification, becomes:
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(4.1)

Where K ′ is the level of capital employed, and y, w are the m outputs and n input
prices. As before, Hospital index h and time period t reflect the panel data nature
of the dataset. The error term ϵht = τh + vht comprises a term τh representing
hospital specific effects and a random noise term vit. For reasons of clarity, time and
individual subscripts are omitted from this point on in the chapter.

4.4.2 Solving for the Long Run

Short-run costs are a function of variable costs plus the total cost of capital at the
current (fixed) capital level. Once estimated, the partial derivative of the short-run
cost function with respect to capital is obtained and set to zero:

∂ ln C(y, w, K ′)
∂ ln K ′ = 0 (4.2)

Solving this gives an expression for optimal capital stock K∗ in terms of healthcare
outputs and input prices. This expression can be substituted back into the short-
run results to give a long-run cost function determined by outputs and input prices.
This version of the long-run function allows for capital levels to be non-optimal. Es-
sentially this approach creates an envelope of the short-run cost functions, allowing
for the case where hospitals are not currently on the frontier of lowest cost given
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long-run output levels. Computing scale economies from the long-run specification
is equivalent to calculating scale economies using the short-run cost function, assum-
ing each hospital has its computed optimal bed number given the current output
level. In effect, the long-run cost equation assumes that each hospital can obtain
the optimal capital stock at each output level. The true long-run cost function may
be lower than that estimated directly from observed values. This weakness of direct
estimation could lead to understating limits to scale economies or obtaining point
estimates that are distorted by the presence of X-inefficiency or non-optimal capital
stock.

4.5 Results

4.5.1 Short-run Estimation

Details of this regression are set out in Table 4.1. With the inclusion of beds in
the short-run function, the coefficients on non-interacted outputs and input prices
change but retain their statistical significance where they were significant in the
direct estimation (Table 2.7). The additional bed variables include cross-products
with each type of output and input price, and a squared bed term. The squared
bed term and the non-interacted bed term are statistically significant, along with
interactions with critical care, non-elective inpatients, and nursing wages. Critical
Care activity has a high cost ‘per bed’ because of the high acuity of care. Non-
elective care costs may also be affected by bed numbers as hospitals need a sufficient
number of beds to manage peaks in demand for non-elective care. Hospitals with
higher levels of non-elective care may require higher bed numbers to manage the
higher volatility of demand, which increases average costs where beds are not used.
The other statistically significant interaction is between beds and nursing wages.
Higher nursing wages are associated with a stronger effect of additional beds on
costs. Additional beds require a certain level of additional nursing, so where this
nursing is expensive, there will be a higher effect on the total cost.
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Table 4.1: Estimation results - Short-run Translog Form

Term Estimate Std. Error

Intercept 19.365 (0.016)***

A&E Attendance 0.064 (0.015)***

Critical Care Episode 0.077 (0.013)***

Diagnostic Services 0.049 (0.008)***

Elective Inpatient Episode 0.273 (0.025)***

Non-Elective Inpatient Episode 0.250 (0.018)***

Outpatient Appointment 0.122 (0.022)***

Training Grade Doctor Wages 0.452 (0.072)***

Nurse Wages 0.462 (0.125)***

Cost of Capital 0.000 (0.008)

0.5 * A&E Attendance * A&E Attendance -0.081 (0.048)

A&E Attendance * Critical Care Episode -0.033 (0.032)

A&E Attendance * Diagnostic Services 0.029 (0.031)

A&E Attendance * Elective Inpatient Episode -0.088 (0.076)

A&E Attendance * Non-Elective Inpatient Episode 0.026 (0.053)

A&E Attendance * Outpatient Appointment -0.049 (0.066)

0.5 * Critical Care Episode * Critical Care Episode -0.063 (0.026)*

Critical Care Episode * Diagnostic Services -0.028 (0.017)

Critical Care Episode * Elective Inpatient Episode -0.032 (0.057)

Critical Care Episode * Non-Elective Inpatient Episode 0.013 (0.037)

Critical Care Episode * Outpatient Appointment 0.022 (0.046)

0.5 * Diagnostic Services * Diagnostic Services -0.041 (0.018)*

Diagnostic Services * Elective Inpatient Episode -0.054 (0.047)

Diagnostic Services * Non-Elective Inpatient Episode 0.050 (0.035)

Diagnostic Services * Outpatient Appointment 0.033 (0.043)

0.5 * Elective Inpatient Episode * Elective Inpatient Episode 0.222 (0.157)

Elective Inpatient Episode * Non-Elective Inpatient Episode 0.016 (0.086)

Elective Inpatient Episode * Outpatient Appointment -0.151 (0.111)

0.5 * Non-Elective Inpatient Episode * Non-Elective Inpatient Episode 0.001 (0.094)

Non-Elective Inpatient Episode * Outpatient Appointment 0.152 (0.082)

0.5 * Outpatient Appointment * Outpatient Appointment 0.143 (0.125)

0.5 * Average Beds * Average Beds -0.336 (0.165)*

Average Beds 0.140 (0.027)***

Average Beds * A&E Attendance 0.133 (0.078)

Average Beds * Critical Care Episode 0.202 (0.056)***

Average Beds * Diagnostic Services 0.066 (0.050)

Average Beds * Elective Inpatient Episode 0.141 (0.143)

Average Beds * Non-Elective Inpatient Episode -0.279 (0.092)**

Average Beds * Outpatient Appointment -0.160 (0.104)

Average Beds * Training Grade Doctor Wages 0.370 (0.356)

R2 = 0.9852 adj R2 = 0.9838 AIC = -2,819 BIC = -2,505 N = 798 total observations from 141

hospitals, observations split as follows: 138 [2013/14], 134 [2014/15], 134 [2015/16], 133 [2016/17],

132 [2017/18], 127 [2018/19]

* - Statistically Significant at 5%, ** - Statistically Significant at 1%, *** - Statistically Significant

at 0.1%
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Table 4.1: Estimation results - Short-run Translog Form

Term Estimate Std. Error

Average Beds * Nurse Wages -1.188 (0.494)*

Average Beds * Cost of Capital -0.048 (0.043)

A&E Attendance * Training Grade Doctor Wages 0.372 (0.244)

Critical Care Episode * Training Grade Doctor Wages 0.281 (0.158)

Diagnostic Services * Training Grade Doctor Wages -0.087 (0.140)

Elective Inpatient Episode * Training Grade Doctor Wages -0.280 (0.334)

Non-Elective Inpatient Episode * Training Grade Doctor Wages -0.169 (0.276)

Outpatient Appointment * Training Grade Doctor Wages -0.148 (0.321)

A&E Attendance * Nurse Wages -0.011 (0.301)

Critical Care Episode * Nurse Wages 0.241 (0.195)

Diagnostic Services * Nurse Wages -0.136 (0.174)

Elective Inpatient Episode * Nurse Wages 0.900 (0.517)

Non-Elective Inpatient Episode * Nurse Wages -0.673 (0.358)

Outpatient Appointment * Nurse Wages 0.540 (0.477)

A&E Attendance * Cost of Capital -0.002 (0.028)

Critical Care Episode * Cost of Capital 0.055 (0.016)***

Diagnostic Services * Cost of Capital 0.030 (0.018)

Elective Inpatient Episode * Cost of Capital -0.042 (0.034)

Non-Elective Inpatient Episode * Cost of Capital -0.011 (0.027)

Outpatient Appointment * Cost of Capital -0.001 (0.036)

0.5 * Training Grade Doctor Wages * Training Grade Doctor Wages -2.932 (1.467)*

Nurse Wages * Training Grade Doctor Wages -3.883 (1.824)*

0.5 * Nurse Wages * Nurse Wages 5.668 (3.431)

Cost of Capital * Training Grade Doctor Wages 0.023 (0.119)

Cost of Capital * Nurse Wages 0.045 (0.166)

0.5 * Cost of Capital * Cost of Capital 0.048 (0.018)**

Teaching Hospital Organisation 0.024 (0.025)

R2 = 0.9852 adj R2 = 0.9838 AIC = -2,819 BIC = -2,505 N = 798 total observations from 141

hospitals, observations split as follows: 138 [2013/14], 134 [2014/15], 134 [2015/16], 133 [2016/17],

132 [2017/18], 127 [2018/19]

* - Statistically Significant at 5%, ** - Statistically Significant at 1%, *** - Statistically Significant

at 0.1%
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The optimal beds calculation as set out in (4.2) yields:

∂ ln C(y, w, K ′)
∂ ln K ′ = − 0.336 · ln Beds + 0.14 + 0.133 · ln A&E

+ 0.202 · ln Critical Care Episodes + 0.066 · ln Diagnostic Services

+ 0.141 · ln Elective Inpatient Episodes

− 0.279 · ln Non-Elective Inpatient Episodes

− 0.160 · ln Outpatient Appointments

+ 0.370 · ln Training Grade Doctor Wages

− 1.188 · ln Nursing Wages − 0.048 · ln Cost of Capital

(4.3)

This expression can be considered as the cost elasticity of capital, evaluated at mean
values. A 1% increase in capital (beds) is associated with a 0.2% unit cost increase
in Critical Care, but a 0.28% decrease in the unit cost of Non-Elective Episodes, as
well as a 1.19% decrease in the impact of nursing wage increases on the total cost.
Other coefficients were not statistically significant in the regression.

Setting equal to zero and solving gives the log of optimal capital stock ln K∗ (in
terms of beds) as:

ln K∗ = 0.418 + 0.397 · ln A&E + 0.602 · ln Critical Care Episodes

+ 0.196 · ln Diagnostic Services + 0.419 · ln Elective Inpatient Episodes

− 0.829 · ln Non-Elective Inpatient Episodes

− 0.477 · ln Outpatient Appointments

+ 1.101 · ln Training Grade Doctor Wages

− 3.537 · ln Nursing Wages − 0.144 · ln Cost of Capital

(4.4)

Using the expression above, the distribution of optimal capital stock can be com-
pared to observed values. Cost-optimal beds are increasing with all types of activity,
except for Non-Elective Inpatient Episodes and Outpatients. Non-Elective Inpatient
Episodes require beds, but observed values may appear cost-inefficient due to the
requirement to maintain surplus capacity due to the inability of the hospital to
turn away cases. In the case of Outpatients, beds are not used. Optimal beds are
negatively associated with Nursing Wages, perhaps due to the association between
nursing numbers and bed-based care. Where nursing wages are high, hospitals may
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substitute ward-based care for alternative settings.
When applied to the observed values, optimal bed numbers are slightly higher

than observed bed numbers. The distribution of optimal values has a longer tail and
higher variance than observed values. The median calculated optimal bed value is
1,070, lower than the median observed value of 741.
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Figure 4.1: Distribution of Calculated Optimal Beds and Observed
Beds (Translog). Optimal beds were derived by setting the partial
derivative of beds with respect to cost equal to zero and solving. The
results suggest that in the period, hospitals were undercapitalised and
would lower unit costs with more beds

4.5.1.1 Beds Only Interacted with Output Variables

The estimates presented above include interactions between beds and outputs as
well as beds and input prices. Optimal bed numbers would vary according to output
levels and also the relative prices of capital and labour. However, input prices that
the hospital faces are not in the control of the hospital, and the main relationship of
interest is between output and optimal scale. As a robustness check, optimal beds
are calculated when interaction terms for beds and input prices are omitted, to see
if the optimal bed range calculated above varies.
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Figure 4.2: Distribution of Calculated Optimal beds and Observed Beds
(Translog), interaction terms for output only. See Fig 4.1 for details on
derivation and interpretation.

Under both specifications, calculated optimal beds have a similar distribution.
Generally, calculated optimal capital levels are slightly higher than actual values,
suggesting that hospitals are undercapitalised. Higher capital values would reduce
average costs.

4.5.2 Long-run Estimation

Scale economies generated from the short-run estimation are set out in Table 4.1.
Retaining beds in the estimation allows us to calculate scale economy values for each
observation, factoring in the current number of beds, irrespective of whether this
number of beds is optimal for the current output level. As shown in Figure 4.3, scale
economies in this case are usually positive. The median short-run scale economy is
1.2, suggesting that a hospital that increased its use of inputs by 1% would see a
1.2% increase in output. Smaller-scale hospitals have higher levels of observed scale
economies. The smallest quartile of hospitals (measured by the number of beds) has
an average scale economy index of 1.28, with the largest quartile an index of 1.17.

102



Chapter 4. Economies of Scale in English Hospitals: Estimation via a Short-run
Cost Function

0.0

0.5

1.0

1.5

2.0

1000 2000
Beds

S
ca

le
 E

co
no

m
ie

s

Figure 4.3: Short-run Scale Economies (Translog). Scale economies are
derived from the short-run cost function, which includes capital (beds)
terms, and are generally higher than direct long-run estimation.

Figure 4.4 shows the long-run scale economy estimates using optimal capital
levels, plotted against the current number of beds. Long-run scale economies are, as
expected, lower than those calculated for the short-run function. Here the median
scale economy index is 1.14. Perhaps most notable in the long-run version is the
relationship between scale economies and size. In the direct estimation translog
version shown in Section 2.5, scale economies declined slightly with beds, so only
smaller hospitals had positive economies of scale. Using the short-run version showed
that point scale economies declined with bed numbers, but in the long-run versions,
scale economies remained positive at all bed numbers.
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Figure 4.4: Long-run Scale Economies vs Current Beds (Translog).
Long-run position evaluated after substituting optimal beds expression
into the short-run translog cost function.

Figure 4.5 shows the long-run scale economy calculations plotted against the
optimal number of beds. In both this plot and Figure 4.4, calculated scale economies
are lower than the short-run calculation in Figure 4.3 but are higher than the directly
estimated version in Figure 2.19 from Chapter 2. They are also relatively consistent
across the range of actual and optimal beds.
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Figure 4.5: Long-run Scale Economies vs Optimal Beds (Translog).
Long-run position evaluated after substituting optimal beds expression
into the short-run translog cost function.

Output and input coefficients in the directly estimated, short-run and long-run
models are shown in Table 4.2, omitting the interaction terms. Compared with
direct estimation, output coefficients in the long-run model are higher for A&E
Attendances, Critical Care Episodes, Diagnostic Services and Elective Inpatient
Episodes and lower for Non-Elective Inpatient care and Outpatient Attendances.
Amongst input prices, computing an envelope leads to a lower effect on cost from
increases in nursing wages and the cost of capital but a higher effect on cost from
increased medical wages.
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Table 4.2: Translog Model Coefficients

Term Direct Estimation Short-Run Estimation Long-Run Envelope

Intercept 19.353 19.365 19.395

A&E Attendance 0.076 0.064 0.120

Beds 0.140

Critical Care 0.078 0.077 0.162

Diagnostic Services 0.048 0.049 0.076

Elective Inpatient 0.301 0.273 0.332

Non-Elective Inpatient 0.269 0.250 0.134

Outpatient 0.144 0.122 0.055

Nursing 0.409 0.462 -0.034

Training Grade Doctor 0.457 0.452 0.606

Capital Rate 0.001 0.000 -0.020

*Interaction terms are omitted

4.5.3 Estimation using a Quadratic Form

As a further check, and to compare how the translog cost function envelope method
differs from a quadratic functional form, using the same approach, a long-run
quadratic cost function is computed using the envelope approach. Table 4.3 sets
out the short-run cost function, including bed numbers:
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Table 4.3: Estimation results - Short-run Quadratic Form

Term Estimate Std. Error

Intercept 220,749,584.936 (21,640,157.444)***

A&E Attendance 70.578 (153.376)

Critical Care Episode 365.709 (579.409)

Diagnostic Services 0.976 (3.009)

Elective Inpatient Episode 1,044.215 (674.392)

Non-Elective Inpatient Episode 2,042.513 (348.984)***

Outpatient Appointment 114.045 (52.257)*

Training Grade Doctor Wages 1,078.861 (2,123.795)

Nurse Wages 11,920.342 (4,039.651)**

Cost of Capital 3,398,911.814 (3,264,131.632)

0.5 * A&E Attendance * A&E Attendance -0.001 (0.001)

A&E Attendance * Critical Care Episode -0.007 (0.003)*

A&E Attendance * Diagnostic Services 0.000 (0.000)*

A&E Attendance * Elective Inpatient Episode -0.008 (0.004)*

A&E Attendance * Non-Elective Inpatient Episode 0.003 (0.002)

A&E Attendance * Outpatient Appointment 0.000 (0.000)

0.5 * Critical Care Episode * Critical Care Episode -0.063 (0.008)***

Critical Care Episode * Diagnostic Services 0.000 (0.000)***

Critical Care Episode * Elective Inpatient Episode -0.004 (0.012)

Critical Care Episode * Non-Elective Inpatient Episode 0.021 (0.006)***

Critical Care Episode * Outpatient Appointment 0.002 (0.001)**

0.5 * Diagnostic Services * Diagnostic Services 0.000 (0.000)***

Diagnostic Services * Elective Inpatient Episode 0.000 (0.000)

Diagnostic Services * Non-Elective Inpatient Episode 0.000 (0.000)

Diagnostic Services * Outpatient Appointment 0.000 (0.000)

0.5 * Elective Inpatient Episode * Elective Inpatient Episode 0.004 (0.016)

Elective Inpatient Episode * Non-Elective Inpatient Episode 0.021 (0.007)**

Elective Inpatient Episode * Outpatient Appointment -0.002 (0.001)

0.5 * Non-Elective Inpatient Episode * Non-Elective Inpatient

Episode
-0.014 (0.006)*

Non-Elective Inpatient Episode * Outpatient Appointment 0.000 (0.001)

0.5 * Outpatient Appointment * Outpatient Appointment 0.000 (0.000)

0.5 * Average Beds * Average Beds -66.216 (53.370)

Average Beds 122,802.192 (46,743.090)**

Average Beds * A&E Attendance 0.026 (0.186)

Average Beds * Critical Care Episode 1.390 (0.646)*

Average Beds * Diagnostic Services 0.003 (0.004)

Average Beds * Elective Inpatient Episode 0.470 (0.832)

Average Beds * Non-Elective Inpatient Episode -1.208 (0.427)**

Average Beds * Outpatient Appointment -0.040 (0.065)

R2 = 0.9091 adj R2 = 0.9009 AIC = 28,306 BIC = 28,620 N = 798 total observations from 141

hospitals, observations split as follows: 138 [2013/14], 134 [2014/15], 134 [2015/16], 133 [2016/17],

132 [2017/18], 127 [2018/19]

* - Statistically Significant at 5%, ** - Statistically Significant at 1%, *** - Statistically Significant at

0.1%

107



4.5. Results

Table 4.3: Estimation results - Short-run Quadratic Form

Term Estimate Std. Error

Average Beds * Training Grade Doctor Wages 1.979 (2.597)

Average Beds * Nurse Wages -10.497 (4.920)*

Average Beds * Cost of Capital -4,492.919 (3,940.631)

A&E Attendance * Training Grade Doctor Wages 0.027 (0.011)*

Critical Care Episode * Training Grade Doctor Wages -0.002 (0.042)

Diagnostic Services * Training Grade Doctor Wages 0.000 (0.000)

Elective Inpatient Episode * Training Grade Doctor Wages 0.026 (0.044)

Non-Elective Inpatient Episode * Training Grade Doctor

Wages
0.008 (0.024)

Outpatient Appointment * Training Grade Doctor Wages -0.005 (0.004)

A&E Attendance * Nurse Wages -0.026 (0.018)

Critical Care Episode * Nurse Wages 0.117 (0.050)*

Diagnostic Services * Nurse Wages -0.001 (0.000)

Elective Inpatient Episode * Nurse Wages 0.149 (0.073)*

Non-Elective Inpatient Episode * Nurse Wages 0.061 (0.041)

Outpatient Appointment * Nurse Wages 0.005 (0.006)

A&E Attendance * Cost of Capital -12.114 (14.425)

Critical Care Episode * Cost of Capital 174.014 (52.873)***

Diagnostic Services * Cost of Capital 0.352 (0.255)

Elective Inpatient Episode * Cost of Capital -59.618 (48.585)

Non-Elective Inpatient Episode * Cost of Capital 27.024 (26.643)

Outpatient Appointment * Cost of Capital 1.441 (4.864)

0.5 * Training Grade Doctor Wages * Training Grade Doctor

Wages
-0.117 (0.173)

Nurse Wages * Training Grade Doctor Wages -0.901 (0.309)**

0.5 * Nurse Wages * Nurse Wages 2.220 (0.728)**

Cost of Capital * Training Grade Doctor Wages 27.255 (158.323)

Cost of Capital * Nurse Wages 141.226 (302.066)

0.5 * Cost of Capital * Cost of Capital 273,561.921 (278,431.378)

Teaching Hospital Organisation -559,722.581 (9,345,900.311)

R2 = 0.9091 adj R2 = 0.9009 AIC = 28,306 BIC = 28,620 N = 798 total observations from 141

hospitals, observations split as follows: 138 [2013/14], 134 [2014/15], 134 [2015/16], 133 [2016/17],

132 [2017/18], 127 [2018/19]

* - Statistically Significant at 5%, ** - Statistically Significant at 1%, *** - Statistically Significant at

0.1%

Optimal beds under a quadratic specification are much higher than observed bed
values, in common with the quadratic specification. Optimal beds calculated using
the quadratic specification are shown in Figure 4.6. The median calculated optimal
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bed value is 1911 beds, compared to the median actual bed value of 740. The
calculation of optimal beds appears to be sensitive to the form of the cost function
specified.
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Figure 4.6: Distribution of Calculated Optimal Beds and Observed
Beds (Quadratic). See Fig 4.1 for details on derivation and interpreta-
tion.

As with the translog function, short-run scale economies (holding current capital
levels fixed) are higher than those directly estimated, as seen in Figure 4.7. The
translog short-run version has higher scale economies associated with larger hos-
pitals, which was not observed with the quadratic short-run estimation. Median
short-run scale economies were 1.185, with no apparent limit to scale economies.
Short-run scale economies decline as bed numbers increase but at no point decline
to the level of diseconomies of scale.
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Figure 4.7: Short-run Scale Economies (Quadratic). Scale economies
are derived from the short-run cost function, which includes capital
(beds) terms, and are generally higher than direct long-run estimation.

The long-run version shows lower scale economies after substituting these optimal
bed values into the short-run function. In the long-run most organisations with less
than 1,000 beds have positive scale economies (Figure 4.8). When plotting scale
economies against optimal beds (Figure 4.9), scale economies are observed to be
negative until around 1,500 beds, when they become positive.
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Figure 4.8: Long-run Scale Economies vs Current Beds (Quadratic).
Long-run position evaluated after substituting optimal beds expression
into the short-run quadratic cost function.
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Figure 4.9: Long-run Scale Economies vs Optimal Beds (Quadratic).
Long-run position evaluated after substituting optimal beds expression
into the short-run quadratic cost function.
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4.5.4 Simplified output model

As a further robustness check, a model specification aggregating outputs was es-
timated to evaluate the sensitivity to changes in output specification. Results are
set out in Appendix B, and suggest that calculated optimal capital levels and scale
economies are also sensitive to the form and level of aggregation of healthcare out-
puts, as well as the functional form used for the cost equation.

4.6 Discussion

This chapter used an envelope method to estimate a long-run cost function from
short-run functions rather than directly from observed values. Both specifications
yielded similar information from the short term regression models, with additional
beds being associated with a 0.14% (translog) or £123k (quadratic) increase in
total cost. Both functional forms also noted that additional beds were associated
with increases in the unit costs of Critical Care Episodes, but were associated with
reduced unit costs in non-elective care, and a lower relationship between nursing
wages and total cost, perhaps due to a switch to more capital intensive production
technologies.

However, results suggest that calculated optimal capital levels are very sensitive
to the functional form and output aggregation method. The translog model behaved
relatively consistently with the results expected by standard firm theory, with higher
scale economies than suggested by direct estimation. However, a quadratic func-
tional form yielded varying results, stemming from implausible calculated optimal
capital levels.

More positively, uncertainty in calculated optimal beds is not associated with dif-
ferences in calculated scale economies. Calculated scale economies appear relatively
robust to changes of specification within the same functional form and associated
changes in optimal capital calculations. Most variation in computed scale economies
in this chapter arises from using different functional forms. Changes in specification
within a quadratic or translog functional form do not seem to have as large an effect
as changes between these forms.

This chapter uses a method of estimating a cost function that deals with the
problem of directly estimating scale economies from observed costs, which may not
reflect the minimum for each output. This approach ought to correct for this and
generate scale economy estimates using the true cost function frontier, improving
on studies which use direct estimation. Resulting scale economies and the point
at which they no longer hold are higher using this method, as would be inferred
from firm theory. The main weaknesses of this approach are the sensitivity of op-
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timal capital levels, which sometimes yield implausible results, particularly for the
quadratic specification.

Policymakers can take encouragement from the fact that reported scale
economies from direct estimation may underestimate the true size of opportunities
from scale economies. However, they may wish to be wary of results from studies
that report implausible capital levels or scale economy estimates, as this envelope
method appears very sensitive to changes in specification. The quadratic functional
form appears more vulnerable to variation in specification and implausible optimal
capital results.

Future studies that use this approach to deal with X-inefficiency or non-optimal
capital stock should be wary that calculated capital levels are appropriate and are
not contingent on the chosen functional form or definition of outputs. Misspecified
models may be part of the reason why theoretical papers often identify positive
economies of scale (Kristensen et al., 2012; Preyra & Pink, 2006; Vita, 1990), whilst
papers looking at post-merger effects may find limited positive effects once mergers
have occurred (Gaynor et al., 2012). Future studies could also look at alternate
proxy measures for capital, as bed numbers may be vulnerable to the decline in the
proportion of hospital healthcare requiring admission. However, at least one prior
study using financial statement values rather than beds has found similar difficulties
(Cowing & Holtmann, 1983) where optimal capital amounts significantly vary from
observed values, suggesting that both capital measures may have issues with sen-
sitivity to specification and returning counterintuitive results. Future studies that
use an envelope method should be wary that the calculated long-run cost function
is realistic. If optimal capital levels calculated using this method are unrealistic,
estimates for ‘optimal’ scale economies may not be realisable. Additional research is
needed to establish the sensitivity of such approaches to specification, and whether
bed numbers can be used as an appropriate proxy measure for capital.
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Chapter 5

Economies of Scope in English
Hospitals

5.1 Introduction

Organisations that produce multiple outputs may produce at a lower cost than
separate production. These organisations and their production processes are said
to exhibit economies of scope. In the case of hospitals, the production of health-
care to treat one health demand may be complementary to the costs of producing
other healthcare for different health demands. For example, cost complementarities
may arise from the ability to reassign labour to meet fluctuating demand. These
complementarities may also arise from the joint use of resources not consumed in
production, such as hospital buildings, theatres, or reusable equipment.

In systems where the state plays a direct role in secondary healthcare funding,
it is important to know which areas within secondary healthcare exhibit these scope
economies. Policymakers can use this knowledge to plan healthcare provision and
funding. Discussions on optimal hospital configurations often consider scale effects
as sources of potential savings but rarely consider the configuration of services and
whether there are financially beneficial scope effects from colocating services. Where
scope economies are considered, they are often computed between the care settings,
e.g. inpatient and outpatient care, rather than more useful clinical specialty cate-
gories.

It is important for policy reasons to consider scope economies across clinical
specialties rather than the same units used to measure scale. Policymakers aiming
to structure services to maximise scope economies are likely to consider colocating
clinical services together, defined in terms of specialties rather than the care setting
outputs used in measuring scale. Classifications based on care settings are also
vulnerable to casemix differences and associated technical production relationships.
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This chapter investigates whether scope economies are present in hospital health-
care, using England’s national cost collection data. Data is aggregated into clinical
specialty groupings as the most natural way of dividing outputs when evaluating
scope economies, rather than retaining an aggregation by care setting as in previ-
ous Chapters 2-4. A quadratic cost function is fitted to the national cost collection
data, with the largest specialties as outputs and aggregating smaller specialties into
a residual category. Having estimated a cost equation, the presence of economies of
scope is first tested via cost complementarities, defined as the cross partial derivative
of cost with respect to outputs. Following this, the cost difference between separate
and joint production is computed using the definition supplied by Baumol et al.
(1982).

Results show that ‘generalist’ specialties, particularly General Surgery, have pos-
itive scope economies when combined with other hospital healthcare specialties.
Possible reasons for the observed results are discussed, along with suggestions for
future research using similar data.

5.2 Previous Literature

Prior studies dealing with scope often do so alongside calculating scale effects. In
many cases, this involves using the same output measures used for scale. Using
the same units could arise either because the data does not allow other means of
aggregation, or because authors wish to consider scale and scope economies using
the same output units.

Results from such studies are mixed - some studies find evidence of economies
of scope between inpatient admissions and outpatient activity (Sinay & Campbell,
1995; Weaver & Deolalikar, 2004). Other studies find diseconomies of scope between
these categories (Grannemann et al., 1986; Wagstaff & López, 1996). Variation in
reported results makes it hard to reach a consensus.

One possible explanation for variation in results is the existence of casemix differ-
ences. Hospitals may have more or less activity in certain areas based on the mix of
healthcare supplied, according to technical relations of production. Certain types of
outpatient appointments may be technically related to inpatient care. For example,
an elective inpatient surgery admission may be preceded by outpatient appointments
to evaluate fitness for surgery or diagnostic imaging, with post-operative outpatient
follow-ups taking place after discharge. Accident and Emergency activity is also
technically related to Non-Elective Inpatient care. Non-Elective admissions are al-
most exclusively made via a preceding emergency department attendance. Equally,
hospitals may have a casemix which is weighted towards more ‘contained’ care set-
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ting activities, for example, medical care that is carried out in the outpatient setting
only, or emergency department activity which has a lower conversion rate to inpa-
tient admission. The degree of scope economies between outpatient, inpatient and
emergency care activities may vary according to underlying characteristics in the
type of care provided.

Some studies define outputs in more natural units to evaluate scope economies,
usually at a clinical specialty level or a grouping of clinical specialties. Prior (1996)
uses a DEA approach and finds economies of scope between all combinations of
medicine, surgery, gynaecology and paediatric output. Other studies using para-
metric methods find limited evidence where they are based on the sufficient but not
necessary condition of identifying cost complementarities (Vita, 1990), but find more
evidence where Baumol’s full definition of economies of scope is computed (Baumol
et al., 1982, p. 73; Cowing & Holtmann, 1983)

Only one study I am aware of uses UK data to compute economies of scope. Free-
man et al. (2020) use English national cost collection data, as is considered here.
They find evidence of scope economies between emergency work in a given specialty
and elective work in others, and diseconomies of scope for emergency activity in
a specialty and elective activity in the same specialty. Rather than estimating an
overall cost function, they estimate individual cost functions for groupings of care
setting and specialty (defined by the HRG Chapter Hierarchy). Costs are modelled
as a linear function of activity in the respective HRG grouping plus another term for
activity in other groupings. Freeman et al. can use the dataset to provide weight-
ing within each HRG section and adopt a hierarchical panel structure allowing an
analysis of care setting and specialty. However, their definitions of specialties are
not exactly congruent with clinical specialisation. For example, HRG Chapter J
- “Skin, Breast and Burns” contains many HRGs corresponding to a spell of care
primarily under a plastic surgeon, but also breast surgery procedures likely carried
out by a general (breast) surgeon, as well as healthcare delivered by a dermatologist
(patch tests, phototherapy). Freeman et al. also only consider panels of elective
and non-elective inpatient care, perhaps because this HRG-based definition is not
amenable to categorising outpatients or emergency department activity. Therefore,
they cannot consider scope economies arising from outpatient or emergency depart-
ment activity. One further issue with the approach Freeman et al. take is that they
estimate costs within a care setting rather than at the hospital level. For the left
hand side of the model they use total elective (or non-elective) inpatient costs rather
than total hospital costs. This approach implicitly accepts the accounting appor-
tionment of organisation-level costs into the two inpatient care setting categories.
These apportionments may not be valid if the healthcare production is genuinely
joint. For example, apportioned expenditure from building maintenance cannot be
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logically split between healthcare provided in that building. Treating those costs as
apportionable may result in valid scope economies not being detected, where scope
economies arise between care settings.

5.3 Data

5.3.1 Clinical Specialities

Medical specialisation has been one of the main techniques to deal with the in-
creasing complexity of healthcare and consequent human capital requirements for
physicians. Physicians working in hospital care are specialists in particular areas of
medicine, rather than the generalists who predominantly work in primary care clin-
ics. Clinicians working in particular specialties have extended training and particular
knowledge in their area of specialisation. This knowledge may not be transferable
to other specialties, but it increases the productivity of clinicians working in that
field as a form of additional human capital (Marder & Hough, 1983).

Departments based around specialties, or commonly groups of specialties, are the
default means of organisation in the UK. Acute hospitals will typically have many
medical and surgical specialties coexisting with the hospital. Some specialisms, such
as mental health care, are provided by specialist mental health organisations spread
throughout the country, and are therefore omitted from this analysis. Equally, some
very specialist organisations exist that are national or large regional centres for only
one or two medical specialties. These organisations, set out in Appendix A, are also
omitted from the analysis.

Certain groups of specialties may benefit from economies of scope. Economies of
scope can arise from many sources. For example, economies of scope can arise from
the more efficient use of shared resources or physical capital stock, such as surgical
theatres, critical care beds, or inpatient wards. Certain specialties may be able to
use these common resources where they are colocated in the same organisation and
sufficiently physically proximate to each other. More efficient uses of these resources
may be possible where one specialty can use resources not currently required by the
other, smoothing out fluctuations in demand for healthcare services. The joint pro-
duction of certain healthcare goods may also require input from several specialties.
For example, lower costs in diagnostic specialties such as pathology may reduce time
and resource requirements in other specialties using pathology services.
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5.3.2 Treatment Function Codes

The data used here is identical to that used in Chapters 2-4. However, in this analy-
sis, the clinical specialty is the more natural activity grouping. In the dataset, medi-
cal specialties are differentiated using Treatment Function Codes (‘TFC’). Most ad-
ministrative NHS datasets use these TFCs to denote specialty (NHS Digital, 2022b).
The TFC is based on the ‘Main Specialty Code’, which is determined by which clin-
ician is responsible for the healthcare provided and their specialty as recognised by
the relevant UK Royal Medical College. The number and description of TFC codes
are set nationally, though individual hospitals decide which code to use for certain
activities. Larger hospitals with many specialties and higher degrees of specialisa-
tion may use more codes, whereas smaller hospitals may aggregate their activity into
higher-level TFC codes. To ensure the data is comparable, and the model is parsi-
monious, TFC codes are weighted and aggregated into several clusters for analysis,
as described below.

5.3.3 Activity Aggregation

Activity is weighted within each specialty and care setting according to the HRG
currency value of that activity, before dividing by the average elective inpatient HRG
value for all specialties. This approach is analogous to that followed in the simplified
model in Appendix B, except that in this version, outputs are not aggregated to a
total value but retain an output value for each specialty grouping.

Once weighted, activity groups were aggregated into larger groups according
to the following heuristic. If the TFC code had an analogous higher level Main
Specialty code, the activity was aggregated into that larger category. For example,
TFCs 103 Transplant Surgery and 104 Breast Surgery were aggregated into the
higher level category 100 General Surgery. Services which did not have TFC codes
were amalgamated into the most relevant Main Specialty grouping. Areas where
this was the case included including A&E attendances, critical care episodes, and
diagnostics directly ordered by GPs but provided by hospitals. For example, critical
care activity was amalgamated into Anaesthetics, as patients on critical care would
be under the care of an anaesthesiologist, and GP-ordered diagnostic and pathology
services, are amalgamated into the Diagnostic Imaging & Pathology speciality group.

After these steps, progressively smaller specialties were grouped into an ‘Other’
category until there were eight large speciality groupings, including the ‘Other’ cat-
egory. Before aggregation, there were 181 treatment function and service codes,
which are now aggregated into eight specialty groups. Smaller specialties are ag-
gregated into an ‘other’ category so the model is parsimonious, leaving only larger
specialties in the model. A complete mapping of how each TFC code is aggregated
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into a specialty grouping is set out in Appendix C.
Revised weighted activity in each amalgamated specialty group is set out in

Table 5.1. The method of aggregation gives us eight distinct specialty groupings
for the analysis. Specialties with the highest amount of activity in total include
Obstetrics and Gynaecology, General Medicine, Emergency Medicine, Anaesthetics
and Critical Care, General Surgery, Orthopaedics and Diagnostics. Each hospital
in the dataset recorded activity in these specialties, except for two hospitals which
did not offer Obstetrics and Gynaecology services.

Table 5.1: Specialty Activity Levels

Specialty
Mean Hospital Annual

Activity

Hospitals Recording

Activity

Other 107,928 141

Obstetrics & Gynaecology 28,296 139

General Medicine 22,531 141

Emergency Medicine (including A&E) 20,326 141

Anaesthetics, Critical Care & Pain Management 20,223 141

General Surgery 18,811 141

Orthopaedics 18,694 141

Diagnostic & Pathology Services 10,376 141

Activity is weighted according to HRG value and setting. Care settings include A&E attendances, Diagnostic

Services, Elective Inpatients, Non-Elective Inpatients, Critical Care, and Outpatients. Within each care setting,

activity is weighted by the HRG value. The resulting values are weighted by the average cost of each care setting.

This value is then divided by the average cost of an elective inpatient episode. The resulting activity value can

therefore be considered an ’elective inpatient equivalent’ in each specialty. The top 7 specialties are included in the

model, with other specialties amalgamated into the ’Other’ category

5.3.4 Input Prices

As in Chapters 2-4, average training grade doctor and nursing wages are taken from
the NHS’s electronic staff record, together with a weighted average cost of capital
measure constructed from financial statement information. Though average staff
wages may differ by specialty, the average staff wage across the hospital is used. The
wage dataset does not allow for identifying wage differentials between specialties.
Even if possible, including different wages per specialty would considerably increase
the number of terms in the estimation. Consequently, the use of average wages at
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the hospital level is retained in the estimation.

5.4 Method

5.4.1 Definitions

A discussion of how scope economies apply to multiproduct cost functions can be
found in Gravelle & Rees (2004) pp.140-1. Economies of scope exist where the cost of
joint production is less than that of separate production. For the two-product case,
output values where joint production incurs a lower cost than separate production
can be formally stated as follows:

C(y1, y2, w) < C(0, y2, w) + C(y1, 0, w) (5.1)

Where this is true over a range of outputs, that range exhibits economies of scope.
For higher numbers of outputs, Baumol et al. (1982) derive an expression quantifying
economies of scope SCT as:

SCT = C(yT ) + C(yN−T ) − C(y)
C(y) (5.2)

Where T is a subset of products evaluated at a particular output vector y. This
expression records the difference in costs between separate production [C(yT ) +
C(yN−T )] and joint production C(y) as a proportion of the joint production cost.
Where this expression is greater than zero, the cost of separate production exceeds
that of joint production, and there are positive economies of scope. Where this ex-
pression is less than zero, joint production costs exceed those of separate production,
and there are diseconomies of scope. Where SCT is zero, the production process is
separable, and joint production has no effect on cost.

5.4.2 Cost Complementarities

Cost complementarities exist where the marginal cost of producing one output de-
clines as another input increases. For a twice differentiable cost function, this exists
where the following inequality is satisfied:

∂C(y, w)
∂Yi∂Yj

< 0 (5.3)
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where all Yi, Yj > 0 and i ̸= j

Cost complementarities are a sufficient condition for economies of scope (Bau-
mol et al., 1982, p. 75). However, they are not a necessary condition. Economies
of scope can arise over certain ranges where the cost complementarity condition is
not met. For example, economies of scope may arise where fixed costs are shared
but marginal costs are unrelated. The sharing of fixed costs could be sufficient to
outweigh the absence of local cost complementarities (Butler, 1995, p. 19; Gorman,
1985). Alternatively, economies of scope may not be present over the entire output
range but over a reduced range that encompasses the level at which most organisa-
tions produce. Consequently, a test for cost complementaries cannot be a sufficient
criterion for ruling out economies of scope.

5.4.3 Estimation of the Cost Function

In this chapter, a quadratic cost function is estimated with outputs aggregated
according to clinical specialty rather than care setting, in contrast to previous chap-
ters. Measuring outputs in care settings is helpful for computing economies of scale,
where the primary interest lies in overall outputs, and scale economies can be de-
fined as proportionate expansions of the current output mix. However, it is not so
useful when considering economies of scope, where the interest lies in how changes
in the mix of outputs affects overall costs. Redefining outputs as clinical specialties
allows us to analyse the effects of changes in that output mix more usefully. It
is more useful to consider specialties as the basis of healthcare goods as they are
the most natural ways of thinking about individual services, corresponding to how
departments are likely to be structured administratively.

The specific functional form of the estimated function equation (5.4) is identical
to the quadratic form used in Chapter 2, except that outputs yi are aggregated
according to specialty groupings rather than the setting in which healthcare is pro-
vided.

Cht(y, w) =α0 +
m∑
i

αiyiht +
n∑
k

βkwkht + 1
2

m∑
i

m∑
j

δijyihtyjht

+ 1
2

n∑
k

n∑
l

γkl wkht wlht +
m∑
i

n∑
k

ρik yiht wkht + ϵht

(5.4)

Where yi is the amount of the ith output produced (of m total outputs), wi is the
ith input price (of n inputs), and αi, βk, δij, γk,l, and ρi,k represent coefficients
estimated in the model. Hospital index h and time period t reflect the panel data
nature of the dataset. The error term ϵht = τh +vht comprises a term τh representing
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hospital specific effects and a random noise term vit. For reasons of clarity, time and
individual subscripts are omitted from this point on in the chapter.

The quadratic cost function was estimated using a random effects estimator
and robust standard errors. Specialties included as outputs are Obstetrics & Gy-
naecology, General Medicine, Emergency Medicine, Anaesthetics, General Surgery,
Orthopaedics, Diagnostic and Pathology Services, and the amalgamated ‘Other’ cat-
egory of smaller specialties. As in previous chapters, training grade doctor wages,
nursing wages, and the constructed cost of capital are used as input prices, and a
dummy variable for teaching hospital status is included. As in previous chapters,
the dependent continuous variables are centred to reduce multicollinearity between
variables and their cross-products. Centring also means the regression coefficients
can be interpreted as the respective effects at the sample mean.

The quadratic form is preferred to the more popular translog to predict costs
where specific outputs are set to zero. The translog contains log terms for each out-
put, so an output vector containing zero terms is undefined. Consequently, it cannot
be used to predict total cost where certain products are omitted. The quadratic form
can predict cost with zero outputs, so it is preferable for calculating economies of
scope. The random effects model is used to control for unobserved heterogeneity
by taking account of the panel structure. In contrast with the fixed effects model,
random effects assumes that the unobserved component τh is uncorrelated with
other variables in the regression, and that the individual (hospital) specific effect is
homoscedastic (Wooldridge, 2002, pp. 247–338).

I investigate the existence of economies of scope in two ways. After estimating a
cost function using parametric methods, coefficients on the cross-products of outputs
are evaluated. The sign of these coefficients shows us the presence or absence of cost
complementarities between products. This approach of testing for cost complemen-
tarities is often employed by papers using a translog cost function or as a weaker
test for the existence of economies of scope. Following this, scope economies are
calculated according to Equation (5.2), using certain clinical specialties as the set T

to be tested, with all other outputs included in the set N . Economies of scope are
evaluated at the output level of each observation, and the average for each specialty
is reported.
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5.5 Results

5.5.1 Specialty Activity

Descriptive statistics for the final regression sample are set out in Table 5.2 below,
showing summary statistics for the total cost dependent variable and the indepen-
dent output and price variables, prior to centering.

Table 5.2: Descriptive Statistics

Non-Centred Values N = 798

Anaesthetics

Mean (SD) 20,223 (17,946)

Median (IQR) 14,089 (8,881, 22,619)

Range 1,696, 108,693

Diagnostic and Pathology Services

Mean (SD) 10,376 (7,311)

Median (IQR) 8,831 (6,049, 13,286)

Range 632, 99,530

Emergency Medicine

Mean (SD) 20,326 (10,805)

Median (IQR) 17,715 (13,233, 25,259)

Range 4,228, 84,804

General Medicine

Mean (SD) 22,531 (12,785)

Median (IQR) 20,808 (14,053, 29,167)

Range 0, 120,049

General Surgery

Mean (SD) 18,811 (7,275)

Median (IQR) 17,633 (13,522, 23,671)

Range 5,415, 59,031

Obstetrics & Gynaecology

Mean (SD) 28,296 (14,621)

Median (IQR) 26,949 (18,475, 34,553)

Range 0, 93,639

Orthopaedics

Mean (SD) 18,694 (7,852)

Median (IQR) 16,821 (13,037, 23,596)

Range 4,104, 46,833

Other Activity
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Table 5.2: Descriptive Statistics

Non-Centred Values N = 798

Mean (SD) 107,928 (62,712)

Median (IQR) 93,367 (60,284, 141,429)

Range 15,614, 379,970

Cost of Capital (%)

Mean (SD) 4.47 (2.06)

Median (IQR) 3.94 (3.04, 5.36)

Range 0.67, 13.91

Nursing Wages

Mean (SD) 35,501 (1,930)

Median (IQR) 34,923 (34,260, 35,970)

Range 32,703, 42,253

Training Grade Doctor Wages

Mean (SD) 47,630 (2,828)

Median (IQR) 47,431 (45,632, 49,543)

Range 40,077, 55,880

Teaching Hospital Organisation

0 523 (66%)

1 275 (34%)
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5.5.2 Cost Function Estimation

Model results are set out in Table 5.3. To solve a computational issue with very small
numbers in the inverted variance/covariance matrix, the dependent (cost) variable
and all continuous independent variables were divided by 1000, except for the cost
of capital variable. The coefficients in the table should be interpreted accordingly.

Table 5.3: Estimation Results - Scope Economies

Term Estimate Std. Error

Intercept 294,323.492 (3,832.179)***

Other 1,165.071 (62.438)***

Obstetrics & Gynaecology 120.103 (209.709)

General Medicine 842.939 (156.718)***

Emergency Medicine Including A&E 911.054 (290.819)**

Anaesthetics, Critical Care & Pain Management 2,785.377 (315.975)***

General Surgery 2,067.344 (458.629)***

Orthopaedics 1,828.620 (356.098)***

Diagnostic and Pathology Services 536.552 (201.970)**

Training Grade Doctor Wages 2,418.323 (453.154)***

Nurse Wages 3,790.022 (1,253.058)**

Cost of Capital 44.547 (649.820)

0.5*Other*Other -7.873 (2.875)**

Obstetrics & Gynaecology*Other 2.946 (5.296)

0.5*Obstetrics & Gynaecology*Obstetrics & Gynaecology 66.549 (22.930)**

Obstetrics & Gynaecology*Orthopaedics 41.507 (31.346)

General Medicine*Other 4.491 (5.005)

General Medicine*Obstetrics & Gynaecology -18.339 (14.394)

0.5*General Medicine*General Medicine -9.645 (16.055)

General Medicine*General Surgery 3.490 (35.274)

General Medicine*Orthopaedics -37.309 (24.551)

Emergency Medicine Including A&E*Other 0.838 (10.881)

Emergency Medicine Including A&E*Obstetrics & Gynaecology 7.815 (25.218)

Emergency Medicine Including A&E*General Medicine 7.695 (18.046)

0.5*Emergency Medicine Including A&E*Emergency Medicine Including

A&E
-22.592 (37.666)

Emergency Medicine Including A&E*General Surgery 12.147 (59.065)

Emergency Medicine Including A&E*Orthopaedics -20.262 (33.074)

Anaesthetics, Critical Care & Pain Management*Other 23.010 (5.902)***

Anaesthetics, Critical Care & Pain Management*Obstetrics & Gynaecology -44.203 (12.004)***

Anaesthetics, Critical Care & Pain Management*General Medicine 0.152 (14.802)

Anaesthetics, Critical Care & Pain Management*Emergency Medicine

Including A&E
4.561 (29.378)

R2 = 0.9538 adj R2 = 0.9488 AIC = 17,586 BIC = 17,961 N = 138 [2013/14], 134 [2014/15], 134

[2015/16], 133 [2016/17], 132 [2017/18], 127 [2018/19] hospitals

* - Statistically Significant at 5%

** - Statistically Significant at 1%

*** - Statistically Significant at 0.1%
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Table 5.3: Estimation Results - Scope Economies

Term Estimate Std. Error

0.5*Anaesthetics, Critical Care & Pain Management*Anaesthetics, Critical

Care & Pain Management
-70.732 (10.176)***

Anaesthetics, Critical Care & Pain Management*General Surgery 48.264 (41.897)

Anaesthetics, Critical Care & Pain Management*Orthopaedics -5.222 (33.415)

Anaesthetics, Critical Care & Pain Management*Diagnostic and Pathology

Services
-5.617 (15.246)

General Surgery*Other -10.017 (12.616)

General Surgery*Obstetrics & Gynaecology -37.636 (46.981)

0.5*General Surgery*General Surgery 62.607 (163.627)

General Surgery*Orthopaedics -33.907 (85.637)

Orthopaedics*Other 15.300 (11.958)

0.5*Orthopaedics*Orthopaedics -94.104 (45.502)*

Diagnostic and Pathology Services*Other -2.605 (7.709)

Diagnostic and Pathology Services*Obstetrics & Gynaecology 16.695 (28.991)

Diagnostic and Pathology Services*General Medicine 22.549 (19.037)

Diagnostic and Pathology Services*Emergency Medicine Including A&E 13.814 (26.147)

Diagnostic and Pathology Services*General Surgery -24.294 (49.644)

Diagnostic and Pathology Services*Orthopaedics 17.136 (46.683)

0.5*Diagnostic and Pathology Services*Diagnostic and Pathology Services -17.887 (7.713)*

Other*Training Grade Doctor Wages -30.208 (18.519)

Obstetrics & Gynaecology*Training Grade Doctor Wages 130.868 (62.662)*

General Medicine*Training Grade Doctor Wages -38.803 (41.175)

Emergency Medicine Including A&E*Training Grade Doctor Wages 28.856 (84.189)

Anaesthetics, Critical Care & Pain Management*Training Grade Doctor

Wages
-47.067 (67.191)

General Surgery*Training Grade Doctor Wages 178.564 (142.868)

Orthopaedics*Training Grade Doctor Wages -28.973 (89.340)

Diagnostic and Pathology Services*Training Grade Doctor Wages 115.772 (71.654)

Other*Nurse Wages 124.154 (32.715)***

Obstetrics & Gynaecology*Nurse Wages -223.231 (113.662)*

General Medicine*Nurse Wages 30.452 (87.485)

Emergency Medicine Including A&E*Nurse Wages -72.618 (122.103)

Anaesthetics, Critical Care & Pain Management*Nurse Wages 99.459 (68.237)

General Surgery*Nurse Wages -299.676 (281.232)

Orthopaedics*Nurse Wages 250.895 (203.803)

Diagnostic and Pathology Services*Nurse Wages -100.964 (104.122)

Other*Cost of Capital -37.195 (16.792)*

Obstetrics & Gynaecology*Cost of Capital -27.150 (56.784)

General Medicine*Cost of Capital 16.607 (52.540)

Emergency Medicine Including A&E*Cost of Capital -196.704 (81.850)*

R2 = 0.9538 adj R2 = 0.9488 AIC = 17,586 BIC = 17,961 N = 138 [2013/14], 134 [2014/15], 134

[2015/16], 133 [2016/17], 132 [2017/18], 127 [2018/19] hospitals

* - Statistically Significant at 5%

** - Statistically Significant at 1%

*** - Statistically Significant at 0.1%

126



Chapter 5. Economies of Scope in English Hospitals

Table 5.3: Estimation Results - Scope Economies

Term Estimate Std. Error

Anaesthetics, Critical Care & Pain Management*Cost of Capital 248.437 (65.738)***

General Surgery*Cost of Capital -121.525 (146.403)

Orthopaedics*Cost of Capital 213.906 (134.866)

Diagnostic and Pathology Services*Cost of Capital 143.385 (72.427)*

0.5*Training Grade Doctor Wages*Training Grade Doctor Wages 122.411 (209.510)

Nurse Wages*Training Grade Doctor Wages -892.272 (371.245)*

0.5*Nurse Wages*Nurse Wages 2,611.275 (809.077)**

Cost of Capital*Training Grade Doctor Wages 60.303 (171.173)

Cost of Capital*Nurse Wages 835.107 (403.547)*

0.5*Cost of Capital*Cost of Capital 633.154 (272.281)*

Teaching Hospital Organisation -4,864.575 (5,751.117)

London-based Organisation 34,305.599 (10,549.015)**

R2 = 0.9538 adj R2 = 0.9488 AIC = 17,586 BIC = 17,961 N = 138 [2013/14], 134 [2014/15], 134

[2015/16], 133 [2016/17], 132 [2017/18], 127 [2018/19] hospitals

* - Statistically Significant at 5%

** - Statistically Significant at 1%

*** - Statistically Significant at 0.1%

Significant coefficients in these results include the intercept term, which at
£294,323,492 is comparable to estimates in previous chapters. The dummy for
London-based organisations is also significant and estimated at an additional
£34,305,599 cost associated with a location in London. The non-interacted output
coefficients are all positive and statistically significant except for Obstetrics and
Gynaecology. Coefficients on non-interacted input prices are also all positive
and statistically significant except for the cost of capital variable. Interaction
terms were generally not statistically significant, but terms involving self-cross
products were often statistically significant. The self-cross-product of Obstetrics
and Gynaecology (£67) is statistically significant and positive, suggesting that
costs increase with output for this specialty. The self-cross-product of the ‘Other’
category (£-8) suggests that marginal costs in this category decline with additional
output. Similar observations were noted in orthopaedics (£-94), Diagnostic and
Pathology Services (£-18), and Anaesthetic, Critical Care and Pain Management
(£-71), suggesting weak evidence for scale economies in these specialties.

Some price-output interactions were found to be statistically significant. A £1
increase in Training Grade Doctor wages was associated with a £131 increase in
Obstetrics and Gynaecology Costs per activity unit. Marginal costs in Obstetrics
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and Gynaecology decline by £223 per activity unit with a £1 increase in nursing
wages. This finding may be a seniority effect caused by midwives and other nursing
staff in this group being in lower pay bands on average than other specialties. Higher
activity in Obstetrics & Gynaecology may be therefore associated with lower nursing
wages and, therefore, a lower total cost. Higher nursing wages are associated with
higher marginal costs in the ‘Other’ specialty grouping, adding £124 to each activity
unit for each £1 increase in nurse wages. A 1% increase in the cost of capital
is associated with lower marginal costs of the ‘other’ specialty grouping by £-37,
lower marginal costs in Emergency Medicine (£-197), higher marginal costs for
Diagnostic and Pathology Services (£143) and Anaesthetics, Critical Care and Pain
Management (£248).

Several input-interaction terms were statistically significant. The interaction of
nurse wages and training grade doctor wages is negative and statistically significant
(£-892), suggesting a degree of substitutability between medical and nursing labour.
Higher paid or higher graded staff in one staff category reduces the marginal impact
on cost from raises in the other staff group. The marginal impact of nursing wages
on total cost unsurprisingly increases as nursing wages increase (£2,611). A similar
phenomenon arises from increases in the cost of capital (£633). Finally, increases in
nurse wages are associated with increased marginal effects of the cost of capital on
total cost. Similar effects were observed in earlier chapters and hypothesised as the
result of nursing labour being complementary to additional capital requirements in
the form of wards.

5.5.3 Cost Complementarities

Positive and statistically significant cost complementarities were observed between
the Anaesthetics and Obstetrics/Gynaecology groupings. At the sample means, an
additional ‘inpatient equivalent’ unit of activity in one specialty reduced the cost of
an activity in the other by £44. This reduction could result from scope efficiencies
for activities in surgery or obstetric pain relief. However, it is notable that the
coefficient for the cost complementarity between Anaesthetics and General Surgery
is not statistically significant and has a positive sign suggesting diseconomies of
scope. The only other statistically significant cost complementarity was observed
between Anaesthetics and the ‘Other’ category, which comprised the aggregated
smaller specialty groups. The coefficient has a positive sign, suggesting diseconomies
of scope, with an additional activity unit in Anaesthetics increasing the cost of
an additional activity unit in the ‘Other’ category by £12, and vice versa. No
other statistically significant cost complementarity effects were observed. Using
cost complementarities as a measure of scope economies suggests a limited effect for

128



Chapter 5. Economies of Scope in English Hospitals

the specialty groups tested.

5.5.4 Scope Economy Indices

Scale economy calculations were computed according to Equation (5.2). The distri-
bution of the calculated scope economy index at each data point is shown in Figure
5.1. The scope economy index was highest for General Surgery, with a median value
of 0.14. This index value implies that joint production is 14% less expensive than
separate production over the range of outputs considered in the study population.
Other specialty groupings with positive median scope economies included Obstet-
rics/Gynaecology and General Medicine. Obstetrics/Gynaecology had a median
scope economy index of 0.06, with joint production being 6% less expensive than
separate production. 14% of observations have negative scope economies, leaving
86% with positive scope economies. The scope index for General Medicine had a
median value of 0.04, with joint production being 4% less expensive than separate
production. 83% of observations showed positive General Medicine scope economies,
and 17% of observations had negative General Medicine scope economies.

Other specialty groups recorded inconclusive or negative scope economies. The
Diagnostic and Pathology Services specialty grouping had a median scope index of
-0.01, indicating that separate production was 1% less expensive than joint produc-
tion. However, the distribution of scope economies lies on either side of the zero
dividing line, with 34% of values recording positive scope economies and 66% neg-
ative values. The median scope economy index for Orthopaedics was -0.04, with
separate production being 4% less expensive than joint production. 73% of observa-
tions had negative values, and 27% were positive. The median Emergency Medicine
and A&E scope index was -0.03, suggesting that separate production was 3% cheaper
than joint production, with 75% of observations showing negative and 25% positive
scope economies. Most observations also showed negative scope indexes for Anaes-
thetics and Critical Care, where the median scope economy index was -0.09, 87%
of observations with negative scope economies, and 13% positive scale economies.
The ‘Other’ category had a median scope index of -0.21, with 94% of observations
having negative scope economies and 6% positive scope economies.
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General Surgery

Obstetrics & Gynaecology
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Figure 5.1: Distribution of Scope Economy Index for eight specialty
groupings, including the residual category ‘other’. Scope economies are
calculated with reference to all activity other than the specialty group
in question. Index values > 0 suggest positive scope economies at the
current output level. General Surgery, Obstetrics & Gynaecology and
General Medicine have positive economies of scope. Diagnostic and
Pathology Services, Emergency Medicine, Orthopaedics, Anaesthetics,
and the residual ‘Other’ category have zero or negative scope economies.

5.6 Discussion

This chapter shows that certain specialties are associated with stronger scope
economies when combined with others. General Surgery has strong scope effects,
with joint production being 14% less expensive than separate production for the
median hospital. Scope effects reflect the variety of surgical work undertaken by
General Surgeons and their work being complementary to other specialties where
surgery is required. In the UK, subspecialties of General Surgery include breast
surgery, colorectal surgery, upper gastrointestinal surgery, endocrine surgery, and
transplant surgery (Royal College of Surgeons, 2022). Each of these subspecialties
may overlap with activity in other specialties. Hospitals with larger General
Surgery services may benefit from greater in-house capabilities and a higher degree
of specialisation within General Surgery. Increased specialisation within General
Surgery could positively affect costs in other specialties. Equally, theatre resources
used by general surgeons could also be made available to other surgical specialties,
as could postoperative beds. Sharing these resources could yield savings, both from
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avoiding multiple purchases, but also from using these resources more intensely,
avoiding unproductive time where resources are not used. Interestingly, there is
little evidence for scope economies in Orthopaedics, suggesting that the sources
of these scope economies may be more prevalent in General Surgery than other
surgical specialties.

The other specialty grouping showing positive scope economies was General
Medicine. General Medicine also has technical reasons why co-production may lower
costs. Medical staff working in General Medicine often have a dual specialty, so they
may be able to substitute for labour in other departments. Wards used in General
Medicine may be able to accommodate patients as an alternative to other medical
specialties. Taking these two results together, it is apparent that specialties which
retain a ‘generalist’ outlook or historical focus yield scope economies. These spe-
cialties, their subspecialties and closely related specialties ought to be colocated to
realise scope economies.

Obstetrics and Gynaecology also showed positive scope economies. Cost comple-
mentarities were observed between this specialty grouping and Anaesthetics. Obstet-
ric activity may share resources with Anaesthetic activity, for example, in providing
pain relief and neonatal critical care. Gynaecology activity also uses Anaesthetic
and Critical Care resources like other surgical specialties. Consequently, shareable
resources between Obstetrics/Gynaecology and Anaesthetics may be higher than for
other specialties.

Limited scope economies were found for Diagnostic and Pathology Services. This
result suggests that consolidating pathology services into larger providers would not
lose economies of scope from lack of colocation. Transfer of pathology samples can
be made relatively easily at a low cost, and specialised pathology providers can
benefit from scale economies where they provide services for several hospitals.

A&E displayed negative scale economies, with increased A&E activity effec-
tively raising costs in other specialties. This finding could be attributable to imper-
fect activity weighting and higher resource requirements for non-elective admissions
through A&E compared to elective and planned activity. Higher A&E activity could
raise costs elsewhere because of casemix changes towards more resource-intensive
cases. Alternatively, higher A&E activity could raise costs elsewhere by increasing
the amount of ‘surplus’ capacity and resources in other specialties that would be
required to deal with the inherently variable nature of emergency care.

This chapter contributes to the limited literature on scope economies, and par-
ticularly improves on prior studies, which often use the same output definitions for
scale and scope, typically based on the method of admission or care setting. Know-
ing that there are scope effects between elective and emergency care may be useful,
but it is more useful to consider output based on clinical specialty, as this is the
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typical basis for organising services and constructing hospital departments.
The conclusions drawn from this approach depend heavily on the aggregation

of activity and clinical activities into the specialty groupings. In some cases, an
alternate grouping would be as justifiable. For example, paediatric ENT activity
could justifiably be recorded under paediatrics or ENT. Surgical resection of tumours
could likewise be categorised under surgery or an oncology grouping. Different
aggregations and assignments of activity could yield different results, making the
comparison to other studies complex where studies define specialties in different
ways. Comparisons to other studies could be affected by differences in how hospitals
record and attribute activity. It is important to be careful in generalising results
from one health system to another.

Evaluating the cost effects of colocation does not consider technical relationships
between certain specialties and departments. The analysis finds limited evidence of
scope economies between Anaesthetics (including Critical Care) and other specialty
groupings. However, anaesthetic activity and Critical Care are technical require-
ments for many surgical specialties. Colocation would be technically required even
where scope economies are negligible, as surgical activity will require anaesthetic in-
put, and many specialties may require patients to spend time in critical care wards.
Therefore, technical or clinical requirements may require colocation even if there are
limited financial benefits.

Policymakers working in secondary care need to know which specialties are best
colocated together for clinical and economic reasons. Having General Surgery, Gen-
eral Medicine, and Obstetrics/Gynaecology alongside other clinical specialties in a
hospital could be expected to yield positive spillover benefits. Whilst there are clin-
ical reasons why specialties like these need to be spread widely and available locally,
it is also true that there appear to be economic benefits from doing so. Attempts
to concentrate such activity in fewer hospitals could increase average costs overall
if scope effects outweigh scale benefits. These specialties ought to be a part of the
minimum services that hospitals offer - as in most cases they already are.

Researchers working in this area can note that the analysis improves upon studies
that test for the existence of cost complementarities as their sole means of identifying
scope economies. Testing for cost complementarities cannot identify cases where
scope economies arise from sharing fixed resources. The high value of the intercept
term in this study suggests that sharing fixed factors of production could be an
important source of scope economies for hospitals. If true, the existence of scope
economies would be missed by studies using cost complementarities only.

This analysis considers an aggregated view of specialties and comparators. Fu-
ture research could expand on this by more detailed and smaller scale comparison.
Such analysis could be carried out via pairways comparison of individual specialties
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or by increasing the number of specialties included in the model. Care needs to be
taken so that the specification does not become unwieldy. To facilitate comparison,
studies should also publish the means of aggregation and their definitions of activ-
ity. Future research could also investigate the source of scope economies. The cost
function estimated above showed limited cost complementarities but positive scope
economies and a high level of fixed costs as represented by the intercept term. These
phenomena may be reconciled if the sources of scope economies lie in the sharing
of resources and fixed factors of production rather than marginal effects where the
expansion of one specialty lowers costs in another. Further research is needed to
evaluate this hypothesis and develop our understanding of hospital economies of
scope.
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Chapter 6

Conclusion: Size, Scope and
Hospital Costs

6.1 Aims

This thesis estimates hospital scale and scope economies from observed outputs and
input prices, using several parametric techniques and functional forms of the cost
function. These investigations provide valuable results for our understanding of scale
economies in hospital healthcare. Estimates of scope economies are provided for ma-
jor specialty groups, showing which clinical specialties are most likely to benefit from
scope economies when co-located with all other specialty groups. These estimations
provide helpful information for researchers, policymakers and those managing sec-
ondary care in service delivery terms who are interested in the relationship between
size and cost. This thesis contributes to research in the area by updating previous
estimates that are in many cases dated. It also provides empirical estimates from a
country (England) where these questions are not often studied. Additional and po-
tentially more useful methodological results are obtained using multiple functional
forms and estimation methods. This approach contrasts with other studies that typ-
ically use one method. More information adds to these results’ potential usefulness
in decision making. The results of these essays inform our understanding of how
hospital cost and size are related, deepening the evidence base and expanding it to
new areas.
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6.2 Findings

6.2.1 Differences between Quadratic and Translog Func-
tional Forms

In Chapter 2 and Chapter 3, scale economy estimates are derived from administra-
tive data sources. Data sources included activity and cost data from NHS England’s
National Cost Collection Exercise, wage data from NHS Digital’s Workforce Statis-
tics, and a capital cost constructed from NHS hospital financial statements. These
data sources are used to estimate a long-run cost function directly from observed
values. Point scale economy estimates are computed for each observation as the
inverse of the sum of cost-output elasticities - representing the percentage increase
in output obtained by a 1% increase in costs. These point estimates were plotted
alongside measures of size, chiefly the number of hospital beds. The relationship
between the point scale economy estimates and size was evaluated for evidence of
any limits to scale economies. In Chapter 2, a translog functional form is used for
the cost function, contrasting with a quadratic functional form in Chapter 3.

Both translog and quadratic functional forms found positive economies of scale
up to 1,200 beds. Beyond this, the results were less consistent. Scale economies
estimated using a translog function declined after this point to a level best charac-
terised as constant economies of scale. Scale economy estimates using a quadratic
specification were more varied and did not decline with size, with most observations
remaining positive at all sizes. As identical data is used for both, this result may be
due to the technical properties of the functional form. Both functional forms offered
a similar degree of consistency with theoretical principles, with the translog being
marginally more consistent with respect to the convexity of certain variables. Few
previous studies use multiple functional forms, so this thesis suggests that differences
in results between translog and quadratic forms may result from the properties of
the specification. As such, caution is needed when interpreting studies that use only
one form. In this sample, positive economies were observed amongst hospitals with
up to 1,200 beds. Beyond that size, scale economies are less certain. It would be
interesting to see further research in other countries on large data sets to see how
similar results compare.

6.2.2 Differences in High Cost Areas

In both quadratic and translog functional forms, scale economies were lower in the
higher wage areas comprising London and surrounding areas. This qualitative dif-
ference suggests that hospital care supply policy may differ in high-cost areas, as

135



6.2. Findings

increases in output cost proportionately more than in other areas. Whilst hospital
healthcare supply needs to be proximate in most instances, results suggest that hos-
pitals in these regions may not benefit from scale to the same extent as elsewhere.
This finding may need to be addressed by healthcare commissioners and funding
allocations. It may be the case that hospitals in higher wage areas may require dif-
ferent production technologies and a different capital-labour mix. This observation
is another potential area for further investigation.

6.2.3 Direct Estimation of Long-run Cost compared to En-
veloping Short-run Cost Functions

Chapter 4 compares the directly estimated long-run cost functions with those derived
from the envelope of short-run cost functions. Both translog and quadratic cost
functions are estimated from the same data sources. However, in this chapter a short-
run cost function was estimated by including a capital (beds) term and appropriate
interactions in the estimation. Short-run scale economies were estimated using the
same method as in Chapters 2-3, excepting the different specification. To allow
for the possibility that observed capital values were not optimal at the time of
observation, optimal values were computed by taking the partial derivative of the
cost function with respect to beds, setting the expression equal to zero and solving.
This expression for optimal beds was substituted back into the cost function to yield
an optimal long-run cost function which is functionally the envelope of the short-run
cost curves. This revised long-run function was then used to compute long-run scale
economies as in the directly estimated case.

Scale economies computed using this indirect method were higher than directly
estimated calculations, as was previously suggested by authors critiquing the di-
rect estimation method. However, estimated optimal capital levels computed by
this method seem to be much higher than current levels. The calculated long-run
quadratic cost function seemed vulnerable to implausible optimal capital levels. As a
result of these implausible optimal capital levels, estimated long-run scale economies
using a quadratic specification actually increased with size, with no discernible limit.
The translog specification returned more plausible optimal capital levels, though in
most cases below observed bed numbers. Such variability observed may be a function
of the relatively poor proxies for capital available - bed numbers may be increasingly
less appropriate proxies where stay lengths decline and ambulatory care increases.
However, differences between calculated optimal capital levels between the translog
and quadratic specifications suggest that this method may be very sensitive to the
choice of functional form. Where calculated optimal capital levels are not accurate,
there is a risk that the calculated long-run cost function is based on unachievable
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points, vulnerable to specification or choice of functional form. Though this method
has the attraction of dealing with the issue of observed values not being on the op-
timal cost frontier, the method for resolving this issue could result in an estimated
cost function with lower long-run costs that are, in fact, achievable. This observa-
tion is an interesting finding, informing future research directions in methodological
and applied terms, and future research using improved measures of capital may be
a useful next step.

6.2.4 Scope Economies

Chapter 5 sets out results from a model making an initial investigation of scope
economies. A quadratic cost function is estimated, with outputs reconfigured as
clinical specialties rather than as weighted case numbers in particular settings. This
output specification is a more useful aggregation of healthcare outputs, as groups of
clinical specialties are typically the basis for hospital departments. The existence and
extent of scope economies are investigated firstly by tests for cost complementarities
in the results. As positive cost complementarities are a necessary but not sufficient
test for scope economies, The cost difference between joint and separate production
is directly calculated for each specialty group and observation, as generated by the
estimated cost function.

Clinical specialties which are more ‘generalist’ or are closely related to activity
in other specialties, such as General Surgery or General Medicine, showed much
larger economies of scope than other specialties when compared against all other
activities. These specialties often assist or provide associated care for other clinical
specialties. Consequently, having a reasonably sized General Surgery or General
Medicine department will lower costs elsewhere, perhaps by allowing general sur-
geons or general internal medicine doctors to specialise more within these specialties.
Alternatively, clinical labour in these specialties may be more readily substituted
for other specialties to flexibly respond to demand.

Obstetrics and Gynaecology also showed positive scope economies, with the
model results showing particular cost complementarities with a grouping of anaes-
thetics and critical care. Diseconomies of scope were found for Accident and Emer-
gency activity compared to other specialty groupings, perhaps because a high level of
Accident and Emergency activity would require other clinical specialties to maintain
sufficient capacity for Non-Elective admissions. The additional capacity required for
non-elective care in other specialties may not be fully used, increasing average costs
in hospitals with considerable Accident and Emergency activity relative to those
with more planned care. Hospitals providing relatively more planned care would
not need to account for peaks in demand for non-elective care and would not need
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surplus capacity standing idle in periods of low non-elective care demand.

6.3 Policy Implications

6.3.1 Scale Economies (Small & Medium-sized Hospitals)

Both the directly estimated translog and quadratic specifications showed small but
positive economies of scale up to around 1,200 beds, higher than previous studies.
Policymakers can take some assurance that at (pre-pandemic) output levels, the
majority of hospitals may lower average costs by expanding output. The directly
estimated translog cost function had the lowest median scale economy index at 1.04,
with higher estimates for hospitals smaller than the median hospital. Using this es-
timate, the median hospital would see output increase by 1.04% for a 1% increase
in costs. The directly estimated quadratic functional form returned a comparable
median scale economy estimate at 1.03. Studies using an envelope returned higher
values, up to a 1.5% increase in output for a 1% increase in costs using a translog
functional form. However, results using an envelope method are vulnerable to weak-
nesses in the available proxy measures for capital and may consequently be sensitive
to changes in specification. This observation was particularly evident in the case of
the quadratic functional form, which returned implausible optimal capital results.

There are multiple policy options to realise gains from scale. In an environment
where overall hospital healthcare demand is growing, policymakers can influence
where the growth takes place, directing expansion at smaller hospitals with larger
scale economies, growing activity and lowering unit costs at these hospitals. The
other method of realising gains would be an element of consolidation, closing some of
the smaller hospitals to provide healthcare at scale in other hospitals. Consolidation
perhaps makes more sense in an environment where healthcare demand or funding
is relatively static. Where growth in the sector is limited, consolidation would be
required to realise gains.

Consolidation of the sector is a complicated area. Given the magnitude of scale
economies, it is likely that short-term consolidation costs would outweigh the gains
so that any benefits may be limited to the long-run. However, even if consolidation
were desired in the longer-term, overall cost considerations are not the only concern.
There will often be a clinical need for access to proximate care for health emergencies,
which requires the maintenance of smaller hospitals in rural areas, even where unit
costs are higher than in larger urban centres. Though this study does not consider
equity explicitly, any consolidation also has equity considerations. Closing smaller
hospitals may disadvantage specific demographics in those areas at the expense of
those living near larger hospitals. Cost would not, of course, be the only policy
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consideration in any change to healthcare supply.

6.3.2 Scale Economies (Larger Hospitals)

The evidence for larger hospitals, defined as those with more than 1,200 beds, is more
mixed. There are fewer hospitals of this size, so unsurprisingly, differing functional
forms and methods return different scale economy estimates. Directly estimated
translog scale economies were broadly constant, whilst those obtained using an en-
velope method were slightly positive. A quadratic specification showed positive
scale economies when directly estimated but diseconomies of scale using an enve-
lope method, likely due to infeasible optimal calculated capital levels. Policymakers
should therefore be cautious when dealing with larger hospitals and avoid assuming
that widespread scale economies continue without limit.

6.3.3 Scale Economies (Geographical Differences)

This thesis also shows that scale economies are lower in London and surrounding
areas due to higher wage rates. Policymakers could look to expand the healthcare
supply in hospitals close to but outside the areas where higher wage rates apply.
Healthcare supply for certain types of care needs to be proximate for clinical reasons,
and there are geographic limits to how far patients can be expected to travel for
care. However, where possible, policymakers could realise additional benefits from
expanding activity at hospitals close to the higher wage area. Policymakers may
wish to bear geographic differences in mind, such that hospitals in higher wage
areas may not benefit from scale to the same extent as elsewhere.

6.3.4 Scope Economies

Chapter 5 showed that General Surgery saw the highest scope economy measure
for the specialty groupings considered. Policymakers wanting to take advantage of
this result could ensure that each hospital offering surgery has sufficient General
Surgery services, as these are likely to lower costs in other specialties. General
Surgery, along with General Medicine and Obstetrics/Gynaecology, should be a core
part of each hospital’s supply of secondary healthcare. Conversely, the lack of scope
economies for diagnostic services suggests that these services may be more suited to
amalgamation, especially if activity within these services demonstrates scale effects.
Negative scope economies associated with Accident and Emergency activity might
suggest that hospitals providing A&E services be provided with additional funding,
accepting that they have negative spillover effects on other specialties.
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6.4 Research Implications

6.4.1 Contribution to Knowledge

This thesis provides updated estimates for scale economies in the supply of hos-
pital healthcare, using data from England. It updates previous studies that are
now quite dated and demonstrates the existence of small but positive economies
of scale up to 1,200 beds. Few hospitals in the dataset were larger than this, and
after this point, different methods and functional forms of the estimation produced
scale economy estimates ranging from constant to positive returns to scale. This
study is the first for some time to estimate a particular limit to economies of scale
using English data. It also contrasts several parametric methods employed in the
literature, showing variation in different techniques using the same dataset. Few
previous studies contrast different methods using the same dataset, so this thesis
can demonstrate differences in results that may result from differences in functional
form and estimation method.

This study also uses English data to estimate scope economies. Few prior stud-
ies investigate scope economies, and even fewer have used clinical specialties as a
unit of output. As hospital departments are structured around clusters of clinical
specialties, this would be a natural unit of production for scope economies. Many
studies that estimate both scale and scope economies will use output definitions
appropriate for measuring scale (admitted care cases, ambulatory care cases, other
activities) but not appropriate for scope. Policymakers would define ‘departments’
or sub-units of production using clinical specialties rather than the type of admis-
sion. The results in Chapter 5 show that General Surgery benefits most from scope
economies, with General Medicine and Obstetrics/Gynaecology also showing posi-
tive but lesser scope economies. I am unaware of any prior study using UK data
which looks at scope economies between specialties, so these findings appear novel
to the literature.

6.4.2 Methodological Implications

There were observed differences between translog and quadratic results, especially
amongst the range of larger hospitals where fewer observations are available. Studies
that use only one type of functional form should at least use an alternate form as a
robustness check. The requirement for sensitivity checks is greater for studies which
attempt to measure limits to scale economies. Calculated limits to scale economies
are more likely to be at the larger end of the size distribution, so the estimation of
limits may be more vulnerable to differences in the functional form chosen.

This thesis has also shown differences between estimated scale economies between
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a directly estimated cost function (Chapter 2 and Chapter 3) and an alternate
method using an envelope of short-run cost functions. However, using an envelope
constructed from ‘optimal’ beds yielded implausible capital values, particularly in
the case of the quadratic functional form. Studies which use the envelope method
may be misestimating scale economies where they cannot calculate optimal capital
levels. Suppose the number of beds is not an effective proxy measure for capital.
In that case, the envelope method may overstate the extent to which average cost
curves are lowered at ‘optimal’ capital levels. In seeking to avoid errors from taking
observed values as optimal, the approach may substitute unachievable output /
average cost pairs to calculate a long-run cost function. Studies that use this method
should ensure that the measure used for capital is appropriate and that results yield
plausible optimal capital values for several functional forms and specifications.

Regarding scope economies, Chapter 5 shows that scope economies may exist
where cost complementarities are absent. The possible presence of scope economies
without cost complementarities is established as a theoretical point, but this thesis
demonstrates a concrete example using data from England. The existence of scope
economies without associated cost complementarities may be more likely where there
are high fixed costs of production or complex interactions between multiple or het-
erogeneous outputs. As demonstrated in the high intercept term in the estimated
cost functions, the production of hospital healthcare involves high fixed costs and is
characterised by heterogeneous outputs. This thesis demonstrates limitations with
approaches which rely on cost complementarities to investigate scope economies.
The failure to detect scope economies by using such methods is not solely a theo-
retical concern but a demonstrable weakness.

6.4.3 Strengths and Weaknesses Summary

Strengths and weaknesses are discussed throughout the thesis. In summary, this
thesis takes advantage of additional data made available in the last few years, mak-
ing more detailed cost models. Many prior studies lacked access to input prices
and relied on assumptions that national procurement and wage-setting allowed the
omission of input prices. Using published wage rates and a constructed measure of
capital, studies such as this one can start to account for differences in input prices
faced by each hospital. Equally, the depth of DRG (HRG) coding allows output
data from the UK to be weighted to a much more detailed level than prior studies.
This study can therefore account for the heterogeneity in hospital output in a much
more complex way than was previously the case.

Weaknesses include the lack of information on non-wage consumable inputs, such
as medicines and other consumables used up in production. The lack of data on these
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inputs means it is difficult to model the effects of differential consumable prices on
costs. Whilst some consumables and medicines are subject to national procurement,
there will be local differentiation on other consumable input prices. Data on the
cost and usage of agency staff is also lacking at the national level, which means that
the effective wage rates for labour used in this study are for directly employed staff
only. Hospitals that use significant amounts of indirectly employed agency staff may
be poorly modelled until this data is available.

6.4.4 Future Research

Future research in this area is needed to better understand the variation in results
caused by using different functional forms. In this thesis, the translog functional
form gave scale economy estimates with less variation. Estimates also tended to
decline with increased bed numbers. Quadratic functional forms tended to yield scale
economy results with more variation and a weaker relation to size or output. Further
research with other data sources could establish whether this is generally true and
whether translog or quadratic functional forms ought to be preferred. Studies that
aim to estimate limits to positive economies of scale could well be affected by the
choice of functional form and may be advised to use both forms, at least as a
sensitivity test.

Further work could also evaluate whether certain functional forms are more vul-
nerable to outlier observations, violations of convexity or other desirable economic
properties. This work could also be combined with studies examining the effects of
different specifications. More data on UK hospital costs, outputs and wages have
become available in recent years. More detailed cost function specifications are pos-
sible but pose particular questions about the trade-off between model parsimony
and accuracy. Further work could be conducted to investigate the most appropriate
means of aggregating heterogeneous outputs and inputs to better model hospital
costs.

This study also found that approaches which use an envelope approach to gen-
erate a long-run cost function may also be vulnerable to the poor quality of proxy
measures for capital, leading to ‘optimal capital values’ which are implausible or
possibly biased. In this thesis, the quadratic functional form was particularly vul-
nerable to this, perhaps due to a failure of convexity and the lack of a global min-
imum point. Future research could examine whether bed numbers remain a good
proxy measure of economic capital and, if not, which measures could be employed.
Given the growth in ambulatory care and the management of chronic conditions
by specialists, more nuanced proxy measures for capital may need to be developed
and tested if approaches based on an envelope methodology are to be used. Studies
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using envelope methods may need to demonstrate that bed numbers or other proxy
measures of capital are appropriate.

Future research could also look in more detail at economies of scope. This thesis
contains a short evaluation showing that General Surgery particularly exhibits scope
economies, as well as General Medicine and Obstetrics / Gynaecology to a lesser
extent. There are some a priori reasons to expect more ‘general’ specialties to
exhibit scope economies. These specialties may be particularly involved in the joint
production of healthcare with other specialties. Alternately, these specialties may
have clinical labour more easily substituted for roles elsewhere. However, this study
does not evaluate these hypotheses. Future research into why scope economies are
observed in these specialties would be useful. This additional research could take the
form of pairwise comparisons to explore which particular combinations of specialties
have scope economies. Alternatively, it may be that the source of scope economies
lies more in the general sharing of fixed costs across all types of activity, with some
specialties taking advantage of this more than others.

6.5 Summary

This thesis offers novel evidence on hospital healthcare economies of scale, using
data from the English NHS. It demonstrates that small but positive scale economies
are present up to a higher limit (1,200 beds) than older and more dated studies. For
larger hospitals, the limit at which scale economies are no longer positive varies ac-
cording to the functional form and estimation method. The thesis also demonstrates
differences in geographical regions driven by differences in wage rates. High-cost ar-
eas with high wage rates have lower scale economies as increases in output cause
higher unit costs. Wage rates and input prices are often omitted from similar studies,
using the rationale that hospitals face the same input prices. However, hospitals may
not always face the same input prices, and studies that make similar assumptions
may be unable to model differences in costs arising from input price variation.

Policymakers concerned with hospital costs and output can note that whilst the
degree of scale economies observed is unlikely to justify extensive reorganisation,
some gains could be realised from expansion for most English hospitals. There is lit-
tle evidence that diseconomies of scale are present at any level of size. Policymakers
can also note that certain specialties, notably General Surgery, demonstrate scope
economies with other specialties and should therefore be present in each hospital to
maximise positive spillovers. These particular specialties ought not to be centralised
in larger hospital trusts.

Researchers working in this area can take the main estimation results of this
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thesis as another piece of evidence in the literature on hospital scale economies,
which has become dated in recent years. This thesis also demonstrates the variation
in results that can arise from differences in functional form and method and offers
some examples of how results can be affected by differences in method. Future
research could explore how differences in method contribute to differences in results
and further explore scope economies, which remains an underresearched area.

This area of research is an important area with many practical policy implica-
tions. The heterogeneous nature of hospital healthcare outputs and inputs means
that researchers modelling cost functions must make tradeoffs between parsimony
and accurate estimation. However, it is also an area where data is becoming in-
creasingly available, with the adoption of electronic records and other developments
reducing the cost of collecting and producing data. More research in this area could
provide important results for those interested in the efficient allocation of healthcare
resources in hospitals.
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Excluded Specialist Organisations

Organisation Specialty

Liverpool Heart and Chest Cardiothoracic

Papworth Cardiothoracic

Royal Brompton Cardiothoracic

The Walton Neurology

The Christie Oncology

The Clatterbridge Oncology

Royal Marsden Ophthalmology

Royal Moorefields Ophthalmology

Robert Jones Orthopaedic Orthopaedic

Royal National Orthopaedic Hospital Orthopaedic

The Royal Orthopaedic hospital Orthopaedic

Alder Hey Children’s NHS Foundation Trust Paediatric

Great Ormond Street Paediatric

Sheffield Children’s NHS Foundation Trust Paediatric

Queen Victoria Hospital Reconstructive Surgery & Rehabilitation

Royal National Hospital for Rheumatic Diseases Rheumatic Diseases

Liverpool Women’s Women’s

Birmingham Women’s Women’s & Paediatric



Appendix B

Simplified Output Model
(envelope method)

As a robustness check to the main result in Chapter 4, it is useful to test the sensi-
tivity of the optimal beds calculation to different specifications and configurations
of outputs. This check could be particularly important when we use beds as the
proxy measure for capital. Required bed numbers in each hospital may be affected
by the types of care provided, so calculated optimal values may be affected by the
cost function specification and how outputs are defined. Studies such as Kristensen
et al. (2012) often aggregate outputs into one category to deal with complications
arising from the multi-input case. However, doing so may obscure qualitative differ-
ences in the types of healthcare provided. These qualitative differences may affect
the observed number of beds. Comparing results under an aggregated specification
is useful to see the effect of the chosen output specification on scale economy calcu-
lations. Other authors that have tested alternate specifications (Butler, 1995, ch 6)
have found scale economy estimates were sensitive to specification.

Firstly, an aggregated output measure is defined by multiplying each weighted
output grouping by the average cost for that output group in the dataset. For
example, the average cost for an A&E attendance is £156, so all HRG-weighted
A&E activity is multiplied by this value. T. This calculation is repeated for all
other categories, summing the results to obtain an HRG-adjusted activity figure in
each category. The result is divided by the mean cost of an average elective spell
(£1,259). The resulting aggregate output can be considered as ‘elective inpatient
equivalents’ for each hospital.

In mathematical terms, aggregate output figures are therefore calculated as:

yagg =
(
yae · Cae + ycc · Ccc + yds · Cds + yel · Cel + yne · Cnel + yop · Cop

)
/ Cel

(B.1)
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Where yi represents the amount of output i produced after the within-category
weighting described in Section 2.3.2, and Ci represents the average cost of that
output group, as defined in Table 2.3. Subscripts in the equation denote the type of
output; ae - Accident and Emergency, cc - Critical Care, ds - Diagnostic Services,
el - Elective Inpatient, nel - Non-Elective Inpatient, op - Outpatient.

Descriptive statistics for the aggregate output measure are set out in Table B.1,
showing how the aggregate output measure compares to the previous output cate-
gories.

Table B.1: Aggregate Output Measure Compared to Original Output
Categories

Output Type Mean SD Median Q1 Q4

Aggregate Output 247,185 118,729 217,673 160,540 308,081

A&E Attendance 127,483 60,463 112,013 85,640 152,096

Critical Care 19,988 19,585 12,709 8,016 21,496

Diagnostic Services 4,297,133 2,508,860 3,777,083 2,642,614 5,255,448

Elective Inpatient 51,604 25,862 46,910 31,734 64,884

Non-Elective Inpatient 71,745 34,026 65,122 47,133 90,191

Outpatient 591,701 293,106 530,505 377,434 738,400

N =138 [2013/14], 134 [2014/15], 134 [2015/16], 133 [2016/17], 132 [2017/18], 127

[2018/19] hospitals

This composite value is used in a single-output quadratic specification along
with input prices for training grade doctor and nursing wages, the cost of capital
variable, and average bed numbers. Coefficients for the directly estimated regression
are shown in Table B.2. In this regression, the exponent of the intercept value is
the expected total cost for a non-teaching hospital (£248,520,469), where aggregate
output, training grade doctor and nursing wages equal the mean for the dataset.
The coefficient on the aggregate output term (0.85) reflects the marginal percentage
change in total cost from an additional 1% increase in output (at the sample mean).
Coefficients on input price variables likewise reflect the marginal percentage effect
on total cost from a 1% increase in input wages. The teaching hospital coefficient
(8%) shows the expected percentage increase in total cost due to a hospital engaging
in teaching.

The positive coefficient on the squared output term suggests that costs rise more
than proportionately as output increases past the sample mean. Other statistically
significant terms included the squared term for nurse wages, suggesting that total
costs become more responsive to nursing wages as they increase. A similarly sig-
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nificant relationship was observed for the capital cost term, whilst that for training
grade doctors is negative but not statistically significant. The interaction between
nursing wages and training grade doctors is statistically significant and negative,
suggesting that as wages for one group, the relative impact on the cost of the other
declines.

Table B.2: Estimation results - Directly Estimated Translog Form (Ag-
gregated Output)

Term Estimate Std. Error

Intercept 19.331 (0.017)***

Aggregated Output 0.853 (0.017)***

Training Grade Doctor Wages 0.405 (0.076)***

Nurse Wages 0.302 (0.129)*

Cost of Capital 0.005 (0.009)

0.5 * Aggregated Output * Aggregated Output 0.089 (0.041)*

Aggregated Output * Training Grade Doctor Wages -0.049 (0.159)

Aggregated Output * Nurse Wages 0.209 (0.227)

Aggregated Output * Cost of Capital 0.008 (0.016)

0.5 * Training Grade Doctor Wages * Training Grade Doctor Wages -0.503 (1.537)

Nurse Wages * Training Grade Doctor Wages -4.030 (1.861)*

0.5 * Nurse Wages * Nurse Wages 7.256 (3.063)*

Cost of Capital * Training Grade Doctor Wages 0.197 (0.122)

Cost of Capital * Nurse Wages 0.083 (0.140)

0.5 * Cost of Capital * Cost of Capital 0.045 (0.019)*

Teaching Hospital Organisation 0.077 (0.025)**

R2 = 0.9758 adj R2 = 0.9754 AIC = -2,667 BIC = -2,592 N = 798 total observations from 141

hospitals, observations split as follows: 138 [2013/14], 134 [2014/15], 134 [2015/16], 133 [2016/17],

132 [2017/18], 127 [2018/19]

* - Statistically Significant at 5%, ** - Statistically Significant at 1%, *** - Statistically Significant

at 0.1%

Including beds in the model to calculate a short-run cost function results in a
short-run cost estimation shown in Table B.3. The coefficient on the beds variable
is markedly different from the multi-output case. In this aggregated version, the
coefficients on the beds term and the square of beds are 2.55 and -0.36, respectively.
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The equivalent coefficients on the original multi-output model are 0.17 and 0.33.
These differences imply substantially different optimal bed calculations even at low
output levels, where the cross-product beds-output terms are less important. The
sensitivity of the bed coefficients to changes in the specification of outputs suggests
that optimal bed calculations may be similarly sensitive to the construction of the
estimated cost function, particularly the definition and categorisation of outputs.

Table B.3: Estimation results - Short-run Translog Form (Aggregated
Output)

Term Estimate Std. Error

Intercept 10.328 (2.942)***

Aggregated Output -0.110 (0.837)

Training Grade Doctor Wages -6.077 (2.328)**

Nurse Wages 9.004 (2.731)***

Cost of Capital -0.081 (0.273)

0.5 * Aggregated Output * Aggregated Output 0.021 (0.132)

0.5 * Average Beds * Average Beds -0.358 (0.136)**

Average Beds 2.550 (0.894)**

Average Beds * Aggregated Output 0.133 (0.127)

Average Beds * Training Grade Doctor Wages 0.980 (0.352)**

Average Beds * Nurse Wages -1.306 (0.414)**

Average Beds * Cost of Capital 0.013 (0.041)

Aggregated Output * Training Grade Doctor Wages -0.639 (0.311)*

Aggregated Output * Nurse Wages 1.067 (0.369)**

Aggregated Output * Cost of Capital -0.001 (0.037)

0.5 * Training Grade Doctor Wages * Training Grade Doctor Wages -1.788 (1.525)

Nurse Wages * Training Grade Doctor Wages -4.309 (1.850)*

0.5 * Nurse Wages * Nurse Wages 7.642 (2.994)*

Cost of Capital * Training Grade Doctor Wages 0.219 (0.119)

Cost of Capital * Nurse Wages 0.035 (0.138)

0.5 * Cost of Capital * Cost of Capital 0.041 (0.019)*

Teaching Hospital Organisation 0.057 (0.022)**
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R2 = 0.9827 adj R2 = 0.9823 AIC = -2,698 BIC = -2,595 N = 798 total observations from 141

hospitals, observations split as follows: 138 [2013/14], 134 [2014/15], 134 [2015/16], 133 [2016/17],

132 [2017/18], 127 [2018/19]

* - Statistically Significant at 5%, ** - Statistically Significant at 1%, *** - Statistically Significant

at 0.1%

Optimal beds calculated under this alternate specification differ from the main
specification computed in Figure 4.1. The range of the distribution is similar, but
optimal beds calculated under this aggregated output specification are higher than
the disaggregated main version. The partial derivative of the log of total cost with
respect to the log of beds is:

∂ ln C(y, w, K ′)
∂ ln K ′ = − 0.358 · ln Beds + 2.55 + 0.133 · ln Aggregate Output

+ 1.390 · ln Training Grade Doctor Wages

+ 0.003 · ln Nursing Wages + 0.470 · ln Cost of Capital

(B.2)

Setting equal to zero and rearranging, this gives the log of optimal capital stock
ln K ′ (in terms of beds) as:

ln Beds =7.116 + 0.371 · ln Aggregate Output

+ 2.735 · ln Training Grade Doctor Wages

− 3.645 · ln Nursing Wages + 0.035 · ln Cost of Capital

(B.3)

When optimal beds are calculated and plotted against actual beds (Figure B.1), the
simplified or aggregated specification returns much higher optimal bed levels.
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Figure B.1: Distribution of calculated optimal beds and observed beds,
aggregated output specification. See Fig 4.1 for details on derivation
and interpretation.

Scale economy indices for this simplified specification are similar overall to the
main result, with constant economies of scale obtained with a direct estimation,
more positive economies of scale observed in the short-run and lower scale economies
measured in the long-run. Figure B.2 shows the scale economy calculations for a
directly estimated simplified model (no beds included), a short-run cost version
including beds, and a long-run version substituting calculated optimal beds into the
cost function. As with the main translog specification, direct estimation tends to
yield the lowest scale economy estimations with a median scale economy index of
1.18. Short-run scale economies returned the highest values (median value 1.32),
and long-run estimation between the two (median value 1.31).
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Figure B.2: Distribution of Scale Economies (Aggregated Output).
Scale economies are estimated using the direct estimation method.

The relationships between each version of scale economies and size measured
in beds (shown in Figures B.3 - B.6) are comparable to those obtained by the
standard specification. Figure B.3 plots directly estimated scale economies against
beds. Recorded scale economies and their relationship to changes in bed numbers
are similar to the main result shown in Figure 2.19, though the simplified version
has lower scale economies for the few observations with more than 1,000 beds.
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Figure B.3: Scale Economies vs Current Beds (Aggregated Output).
Scale economies are estimated using the direct estimation method.

The relationship between short-run scale economies and bed numbers, shown
in Figure B.4, is also similar to the main short-run result (Figure 4.3). Short-run
scale economies are generally positive and higher than direct estimation, declining
with size until reaching a rough limit at 1,250 beds, where most observations exhibit
constant or negative scale economies.
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Figure B.4: Short-Run Scale Economies vs Current Beds (Aggregated
Output).

Figures B.5 and B.6 show the long-run scale economy calculations, with each ob-
servation assumed to have optimal capital stock for its current output level. Again,
the simplified translog specification shows similar results to the main estimation.
Scale economies are highest amongst small trusts and decline with increasing size.
This relationship is observed for both current and calculated optimal beds.
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Figure B.5: Long-Run Scale Economies vs Current Beds (Aggregated
Output).
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Figure B.6: Long-Run Scale Economies vs Optimal Beds (Aggregated
Output)
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Appendix C

Specialty Groupings

Service Code Description Specialty Grouping

100 General Surgery Service General Surgery

101 Urology Service Other

102 Transplant Surgery Service General Surgery

103 Breast Surgery Service General Surgery

104 Colorectal Surgery Service General Surgery

105 Hepatobiliary And Pancreatic Surgery Service General Surgery

106 Upper Gastrointestinal Surgery Service General Surgery

107 Vascular Surgery Service Other

108 Spinal Surgery Service Orthopaedics

110 Trauma And Orthopaedic Service Orthopaedics

111 Orthopaedic Service Orthopaedics

120 Ear Nose And Throat Service Other

130 Ophthalmology Service Other

140 Oral Surgery Service Other

141 Restorative Dentistry Service Other

142 Paediatric Dentistry Service Other

143 Orthodontic Service Other

144 Maxillofacial Surgery Service Other

145 Oral And Maxillofacial Surgery Service Other

150 Neurosurgical Service Other

160 Plastic Surgery Service Other

161 Burns Care Service Other

170 Cardiothoracic Surgery Service Other

171 Paediatric Surgery Service Other

172 Cardiac Surgery Service Other

173 Thoracic Surgery Service Other



Appendix C. Specialty Groupings

Service Code Description Specialty Grouping

174 Cardiothoracic Transplantation Service Other

180 Emergency Medicine Service
Emergency Medicine (including

A&E)

190 Anaesthetic Service
Anaesthetics, Critical Care & Pain

Management

191 Pain Management Service
Anaesthetics, Critical Care & Pain

Management

192 Intensive Care Medicine Service
Anaesthetics, Critical Care & Pain

Management

211 Paediatric Urology Service Other

212 Paediatric Transplantation Surgery Service General Surgery

213 Paediatric Gastrointestinal Surgery Service General Surgery

214 Paediatric Trauma And Orthopaedic Service Orthopaedics

215 Paediatric Ear Nose And Throat Service Other

216 Paediatric Ophthalmology Service Other

217 Paediatric Oral And Maxillofacial Surgery Service Other

218 Paediatric Neurosurgery Service Other

219 Paediatric Plastic Surgery Service Other

220 Paediatric Burns Care Service Other

221 Paediatric Cardiac Surgery Service Other

222 Paediatric Thoracic Surgery Service Other

223 Paediatric Epilepsy Service Other

241 Paediatric Pain Management Service
Anaesthetics, Critical Care & Pain

Management

242 Paediatric Intensive Care Service
Anaesthetics, Critical Care & Pain

Management

250 Paediatric Hepatology Service Other

251 Paediatric Gastroenterology Service Other

252 Paediatric Endocrinology Service Other

253 Paediatric Haematology Service Other

254 Paediatric Audio Vestibular Medicine Service Other

255 Paediatric Clinical Immunology And Allergy Service Other

256 Paediatric Infectious Diseases Service Other

257 Paediatric Dermatology Service Other

258 Paediatric Respiratory Medicine Service Other

259 Paediatric Nephrology Service Other

260 Paediatric Medical Oncology Service Other

261 Paediatric Inherited Metabolic Medicine Service Other
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Service Code Description Specialty Grouping

262 Paediatric Rheumatology Service Other

263 Paediatric Diabetes Service Other

280 Paediatric Interventional Radiology Service Other

290 Community Paediatric Service Other

291 Paediatric Neurodisability Service Other

300 General Internal Medicine Service General Medicine

301 Gastroenterology Service Other

302 Endocrinology Service Other

303 Haematology Service Other

304 Clinical Physiology Service Other

305 Clinical Pharmacology Service Other

306 Hepatology Service Other

307 Diabetes Service Other

308 Blood And Marrow Transplantation Service Other

309 Haemophilia Service Other

310 Audio Vestibular Medicine Service Other

311 Clinical Genetics Service Other

313 Clinical Immunology And Allergy Service Other

314 Rehabilitation Medicine Service Other

315 Palliative Medicine Service Other

316 Clinical Immunology Service Other

317 Allergy Service Other

318 Intermediate Care Service Other

319 Respite Care Service Other

320 Cardiology Service Other

321 Paediatric Cardiology Service Other

322 Clinical Microbiology Service Other

323 Spinal Injuries Service Other

324 Anticoagulant Service Other

325 Sport And Exercise Medicine Service Other

327 Cardiac Rehabilitation Service Other

328 Stroke Medicine Service Other

329 Transient Ischaemic Attack Service Other

330 Dermatology Service Other

331 Congenital Heart Disease Service Other

333 Rare Disease Service Other

340 Respiratory Medicine Service Other

341 Respiratory Physiology Service Other
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Service Code Description Specialty Grouping

342 Pulmonary Rehabilitation Service Other

344 Complex Specialised Rehabilitation Service Other

345 Specialist Rehabilitation Service Other

346 Local Specialist Rehabilitation Service Other

350 Infectious Diseases Service Other

352 Tropical Medicine Service Other

360 Genitourinary Medicine Service Other

361 Renal Medicine Service Other

370 Medical Oncology Service Other

371 Nuclear Medicine Service Other

400 Neurology Service Other

401 Clinical Neurophysiology Service Other

410 Rheumatology Service Other

420 Paediatric Service Other

421 Paediatric Neurology Service Other

422 Neonatal Critical Care Service
Anaesthetics, Critical Care & Pain

Management

430 Elderly Medicine Service Other

450 Dental Medicine Service Other

460 Medical Ophthalmology Service Other

501 Obstetrics Service Obstetrics & Gynaecology

502 Gynaecology Service Obstetrics & Gynaecology

503 Gynaecological Oncology Service Obstetrics & Gynaecology

560 Midwifery Service Obstetrics & Gynaecology

650 Physiotherapy Service Other

651 Occupational Therapy Service Other

652 Speech And Language Therapy Service Other

653 Podiatry Service Other

654 Dietetics Service Other

655 Orthoptics Service Other

656 Clinical Psychology Service Other

657 Prosthetics Service Other

658 Orthotics Service Other

659 Dramatherapy Service Other

662 Optometry Service Other

663 Podiatric Surgery Service Other

710 Adult Mental Health Service Other

711 Child And Adolescent Psychiatry Service Other

159



Service Code Description Specialty Grouping

712 Forensic Psychiatry Service Other

713 Medical Psychotherapy Service Other

715 Old Age Psychiatry Service Other

720 Eating Disorders Service Other

721 Addiction Service Other

722 Liaison Psychiatry Service Other

723 Psychiatric Intensive Care Service Other

724 Perinatal Mental Health Service Other

727 Dementia Assessment Service Other

800 Clinical Oncology Service Other

811 Interventional Radiology Service Other

812 Diagnostic Imaging Service Diagnostic & Pathology Services

822 Chemical Pathology Service Diagnostic & Pathology Services

834 Medical Virology Service Other

840 Audiology Service Other

920 Diabetic Education Service Other

999 Unknown Other

CCU01 Non-Specific, General Adult Critical Care Patients Predominate
Anaesthetics, Critical Care & Pain

Management

CCU02 Surgical Adult Patients (Unspecified Specialty)
Anaesthetics, Critical Care & Pain

Management

CCU03 Medical Adult Patients (Unspecified Specialty)
Anaesthetics, Critical Care & Pain

Management

CCU04
Paediatric Intensive Care Unit (Paediatric Critical Care Patients

Predominate)

Anaesthetics, Critical Care & Pain

Management

CCU05 Neurosciences Adult Patients Predominate
Anaesthetics, Critical Care & Pain

Management

CCU06 Cardiac Surgical Adult Patients Predominate
Anaesthetics, Critical Care & Pain

Management

CCU07 Thoracic Surgical Adult Patients Predominate
Anaesthetics, Critical Care & Pain

Management

CCU08 Burns And Plastic Surgery Adult Patients Predominate
Anaesthetics, Critical Care & Pain

Management

CCU09 Spinal Adult Patients Predominate
Anaesthetics, Critical Care & Pain

Management

CCU10 Renal Adult Patients Predominate
Anaesthetics, Critical Care & Pain

Management
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Service Code Description Specialty Grouping

CCU11 Liver Adult Patients Predominate
Anaesthetics, Critical Care & Pain

Management

CCU12 Obstetric And Gynaecology Critical Care Patients Predominate
Anaesthetics, Critical Care & Pain

Management

CCU13 Neonatal Intensive Care Unit
Anaesthetics, Critical Care & Pain

Management

CCU14 Facility For Babies On A Transitional Care Ward
Anaesthetics, Critical Care & Pain

Management

CCU15 Facility For Babies On A Maternity Ward
Anaesthetics, Critical Care & Pain

Management

CCU16 Ward For Children And Young People
Anaesthetics, Critical Care & Pain

Management

CCU17 High Dependency Unit For Children And Young People
Anaesthetics, Critical Care & Pain

Management

CCU18 Renal Unit For Children And Young People
Anaesthetics, Critical Care & Pain

Management

CCU19 Burns Unit For Children And Young People
Anaesthetics, Critical Care & Pain

Management

CCU90 Non-Standard Location Using A Ward Area
Anaesthetics, Critical Care & Pain

Management

CCU91 Non-Standard Location Using The Operating Department
Anaesthetics, Critical Care & Pain

Management

CCU92
Non-Standard Location Using The Operating Department For

Children And Young People.

Anaesthetics, Critical Care & Pain

Management

DADS Direct Access Diagnostic Services Diagnostic & Pathology Services

DAPS Direct Access Pathology Services Diagnostic & Pathology Services

FPC Family Planning Clinic Other

HIV1 Hiv Or Aids, Category 1, New Patients Other

HIV2 Hiv Or Aids, Category 2, Stable Patients Other

HIV3 Hiv Or Aids, Category 3, Complex Patients Other

NEO Neonatal Critical Care
Anaesthetics, Critical Care & Pain

Management

PD Paediatric Critical Care
Anaesthetics, Critical Care & Pain

Management

T01A Type 01 Admitted
Emergency Medicine (including

A&E)

T01NA Type 01 Non Admitted
Emergency Medicine (including

A&E)
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T02A Type 02 Admitted
Emergency Medicine (including

A&E)

T02NA Type 02 Non Admitted
Emergency Medicine (including

A&E)

T03A Type 03 Admitted
Emergency Medicine (including

A&E)

T03NA Type 03 Non Admitted
Emergency Medicine (including

A&E)

T04A Type 04 Admitted
Emergency Medicine (including

A&E)

T04NA Type 04 Non Admitted
Emergency Medicine (including

A&E)
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