
Powder Technology 428 (2023) 118837

Available online 25 July 2023
0032-5910/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Application of nonlinear dynamics analysis to gas-solid flow system in 
horizontal pneumatic conveying of plastic pellets 

Osamh S. Alshahed a,*, Baldeep Kaur a, Michael S.A. Bradley a, David Armour-Chelu b 

a Wolfson Centre for Bulk Solids Handling Technology, University of Greenwich, Kent ME4 4TB, UK 
b School of Engineering, University of Greenwich, Kent ME4 4TB, UK   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Developed pneumatic conveying state 
diagram classified with flow patterns. 

• Measured pressure and electrostatic 
fluctuations of horizontal gas-solid 
flows. 

• Recurrence plots of classified flow pat-
terns showed different structures. 

• Proposed correlations between 
nonlinear dynamics measures and state 
diagram. 

• Nonlinear dynamics measures revealed 
minimum energy consumption 
operations.  

Flow pattern map developed for horizontal pneumatic conveying of plastic pellets.
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A B S T R A C T   

Chaotic invariant and recurrence quantification analysis measures have characterised fully developed gas-solid 
flow in horizontal pneumatic conveying of plastic pellets. These measures describe the complexity in phase 
spaces (attractors) and recurrence plots, reconstructed from pressure and bottom arc-shaped electrostatic signals 
to characterise the behaviour of flow patterns. Different flow patterns were identified using high-speed video 
imaging of a transparent pipeline and classified at several operating conditions in a flow pattern map and state 
diagram. Recurrence plots were analysed for the identified flow patterns, which showed different qualitative 
structures. The chaotic invariant and recurrence quantification analysis measures were correlated with the state 
diagram, indicating that the fluctuations of pressure senor and electrostatic sensor signals can classify the flow 
patterns at different operating conditions. Combining the analysis measures for electrostatic signals can indicate 
whether the flow condition is above, near or below the minimum energy consumption operating conditions.   

1. Introduction 

The pneumatic conveying system has three primary modes of 

operation: dilute phase, transition phase and dense phase. Choosing 
between these phases during conveying can be challenging depending 
on the material properties, conveying route structure and distance, and 
pressure availability in the pipelines. Dilute phase flow operation is 
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generally considered when a simple pneumatic conveying system design 
is required to achieve a stable and reliable operation [1]. Dilute phase 
flow operates at a high gas velocity in large volumes and low solid 
concentrations of particles, where discrete particles are uniformly sus-
pended via drag and lift forces caused by turbulent air stream [2]. In 
practice, pneumatically conveying solids at high gas velocity often result 
in high energy consumption, material degradation and pipeline wear 
[3]. Dense phase flow operation is characterised by a high concentration 
of particles and low gas velocity, resulting in improved product quality 
and reduced pipeline sizing and wear rate [4]. However, the dense phase 
flow operation requires more pressure availability resulting in a high 
initial cost of equipment to withstand high-pressure operations. 

The flow pattern map and the state diagram describe the gas-solid 
flow transition spectrum from dilute to dense phase flow operations 
for specific particulate material. The flow pattern map shows a distri-
bution of operating condition points, including air mass flow rate (ma) 
and solids mass flow rate (ms), classified according to the observed flow 
patterns in a transparent pipeline [5,6]. The state diagram is a function 
that relates average air velocity with air pressure drop per unit length of 
a pipeline having a constant inner diameter [5,7]. The pressure drop 
directly relates to the air velocity in dilute phase flow operation and 
shifts to an indirect relationship for dense phase flow. The air velocity at 
the centre of this shifting curve is the optimal conveying condition, 
known as minimum conveying air velocity (MCAV). While the pressure 
drop line connecting the MCAV at different solids mass flow rates is 
known as the pressure drop minimum curve (PMC). The instabilities of 
flow patterns in the transition phase from dilute to dense phase flow 
increase as the operating conditions approach the PMC. Operating the 
pneumatic conveying system at or below the MCAV may lead to a sud-
den blockage in the pipeline depending on the air velocity, solids mass 
flow rate and material properties. 

Operating at a gas velocity close to the MCAV in a horizontal pipeline 
leads to particle accumulations at the bottom of the pipeline cross- 
section with a nonuniform distribution. These accumulations form 
dense clusters with a high solid concentration surrounded by dilute flow 
with a low solid concentration. These dense clusters are unstable as they 
continuously deform through complex transport mechanisms. 

Decreasing the air velocity below the MCAV at a constant solids mass 
flow rate will further magnify the flow instabilities as dense clusters 
expand along the pipeline. This instability magnification is also reflected 
in the pipeline inner wall pressure, as dense clusters restrict the sur-
rounding dilute phase to flow through smaller cross-section areas that 
continuously change. 

The flow patterns in the transition phase near the PMC are rich with 
complex nonlinear dynamics. These dynamics can quantitatively be 
explored using high-dimensional phase spaces (attractors) reconstructed 
from time-series state measurements using the time-delay coordinate 
embedding method [8]. A phase space reconstructed from one state 
measurement of a system can reveal an equivalent topology to the sys-
tem state space. The topological feature of reconstructed phase space 
can be described using statistical measures that, if captured correctly, 
can stay invariant across similar future topologies, including fractal 
dimension, Lyapunov exponent and entropy [9]. The fractal dimension 
is a measure of self-similarity that can be calculated using the Hurst 
exponent for a 1D time-series signal and the correlation dimension (CD) 
for an attractor. The chaotic behaviour of an attractor can be quantified 
using the largest Lyapunov exponent (LE), reflecting the separation of 
dynamics in each dimension of the phase space. The entropy of an 
attractor is the measure of the information generation rate of recurring 
dynamics involving both chaotic and stochastic dynamics, such as the 
Kolmogorov entropy [10] and the approximate entropy (AE) [11]. The 
recurring dynamics in an attractor can be visually observed in the 
recurrence plot (RP) initially introduced by Eckmann et al. [12], and its 
morphology is quantified using the recurrence quantification analysis 
(RQA) [13]. 

Considerable efforts have been made to characterise the complex 
dynamics of gas-solid flow patterns in horizontal pneumatic conveying 
systems through visual observation of 2D and 3D phase space recon-
structed from pressure time-series signals [14–16]. Cabrejos and Klinz-
ing analysed a 2D phase space qualitative behaviour of pressure signals 
using visual observation of their features at different flow patterns 
identified in horizontal pneumatic conveying systems [14]. This study 
stated that the pressure signals showed different global topological 
features in phase space for plastic pellets as the operating conditions 

List of symbols 

MCAV Minimum conveying air velocity, m/s 
PMC Pressure drop minimum curve, Pa/m 
ms Solids mass flow rate, kg/s 
ma Air mass flow rate, kg/s 
P1 to P8 Pressure sensor tapings 
t Time, s 
x(t) Data point value at specific, t 
τ Time delay 
m Embedding dimension 
n Number of data points 
N Number of phase points 
Y(t) Phase space (Time series vector) 
FNN False nearest neighbour algorithm 
i and j Subscript for phase points indexes 
r Radius of a hypersphere 
Cr(r) Correlation integral function 
Θ(h) Heaviside step function 
rCr1, rCr2 Radius hypersphere limits for correlation integral scalling 

region 
CD Correlation dimension 
s Subscript for nearest neighbour phase point index 
k Subscript for Expansion step index 
kMin Minimum expansion step 

kMax Maximum expansion step 
dt Time difference between acquired data points 
λ(i) Lyapunov exponent 
ALDiv Average log divergence 
LE Largest Lyapunov exponent 
Φ Statistical function 
AE Approximate entropy 
AEmax Maximum approximate entropy across different radius 

hypersphere 
rAEmax Radius hypersphere at maximum approximate entropy 
RP Recurrence plot Matrix 
rRP Radius hypersphere threshold for recurrence plot 

development 
LOI Line of Identity in a recurrence plot 
LWA Local white areas 
LBA Local bolt areas 
RQA Recurrence quantification analysis 
RR Recurrence rate 
DET Recurrence plot determinism 
E Recurrence plot entropy 
l Diagonal line length 
lmin Minimum diagonal line length 
P(l) Histogram of diagonal lines 
L Average diagonal line length  
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changed. Pahk studied the effect of a blower and feeder on a 2D phase 
space reconstructed from pressure signals in a horizontal pipeline using 
plastic pellets, which also follow the same phase space description 
provided by Pahk and Klinzing in ref. [15]. Later, Shijo studied the effect 
of solid loading ratio on pressure signals at different locations in a 
horizontal pipeline system using fly ash, a fluidised dense phase capable 
material [16]. In this study, the change in the flow from dilute to dense 
phase is captured in 3D phase spaces reconstructed from pressure signals 
acquired at different locations across a 120 m long pipeline. 

The complex dynamics of gas-solid flow in fluidised bed systems 
have been extensively studied using chaotic invariants [17–21] and RQA 
measures [22–24] to monitor and identify operating conditions where 
the transition between different flow patterns occurs. In contrast, few 
studies aim to quantify the complex dynamics of gas-solid flow using 
chaos and RQA in pneumatic conveying systems. Cabrejos and Klinzing 
[25] studied the fractal dimension of a gas-solid flow pattern utilizing 
the Hurst exponent from pressure signals in a horizontal pneumatic 
conveying system at different operating conditions, indicating that the 
dilute phase has higher fractal complexity than the dense phase. Wang 
et al. used the Hurst exponent as a multiscale selection criterion for 
particle random energy ratio to identify the operating point at which the 
transition between suspension and deposition of solids occurs, found to 
be at the PMC [26]. Fu et al. characterised gas-solid flow dynamics in a 
vertical pneumatic conveying system of fine pulverized coal using the 
approximate entropy measure from electrostatic signals as a measure of 
solid concentration to distinguish dilute from dense phase flow opera-
tions [27]. The approximate entropy of electrostatic signals is found 
higher in the dense phase than in the dilute phase flow operation. 

Although a phase space reconstructed from one time-series state of a 
system might reflect topological equivalence to the system state space. 
Specific states in the system can correlate more to the source of 
nonlinearity than others. Therefore, measurements from pressure and 
electrostatic sensor signals of a fully developed gas-solid flow are 
monitored in a horizontal pipeline system to compare the relationship of 
their nonlinear analysis measures with the operating conditions and 
observed flow patterns. The advantage of monitoring pressure and 
electrostatic sensors signals is that they are non-intrusive, low cost and 
relatively easy to implement in an industrial setting compared to other 
techniques that can provide direct measurements of local and global 
behaviour but are very costly to implement and have practical limita-
tions, such as electrical capacitance tomography [28], phase-doppler 

anemometry [29] and particle image velocimetry [30]. 
This paper aims to develop nonlinear time-series analysis, including 

chaotic invariants and RQA measures to characterise gas-solid flow 
behaviour and classify transition phase flow patterns near the PMC in an 
industrial-scale pneumatic conveying system. The analysis parameters 
settings are estimated using a heuristic procedure or set to a constant to 
be used as real-time flow pattern indicators, allowing the system to be 
operated at optimal conditions at the PMC. 

2. Experimental setup 

Experimental tests have been conducted in a close-loop industrial- 
scale pneumatic conveying system to capture fully developed gas-solid 
flow behaviour in a horizontal pipeline. Fig. 1 shows a schematic of 
the industrial-scale pneumatic conveying system and its main compo-
nents. The main components of the pneumatic conveying system consist 
of a 0.1 m inner diameter pipeline with a total length of 127 m, receiving 
hopper and blow tank with a 1.5 m3, a screw feeder, and a nozzle bank. 
In the loop, there are eight bends and two vertical pipeline sections. The 
loop consists of horizontal pipeline sections except for the sections 
before the second bend and after the last bend. Two screw-type com-
pressors are used to compress air in tanks, which is then regulated and 
introduced in the pipeline cycle from the blow tank to receiving hopper 
using the nozzle bank at two locations: the blow tank exit, also known as 
‘blow tank air’ (the screw feeder inlet), and the pipeline inlet also known 
as ‘supplementary air’ (the screw feeder outlet). The blow tank and 
supplementary air ratio can be adjusted per the requirement. Particulate 
materials are first fed to the blow tank through the feed hopper, then the 
blow tank is pressurised, and material is fed to the pipeline through a 
screw feeder using the blow tank and supplementary airflow. The air is 
separated from solids at the receiving hopper through a bag filter house 
with a surface area of 35 m2. 

The receiving hopper is suspended on three equidistant load cells. 
The load cells are manufactured by LCM SYSTEM LTS (STA-3-1000) 
with a range of up to 1000 kg and an accuracy of up to ±0.02%. The 
solids mass flow rate is measured using load cells and controlled by 
choosing a suitable air ratio between the blow tank and supplementary 
air and screw feeder motor speed. The ma at the inlet of the pneumatic 
conveying pipeline system is controlled using the nozzle bank. The 
nozzle bank can incrementally control the ma at the blow tank exit and 
pipeline inlet using different combinations of nozzles for each set, each 

Fig. 1. A schematic of a pneumatic conveying system set up at The Wolfson Centre laboratory used to study the fully developed gas-solid flows in the horizontal 
pipeline downstream of the third bend. 
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with a maximum limit of 0.38 kg/s. The mass flow rate of air is set by 
combining several different sizes of choked flow nozzles with fixed up-
stream pressure, which delivers fixed mass flow rates of air irrespective 
of the downstream pressure up to a certain critical pressure ratio. The 
nozzle bank consists of two sets of eight nozzles each. The nozzle di-
ameters range from 1.19 mm to 13.45 mm, with convergent-parallel- 
divergent sections having a critical pressure ratio of 80% (absolute 
pressures) across the nozzles. They operate with an upstream pressure of 
62 kPa, meaning that provided the conveying pressure is below 52 kPa, 
the mass flow rate of air is fixed no matter how the conveying pressure 
changes. The nozzle bank was developed in The Wolfson Centre, further 
details on its dimensions and instrumentation and also its calibration 
can be found in Bradley (1990) [31]. 

Pressure measurements of gas-solid flow are undertaken using eight 
pressure transducers manufactured by DRUCK LTD (UNIK 5000), with 
measurements ranging up to 50 kPa and accuracy up to ±0.04%. The 
first pressure sensor is installed 8 m downstream of the third bend to 
ensure gas-solid flow is transitioned from accelerating to fully devel-
oped. The first set of four pressure sensors is installed equidistantly with 
a 2 m separation distance, while the second set of four pressure sensors is 
installed 4 m after the fourth sensor with an equidistance of 2 m. The 
Wolfson Centre has developed the top and bottom arc-shaped electro-
static sensors assembly to measure qualitatively solids concentration 
and average velocity of charged particles [32]. The primary source of 
electrostatic charge developed on the solid particles is due to collisional 
friction between particles and the surrounding pipeline’s inner wall, 
continuously going through positive and negative charges with a 
bimodal distribution. If fully charged particles pass through the 100% 
sensitivity zone (bottom section of the pipeline cross-section), the 
voltage signal will have high magnitudes and then return to zero and 
vice versa. The arc-shaped electrostatic sensors assembly is placed at 
0.62 m from the first pressure sensor (P1), followed by a transparent 
pipeline to capture flow patterns using a high-speed video camera 
capturing images at 240 fps, as shown in Fig. 2. 

Electrostatic signals were acquired from the bottom arc-shaped 
electrostatic electrode, which is amplified first using a transimpedance 
amplifier circuit with a measurement range from − 5 to +5 V and then 
sampled with the first pressure sensor (P1) at 525 Hz. The Load cell and 
the rest of the pressure sensors from P2 to P8 are sampled at 1 Hz, 
sufficient for state diagram representation. LabVIEW software is used to 
acquire data, while the data analysis calculations are developed in 
MATLAB software. 

A 2D grid of operating conditions is considered, including ms and ma, 
to study the effect of operating conditions on the flow patterns of plastic 
pellets observed in the transparent pipeline, pressure signal and bottom 
arc-shaped electrostatic signal. Ellipsoid shape plastic pellets with a total 

batch mass of 800 kg are used, having a mean diameter of 3.6 mm, 
particle density of 910 kg/m3 and bulk density of 560 kg/m3. The ma 
injected into the blow tank was kept constant throughout the transport 
process, and the screw feeder speed was set to five different incremental 
values. The ms is calculated using a linear regression fit of the measured 
solids mass time-series signal in the fully developed flow region, as 
shown in Fig. 3 (a). The average pressure values from pressure sensors 
P1 to P8 are used to calculate the average pressure drop through a single 
regression fit across the eight sensors, as shown in Fig. 3 (b). 

The initial experimental test point at constant screw feeder speed 
was conducted at a high supplementary ma of 0.4 kg/s at the inlet of the 
transport pipeline to transport plastic pellets through dilute phase flow 
operation. Then the following test points were measured at the same 
screw feeder speed, and the supplementary air mass flow rate was pro-
gressively decreased by 0.02 kg/s using the nozzle bank until a single 
slug flow or settled layer appeared in the transparent pipeline. Accord-
ing to plug flow type capable materials, unstable flow in the form of 
slugs exists at an air velocity below the MCAV [5]. Therefore, further 
experiments are conducted at a constant ms and progressively 
decreasing the ma for each test to ensure that the transition flow spec-
trum between dilute and dense phase flow is captured using the installed 
sensors to identify the MCAV. 

3. Analysis method 

3.1. Phase space 

Through time-delay coordinate embedding, one can reinflate a state 
variable from time-series measurements into a vector of latent state 
variables, assuming that the underlying dynamic is smooth with low- 
dimensional manifolds [8]. This method reconstructs a phase space 
from a time-series signal that exhibits topological equivalence to the 
original system state space. Reconstructing a phase space using the time- 
delay coordinate embedding method from measurements requires two 
main parameters - time delay and embedding dimension. Consider a 
signal (x(t1)…x(tn) ), where n is number of points acquired at constant 
sampling periods. Eq. 1 shows the phase space data is in the form of a 
vector Y(t) represented in the matrix form, where m is the embedding 
dimension, τ is the time delay, and N is the number of points in a phase 
space (N = n − (m − 1)τ). 

Y(t) =

⎡

⎢
⎢
⎣

x(t1) x(t1+τ) x(t1+2τ) ⋯ x
(
t1+(m− 1)τ

)

x(t2) x(t2+τ) x(t2+2τ) ⋯ x
(
t2+(m− 1)τ

)

⋮ ⋮ ⋮ ⋱ ⋮
x(tN) x(tN+τ) x(tN+2τ) ⋯ x

(
tN+(m− 1)τ

)

⎤

⎥
⎥
⎦ (1) 

When the dynamic complexity of a time series signal is steamed from 

Fig. 2. A schematic diagram of the horizontal pipeline downstream of the third bend showing the location of the pressure sensors from P1 to P8 and the top and 
bottom arc-shaped electrostatic sensors assembly. 
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a stochastic dynamical system, its reconstructed attractor will corre-
spond to infinite-dimensional space with no meaningful information. 
The false nearest neighbour Algorithm (FNN) is a commonly used al-
gorithm to estimate the embedding dimension of a signal, which is based 
on the idea that if not enough dimension is used to unfold the dynamics, 
there will be trajectory crossings in the dynamics [33]. These crossings 
are noise caused by high to low dimensional space projection. This al-
gorithm scans for trajectory crossings by distinguishing true neigh-
bouring points from false ones for an attractor while increasing the 
embedding dimension, as shown in Eq. 2. 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ri(m + 1) − Ri(m)

Ri(m)

√

> D,Ri(m) = ‖Yi − Ys‖
2 (2) 

Ri(m) is the distance between phase point Yi and their nearest 
neighbour point Ys, where i = 1 : N and D is the distance threshold to 
identify false neighbours. The embedding dimension is selected based on 
a satisfied condition of false neighbour percentage, which is the ratio of 
FNN points to the total number of points in the reconstructed phase 
space. 

3.2. Chaotic invariant measures 

Fractal dimension is a measure that characterises patterns in an 
attractor through self-similarity, quantified using a scaling function that 
correlates a change in geometrical detail to a change in scale. Several 
methods for calculating the fractal dimensions are used, such as capacity 
dimension (box counting), correlation dimension, and Hausdorff 
dimension. The calculation of the correlation dimension is the quickest 
and subjected to less noise when not enough points in the attractor are 
available. The correlation dimension (CD) calculation algorithm was 
initially developed by Grassberger and Procaccia [34] and then modified 
by Theiler [35] to speed up the calculation a thousand times more. The 
CD is calculated through linear regression in a region of interest in the 
correlation integral function (Cr) in the log scale (log(Cr)), a function of 
scaled hypersphere similarity radius (r). Cr in an attractor corresponds 
to the sum of nearby trajectory points within r from a template trajectory 
of the attractor. Eq. 3 shows the Cr(r) function, where ‖Xi − Xj‖ is the 
vector distance between phase points and Θ is the Heaviside step func-
tion presented in Eq. 4. 

Cr(r) =
2

N(N − 1)
∑N

i=1

∑N

j∕=i
Θ
(
r −
⃦
⃦Yi − Yj

⃦
⃦
)

(3)  

Θ =

{
1 h ≥ 0
0 h < 0 (4) 

The sensitivity of initial conditions is a natural phenomenon that 
describes chaotic behaviour, quantified using the Lyapunov exponent. 
Lyapunov exponent characterises the separation rate between two 
neighbouring trajectories in state space. There are as many Lyapunov 
exponents as there are dimensions known as the Lyapunov spectrum, 
which correspond to each separation direction in a system state space. If 
all the Lyapunov exponents of an attractor are negative, all trajectories 
are shrinking from all directions toward stable manifolds. If all Lyapu-
nov exponents are positive, then trajectories diverge in unstable mani-
folds. To have an attractor means the sum of all Lyapunov exponents 
tends to approach zero and negative for dissipative systems. For a 
chaotic attractor, there is at least one positive Lyapunov exponent. 
However, this cannot indicate whether an attractor is chaotic, as there 
will be a combination of stable and unstable manifolds. Typically, the 
positive Lyapunov exponent in a set of initial conditions dominates 
growth in an attractor in the long run. 

In this study, only the largest Lyapunov exponents (LE) are used to 
measure chaotic behaviour in a time series. The algorithm for the LE is 
adopted from Rosenstein [36]. Lyapunov exponent λ(i) is a function of 
phase point i across the expansion step k, presented in Eq. 5. The value of 
kmin and kmax are the minimum and maximum values of the expansion 
range. Where ‖Yi − Ys‖ is the distance between each phase point i and its 
nearest neighbour s and ‖Yi+k − Ys+k‖ is the change after an expansion 
step k. The nearest neighbour points in this algorithm satisfy the con-
dition |i − s|〉minimum separation. The minimum separation is calculated 
using the ratio of the sampling frequency of the signal to its mean fre-
quency, allowing enough space for initial conditions from neighbouring 
trajectories of interest to be considered. For each expansion step, one 
value of the Lyapunov exponent is calculated using the average of pos-
itive Lyapunov exponents for all the phase points, also called average log 
divergence (ALDiv). Across the expansion steps from kmin and kmax, a 
single value for the Lyapunov exponent is calculated through linear 
regression fit across an expansion range of interest. A phase space with 
positive LE indicates that the dominant structure is chaotic, negative LE 
indicates dissipative nature and zero LE represents periodic or fixed 
points. 

λ(i) =
1

kmax − kmin + 1
∑kmax

k=kmin

1
k × dt

ln
‖Yi+k − Ys+k‖

‖Yi − Ys‖
(5) 

Pincus developed the approximate entropy measure, a modification 
of Kolmogrov-sini entropy, featured by its low computational cost and 

Fig. 3. (a) Pressure and load cell signals of plastic pellets acquired at ma = 0.26 kg/s and ms = 3.8 kg/s. (b) The average pressure for each signal versus their 
distances from the first pressure sensor location and the linear regression for the pressure drop. 
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capability to deal with noisy data [11]. Approximate entropy (AE) re-
flects the logarithmic probability of the degree of unpredictability of 
future information based on previous similar information. The AE has a 
self-counting feature that compares the closeness of trajectory points in 
an attractor with other older points. Zero AE corresponds to constant or 
cyclic behaviour, represented in phase space by a fixed point or periodic 
attractor. AE is calculated by subtracting two statistical functions; Φm 

from Φm+1, as shown in Eqs. 6 and 7, computed using a phase space 
reconstructed with the selected dimension m and at a higher dimension 
m+ 1. 

AE = Φm − Φm+1 (6)  

Φm =
1
N

∑N

i=1
log

(
∑N

j=1,j∕=i
Θ
(
r −
⃦
⃦Yi − Yj

⃦
⃦
)
)

(7)  

3.3. Recurrence plot 

The recurrence plot (RP) is a representation of the dynamic topology 
of an attractor, developed by Eckmann et al. in 1987 as a visualisation 
tool that projects recurring dynamics from high dimensional phase space 
into a 2D black and white (binary values) plot [37]. It reflects the pro-
cess of having trajectory points in phase space arbitrarily visiting each 
other at different times. RPi,j in Eq. 8 is a square matrix relating pairs of 
times at which phase points meet in a fixed hypersphere with radius r. 
The subscript i and j are the index of the matrix for each pair of phase 

points. 
⃦
⃦
⃦
⃦Y→i − Y→j

⃦
⃦
⃦
⃦ Y is the matrix of the global RP, representing the 

distances between pair of points in an attractor. The distribution of 
recurrent points in RPs heavily depends on the selected threshold r. 
However, the r threshold selection is less critical for comparative studies 
of dynamical transitions, as differences between RP would not change 
within a specific distance range. 

RPi,j(r) = Θ
(

r −
⃦
⃦
⃦
⃦Y→i − Y→j

⃦
⃦
⃦
⃦

)

(8) 

RPs have a main diagonal line that is black, separating two identical 
triangles, known as the line of identity (LOI). Marwan et al. [38] 
described several qualitative structures of black points around the LOI. 
The identical triangles contain a geometric arrangement of recurrent 
points, denoted as typology by Eckmann et al. [37], capable of revealing 
several global dynamic characteristics such as homogenous, periodic, 
drift and disruption. The homogenous structure represents a stationary 
time-series signal containing uniformly disrupted recurrent points, 
reflecting a random behaviour. The periodic structure has repeated 
dense local structures and long diagonal lines separated at equal dis-
tances, describing a cyclic process. For a quasiperiodic signal, diagonal 
lines have different distances between each other. The drift structure 
represents a non-stationary signal with slowly varying values, showing a 
low density of points around the LOI and white corners. The disruption 
structure is present when rare extreme events occur, appearing as broad 
white areas or bands in the RP. 

Small-scale structures can also give different dynamic in-
terpretations. Single isolated points mean the dynamic process does not 
persist or fluctuate randomly. Diagonal lines reflect similar dynamic 
evolution and appear when trajectories in an attractor are parallel. 
Trajectories evolve in the same direction if the diagonal lines are parallel 
to the LOI and perpendicular when they evolve in opposite directions. 
Discontinuous diagonal lines that appear periodically describe chaotic 
behaviour in an attractor as unstable periodic orbits separate parallel 
trajectories and converge them again. Vertical lines appear when tra-
jectories stop or evolve slowly in specific locations in an attractor, 
describing intermittent behaviour. 

The multiscale structure of RPs reconstructed from pressure signals 
describing gas-solid flow patterns in fluidized beds have been classified 

into two groups, local white areas (LWA) and local bolt areas (LBA) 
[22,39]. The LWA correspond to a macroscale structure in an attractor 
with trajectories with higher distances than the selected threshold r, 
reflecting high amplitudes and low-frequency dynamics. In contrast, the 
LBA represents mesoscale and microscale structure having trajectories 
separated with distances smaller than the threshold r, describing high- 
frequency dynamics. 

3.4. Recurrence quantification analysis 

RPs can reveal valuable qualitative information about the dynamic 
structure of attractors. Inspecting the recurrent points structure in RPs to 
detect slight variations in the dynamics is challenging, especially when 
there are multiscale recurrent structures. RQA quantifies structural 
complexity using numbers and durations of recurring dynamics in RPs. 
The RQA measures were initially developed by Zbilut and Webber [13] 
and Webber and Zbilut [40], using the recurrence density points and the 
length of diagonal lines. Measures based on diagonal lines can detect 
chaos-order transitions. Marwan et al. [41] extended the RQA with other 
descriptive measures calculated using vertical lines, revealing chaos- 
chaos transitions. Later, Marwan et al. (2007) provided more defini-
tions and explanations of different RQA measures. 

The RQA measures used in the analysis are recurrence rate (RR), 
determinism (DET), entropy (E) and average diagonal line length (L). 
The RR measure is the ratio of recurrent points to the total number of 
points, as shown in Eq. 9, which is related to the Cr function in CD 
estimation. The DET is the percentage of diagonal lines of recurrent 
points, presented in Eq. 10, where P(l) is the histogram of diagonal lines, 
and lmin is the minimum diagonal lines in a recurrence plot, typically 
taken at lmin = 2 [42]. The E measure is calculated based on Shannon 
entropy using the distribution of diagonal lines parallel to the LOI, as 
shown in Eq. 11. The L measure presented in Eq. 12 describes the 
deterministic process in an attractor by characterising the average 
duration at which trajectories evolving in the same direction in space are 
arbitrarily close to each other. 

RR =
1

N2

∑N

i=1

∑N

j=1
Ri,j (9)  

DET =

∑N

l=lmin

l × P(l)

∑N

l=1
l × P(l)

(10)  

E =
∑N

l=lmin

P(l)× ln(P(l) ) (11)  

L =

∑N

l=lmin

l × P(l)

∑N

l=lmin

P(l)
(12)  

4. Results and discussions 

4.1. Flow pattern map and state diagram 

Coarse solid particles like plastic pellets with a mean diameter >1 
mm are expected to be conveyed at the MCAV without blockages [43]. 
Tsuji studied the wall pressure fluctuation of horizontal gas-solid flows 
of plastic pellets with d50 = 2.3 mm and observed its flow patterns close 
to the PMC, describing them as sliding dense clusters [44]. Cabrejos 
provided more generalised descriptions of horizontal gas-solid flow 
patterns and their relations to the operating conditions using three 
materials with different material properties [14]. The flow patterns 
identified for plastic pellets with d50 = 3 mm are homogenous flow, 
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stratified flow, pulsating flow, moving dunes and blowing dunes. 
The flow pattern map illustrates the formation of gas-solid flow 

patterns at different operating conditions. It is a scatter of operating 
points, including ms and ma, classified into regions identified based on 
the flow pattern observed in a transparent pipeline. Fig. 4 shows the flow 
pattern map for horizontal pneumatic conveying of plastic pellets clas-
sified into three patterns: stratified/pulsating flow, moving dunes and 
blowing dunes. The regions of these flow patterns vary across different 
ms and ma. Beyond the left boundary, slug flow (region D) and settled 
layer (region E) are present in the upper and lower regions. 

At a high ma of 0.4 kg/s and low ms of 2.48 kg/s (lower boundary of 
region A), plastic pellets are in suspension mode, where particles are 
distributed across the pipeline cross-section with high solids concen-
tration at the lower section of the pipeline, namely stratified flow. At the 
same ma but higher solids mass flow rate of 3.4 kg/s (lower to the upper 
boundary in region A), plastic pellets are in an intense kinetic and 
frictional collision as they accumulate and form discontinuous clouds at 
the bottom of the pipeline, known as pulsating flow. As the ma reduces at 
a particular point (transition from region A to B), which is 0.28 kg/s in 
this case, self-organised critical states appear as moving dunes sur-
rounded by dilute phase sliding on the bottom of the pipe. Moving dunes 
are featured by continuous erosion at the up-wind side (luff) and 
deposition at the down-wind side (lee). With further reduction in ma, 
solid particles in dilute phase flow start to drop out of suspension, and 
multiple moving dunes slow down and merge, forming blowing dunes. 
At the left boundary of blowing dunes, dunes start to settle down, and 
the transportation mechanism starts to be dominated by saltation and 
surface creep. Beyond this boundary, plug flow (region (E)) and settled 
layer (region (D)) at the upper and lower regions are present. 

Fig. 5 shows a state diagram developed using the data gathered from 
the horizontal pneumatic conveying of the plastic particles. Each solids 
mass flow rate is included for each point through a colour spectrum 
referring to the colour bar values, and the flow patterns are classified 
into regions. The superficial velocity is calculated based on the mean 
pressure and pipe diameter using the ideal gas law at ambient temper-
ature and plotted as a function of the pressure drop per unit length of 
pipe. Correlating pipeline pressure drop with gas-solid flow patterns 
reveals how specific flow patterns influence the pressure drop. The PMC 
is present between the moving dunes and the blowing dunes regions, 
where the transport mechanism is dominated by sliding, erosion and 
deposition of particles. 

4.2. Analysis parameters settings 

The top air-wall pressure and bottom arc-shaped electrostatic signals 
from three air velocities 33.5 m/s, 20 m/s and 16 m/s at low solids mass 
flow rates ms = 2.6 kg/s, 2.2 kg/s and 2.5 kg/s representing the stratified 
flow, moving dunes and blowing dunes are used as a template to show 
the analysis parameters settings. Chaotic invariants and RQA calcula-
tions are applied to phase spaces reconstructed from a 1 s moving time 
window of data (525 data points) with an overlap of half of the time 
window size (262 data points) for a total of 30s (15,750 data points). The 
phase spaces are reconstructed using a time delay of 1, and the 
embedding dimension is estimated using FNN. The recommended heu-
ristic for FNN parameters is to select an embedding dimension that 
satisfies 10% of false neighbours. The number of false neighbours is 
determined at a distance threshold of 1. The dimensions are estimated 
for the moving time window of pressure and electrostatic signals. The 
pressure data dimensions vary between 8 and 10, and electrostatic data 
vary between 9 and 13. Dimensions 9 and 10 are the shared value be-
tween the pressure and electrostatic signals. Therefore, the choice of the 
dimension used to reconstruct phase spaces and develop recurrence 
plots for the moving time window is 10. 

Calculating a single LE requires linear regression across an expansion 
range in the ALDiv function. Fig. 6 presents ALDiv as a function of an 
incremental expansion time step for phase spaces reconstructed from 

Fig. 4. The flow pattern map for horizontal pneumatic conveying of plastic pellets.  

Fig. 5. State diagram for horizontal pneumatic conveying of plastic pellets with 
classified flow patterns regions. 
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pressure and electrostatic signals under different operating conditions. 
The initial trends of ALDiv for phase spaces reconstructed from pressure 
signals are a linear decrease indicating that it is dissipative (negative 
LE), and phase spaces reconstructed from electrostatic signals are a 
linear increase reflecting chaotic behaviour (positive LE). The trend then 
shifts to a relatively constant value at a specific expansion step. The 
expansion range used to estimate LE for the moving time window is 
between 1 and 10 across all operating conditions. 

AE is the probability that future similar trajectories, including sto-
chastic and deterministic, do not follow past similar trajectories. The 
parameter required to calculate the AE of an attractor is the threshold r. 
The chance that trajectory points in an attractor have other points than 
itself falling within a hypersphere with a small r (r1) is zero or very low. 
As r increases, more trajectory points are included in determining the 
probability between future and past similar dynamics. A typical distri-
bution of AE across r is an increase in the unpredictability of information 
up to a specific r, forming the most significant difference between past 
and future information. The distribution of AE beyond this particular r 
gradually decreases to zero as the relation between future information 
becomes regular to the past information, and r approaches the maximum 

value between the points. It is recommended to select r within the range 
of 0.1 to 0.2 times the standard deviation of the signal. Sometimes the 
standard deviation approach may lead to an incorrect assessment of the 
signal complexity [45]. A more appropriate approach is to select the 
maximum value of AE (AEmax) across r or an AE at a slightly higher r 
than the r at AEmax (rAEmax) to avoid misleading comparative results 
[46]. The AE values shown in Fig. 7 (a) and Fig. 7 (b) are calculated at 50 
equidistant r across the phase spaces reconstructed from pressure and 
electrostatic signals to identify rAEmax and select AEmax. 

The CD measure is calculated through linear regression of the Cr 
function in a scaling region of interest that exhibits self-similar fractal 
geometry. For a mono-fractal attractor, the r scaling region is located 
between depopulation and saturation regions at the low and high ends of 
the r scales [47]. Fig. 8 shows the Cr at different r for pressure and 
electrostatic signal phase spaces, reflecting a mono-fractal geometry as 
there is only one linear scaling region across r. The scaling region’s first r 
(rCr1) and second r (rCr2) are automatically selected based on the dis-
tribution of AE across r. As rAEmax represents the shift point between high 
to low unpredictability of information, it will be the same as rCr1. While 
rCr2 is selected with the condition that it should have zero AE and be 

Fig. 6. An average log divergence vs expansion step for (a) pressure signals and (b) bottom arc-shaped electrostatic signals acquired at air velocities of 33.5 m/s, 20 
m/s and 16 m/s and ms = 2.6 kg/s, 2.2 kg/s and 2.5 kg/s representing the stratified flow, moving dunes and blowing dunes respectively. 

Fig. 7. An approximate entropy vs radius for (a) pressure signals and (b) bottom arc-shaped electrostatic signals acquired at air velocities 33.5 m/s, 20 m/s and 16 
m/s and ms = 2.6 kg/s, 2.2 kg/s and 2.5 kg/s representing the stratified flow, moving dunes and blowing dunes respectively. 
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higher than rCr1 to focus on the CD measure that has a high probability of 
regularity between past and future dynamics. 

Extracting meaningful measures from RPs using the RQA requires an 
appropriate threshold r (rRP) depending on the application type [48]. 
Initial rule of thumb choices for rRP are taken at 10% of the maximum 
diameter of phase space or 5% of the mean diameter [13] or a threshold 
r at 1% recurrence rate [49]. Using the recurrent diagonal structures 
parallel to the LOI in RPs was appropriate for optimal threshold selection 
for quasiperiodic systems [50]. Later Gao and Jin [51] presented a cri-
terion for selecting the optimum threshold using the first maximum 
value of the derivative of the recurrence rate with respect to the r (dRR/ 
dr). However, the r at the first maximum value of dRR/dr can be 
impractical when there are multiple maxima across r, clearly observed 
in quasiperiodic systems [52]. This issue can be observed in Fig. 9 for the 
dRR/dr of pressure signals, showing multiple local maxima which 
change across different time windows. While for electrostatic signals, 
only one maximum is observed across different time windows. Instead of 
looking at the dRR/dr to select the threshold r, AE is used to have more 
consistent RQA measures. Instead, the rRP value is set to be the same as 
rCr2 to ensure that the RPs will have a high probability of predictable 
dynamics in the RPs. 

4.3. Recurrence plots 

Fig. 10 to Fig. 11 show 30s of normalised pressure and 1 s of bottom 
arc-shaped electrostatic signals and their recurrence plots (RPs) for 
different air velocities 33.5 m/s, 20 m/s and 16 m/s at low solids mass 
flow rates ms = 2.6 kg/s, 2.2 kg/s and 2.5 kg/s. The RPs have different 
structured distributions of recurrent points for different flow patterns, 
including the stratified flow, the moving dunes and near the blowing 
dunes transition to the settled layer. These distributions reveal various 
local white areas (LWA) and local bolt areas (LBA), providing qualitative 
information on pressure signals and electrostatic signal fluctuations. The 
LWA of RPs developed from pressure signals in a fluidized bed system 
was found by Babaei et al. [39] to be related to macroscale behaviour 
such as air bubble formation, fluidization column and air impulsion 
equipment. In contrast, the LBA reflected mesoscale and microscale 
behaviours describing interactions of small air bubbles, dense clusters of 
solid particles and individual solid particles. The nature of pressure 
fluctuations caused by specific material depends on the source of its 
origin, which can be affected by pneumatic conveying system equipment 
and operating conditions. Nevertheless, relative influences of operating 
conditions on the RPs structures from pressure and electrostatic signals 
can be observed through the change in the LWA and the LBA. 

Fig. 8. A Cr vs r for (a) pressure signals and (b) bottom arc-shaped electrostatic signals acquired at air velocities of 33.5 m/s, 20 m/s and 16 m/s and ms = 2.6 kg/s, 
2.2 kg/s and 2.5 kg/s representing the stratified flow, moving dunes and blowing dunes respectively. 

Fig. 9. A derivative of recurrence rate radius vs radius for (a) pressure signals and (b) bottom arc-shaped electrostatic signals acquired at 33.5 m/s, 20 m/s and 16 m/ 
s and ms = 2.6 kg/s, 2.2 kg/s and 2.5 kg/s representing the stratified flow, moving dunes and blowing dunes respectively. 
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The RPs reconstructed from pressure signals in Fig. 10 (a), (b) and (c) 
show dissipative structures with decreasing LWA values and, conse-
quently, LBA increases, evolving from stratified flow to blowing dunes. 
Although the LWA increases, their occurrence and irregularity increase, 
meaning that the disruptions are due to more frequent but rare extreme 
events occurring in pressure signals. In stratified flow, individual plastic 
pellets are in suspension mode and are dispersed with high solid con-
centrations at the bottom section of the pipeline, having minimal effect 

on the complexity of pressure signals. The pressure signal behaviour of 
stratified flow is periodic, observed in the RPs shown in Fig. 10(a), 
through the consistency of diagonal lines parallel to the LOI and 
repeated structure of LWA. As the flow evolves from stratified flow to 
moving dunes, as shown in Fig. 10(b), the thickness of the diagonal lines 
decreases and, in some instances, converges to thin lines. 

The moving dunes flow pattern has more influence on the complexity 
of pressure fluctuations than stratified flow, which is caused by airflow 

Fig. 10. Recurrence plot developed from pressure signals for (a) stratified flow, (b) moving dunes and (c) blowing dunes transitioning to settling layer at air ve-
locities 33.5 m/s, 20 m/s and 16 m/s and ms = 2.6 kg/s, 2.2 kg/s and 2.5 kg/s. 

Fig. 11. Recurrence plot developed from bottom arc-shaped electrostatic signals for (a) stratified flow, (b) moving dunes and (c) blowing dunes transitioning to 
settling layer at air velocities 33.5 m/s, 20 m/s and 16 m/s and ms = 2.6 kg/s, 2.2 kg/s and 2.5 kg/s. 
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redirections around and through the dunes creating high pressure in the 
luff and low pressure on the lee side of the dune. This complexity is 
magnified even further in blowing dunes as dunes size increases, forcing 
the air to flow through smaller areas. This event of high and low- 
pressure pulses around the dunes depends on its shape, size, and inter-
action with the dispersed particles on top and the pipeline wall at the 
bottom. The chance of having these interactions repeated in a short 
period are rare, reflected in the increased number and complexity of 
LWA from stratified flow to blowing dunes, as shown in Fig. 10 (c). 

The solid concentrations of charged particles and their arrangement 
across the pipeline bottom cross-section for each flow pattern have 
different effects on the voltage signal from the bottom arc-shaped 
electrostatic sensor, as shown in Fig. 11. These voltage signals are 
directly related to the charging capacity of particles and their location in 
the local sensitivity region of the sensor. The RPs of electrostatic signals 
in Fig. 11 show a much more complex structure of recurrence points 
than the RPs of pressure signals in terms of shortness of diagonal lines 
length and increased isolated LBA values. This difference indicates that 
electrostatic signals exhibit chaotic features and contain more stochastic 
behaviour than pressure signals. By comparing the LBA values in RPs 
from electrostatic signals across the flow patterns, it can be observed 
that it increases from stratified flow in Fig. 11 (a) to moving dunes in 
Fig. 11 (b). This increase in the LBA or decrease in the LWA indicates 
that the macroscale events in stratified/pulsating flow in relation to its 
overall dynamics are higher than moving dunes. This can be directly 
linked to a change in macroscopic flow patterns from charged particles 
in discontinuous clouds that appear more frequently when compared to 
moving dunes transported at lower air velocity, as shown in Fig. 11 (c). 

In the evolution of gas-solid flow from moving dunes to blowing 
dunes, dispersed particles start to drop out of suspension, and moving 
dunes slow down and merge into more prominent dunes having more 
flexible structures that appear less frequently or into a settling layer. 
Although the event of accumulated solids appearance in blowing dunes 
transitioning to settled layer flow patterns will reappear less frequently, 
they appear for more extended periods than moving dunes and clouds, 
reflected in the increasing LWA values in the RPs of electrostatic sensor 
data from moving dunes in Fig. 11(b) to blowing dunes transitioning to 
settling layer in Fig. 11(c). 

4.4. Nonlinear dynamics analysis measures 

The gas-solid flow patterns in horizontal pneumatic conveying of 
plastic pellets have different complex dynamics, observed using the RP 
similarities of pressure and bottom arc-shaped electrostatic signals. The 
dynamic complexity of the 30s of pressure and electrostatic signals are 

quantitatively measured using chaotic invariants, including LE, AE and 
CD, and their similarity using RQA, including RR, DET, E and L, using 
the parameters settings mentioned in Section 4.2. Fig. 12 to Fig. 14 show 
profiles of the average values of the analysis measures across the moving 
time window, correlated with air velocity, pressure drop and the 
observed flow patterns in state diagrams. 

Fig. 12 (a) and (b) shows the profile of LE across the operating 
conditions in the state diagram expressing the degree of chaotic 
behaviour in pressure and electrostatic signals. The LE values of elec-
trostatic signals at constant solids mass flow rates and higher air ve-
locities than the MCAV have an inverse relationship with the air velocity 
and pressure drop. The relationship between the LE values and pressure 
drop changes to a direct relationship at air velocities below the mini-
mum conveying air velocity, where the highest LE values are localised at 
the blowing dunes flow pattern left boundary. 

In the stratified/pulsating flow region, the LE of electrostatic signals 
have relatively similar values, ranging between 71 and 84, indicating 
that the concentration of individual charged particles at the bottom of 
the pipeline in the stratified and pulsating flow have similar chaotic 
behaviour. However, a smooth transition in the LE values is present 
between the boundary separating stratified/pulsating flow from moving 
dunes to the left boundary of the blowing dunes region. This transition 
describes the increased chaotic behaviour of charged particles around 
dunes, where the dynamics of the electrostatic signal shift from the in-
dividual charged particles in suspension to creeping charged particles 
around dunes which increase in size with the decrease in air velocity. 

The LE values of the pressure signals at constant air velocities higher 
than the MCAV directly correlate with solids mass flow rate and the 
pressure drop. In addition, LE values at low solids mass flow rates 
ranging from 2 kg/s to 3.3 kg/s have an inverse relationship with the air 
velocity and the pressure drop. However, LE of pressure signals at high 
solids mass flow rates, ranging from 3.3 kg/s to 4.2 kg/s, have similar 
values across the observed flow patterns, ranging from − 12 to − 6.6. This 
similarity indicates that at high solids mass flow rates, the divergence in 
the pressure dynamics between individual particles and clouds of par-
ticles is similar to the divergence between individual particles and 
dunes. 

Fig. 13 shows the profile of AE and CD of phase spaces reconstructed 
from pressure and electrostatic signals correlated with operating con-
ditions in state diagrams. The AE and CD profiles for pressure signals 
have an inverse relationship with their LE values, as shown in Fig. 13 (a) 
and (b), indicating that the highest degree of chaotic behaviour of 
pressure fluctuations has low AE and CD values and vice versa. In 
addition, AE and CD profiles of pressure signals in stratified/pulsating 
flow have the same trend as electrostatic signals, as shown in Fig. 13 (c) 

Fig. 12. State diagrams for plastic pellets correlated with large Lyapunov exponent for (a) pressure signals and (b) bottom arc-shaped electrostatic signals.  

O.S. Alshahed et al.                                                                                                                                                                                                                            



Powder Technology 428 (2023) 118837

12

and Fig. 13 (d). 
Above the MCAV in the transition between stratified/pulsating flow 

to moving dunes, the AE and CD values of electrostatic signals have a 
direct relationship with the air velocity and inverse relationship with the 
pressure drop. The AE and CD trend below the MCAV then shifts to a 
direct relationship with the pressure drop, following the same trend as 
their LE values, resulting in minimal values at the MCAV, ranging from 
0.19 to 0.24 for AE and 1.9 to 2.75 for CD. 

Fig. 14 shows the RQA measures, including RR, DET, E and L for RPs 
of pressure and electrostatic signals correlated with the operating con-
ditions in state diagrams. The RR, DET, E and L values of pressure signals 
share the same trend and follow the same trend as their AE and CD 
values. Likewise, RR, DET, E and L for electrostatic signals share the 
same trend. However, these measures for electrostatic signals have an 
inverse relationship with their AE and CD values and have a much 
smoother transition between stratified flow, pulsating flow and moving 
dunes. The transition between moving dunes and blowing dunes cor-
responds to the highest degree of recurring dynamics, which suddenly 
drop at the left boundary of blowing dunes just before slugs develop at a 
high solids mass flow rate or form a settled layer at low solids mass flow 
rate. 

The analysis measures obtained from the pressure signals concerning 
LE, CD, AE, RR, DET, E and L cannot distinguish between the observed 
flow patterns at high solids mass flow rates across different air velocities. 

On the other hand, these measures from the electrostatic signals at 
different air velocities and solids mass flow rates have a much higher 
separation of values between the flow patterns. The effect of changing 
the air velocity and the solids mass flow rate on LE and DET of elec-
trostatic signals are illustrated in Fig. 15 (a) and (b) to emphasise their 
ability to classify the observed flow patterns. At a decreasing air velocity 
and constant solids mass flow rate stratified/pulsating flow in the 
stratified/pulsating flow region, DET increases while LE is steady. In the 
transition between stratified flow and moving dunes, LE gradually in-
creases, and DET saturates toward an approximately constant value until 
the transition between moving dunes and blowing dunes, indicating that 
the air velocity is near the MCAV. If the DET decreases with air velocity 
and LE still increases, it indicates that the air velocity has passed the 
MCAV and blowing dunes are transitioning to slug flow or settled layer. 

5. Conclusions 

Chaotic invariant and recurrence quantification analysis measures 
developed from pressure and bottom arc-shaped electrostatic signals in 
horizontal pneumatic conveying of plastic pellets have been successfully 
developed to characterise flow patterns in the transition phase between 
dilute and dense phase flow operations. A state diagram of plastic pellets 
is developed using different operating conditions and correlated with 
the observed flow patterns, including stratified/pulsating flow, moving 

Fig. 13. State diagrams for plastic pellets correlated with approximate entropy and correlation dimension for pressure signals in (a) and (b) and for bottom arc- 
shaped electrostatic signals (c) and (d), respectively. 
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Fig. 14. State diagrams for plastic pellets correlated with recurrence quantification analysis measures including recurrence rate, determinism, entropy and average 
diagonal line length for pressure signals in (a), (b), (c) and (d) and for bottom arc-shaped electrostatic signals (e), (f), (g) and (h). 
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dunes, and blowing dunes. It is found that optimal conditions at the 
pressure drop minimum curve are located between moving dunes and 
blowing dunes. 

The analysis measures are applied to phase spaces reconstructed 
from pressure and electrostatic signals using constant parameters, where 
the embedding dimension is estimated to be 10 using the false nearest 
neighbour algorithm. The parameters required to calculate the chaotic 
invariant measures concerning approximate entropy and correlation 
dimension and the recurrence plots are automatically estimated using 
the AE function across changing threshold r. 

The RPs at low solids mass flow rates ranging from 2 kg/s to 3.3 kg/s 
and decreasing air velocity reveal various local white areas and local 
bolt areas, providing qualitative information on the effect of observed 
flow patterns on the pressure and electrostatic signals fluctuations. The 
local white areas reflect macroscopic disruptions in the signals, while 
local bolt areas are linked to mesoscopic and microscopic behaviour. 
The evolution of recurrence plots for pressure signals from stratified 
flow to moving dunes and blowing dunes transitioning to settling layers 

show a decrease in the isolated local white areas values and an increase 
in their occurrences and structural irregularity, which means the dis-
ruptions in the pressure signals are due to the build-up of dunes. On the 
other hand, the local bolt areas in recurrence plots of electrostatic sig-
nals increase from stratified flow to moving dunes and decrease from 
moving dunes to blowing dunes transitioning to a settled layer. 

The complexity of the phase spaces reconstructed from pressure and 
electrostatic signals is characterised using chaotic invariant measures, 
including the largest Lyapunov exponent, approximate entropy and 
correlation dimension, and their recurrence plots are quantified using 
recurrence quantification analysis measures, including recurrence rate, 
determinism, entropy and average diagonal line length. These analysis 
measures for pressure signals can only classify flow patterns at low solids 
mass flow rates ranging from 2 kg/s to 3.3 kg/s, while the measures for 
electrostatics can classify the flow patterns at different solids mass flow 
rates. Combining the largest Lyapunov exponent with recurrence 
quantification analysis measures for electrostatic signals is a powerful 
tool to indicate whether the horizontal pneumatic conveying system 

Fig. 14. (continued). 

Fig. 15. A correlation of (a) largest Lyapunov exponents and (b) determinism with air velocities and ms, classified with the observed flow patterns.  
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operates above, near or below the optimal operating conditions for 
plastic pellets. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.powtec.2023.118837. 
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