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Abstract

Ballistic loading is a primary risk in both civil and military defence applications, where successfully
predicting the dynamic response of a material to impact is a fundamental component of the
design of safe and fit-for-purpose protective structures. Approaches to understand the response
to ballistic impact conventionally revolve around experimental tests, whereby the material or
structure of interest is subject to impact by a projectile across a range of impact velocities.
However, experimental testing is expensive and incurs large costs due to the destructive nature
of the testing and the specialist equipment required. Numerical tools, such as the Finite
Element (FE) method, play an important role by filling the gaps left sparse by experimental
results and contribute towards the complete dynamic material characterisation campaign. This
thesis considers an alternative to FE models by using Machine Learning (ML) techniques that
learn directly from the available ballistic data. Specifically, the thesis considers the use of
Multi-Layer Perceptron (MLP) models to predict the ballistic response of multi-layered targets
to impact but its primary intention is to explore the value that generative networks can bring
to the ballistic domain. This thesis shows how Generative Adversarial Networks (GANs) can
be used to supplement sparse ballistic datasets by generating new samples representative of
the dataset that it was trained on, but also how they can be used to predict key ballistic
parameters for engineering design such as the ballistic limit velocity, vbl. And finally, how
conditional-GANs (cGANS) can be utilised to allow the network to be conditioned on additional
auxiliary information such as class labels that refer to a specific property relevant to the ballistic
data thus allowing the cGAN to generate new samples specific to the class label given. This
allows the trained cGAN to generate data for classes that are not present in the training set and
conduct its own material characteristic campaign. The justification for using ML practices for
in the ballistic domain lies in the idea that numerical models are adjusted such that the output
is consistent with the results from experimental testing. There is therefore an opportunity for
research to explore whether ML techniques can capture that same distribution by training on
the ballistic data directly.
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Justification

I should state that the origin of this research came around the idea of trying to address a
problem that exists within this space – and that problem is that ballistic data is often sparse, of
low quality and expensive to produce. This makes the prediction of the ballistic limit velocity
(BLV) an active area of research in the field of materials science and engineering. There are
a variety of methods and models that have been developed to predict the BLV of different
materials and configurations, each with its own advantages and limitations. I will begin by
giving a quick overview of current approaches to this problem, before offering a justification as
to why I believe that this research offers some benefit.

One approach is to use analytical models to describe the behaviour of the target plate
under high strain rates and subsequently estimate the BLV based on the material properties and
geometry of the plate. In practice however, there is often a discrepancy between predictions
made by the analytical model and the actual ballistic response of a target plate due to external
factors that are not accounted for in the analytical models. Another common approach is to
use numerical simulations, such as finite element analysis (FEA) to model the behaviour of
the target plate under ballistic impact. These simulations are based on first principles and
can provide a detailed understanding of the deformation and failure mechanisms of the plate.
They are often used to optimise the design of the plate for specific applications. However,
FEA requires accurate material models, complex meshing and the quality of the output is often
dependent on the assumptions made when creating the model. They are also computationally
expensive and require a great deal of time and effort by a specialised professional to assure
that the predictions from the model are realistic. In addition, such models are developed in
combination with experimental testing and are fine-tuned on an ad-hoc basis such that its
output is in alignment with the experimental results. Once a model has been developed, if
we then wish to test the ballistic response of a plate at a different impact velocity or plate
thickness, the model must be ran again and there is therefore a computational component that
governs how quickly predictions can be retrieved.

Finally, experimental testing is the most reliable method at our disposal to determine the
ballistic response of a material, albeit the slowest and most expensive. Experimental techniques
have progressed to include high-speed imaging and digital image correlation which have enabled
a more detailed analysis of the behaviour of materials under high strain rates. Such experimental
testing however is expensive, and the destructive nature of ballistic testing only increases the
cost. Specialised equipment, personnel and a finite amount of target samples limit the amount
of testing that can be performed and subsequently the completeness of material characterisation
campaigns.

The primary hypothesis of this thesis is to consider whether ML methods could provide an
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alternative way of predicting the BLV. ML has been an active topic of research in the field of
material science and there are multiple accounts of ML models being applied specifically to
this problem space. Whilst reviewing the literature however, to my knowledge I could not find
any evidence of researchers considering generative models to supplement sparse datasets. The
question that I wished to answer was:

“If experimental results are used as the foundation against which numerical models
are fine-tuned, is there an opportunity to test whether generative ML models are
able to learn the distribution of a ballistic dataset and supplement that dataset with
additional ballistic samples”.

I believed that this would be a useful endeavour, especially given the exhaustive process
that is currently required to achieve ballistic limit velocity predictions. If it is in fact possible
to utilise a generative model to produce synthetic data that is accurate and representative of
actual ballistic data – then many additional samples and predictions can be obtained instantly.
Using GANs to supplement sparse datasets is not isolated in the literature. In 2018, NVIDIA
proposed a method to generate synthetic abnormal MRI images with brain tumours by training
a GAN using two datasets available to the public of brain MRI Imagery. They demonstrated two
key benefits from the synthetic data; the first is that they observed improved performance on
tumour segmentation by leveraging the synthetic images as a form of data augmentation. They
utilised a GAN to supplement the available data to yield additional benefits from their other ML
models. The second is that they demonstrated comparable tumour segmentation results when
trained on the synthetic data versus when trained on the real subject data. They declared that
such results offer a potential solution to two of the largest challenges facing machine learning in
medical imaging such as the small incidence of pathological findings and the restrictions around
sharing patient data. I believe that this problem is analogous to that of ballistic data given the
sparsity of it and the low quality. I also believe that there is an opportunity to augment ballistic
datasets using generative models to facilitate the use of other ML models to make additional
predictions.

I would also like to state clearly that I do not believe that I have solved the problem of
generating synthetic ballistic data, but I do believe that this thesis acts as a first step in that
direction and I would like to believe that it might act as a foundation on which to explore other
ML methods within this space. This methodology, however, must be tested more thoroughly
and applied on a wider range of problems across a richer variety of ballistic datasets. Of course,
there is also an argument that the predictions made by ML models are a black box and not
built upon first principles – however I believe that if it can be demonstrated that ML models
can consistently produce accurate results across a range of problems and configurations, then
the scientific community might increase their opinion on the validity of the results obtained in
this fashion. To extend upon this point, black box concerns might be eased somewhat by the
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implementation of physics-informed machine learning models. Here the ML model could be
initialised with analytical models that establish the rules of the game, in other words, define the
boundary of the problem such that the model has an understanding of those first principles.
Transfer learning could then be utilised to re-train such a model on a specific experimental
dataset in an attempt to 1) reduce the amount of data required to train such models and 2)
help generalise the output of the model such that it can generate synthetic data across a wider
range of impact velocities which may not be present in the training set.
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Chapter 1

Introduction

1.1 Motivation

Machine learning (ML) models, which have demonstrated tremendous success in commercial
applications such as home voice assistants and self-driving cars [Gupta et al., 2021, Sherstinsky,
2020], are beginning to play an important role in advancing scientific discovery in domains
traditionally dominated by mechanistic models; such as those derived from first principles [Willard
et al., 2020]. There is a growing consensus within the scientific community that suggests that
neither a ML-only nor a scientific knowledge-only approach can be considered sufficient for
complex scientific and engineering applications and it is becoming more common for researchers
to explore the continuum between mechanistic and ML models where there is a symbiotic
relationship between the integration of scientific knowledge and effective data practices [Alber
et al., 2019, Baker et al., 2019, Karpatne et al., 2016, Rai and Sahu, 2020, Schleder et al., 2019].
Despite this idea growing momentum in recent years [Karpatne et al., 2016], a vast amount
of research integrating scientific and ML principles has already been pursued across a diverse
range of disciplines such as biological sciences [Lu et al., 2020], climate sciences [Faghmous and
Kumar, 2014, O’Gorman and Dwyer, 2018] and turbulence modelling [Bode et al., 2019, Mohan
and Gaitonde, 2018]. Yet materials and structures engineers have been slower to engage with
these advancements. [Dimiduk et al., 2018] suggest that the recent advances that are driving
other technical fields are not sufficiently distinguished from long-known informatics methods
for materials and subsequently masking their likely impact to the materials, processes, and
structures engineering (MPSE) fields. Additionally, the diverse nature and limited availability of
relevant materials data pose obstacles to ML application.

This thesis considers the issue of predicting the response of materials to ballistic impacts.
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1.2. OBJECTIVES Samuel Thompson

Predicting the outcome of impulsive events such as terminal ballistic impact is a complex
problem due to the difficulties in characterising material behaviour across a wide range of
loading rates and impact scenarios. In terms of analysis, it is the combined sum and influence of
a number of input variables that ultimately govern the response of a material and structure under
a specific loading scenario [Ryan et al., 2016]. Ballistic loading is a primary risk in both civil and
military defence applications, where successfully predicting the dynamic response of a material
is a fundamental component of the design of safe and fit-for-purpose protective structures.
Approaches to understand the response to ballistic impact typically revolve around experimental
tests, whereby the material or structure of interest is subject to impact by a projectile in
a controlled environment across a range of impact velocities [Børvik et al., 1999a, Børvik
et al., 2001b, Børvik et al., 2003, Børvik et al., 2005, Huang et al., 2018, Rosenberg et al.,
2016, Sikarwar et al., 2014, Wei et al., 2012]. However, the need for specialist equipment
such as high-speed cameras combined with the destructive nature of experimental testing
incurs large costs for each of the experimental processes involved. This cost is magnified when
evaluating the response of complex composites or other materials that are also expensive to
fabricate/source. Dynamic material characterisation campaigns often accompany ballistic tests
in order to develop material models for numerical simulations of the penetration and perforation
processes. Numerical tools, such as the Finite Element (FE) method, play an important role by
filling the gaps left sparse by experimental results and the results of which are widely available in
the literature [Feng et al., 2020, Scazzosi et al., 2021, Xu et al., 2019]. Numerical models can
then be used to modify design parameters and subsequently predict the response of the material
given new loading conditions. FE simulations often require large computational resources and
the parameters of the model are modified such that an agreement with the experimental data
is met [Gonzalez-Carrasco et al., 2011].

1.2 Objectives

Instead of using the traditional approach of complementing experimental testing with numerical
studies, the primary goal of this thesis considers the feasibility of predicting key ballistic
parameters such as the ballistic limit velocity, vbl, by training generative networks on ballistic
datasets directly. The intention is to utilise ML techniques to fill the gaps left sparse by
experimental testing instead of relying on conventional numerical methods. The justification
for this approach lies in the idea that numerical models are adjusted such that the output is
consistent with the results from experimental testing. There is therefore an opportunity for
research to explore whether ML techniques can capture that same distribution by training on
the ballistic data directly. To that end, this thesis considers the following objectives:

1. To demonstrate how machine learning can be used to predict the ballistic response of
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multi-layered targets.

2. To propose a novel use of generative networks to supplement sparse ballistic datasets
and predict key ballistic parameters.

3. To propose a novel approach using conditional generative networks to conduct material
characterisation campaigns.

1.3 Thesis Structure

This thesis has been organised into 7 chapters which contain the following:

Chapter 1 introduces the general problem setting for the thesis and the key objectives that
the thesis aims to fulfill. It highlights some of the issues that are associated with ballistic
testing with regards to the design of safe and fit-for-purpose structures and the prediction of
key design parameters such as the ballistic limit velocity. The areas of targeted research that
exist in the literature to address them are presented with regards to experimental, analytical
and numerical modelling approaches. The chapter also includes the justification for introducing
machine learning methods to tackle the same challenges and how they can be used to predict
the ballistic response of structures and reflects upon the work that currently exists within the
literature.

Chapter 2 provides an overview and explanation of some of the key machine learning
principles that are used within the main body of work of the thesis. The section begins by
conceptualising what machine learning is and where it places within the space of scientific
research. The chapter introduces some basic concepts of machine learning from Multi Layer
Perceptron (MLP) networks including the trainable parameters such as the weights and biases
of a model and the key hyperparameters that must be defined. The chapter benchmarks the
performance of Adam, RMSProp, AdaGrad and Stochastic Gradient Descent optimisers and
cross entropy and hinge loss functions for classification tasks on the MNIST and CIFAR10
datasets. The use and implementation of activation functions is discussed before introducing
recurrent networks, specifically long short-term memory (LSTM) networks, and their suitability
for use with time series data. The LSTM model is then applied to estimate the dynamic
response of a single degree of freedom (SDOF) system to extend upon the work of Wu et al.
[Wu and Jahanshahi, 2019].Finally, the chapter details the workings and training procedure of
Generative Adversarial Networks (GANs) which comprise the main body of work of this thesis.
A simple example is presented that considers the model architecture and training procedure of
how a GAN can be used to learn from and generate samples from the same distribution as a
sin curve.
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Chapter 3 proposes a hybrid method to study the perforation of multi-layered targets. The
method combines an energy-based analytical approach with a set of deep learning models.
Finite Element Analysis (FEA) and experimental results are used to train MLP models and
validate the design process. The energy-based analytical method generates solutions for the
ML algorithms with the intention of finding optimal configurations for the protective structure.
The proposed MLP architecture is trained using both experimental results and analytical data
to understand the ballistic response of a specific material and subsequently predict the residual
velocity for a given impact velocity, layer thickness and material properties. Networks trained
for individual layers of the armour system are then connected in order to predict the residual
velocity of blunt projectiles perforating multi-layered composite structures. Validation tests are
done on systems including both single and multi-layered targets.

Chapter 4 considers the ballistic response of armour plates using GANs. This study tests the
feasibility of using GANs to make ballistic limit velocity predictions and considers three separate
GAN networks each trained on a unique dataset created using the Lambert and Jonas ballistic
model. In total, three training sets of degrading structural quality were used to train each of
the models. 100, 50 and 10 samples were found in training sets 1, 2, and 3 respectively, where
a single sample refers to an impact velocity and its corresponding residual velocity. Training set
3 was afflicted with an additional 10% noise to mimic that of measurement error. The Chapter
shows how GANs can be used to supplement sparse ballistic datasets and the output from the
trained GAN networks is compared and evaluated with respect to expected values.

Chapter 5 expands upon the work from Chapter 4 and documents the training and im-
plementation of a conditional-GAN (cGAN) architecture. The cGAN addresses a common
limitation of conventional GAN networks where there is limited governance over the output.
cGANs can be conditioned by extra information during training such as class labels or data
from other modalities to grant additional control over the output. In this study, the cGAN is
conditioned by a class label that allows the algorithm to make a connection between certain
distributions of data and that particular class label. The intention being that once the cGAN
is trained, it can be used to generate new samples of data representative of the distribution
mapped to that particular class label. To that end, the cGAN network is trained on a multi-class
ballistic dataset containing 10 classes where each class corresponds to a ballistic curve with a
different ballistic limit velocity. This dataset is analagous to that conducted during material
characterisation campaigns during experimental testing that considers the ballistic response of
a specific material at different thicknesses. This study demonstrates that cGAN networks can
be used to allow local control over the output, allowing for additional class-specific samples to
be generated with high accuracy and subsequently make predictions regarding the ballistic limit
velocity for different classes. But more interestingly, the cGAN network can also be used to
make ballistic predictions for ballistic classes that do not appear in the training set.

Chapter 6 applies the GAN model from Chapter 4 on real experimental data and evaluates its
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ability to supplement ballistic datasets. A total of 4 GAN models are trained on 4 experimental
datasets carried out by Costas et al. [Costas et al., 2021] which correspond to a steel bullet
core and AP bullet impacting both an as-printed plate and a heat-treated plate.

Chapter 7 presents an alternative generative model known as the Variational Autoencoder
(VAE) and demonstrates how it can be used to generate synthetic ballistic data after being trained
on a training set produced by an anlytical model. The chapter then introduces physics-informed
machine learning and presents a methodology to improve the generalisation of generative models
for the synthesis of ballistic data by replacing the Generator of a GAN or cGAN model with a
pre-trained decoder model.

Finally, Chapter 8 outlines the significance and implications of this work. Additionally, the
limitations of the proposed methods are given along with recommendations for future work.

1.4 An overview of experimental ballistic testing

Figure 1.1: Common failure modes of targets subject to ballistic impact [Zukas, 1992]

Understanding the way a structure responds to ballistic impact is fundamental to the design
of protective structures and armour systems in civil and military defence industries. Ballistic
impact is the critical load case considered, and as such, energy absorption mechanisms and
the perforation resistance capacity of structures has been a deep topic of study for decades
[Backman and Goldsmith, 1978, Corbett et al., 1996, Brown, 1986]. Substantial effort has
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been invested in order to physically understand and mathematically describe the phenomena
taking place during ordnance ballistic penetration [Børvik et al., 1999a] and depending on the
target material, geometry and impactor speed, perforation of a target can occur through a
range of failure modes as shown in Figure 1.1. The objective of experimental testing is to
determine the ballistic limit velocity, vbl, the maximum velocity at which a target can resist
perforation by a projectile. Measurements of projectile impact velocity, vi, and residual velocity,
vr, can be made in controlled laboratory experiments whereby projectiles are fired at target
plates at a range of velocities. To that end, a relationship known as the initial versus residual
velocity curve can be established from vi and vr measurements in order to obtain vbl [Børvik
et al., 2009]. For the remainder of the thesis, this relationship will be referred to as the ballistic
curve and is shown in more detail in Figure 1.2.
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Figure 1.2: Diagram of the ballistic curve, indicating the location of the Ballistic Limit Velocity, vbl.

The measured projectile impact velocity, vi, and its corresponding residual velocity, vr, are
paired together to form a single ballistic sample, examples of which are marked on Figure
1.2. Given perfect experimental conditions, each ballistic sample across a complete range of
impact velocities would lie upon the ballistic curve. In practice however, additional factors
such as measurement error, angle of incidence of impact, local ductility and the homogeneity
of the target material can introduce some variability into values recorded during experiments
[Mohammad et al., 2020]. It is important to note that the ballistic curve is specific to the
target material and the selected impactor (projectile). For example, the energy requirements to
perforate a thicker target plate would be greater than that required to perforate a thin target
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plate. To that end, it would be expected that the vbl would increase for the thicker plate. Figure
1.2 also indicates two criterion of ballistic samples - the first states that the residual velocity
cannot be greater than the impact velocity, hence vr ≯vi. A vr greater than vi would violate
the law of conservation of energy as energy cannot be created or destroyed. It is physically
impossible for a projectile to perforate a plate and gain kinetic energy without introducing
further sources of energy to the system. In practice, upon perforation the kinetic energy from
the projectile would be reduced and most of the excess transformed into heat energy and
strain energy within the target plate to facilitate its deformation. The second criterion states
that for impact velocities less than the ballistic limit, the residual velocity is 0 hence if vi ≤vbl,
vr = 0. This is an extension of the definition of the ballistic limit velocity which states that
the vbl is the minimum velocity at which a projectile can no longer perforate a target. For vi
≤vbl, the projectile does not possess the kinetic energy necessary to perforate the target plate
and as such would rebound and damage the plate without perforation. Ballistic experiments
published in the literature typically do not record the velocity of the rebounded projectile and
label such occurrences with a vr of 0 [Børvik et al., 1999a, Børvik et al., 2003, Børvik et al.,
2005, Kristoffersen et al., 2021, Awerbuch and Bodner, 1974, Mohammad et al., 2020].

Figure 1.3: Specification of an ogive AP bullet and bullet core used in experimental tests [Holmen et al., 2015]

Ballistic testing encompasses a wide range of loading conditions, target materials and
projectile variations. [Gupta et al., 2007] performed specific research considering the effect of
impact velocity and target thickness on the deformation behaviour of aluminium plates impacted
by blunt, ogive and hemispherical nosed steel projectiles. It was found that hemispherical nosed
projectiles caused the highest global deformation of the target plates. Ogive-nosed projectiles
were found to be the most efficient penetrator for the case of plate thicknesses between 0.5
and 1.5 mm whereas for thicknesses > 1.5 mm, the blunt nosed projectiles required the least
energy to perforate the target plates. The vbl of hemispherical projectiles was found to be
the highest compared to the other two projectiles. A projectile commonly used in ballistic
tests is an armour piercing (AP) 7.62 mm bullet shown in Figure 1.3 along with it’s material
composition and dimensions. It should be noted that in some numerical studies, tests are
made with the hard steel component of the AP bullet only [Kristoffersen et al., 2020a] to
simplify the modelling process. The extensive research of Børvik centres around studies of
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the ballistic response of armoured steel and aluminium plates [Børvik et al., 1999a, Børvik
et al., 2001b, Børvik et al., 2003, Børvik et al., 2005, Børvik et al., 2009, Børvik et al.,
1999b]. The authors find that materials with high-strength properties demonstrate a clear
link to an improved ballistic capacity, specifically a higher vbl. However, ultra high-strength
materials come with a compromise of the ’strength/ductility trade-off’ which is a long-standing
dilemma in materials science [Li et al., 2016a] that leads to a tendency for brittle fracture and
fragmentation under impact. [Kristoffersen et al., 2020a] study was an example of innovation
within experimental ballistic research that investigates Additive Manufacturing (AM) aluminium
as a candidate for ballistic protection, which would allow structural designs to benefit from the
flexible manufacturing advantages of using the AM methods. The combination of ultra-high
strength and AM, however, introduces increased complexity and costs to ballistic experimental
campaigns. This was demonstrated in an experimental study on AM maraging steel by [Costas
et al., 2021]. The authors report significant fragmentation for both projectile and target in
the ballistic tests. Often, the target plate was rendered unsuitable for further shots, reducing
the total possible number of tests and thus increasing the cost of the experiment. Despite
such challenges, the application of ultra high-strength AM materials presents an opportunity for
areal density reduction of ballistic protection which is a key area of interest [Vemuri and Bhat,
2011]. Additional research is actively being pursued to optimise the strength versus ductility
trade-off for AM maraging steel to improve the ballistic resistance capacity and subsequently
make the materials better suited for use in the design of protective structures.

1.5 Analytical Modelling

Experimental tests are a vital requirement in the field of ballistic testing, especially for certification
purposes. However, ballistic impact results are affected by many parameters, and there is a large
number of phenomena involved. Thus, finding an optimal solution based mainly on experimental
tests is not always feasible as it depends on the complexity of the required solution[Gregori et al.,
2020]. As a result, alternative predictive modelling approaches have also become a rich topic of
research. Analytical models are increasingly used for impact engineering given their inherent
low-cost and ability to obtain initial estimates on the performance of ballistic protections.
Analytical models can serve as a useful tool for the comparison of different materials and
compositions. For example, [Chocron Benloulo and Sánchez-Gálvez, 1998] considered the
ballistic impact against ceramic/composite armours and implemented a simple one-dimensional
fully analytical model that obtained good correlation between analytical and experimental results.
Their model allowed the calculation of residual velocity, residual mass, the projectile velocity
and the deflection or strain histories of the backup material, variables that are important in
describing the phenomenological process of penetration [Chocron Benloulo and Sánchez-Gálvez,
1998]. [Feli et al., 2011] improved upon that work by introducing a new energy formulation
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for the composite backing based on yarns displacement and strain and subsequently [Bresciani
et al., 2015] further developed the energy formulation based on the wave propagation theory.
In addition, [Liaghat et al., 2013] developed a modified analytical model for the analysis of
perforation into ceramic composite targets based on an expansion cavity model and [Naik et al.,
2013] presented an analytical model for ballistic impact behaviour based upon wave theory and
the energy balance between the kinetic energy of the projectile and the energy absorbed by
different mechanisms. [hai Chen et al., 2017] considered the perforation of thin steel plates by
hemispherical projectiles and proposed a dynamic analytical method that utilised the concept of
plastic wave propagation based on rigid plastic assumptions. They found that their theoretical
predictions were in good agreement with the experimental results in terms of both the radius of
the bulging region and the residual velocity of the projectile when the strain rate effects of the
target material were considered.

During experimental testing, the measured ballistic samples are fitted to a ballistic curve
in order to obtain predictions for the vbl. A common analytical model often used to fit the
experimental results [Kristoffersen et al., 2021, Børvik et al., 2005, Børvik et al., 1999b] is the
Lambert model [Ben-Dor et al., 2002], which is a generalisation of the Recht-Ipson (RI) model
[Recht and Ipson, 1963] that describes vr after complete perforation in relation to vi and vbl
based on conservation laws of energy and momentum. The Lambert model reads

vr = a
(
vpi − vpbl

) 1
p (1.1)

where a and p are material parameters adjusted to fit experimental data and estimate vbl for
a specific target. For tests on brittle materials, such as those by Costas et al. [Costas et al.,
2021], large amounts of fragmentation can lead to values of a and p that violate conservation
laws. In this case, Lambert model parameters a and p of values 1 and 2 respectively can be
assumed, as for the RI model. The assumption made, however, is that no material is ejected
during impact because the RI model is based on the ductile hole growth failure mode (see
Figure 1.1). Analytical models in ballistics are therefore limited in scenarios with significant
fragmentation. Where analytical models fall short, numerical modelling has been developed to
provide a more comprehensive description of ballistic perforation mechanisms.

1.6 Numerical Modelling

Numerical modelling allows a wider description of the physics involved during impact phenomena
but requires much greater efforts than analytical methods in order to perform the analysis.
The Finite Element Method (FEM) is a widely used method for numerically solving differential
equations arising in engineering and mathematical models and some of the earliest papers on
FEM can be found in the works of [Schellbach, 1851] and [Courant, 1943]. The FEM is a
general numerical method for solving partial differential equations in two or three space variables.
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To solve a problem, the FEM subdivides a large system into smaller, simpler parts called finite
elements. This is achieved by a particular space discretisation which is implemented by the
construction of a mesh that encapsulates the object of study. The mesh defines the numerical
domain for the solution which contains a finite number of points and the FEM formulation
results in a system of algebraic equations. The FEM then approximates the unknown function
over the domain [Reddy, 2018]. The simple equations that model these finite elements are then
assembled into a larger system of equations that models the entire problem. Advancements in
computing power in recent years have seen the use of numerical modelling with explicit Finite
Element (FE) codes become commonplace to analyse the impact response and perforation
processes over the last two decades. To model the impact response of a target accurately,
the material behaviour must be captured as a function of high strain rates and temperatures
[Børvik et al., 2001a, Dey et al., 2006]. The Johnson-Cook (JC) model [Johnson and Cook,
1983] is an example of a function regularly incorporated into numerical models to demonstrate
such behaviour, and exists as a phenomenological relation that relies on experimentally defined
parameters. Phenomenological models such as JC are often preferred to sophisticated methods
that reflect physical micro-mechanical processes because the material constraints are far more
readily available [Dey et al., 2007, Børvik et al., 2001a]. The literature contains a dense
catalogue of numerical studies that consider the ballistic response of a wide variety of target
materials and impactors.

For example, [Masri and Ryan, 2021] performed an in-depth numerical study on the
perforation of multi-layered aluminium targets by rigid, nose-pointed projectiles using explicit
FE code LS-Dyna. The model was used to make predictions regarding the ballistic limit and
accompanied a new heuristic model that estimates the material resistance for each layer based
on the specific cavitation concept. The behaviour of the of the aluminium alloy plate was
described in the simulations via a linear equation of state and modified Johnson-Cook (MJC)
constitutive model [Johnson and Cook, 1983]. The MJC has proved reliable in numerous studies
on ballistic impact [Børvik et al., 1999b, Dey et al., 2007, Kristoffersen et al., 2020a, Børvik
et al., 2009, Holmen et al., 2013, Børvik et al., 2005]. MJC is written as

σp = (A+ R(ϵp)) (1 + ϵ̇
∗)C
(
1− T ∗M

)
(1.2)

where σp and ϵp denote the equivalent stress and plastic strain respectively, A refers to the
yield stress and C and M are material constants derived from experimental tests that govern
strain rate sensitivity and thermal softening respectively. The normalised equivalent plastic
strain rate ϵ̇∗ is defined by ϵ̇∗ = ϵ̇/ϵ̇0 where ϵ̇ and ϵ̇0 are the strain rate and the reference
strain rate respectively. The homologous temperature is described by T ∗ = (T −Tr )/(Tm −Tr )
where Tr is room temperature, Tm is the material melting temperature and T is actual material
temperature. The actual temperature increment due to adiabatic heating is found by Ṫ = (χ/
ρcs) × σϵ̇ where ρ is density, cs is specific heat, and χ is the Taylor-Quinney coefficient,
usually taken as 0.9 in the assumption that 90% of plastic work is dissipated as heat [Børvik
et al., 2009]. The isotropic strain hardening term R(ϵp) is defined by the Voce hardening
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rule
∑2
i=1Ri(ϵp) =

∑2
i=1Qi (1− exp(−Ciϵp)) where Ri are hardening terms which saturate

at different levels of plastic strain governed by empirically determined parameters Qi and Ci
[Kristoffersen et al., 2020a]. When implemented into numerical models, MJC is often coupled
with a criterion to allow fracture to occur in the material [Børvik et al., 2009]. [Dey et al.,
2006] considered the accuracy of a one-parameter fracture criterion that can be defined via a
single tensile test know as the Cockroft-Latham (CL) criterion [Kristoffersen et al., 2020a].
The CL criterion is defined as

Dc =
1

Wc

∫ ϵ
0

⟨σI⟩dϵ (1.3)

where σI is the major principal stress, Wc is the CL failure parameter, and failure occurs when
damage variable Dc equals unity. [Dey et al., 2006] found that an accurate, quantitative
prediction of the ballistic limit velocity in steel target plates can be found using the CL criterion.
The number of materials tests involved in characterisation is often cited as a factor in material
model choice [Børvik et al., 2009, Dey et al., 2006]. Therefore, as a reliable, resource efficient
method, the CL criterion is used alongside MJC in many studies involving impulsive loading for
metallic materials [Kristoffersen et al., 2020a, Flores-Johnson et al., 2011, Basaran, 2017, Fras
et al., 2019, Tria and Trebinski, 2015]. It should be noted however, that the CL criterion
does not apply to the modelling of hard steel projectile core which is much more difficult to
capture. To that end, numerical models can be simplified and computation time reduced by
modelling the projectile core as a rigid body that remains intact - as performed by [Holmen
et al., 2013]. However, this can result in an under-prediction of the ballistic limit velocity for
high strength targets where damage to the projectile contributes to the effectiveness of the
material as ballistic protection [Costas et al., 2021, Børvik et al., 2009].

Numerical studies in the literature however, are not limited to metallic targets. For example,
[Krishnan et al., 2010] performed a numerical simulation of ceramic composite armour subjected
to ballistic impact and also used FE code LS-Dyna. Due to the ceramic nature of the target
plate, variants of the JC model are not applicable and instead the Johnson-Holmquist (JH)
material model was used to model the impact phenomenon [Johnson and Holmquist, 1994].
Ceramic materials usually have high compressive strength but low tensile strength and tend to
exhibit progressive damage under load due to the growth of microfractures. [Sabadin et al.,
2018] numerically simulated and designed a SiC/Ultra High Molecular Weight polyethylene
(UHMWPE) composite armour less than 20 mm thick that was able to resist a 7.62 mm AP
projectile impact. Their advanced numerical model incorporated both mesh and mesh-less
methods simultaneously and revealed good agreement between experimental and computational
results both in terms of ballistic properties, deformations, fragmentation and fracture of the
ballistic system. [Bresciani et al., 2016] investigated the fragmentation of a blunt shaped
projectile made of a tungsten heavy alloy impacting against a ceramic Alumina tile. The ceramic
tile was modelled such that the finite elements transform into Smooth Particle Hydrodynamics
(SPH) elements when the failure criterion is met. [Gregori et al., 2020] created a numerical
model studying the high-velocity impact of a 7.62 mm NATO Ball Projectile on multi-layer
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alumina/aramid fibre composite ballistic shields. The model was developed in explicit code LS
Dyna based on a full-Lagrangian FE analysis. Numerical studies have successfully been applied
to a wide variety of loading scenarios and impact conditions in the literature. Finite methods
provide a tool for evaluating the response of materials to impact and the failure modes of
materials can be investigated specifically. Furthermore, simulations can be repeated and key
design parameters can be modified to arrive at an optimal solution for the design of safe and
fit for purpose structures. Such tools, however, require substantial amounts of computational
resource depending on the loading case being studied. In addition, specialist knowledge and
training is required to develop the models due to their complex nature and justifying the
assumptions made to simplify the model. Finite methods suffer from discretisation errors and
additional complexities arise with the application of different material models. Specifically,
the main problem comes with obtaining and calibrating constitutive models as this usually
requires large sets of experimental characterisation tests in conditions representative of the
final application, which in most ballistic cases, are difficult to obtain in lab conditions.

1.7 Machine learning

Given the considerable computational cost associated with the increasingly sophisticated
numerical models and boundary conditions, there has been an insurgence of ML research
deployed within this field in order to improve the computational efficiency, and more importantly,
enable the possibility of statistical analysis of the behaviour of materials across a large amount of
input conditions [Yang et al., 2022]. One of the earlier ML studies to use artificial neural networks
to predict the ballistic response of materials was by [Ryan and Thaler, 2013]. Specifically, the
authors aimed to predict the perforation limits of spaced aluminium armour, Whipple shields,
subjected to impact by aluminium projectiles at hypervelocity. The model utilised a multi-layer
perceptron (MLP) architecture that, given a series of inputs that describe the mechanical
properties of the projectile and target plate, predicted a binary output relating to whether or
not perforation would occur. The results of which improved upon the previous empirical state
of the art from 71% to 92%. Interestingly, this approach allowed the authors to perform a
sensitivity analysis to determine which input parameters most heavily correlated with the output
prediction. Whilst the majority of influential parameters aligned with the traditional parameters
identified in the empirical calculations, some unexpected parameters were also identified [Ryan
and Thaler, 2013].

The MLP has been a popular tool when applying machine learning techniques in the field
of mechanics [Bobbili et al., 2020, Gao et al., 2019]. Liu et al. [Liu, 2003] used MLP in
combination with a conjugate gradient method to optimize the design of functionally graded
metal/ceramic materials. They were able to demonstrate that their trained neural network could
effectively describe and handle the non-linearity between the design parameters and the objective
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optimisation parameter, which in this case was the depth of penetration. In a separate study,
[Bobbili et al., 2020] trained a MLP network to determine the residual velocity of a projectile
impacting an aluminium 1100-H12 thin plate and demonstrated results from the model that were
in agreement with corresponding experimental results. Motivated by such works, [Yang et al.,
2022] considered a numerical approach that combines finite element modelling and machine
learning to inform the material performance of an alumina ceramic tile undergoing high-velocity
impact. They simulated the tile by incorporating a variation of the Johnson-Holmquist-Beissel
(JHB) material model within the framework of SPH. The computational framework is used to
simulate conditions by matching the results from both plate impact experiments and ballistic
testing from the literature [Yang et al., 2022]. Once calibrated, the computational model
is used to generate training data for the MLP to predict the residual velocity and projectile
erosion for when the tile is impacted at high velocity. Similar to [Ryan and Thaler, 2013],
a sensitivity analysis is performed to explore the effect of mechanical properties and impact
simulation geometries on material performance. They demonstrated that a combined FEM and
MLP approach is applicable to guide the structural-scale design of ceramic-based protection
systems. [Teixeira-Dias et al., 2019] also used a MLP network in their study to predict the
ballistic response of multi-layer armour plates. In this case, the authors train two MLP models,
one of which is trained on the Lambert model described in Section 1.5 and another trained
directly on experimental data available in the literature. This piece of work is presented in more
detail in Chapter 3.

ML however, introduces a wider range of possibilities that have also been explored to
facilitate our understanding of materials. [Pathan et al., 2019] used a supervised machine
learning approach to predict the macroscopic stiffness and yield strength of unidirectional
composites loaded in the transverse plane. The predictions were obtained without performing
any physically-based calculations, but instead from image analysis of the material micro-structure
supplemented with knowledge of the constitutive models for fibres and matrix. For each micro-
structure, the corresponding homogenised, macroscopic mechanical properties were determined
using FE simulations. Similar to [Yang et al., 2022], the computational models were used to
create the training data for the ML models. In this case, the authors employed a gradient-
boosted tree regression model that was trained using a 10-fold cross-validation training strategy
utilising data from 1800 FE simulations. The model demonstrated that it could predict both
elastic properties and yield strengths within a margin of error of 5 %. [Almustafa and Nehdi,
2022] also used a gradient-boosted tree regression model to predict the maximum displacement
of reinforced concrete columns exposed to blast loading. The training set consisted of 420 test
columns with thirteen features relevant to imperative column and blast properties (including
dimensional properties of the RC column and its mechanical properties such as compressive
strength and yield strength). The study was shown to provide accurate, generalised and
stable predictions of maximum displacement via MAE, MAPE and R2 metrics of 3.63 mm,
13.31 % and 97.4 % respectively. Previously, the literature predicting the response of RC
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columns to blasts consisted mainly of analytical or numerical models [Liu et al., 2019, Al-Bayti,
2017, Abladey and Braimah, 2014, Kadhom, 2016]. However, both approaches require an
intimate understanding of the application to implement them successfully and the numerical
methods in particular require additional modelling efforts and computational run time. Their
ML approach eliminated the need for an in-depth understanding of the application, mitigated
modelling complexity and effectively reduced computation time [Almustafa and Nehdi, 2022]..

Generative Adversarial Networks (GAN) in particular have shown remarkable results in
modelling complex distributions [Grnarova et al., 2018]. [Aggarwal et al., 2021] conducted a
detailed overview of the theory and applications of GANs in the literature and found that they
have been applied successfully to a wide range of application types from 3D object generation
[Chen et al., 2018, Ye et al., 2020, Yu et al., 2020], image processing [Zhang et al., 2020, Go
et al., 2020], face detection [Jaiswal et al., 2020, Kowalski et al., 2020] and text transferring
[Sixt et al., 2018]. The application of ML has been an active topic of research within the
medical domain to identify chronic diseases [Battineni et al., 2020, Kaur et al., 2018] and GANs
have proven to be a useful tool for some interesting applications. For example, for researchers
developing robotic arms to support assisted living, they need to estimate the skeletons of hands
that interact with objects from RGB images to facilitate their designs [Baek et al., 2020].
This topic of research is referred to as hand pose estimation and is complicated by severe
occlusions and cluttered backgrounds. GANs have been successfully applied in this instance to
help convert 2D images into a 3D hand pose estimation with remarkable success [Baek et al.,
2020]. Their method retains state of the art performance, while eliminating the need to develop
expensive fully annotated 3D skeletal models. Previously a complete and automatic pipeline
for annotating 3D joint locations did not exist [Zimmermann et al., 2019]. GANs have also
been used in the classification of brain tumor images [Oulbacha and Kadoury, 2020] and image
segmentation [Yang et al., 2019].

GANs are also associated with the creation of synthetic healthcare data for AI projects to
overcome related data-deficiency. For example, diverse data is critical for success when training
deep learning models. Medical imaging data sets are often imbalanced as pathological findings
are generally rare. In 2018, NVIDIA proposed a method to generate synthetic abnormal MRI
images with brain tumours by training a GAN using two datasets available to the public of brain
MRI imagery [Shin et al., 2018]. They demonstrated two key benefits from the synthetic data;
the first is that they demonstrated improved performance on tumour segmentation by leveraging
the synthetic images as a form of data augmentation. They utilised a GAN to supplement
the available data to yield additional benefits from their ML model. The second is that they
demonstrated comparable tumour segmentation results when trained on the synthetic data
versus when trained on the real subject data. They declare that such results offer a potential
solution to two of the largest challenges facing machine learning in medical imaging, namely the
small incidence of pathological findings, and the restrictions around sharing patient data [Shin
et al., 2018]. The availability of ballistic data suffers from similar issues of sparsity. Experimental
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testing is a destructive process, which means that a comprehensive material characteristic
campaign for the response of an armour plate across a range of impact velocities and material
thicknesses incurs large costs rapidly. This cost is increased further when considering the
response to different types of loading and projectile impact. There is therefore an opportunity
for research to consider whether generative networks could be utilised to supplement sparse
ballistic datasets and whether such methods can be used to augment material characterisation
campaigns, without the need to perform additional destructive experiments or invest in the
development of tailored numerical models. This thesis presents what, to the authors knowledge,
is a novel implementation of generative networks in the field of ballistic impact, the details of
which are presented in Chapters 4 and 5.
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Chapter 2

Machine Learning

2.1 Preface

This chapter exists as a friendly introduction to ML and is not representative of the problems
discussed later in the thesis. Nor is it intended as a contribution to knowledge or an advancement
in the field of machine learning. It does however, serve several important purposes. The first is
that it provides context and background information so that readers unfamiliar with artificial
intelligence can understand some of it’s key concepts, techniques and applications which are
necessary to appreciate the more complicated use cases that follow. It is also intended to
establish a common language. ML is a complex field with a rich vocabulary. This introduction
chapter helps to establish that common language and forms a foundation of knowledge that
can be built upon to understand the significance of the latter chapters in the context of the
broader field of ML.

This chapter begins by introducing a brief history of AI and addressing some of the
misconceptions between AI, ML and deep learning. It then introduces some important concepts
such as neural networks, activation functions, loss functions and optimiser algorithms. GANs
are a core component of this thesis and are also introduced. The chapter finishes by applying
ML on a simple engineering problem by predicting the response of a single degree of freedom
system using long-short term memory networks.
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2.2 Introduction

AI is the capability of a computer system to mimic human cognitive functions such as learning
or problem solving. Through AI, a computer system uses maths and logic to simulate the
reasoning that people use to learn from new information and make decisions. AI has been
claimed to offer transformational potential across a wide variety of sectors and industries [Collins
et al., 2021]. Studies have reported that AI provides opportunities to reinvent business models
[Duan et al., 2019], change the future of assembly work [Schwartz et al., 2019] and even
enhance human capabilities [Dwivedi et al., 2021]. Traditionally, car manufacturing has been a
rigid, automated process with steps executed by robots that execute pre-defined steps from
procedural code. To improve flexibility, Mercedes-Benz for example, replaced some of those
robots with AI-enabled collaborative robots, often referred to as cobots, and redesigned it’s
processes around human-machine collaborations [Daugherty, 2018]. The heightened interest
in AI to transform economies is reflected in the scale of global spending - the International
Data Corporation (IDC) predicts that global spending on AI will reach nearly 98 billion in
2023, which is more than double the 37.5 billion that was spent in 2019 [Majchrzak et al.,
2016, Ransbotham et al., 2016]. [von Krogh, 2018] suggests a few reasons that attribute
towards the recent increase in AI in recent years. Tremendous technical advancements have
been made in some of the underlying AI methods such as current and conventional neural
networks, many of which have been made open-source and regularly available to researchers
[Collins et al., 2021]. In addition, the decreasing cost of computer hardware has contributed
towards the reduction in computational expenditure. This has facilitated a notable increase in
the speed at which research can take place and deeper models can now be trained on larger
training sets than was previously possible.

Within the space of AI, the terms Artificial Intelligence, Machine Learning and Deep Learning
are often used interchangeably and incorrectly - Figure 2.1 indicates the hierarchy of those terms.
It is important to understand that AI is a general term that encompasses any work or research
which enables a computer system to mimic human intelligence. ML however, is simply a subset
of AI that defines the process of using mathematical models of data to help a computer learn
without direct instruction. This enables a computer system to continue learning and improving
on its own, based on experience. Historically, the term AI was first coined by [McCarthy et al.,
2006] in the first academic conference on the subject - but the pursuit of intelligent machines
began earlier than that as in 1945 [Bush, 2019] theorized a ’future device... in which an
individual stores all his books, records, and communications, and which is mechanized so that it
may be consulted with exceeding speed and flexibility. It is an enlarged intimate supplement
to his memory ’. In his essay he continues to state that ’...for years inventions have extended
man’s physical powers rather than the powers of his mind. Trip hammers that multiply the fists,
microscopes that sharpen the eye, and engines of destruction and detection are new results, but
not the end results of modern science’. Such work exists as evidence of a shift in perspective
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the most important networks is largely random, subject to a minimum number of genetic
constraints.

2. The original system of connected cells (neurons) is capable of a certain amount of
plasticity; after a period of neural activity, the probability that a stimulus applied to
one set of cells will cause a response in some other set is likely to change due to some
relatively long-lasting changes in the neurons themselves.

3. Through exposure to a large sample of stimuli, those which are most ‘similar’ (in some
sense that must be defined in terms of the particular physical system) will tend to form
pathways to the same sets of responding cells. Those which are marked ‘dissimilar’ will
tend to develop connections to different sets of responding cells.

4. The application of positive and/or negative reinforcement (or stimuli which serve this
function) may facilitate or hinder whatever formation of connections is currently in
progress.

5. Similarity, in such a system, is represented at some level of the nervous system by a
tendency of similar stimuli to activate the same set of cells. Similarity is not a necessary
attribute of a particular formal or geometrical classes of stimuli, but depends on the
physical organisation of the perceiving system, an organisation which evolves through
interaction with a given environment.

Despite being published in 1958, the points raised regarding the biological theory are still
analogous to the way in which artificial neural networks learn and are utilised today. This section
explores neural networks in more detail and explains how perceptron networks are organised
and optimised such that significance can be applied to certain inputs to facilitate learning.

2.2.1 The Perceptron

Figure 2.2 shows a diagram of a perceptron, or node of an Artificial Neural Network (ANN), in
its simplest form.

The perceptron works by adding together the product of each input xi multiplied by its
associated weight wi to form a weighted sum. To that end, the output y given by this node
can be expressed as

y = x1w1 + x2w2 + x3w3 + · · ·+ xnwn (2.1)

The output y is therefore a product of its inputs and weights and as such, the larger the weight
wi the greater the influence that input xi has on the output. This is an important concept
of machine learning and during training, the goal is to optimise the weight values such that
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Figure 2.2: Schematic of a simple perceptron.

significance can be applied to the correct inputs to modify the output y such that it is closer to
the target/desired value. Perceptrons used in neural networks expand upon this basic principle
but include two additional components known as the bias b and the activation function F . b is
an additional trainable parameter that consists of a numeric value that is added to the weighted
sum of the inputs and F performs a final transformation in order to help the network learn
complex patterns in the data. Activation functions are discussed in more detail in Section 2.3
and a schematic of a typical perceptron is shown in Figure 2.3. To that end, the operations
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(x2, w2)
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(xn, wn)

Inputs and
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∑
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Bias

F

Activation
function

y

Output

Figure 2.3: Schematic of a perceptron node.

that occur at a single node within a neural network can be described mathematically as

y = F

(
b +

n∑
i=1

wixi

)
(2.2)

where n refers to the total number of inputs entering the node. On its own however, a single
perceptron is trivial in the sense that complex operations can be performed when these nodes
are combined and arranged into layers to create a mesh-like network. This network is typically
referred to as a Multi Layer Perceptron (MLP). It is composed of an input layer that receives
the signal, an output layer that makes a decision or prediction regarding the input, and the
hidden layers that act as the computational engine of the MLP. These networks are often
applied to supervised learning problems where they train on a set of input-output pairs and learn
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2.3 Activation Functions

2.3.1 Overview

Activation functions play an important role within neural networks and introduce non-linearity
into the output of a perceptron. An activation function is a function added into active nodes
of an Artificial Neural Networks (ANN) in order to help the network learn complex patterns in
the data. Figure 2.5 indicates the position of the activation function within an active node.

(x1, w1)

(x2, w2)

(...)

(xn, wn)

Inputs and
weights

∑

b
Bias

F

Activation
function

y

Output

Figure 2.5: Location of activation function within an active node.

The activation function takes the combined sum of the inputs and weights and moderates
it before the output is passed on to subsequent nodes. To this end, the activation function
takes the following input

b +

n∑
i=1

wixi (2.3)

where wi is a weight associated with a given input xi , n is the number of inputs and b is the
bias added to the combined sum of inputs and weights. The activation function is used to
determine the extent to which the signal progresses through the network. It converts the signal
it receives through a form of gradient processing into a new form that can be taken as input by
the next cell. It should be noted that the terms ‘activation function’ and ‘transfer function’
are often used interchangeably in the literature. An activation function can be either linear or
non-linear depending on the function it represents and is used to moderate the output of neural
networks across a wide range of domains from object recognition and classification [Krizhevsky
et al., 2017, Szegedy et al., 2014], to speech recognition [Sainath et al., 2015, Graves et al.,
2013], cancer detection systems [Albarqouni et al., 2016, Wang et al., 2016, Cruz-Roa et al.,
2013], self-driving cars [Uçar et al., 2017, Chen et al., 2015] and many others, with [Olgac
and Karlik, 2011] stating that a proper choice of activation function improves results in neural
network computing.
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A linear model refers to the linear mapping of an input function to an output, such as the
final prediction between class label and prediction in a classification network, and is given by
the affine transformation in most cases [Goodfellow et al., 2016]. The affine transformation is
defined as any transformation that preserves co-linearity (i.e. all points lying on a line initially
still lie on a line after transformation) and ratios of distances (i.e. the midpoint of a line segment
remains the midpoint after transformation). Furthermore, the neural networks produce linear
results from the mapping of b +

∑n
i=1 wixi and the output of these nodes can be written as

y = w1x1 + w2x2 + . . .+ wnxn + b (2.4)

The outputs of each node in each layer are fed into the subsequent layer for multilayered
networks until the final output is obtained. In this form, however, they remain linear. In order to
learn patterns in the data, it is important to convert these linear inputs into non-linear output
for further computation and as such the need for the activation function arises. The activation
functions can be applied to the outputs of the linear models to produce the transformed
non-linear outputs. The non-linear output after the application of the activation function can
therefore be written as

y = F (w1x1 + w2x2 + ..+ wnxn + b) (2.5)

where F is the activation function. Note that this is equivalent to Equation 2.2. Converting
linear signals to non-linear signals allows the neural network to capture the learning of high
order polynomials beyond one degree for deeper networks. A special property of the non-linear
activation function is that they are differentiable else they cannot work during backpropagation
of the deep neural networks [Goodfellow et al., 2016]. Backpropagation is a crucial part of the
training process and used to update the weights and bias values at each node in the network.

2.3.2 Sigmoid and tanh Activation Functions

The simplest activation function is known as the linear activation where no transform is applied
at all. A network that contains primarily linear activation functions is very simple to train, but
cannot learn complex mapping functions. Non-linear activations are preferred as they allow for
optimisation such that the weights and biases in each node can learn more complex structures
within the training data [LeCun et al., 2015]. Traditionally, two widely used non-linear activation
functions are the sigmoid and hyperbolic tangent (tanh) functions and are shown in Figure 2.6.

The sigmoid is a non-linear activation function used mostly in feedforward neural networks.
It is a bounded differentiable real function, defined for real input values, with positive derivatives
everywhere and some degree of smoothness [Han and Moraga, 1995]. The sigmoid function is
given by the relationship

f (x) =
1

(1 + e−x)
(2.6)
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Figure 2.6: sigmoid σ and tanh activation functions for real values of x between −6 and 6.

The sigmoid function often appears in the output layers of DL architectures as for any given x
the function returns a value between 0 and 1. In light of this, they are well suited for use in
predicting probability-based output and are regularly applied in binary classification problems.
However, the sigmoid activation function suffers from major drawbacks, which include sharp
damp gradients during backpropagation from deeper hidden layers to the input layers, gradient
saturation, slow convergence and non-zero centered output, causing the gradient updates to
propagate in different directions [Nwankpa et al., 2018].

In order to address some of the shortcomings associated with the sigmoid function, other
forms of activation function were proposed such as the hyperbolic tangent function known as
tanh [Nwankpa et al., 2018]. Tanh is a smoother, zero-centered function that for any given x
returns a value between −1 and 1. The tanh function is defined by the following relation:

f (x) =
ex − e−x
ex + e−x

(2.7)

The tanh activation function is preferred over the sigmoid function as it demonstrates improved
training performance for multi-layer neural networks [Olgac and Karlik, 2011, Neal, 1992]. The
main advantage provided by this function is that it produces a zero centered output and thereby
aids the backpropagation process. However, like the sigmoid function, the tanh function also
suffers from the vanishing gradient issue. This is because both functions squash their input into
a very small output range in a very non-linear fashion. For example, for all values of x , sigmoid
maps the output to a small range between 0 and 1. However, for most positive values of x
when x > 5 the output is very close to 1 and for most negative values of x when x < −5 the
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output is close to 0. This issue is referred to as saturation [LeCun et al., 2015] and, in practice,
it means that there are large regions of the input space which are mapped to an extremely
small range. In these regions of the input space, even a large change in the input will produce a
small change in the output. Hence the gradient is small and the parameters of the network
will be updated less vigorously. This issue is amplified when multiple layers that include such
non-linearities are stacked. For instance, the first layer within the network will map a large input
region to a small output region, which will subsequently be mapped to a smaller output region
in the next layer. This trend will continue such that even a large change in the parameters of
the first layer will have a reduced impact on the output. It is possible to negotiate the issue of
vanishing gradients by using activation functions that do not have the property of squashing
the input space into finer boundaries. A popular choice is the Rectified Linear Unit (ReLU)
activation function.

2.3.3 Rectified Linear Unit Activation Functions

Stochastic gradient descent and backpropagation are two important concepts when training
neural networks that are discussed in more detail in Section 2.4. However, in order to utilise
them and train deep neural networks with most success, an activation function is required
that behaves like a linear function, but is in fact non-linear such that complex relationships in
the data can be learned. The ReLU satisfies these requirements as it performs a threshold
operation to each input element where the function is linear for values of x > 0, yet it is a
non-linear function as negative values are output as 0. As such, the ReLU can be defined as:

f (x) = max(0, x) =

xi , if xi ≥ 0
0, if xi < 0

(2.8)

The ReLU represents a nearly linear function and therefore preserves the properties of linear
models that made them easy to optimise and converge faster with gradient-descent methods
[Goodfellow et al., 2016]. An advantage of using the ReLU units is that they enhance the
speed of computation since it is not required to compute divisions or exponentials. Specifically,
[Krizhevsky et al., 2017] found that the speed of convergence increased by a factor of 6 when
using ReLUs compared to the sigmoid and tanh functions. However, the ReLU has a limitation
that it easily overfits compared to the sigmoid function, although techniques including dropout
have been adopted to reduce the effects of over-fitting of ReLUs and the rectified networks
have been shown to improve the performances of the deep neural networks [Glorot and Bengio,
2010]. The ReLU and its variants are used regularly in different architectures of deep learning
due to their simplicity and reliability — applications include restricted Boltzmann machines
[Nair and Hinton, 2010] and many convolutional neural network architectures [Krizhevsky et al.,
2017, Szegedy et al., 2014, Xu et al., 2015]. However, ReLU units can be fragile during training
and cease to produce useful outputs. For example, a large gradient flowing through a ReLU
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could cause the weights to update in such a way that the neuron will not activate on any data
point again. If this happens, the gradient passing through the unit will be zero from that point
on. In this sense, a dead ReLU unit is one that will always output the same value for any input
and will no longer contribute to any form of learning. This phenomenon can be emphasised if
the learning rate is set too high as the increased learning rate can destabilise the already fragile
rectified units. Reducing the learning rate reduces the likelihood of dead neurons, however a
modified ReLU known as the Leaky ReLU (LReLU) is an alternative proposal to address the
issue.
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Figure 2.7: (a) ReLU activation function and (b) LReLU activation function across a range of real values of x
from −4 to 6.

Figure 2.7 shows the output of both the ReLU and LReLU activation functions for real
values −4 < x < 6. The LReLU was first proposed in 2013 as an activation function that
introduces a small negative slope to the ReLU to sustain and keep the weight updates alive
throughout the entire propagation process [Maas et al., 2013]. The LReLU function introduces
the α parameter to address the issue of dead neurons and assures that the gradients will not be
zero during training. The LReLU computes the gradient with a very small constant value for
the negative gradient α, typically in the range of 0.01 to 0.02. As such, the LReLU activation
function can be described as

f (x) = max(0, x) =

xi , if xi ≥ 0
αx, if xi < 0

(2.9)

The LReLU function therefore returns an identical result when compared to the standard
ReLU for positive values of x . To this end, there is no significant result improvement when
compared to the traditional ReLU and tanh functions except in sparsity and dispersion. Further
adaptations of the ReLU include Parametric ReLUs (PReLU), where the negative part of the
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function learns adaptively whilst the positive region remains linear, and Randomized Leaky Relu
(RLReLU) which is a dynamic variant of the LReLU where a random number sampled from a
uniform distribution is used to train the network.

2.3.4 Softmax Activation Function

As mentioned previously, activation functions are implemented in neural networks to moderate
the output from its layers. Softmax activation functions, or softargmax as they are sometimes
referred to [Goodfellow et al., 2016], are often used as the final activation function of a neural
network to normalise the output of a network to a probability distribution over predicted output
classes. Softmax is a mathematical function that converts a vector of numbers it receives into
a vector of probabilities, where the probabilities of each value are proportional to the relative
scale of each value in the vector. Classification networks, are configured to output n values,
where n is the number of classes in the classification task. Examples of classification networks
trained on popular MNIST and CIFAR10 datasets are presented in Section 2.5.1. The softmax
function is used to normalise those outputs and converts them from weighted sum values into
probabilities that sum to one. Each value in the output of the softmax function is interpreted
as the probability of membership for each class. Mathematically, softmax is defined as

Si(y) =
eyi∑n
j=1 e

yj
(2.10)

where y is an input vector to the softmax function S that consists of n elements for n classes.
The subscript i denotes the i-th element of the input vector and accepts any numeric value.∑n
j=1 e

yj is a normalisation term that ensures the values of output vector Si(y) sums to 1 and
that each element is in the range 0 and 1 thus ensuring a valid probability distribution. Consider
a classification network trained on the CIFAR10 dataset that aims to classify input images into
one of 10 classes. The last fully connected layer of the network outputs a vector of logits, Lx,
that is passed through a softmax layer that transforms the logits into normalised probabilities,
P . Logits, in this instance, refers to the vector of raw (non-normalised) predictions generated
by the classification model. The probabilities P correspond to the model’s prediction of the
likelihood that the input image belongs to each of the 10 possible classes. This idea is illustrated
in Figure 2.8 and considers an aeroplane as an input image. It can be seen that the value
corresponding to the aeroplane class in probabilities P returns the largest value of 0.79. The
model therefore believes that the input image belongs to the class of aeroplane.

In summary, this section highlighted a few of the common activation functions used in the
literature. In practice, however, there are many more functions used and with each function
there are often variants used to accommodate different applications. A summary of the main
activation functions used across various domains is shown in Table 2.1.
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Figure 2.8: Schematic of softmax functionality within a classification network featuring 10 classes that correspond
to the classes within the CIFAR10 dataset [Krizhevsky and Hinton, 2009].

Table 2.1: Deep learning activation functions and their corresponding equations for computation.

Function Computation Equation Reference

Sigmoid f (x) = 1
(1+e−x ) [Han and Moraga, 1995]

HardSigmoid f (x) = max
(
0,min

(
1, (x+1)2

))
[Nwankpa et al., 2018]

SiLU f (x) = ziα(zi) [Elfwing et al., 2017]
Tanh f (x) = ex−e−x

ex+e−x [Nwankpa et al., 2018]

Hardtanh f (x) =


−1, if x < −1
x, if −1 = x ≤ 1
1, if x > 1

[Nwankpa et al., 2018]

Softmax f (xi) =
e(xi )∑
j e(xj )

[Nwankpa et al., 2018]

ReLU f (x) = max(0, x) =

x, if x ≥ 0
0, if x < 0

[Nair and Hinton, 2010]

LReLU f (x) = max(0, x) =

x, if x ≥ 0
αx, if xi < 0

[Maas, 2013]

PReLU f (x) =

x, if x ≥ 0
αx, if x ≤ 0.

[He et al., 2015a]

RReLU f (x) =

x, if x ≥ 0
αx, if x < 0

[Xu et al., 2015]
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minimise the loss from a neural network, an algorithm known as backpropagation is used
[Goodfellow et al., 2016]. Backpropagation calculates the derivative of the cost function with
respect to the parameters in the neural network. It uses this information to determine the
direction in which to update the parameters to improve the performance of the model. This
direction is more commonly referred to as the neural networks gradient, and a steeper gradient
will result in a larger change to its parameters. However, before updating the model with the
gradient, it is first multiplied by an additional parameter known as the learning rate. The
learning rate is a parameter that is often defined prior to training the network and common
learning rate values lie between 0.01 and 0.2 for a range of applications [Smith, 2015]. If
the learning rate is too high, the combination of the learning rate multiplied by the gradient
might result in the output from the network over-stepping the minimum, resulting in a model
that is not as successful as it could have been. Conversely, if the learning rate is too low the
optimisation process is very slow. This is because the combination of the learning rate and
gradient will result in a very small value, and as such fine updates will be made to the trainable
parameters of the network. This means that more training iterations will be required for the
algorithm to minimise the loss function than might be necessary. In addition, the algorithm may
converge to an unfavourable local minimum, resulting in a model that has stabilised about a
sub-optimal point. This is where optimisers add value to the training process, many optimisers
calculate the learning rate automatically but are responsible for applying the gradients to the
neural network to facilitate learning. A good optimiser is one that both trains a model quickly
and prevents convergence at sub-optimal local minima.

2.4.1 Optimiser algorithms

This section presents the optimiser algorithms that are candidates for use in the studies
that constitute the main body of this thesis. A brief overview of the Stochastic Gradient
Descent (SGD), Root Mean Square Propagation (RMSProp), AdaGrad and Adam optimisation
algorithms is given first before evaluating their performance on a classification task on the
popular MNIST [Lecun et al., 1998] and CIFAR10 [Krizhevsky and Hinton, 2009] datasets.

Stochastic Gradient Descent

SGD and its variants are among the most common optimisation algorithms used for machine
learning applications in general and deep learning in particular. It is possible to obtain an unbiased
estimate of the gradient by computing the average gradient on a minibatch of m examples
drawn from independent and identically distributed random variables from the data-generating
distribution [Goodfellow et al., 2016], i.e. a random selection of examples from the training set.
SGD updates the trainable network parameters, such as the weights and biases θ, to minimise
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the loss function by taking small steps at each iteration in the direction of the negative gradient.
The SGD algorithm is presented in Table 2.2.

Table 2.2: SGD Optimisation algorithm [Goodfellow et al., 2016].

SGD Algorithm Stochastic gradient descent (SGD) update

Require: Learning rate schedule ϵ1, ϵ2, ...
Require: Initialise Parameter θ

start
k ← 1
while stopping criteria not met do

Sample a minibatch m examples from the training set X, {X1, ...,Xm}, with
corresponding targets Yi
Compute gradient estimate: g← 1

m∇θ

∑
i L(f (Xi ;θ),Yi)

Apply update: θ ← θ − ϵkg
k ← k + 1

end while

Where L is the loss function elected for the optimisation. A crucial parameter for the SGD
algorithm is the learning rate ϵ. SGD is often described as using a fixed learning rate, however
in practice it is necessary to gradually decrease the learning rate over time hence the learning
rate at iteration k is denoted as ϵk . This is because the SGD gradient estimator introduces a
source of noise (via the random sampling of m training examples) that does not vanish once a
minimum has been reached [Goodfellow et al., 2016]. By comparison, the true gradient of the
total cost function becomes small and then 0 as a minimum is approached and ultimately met
by using batch gradient descent, hence with batch gradient descent it is possible to use a fixed
learning rate.

A common issue with the SGD algorithm is that it can oscillate along the path of steepest
descent towards the optimum which results in some instability. An additional momentum term
can be added to the original SGD algorithm to reduce the oscillation which is designed to
accelerate learning, particularly in the face of high curvature, small but consistent gradients
or noisy gradients [Polyak, 1964, Murphy, 2012]. The momentum algorithm accumulates
an exponentially decaying moving average of past gradients and continues to move in their
direction. Formally, the momentum algorithm is introduced via a new variable γ that plays
the role of velocity, it is a vector that refers to the direction and speed at which the trainable
parameters move through parameter space. An additional momentum hyperparameter ξ ∈ [0, 1]
determines the speed at which the contributions of previous gradients exponentially decay and
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the update rule is given by

v← ξγ − ϵ∇θ(
1

m

m∑
i=1

L(f (xi ; ξ), yi)), (2.11)

θ ← θ + γ. (2.12)

The larger ξ is relative to ϵ, the more previous gradients affect the current direction. The
updated SGD algorithm that includes momentum is given in Table 2.3.

Table 2.3: SGD Optimisation algorithm.

SGD Algorithm Stochastic gradient descent (SGD) with momentum

Require: Learning rate ϵ, momentum parameter ξ
Require: Initialise Parameter θ, initial velocity (momentum) γ

start
k ← 1
while stopping criteria not met do

Sample a minibatch m examples from the training set X, {X1, ...,Xm}, with
corresponding targets Yi
Compute gradient estimate: g← 1

m∇θ

∑
i L(f (Xi ;θ),Yi)

Compute velocity update: γ ← ξγ − ϵg
Apply update: θ ← θ + γ

k ← k + 1
end while

end

The learning rate is one of the most difficult hyperparameters for neural network researchers
to set as it significantly affects the performance of the model. The momentum algorithm helps
mitigate this issue, however it does so at the expense of introducing another hyperparameter
that must be defined prior to training. AdaGrad, RMSProp and Adam optimisation algorithms
are examples of incremental methods that directly adapt the learning rates of specific model
parameters.

AdaGrad

The AdaGrad algorithm individually adapts the learning rates of all model parameters by scaling
them inversely proportional to the square root of the sum of all of the historical squared
values of the gradient [Duchi et al., 2011]. The trainable parameters θ with the largest partial
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derivative of the loss have a correspondingly rapid decrease in their respective learning rate,
while parameters with small partial derivatives have a relatively small decrease in their learning
rate. The AdaGrad optimisation algorithm is presented in Table 2.4.

Table 2.4: AdaGrad Optimisation algorithm [Goodfellow et al., 2016].

AdaGrad Algorithm The AdaGrad optimisation algorithm

Require: Global learning rate ϵ
Require: Initialise Parameter θ
Require: Small constant δ to stabilise division by small numbers
start

Initialise gradient accumulation variable r = 0
while stopping criteria not met do

Sample a minibatch m examples from the training set X, {X1, ...,Xm}, with
corresponding targets Yi
Compute gradient estimate: g← 1

m∇θ

∑
i L(f (Xi ;θ),Yi)

Accumulate squared gradient: r← r + g⊙ g
Compute update: ∆θ = − ϵ

δ+
√
r
⊙ g (Division and square root applied

element-wise)
Apply update: θ ← θ + ∆θ

end while
end

It should be noted that the mathematical operator ⊙ denotes the Hadamard Product, which
for ML applications refers to the component-wise multiplication of matrices [Horn and Johnson,
1985]. δ is a small constant added to prevent division by zero and improve stability, often
this value is set to 10−7 [Goodfellow et al., 2016]. The AdaGrad algorithm individually adapts
the learning rate based on the accumulation of gradients, as such, an additional vector r is
defined and initialised at 0 for all parameters θ. AdaGrad demonstrates desirable properties
when applied to convex optimisation problems. Empirically, however, for training deep learning
models, the accumulation of squared gradients from the beginning of training can result in a
premature and excessive decrease in the effective learning rate [Goodfellow et al., 2016]. As a
result, AdaGrad performs well for some but not all deep learning applications.

Root Mean Square Propagation (RMSProp)

The RMSProp algorithm was first proposed by Geoffrey Hinton and exists as a modification
of AdaGrad for improved performance on non-convex optimisation problems by changing the
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gradient accumulation into an exponentially weighted moving average [Hinton, 2012]. The
AdaGrad algorithm was designed to converge rapidly when applied to a convex function and
when it is applied to a non-convex function to train a neural network, the learning trajectory
may pass through different structures and eventually arrive at a region that is a locally convex
minima. AdaGrad shrinks the learning rate according to the entire history of the squared
gradient and as a result, the learning rate may be too small before arriving at such a convex
structure. Instead, RMSProp uses an exponentially decaying average to discard history from
the extreme past which allows it to converge rapidly after finding a convex minima [Goodfellow
et al., 2016]. The RMSProp algorithm is presented in Table 2.5.

Table 2.5: RMSProp Optimisation algorithm [Goodfellow et al., 2016].

RMSProp Algorithm The RMSProp optimisation algorithm

Require: Global learning rate ϵ, decay rate τ
Require: Initialise Parameter θ
Require: Small constant δ to stabilise division by small numbers
start

Initialise gradient accumulation variable r = 0
while stopping criteria not met do

Sample a minibatch m examples from the training set X, {X1, ...,Xm}, with
corresponding targets Yi
Compute gradient estimate: g← 1

m∇θ

∑
i L(f (Xi ;θ),Yi)

Accumulate squared gradient: r← τr + (1− τ)g⊙ g
Compute parameter update: ∆θ = − ϵ

δ+
√
r
⊙ g (Division and square root applied

element-wise)
Apply update: θ ← θ + ∆θ

end while
end

The RMSProp algorithm introduces a new hyperparameter τ that controls the length scale
of the moving average. Empirically, RMSProp has shown that it is an effective and practical
optimisation algorithm for deep neural networks and is routinely employed by deep learning
practitioners [Shaziya, 2020].

Adam

Finally, Adam is another adaptive learning rate optimisation algorithm and is presented in Table
2.6. The name Adam is derived from the phrase adaptive moments. In the context of the earlier
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algorithms, it can be interpreted as a variant on the combination of RMSProp and momentum
with a few important distinctions. The first, is that the Adam algorithm incorporates momentum
directly as an estimate of the first-order moment (with exponential weighting) of the gradient.
The simplest way to include momentum to the RMSProp algorithm is to apply it directly to
the rescaled gradients. The second distinction is that Adam includes bias corrections to the
estimates of both the first order moments (momentum term) and the second-order moments
to account for their initialisation at the origin,. RMSProp also incorporates an estimate of the
second-order moment, however it does not include the correction factor. Thus, unlike in Adam,
it is possible for the RMSProp second-order moment estimate to demonstrate large bias early
in training. In comparison to other optimisation algorithms, Adam is regarded as being fairly
robust to the choice of hyperparameters [Goodfellow et al., 2016].

Table 2.6: Adam Optimisation algorithm [Goodfellow et al., 2016].

Adam Algorithm The Adam optimisation algorithm

Require: Global learning rate ϵ
Require: Exponential decay rates for moment estimates, β1 and β2 in [0, 1).
Require: Small constant δ to stabilise division by small numbers
Require: Initialise Parameter θ
start

Initialise 1st and 2nd moment variables s = 0, r = 0
Initialise time step t = 0
while stopping criteria not met do

Sample a minibatch m examples from the training set X, {X1, ...,Xm}, with
corresponding targets Yi
Compute gradient: g← 1

m∇θ

∑
i L(f (Xi ;θ),Yi)

t ← t + 1
Update biased first moment estimate: s← β1s+ (1− s)g
Update biased second moment estimate: r← β2r + (1− β2)g⊙ g
Correct bias in first moment: ŝ← s

1−βt1
Correct bias in second moment: r̂← r

1−βt2
Compute update: ∆θ = −ϵ ŝ√

+δ (operations applied element-wise)

Apply update: θ ← θ + ∆θ

end while
end

The decay rates of the first and second order moment estimates are controlled by parameters
β1 and β2. [Kingma and Ba, 2017] suggest that good default settings when using the Adam
optimisation algorithm for most ML applications are ϵ = 0.001, β1 = 0.9, β2 = 0.999 and
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δ = 10−8.

2.4.2 Regression and Classification loss functions

In the context of an optimisation algorithm, the function used to evaluate a candidate solution
(i.e. a set of weights) that is being minimised or maximised is referred to as the objective
function or criterion. Typically with neural networks, the primary goal is to minimise the error
between the value predicted by the neural network and the desired value. The cost function
reduces all the various good and bad aspects of a possibly complex system down to a single
number — a scalar value — which allows candidate solutions to be compared and ranked [Reed
and Marks, 1998]. When calculating the error of the model during the optimisation process, a
loss function must explicitly be chosen. This can be a challenging problem as the elected loss
function must capture the properties that represent the design goals of the model.

Broadly speaking, loss functions can be classified into two major categories depending
upon the type of learning task being considered - Regression losses and Classification losses.
During classification tasks, a model is trained to predict the correct output from a set of
finite categorical values - that is, for the MNIST handwritten digit dataset categorising the
output into the correct integer class from 0 to 9. Regression, on the other hand, considers the
prediction of a continuous quantity such as a price or magnitude.

Regression Loss Functions

Mean Squared Error (MSE) is perhaps the simplest and most common loss function used for
regression tasks and is measured as the average of the squared difference between predictions
and actual observations. The result is always positive regardless of the sign of the predicted
and actual values due to the nature of the square and a perfect MSE returns a value of 0. The
MSE is formally defined as

MSE =
1

n

n∑
i=1

(Yi − ŷi)2 (2.13)

where n denotes the total number of training examples, i the current training sample from
a training set input to the model, Yi the target output for a given i and ŷi represents the
models prediction. A low MSE ensures that the output from the trained model contains no
outlier predictions with large errors. To that end, if the model makes a single poor prediction,
the error is magnified and a single poor prediction can have a large influence of the evaluated
performance of the model due to the squaring nature of the function.
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Classification loss functions

Cross-entropy is often considered the default loss function to use for classification problems and
yields faster training and improved generalisation than sum-of-squares methods [Bishop, 2006].
It measures the difference between probability distributions for a given random variable or set of
events. In information theory, the surprise of an event is often described. It is suggested that
an event is more surprising the less likely it is and therefore contains more information. Similarly,
an event is less surprising the more likely it is and subsequently contains less information [Wiley,
2005]. A binary classification problem defines a task of predicting one of two class labels for a
given example i.e. assigning a correct label of 0 or 1 for a given input sample. To that end,
a model can be used to estimate the probability that a sample belongs to a particular class
label. Specifically, cross-entropy can be used to calculate the difference between two probability
distributions. In binary classification tasks the target probability distribution P for an input
returns an integer value of 0 or 1, where 0 refers to an impossibility of an event happening and
1 corresponds to a certainty that that event will happen. However, the integer labels contain
no surprise at all and therefore, in the context of information theory, possess little information
content (zero entropy). A model therefore seeks to approximate the target probability and
its approximation is denoted by Q. In the language of classification, this refers to the actual
probability Y and to the predicted probabilities ŷ , where Y refers to the known probability
(target) of each class label for an example in the training set X and ŷ denotes the probability
of each class label for an example predicted by the model. The cross-entropy loss, LCE, for
a model is minimised across the entire training set X which is calculated by determining the
average cross-entropy across all training examples such that

LCE(Y, ŷ) = −
1

n

n∑
i=0

[Y log (ŷi) + (1− Y ) log (1− ŷi)] (2.14)

where n is the total number of samples in the training set and i denotes the current sample.
Alternatives to cross-entropy loss functions for binary classification tasks include the hinge and
the hinge squared loss functions. The hinge loss function was primarily developed for use with
Support Vector Machines (SVM) models [Cortes and Vapnik, 1995] and is intended for use
with binary classification where the target values are in the set {−1, 1}. It encourages examples
to have the correct sign and thus results in larger error when there is a difference in the sign
between actual and predicted class values. For an intended output Y = ±1, the hinge loss LH
for a prediction ŷ can be written as

LH(Y, ŷ) =

n∑
i=1

[max (0, 1− Y · ŷ)] (2.15)

Similarly, a variation of the hinge loss function exists, known as the squared hinge loss function
and is used for ‘maximum margin’ binary classification problems. The squared hinge loss
function is denoted by LH2 As its name suggests, it is similar to the standard hinge function but
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incorporates a square term with the intention of smoothing the surface of the error function to
improve numerical performance, that is

LH2(Y, ŷ) =

N∑
i=1

[
max(0, 1− Y · ŷ)2

]
(2.16)

2.5 Evaluation of Optimisers and Loss Functions

2.5.1 Performance evaluation of optimisers

This section benchmarks the performances of each of the optimisers presented in Section 2.4
on the MNIST [Lecun et al., 1998] and CIFAR10 [Krizhevsky and Hinton, 2009] datasets. The
MNIST dataset is a database of handwritten digits consisting of 60,000 28×28 black and white
training examples and a test set containing 10,000 samples [Lecun et al., 1998]. Here, the test
set is used to evaluate the performance of the optimisers. A MLP was trained for a total of 30
epochs to predict the correct class from [0− 9] when provided with an input image. The input
image is flattened into a vector and is passed through a hidden layer containing 250 hidden
nodes before entering a 10 node softmax layer for classification and the binary cross-entropy
loss function was elected to train the model.

The CIFAR10 dataset consists of 60,000 32x32 colour images in 10 classes, with 6,000
images per class. There are 50,000 training images and 10,000 test images [Krizhevsky and
Hinton, 2009]. The goal of the trained network is to correctly classify input images into one
of 10 classes named aeroplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.
A Convolutional Neural Network (CNN) was trained on this dataset and consists of four 2D
convolutional layers containing 32, 64, 16 and 32 filters respectively with convolutional layers 1
and 3 possessing a kernel size of 2× 2 and layers 2 and 4 a kernel size of 3× 3. The layers
are flattened into a dense MLP layer containing 1,024 nodes before finally passing through a
final MLP layer with 10 hidden nodes, which is activated by a softmax activation function for
classification. Once again the binary cross-entropy loss function was used to evaluate the model
and a CNN network was trained on each of the aforementioned optimisers. It should be noted
that each optimiser is configured with the default hyperparameters in Keras and a learning rate
of ϵ = 0.01 was assigned for all cases. Momentum was not included for the analysis of the
SGD optimiser and a δ value of e−7 was assigned for use with the AdaGrad, RMSProp and
Adam optimisers. Finally, Adam parameters β1 and β2 were assigned values of 0.9 and 0.999
respectively.

Figure 2.10 plots the accuracy and loss of the optimisers during training. An accuracy score
of 1 (100%) refers to a model that correctly classifies all samples in the test set (10,000 for
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Figure 2.10: Performance comparison of Adam, RMSProp, AdaGrad and SGD optimisers where subscripts t and
v denote the training and validation performance, respectively. Plots (a) and (b) show the accuracy and loss
of the MLP model during training t and validation v on the MNIST dataset, respectively. Similarly, plots (c)
and (d) show the accuracy and loss of the CNN model during training and validation on the CIFAR10 dataset,
respectively.

each dataset) and the loss refers to the output from the loss function. Therefore a perfect
model would return values of 1 and 0 for the accuracy and loss respectively. Despite MNIST
often being regarded as a simple dataset to train neural networks on, there were some notable
differences in performance by the optimisers. For the MNIST dataset, Figures 2.10(a) and
2.10(b), Adam and RMSProp were equivalent and the best performing optimisers both in
terms of the accuracy and loss metrics. SGD was the worst performing model. Similarly,
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in the larger CIFAR10 dataset the results follow the same trend. It can be seen that the
performance of Adam and RMSProp are similar whereas once again SGD and AdaGrad are
the worst performing models. It is worth noting that SGD might benefit from further training
to improve performance as its accuracy has not yet converged. However, the discrepancy in
performance between SGD compared to Adam/RMSProp is notable and it is very unlikely that
the extra computational effort would yield more competitive results. Additional information
regarding the final performance of the optimisers for the MNIST and CIFAR10 datasets are
shown in Tables 2.7 and 2.8, respectively.

Table 2.7: MNIST final values after 10 epochs for SGD, AdaGrad, RMSProp and Adam optimisers.

Optimiser Training Accuracy Validation Accuracy Training Loss Validation Loss

Adam 99.56% 97.55% 0.021 0.081

RMSProp 99.44% 97.69% 0.023 0.081

SGD 89.54% 90.25% 0.380 0.366

AdaGrad 84.42% 85.52% 0.731 0.716

Table 2.8: CIFAR10 final values after 30 epochs for SGD, AdaGrad, RMSProp and Adam optimisers.

Optimiser Training Accuracy Validation Accuracy Training Loss Validation Loss

Adam 80.79% 78.01% 0.281 0.648

RMSProp 77.72% 76.31% 0.457 0.720

SGD 44.22% 47.11% 1.460 1.475

AdaGrad 24.56% 27.27% 2.054 2.058

2.5.2 Performance evaluation of loss functions for classification

This section considers the use of the aforementioned loss functions on a binary classification
problem. Specifically, it investigates the circles test problem provided by scikit-learn [Pedregosa
et al., 2011]. This problem considers samples drawn from two concentric circles on a 2D plane
where points on the outer circle belong to a class assigned a label of 0 and points that belong to
the inner circle are assigned a label of 1. Statistical noise in the region of 10% is introduced to
the samples to add ambiguity to increase the difficulty of the problem and make the comparison
more interesting. A total of 1, 000 samples were generated using scikit-learn’s make_circles
[Pedregosa et al., 2011] function of which 500 samples were used to train the model and the
remainder used to validate its performance, as can be seen in Figure 2.11.

A MLP sequential model was defined using Keras’ API that consisted of an input layer with
two nodes for the respective x and y coordinate of the sample from the circle on a 2D plane.
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Figure 2.12: Comparison of MLP models compiled using the Binary Cross-Entropy (BCE), Hinge (H) and
Hinge-Squared (H2) loss functions on scikit-learns circles problem [Pedregosa et al., 2011]. Where the respective
performance on the training and validation set is denoted by subscripts t and v respectively.

with additional training and the binary cross-entropy loss function performed best converging
at an accuracy of 84.2% and 85.6% for the training and validation set, respectively. When
comparing the loss during training, it can be seen that the hinge-squared loss function converges
fastest and after ≈ 60 epochs of training there are no obvious improvements in performance.
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Conversely, the binary cross-entropy and hinge loss functions demonstrate similar performance
and take longer to converge than the hinge-squared loss function, around ≈ 140 epochs, but
converge to a lower loss. The reduced loss demonstrated by loss functions during training is
echoed by its accuracy performance as both the binary cross-entropy and the standard hinge
outperforms that of the hinge-squared loss function.

Table 2.9: Comparison of Binary Cross-entropy (BCE), Hinge (H) and Hinge-Squared (H2) loss functions on
scikit-learns circle problem test dataset [Pedregosa et al., 2011].

Loss Function Training Accuracy Validation Accuracy Training Loss Validation Loss

BCE 84.20% 85.60% 0.37 0.36

Hinge 83.20% 82.60% 0.34 0.36

Hinge2 81.00% 81.40% 0.45 0.44

2.6 LSTM Networks

2.6.1 Overview

MLP networks have been presented in detail in the above sections. MLPs are the classical
type of neural network that are well suited for use with tabular datasets and can be applied to
many classification and regression prediction problems. A key attribute of the MLP network
is its flexibility and they are generally used to learn the mapping between inputs and outputs.
This flexibility allows them to be applied to other data types, for example pixels of an image
can be flattened into a single vector of data and fed into the network. In practice, however,
many types of neural network exist that have a different architecture that makes them better
equipped to learn from different forms of data than a MLP network might be.

Convolutional Neural Networks (CNNs) for example, are a different class of neural network
designed to map input data to an output variable. The benefit of using CNNs is their ability
to develop an internal representation of a two dimensional image, which allows the model to
learn position and scale in variant structures in the data. To that end, CNNs are regularly used
for image classification prediction problems. More generally, CNNs are useful when a spatial
relationship exists within the dataset. For example, an ordered relationship exists between
words in a document of text and the time steps of a time series, and as such CNNs can also be
applied to problems such as document classification and sentiment analysis [Yin et al., 2017a].
A Recurrent Neural Network (RNN) however, is a different class of neural network, specifically
designed to work with time series or sequential data and is well equipped for sequence prediction
problems. Sequence prediction problems come in many forms and are best described by the
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types of inputs and outputs that they support. Some examples of sequence prediction problems
include:

• One to many: An observation as input mapped to a sequence that contains multiple
steps as an output.

• Many to one: A sequence of multiple steps as input mapped to a single prediction of
class or quantity.

• Many to many: A sequence of multiple steps as input is mapped to a sequence that
contains multiple steps as an output.

RNN algorithms are therefore well suited for ordinal or temporal problems such as language
translation [Wu et al., 2016a], Natural Language Processing (NLP) [Yin et al., 2017b], speech
recognition [Graves et al., 2013] and image captioning [Chu et al., 2020], and are incorporated
into popular applications such as Siri, voice search and Google Translate [Wu et al., 2016b].
The architecture of a RNN is shown in Figure 2.13 and, similar to that of the MLP network,
consists of an input layer, hidden layers and an output layer. A key difference between RNNs
and traditional feed-forward networks is that adjacent nodes within the hidden layer of the RNN
are connected and as such can share information at an intermediate level. Connections between
the nodes of a RNN form a directed graph along a temporal sequence, which allows it to exhibit
temporal dynamic behaviour. This trait is often termed memory, and RNNs are distinguished
by their memory as they take information from prior inputs to influence the current input and
output. This information is established as an internal state that can represent contextual
information and, to that end, have the ability to retain information about past inputs for a
duration that is not fixed a priori, but instead depends on its weights and input data. This is
a notable difference, as traditional deep neural networks assume that inputs and outputs are
independent of each other, whereas the output of RNNs depend on the prior elements in the
sequence.

2.6.2 LSTM Layer Architecture

There are two widely known issues associated with the proper training of RNNs known as
the vanishing and the exploding gradient problems [Pascanu et al., 2013]. All RNNs contain
feedback loops in the recurrent layer that lets them maintain information in memory over time.
In a network of n hidden layers, n derivatives will be multiplied together during training. If these
derivatives are small then the gradient will decrease exponentially as it propagates through the
model until it eventually vanishes — hence the vanishing gradient problem. Similarly, if the
derivatives are large then the gradient will increase exponentially as it propagates through the
model until it eventually explodes and is known as the exploding gradients problem. In the case
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Figure 2.13: Unrolled RNN diagram.

of exploding gradients, the accumulation of large derivatives results in the model becoming
unstable and incapable of effective learning. The large changes in the model weights creates an
unstable network which at extreme values can cause the weights to become so large that it
causes overflow, resulting in weight values that can no longer be updated. This causes dead
neurons that can no longer contribute to the effective learning of the model. Conversely, the
accumulation of small gradients results in a model that is incapable of learning meaningful
insights given that the weights and biases of the initial layers will not be updated effectively.
The worst case scenario is that the gradient falls to 0 at which point no further learning will
take place. The Long Short Term Memory (LSTM) network is perhaps the most successful
form of RNN as it overcomes some of the key training issues of traditional RNNs and they have
been successfully applied on a wide range of applications [Sherstinsky, 2020].

LSTMs introduce the concept of cell states, which provide a pathway for the gradient to
flow backward in time freely [Hochreiter and Schmidhuber, 1997a]. The main benefit of this is
that it makes the network more resistant to the vanishing gradient problem.. The cell state
acts as a transport highway that allows for information to be passed along different points
of the network. In theory the cell state can transfer relevant information to any point during
signal processing. This is important as it means that nodes that would be disconnected in
traditional ANNs are now connected. This also means that information gathered from earlier
time steps can be utilised at later time steps, reducing the effects of short term memory. As
the cell state progresses through the network, it is modified and information may be added or
removed from the cell state via gates. The gates are different neural networks that posses
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parameters that are optimised during training to decide what information should be allowed on
the cell state. Similar to traditional ANNs, the gates contain activation functions, specifically
sigmoid activation functions. The sigmoid activation transforms the input vector it receives
between values [0, 1], which is useful when updating the cell state since information that returns
a 0 value will be ‘forgotten’ (any number multiplied by 0 is 0). Similarly, any information that
returns a value of 1 after passing through the sigmoid activation function is kept (any number
multiplied by 1 is itself). To that end, information that returns a value closer to 1 is more
influential and will have a greater effect on the output. For example, in sentiment analysis, it
would be intuitive that strong adjectives such as ‘amazing’, ‘beautiful’ and ‘incredible’ would
have a large influence on the cell state that progresses through the network, as they are strong
indicators of positive sentiment.
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Figure 2.14: Diagram of the LSTM Layer Architecture indicating the flow of information through the entire
LSTM network.

Figure 2.14 shows the architecture for a typical LSTM layer. It illustrates the flow of a time
series X, with C features (channels) of length S through the layer. In the diagram, ht and ct
denote the output (the hidden state) and the cell state at time step t, respectively. hS and cS
refer to the final hidden state and cell state once the entire time series has passed through the
network, respectively. The number of hidden units refers to the dimensionality of the hidden
state and can be defined as a hyper-parameter when creating the LSTM architecture. The
diagram illustrates how both the hidden state and cell state can pass through adjacent LSTM
blocks/units in the network. Each LSTM block receives three inputs, the time series X and the
hidden and cell states, and outputs updated versions of the hidden and cell states [Hochreiter
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Table 2.10: Transformations applied at each gate within an LSTM cell.

Component Formula

Input Gate it = Fg(Wixt + Riht−1 + bi)

Forget Gate ft = Fg(Wfxt + Rfht−1 + bf)

Cell State ct = Fc(Wgxt + Rght−1 + bg)

Output Gate ot = Fg(Woxt + Roht−1 + bo)

2.7 Predicting the response of a SDOF system

LSTM models are well suited to time-series problems and are a good candidate to be applied for
engineering vibration problems. This example utilises an LSTM networks to predict the response
of a linear single degree of freedom (SDOF) system . During the last decades, researchers have
made increased efforts to propose effective structural health monitoring (SHM) techniques
for civil buildings and structures [Nagamani Devi and Vijayalakshmi, 2021]. Estimation of the
response of structures to vibration has been intensively investigated because it can provide
useful information for inferring the health state of a structure as well as inherent structural
characteristics. Using nonlinear time-history analysis, the performance level of a structure
under various earthquake intensities can be determined via maximum drift estimation, i.e. by
determining the maximum allowable lateral drift at the top of a building [Khouri, 2009]. For
instrumented structures, data recorded from acceleration sensors can be used to compute the
fundamental frequencies and mode shapes. Changes in the identified characteristics serve as an
indicator for health assessment [Wu and Jahanshahi, 2019].

Recently, advances in ML techniques have led to additional research opportunities within
the field of SHM. These ML approaches attempt to learn the underlying mechanisms from
the available measurements and use that information to predict the possible outcomes given
new input. Due to recent developments in computation hardware and sensor technology, the
acquisition of data is much easier than it once was and thus increases the applicability and
feasibility of ML approaches. This example considers the work of [Wu and Jahanshahi, 2019]
who proposed a deep convolutional neural network (CNN) to estimate the dynamic response of
a linear SDOF system and a non-linear SDOF system and references its performance against
an MLP network. This example extends on this work by applying a LSTM network instead and
compares the results with the work of [Wu and Jahanshahi, 2019].

In their research, [Wu and Jahanshahi, 2019] used vibration signals of the SDOF structure
(i.e. the displacement, velocity, excitation, and acceleration time history) to train the neural
networks. The networks were then used to evaluate a linear and a non-linear system adopted
from [Masri et al., 2000], and considered two cases of input-output relationships: (1) the use
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where again,
üβ = (1− 2β)ün + 2βün+1, 0 ≤ 2β ≤ 1 (2.25)

The discretised structural equations can then be written as

u̇n+1 = u̇n + [(1−Υ)∆t]ün +Υ∆tün+1 (2.26)

un+1 = un + ∆tun + [(0.5− β)∆t2]un + [β∆t2]ün+1 (2.27)

To initialise the numerical method, it is necessary to define some initial conditions: the SDOF
system has a mass m = 1 kg, a stiffness k = 200 N/m and a damping coefficient c = 1.5 kg/s.
The excitation f of the system is defined as white noise with zero mean and a variance of
1. The sampling frequency and data length was set to 200 Hz for a duration of 8, 300 s,
respectively. This results in a total of 1, 660, 000 data points which forms the entire data
sample used to both test and train the model. Parameters Υ and β were assigned values of
0.5 and 0.25, respectively, to assure average constant acceleration between time steps were
∆t = 1/200 = 0.005 s. The initial displacement and velocity was set such that u0 = u̇0 = 0.
To that end, Figure 2.17 presents a 1 s extract of the generated original vibration signals used
in this example.

The training data used consists of a (100000 × 1) input vector from the white noise
sample and a corresponding (100000× 1) target vector that refers to the acceleration of the
SDOF system. Eight test sets were also prepared to evaluate the performance of the trained
models. Each test set also consists of a (100000× 1) excitation input vector and its expected
(100000×1) acceleration output vector. Each test set input was afflicted with a varying level of
noise to investigate the robustness of the networks and used noise values of 0, 1, 2, 3, 5, 10, 20
and 30%. For the test cases it is important to note the following:

• The test sets are different to the training set and have not been used to train the model;

• Test sets are curated from the same sample and differ only by the additional noise added;

• Noise has not been added to the target data (output) and are therefore the same for
each test case.

2.7.2 Setup of the LSTM Model

Figure 2.18 shows a flowchart of the layers used in the LSTM network.

The LSTM network used in this example consists of 200 hidden units and was trained for
250 epochs, where a single epoch refers to a complete pass of the training data through the
network. A single iteration is completed when one sample is passed through the network. A
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Sequence Input LSTM Fully Connected Layer Regression Output

Figure 2.18: Flowchart of LSTM architecture used for regression analysis.

piecewise learning rate schedule which reduced the learning rate further by a factor of 0.125
every 125 epochs. This technique reduces the learning rate as training progresses and can often
help the network learn finer details in the training set by reducing the vigor at which weights in
the network are optimised. The initial values of the weights are initialised via the Glorot, also
known as Xavier, initialiser [Glorot and Bengio, 2010] which samples weights from a uniform
distribution with bounds [−

√
6

N0+Ni
,
√

6
N0+Ni

] where Ni is equal to the number of hidden units
(200) and N0 = 4Ni. Since the LSTM model contains 200 hidden units, for a single sample its
output is a (200× 1) vector. A fully connected (FC) layer is therefore incorporated to convert
the LSTM output into a single output i.e. prediction.

2.7.3 Results

Figure 2.19 shows a 0.5 s sample acceleration output from the trained LSTM network for test
cases with 0, 10, 20 and 30% added noise and compares them with the expected true value. It
can be seen that the LSTM prediction successfully captures the wave shape of the ideal target
for each of the noise cases. It also appears that the output from the LSTM model demonstrates
a slight bias to under-predict the acceleration of the SDOF system. Although studying the
LSTM output visually is a useful tool to interpret the success of the model, objectively the
0.5 s sample is not sufficient to make any substantial conclusions about the performance of the
network. To that end, Figure 2.20 depicts the error distribution of the LSTM for noise cases
0, 10, 20 and 30% and are shown in Figures 2.20 (a) to (d), respectively. A fitted normal
distribution is superimposed on the histogram for comparison. The residuals of the 0% noise
case lie within a tall bell-shaped curve that does not demonstrate any signs of skew. Its residuals
lie between −0.082 and 0.055 with a standard deviation of 0.013. The distribution peaks at a
density of ≈ 30, which is higher than that of the remaining noise cases and the distribution is
also much narrower. Given that the count of residuals is consistent for each noise case, this
indicates that a larger proportion of the predictions for the 0% noise case are closer to the
expected value and is therefore more accurate.

As expected, the error distributions increase in width as the input signal is afflicted with
more noise and it can be seen that the standard deviations across the noise samples increase
from 0.013 to 0.086 for 0 and 30%, respectively. The distribution plots for each noise case
follow a normal distribution with no signs of skew. Table 2.11 presents relevant statistical
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ü

[m
/s
2
]

(c)

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.5

0

0.5

Time, t [s]

A
cc

.,
ü
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Figure 2.19: Predictions by the trained LSTM model for the 0%, 10%, 20% and 30% noise cases compared
with the expected output.

information regarding the performance of the model for each input case. It can be seen that
the model has a tendency to under predict the true acceleration as the mean value, x̄ = −0.014
for noise cases 0 to 20% and x̄ = −0.013 for 30%. On inspection of Figure 2.19, it can be
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Table 2.11: Residual analysis of output from the trained LSTM network.

Noise [%] x̄ std(x) xmin xmax RMSE

0 −0.014 0.013 −0.082 0.055 0.019
1 −0.014 0.012 −0.089 0.051 0.019
2 −0.014 0.016 −0.110 0.079 0.021
3 −0.014 0.010 −0.106 0.071 0.017
5 −0.014 0.023 −0.191 0.131 0.027
10 −0.014 0.041 −0.271 0.231 0.044
20 −0.014 0.072 −0.533 0.501 0.074
30 −0.013 0.086 −0.739 0.716 0.087

seen that even for higher noise cases the predicted accelerations follow the wave shape of the
ideal target acceleration. In addition, the RMSE for the 30% noise case returned the largest
value of 0.087, which equates to a relative difference of ≈ 8.7%. Figure 2.21 compares the
RMSE predictions from the LSTM network with that of the MLP and CNN networks applied by
[Wu and Jahanshahi, 2019]. It can be seen that the trained LSTM model returns lower RMSE
values than both the MLP and CNN network for each of the noise cases.

2.7.4 Conclusion

This short example presented a LSTM-based approach for the vibration response estimation
of a linear SDOF system. The study was inspired by the work of [Wu and Jahanshahi, 2019]
who performed a similar analysis using MLP and CNN networks, and considered a test case
where the excitation applied to a SDOF was used to predict the subsequent acceleration of
the system. The excitation was defined as white noise with zero mean and a variance of 1
and the input samples were afflicted with additional noise in the range 0 − 30% to account
for measurement in real-world conditions and used to test the stability of the network. It was
found that the LSTM network is well suited for use with engineering time-series data as the
trained model was successfully able to predict the acceleration response of the SDOF system
to an RMSE error of 1.9− 8.7% across the noise range of 0− 30%. This was an improvement
on the predictions made by the MLP and CNN networks presented by [Wu and Jahanshahi,
2019] and a testament to the potential that LSTM models can bring within the field of SHM.
The LSTM model demonstrated that it is robust and capable of making accurate predictions
against noise-contaminated data. The final part of this chapter introduces GANs which are the
principle model used in this thesis.
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Figure 2.20: Density histogram of LSTM error residuals for noise cases 0%, 10%, 20% and 30%. The respective
normal distribution curve is also plotted for each noise case.
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training a generative model by framing the problem as a supervised learning problem with two
sub-models: a generator, G, and a discriminator, D. The discriminator D is a classification
network optimised to assign the correct labels to real (label = 1) samples, i.e. those that came
from the training set and fake samples (label = 0). Meanwhile, the generator G is trained to
generate fake samples that fool D into believing that they came from the original training set
[Chen et al., 2015]. In other words, D and G play the following two-player minmax game with
value function V (G,D) [Goodfellow et al., 2014]

min
G
max
D
V (D,G) = EX logD(X) + EZ log[1−D(G(Z))] (2.28)

where X is the input to D from the training set, Z is a vector of latent values input to G, EX
is the expected value over all real data instances, D(X) is the discriminator’s estimate of the
probability that real data instance from X is real, EZ is the expected value over all random
inputs to the generator and D(G(Z)) is the discriminator’s estimate of the probability that a
fake instance is real. The primary goal of G is to fool D and produce samples that D believes
come from the training set. The primary goal of D is to assign a label of 0 to generated
samples, indicating a fake, and a label of 1 to true samples, that is, samples that came from
the training set. The training procedure for G is to maximise the probability of D making a
mistake, i.e. an incorrect classification. In the space of arbitrary functions G and D, a unique
solution exists, with G able to reproduce data with the same distribution as the training set
and the output from D ≈ 0.5 for all samples, ultimately indicating that the discriminator can
no longer differentiate between the training data and data generated by G.

A GAN is therefore able to estimate generative models via an adversarial process, in which
two neural networks compete against one another and are trained together. Given a training
set, the G model learns to generate entirely new data with the same statistical representation
as the training set.

The most common applications of GANs are used in the domain of image generation and
editing. Figure 2.22 shows an example of photo-realistic images generated by [Karras et al.,
2018a] using a GAN model that contains CNN layers trained on the CelebA-HQ dataset [Karras,
2017]. The CelebA-HQ dataset is a high quality version of the traditional CelebA dataset and
contains 30, 000 high quality images of celebrities at a resolution of 1024× 1024. This work
demonstrates the capabilities of the GAN algorithm to learn characteristic features from a
training set and generate convincing new samples that could plausibly belong to that original
training set. GANs have also been used to generate cartoon characters [Jin et al., 2017],
perform image-to-image translation [Isola et al., 2018] and text-to-image translation [Zhang
et al., 2017]. [Ledig et al., 2017] developed their Super-Resolution GAN (SRGAN) model to
generate output images with increased pixel resolution when compared to the input. Whilst
the vast majority of GAN applications include some form of CNN layers to facilitate work with
image data, it is the specific architecture of the GAN that determines its functionality and
compatibility with different data types. An interesting variant on the traditional GAN is the
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conditional-GAN (cGAN) first developed by [Mirza and Osindero, 2014] which allows a standard
GAN network to be conditioned on auxiliary information during training — this is particularly
useful as it addresses a common issue with GANs where there is limited control over the output.

Figure 2.22: An example of work conducted by [Karras et al., 2018a] that produces state-of-the-art photo-realistic
human images of size 1024x1024. All images were generated by StyleGAN [Karras et al., 2018b] trained on the
CelebA-HQ dataset.

2.8.1 Training a GAN

Figure 2.23 presents a flowchart with the training procedure of a GAN, where the generator, G,
takes a latent input, Z. In this instance, a latent variable is a hidden or unobserved variable,
and the latent space is a multi-dimensional vector of these variables. Often, the latent input
to a G network might exist as a vector of Gaussian random numbers. the length of which is
defined prior to training. The stochastic nature of the latent input is important as it means
that variability is introduced to the G predictions. If the latent input is constant, then so is
the output from G and the same prediction will be made. As G receives the latent input Z, it
makes a prediction G(Z). The nature of G(Z) depends on the architecture of the network and
the training data, but new predictions are made by simply passing Z into the generator network.
However, without any training G(Z) is unlikely to be of any use. Similarly, it can be seen that D
takes input from either the training data X or from G(Z). D is a classification network trained
to assign the correct label to real and fake samples. During training it receives examples of real
samples from the training data X, and fake samples from G in the form G(Z). D therefore has
two potential outputs, either D(X) or D(G(Z)) depending on the input it receives.
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Training the Generator

Once D has been updated on real and fake samples, the G network is trained. The training
path is denoted by Gtrain on Figure 2.23. The goal of G is to generate samples that D believes
came from the training set X, therefore the output D(G(Z)) is used to train and update the
parameters of G. First, the latent input Z is generated and its predictions G(Z) are passed
into D. This time, however, it is concatenated with a label of 1 such that D believes that they
are real samples. The output D(G(Z)) is passed through the loss function and used to update
the G network with the intention of D(G(Z)) returning a value of 1 for fake samples. It is
important to note that the D model is frozen during Gtrain and its parameters are not updated.
Over time, the ability of G to generate convincing samples improves and the D network finds it
more difficult to differentiate between real and fake samples.

2.8.2 Example: Training a GAN network on a sine wave

This section demonstrates the ability of a GAN model to learn features from a simple training
set and generate new samples that belong to the same representation. Here, the training set X
used corresponds to a sine wave, y = sin(x), that consists of 50 samples where 0 ≤ x ≤ 2π.
Each sample exists as a 2 element vector and contains an x and y coordinate. The training set
X is shown in Figure 2.24.

0 1 2 3 4 5 6

−1

0

1

x

y

Training Set, X

Figure 2.24: Training set X used to train the GAN model that consists of 50 samples. Each sample contains an
x coordinate and its corresponding y coordinate.

The machine learning algorithm for the GAN was written in Python3, using TensorFlow’s
high-level Keras API for building and training deep learning models, and was used to define the
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G and D networks. G is a MLP network that takes a latent vector Z of length 10 as input
before passing through a hidden layer consisting of 15 hidden nodes. The output from the
hidden layer passes through a LReLU activation function, where parameter α was set to a
value of 0.01, before entering the output layer that consists of 2 hidden nodes, where each
node refers to the x and y coordinate of G’s prediction. The weights of the network were
initialised via the He uniform initialiser [He et al., 2015b]. Since the G network is trained from
the output of D, both networks are combined to form the GAN model and is compiled using the
binary cross entropy loss function and optimised via the adam optimisation algorithm [Kingma
and Ba, 2014]. The D network was also defined as a MLP network and takes 2 inputs that
correspond to the x and y coordinate of either real and fake samples and outputs a single value
that denotes its classification between 0 and 1 as to whether it believes the sample is real or
fake. The network consists of 2 hidden layers containing 15 and 10 nodes, respectively, both of
which were activated by LReLU activation functions where α was also set to a value of 0.01.
The model was trained for a total of 50, 000 iterations and the output from the G network at
different intervals during training is shown in Figure 2.25.

The G network was used to generate 500 samples at interval iterations of 500, 5, 000,
25, 000 and 50, 000 during the training process. Figure 2.25 includes the training set X used
to train the GAN model and it can be seen that after 500 iterations the samples show no
correlation. The samples generated are dispersed with no clear shape and lie within a domain
of −0.5 ≤ x ≤ 3 and −2 ≤ y ≤ 2, which is inconsistent with that of X. It is important to note
that the quality of the samples generated by G are dependent on the classification accuracy
of D. If D is unable to correctly classify samples that are real and belong to the training set,
then nor will it be possible for G to generate samples that could have come from the training
set. This is a key reason as to why the samples generated at early iterations, such as G500,
show little resemblance to that of the target. At 5, 000 iterations, it can be seen that the
output from G appears more organised. Now the samples are less dispersed and fall within
a domain of 1 ≤ x ≤ 6.5 and −1.3 ≤ y ≤ 1.5, which is closer to that of X. The generated
samples appear to be around the central diagonal that connects the peak and trough of the
sine wave, however it demonstrates no clear evidence of curvature which is a key feature of the
sin wave. At 25, 000 iterations however, there is evidence that the performance of the model
has improved with training. The samples generated at this iteration are less dispersed than
at 5, 000 iterations and begin to display some of the key properties of the sine wave such as
the stronger curvature at the peaks and troughs. Between 0 ≤ x ≤ 2, the samples generated
display strong correlation with the training set X. For values of x > 2, the samples follow the
general trend of the sin curve but with increased dispersion, particularly around x = 4.5. Finally,
after 50, 000 iterations the output from G shows strong correlation with X across its entire
domain. The trained G model is able to successfully generate samples across the entire domain
of X and demonstrated its ability to learn key features of the sine waves such as the curvature
of the peaks and troughs at x values of 1.57 and 4.71, respectively.
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Chapter 3

Perforation of Multi Layered
Targets

Chapter from published Book Chapter: F. Teixeira-Dias, S. Thompson, M. Paulino, An arti-
ficial intelligence-based hybrid method for multi-layered armour systems, Advanced Structured
Materials — State of the Art and Future Trends in Material Modelling vol. 100, p. 323-342
(Chapter 15), A. Oechsner, H. Altenbach (eds.), Springer, 2019 [Teixeira-Dias et al., 2019]

This chapter considers the response of multi-layered targets to ballistic impact and utilises
some of the key techniques presented in Chapters 1 and 2. It exists as the first of three distinct
pieces of work that constitute the main body of work presented by this thesis. Specifically, an
analytical energy-based method is developed based on the basic assumption that all kinetic
energy is transformed during the impact between a projectile and its target [Zukas et al.,
1983, Horne, 1979, Griffin, 1961]. The results of which are used to form one of two training
sets used to train a MLP network as described in Section 2.2.1, where the other training set is
comprised of experimental data only. Finally, FEA models are developed to validate the ML
models, as described in Section 1.6.

The design of protective structures is a complex task mostly due to threat-related unknowns,
such as the exact kinetic energy of the impactor and the dominant energy dissipation mechanisms.
The design process is often costly and inefficient due to the number of these unknowns and to
the cost of necessary steps such as laboratory testing and numerical modelling. In this chapter
a hybrid method is proposed with the goal of increasing the efficiency of the design process, and
consequently decreasing its cost. The method combines an energy-based analytical approach
with a set of ML models. FEA and experimental results are used to train the ML models and
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verify and validate the design process. The energy-based analytical method is used to establish
the training set for the ML algorithms, which can then be used to find optimal configurations
for the protective structure. The proposed ML model is a neural network which is trained
using experimental results and analytical data, to understand the ballistic response of a specific
material, and predict the residual velocity for a given impact velocity, layer thickness and material
properties. Networks trained for individual layers of the armour system are then interconnected
in order to predict the residual velocity of blunt projectiles perforating multi-layered composite
structures. Validation tests are done on systems including single and multi-layered targets.

3.1 Introduction

Protective structures are used for a number of different purposes, ranging from protection from
the environment to blast and ballistic impact. The design of protective barriers, structures and
armour systems is often complex due to the number of unknowns associated with the threat,
which often include the kinetic energy of the impactor (velocity and mass) and the mechanisms
of energy dissipation within the protective structure or armour system. These mechanisms have
been thoroughly studied and can include, for example, dissipation through plastic deformation,
ductile hole growth, petalling or plugging as shown in Figure 1.1. Multi-layered structures are
known to potentially increase the protection capability without significant increase in weight
[Liu et al., 2018, Ali et al., 2017, Elek et al., 2005]. The design of said structures is thus very
closely associated with known factors (e.g. the specific application) and unknown parameters
such as those associated to the threat. The design process is often expensive and inefficient
due to the number of unknowns and to the cost of involved steps such as laboratory testing
and numerical modelling.

A hybrid method is proposed in this chapter to increases the efficiency of the design process
while at the same time significantly decreasing its cost. The method relies on a combination of
a sound analytical method, which is inherently cost-efficient, and ML models. Experimental
results are used not only to inform and train the AI models but also to validate the whole design
process, together with FEA. The energy-based analytical method is developed to generate a
training set for the ML algorithm in order to find an optimal configuration for the protective
structure, considering the most relevant energy dissipation mechanisms, and to determine
perforation and residual velocity. The ML model is a neural network trained using experimental
results and analytical data, with the aim of understanding the ballistic response of a specific
material or set of materials, and predicting the residual velocity for given impact conditions and
layer thicknesses.
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3.1.1 The hybrid methodology

The proposed method relies on experimental data for the training of the ML model. FEA is
used as a second validation stage, albeit not strictly necessary. Verification and validation tests
are done on multiple systems, including single and multi-layered, in-contact target plates. This
chapter describes the methods and presents the advantages of the proposed hybrid method
over conventional FEA and experimental testing-based methodologies.

The impact of a projectile on a target can result in penetration or perforation. The former
is defined as a projectile’s entrance into a target without fully completing its passage through
the body [Backman and Goldsmith, 1978]. This means that the striker leaves an indentation
on the target, without completely perforating it. The latter describes a ballistic impact which
completely pierces the target [Zukas, 1980]. In this scope, the ballistic limit velocity vbl is the
minimum projectile velocity that ensures perforation [Børvik et al., 1999a, Zhang and Stronge,
1996]. This velocity is a property of the armour system and is determined by a number of
parameters, such as the projectile and target material properties, projectile mass and target
configuration (e.g. thickness). The residual velocity is the projectile velocity after it has
perforated the target. The definition of the ballistic limit velocity implies that if v0 = vbl then
vr = 0, where v0 is the projectile velocity just before impact and vr is the residual velocity of the
projectile. The residual velocity is zero if the target is struck by a projectile at its vbl [Sikarwar
et al., 2014]. The following sections detail the analytical models and AI methods used and how
they are integrated in a tool that can be used to predict post-perforation residual velocities
from ballistic impacts on metallic layered targets.

3.2 Analytical modelling

Protective structures and plates can be perforated in a number of different ways, which are
often grouped in six main distinct perforation mechanisms as shown in Figure 1.1 [Jia et al.,
2014, Woodward, 1987, Taylor, 1948, Thomson, 1955, Atkins et al., 1998, Landkof and
Goldsmith, 1985]. The most common in ductile plates are ductile hole growth and plugging,
shown schematically in Figures 3.1(a) and (b) [Teixeira-Dias et al., 2020]. This chapter focuses
on perforation by orthogonal plugging, which occurs in finite thickness targets impacted at
right angles by blunt cylindrical projectiles travelling close to or above the target’s vbl. The
impactor forms a plug of target material of similar diameter to the projectile by adiabatic
shearing. Adiabatic shearing is a process that occurs when a material is deformed at high strain
rates. The term adiabatic refers to a process that occurs without the exchange of heat with
the surrounding environment. In adiabatic shearing, the mechanical energy used to deform the
material is converted into thermal energy, which increases the temperature of the material locally.
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These energy-based approaches are often simplistic and thus based on a large number of
geometrical, mechanical and physical assumptions and simplifications. In such models it is often
assumed, for example, that thermal effects can be neglected. In the case of plugging, where
adiabatic shearing is the predominant deformation mechanism, this is potentially too big an
assumption. The analytical model proposed and described in this chapter tries to compensate
for this by proposing an additional friction term between the projectile and the target.

The model assumes a rigid (non-deformable) projectile and is based on the relationship
between stiffness and impact velocity and on the conservation of momentum. The elastic wave
velocities in the projectile and target materials are cp and ct, respectively,

cp =

√
Ep
ρp

and ct =

√
(1− νt)E

ρt(1 + νt)(1− 2νt)
(3.1)

where Ep and ρp are the projectile’s Young’s modulus and density, and Et and ρt are the target’s
Young’s modulus and density, respectively. Based on the above and on the compatibility relation
between the projectile and target, the contact compressive stress σc, dependent on the relative
velocity V , is [Teixeira-Dias et al., 2020, Sikarwar et al., 2014]

σc = ϕV =

(
ρtctρpcp
ρtct + ρpcp

)
V (3.2)

The conservation of momentum condition applied to the whole system is

Mpvi = vfMp + vfMg (3.3)

where vf is the free impact final velocity, Mp is the mass of the projectile, Mg is the mass of
the plug (the material from the target) and vi is the projectile impact velocity. On a purely
inelastic collision, the kinetic energy of the projectile is converted into deformation and heat
during the impact (Efn) and loss of work due to adiabatic shearing (Wn). When the projectile
perforates the target there are two additional kinetic energy terms that need to be accounted
for: (i) the kinetic energy of the projectile after impact, Ekp and (ii) the kinetic energy of the
plug after impact, Ekg. The energy balance equation can be written as [Recht and Ipson, 1963]

1

2
Mpv

2
i = Efn +Wn

1

2
Mpv

2
r +
1

2
Mgv

2
r (3.4)

where vr is the residual velocity of the projectile, assumed to be the same for the plug. The
total energy fraction lost to deformation and heat during free impact, Efn, must equal the
difference between initial and final kinetic energies, that is,

Efn =
1

2

(
Mg

Mp +Mg

)
Mpv

2
i (3.5)

The work due to adiabatic shearing, Wn, is

Wn =
1

2

(
Mp

Mp +Mg

)
Mp (vbl)

2 (3.6)
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This however, does not account for the velocity loss due to friction between the projectile and
the hole, for each layer of the target. Based on geometrical and kinematic considerations, this
velocity loss can be described by the relation

vfi = −
(
σicπdpL̄µ

i
k

Mp

)v i−1 ±
√
(v i−1)2 − 2aihi
ai

 (3.11)

where L̄ is the friction length — the total thickness of the target or the length of the projectile,
whichever is smaller. The coefficients of kinetic friction are µik and the deceleration of the
projectile going through layer i is ai = (v ir − v i−1r )/t i . The projectile contact time with each
layer is t i .

A generalised expression for the residual velocity can now be derived by rewriting equation 3.4
for multi-layered targets as:

1

2
M i−1p

(
v i−1r

)2
= E ifn +W

i
n +
1

2
M i−1p

(
v ir
)2
+
1

2
M ig
(
v ir
)2

(3.12)

Rearranging the previous equation for the residual velocity of the i-th layer v ir and including the
friction term yields

v ir =
M i−1p

M i−1p +M ig

√(
v i−1r

)2 − (v ibl)2 − v2fi (3.13)

3.3 ML model

3.3.1 Problem setting

This section introduces how a ML model can be used to predict the residual velocities from
plugging metallic layered armour plates. This chapter compares the results from an analytical
model, a numerical simulation using the finite element method and two separate neural networks;
where one of these is trained on a dataset generated by the analytical model and the other
entirely on experimental data collected from the literature. The experimental results published
by [Børvik et al., 2003] are used as the first test case to compare the results. Each experiment
used a blunt-nosed cylindrical projectile as the impactor and its respective geometry and material
properties are listed in Table 3.1. The target plates were manufactured from Weldox 460 E
steel and the corresponding material properties of the plate is presented in Table 3.2. The
target is assumed to be fully clamped at the supports, which is a reasonable assumption as far
boundary conditions are of minor importance in ballistic penetration by small mass projectiles
in the ordnance velocity range when the target diameter is greater than just a few projectile
diameters.
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Table 3.1: Geometry and material properties of the blunt, cylindrical projectile [Børvik et al., 2003].

Diameter Length Density Elastic Modulus Yield Stress
[mm] [mm] [kgm−3] [GPa] [MPa]

20 80 7850 204 490

Table 3.2: Mechanical properties of the metal plate [Børvik et al., 2003].

Test Thickness Density Elastic Modulus Yield Stress
[-] [mm] [kgm−3] [GPa] [MPa]

1 10 7850 290 300
2 16 7850 290 300

3.3.2 AI setup

Training Sets

Two different MLP neural networks have been trained and the results compared. One network
was trained only on experimental data and the other on data obtained using the analytical
model described in Section 3.2. Experimental data was collected from a series of publications
regarding the perforation of metal plates by blunt, steel cylindrical projectiles of the same length
[Xiao et al., 2019b, Xiao et al., 2019a, Rosenberg et al., 2016, Wei et al., 2012, Børvik et al.,
1999b, Huang et al., 2018, Zhou and Stronge, 2008, Rodriguez-Millan et al., 2018, Yunfei et al.,
2014b, Yunfei et al., 2014a, Holmen et al., 2016, Børvik et al., 2003, Awerbuch and Bodner,
1974]. The data extracted includes key experimental parameters such as the diameter, impact
velocity and residual velocity of the projectile and the thickness, modulus of elasticity, yield
stress and density of the metal target plate. Material data from 2 aluminium alloys (AA-2024
and 6082-T651) and 4 steel alloys (Weldox 460, Weldox 700, Stainless 316L and Q235) were
compiled to form a training set consisting of 232 samples. Evidently, the experimental data used
to train the model was limited by what experiments have been performed, what materials and
projectile type the researchers selected and finally what was made accessible in the literature.
As a result, the collected experimental dataset is not optimal. A perfect dataset to train the
neural network would include the residual velocities associated with a wider range of impact
parameters, across a range of plate thicknesses and for a number of different materials. This
would give a neural network the best opportunity to understand how the input parameters
affect the residual velocities of the projectiles as they perforate metal plates. It is for this
reason that a separate MLP network was trained on data generated by the analytical model.
This represents a best case scenario where the ideal dataset can be replicated and presents
an opportunity to assess the suitability of using neural networks to make predictions in this
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domain. To that end, the analytical model was used to predict the residual velocity for 100
random impact velocities between 0 and 1000 m/s, across 10 thicknesses between 2 and 20
mm in increments of 2 mm for each of the 6 material alloys. This resulted in a total of 6000
(100 x 10 x 6) samples in the training set that was used to train the MLP model on the data
from the analytical model. It should be noted that the experimental dataset collected from
publications is subject to instrumental error, which is frequently defined in the region of 10%
when measuring the velocity of the projectile [Børvik et al., 2003]. Random noise in the range
of 0 to 10% was added to impact and residual velocities in the analytical training dataset to
simulate measurement error.

Setup and training parameters

This section details the parameters and criteria defined for the training of the neural network,
which was done on both the experimental and analytical datasets. Each network has six nodes
in the input layer and one node in the output layer. The six input nodes allow each sample
containing information regarding the diameter and impact velocity of the projectile, and the
thickness, modulus of elasticity, yield stress and density of the metallic target plate to be
introduced into the network. The single output node is reserved for the residual velocity of the
projectile, as can be seen in Figure 3.3. The MLP network has one hidden layer consisting of
15 nodes and is activated by a ReLU activation function. The experimental dataset was split
such that 70% of the samples were used for training, 15% for validation and the remaining
15% to test the performance of the model. The dataset allocated for training is used to fit the
model and determine the weights between connections and biases associated with each node.
The Levenberg-Marquadt (LM) algorithm was selected to train the MLP network [Ahmadian,
2016]. The LM algorithm is a combination of a loss function and an optimiser that assigns
weights and biases to each node in order to best represent the function. The loss function,
E(y , t) depends on two parameters: the values predicted by the model y and the target values
t. However, y depends on the previous layer’s outputs and the current neuron’s weights and
activation function. Therefore it is possible to use the chain rule to differentiate E(y , t) with
respect to the current neurons’ weights,

∂E

∂wnm
=
∂E

∂om

∂om
∂im

∂im
∂wnm

(3.14)

where wnm is the weight from neuron n in the previous layer to the current neuron m. The
output of an input to m are om and im, respectively. The error is then fed back through the
network via back-propagation. Using this information, the algorithm adjusts the weights of
each node and bias with the intention of reducing the value of the error function. The goal of
neural networks is to be able to make accurate predictions on new data, which the network
has not been trained on; the validation dataset is used here to expose the trained network to
a new dataset and measure its performance. This allows for a second opportunity to modify

Perforation of Multi Layered Targets 71



3.4. OUTPUT FROM THE MLP MODEL Samuel Thompson

the network parameters defined before training (hyper-parameters), such as the initial weights,
biases and number of hidden layers, to improve its performance on new data. Without this
step, the network may be susceptible to over-fitting. This is where the error on the training
set is driven down to a very small value, but when new data is presented to the network the
error is large. This occurs when the network has become extremely tailored to the training
examples, but has not learned to generalise to new situations and input combinations. The
validation dataset is therefore useful to moderate this phenomenon. Finally, the test set is
another independent dataset used to evaluate the performance of the network.

...

ReLU Activation

Input
Layer

dp

h

E

ρ

ϕ

vi

vr

Hidden layer 1:
15 nodes

Output
Layer

Figure 3.3: Schematic diagram of the MLP network with 15 hidden nodes, highlighting the six input nodes
(projectile diameter dp, plate thickness h, elastic modulus E, density ρ, yield constant ϕ and impact velocity v0)
and single output node (residual velocity vr).

3.4 Output from the MLP model

The results in Figure 3.4 illustrate a regression plot during the training of the neural network
on the experimental dataset. They show the performance of each sample during the training,
validation and testing phases of training the network, and the distribution of residual velocities
in the dataset, where it can be seen that the majority lie in the range of [0, 400] m/s. The line
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into bins that represent the percentage difference between the model prediction and the expected
value.

Figure 3.5: Histogram density plot indicating model performance on the combined training and validation set.
The percentage difference is shown on the x axis.

Figures 3.7(a) and 3.7(b) present the results from the analytical model and the predictions
from each MLP network with the experimental results published by Børvik et al. [Børvik et al.,
2003] for the perforation of a blunt, cylindrical projectile perforating 10 and 16 mm Weldox
460 E plates. It should be noted that the data points from these experiments were excluded
from the training set used to train the models.

The predictions from the analytical model and each neural network on Figures 3.7(a)
and 3.7(b) show good agreement with the experimental data published by Børvik et al. [Børvik
et al., 2003]. The analytical model and MLP network trained on the analytical dataset MLPNa ,
shown in Figure 3.7(a), predict a vbl of 123.84 which is 25.08% lower than that found by
Børvik et al. On inspection, the MLPNa predictions match closely to that of the analytical
model, this relationship is expected as the network was trained on data produced by the model,
albeit with added noise to compensate for the 10% measurement error stated in Børvik et al.’s
experiments [Børvik et al., 2003]. The predictions made by the MLPNe , i.e. the predictions
made by the MLP network trained on the experimental dataset, predicted a projectile response
that demonstrates better matching than MLPNa with respect to both the vbl and the shape
of the ballistic curve. MLPNe predicted a vbl of 153.91 with an error of −6.91%. The results
for the 16 mm test case show similar results. MLPNa predicts a vbl of 200.49 with an error of
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Figure 3.6: Histogram density plot indicating model performance on the test set. The percentage difference is
shown on the x axis.

Table 3.3: Variance between experimental results from [Børvik et al., 2003] and the predictions from the
analytical and experimental MLP models on plate thicknesses of 10 mm and 16 mm. Model predictions for
thicknesses 10 and 16 are denoted as (10) and (16) respectively. ȳ corresponds to the mean difference between
the model predictions and the expected experimental results, and similarly ymin and ymax refer to the minimum
and maximum differences and σ the standard deviation.

MLPNa (10) MLPNe (10) MLPNa (16) MLPNe (16)

MAE 20.40 12.15 27.11 8.92

RMSE 26.26 14.17 29.94 14.2

ȳ 8.18 −20.04 −8.65 −7.85
σ 12.13 13.35 15.06 12.57

ymin −21.85 −24.86 −32.73 −37.67
ymax 23.35 −8.62 12.27 4.21

−15.37% and MLPNe predicts a vbl of 213.76 with an error of −9.37%. There is also lower
variance in the predictions by the model trained on experimental data as it exhibits lower values
for the MAE and RMSE for both the 10mm and 16mm test cases than MLPNa . Moreover,
MLPNe demonstrated that it is able to predict the vbl of steel plates more accurately than the
analytical model.

It should be noted that the results produced by the MLPNe for higher velocities, i.e. greater
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test to assess the predictions of the MLP model on multi-layered targets.

3.5 Finite element modelling

The efficiency of the ML model described in the above paragraphs, namely when predicting
residual velocities of blunt projectiles impacting layered metallic armour plates, was tested
with a set of numerical examples. FEA and the hydrocode LSDYNA was therefore also used
to replicate the 10 and 16 mm test cases from [Børvik et al., 2003] study on the ballistic
resistance of steel plates.

3.5.1 Model information

The modelled plates and projectile were discretised with reduced integration 8-node solid
elements. The density of the discretisation on the plates was set to 2 mm with a minimum
aspect ratio of 0.75. The mesh density was optimised with a convergence study, where the
element erosion criteria were also considered as this is strongly dependent on mesh density
(i.e. element size). The plates were modelled using an elastic-plastic-kinematic material model
(model MAT_003 in LS-DYNA) and the rigid projectile was modelled using an elastic material
model (model MAT_001 in LS-DYNA) with an elastic modulus 1000 times higher than steel to
minimise contact inaccuracies that arise from using a rigid material approach. Material model
MAT_001 defines an isotropic an isotropic hypoelastic material based on Hooke’s law known as
the Johnson-Cook model. Hooke’s Law is a fundamental concept in the field of material science
and solid mechanics which describes the relationship between the deformation and stress in a
material. Specifically, it states that the deformation of isotropic material is proportional to the
applied stress, provided the material remains within its elastic limit [Callister Jr. and Rethwisch,
2018]. For an isotropic material, Hooke’s Law can be expressed mathematically as:

σ = Eϵ (3.16)

where σ is the stress applied to the material, E is the elastic modulus of the material and
ϵ is the resulting strain or deformation of the material. The elastic modulus represents the
materials ability to deform elastically in response to an applied stress, without undergoing
permanent deformation. Hooke’s law applies to a wide range of isotropic materials, including
metals, polymers and ceramics [Ashby and Jones, 2019]. Material model MAT_003 defines an
isotropic, elasto-plastic material. Plastic kinematic material models are well suited to simulate
the behaviour of materials under large deformations (such as the target plate). In plastic
kinematic material models, the deformation is split into two components: elastic deformation
and plastic deformation. Elastic deformation is defined by the linear relationship between stress
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and strain while plastic deformation is defined by it’s elastic limit and a flow rule [Meyers et al.,
2006, Ashby and Jones, 2019]. The yield surface represents the boundary between elastic
and plastic deformation and is a function of the stress state of the material. The flow rule
determines how the material will deform plastically once it has exceeded the elastic limit. During
each time step in the FEA, the material deformation is calculated as the sum of the elastic and
plastic deformations. If the stress state of the material exceeds the elastic limit, then plastic
deformation occurs and the material is updated using the flow rule. The updated material state
is then used to calculate the subsequent stresses and strains in the next time step. [Liu et al.,
2017, Dieter, 1988, He et al., 2017]

3.5.2 Single layer test cases

On a first instance the FEA models were calibrated for the ballistic limit velocity using experi-
mental results obtained by Børvik et al. [Børvik et al., 2003]. Validation models were developed
for plates with the characteristics listed in Table 3.5. The FEA models consider the same test
cases as described in the previous section, where each consider a blunt cylindrical projectile
impacting a Weldox 460 E plate, however, the thicknesses vary from 10 mm to 16 mm for
Tests 1 and 2 respectively. Figure 3.8 shows a snapshot of FEA Test 2, for a ballistic limit
velocity of 240 m/s, and the corresponding projectile velocity profile. The formation of the
plug can be seen in Figure 3.8(a) and a residual velocity of approximately 18 m/s was obtained
for this model, indicating that the corresponding BLV will be slightly lower than 240 m/s.

Table 3.5: Characteristics of the tests used to validate the finite element models and corresponding ballistic limit
velocities; numerical ballistic limit velocity shown in brackets. Material properties can be found in Table 3.2.

Test Plate Material Thickness Ballistic Limit Number of
[mm] velocity (FEA) [m/s] elements

1 Weldox 460 E 10 165.6 (166) 135,000
2 Weldox 460 E 16 236.6 (240) 225,000

A number of additional numerical tests were ran to further validate the hybrid-method
here proposed, which combines analytical and experimental results to train a predictive neural
network. The models, which were defined with specifications outside the set of results used for
training the ML model, are listed in Table 3.6. All these tests were done at impact velocities
above the ballistic limit velocity and the residual velocity was used as the validation parameter.
As can be seen from these results, there is very good agreement with the experimental results
with the ML model always lower than 5.1%. Discrepancies become significant (as high as 35.2%
for Test V4) when comparing with the FEA results, however, this is believed to be related to
the method used to model adiabatic shearing and the formation of the plug. The finite element
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Figure 3.8: Snapshots of finite element analysis results for Test 2 (see Table 3.5) for a ballistic limit velocity of
240 m/s: (a) deformed plate showing the formation of the plug and (b) velocity profile for the projectile.

analyses use element deletion for this, which is known to be inaccurate and potentially deviating
from mass conservation of the system. Figure 3.9 shows a snapshot of validation Test V3, for
an impact velocity of 320 m/s and the corresponding projectile velocity profile.

Table 3.6: Specifications, results and comparison of the tests used to validate the ML algorithm. Tests V1 to
V6 correspond to impacts on the Weldox 460 E plate.

Test h v0 Experimental FEA ML FEA/ML Exp/ML
ID [mm] [m/s] vr [m/s] vr [m/s] vr [m/s] [%] [%]

V1 10 220.0 143.1 126.6 136.2 7.0 (−) 5.1 (+)
V2 10 280.0 201.7 184.1 196.6 6.4 (−) 2.6 (+)
V3 10 320.0 234.6 221.7 226.4 2.1 (−) 3.6 (+)
V4 16 260.0 83.5 108.7 79.9 35.2 (+) 4.5 (+)
V5 16 280.0 111.9 143.3 108.7 31.8 (+) 2.9 (+)
V6 16 320.0 153.3 189.4 157.6 20.2 (+) 2.7 (−)

3.5.3 Multi-layered targets

To further validate the AI method, finite element analyses were run on a multi-layer target. Once
configured, each FEA simulation took 30 minutes to complete. In this test, the multi-layer
configuration consists of a 6 mm 45 Steel Plate and a 6 mm Q235 Steel Plate where the
impactor makes first contact with the plate made from 45 Steel. The impactor is a blunt,
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Figure 3.9: Snapshots of finite element analysis results for validation Tests V3 (see Table 3.6) for an impact
velocity of 320 m/s: (a) deformed plate showing the initial stages of the formation of the plug and von Mises
stresses, and (b) velocity profile for the projectile.

cylindrical projectile with a diameter of 12.67 mm. The material properties of the projectile
and the plates are listed in Table 3.7.

Table 3.7: Material properties of the projectile and each of the 6mm Steel plates. In the arrangement the 45
Steel plate is struck by the projectile first.

Material Properties Projectile 45 Steel Plate Q235 Steel Plate

Young’s modulus [GPa] 204.0 190.0 190.0
Density [kg/m3] 7850.0 7850.0 7850.0
Poisson’s ratio [-] 0.3 0.3 0.3
Yield Stress [MPa] – 552.0 500.0
Tangent modulus [MPa] – 450.0 450.0

The FE model was used to determine the projectile’s residual velocity across a range of
impact velocities between 0 and 700 m/s, the results of which are presented in Table 3.8. It can
be seen that for vi < 200 no perforation occurs. This means that the projectile did not possess
the kinetic energy required to perforate the back of the second plate. For 190 < vi < 215,
partial perforation is observed. This means that the projectile perforated the back of the second
plate but became stuck as the kinetic energy it possessed was not enough to overcome the
friction between the projectile and the plate. For vi > 210, complete perforation is observed
and the projectile completely passes through the multi-layer target.
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The analytical model and MLPNe were also used to predict the response of the same multi-
layer configuration. The results of which are presented in Figure 3.10. It can be seen that the
results from both the analytical model and MLPNe match closely with that of the FE model.
The vbl for the MLPNe and the analytical model is 226.2 and 220.3 m/s respectively, both of
which are within 10% of that predicted by the FEA model.

Table 3.8: Residual velocity vr of a blunt cylindrical projectile impacting the multi-layer target as predicted by
the FEA, .

v0 FEA MLPNe Analytical Model
[m/s] [m/s] [m/s] [m/s]

100 0.0 0 0
150 0.0 0 0
180 0.0 0 0
190 0.0 0 0
200 0.0 0 0
210 0.0 0 0
215 5.2 0 0
218 29.1 0 0
220 48.1 0 0
230 80.6 12.56 49,.44
245 81.7 57.74 80.93
250 125.0 70.12 87.68
280 170.0 127.89 130.9
300 192.0 157.14 154.33
500 404.2 364.94 340.59
600 502.1 458.99 423.53

3.6 Concluding remarks

This chapter presents a new approach that looks to predict residual velocities from impacts
on monolithic and multi-layered metallic ductile targets. The proposed method utilised a
combination of experimental, analytical and numerical methods, and a set of MLP models. The
aim of which was to test for any equivalence between the results from numerical and machine
learning models. If an equivalence can be observed, then ML could be a viable alternative
to numerical models given the vast reduction in computational time and domain knowledge
required to obtain results. The experimental and analytical results were used to train two
separate MLP neural networks, while the FE analyses were used primarily to validate results.
Excellent agreement was obtained in most cases of impact on monolithic targets, with error
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Figure 3.11: Impact on a multi-layered target: (a) detail of the interaction between the projectile and target for
Test V8 (rigid projectile) showing the formation of the double plug, and (b) the corresponding projectile velocity
profile.

in the data and learn to determine the relationship between how the input parameters (material
properties of target and projectile and the loading case) influence the output parameter (residual
velocity). Comprehensive training sets such as this however, are difficult to find in the literature
due to the large costs associated with experimental testing. The next chapter aims to address
this problem, and presents a novel approach to supplement sparse ballistic datasets by utilising
a different form of ML model known as the GAN that was detailed in Section 2.8.
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Chapter 4

Ballistic response of armour plates
using GANs

Chapter from published Journal Article: S. Thompson, F. Teixeira-Dias, M. Paulino, A.
Hamilton Ballistic response of armour plates using Generative Adversarial Networks, Defence
Technology, 2021 [Thompson et al., 2021]

This chapter expands upon the work from the previous chapter but instead considers the
problem of sparse, ballistic datasets. It proposes a unique solution by supplementing the sparse
datasets by using a recent class of machine learning system known as the Generative Adversarial
Network (GAN). GANs are regularly used to generate additional examples for image datasets
[Goodfellow et al., 2014, Radford et al., 2016, Karras et al., 2018a] and traditionally they require
large, comprehensive training sets to yield favourable results. In the case of image generation,
it can take 50, 000 to 100, 000 training images to train a high-quality GAN [Karras et al.,
2018b, Brock et al., 2019]. In this study however, it is demonstrated that for regression tasks
it is possible to train a GAN on a much smaller training set and generate additional samples
representative of the data present in the training set. To that end, this study investigates the
possibility of training a GAN directly on sparse, ballistic datasets. The intention being that
the trained GAN can then be used to generate new ballistic samples as opposed to performing
additional destructive experiments. In this chapter a GAN network architecture is proposed,
and tested and trained on three separate ballistic data sets. The trained networks were able
to successfully produce ballistic curves with an overall RMSE of between 10 and 20% and
predicted the vbl in each case with an error of less than 5%. The results demonstrate that it
is possible to train generative networks on a limited number of ballistic samples and use the
trained network to generate new samples representative of the data that it was trained on.
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This study spotlights the benefits that generative networks can bring to ballistic applications
and provides an alternative to expensive testing during the early stages of the design process.

4.1 Generative Adversarial Networks

For a machine learning application, a perfect ballistic training set would include observations
from experiments performed across a range of impact velocities with different materials and
different armour system configurations (e.g. different plate thicknesses). However, due to the
destructive nature of these tests, there is a high cost associated with ballistic experiments.
This chapter proposes a solution to this problem using a different neural network, a GAN, that
has been specifically developed to supplement ballistic data sets. A GAN is a recent class of
machine learning system that has the ability to generate entirely new data and make predictions
through unsupervised learning [Salimans et al., 2016]. Given a training set, this technique learns
to generate entirely new data with the same statistical representation as the training set. This
allows additional ballistic samples to be generated using the model as opposed to performing
additional destructive tests.

Latent variables, Z
(10)

Real samples, X
(n, 2)

Z

X

Generator
(MLP)

G(Z)

Discriminator
(MLP)

Loss
Function

Optimise

Optimise

D(X)

D(G(Z))

Figure 4.1: Schematic diagram of a Generative Adversarial Network (GAN).

The base architecture of a GAN is composed of two neural networks: a discriminator and a
generator, as shown in Figure 4.1. The discriminator D is set up to maximise the probability of
assigning the correct labels to real and fake samples. Meanwhile, the generator G is trained to
fool the discriminator with synthesised data [Chen et al., 2020]. In other words, D and G play
the following two-player minimax game with value function V (G,D) [Goodfellow et al., 2014].

min
G
max
D
V (D,G) = EX logD(X) + EZ log[1−D(G(Z))] (4.1)

where X is the input to D from the training set, Z is a vector of latent values input to G, EX
is the expected value over all real data instances, D(X) is the discriminator’s estimate of the
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probability that real data instance X is real, EZ is the expected value over all random inputs
to the generator and D(G(Z)) is the discriminator’s estimate of the probability that a fake
instance is real. The primary goal of G is to fool D and produce samples that D believes come
from the training set. The primary goal of D is to assign a label of 0 to generated samples,
indicating a fake, and a label of 1 to true samples, that is, samples that came from the training
set. The training procedure for G is to maximise the probability of D making a mistake, i.e. an
incorrect classification. In the space of arbitrary functions G and D, a unique solution exists,
with G able to reproduce data with the same distribution as the training set and the output from
D ≈ 0.5 for all samples, ultimately indicating that the discriminator can no longer differentiate
between the training data and data generated by G.

4.1.1 Training sets

Ballistic testing is a standards-based process where materials are tested to determined whether
they meet protection, safety and performance criteria. In this study, ballistic experiments
refer to the V50 ballistic test, where projectiles are fired at higher velocities to determine a key
design parameter known as the ballistic limit velocity vbl. In this scope, the vbl is the minimum
projectile velocity that ensures perforation [Børvik et al., 1999a, Zhang and Stronge, 1996].
This velocity is a property of the threat-armour system and is determined by a number of
parameters, such as the projectile and target material properties, projectile mass and target
configuration (e.g. thickness). This study aims to reduce the costs associated with ballistic
experiments by minimising the number of experiments performed and supplementing the data
set by using the GAN model instead. It discusses and compares the results from three separate
GAN models trained on three separate training sets. An appropriate training set is required
such that the discriminator can learn the distribution of the data. In this case, the generative
networks are trained to generate new samples of ballistic data. It is therefore important to
prepare an appropriate data set that can be used for this purpose.

In order to test the capabilities of this method, the samples generated by the GAN are
compared with the equivalent values produced by the Lambert and Jonas relation, as detailed
in Section 1.5. This was selected for two reasons: (i) the Lambert and Jonas equation can
be used to generate the training sets for each test case to effectively test proof of concept,
and (ii) it provides a useful metric through which to directly compare the results of the GAN
predictions. Three different test cases were considered, leading to three different training sets
to test the performance of the proposed GAN architecture. Each training set is a (n × 2)
array where n is the number of samples in the training set, the first column corresponds to the
impact velocity vi and the second column to the residual velocity vr. The first test case, Case
1, represents a best case scenario and consists of 100 logarithmically spaced data points to
maximise the number of points around vbl. These points represent vi with the corresponding vr
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transformation. For each test case, the trained GAN model generates 100 samples and the
curve is fitted in accordance with the Lambert and Jonas model with respect to parameters a,
p and vbl to obtain a new set of Lambert parameters specific to the GAN-generated data and
curve. Due to the stochastic nature of generative models, this is performed 100 times for each
test case and the average values for each parameter are recorded and compared.

4.1.2 Model architecture

MLP networks were used to create the G and D networks as they are well equipped to deal with
regression tasks and the adversarial modelling framework is straight forward to apply when both
models are MLPs [Goodfellow et al., 2014]. The discriminator D takes an instance from either
the generator or training set as input, and outputs a classification prediction as to whether the
sample is real or fake — it is a binary classification problem. The discriminator network is an
MLP network with 5 fully connected hidden layers, with 25, 15, 15, 5 and 1 nodes in each layer.
The model minimises the following binary cross entropy loss function:

LCE(Y, ŷ) = −
1

n

n∑
i=0

[Yi log(ŷi) + (1− Yi) log (1− ŷi)] (4.2)

where ŷ is the predicted value, Y is the true value and LCE is the binary cross-entropy loss. The
Adam version [Kingma and Ba, 2014] of the stochastic gradient descent method was selected
to update model parameters during training and a LReLU activation function was selected to
moderate the output from each of the hidden layers in the Discriminator model [Xu et al., 2015].
Details regarding the Adam algorithm are presented in Section 2.4.1. The LReLU moderates
the output by allowing positive inputs to pass through unchanged such that f (x) = x for x > 0
and for negative inputs LReLU allows a shallow non-zero negative gradient. This is contrary
to the typical ReLU activation function where for negative input values the output is zero
such that f (x) = max{0, x} [Maas et al., 2013]. Finally, the output layer of the discriminator
model passes through a Sigmoid activation function to moderate the output values in the range
[0, 1] [Han and Moraga, 1995].

The generator model G takes an input Z from the latent space and generates a new sample.
A latent variable is a hidden or unobserved variable, and the latent space is a multi-dimensional
vector space of these variables. The latent input is a random vector that serves as the input to
G. This vector’s dimensionality is a hyperparameter of the model. G takes this latent input
vector and uses it to generate a synthetic data point, with the goal of making it indistinguishable
from data from the training set. In contrast, the network weights are learned parameters that
are part of the generator and discriminator network themselves. These weights are updated
during training to improve the performance. While the latent input vector and network weights
are both important components of the model, they serve difference purposes. The latent input
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vector is used to generate diverse synthetic data by introducing randomness into the network,
while network weights are optimised to minimise the difference between the synthetic and real
data distributions. Model G uses 10 latent variables as input to the model that exists as a 10
element vector of Gaussian random numbers. The majority of GANs published in the literature
focus on using GANs for image generation and analysis. The intentions of the model proposed
in this study differ from the literature in the sense that the training sets used to train the models
are smaller and contain fewer data, and secondly the desired output is less complex (training
sets considered consist of 100, 50 and 10 samples with two features as opposed to commonly
used MNIST [Lecun et al., 1998] and CIFAR10 [Krizhevsky and Hinton, 2009] image datasets
that contain 60, 000 and 10, 000 image samples respectively with 28/32 features depending on
the size of the image). As a result, the authors considered a smaller range of latent input sizes
between 2 and 30 and found that a latent input of 10 resulted in a stable model that was able
to capture the key features of ballistic curves consistently for different datasets. G has two
fully connected hidden layers with 11 hidden nodes and is activated with a Rectified Linear Unit
(ReLU) activation function, as detailed in Section 2.3.3. The weights associated with each
node are initialised with uniform scaling between 1 and 10. The output layer has two nodes
for the two desired elements vi and vr, and a linear activation function is used to output real
values. The network architectures for both models are listed in Table 4.2.

Table 4.2: Architecture of the G and D networks: n is the number of entries in the respective training set. FC
refers to a fully connected layer, FC 25 to a fully connected layer with 25 nodes, and LReLU to a Leaky ReLU
activation function.

Discriminator Generator

Input: (n, 2) Input: Latent Dim 10
FC 25, LReLU FC 11, ReLU
FC 15, LReLU FC 11, ReLU
FC 15, LReLU FC 2, Linear
FC 5, LReLU
FC 1, Sigmoid

Output: D(X) or D(G(Z)) Outputs: vi, vr

4.1.3 Training algorithm

The machine learning algorithm was written in Python3, using TensorFlow’s high-level Keras
API for building and training deep learning models. The training process takes place over 1
million iterations and a single iteration is completed once the machine learning algorithm has
completed an entire pass through the training data set (one epoch). Within each iteration,
the trainable parameters of both the D and G networks are updated alternatively; first the D
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network is trained and then the G network. D is simply a classifier that learns to distinguish
real data (label = 1) from fake data generated by G (label = 0). During training D therefore
aims to output a value of 1 when evaluating real samples and a value of 0 when evaluating
fake samples and updates its trainable parameters accordingly via the binary cross entropy loss
function and adam optimiser. D can therefore be trained alone and is trained on both data
from the training set and also from fake data generated by G. The D network is therefore
trained on two epochs of data per iteration and, if left uncorrected, would train at a faster
rate than G, thus giving D an advantage and therefore affecting the competitive nature of the
adversarial process. In order to correct this, the entire sample fed to D is split in half to form a
batch. This is done randomly at each iteration to ensure that the total data that D is trained
on per iteration is the same as that of G. The G network is trained entirely on the performance
of D and its trainable parameters are optimised in accordance with its output D(G(Z)).

A single iteration of training is complete once the trainable parameters of both the D and G
networks have been updated, twice for D (on real and fake samples) and once for G. First, real
samples from the training set X are prepared and passed into D to obtain D(X). A target label
of 1 is concatenated with the training data to identify them as real samples. The output D(X),
that is its prediction as to whether the sample is real or fake, then passes into the loss function
and the trainable parameters of D are optimised with the intention of returning a value closer
to the target label of 1 for the next real sample it receives. Similarly, D is also trained on fake
data from G in the form of G(Z) and is concatenated with a target label of 0 to identify them
as fake samples. D(G(Z)) then passes through the loss function and the trainable parameters
of the D network are updated with the intention of D(G(Z)) returning a value closer to the
target label 0 for future fake samples. The goal of G however, is to generate samples that
D believes to have come from the original training set X, therefore the output D(G(Z)) is
used to train the G network. This defines the zero-sum adversarial relationship between the
two models. As the training of G depends on D, the network cannot be trained in isolation. A
combined model is therefore required to form the GAN. The GAN is a sequential model that
stacks both the G and D networks such that G receives the latent Gaussian vector Z as input
and can directly feed its output into D. To that end, G(Z) is concatenated with a target label
of 1 (indicating a real sample) and the output D(G(Z)) passes through the loss function and
the trainable parameters of G are updated with the intention of D(G(Z)) returning a value
closer to the target label of 1. It should be noted that the binary cross entropy loss function
and adam optimiser are also used to train the combined GAN model and that whilst G is being
trained, the nodes within each layer of the D network are frozen and cannot be updated; this
prevents D from being over-trained on fake examples. The complete training algorithm of the
GAN is shown in Table 4.3.
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Table 4.3: Training algorithm for the Generative Adversarial Network.

Input: Training Set X, latent input Z ∼ PZ, epochs T , learning rate ϵ, batch size m
Output: Generated samples G(Z)

start
Define: D and G MLP networks
Define: Combined sequential model GAN with D and G
Initialise: Trainable parameters θ of D and G
Freeze: Trainable parameters of D in combined GAN model

for t = 1 : T do
Collect samples {Xi}mi=1 from training set X, label = 1
Generate samples {G(Z)}mi=1 from latent Gaussian distribution PZ, label = 0
Train D on real samples {X}mi=1 and update D, label = 1
Train D on fake samples {G(Z)}mi=1 and update D, label = 0
Invert class labels of {G(Z)}mi=1 from 0 to 1
Train combined GAN model on {G(Z)}mi=1 with inverted labels and update G

end for
end

4.1.4 Model evaluation

This section details the process adopted to evaluate the success of the proposed models. A
total of three separate GAN networks have been trained and named in reference to the training
set that they were trained on (e.g. GAN1 refers to the generative network trained on the
first training set etc.) In this study, the expected values are known as the model is aiming to
recreate results representative of the Lambert model. Each model was trained for a total of 1
million iterations and the performance of the GAN was evaluated at every 1, 000 iterations as
the model in its current form was used to generate 100 samples. The RMSE was calculated by
taking each vr predicted by the GAN model and computing the difference with the expected
value from the Lambert model for the respective vi. The non-linear least squares method was
used at each evaluation point to fit the Lambert equation to the generated data such that
Lambert parameters specific to the generated model at that point during training could be
obtained. The percentage difference of these parameters with the expected parameters, listed
in Table 4.1, was computed and plotted to show how the accuracy of the samples generated
by the GAN changes throughout training. This results in four parameters, a%, p%, vbl% and
the RMSE, that are being monitored during training to evaluate the performance of the model.
It should be noted that for the model’s intended application this would not be the case and
instead the generative network would simply be presented with experimental samples that would
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form the training set. It would have no true reference and as such it can be difficult to know
the optimal point in time to terminate the training.

GANs can prove difficult to train and a lot of research is ongoing to improve the convergence
of generative networks [Kodali et al., 2017, Nowozin et al., 2016, Theis et al., 2015]. Often
the most meaningful way to interpret the success of the GAN is with visual interpretation. It
would therefore be recommended to regularly use the GAN during training to generate ballistic
samples as an additional qualitative measure to evaluate the training process. That being
said, for this application 1 million iterations afforded the learning algorithm enough opportunity
to consistently optimise the parameters of the network on different training sets, without an
unreasonable compromise in computational cost. Once the generative network is trained, it is
important to study the quality of the output to determine the success of the model. However,
due to the stochastic nature of the GAN and the latent Gaussian input to the network, the
output varies. A statistical analysis for each of the generative networks to gain further insight
into its output. For each of the GAN networks, the 1, 000, 000th iteration of the model was
used to generate 100 samples of data and parameters a%, p%, vbl% and the RMSE were once
again calculated. This was done 1, 000 times and each of the four parameters were stored at
each iteration in a (4× 1, 000) array, the results of which are discussed in the next section.

4.2 Results from GAN model

A total of three separate GAN networks have been trained on three separate training sets.
The variation of parameters a%, p%, vbl% and the RMSE are plotted against training time in
iterations alongside a 100 sample output of the final model in Figure 4.3. This is done for
each of the three networks, with Figures 4.3(a) and (b) referring to GAN1, Figures 4.3(c)
and (d) to GAN2 and finally Figures 4.3(e) and (f) to GAN3. On inspection, it can be seen
that the samples generated by each of the GAN networks match the shape of the Lambert
curve. In the case of GAN1, which was trained on the first training set, Figure 4.3(a), there
is noticeable improvement in the accuracy of the network as training progresses. Both the
RMSE and the respective Lambert parameter errors determined via the fitting model decrease
with training. This is a clear indication that the model has learned from the training set and
is now able to generate new samples that are representative of that initial data set. This
observation is enforced when looking at the samples generated by GAN1 in Figure 4.3(b). The
generated samples appear to come from the same distribution as the training set and display
close matching both before and after the ballistic limit.

The training set used to train GAN1 was the most structured and comprehensive of the
three training sets and thus provide optimal conditions for the learning algorithm to optimise its
respective trainable parameters. Figures 4.3(c) and (d) show the equivalent results for GAN2.
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Once again it can be seen that over time the errors of each of the Lambert parameters decrease
with number of iterations as the model learns and the output of GAN2 begins to stabilise.
Earlier in the training process large error spikes are visible where the output from the model is
highly inaccurate. These correspond to points where optimisation was unsuccessful, the loss
function would therefore return larger values and the trainable parameters of the network would
then be updated more rigorously in order to reduce the loss and improve accuracy. The final
iteration of GAN2 was used to generate the 100 samples shown in Figure 4.3(d). The generated
samples are also consistent with those of the Lambert model and representative of the training
set that it was trained on. Samples generated by GAN2 demonstrate good matching with the
Lambert model past the ballistic limit velocity. However, unlike GAN1, GAN2 does not generate
samples below the ballistic limit. The training set used to train the GAN1 model represents
an optimal training set and consists of 100 samples logarithmically spaced around the ballistic
limit velocity. This provides the GAN model with training data from the entire impact range
of [0, 600] m/s and subsequently the best opportunity to learn the behaviour of the correct
ballistic response. The training set used to train GAN2 however, consists of 50 samples with x
values randomly selected between the impact range of [0, 600] m/s and the corresponding y
values calculated via the Lambert equation. In comparison to the first training set, this data is
unstructured and no priority has been made to organise the data around the ballistic limit. Of
the 50 samples in the training set, only 7 exist below the ballistic limit. During training, it is
likely that GAN2 was optimised such that it converged to a local minima where a solution was
found where D believes that samples generated by G belong to the training set, but without
including the additional feature that represents the horizontal line at vr = 0 for vi < vbl. It
could also be that 7 samples beneath the ballistic limit is insufficient to correctly learn that
feature of the ballistic curve, however more targeted research would have to be conducted to
affirm that conclusion. For the ballistic application however, this is not an issue as residual
velocities beneath the ballistic limit velocity are, by definition, equal to zero.

The results of GAN3 are shown in Figures 4.3(e) and (f). GAN3 was trained on the training
set that was the least comprehensive and most representative of data collected via experiments.
This training set contains much fewer samples and, unlike training sets 1 and 2, was tainted
with additional noise of up to 10%, to mimic experimental measurement errors. Figure 4.3(e)
shows the variation of parameter accuracy during training. This model did not converge as
successfully as with GAN1 and GAN2, and appears to be less stable demonstrating more spikes
in error throughout training. Figure 4.3(f) shows the 100 samples from the final iteration of
GAN3 and it can be seen that once again the samples follow the shape of the ballistic curve.
The samples generated by GAN3 have a larger spread than those generated by GAN1 and
GAN2, but this is consistent with the tainted training set that it was trained on. GAN3 does
not demonstrate samples for impact velocities vi between the range [0, vbl], however this is
expected as samples within that range are not present in the training set. A comparison of the
coefficients generated by the final iteration of each GAN network can be found in Table 4.4.
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Table 4.4: Comparison of fitted models with the Lambert coefficients. Values shown are average values taken
from 1000 runs where the parameters are determined from the 1,000,000th iteration model generating 100
samples of ballistic data.

Coefficients Lambert GAN1 GAN2 GAN3

a 1.0 1.01 (+0.1%) 1.00 (+0.00%) 1.00 (+0.00%)

p 3.0 2.44 (−20.58%) 3.11 (+3.60%) 4.89 (+47.90%)

vbl [m/s] 100.0 96.82 (−3.23%) 99.27 (−0.73%) 104.95 (+4.83%)

RMSE – 10.48% 11.99% 22.44%

Omitted samples – 2.31 11.70 27.46

The results in Table 4.4 compare the average Lambert coefficients determined by curve
fitting the samples generated by each of the GAN networks 1, 000 times with the baseline
Lambert parameters listed in Table 4.1. The results show that all of the GAN networks
performed well with respect to parameter a with the percentage error in each case < 0.1%.
GAN2 was the most successful in regards to p with an average error of 3.6%, outperforming
GAN1 and GAN3 which had errors of −20.58% and 47.90%, respectively. This remains true for
the vbl case as GAN2 also produced the lowest average errors of −0.73%, GAN1 predicted the
vbl with an error of 3.23% and finally GAN3 with an error of 4.83%. This metric is particularly
useful as the vbl is an important parameter when determining the ballistic response of materials
and for all GAN networks the predictive error was < 5%. Figure 4.4 shows the influence that
parameters a, p and vbl have on the ballistic curve. The values of the parameters used in the
Lambert equation are listed in Table 4.1 and Figures 4.4(a), (b) and (c) demonstrates the
effect of changing parameters a, p and vbl, respectively.
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Figure 4.4: The effect that modifying the Lambert parameters has on the shape of its ballistic curve. Default
Lambert parameters used are a = 1, p = 3 and vbl = 100 m/s, plot (a) shows the effect of changing parameter
a, plot (b) shows the effect of varying parameter p and (c) the variation of vbl.
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Figure 4.4 (a) demonstrates that decreasing a raises the profile of the curve and increasing
it does the opposite. a = 1 ensures that the ballistic curve asymptotically approaches the
line y = x (slope 1) which is consistent with energy conservation. Parameter p controls the
gradient of the curve at impact velocities > vbl; it can be seen that increasing p results in
a curve that takes longer to approach the line y = x from vbl as a point of reference faster
whereas decreasing it does the opposite. As expected, it can be seen in Figure 4.4 (c) that
altering vbl shifts the position of the ballistic limit velocity on the x-axis. This plot is important
as the large errors found in Table 4.4 for parameter p can be misleading, as despite a large
percentage difference to the actual Lambert parameter, the shape of the ballistic curve does
not differ as much as might be expected. A better metric to consider the overall accuracy of
the results is the RMSE, where GAN1 was the most accurate with an overall error of 10.48%
and GAN3 was the least successful with an overall RMSE of 22.44%. The notable increase
in error between GANs 1 and 2 with GAN3 is expected since GAN3 was trained on a reduced
training set that had been tainted with additional noise. Omitted samples on Figures 4.3 (b),
(d) and (f) are plotted on the ballistic curve for completeness. These generated samples are
unrealistic and were omitted for meeting one of two elimination criteria: the first refers to
generated samples with a negative residual velocity, which would indicate that the projectile did
not possess the kinetic energy necessary to perforate the target plate and as such rebounded.
Ballistic experiments published in the literature typically do not record the velocity of the
rebounded projectile and label such occurrences with vr = 0 [Børvik et al., 2003, Mohammad
et al., 2020, Ali et al., 2017]. Therefore the first elimination criteria is to remove samples
where vr < 0. The second elimination criteria refers to cases where vr > vi, which is a violation
of conservation of energy. It is physically impossible for a projectile to perforate a plate and
gain kinetic energy. Instead, kinetic energy from the projectile would be lost and transformed
into heat energy and strain energy within the plate to facilitate its deformation — vr can never
exceed vi and as such samples that meet that criteria are also eliminated. It should also be
noted that the omitted values were still used when calculating the results shown in Table 4.4.

Due to the stochastic nature of the GAN output, it is important to analyse the output
statistically to gain further insight into the results. The parameters a, p and vbl are determined
by curve fitting the 100 generated samples to the Lambert model to obtain parameters specific
to the GAN. This was done 1,000 times and the values for each GAN were stored to create four
matrices of dimension (1000×4) that corresponds to the output, note this was also done for the
RMSE. A Kernel Density Estimation (KDE) plot was used to estimate the probability density
function of each parameter and the results are shown in Figure 4.5. Statistical parameters
from each of the GAN networks are shown in Table 4.5. Figure 4.5(a) displays the predicted
values of parameter a by each of the GAN networks. It can be seen that each of the models
performed well as the densities for each GAN are high and the peaks of the KDE curve are close
to the expected Lambert value a = 1. From the plot it is clear that the output from GAN3
has a wider distribution than that of GAN1 and GAN2. From Figure 4.5(b) it is clear that the
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output from GAN2 is most consistent with the expected values as the peak of the KDE plot
lies closely to the Lambert prediction. The overall distribution from GAN1 is narrower than
GAN2. However, it consistently under predicts p. The output of GAN3 with regard to this
metric follows a much larger distribution with no clear peak. The average value of p shown in
Table 4.4 was 4.89 yet in some cases the fitted p value was much higher with some notable
outliers. Figure 4.5(c) shows the results for parameter vbl and each of the models performed
well on this metric with the peaks of each KDE plot lying close to that of the true value of 100
with the traditional bell-shaped curve. Once again the distribution from GAN3 is much broader
and GAN2’s output appears non-normal demonstrating a bi-modal distribution the main peak
before the vbl and the secondary peak after. Finally Figure 4.5(d) shows the calculated values
for the RMSE where it can be seen that GAN1 was the most successful model with a narrow
distribution and the tallest peak. GAN2 has a slightly shallower peak at a higher RMSE and a
wider distribution. Finally GAN3 was the worst performing network with the shallowest peak
and a wider distribution than the other models.

Table 4.5: Standard deviation (σ), minimum (ymin) and maximum (ymax) values associated with parameters a, p,
vbl and RMSE for generative networks GAN1, GAN2 and GAN3. Values are fitted from 100 samples generated
by each GAN network 1,000 times and values are taken from stored array.

a p vbl RMSE, %

G
A

N
1

σ 0.00 0.17 2.13 1.21
ymin 1.00 1.68 81.72 6.07
ymax 1.03 2.99 101.48 15.13
ȳ 1.01 2.44 96.82 10.48

G
A

N
2

σ 0.00 0.38 2.94 1.46
ymin 0.99 2.51 95.45 7.75
ymax 1.01 5.83 114.57 18.04
ȳ 1.00 3.114 99.27 11.99

G
A

N
3

σ 0.01 11.03 11.89 3.16
ymin 0.96 1.93 94.68 13.78
ymax 1.05 110.82 180.00 33.99
ȳ 1.00 4.89 104.95 22.44

4.3 Concluding remarks

In this chapter, a novel approach was proposed to generate realistic ballistic samples by training
GANs on ballistic data directly. Three separate GAN networks each trained on a unique dataset
created using the Lambert and Jonas ballistic model, as detailed in Section 1.5. In total, there
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The GAN architecture and training parameters proposed resulted in a stable training process
for each of the ballistic test cases considered. The output from each of the GAN models
improved with training and did not suffer from common issues such as non-convergence and
mode collapse and thus additional stability precautions were not applied.
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Chapter 5

Predictions on multi-class ballistic
datasets using cGANs

Chapter from published Journal Article: S. Thompson, F. Teixeira-Dias, M. Paulino, A.
Hamilton Predictions on multi-class ballistic datasets using conditional Generative Adversarial
Networks, Defence Technology, 2022 [Thompson et al., 2022]

This chapter builds upon the GAN study detailed previously, but instead implements a variant
known as the conditional-GAN (cGAN). The cGAN addresses a limitation of conventional GAN
networks where there is limited control over the output. A cGAN network can be conditioned
on additional information during training such as class labels in order to govern its output. In
the space of material characterisation campaigns, experiments are performed to determine the
ballistic response of a specific material plate across a range of thicknesses. Such experimental
campaigns are a rich topic of research in the literature and include work by [Børvik et al.,
2003, Børvik et al., 2005, Kristoffersen et al., 2020a, Yunfei et al., 2014b]. This presents an
interesting opportunity to investigate whether machine learning, specifically cGAN networks, can
be used as an alternative method to predict the ballistic response of plates across multiple classes.
In this instance, a class could correspond to a different plate thickness. This chapter investigates
whether it is possible to train a cGAN network on a multi-class ballistic dataset, where each class
corresponds to a different ballistic curve (analagous to that of different thickness experiments in
an armour plate characterisation campaign), and determine whether the trained cGAN network
can generate new class-specific ballistic samples. Unlike the conventional GAN, the trained
cGAN model can also be used to make predictions for classes that do not appear within the
training set. This is an important distinction as it dramatically improves the number of useful
application cases within the field of ballistic research. For example, a trained cGAN network
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might be trained on a ballistic dataset with class labels 1− 5 where a class label of 1 refers to
ballistic samples associated with a thickness of 10 mm, class label of 2 refers to a thickness of
20 mm, etc. To that end, non-integer class labels could be passed through the cGAN network
to predict the ballistic response for thicknesses (intermediate classes) that are not present in
the dataset, without the cost of performing more experiments.

In this study, a single MLP cGAN architecture is trained on a multi-class ballistic training
set consisting of 10 classes labelled 0 − 9 where each class refers to a ballistic curve with a
different ballistic limit velocity, vbl. A total of 5 models were trained on training sets consisting
of 5, 10, 15, 20 and 25 ballistic samples within each class. For integer class labels 0− 9, all
cGAN models successfully predicted the vbl with an error of less than 4.12%. It was also found
that for non-integer class labels between 0 − 9 the vbl predictions were similar despite not
explicitly appearing in the training set. Moreover, each of the cGAN models was challenged to
generate new samples for class labels that exist beyond the scope of the training set for class
labels between 9− 20. It was found that four of the models were able to predict the vbl with an
error of less than 1.5% in all cases. This study showcases the capability of the cGAN model to
learn directly from a multi-class ballistic dataset and generate additional samples representative
of that data for classes that did not appear explicitly in the training set.

5.1 Methodology

The objective of this study is to develop a new cGAN architecture capable of generating
new predictions representative of those originated by ballistic impact experiments. The main
outcomes from this study are:

1. To propose and demonstrate that a trained cGAN can be used to supplement existing
ballistic datasets.

2. To use the cGAN model to make predictions on key engineering properties such as the
ballistic limit velocity vbl

3. To make predictions for intermediate classes that have not explicitly been performed and
do not exist in the training data.

A cGAN is developed and trained on a multi-class dataset. The goal of the cGAN is to
generate new ballistic data across a range of classes where each class could refer to an important
material parameter such as the target plate’s thickness. [Thompson et al., 2021] demonstrated
how a GAN model can be used to supplement ballistic datasets and make predictions of key
experimental parameters such as the ballistic limit velocity. A drawback with standard generative
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networks is that the output of the generator is limited to data representative of the training
set that it was trained on. It would, however, be more beneficial to generate ballistic data for
experiments that have not yet been performed. Conditional-GANs provide an opportunity to
make inter-class predictions and generate new ballistic samples that it has not explicitly been
trained on.

5.1.1 Conditional Generative Adversarial Networks

The standard GAN model can capture the probability distribution of random variables from
real data. They can easily learn the joint probability distribution of high-dimensional data and
generate brand new samples representative of the dataset that it was trained on [Li et al., 2020].
However, a common limitation with the conventional GAN is that there is little control over the
new samples that are generated, which can belong to any part of the data distribution that it
was trained on rather than a specific part of the distribution that the user may wish to target.
A cGAN provides an option to remedy this issue. The cGAN is similar to the conventional GAN
but introduces additional information to the training process such as class labels or even data
from other modalities, to allow more direct control over the generating procedure of the GAN
[Mirza and Osindero, 2014]. Thus, samples can be generated by a cGAN by challenging it to
generate samples specific to what it has learned regarding that particular class label.

A GAN can be extended to a cGAN if both G and D are conditioned by extra information λ.
This could be any kind of auxiliary information, such as class labels or data from other modalities
[Mirza and Osindero, 2014]. In this study λ exists as vector of numeric class labels, but the
label is powerful as it allows the algorithm to make a connection between certain distributions
of data and that particular class label, the intention being that once the cGAN is trained, G can
be called to generate new samples of data representative of the distribution mapped to that
particular class label during training by simply passing a latent input and class label as input. A
schematic diagram of the cGAN is shown in Figure 5.1. It is possible to modify the objective
function of the GAN, as detailed in Section 2.8 and shown in Equation 2.28), to include the
additional class labels λ. The objective function for the cGAN can therefore be expressed as

min
G
max

D
V (D,G) = EX∼ρdata(X)[logD(X |λ)] + EZ∼ρZ(Z)[log(1−D(G(Z |λ)))] (5.1)

Training sets

The Lambert and Jonas relation, as detailed in Section 1.5, was used to prepare the training
sets in this study. This was selected for two reasons: (i) the relation can be used to create
the ballistic curves for each class to form the training sets to effectively test proof-of-concept,

Predictions on multi-class ballistic datasets using cGANs 102



5.1. METHODOLOGY Samuel Thompson

Latent variables, Z

Class label, λ

Real samples, X

Class label, λ

Z|λ

X|λ

Generator
(MLP)

G(Z|λ)

Discriminator
(MLP)

Loss
Function

Optimise

Optimise

D(X|λ)
D(G(Z|λ))

Figure 5.1: Schematic diagram of a Conditional Generative Adversarial Network (cGAN).

and (ii) it provides a useful metric through which to directly compare the output of the cGAN
as the corresponding “true” values can be obtained analytically. For all data attained by the
Lambert equation in this study, a and p are assigned constant values of 1 and 3 respectively.
Ten different classes are considered in this study, where each class corresponds to a ballistic
curve with different ballistic limit velocities, ranging from 50 to 500 m/s at 50 m/s increments.
The influence that the number of samples within each class affects the training process and the
output of G is then investigated. Five different cGAN models are trained, with 5, 10, 15, 20
and 25 samples within each of the 10 classes. An example training set with 20 samples within
each class is shown in Figure 5.2. Due to conservation of energy, only values where vr ≤ vi are
considered.

Model architecture

Both G and D exist as MLP networks as they are well equipped to deal with regression tasks
and the adversarial modelling framework is straightforward to apply when both models are
MLPs [Goodfellow et al., 2014]. The discriminator model D takes an instance from either
the generator or the training set, along with the respective class label as input, and outputs a
classification prediction as to whether the sample is real or fake. It is a binary classification
problem and thus during training the model minimises the binary cross entropy loss function
presented in Section 2.4.2.

The Adam version of the stochastic gradient descent method [Kingma and Ba, 2014] was
selected to optimise the model parameters during training. The hyperparameters of the model
were found through a grid search and the optimiser was initialised with a learning rate of 0.01
and the exponential decay rates for moment estimates β1 and β2 were assigned values of 0.9
and 0.99 respectively. A LReLU activation function was selected to moderate the output
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from each of the hidden layers in the D model [Xu et al., 2015]. The LReLU moderates the
output by allowing positive inputs to pass through unchanged such that f (x) = x for x > 0.
For negative inputs LReLU allows a shallow non-zero negative gradient. The value of the
non-zero gradient is governed by parameter α as detailed in Section 2.3.3. This is contrary to
the typical ReLU activation function where for negative input values the output is zero such
that f (x) = max{0, x} [Maas et al., 2013]. Finally, the output layer of the D model passes
through a Sigmoid activation function to moderate the output values in the range [0, 1] [Han
and Moraga, 1995].

... ...
...

vi

vr

G(Z)

LReLU Activation

Latent
Input: Z

10

Class
label: λ

Hidden layer 2:
30 nodes

Hidden layer 1:
30 nodes

Output
Layer

Figure 5.3: Schematic diagram of cGAN Generator.

The generator model G takes an input Z from the latent space along with a class label
respective to the desired class of output. Once trained, it is possible to assign a class label
to the G input to allow for more localised control of its output. A latent variable is a hidden
or unobserved variable, and the latent space is a multi-dimensional vector of these variables.
Model G simply uses 10 latent variables in its latent space that exists as a 10-element vector of
Gaussian random numbers. The G network has 2 fully-connected hidden layers each containing
30 active nodes, the outputs of which are moderated by passing through a LReLU activation
function with α = 0.2. The weights associated with each node are initialised with uniform
scaling between 0.05 and 1.5. The output layer exists as a vector of 2 elements, where the first
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element corresponds to the predicted impact velocity and the second element to the predicted
residual velocity. The output layer of the G network is consistent with the input layer to the D
network. D takes input from fake samples generated by the G network and from real samples
directly from the training set. These samples then pass through 4 fully connected layers that
constitute the hidden layer of the D network. The layers contain 25, 15, 10 and 5 nodes
respectively, the weights of which are initialised with the Glorot Uniform Initialiser [Li et al.,
2020]. Once again, the outputs of each of the fully connected layers are moderated by passing
through a LReLU activation function with α = 0.2.

...
...

... D(X) | D(G(Z))

Input:
X | G(Z)

Class label:
λ

LReLU Activation

Hidden layer 1:
25 nodes

Hidden layer 2:
15 nodes

Hidden layer 3:
10 nodes

Hidden layer 4:
5 nodes

Output:

Figure 5.4: Schematic diagram of cGAN Discriminator.

Training algorithm for Initial cGAN model

The machine learning algorithm was written in Python3, using TensorFlow’s high-level Keras
API for building and training deep models. Keras’ functional API was used as it provides
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additional flexibility when creating models as it can handle models with non-linear topology,
shared layers and multiple inputs or outputs. Support for multiple inputs makes it possible to
also include the class labels as input to both the D and G networks that otherwise wouldn’t
have been supported with a traditional Sequential model. The class labels λ, that augment the
training set in this study are presented to networks D and G as single integer values between
0 and 9. The performance of the cGAN model is also evaluated on non-integer class labels
between 0 and 9 to consider its performance on unseen classes. In addition, the model is
also evaluated on additional unseen class labels between 9.5 and 20 in increments of 0.5 The
class labels λ in this study are presented to networks D and G were not encoded into one-hot
vectors as first shown by [Mirza and Osindero, 2014]. A one-hot vector is a representation of
categorical variables as binary vectors; each categorical variable is represented as a vector of
zeros except the index of that integer that is marked as 1. In this study, the capabilities of
cGAN networks are tested on class labels that are not present within the training set and by
one hot-encoding the class labels, this would not be possible. This method allows non-integer
class labels to be input to the network to evaluate a continuous response of how the output of
the cGAN varies depending on the class label given.

The stopping criteria for training the cGAN is met once the model has been trained for
50,000 iterations and a single iteration is complete once the parameters of both the D and
G networks have been updated. Within each iteration, the trainable parameters of both the
D and G networks are updated alternatively: first, the D network is trained and then the G
network. The discriminator D is simply a classifier that over time learns to distinguish real data
from the training set (label = 1) from fake data generated by G (label = 0). During training,
the trainable parameters of the network are updated accordingly via the binary cross entropy
loss function and the adam optimiser such that it can distinguish between real and fake samples
when making classifications. D can therefore be decoupled and trained independently as it is
trained on both data from the training set and from fake data generated by G. At the start
of each iteration, a number of real samples (with target label = 1) and associated class label
(0−9) are randomly selected from the training set X and used to train D. G in its current form
is then used to generate the same number of fake samples (with target label = 0) and D is
trained again. The number of samples passed through the network for training in one iteration
is dictated by the batch size. It is important to note that during each iteration the parameters
of the D network update twice as often as the G network. This is simply because it is trained
on both real and fake samples. If left uncorrected, D would train at a faster rate than G as
it is exposed to twice as much data, thus giving D an advantage and subsequently affecting
the competitive nature of the adversarial process. In order to correct this, the batch size used
to train the discriminator is halved such that the combined total number of samples from the
training set and that generated by the generator is the same as the number of samples used to
train G.

The G network is trained entirely on the performance of D and its trainable parameters
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are optimised in accordance with its output D(G(Z)). When D is successfully classifying fake
samples G is updated more rigorously. Conversely, when D is less successful at classifying fake
samples then D is updated more rigorously. This defines the zero-sum adversarial relationship
between the two models. As the training of G depends on the output of D, the network cannot
be decoupled and trained in isolation. A combined model is required to form the GAN network.
The GAN network is a sequential model that stacks both the G and D networks such that
G receives the latent Gaussian vector as input and can directly feed its output into D. The
output of this larger model D(G(Z)) can then be used to update the trainable parameters of G
by once again using the binary cross entropy loss function and adam optimiser with a learning
rate of 0.002 and β1 and β2 were given values of 0.9 and 0.99 respectively. Within the same
training iteration, the G network is used to generate a number of samples equivalent to the
batch size. It should be emphasised here that fake samples are passed through the combined
GAN model with a label of 1 indicating that the samples are real — this is because G wants to
optimise its parameters such that D will classify fake samples as real and this step is a key part
of that training process. It should be noted that whilst G is being trained within the combined
model, the nodes within each layer of the D network are frozen and cannot be updated. This
prevents D from being trained on fake data with incorrect labels. The training algorithm of the
entire process is shown in Table 5.1.

5.1.2 Model evaluation

A total of 5 cGAN models have been trained for a total of 50,000 iterations. Each model
was trained on a multi-class training set containing 10 classes of ballistic data labelled with
an integer from 1 to 10, where each class represents a ballistic curve with a different ballistic
limit velocity ranging from 50 to 500 m/s at 50 m/s increments. Five training sets (TS) were
prepared and labelled as TS5, TS10, TS15, TS20 and TS25, where the number refers to the
number of ballistic samples present in each class. In this study, the cGAN models are evaluated
in two ways:

1. To generate additional samples that belong to each of the 10 classes that it was trained
on.

2. To generate additional samples that belong to classes that it was not trained on, i.e.
intermediate ballistic limit velocities and class labels that exist beyond the domain of the
training set.

Each class refers to a ballistic curve with a particular vbl; for example, class labels 0, 1 and
2 refer to a ballistic curve with vbl equal to 50, 100 and 150 m/s, respectively. It is therefore
possible to generate an expected ballistic curve for any class label using the Lambert model and
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Table 5.1: Training algorithm for the cGAN.

Inputs: Training Set X, latent dim Z, class labels λ, iterations T , batch size m
Outputs: Generated samples G(Z), D(X), D(G(Z))
Context: A sample from X from X is a 2 element vector that relates to a single point on
the ballistic curve, where vi and the corresponding vr refer to the x and y coordinates
respectively.

start
Define: D and G MLP networks
Define: Combined sequential cGAN model with D and G
Initialise: Trainable parameters θ of D and G
Freeze: Trainable parameters of D in combined cGAN model

for t = 1 : T do
Collect samples {Xi}m/2i=1 from training set X, label = 1
Generate samples {G(Z, λ)}m/2i=1 from distribution P(Z |λ), label = 0
Train D on real samples {Xi}m/2i=1 and update D, label = 1
Train D on fake samples {G(Z, λ)}m/2i=1 and update D, label = 0
Invert label of {G(Z, λ)}mi=1 from 0 to 1
Train GAN on (Z, λ)}mi=1 with inverted labels and update G

end for
end

the samples generated by the cGAN networks can be compared directly with those expected
values. To that end, a method is established to compare and evaluate the predictions of the
cGAN directly and test the quality of the approach.

Inspection of cGAN model output

When provided with a latent input of the correct size and a class label, the trained G model
outputs a 2 element vector, or sample, that contains the impact velocity vi and the corresponding
residual velocity vr. The model can then be used to generate samples and plot them against the
expected ballistic curve. Plotting the results in this way is useful to get a visual understanding
of the model’s output and to identify any problem areas where the output may struggle or
fail to map a particular feature of the training set. It should be noted that the output of the
cGAN network is stochastic and if a model is used to generate 100 samples twice, it is unlikely
that the 100 samples from each case are identical. The samples from each case however,
belong to the same probability distribution that the cGAN model has learned as a result of
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the training process. The evaluation of the models therefore begins by simply using each of
the cGAN models to generate 200 samples for each of the class labels within the training set
(labels 0− 9). In this regard, if the model is successful it would be expected that its output is
similar to that of the training set and it would be possible to identify 10 distinct ballistic curves
with the correct vbl. Whilst inspection is a useful tool for assessing the output of generative
networks, it is important to perform a more thorough statistical analysis for comparison. This
analysis is split into two main points of evaluation:

• How accurately can the cGAN models predict the ballistic limit velocity?

• How close do the generated samples match the expected ballistic curve?

Ballistic limit velocity predictions

A non-linear least squares method is used to fit the generated samples from each model on
each class to the Lambert model’s parameters a, p and vbl. Each cGAN model was used to
generate 10,000 samples belonging to each class as this was deemed sufficient to capture the
entire distribution of the cGAN networks. The key parameter of interest is vbl; researchers
perform ballistic experiments with the primary intention of determining this parameter as it plays
a crucial role in the design and development of armour plates and other protection systems. In
order for generative networks to have a place within the space of ballistic testing and design, it
is necessary that they can be used to provide useful vbl predictions. The benefit of this study
is that the expected vbl for each class are known and thus the predicted vbl from each of the
cGANs can be compared directly with the expected value, and the difference can be calculated
to determine the prediction error. The study first uses this method to predict the vbl on integer
class labels that have been seen (i.e. integer class labels 0−9) before analysing the performance
of the cGAN on classes that were not present in the training set, such as non-integer class
labels in [0, 9] and also class labels that exist beyond the domain of the training set such as
labels in [9.5, 20].

Assessing the variability of generated samples

Whilst it is necessary that the cGAN models can be used to predict the vbl, this does not give
any indication to the variability or the spread of the data. It is possible that the fitted vbl
predictions could be the same for two different models where samples generated from one are
more spread than from the other.

For this study, a favourable model is one that can accurately predict the vbl for a particular
class, whilst also being capable of generating samples that lie close to the respective ballistic
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curve. One way to assess the spread of the data is to use the Lambert equation to calculate the
equivalent vr values for each vi generated by the cGAN and determine the RMSE between the
predicted and expected values. However, just after vbl the ballistic curve has a steep gradient
and slight variations in vi would return vastly different vr values. This becomes problematic as
large discrepancies may be returned for samples despite lying close to the ballistic curve. It is
therefore important to define what a “perfect” generated sample looks like. A single sample
consists of a 2 element vector containing a value for both vi and vr, and a perfect sample is
one where those generated values lie exactly on the expected ballistic curve, as predicted by
the Lambert model. There are therefore many locations on the Lambert curve that could be
described as “perfect”, where the respective error would be 0%. In this study, the generated
samples produced by each of the models are compared with that of the nearest point on the
ballistic curve, and the performance is evaluated in three ways. First, the distance d from each
of the generated samples to the nearest point on the ballistic curve is calculated as

d =
√
(xg − xl)2 + (yg − yl)2 (5.2)

where xg and yg are the respective impact velocity and residual velocity of the generated samples,
and xl and yl are the coordinates of the Lambert curve closest to the generated sample as
shown in Figure 5.5. In this case d returns the distance as an absolute value. This is obtained
for each cGAN model for each of the 10 classes. The RMSE is then calculated with respect to
both the x values of the generated samples (vi) and the y values (vr) for each model on each
class. It is therefore possible to obtain a vector containing the minimum distances d from each
sample to the ballistic curve and evaluate the distribution .

The KDE is used to estimate the probability density function of the variable d and present
the shape of the distribution. In this assessment, the distances from 2,000 generated samples to
the expected Lambert curve were computed for each cGAN model for integer classes from 0−9.
The associated d values from all classes are combined into a single vector of residuals for each
cGAN model to assess its performance. It should be noted that the polarity of d is included by
comparing the coordinates of the generated sample to those of the nearest neighbour on the
corresponding ballistic curve. A KDE assessment is first performed on seen classes with labels
0− 9 before comparing the distributions from unseen class labels. The evaluation on unseen
class labels is split into two parts: for non-integer class labels that exist within the domain of
the training set (0.5, 1.5, . . . , 8.5), and for unseen class labels that exist beyond the scope of
the original training set (9.5, 10, . . . , 19.5, 20).

5.2 Results and Discussion

This section begins by considering the first of the evaluation criteria where each of the cGAN
networks were used to generate samples that belong to each of the 10 classes it was trained
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Lambert curve. It can also be seen that the TS5 model generates some samples from classes
1, 2 and 3 that exist beyond the y = x boundary, as shown in Figure 5.6. For these samples,
vr > vi, which violates conservation of energy through an increase of kinetic energy of the
projectile. Generated samples that satisfy the condition vr > vi could be omitted in practice,
but they were included in this study to evaluate the accuracy of the cGAN output.

The output from cGAN models TS10, TS15, TS20 and TS25 was more successful. In each
case, the cGAN models have successfully generated additional samples that follow the shape of
the Lambert ballistic curve. The generated samples appear to come from the same distribution
as the training set and closely match the Lambert model, both at the vbl and for higher residual
velocities for each class. This is a clear indication that the cGAN model has learned directly
from the training set, but more importantly that it has demonstrated the capability of the
model to produce class-specific outputs, corresponding to the input label it was given. This is
particularly powerful as it addresses the issue of limited control regarding the output of the
model of conventional GANs. When comparing Figures 5.6b to 5.6e with the output from
the TS5 cGAN in Figure 5.6a, it can be seen that the samples generated along the length of
the ballistic curve show less variation than the output of the TS5 cGAN model. This could
be an early indication that 5 samples for each class in the training set is insufficient for this
particular cGAN architecture to effectively match the distribution of the data. Also, the TS5
cGAN model in particular demonstrates a bias to generate samples with a very low vr as of the
100 samples generated, the majority lie in this region.

5.2.1 Non-linear least squares ballistic limit velocity predictions

The non-linear least squares method was used to fit the generated samples from each model
on each class to parameters from the Lambert model. The non-linear least squares method is a
popular approach to fitting data to a model function that is non-linear in its parameters. It is
well suited in this case as the Lambert model consists of 3 parameters a, p and vbl that can be
determined using this method. The optimisation algorithm attempts to find the values of the
unknown parameters that minimise the objective function. The optimisation algorithm used
for this is the Levenberg-Marquardt algorithm. The model evaluates the goodness of fit by
examining the differences between the actual data and the model predictions, the residuals, and
computing various statistical measures such as the R-squared coefficient. Each cGAN model
was used to generate 10,000 samples belonging to each class and the vbl was obtained. Table
5.2 contains each of the models’ vbl predictions and their associated percentage error. Figure 5.7
shows the absolute percentage difference of the fitted vbl predictions with the expected values.
It can be seen that in all cases, the |vbl| percentage error was less than 10%. It can also be seen
that the TS5 cGAN model was the worst performing as it returned the highest error for each
class label other than class 2. TS5 performed particularly poorly for higher class labels when
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Table 5.2: Ballistic Limit Velocity, vbl, predictions of trained cGAN models TS5, TS10, TS15, TS20 and TS25.
Table shows vbl prediction for each model for the 10 classes and the percentage error when compared to the true
Lambert model. Predictions determined by using the non-linear least squares method to fit 10,000 generated
samples from each class to parameters a, p and vbl from the Lambert model. The table also presents the
average absolute error for each cGAN model across each of the 10 classes.

Class TS5 TS10 TS15 TS20 TS25

0 47.3 (−5.5%) 51.9 (+3.8%) 49.6 (−0.9%) 50.0 (+0.1%) 47.6 (−4.8%)
1 97.5 (−2.5%) 96.3 (−3.7%) 101.2 (+1.2%) 101.0 (+0.1%) 98.9 (−1.1%)
2 154.9 (+3.3%) 146.3 (−2.5%) 151.2 (+1.1%) 150.0 (+0.0%) 149.3 (−0.5%)
3 206.1 (+3.0%) 196.1 (−1.9%) 201.4 (+0.7%) 199.9 (−0.0%) 199.6 (−0.2%)
4 256.8 (+2.7%) 245.8 (−1.7%) 251.4 (+0.6%) 249.4 (−0.3%) 250.1 (+0.0%)
5 307.5 (+2.5%) 295.5 (−1.5%) 301.3 (+0.4%) 298.9 (−0.4%) 300.1 (+0.0%)
6 358.2 (+2.3%) 345.4 (−1.3%) 351.3 (+0.4%) 348.3 (−0.5%) 350.1 (+0.0%)
7 383.3 (−4.2%) 395.2 (−1.2%) 401.4 (+0.4%) 397.7 (−0.6%) 399.7 (−0.1%)
8 423.0 (−6.0%) 444.9 (−1.1%) 451.5 (+0.3%) 447.4 (−0.6%) 449.4 (−0.1%)
9 454.1 (−9.2%) 494.7 (−1.1%) 499.9 (−0.0%) 496.3 (−0.7%) 499.0 (−0.2%)

Average 4.1% 2.0% 0.6% 0.3% 0.7%

5.2.2 Model variation analysis and distributions

The average minimum distance between the samples generated by the trained cGAN models
and their respective ballistic curve for each of the 10 classes is shown in Figure 5.8a. It should
be noted that the distance metric in this case, refers to the hypotenuse between the difference
in the x coordinate (vi) and the y coordinate (vr) between the generated and expected samples
and is presented as an absolute value. The “distance” between points is therefore determined
with unit of m/s and is presented as a means for comparison rather than a relative value. In
this analysis, the cGAN models were used to generate 2,000 samples for each class and the
absolute minimum distance d was determined for each, and the average d̄ taken. It can be
seen that on average samples generated by the TS5 cGAN network are further away from the
expected ballistic curve than the remaining models, that is, the samples generated by the TS5
cGAN network are more spread out and present more variation. This was consistent for each
of the 10 classes.

The output of the remaining cGAN models (TS10 to TS25) was consistently lower than
the TS5 cGAN and values of d̄ were comparable to one another, indicating that the samples
generated by these networks are less spread out and lie closer to the expected values. Figure 5.8b
presents the RMSE error when comparing the generated x values (vi) with the expected x
values from the Lambert model. As expected, TS5 was the worst performing model with errors
ranging from 6.73 to 14.91% across class labels 0− 9. The remaining models returned errors
of less than 5.80% across all classes. The TS15 model was the best performing model with an
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RMSE error of less than 2.39% for all classes. Finally, Figure 5.8c shows the RMSE error with
respect to the y coordinate that represents the residual velocity vr. Similar to the results in
Figure 5.8b, the RMSE errors for models TS10 to TS25 were all below 5%. Again, model TS5
was more prone to errors returning average errors above 10% for class labels 0− 3 peaking at
19.02%. It should be noted that for class labels 6− 9 the RMSE errors of TS5 were consistent
with those of the remaining models. However, the distance from the generated sample to the
expected value on the ballistic curve is a product of the errors in both the x and y coordinate
for vi and vr, respectively. It is clear that in this case TS5 is the worst performing model.

To effectively compare the remaining cGAN models, Figure 5.9 shows the Kernel Density
Estimation (KDE) of the probability density function of the variable d . The distances from
2,000 generated samples to the expected Lambert curve were computed for each cGAN model
for integer classes 0− 9. The KDE distribution for the TS5 cGAN is a bi-modal, left-skewed
negative distribution with peaks at d = 1.14 and d = −7.64. The distribution also appears
flatter than the remaining cGAN models, indicating that the distance d of samples generated
by this model to the expected ballistic curve are more spread out and varied. This results in
a wider range of possible distances to the expected values, and subsequently a less accurate
model. The TS5 distribution is consistent with that of the output in Figure 5.6a as the samples
generated by the model demonstrate the tendency to under-predict vi. The distributions of the
remaining cGAN models are uni-modal and have a single peak indicating that the data count at
that area is higher than anywhere else on the graph. For each of these models, the peak lies
close to d = 0 indicating that the majority of the samples produced by the models are close to
the ballistic curve. The distributions of models TS10, TS15 and TS20 appear symmetrical and
could be classified as normal distributions, whereas TS25 is a right-skewed positive distribution.
Models TS10 and TS20 indicate a slight tendency to generate samples with a lower vi as the
peaks of these distributions exist where d is negative. Conversely, models TS15 and TS25
demonstrate the opposite and with their peaks existing at positive values of d . It should be
noted that the peaks for distributions TS15 and TS25 are at d = 0.41 and 0.30, respectively,
and thus the majority of samples generated by these models lie close to the expected ballistic
curve. Overall, the KDE plot shows that the TS15 model was the most successful as it is a
narrow, normal distribution with a single peak at d = 0.34. The narrow peak indicates relatively
lower variation in the generated samples and ultimately a model that is capable of generating
accurate samples for each of the 10 classes.

5.2.3 Evaluation of cGAN models on unseen class labels

This section explores the capabilities of the trained cGAN models to generate additional samples
that belong to classes that it was not trained on, i.e. intermediate ballistic limit velocities. Labels
are passed into the cGAN network to evaluate its response on both integer and non-integer
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5.3 Concluding remarks

This chapter explores the use of cGAN in the space of structural design for ballistic protection.
A key limitation of prototyping armor systems is the requirement for ballistic testing to be
performed across different thicknesses to understand the behaviour of a material to impact.
This is both expensive and time consuming due to the equipment, personnel and resource
requirements needed to perform the investigations. The application of the cGAN presented in
this chapter offers a novel approach to increase the speed at which ballistic predictions can be
made and provides an opportunity to reduce the number of experimental testing required. The
impact of which could mean that design decisions about an armor system or structure can be
made earlier in the design process.

In this chapter specifically, five cGAN models were trained directly on ballistic datasets
to predict the vbl and generate additional ballistic samples representative of the ballistic data.
This study considers a single MLP cGAN architecture that is trained on a multi-class training
set consisting of 10 classes labelled 0 − 9 where each class refers to a ballistic curve with a
different vbl. The models are labelled TS5, TS10, TS15, TS20 and TS25 and each class in the
training set contains 5, 10, 15, 20 and 25 samples, respectively. For integer class labels 0− 9,
on average the TS5 cGAN model predicted the vbl with an error of 4.1%, the remaining models
predicted vbl with an error of less than 2% with the TS15 model performing best with an error
of 0.6%. It was also found that the non-integer class labels from 0− 9 the vbl predictions were
consistent with those from class labels that the model was explicitly trained on. Moreover, each
of the cGAN models were challenged to generate new samples for class labels that exist beyond
the scope of the training set for labels 9.5− 20. It was found that models TS10, TS15, TS20
and TS25 were still able to predict the vbl with an error of less than 1.5% in all cases.

The analysis presented in this chapter successfully demonstrates that cGAN models can
be used to generate additional ballistic samples in accordance to the class label given to the
generator as input. This is the case for non-integer class labels that exist within the domain
of the training set that the model was trained on (labels 0− 9) and also for class labels that
exist beyond the boundary of the training set (labels 9− 20). cGAN networks can be used in
this way to make vbl predictions and generate additional samples for a variety of multi-class
ballistic datasets where each class could for example refer to a different plate thickness, or
heat-treatment. The benefit of applying such AI techniques is that current modelling capabilities
require physical parameter input which introduces limiting assumptions directly to the model.
Depending on the complexity of the experiment, FE models can take substantial time to set
up and its parameters are modified such that its output aligns with that of the experimental
values. cGAN networks offer an alternative by learning directly from the ballistic data and once
trained, can generate additional samples quickly.
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Chapter 6

Supplementing experimental
datasets using GANs

The extensive research of Børvik et al. [Børvik et al., 1999a, Børvik et al., 2001b, Børvik
et al., 2003, Børvik et al., 2005, Børvik et al., 2009, Børvik et al., 1999b] centres around
studies of the ballistic response of armoured steel and aluminium plates. The authors find
that materials with high-strength properties are clearly linked to an optimal ballistic capacity,
specifically, a higher vbl. However, ultra high-strength materials come with a compromise of the
strength – ductility trade-off, a long-standing dilemma in materials science [Li et al., 2016b],
which leads to a tendency for brittle fracture and fragmentation under impact as shown in
Figure 1.1. An example of innovation in experimental ballistic research was published by the
same authors in 2020 [Kristoffersen et al., 2020b]. The study investigates AM aluminium as a
candidate for ballistic protection, which would allow structural designs to profit from the flexible
manufacturing advantages of using metallic AM methods.

The combination of ultra-high strength and AM, however, introduces increased complexity
and costs to ballistic experimental campaigns. This was demonstrated in an experimental study
on AM maraging steel by [Costas et al., 2021]. The authors report significant fragmentation for
both projectile and target in the ballistic tests. Often, the target plate was rendered unsuitable
for further shots, reducing the total possible number of tests and thus increasing the cost of
the experiment. Despite such challenges, the application of ultra high-strength AM materials
presents an opportunity for areal density reduction of ballistic protection which is a key area of
interest [Vemuri and Bhat, 2011]. Therefore further work is required to optimise the strength
versus ductility trade-off for AM maraging steel to improve ballistic resistance capacity.

An experimental campaign was selected in order to test the capabilities of the GAN network
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presented in Chapter 4. In 2020, experimental tests on maraging steel fabricated by AM were
carried out by Costas et al. [Costas et al., 2021]. The maraging steel underwent ballistic tests
in both its as-printed and post heat treated states; the latter possessing yield strength of 2000
MPa (classified as ultra high-strength), almost double the former. These experimental tests
are exemplary of the challenges for traditional methods in exploring such materials for ballistic
protection described in this chapter. It was for this reason that the Costas et al. [Costas et al.,
2021] experiments were selected as good candidates to test the application of the GAN model.

6.1 Methodology

6.1.1 Training Set

Both the as-printed and heat treated plates were impacted with full AP bullets and the steel
bullet core only; the specification of which is displayed in Figure 1.3. The two material variations
and the two projectile variations make a total of four individual datasets. Each dataset contains
seven or eight tests with impact velocities in the range of 300− 900 m/s, which are listed along
with respective residual bullet velocities in Table 6.1.

Table 6.1: Measured values of vi and vr from experimental tests by Costas et al. [Costas et al., 2021] on AM
maraging steel impacted by bullet core only, and AP bullet given in m/s.

(a) As-printed;
core only

(b) As-printed;
full AP bullet

(c) Heat treated;
core only

(d) Heat treated;
full AP bullet

vi vr vi vr vi vr vi vr

376.1 0.0 354.0 0.0 420.2 0.0 416.8 0.0

412.7 201.5 407.1 139.1 532.3 0.0 478.6 159.9

416.8 210.3 443.7 218.0 549.8 0.0 513.1 0.0

424.0 223.6 526.7 234.8 610.8 0.0 536.0 62.1

466.1 269.8 569.4 384.3 646.6 510.0 742.0 561.1

640.0 494.5 837.8 747.4 713.6 442.9 822.4 653.7

922.2 802.6 933.4 854.6 747.4 574.2 926.9 819.9

985.1 819.7

In this study, four separate GAN models were trained on the four ballistic experimental
datasets presented in Table 6.1.
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6.1.2 Model Architecture

The architecture used for the GAN model is the same as that presented in Section 4.1.2. The
Discriminator D is an MLP model and is presented in Figure 6.1. It’s input layer consists of 2
nodes to accept a single sample of ballistic data from either X or G(Z) that contains vi and its
corresponding vr. D has 4 fully connected hidden layers with 25, 15, 10 and 5 nodes from layers
1 to 4. The outputs of each of the fully connected layers are moderated by passing through a
LReLu activation function with α = 0.02. The output layer consists of a single node reserved
for either D(X) or D(G(Z)).

...
...

... D(X) | D(G(Z))Input:
X | G(Z)

LReLU Activation

Hidden layer 1:
25 nodes

Hidden layer 2:
15 nodes

Hidden layer 3:
10 nodes

Hidden layer 4:
5 nodes

Output:

Figure 6.1: Schematic diagram of GAN Discriminator D.

The Generator G is also an MLP model and is presented in Figure 6.2. It’s input layer is a
fully connected layer containing 10 nodes which accepts the latent input into the network. G
has two fully connected hidden layers, both of which contain 11 nodes. The outputs of each of
the fully connected layers are moderated by passing through a LReLu function once again with
α = 0.02. The output layer consists of 2 nodes to represent a ballistic sample containing 2
values that correspond to vi and vr respectively.
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... ...
...

vi

vr

G(Z)

LReLU Activation

Latent
Input: Z

10

Hidden layer 2:
11 nodes

Hidden layer 1:
11 nodes

Output
Layer

Figure 6.2: Schematic diagram of GAN Generator G

6.1.3 Training algorithm

Each GAN was trained for 1, 000, 000 iterations. During each iteration, D was trained on both
the real experimental samples and the fake generated samples. The model weights of D were
then updated and G is trained on the classification performance of D. This process is described
in greater detail in Section 4.1. The binary cross-entropy loss function was used to calculate
the training loss and the adam optimiser was used with values of β1 and β2 of 0.9 and 0.99
respectively. D and G were also initialised with learning rates of 0.01 and 0.002 respectively.

6.2 Results

After training, G models were used independently to generate 200 fake samples of ballistic data.
Figure 6.3 plots the 200 predictions at different stages of training for each of the experimental
dataset variations (a), (b), (c) and (d). A Lambert curve was fitted to the experimental results
and is plotted alongside the experimental training data. Improvement over iterations is evident
in all plots, with predictions clustered closer to the training points for more developed models.
No generated points after 10, 000 iterations violate energy conservation laws as they remain on
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the right hand side of the vi = vr dashed line, thus the residual velocity of the projectile does
not exceed the initial impact velocity.

To estimate the GAN prediction error of vbl, a Lambert curve was fitted to the generated
points and compared to the experimental Lambert fit estimation of vbl. The 100 point average
error at 1, 000, 000 iterations for the GAN trained on each dataset (a), (b), (c) and (d)
respectively is 9.53%, 1.19%, 5.24% and 2.25%. The predicted vbl errors using this method
are small, however, on inspection the predictions in Figure 6.3 fail to produce samples that
correlate to a continuous ballistic curve. This can be explained, to an extent, by patterns in
the experimental training data. Training set (a) covers the full range of the ballistic curve,
however, four points between 400 < vi < 500 m/s lie very close together. This disproportionate
weighting appears to have affected the GAN’s ability to find the trend of the ballistic curve
and as such no samples are generated at the ballistic limit. Conversely, half the training data
occur at vr = 0 for (c) and predictions get ’stuck’ to the x axis; Figure 6.3 shows points with
vr = 0 for vi up to 900 m/s which is not representative of an actual ballistic response. GAN
predictions for dataset (b) in Figure 6.3 are the most promising of the test cases with the
points generated by the model trained for 1, 000, 000 iterations following the ballistic curve
more consistently than the others. This outcome is not surprising, given that experimental test
data for (b) is well distributed across the ballistic curve in comparison to (a), (c) and (d). The
GAN arguably delivers the second best representation of the ballistic curve for dataset (d) in
Figure 6.3, however the samples generated by the GAN are again distributed closely to the data
in the training set - rather than generalising the ballistic curve itself.

6.2.1 Training evaluation and discussion

The optimum outcome of the GAN’s ’zero-sum game’ is a consistent prediction by D for
both outputs; i.e. the homogenisation of D(X) and D(G(Z)). This is because the GAN’s
objective is to find an equilibrium between two competing neural networks; G and D. G aims to
produce fake data that is similar enough to the real data to fool D, while D aims to accurately
distinguish between real and fake data. This competition is what establishes the zero-sum
game, meaning that any gain made by one network must be balanced by a loss from the other
network. In other words, the gains and losses of G and D cancel each other out and result in
the zero-sum game. The objective of the GAN training process is therefore to reach a Nash
Equilibrium, a state where both G and D are performing optimally and neither can improve their
performance without hurting the other. At this point, G is able to produce realistic synthetic
data that is indistinguishable from real data, and D is able to accurately distinguish between
real and fake data.

Figure 6.4 presents data collected on performance for all four GANs over training iterations.
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Plots on the left hand side show the percentage error of the vbl throughout the training process.
The plots on the right hand side present the predictions of the D network: D(X) and D(G(Z))
during training. 10 point moving averages are plotted on both graphs to help interpret the
trends of the D prediction. Convergence at an optimum solution is observed for the GAN
trained on dataset (b), which shows the most accurate predictions in Figure 6.3b. This is
supported in Figure 6.4d where D(X) and D(G(Z)) appear to homogenise after approximately
200, 000 iterations. This trend remains consistent throughout the rest of the training, with
D(X) and D(G(Z)) showing very similar trends at 900, 000 iterations. Accurate convergence
is corroborated by Figure 6.4c, which shows a decrease in error at around 200, 000 iterations
that is maintained for the remainder of training. Homogenisation of D(X) and D(G(Z)) is also
observed in Figure 6.4f at approximately 600, 000 iterations. It is at this point that G begins to
produce samples at vr = 0, where four out of the seven training instances occur, as shown in
Figure 6.3c. This suggests that the GAN begins converging to an optimal solution, however,
D(X) and D(G(Z)) lose stability after 800, 000 iterations. This outcome is not surprising,
as experimental dataset (c) has arguably the least reliable ballistic curve trend of the four
variations. Despite having a consistently low prediction error through training, plots of D(X)
and D(G(Z)) in Figure 6.4h appear to never homogenise. The case is similar for Figure 6.4b
but with a larger prediction error. These inconsistencies can largely be attributed to clusters in
the training data, which make it difficult for the GAN to converge on a trend, despite generating
samples that lie close to the ballistic curve.

6.3 Conclusion

This section applied the GAN model from Chapter 4 to experimental ballistic datasets. A total
of 4 GAN models were trained on 4 experimental training sets carried out by Costas et al.
[Costas et al., 2021] which correspond to a steel bullet core and AP bullet impacting both
an as-printed plate and a heat-treated plate. In each case, the GAN prediction error of vbl
was less than 10%. Some of the limitations of GAN models were demonstrated through this
study. It was noted that the output from the GAN is heavily dependent by the quality of the
dataset, synthetic samples generated by the GAN models tended to cluster around the examples
from the training set. Whilst this is expected, the GAN model was unable to generalise the
ballistic curve. Training GAN networks is also a challenging task, as demonstrated by the plots
in Figure 6.4. This study therefore highlights three key weaknesses when applying the standard
GAN model on experimental data:

1. Difficulties generalising synthetic ballistic samples across a wide range of impact velocities

2. Generated samples demonstrate a lack of understanding of the physical mechanisms that
govern ballistic data

Supplementing experimental datasets using GANs 129



6.3. CONCLUSION Samuel Thompson

3. The adversarial nature of GAN models can often make training unstable.

The final chapter presents a methodology to address these issues by implementing what
is known as a VAE-GAN. The VAE-GAN’s have been used in the literature to stabilise the
training process of GANs and have demonstrated the ability to produce synthetic data of
higher quality and greater accuracy [Arjovsky and Bottou, 2017]. Specifically, the methodology
proposes a way to address the GANs lack of understanding of the physical mechanisms that
govern ballistic data through the use of Physics-Informed Machine Learning Models (PIML)
that incorporate physical principles and constraints into machine learning models such that
the model can generalise better when trained on new data and produce more accurate and
physically meaningful predictions.
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Figure 6.4: GAN output over training iterations with 100 point moving averages for datasets (a), (b), (c),
and (d) referred to in Table 6.1 and Figure 6.3: (i) percentage error of ballistic limit velocity estimate, (ii),
discriminator prediction of ‘real’, D(X), and ‘fake’, D(G(Z)), data points.
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Chapter 7

Future work and physics informed
machine learning

PIML is an emerging field that combines physics-based modeling with data-driven machine
learning techniques. PIML models are designed to learn from available data, while still respecting
known physical laws and constraints. These models have the potential to improve the accuracy,
efficiency, and interpretability of predictions in a variety of scientific and engineering applications.
Traditional machine learning models are often limited by the quality and quantity of available
training data, and may not be able to capture the underlying physical principles governing a
system. On the other hand, physics-based models rely on assumptions and simplifications that
may not fully capture the complexity of real-world systems. PIML models aim to overcome
these limitations by leveraging both data-driven and physics-based approaches. By incorporating
known physical laws and constraints into machine learning models, PIML can improve the
accuracy and generalisability of predictions, even when limited data is available. This can lead
to faster and more reliable predictions, as well as better insights into the underlying physical
processes. PIML models have already shown promising results in a range of applications,
including fluid dynamics, materials science, and climate modeling [Karniadakis et al., 2021].
They have the potential to transform many areas of scientific research and engineering, by
enabling more accurate and efficient simulations and predictions of complex systems.

Key issues around GANs from the previous chapters include, difficulties to train, dependency
on training data etc. This chapter considers how PIML can be used to support the use of GANs
to generate better predictions. The ballistic response of any material is governed by certain
truths; for example, we know that Vr cannot exceed vi, we know that for velocities less than
blv, the residual velocity should be zero. We know that for higher impact velocities, the vr will
tend towards vi in an asymptotic fashion. There are analytical models, such as the Lambert
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model, that accurately describe this phenomenon and these characteristics. If there is a way
that we could embed such Physics into our model, and inform it provide additional constraints
as to how it should behave - we might be able to achieve better results that are both more
accurate and reliable.

This chapter first introduces another type of generative network known as a Variational
Autoencoder (VAE) and demonstrates how they can learn from physics-based models such as
the Lambert model from a simple test case. A methodology is then proposed that suggests
how a VAE can be integrated with the GAN model in a way that has been shown to improve
the stability and quality of generated samples [Arjovsky and Bottou, 2017].

7.1 Variational Autoencoders

In recent years, there has been a significant interest in developing efficient techniques for
unsupervised learning of high-dimensional data. One popular approach is the use of Autoencoders
(AEs), which learn a compressed representation of the latent space, by encoding it into a
lower-dimensional space and subsequently decoding it back into the original space. Autoencoders
have shown remarkable success in various applications, such as image and speech recognition
[Hinton and Salakhutdinov, 2006, Masci et al., 2011], natural language processing [Shixin et al.,
2022] and anomaly detection [Saeedi and Giusti, 2023]. However, traditional autoencoders
suffer from a major drawback: they do not impose any constraint on the latent space, which
can lead to overfitting and poor generalization. To address this issue, Variational Autoencoders
(VAEs) were introduced as a probabilistic extension of AEs, which impose a prior distribution on
the latent space and learn to encode the input data into a distribution, rather than a fixed point
[Kingma and Welling, 2013]. VAEs have shown superior performance in generating high-quality
images and have been used in many applications such as image and video generation [Larsen
et al., 2015], data augmentation [Xie et al., 2020], and anomaly detection [Schlegl et al., 2017].
They have also been used in combination with other deep learning techniques such as generative
adversarial networks (GANs) to improve their stability and quality of the generated samples.

7.1.1 VAE Architecture

In this short study, a VAE is used to generate ballistic data representative of that of a training
set from the Lambert analytical model. The VAE can be interpreted as an encoder and a
decoder model that are joined together at a bottleneck layer and trained as a single entity. The
bottleneck layer is analogous to the latent input to the Generator in the previous GAN examples.
Both the encoder and decoder consists of a single fully-connected hidden layer that consists of
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1, 000 nodes. The output from the encoder hidden layer enters the bottleneck layer. In this
example, the bottleneck layer consists of 10 nodes and the output from the bottleneck then
passes straight into the decoder layer. The encoder receives training data X and the decoder
outputs a reconstruction of that data X̃. Once trained, the encoder model can be used in
isolation to generate new samples. This is done by passing a latent input Z into the bottleneck
layer (input) and yielding the samples generated from the decoder model in the output.

...
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Figure 7.1: Architecture of the VAE used to generate ballistic samples after training on data from the Lambert
model.

The mathematical operations of a VAE can be described by a probabilistic framework
[Kingma and Welling, 2014, Doersch, 2016]. The bottleneck is a vector of latent variables, Z,
which comprise means,

The VAE was trained on 100 Lambert curves, shown in Figure 7.2a, with Lambert parameters
a and p set equal to 1 and 2 respectively. Each curve was made up of 100 (vi, vr) ballistic
data points, resulting in a input vector x of dimensionality 200. Before input to the VAE,
training data was first scaled between [0, 1] in order to comply with computations inside the
VAE. To regularise the training of the hidden layers a dropout rate of 0.1 was specified for

Future work and physics informed machine learning 135





7.1. VARIATIONAL AUTOENCODERS Samuel Thompson

learned from the Lambert training data. Now when a latent input Z is passed into the decoder
model, samples are generated that are representative of what real ballistic data is expected to
look like. Since the Lambert analytical model is a generalisation of the Recht-Ipson model that
describes vr after complete perforation in relation to vi and vbl based on conservation laws of
energy and momentum, the encoder model has therefore been informed by a physical model
that is used regularly within the study of ballistic impact [Børvik et al., 1999a, Costas et al.,
2021]. There is therefore an opportunity to leverage the pre-trained encoder model in a typical
GAN network in a fashion that utilises the benefits of transfer learning.

Transfer learning is a powerful technique in machine learning where a model trained on one
dataset can be used to solve a different but related task on a different dataset. This technique
has many benefits, particularly in cases where data is limited, as in the case of ballistic testing
where it is expensive to establish a large training dataset due to the destruction of samples
across a wide range of impact velocities. Transfer learning allows a model to leverage the
knowledge learned from one dataset to learn features that are relevant to another dataset, such
as vr = 0 for vi < vbl and vr cannot exceed vi. Another benefit of transfer learning is improved
generalisation, where a model can use knowledge learned from a large dataset to improve its
performance on a smaller dataset. For example, the Lambert model can be used to generate a
large dataset to pre-train the decoder model, which can then be retrained on the smaller, but
newer, experimental dataset. Additionally, transfer learning can speed up the training process
by initialising the trainable parameters, weights, of the decoder model with pre-trained weights,
which can reduce training time and improve the convergence of the model [Liu and Shi, 2020].
A schematic of this configuration is presented in Figure 7.3. Note that the decoder presented
in Section 7.1.1 outputs 50 samples for a given input Z, it would then be possible to isolate one
random generated sample to pass into the discriminator network or restrict further updates to
the weights of the encoder model until the discriminator has evaluated each of the 50 samples.

GANs are powerful generative models that can learn to generate fake samples that are
indistinguishable from real data by a discriminator model. However, they can be challenging
to train. In Chapter 6, the GAN model from Chapter 4 was tested on real experimental
data. Whilst the results were okay, the models were heavily dependent on the quality of the
experimental data provided and struggled to generate samples across a spectrum of impact
velocities - often the generated data would cluster around the samples present in the training
data. This instability is caused by the non-convex nature of the optimisation problem that GANs
attempt to solve, as well as the delicate balance between the performance of the generator
and discriminator networks [Sixt et al., 2018]. To address the instability of the GAN, VAEs are
used to regularise the latent space. Specifically, this is done by the replacement of the GAN
generator a VAE. The GAN’s discriminator is then used to evaluate the generated samples
by comparing them to real data in the same way described in Chapter 4. By using a VAE to
regularise the generators latent space, it is the intention that the VAE-GAN is able to learn a
more structured and meaningful representation of the data which results in more stable and
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higher-quality generated samples. This type of architecture has been successfully applied already
to various domains within the literature. For example, in image synthesis, VAE-GANs have
been used to generate high-resolution images with sharper and more detailed features compared
to traditional GANs [Larsen et al., 2015].

This methodology could also be extended in a similar fashion to that described in Chapter
5. Whilst cGANs provided an opportunity to condition traditional GAN networks on additional
information, such as class labels, a conditional Variational Autoencoder Generative Adversarial
Network (cVAE-GAN) is a model that allows the same adaptation of a traditional VAE-GANs.
In a cVAE-GAN, the encoder and decoder networks of the VAE are conditioned on additional
information, such as class labels, in addition to the input data. The discriminator network of
the GAN is also conditioned on the same information. This conditioning allows the network to
generate samples that are conditioned on specific attributes or classes. There is therefore an
opportunity for additional research to consider a physics-informed cVAE-GAN model to generate
additional samples for classes that do not exist in the training set. Similar to the methodology
proposed in Chapter 5, where a class might correspond to the thickness of the target sample,
predictions could be made for classes within the domain of the training set and beyond.
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Chapter 8

Thesis Concluding Remarks

Having discussed the possibilities of machine learning within the ballistic domain, specifically
that of generative networks, some concluding remarks are given. Firstly, the significance and
implications of this work are discussed. Lastly, the limitations of the proposed methods are
given along with recommendations for future work.

8.1 Significance and Implications

The aim of this research was to investigate whether ML methods can be applied to predict
the response of materials and structures to ballistic impact and facilitate the design of armour
systems. Conventionally, approaches to understand the response to ballistic impact typically
revolve around experimental tests, whereby the material or structure of interest is subjected to
impact by a projectile in a controlled environment across a range of impact velocities. However,
the need for specialist equipment such as high-speed cameras combined with the destructive
nature of experimental testing incurs large costs for each of the experimental processes involved.
This cost is magnified when evaluating the response of complex materials such as composites
that are also expensive to fabricate or source. High strain rate material characterisation
campaigns often accompany ballistic testing in order to develop and calibrate material models
for numerical simulations of the penetration and perforation processes. Numerical tools, such
as the FE method, play an important role by filling the gaps left sparse by experimental results
and the parameters of the numerical models are adjusted such that an agreement with the
experimental data is met. This process is time consuming and adds additional cost to the
campaign. There is therefore an opportunity to explore whether ML models can be implemented
to learn directly from ballistic data and make subsequent predictions regarding the ballistic
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performance of a subject.

This thesis has shown that trained ML models can be used to supplement ballistic datasets.
Chapter 4 proposed a GAN architecture that was trained on 3 ballistic datasets of degrading
quality and the trained models were able to generate additional samples representative of the
training set. More importantly, the generated samples were used to predict the vbl with an error
of less than 5% in all cases. The proposed GAN architecture was able to learn directly from
the ballistic training set and, unlike numerical methods, there is no requirement for additional
tuning in order to improve the agreement between the generated samples and those which are
expected. Instead, the fine tuning was done during the training process and is governed by the
elected optimiser and loss function that optimised the trainable parameters of the network. An
important limitation with the traditional GAN network, is that its output is limited to samples
from the same distribution that it was trained on as there is no local control over the output.
As such, when the trained GAN is used to generate a new sample or make a new prediction,
that new prediction is selected from the distribution that it has learned and governed by the
latent input. The trained GAN can be used to make many predictions in order to assess the
scope of the learned distribution. In the case of the GAN trained in Chapter 4, this entire
distribution corresponds to a complete ballistic curve. What the GAN cannot do, however, is
make predictions outside of the domain that it was trained on. For instance, if the trained
GAN was trained on a ballistic dataset that corresponds to the perforation of a 10 mm thick
aluminium plate by a blunt, cylindrical projectile, it would not be possible to use the model
to predict the ballistic response of a thicker plate to the same loading scenario. The GAN is
therefore limited to generating new samples that are representative of the data that it was
trained on.

Chapter 5 however, implemented a variant of the GAN known as the cGAN. The cGAN
addresses a key limitation of conventional GANs where there is limited governance over the
output. cGANs can be conditioned by extra information during training such as class labels
or data from other modalities to grant additional control over the output. In this study, a
proposed cGAN architecture was trained on a multi-class ballistic dataset containing 10 classes
where each class corresponded to a ballistic curve with a different vbl. A total of 5 models
were trained on training sets consisting of 5, 10, 15, 20 and 25 ballistic samples within each
class. The cGAN model requires a class label input and the output is based on what the model
has learned to associate with that particular label during training. To that end, for integer
class labels 0 − 9, all cGAN models successfully predicted the vbl with an error of less than
4.12%. More interestingly, it was also found that for non-integer class labels between 0− 9,
the vbl predictions were similar despite not explicitly appearing in the training set. Moreover,
each of the cGAN models were challenged to generate new ballistic samples for class labels
that exist beyond the scope of the training set for class labels between 9− 20. It was found
that four of the models were able to predict the vbl with an error of less than 1.5%. This has
a direct application for use within material characterisation campaigns as the cGAN can be
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used to generate samples for classes that the model was not explicitly trained on. Unlike the
conventional GAN model, the cGAN could be trained on a multi-class ballistic data set where
each class refers to the ballistic response of a material at a different thickness and intermediate
class labels could be passed into the network to make predictions for intermediate thicknesses.

It should be noted however, that each prediction from the generative models in this thesis
returns a single ballistic sample that contains the vi and the corresponding vr. Therefore the
output from the GAN offers ballistic samples only, and no additional information is attained
regarding the method of perforation, plugging or any auxiliary information regarding the failure
mechanics of the target plate. This is an important distinction between the proposed generative
methodology and the numerical methods that are currently being used. Numerical methods
are still useful as they yield much more information regards to predicting the actual fracture
mechanics and failure modes of ballistic impact.

Chapter 6 applied the GAN model presented in Chapter 4 to an experimental dataset
conducted by Costas et al. [Costas et al., 2021]. This study considered 4 test cases on AM
maraging steel both as-printed and heat treated subject to impact from both a full AP bullet
and just the core. In each case, the prediction error of the vbl was less than 10%. However, it
was found that the GAN struggled to generalise synthetic ballistic samples across a wide range
of impact velocities as the generated samples clustered close to the data present in the training
set. Whilst this is to be expected, it reduces the scope of application for this method. The
study also highlights the difficulties associated with training GAN networks in practice.

8.2 Contribution to knowledge

Overall, this thesis presents a novel approach to train cGAN networks on incomplete material
characterisation campaigns that has not been previously considered in the literature. A trained
cGAN model can be used to (1) generate additional samples that belong to a desired class
(or plate thickness) and (2) subsequently make vbl predictions for the desired classes. The
cGAN network would simply require a training set made from the available experimental ballistic
data and, by using the methodology presented in Chapter 5, the trained model can be used
to generate new ballistic samples immediately. This offers a valuable benefit over numerical
methods as they can generate additional samples and make new predictions quickly irrespective
of the type of material used or the particular impact conditions. Depending on the complexity
of the experiment, FE models can take substantial time to set up and validate the model
such that its output aligns with that of the experiments. In addition, for each new ballistic
sample predicted via the numerical model, an entire simulation must be completed which adds
additional time and cost. This approach however, allows for quick and accurate predictions to
be made regarding the ballistic response of a material. The predictions of which could be used
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to influence the design process such that loading configurations with undesirable qualities can
be identified and eliminated sooner and conversely favourable configurations can be identified
and used to speed up the development of prototype armour systems.

8.3 Future Work

This thesis utilised ballistic datasets that were curated via analytical models to demonstrate
the potential of the methodology. Whilst the performance of the GAN was considered on
experimental data, it would be worthwhile to also test the cGAN architectures directly on
experimental datasets. The extensive ballistic research performed by Børvik et al. [Børvik
et al., 1999a, Børvik et al., 2001b, Børvik et al., 2003, Børvik et al., 2005] includes the results
from material characterisation campaigns at different plate thicknesses. The data could be
structured into a multi-class ballistic training set, as shown in Chapter 5, where each thickness
corresponds to a different class of ballistic data. Ballistic data that corresponds to the results
from one of the material thickness campaigns could be omitted from the training set to form
test cases for the generated samples from the trained cGAN model to be compared against.

In addition, it would be beneficial to stress-test the performance of the cGAN network and
consider its robustness against training sets of varying quality. The study presented in Chapter
5 considers a multi-class training set that consists of 10 classes and a comparison is made
between models based on the number of samples that are present within each class. In practice,
it cannot be guaranteed that 10 classes of ballistic data are available to form an equivalent
training set. Instead, additional research should be conducted to determine the limitations of
the methodology and find the minimum number of classes required to achieve acceptable results.
To that end, multiple cGAN networks could then be trained on separate ballistic datasets that
contain a different number of classes and a varying number of samples within each class.

Whilst the application of the cGAN was the biggest achievement of this thesis, there is an
opportunity to explore the implementation of transfer learning in this domain on the standard
GAN specifically. Transfer learning is a machine learning method where a model developed
specifically for a task is reused as the starting point for a model on a second task. To that
end, a GAN could be trained on an analytical dataset to learn the key features that constitute
the ballistic curve. That includes: (1) a region below the vbl where all impact velocities return
a residual velocity of 0, (2) a distinct vbl location, where impact velocities greater than vbl
return a residual velocity that is greater than 0 and (3) the residual velocity never exceeds
the impact velocity. Once the model has learned the key features of a ballistic curve, it could
then be re-trained and conditioned directly on ballistic samples produced by experiments. The
intention would be to further reduce the number of samples required to train the model, given
that the pre-trained model already has an understanding of the key features that constitute
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the ballistic curve. This could allow for the GAN model to be more flexible when training on
ballistic datasets and remove the requirement for the training set to contain samples that exist
near the vbl. The preferred implementation of this would implement physics-informed machine
learning models as described in Chapter 7. This approach would consider a VAE-GAN where
the G model of the GAN is replaced by a decoder model that was pre-trained on a ballistic
training set such as the Lambert analytical model. The Lambert model is a generalisation of
the Recht-Ipson model that describes vr after complete perforation in relation to vi and vbl
based on conservation laws of energy and momentum. The intention is that pre-training the
VAE-GAN model on this data could help to both generalise the synthetic data produced from
the model whilst also improving its quality. Similar to the cGAN model presented in Chapter 5,
there is also an opportunity to consider a cVAE-GAN model to make predictions for classes
that do not exist in the training set and can therefore make a true contribution to material
characterisation campaigns.
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