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Abstract

To help diagnose, treat, manage, prevent and predict diseases, medical image analysis plays an

increasingly crucial role in modern health care. In particular, using machine learning (ML) and

deep learning (DL) techniques to process medical imaging data such as MRI, CT and X-Rays

scans has been a research hot topic. Accurate and generalisable medical image segmentation

using ML and DL is one of the most challenging medical image analysis tasks. The challenges

are mainly caused by two key reasons: a) the variations of data statistics across different clinical

centres or hospitals, and b) the lack of extensive annotations of medical data.

To tackle the above challenges, one of the best ways is to learn disentangled representations.

Learning disentangled representations aims to separate out, or disentangle, the underlying ex-

planatory generative factors into disjoint subsets. Importantly, disentangled representations can

be efficiently learnt from raw training data with limited annotations. Although, it is evident

that learning disentangled representations is well suited for the challenges, there are several

open problems in this area. First, there is no work to systematically study how much disentan-

glement is achieved with different learning and design biases and how different biases affect

the task performance for medical data. Second, the benefit of leveraging disentanglement to

design models that generalise well on new data has not been well studied especially in med-

ical domain. Finally, the independence prior for disentanglement is a too strong assumption

that does not approximate well the true generative factors. According to these problems, this

thesis focuses on understanding the role of disentanglement in medical image analysis, mea-

suring how different biases affect disentanglement and the task performance, and then finally

using disentangled representations to improve generalisation performance and exploring better

representations beyond disentanglement.

In the medical domain, content-style disentanglement is one of the most effective frameworks

to learn disentangled presentations. It disentangles and encodes image “content” into a spatial

tensor, and image appearance or “style” into a vector that contains information on imaging char-

acteristics. Based on an extensive review of disentanglement, I conclude that it is unclear how

different design and learning biases affect the performance of content-style disentanglement

methods. Hence, two metrics are proposed to measure the degree of content-style disentangle-

ment by evaluating the informativeness and correlation of representations. By modifying the



design and learning biases in three popular content-style disentanglement models, the degree

of disentanglement and task performance of different model variants have been evaluated. A

key conclusion is that there exists a sweet spot between task performance and the degree of

disentanglement; achieving this sweet spot is the key to design disentanglement models.

Generalising deep models to new data from new centres (termed here domains) remains a chal-

lenge. This is largely attributed to shifts in data statistics (domain shifts) between source and un-

seen domains. With the findings of aforementioned disentanglement metrics study, I design two

content-style disentanglement approaches for generalisation. First, I propose two data augmen-

tation methods that improve generalisation. The Resolution Augmentation method generates

more diverse data by rescaling images to different resolutions. Subsequently, the Factor-based

Augmentation method generates more diverse data by projecting the original samples onto dis-

entangled latent spaces, and combining the learned content and style factors from different

domains. To learn more generalisable representations, I integrate gradient-based meta-learning

in disentanglement. Gradient-based meta-learning splits the training data into meta-train and

meta-test sets to simulate and handle the domain shifts during training, which has shown su-

perior generalisation performance. Considering limited annotations of data, I propose a novel

semi-supervised meta-learning framework with disentanglement. I explicitly model the repre-

sentations related to domain shifts. Disentangling the representations and combining them to

reconstruct the input image, allows unlabeled data to be used to better approximate the true

domain shifts within a meta-learning setting.

Humans can quickly learn to accurately recognise anatomy of interest from medical images

with limited guidance. Such recognition ability can easily generalise to new images from dif-

ferent clinical centres and new tasks in other contexts. This rapid and generalisable learning

ability is mostly due to the compositional structure of image patterns in the human brain, which

is less incorporated in the medical domain. In this thesis, I explore how compositionality can be

applied to learning more interpretable and generalisable representations. Overall, I propose that

the ground-truth generative factors that generate the medical images satisfy the compositional

equivariance property. Hence, a good representation that approximates well the ground-truth

factor has to be compositionally equivariant. By modelling the compositional representations

with the learnable von-Mises-Fisher kernels, I explore how different design and learning bi-

ases can be used to enforce the representations to be more compositionally equivariant under

different learning settings.
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Overall, this thesis creates new avenues for further research in the area of generalisable rep-

resentation learning in medical image analysis, which we believe are key to more generalised

machine learning and deep learning solutions in healthcare. In particular, the proposed met-

rics can be used to guide future work on designing better content-style frameworks. The

disentanglement-based meta-learning approach sheds light on leveraging meta-learning for bet-

ter model generalisation in a low-data regime. Finally, compositional representation learning

we believe will play an increasingly important role in designing more generalisable and inter-

pretable models in the future.
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Lay Summary

Medical image analysis is crucial in modern healthcare for diagnosing, treating, managing,

preventing and predicting diseases. Artificial intelligence (AI) techniques can be used for ac-

curate and automatic medical image analysis. However, using AI is challenging for real-world

medical applications due to the differences of data collected from different hospitals and the

lack of labels of the medical imaging data. AI solutions that can be used across different hos-

pitals are called generalisable AI. This thesis focuses on developing generalisable AI, taking

advantage of the large amount of unlabeled medical imaging data. The key technology in this

thesis is extracting or learning representative information (termed representations) that is use-

ful and generalisable for the medical image analysis tasks. In this thesis, two metrics are first

introduced to evaluate how good the representations of different AI models are. Then, differ-

ent approaches are proposed to improve the generalisation ability of the representations of AI

models. Eventually, inspired by the recognition process in the human brain, a new framework

is proposed to learn more generalisable representations. Overall, this thesis creates new av-

enues for further research in the area of generalisable representation learning in medical image

analysis, which we believe are key to more generalised AI solutions in healthcare.
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Chapter 1
Introduction

In the year 2018, Google initiated the deployment of an Artificial Intelligence (AI) program in

Thailand with the aim of detecting and screening for Diabetic Retinopathy, a disease that leads

to permanent blindness. The deep learning models trained with the high-quality patient data in

Google’s lab worked perfectly with more than 90% accuracy reaching a human specialist level.

Millions of patients were about to be saved from the risk of permanent blindness with the fast

and accurate diagnosis of deep learning models. However, the reality of the program was far

from the expected results. Nurses were tasked with scanning a high volume of patients in a short

span of time, often under challenging conditions such as poor lighting. As a result, a significant

proportion of images was rejected by the deep learning models, leading to an increased need

for manual review to ensure accuracy. In fact, nurses had to spend more time scanning each

patient such that the imaging data matches the “taste” of AI. 1

The differences between lab-based environments and reality, and the shifts between training

data and test data, e.g. good and poor lighting conditions, do not only exist in Google’s Thai-

land program. This issue is prevalent in nearly all tasks that utilise deep learning methods.

Specifically, in medical image analysis, the significant statistical variations across data from

various clinical centres (termed here domains) greatly affect the efficacy of deep models [5].

This reduction in performance is mainly caused by domain shifts due to differences in pa-

tient populations, scanners, and scanning acquisition settings, as discussed in [23]. Variations

in patient populations can result in differences in underlying anatomy and pathology, owing

to factors such as gender, age, and ethnicity, which vary across locations, as demonstrated

in [24, 25, 26]. Additionally, variations in scanners and scanning acquisition settings can im-

pact the characteristics of the acquired images, such as brightness and contrast [23].

The naive approach to handling domain shifts is to acquire and label as many and diverse data as

possible. The acquisition of diverse data may be possible but privacy concerns have to be taken

into account. In fact, there are many patients’ data stored in safe havens e.g. within hospitals.

1Information in this paragraph is mainly from [22].
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Figure 1.1: The illustration figure for demonstrating the generative factors, representation and

generation process. The image is a profile photo of the author ( “Xiao”).

2 However, annotating the data is considerably expensive and time-consuming. Taking the

annotation of cardiac structure as an example, it takes several hours of work for a cardiovascular

specialist 3 to label hundreds of 2-Dimensional Magnetic Resonance Imaging (MRI) images

for one patient. Training a deep model for cardiac segmentation typically requires data from

hundreds of patients for satisfactory performance. The cost of fully annotating the training data

is remarkably high. Hence, taking advantage of unlabelled data plays a crucial role in modern

deep learning techniques in medicine.

1.1 Motivation

This thesis focuses on tackling the domain shifts across domains as well as utilising unlabelled

data in medical image analysis. An efficient and important approach is learning good represen-

tations that are invariant to the domain shifts without the requirement of extensive data anno-

tations. Finding good representations for the task at hand is fundamental in machine learning

and deep learning [28, 29]. In the context of representation learning, it is assumed that there is

a generation process that produces the images with some generative factors. A simple example

is illustrated in Fig. 1.1. The generative factors are encoded into a vector i.e. the representa-

tion. The generation process generates an image based on the representation. In representation

learning with machine learning (ML) and deep learning (DL), typically some data are given

and the target is to find the generation process and the generative factors. Under the modern

DL framework, the generation process is modeled as neural networks [28]. The representations

are modeled as vectors or tensors that are the features or the output of neural networks.

2A good example is that collaborating with Royal Infirmary, Edinburgh, we collected more than 4 Terabytes of
patient data in our database.

3Average daily salary of cardiovascular specialists in the UK is around 189 GBP [27].
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Disentanglement, a sub-area of representation learning, aims to separate out, or disentangle, the

representations such that each representation approximates the underlying explanatory genera-

tive factor. A formal definition of disentangled representation is “single latent units are sensi-

tive to changes in single generative factors while being relatively invariant to changes in other

factors” [28]. As proposed in the famous Variational Auto-Encoder (VAE) [30], constraining

each dimension of the latent vector representation to be independent surprisingly disentangles

the latent space. Starting from VAE, enforcing the representations to be independent becomes

a fundamental way to learn disentangled representations.

Disentanglement has great potential in addressing domain shifts towards more generalised deep

models in the medical domain. Fundamentally, disentangling the factors that are consistent or

invariant across domains and using these factors for the tasks at hand tackles the variation of

data. For example, the MRI images of the same patient scanned in different hospitals contain

the same anatomical information of the patient but with different appearances or intensities

(modalities) caused by scanning with different scanners or the same scanner with different ac-

quisition settings. Disentangling the anatomy factor from the modality factor and using the

anatomy factor for downstream tasks produces better generalisation. More importantly, dis-

entangled representations can be learnt with unlabelled data under limited supervision or with

some expert knowledge [31]. This opens the door to taking advantage of the large amount of

unlabelled data existing in the medical domain.

1.2 Challenges

It is evident that learning disentangled representations is well suited for addressing the domain

shifts with the unlabelled data. In fact, some prior art [13] has already demonstrated such

potential of disentangled representations. However, there are still several open problems and

challenges in this area.

Although there are extensive works on disentanglement for computer vision tasks e.g. image-to-

image translation [32, 33], facial attribute transfer [34, 35], pose estimation [36, 37]. There is no

systematic study summarising the key theory in disentanglement and answering the questions

– how to design disentanglement models; what are the measurements of disentanglement; and

how the advances of disentanglement can be applied to medical data.

Moreover, many works have been proposed to evaluate the degree of disentanglement assum-
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ing that the representations have the form of vectors. Recently, content-style disentanglement

has been proposed to encode image “content” into a spatial tensor and image appearance or

“style” into a vector, which has achieved state-of-the-art performance on many spatially equiv-

ariant tasks such as image-to-image translation. In the content-style disentanglement frame-

works, different model designs, learning objectives, and data biases are employed for different

computer vision tasks. This content-style disentanglement framework has also shown supe-

rior performance in the medical domain, as represented in [13]. While considerable effort has

been made to measure disentanglement in vector representations, and assess its impact on task

performance, such analysis for (spatial) content-style disentanglement is lacking.

Then, the benefit of leveraging disentanglement to design models that generalise well on new

data has not been well studied. Generalisation on unseen data is the holy grail even in med-

ical applications [38]. Although disentangled representations should be robust, recent stud-

ies [39, 40] found that disentanglement does not guarantee, for instance, combinatorial generali-

sation (understanding and producing novel combinations of familiar elements). More advanced

approaches are required to learn generalisable disentangled representations with a guarantee.

Finally, the independence prior for disentanglement is too strong as an assumption that does

not approximate well the true generative factors. When learning disentangled representation

in real-life settings [41], statistical independence between latent variables does not hold when

the generating factors are correlated [42, 43]. It is common that real data is not independent

and identically distributed, and bias exists due to domain shifts. In these cases, it has been

shown that factorisation-based inductive biases (as in VAE [30]) are not enough to learn the true

generating factors. These biases can have significant implications for domain generalisation.

1.3 Overview and Technical Contributions

According to these problems, this thesis focuses on understanding the role of disentanglement

in medical image analysis, measuring how different biases affect disentanglement and task

performance, using disentangled representations to improve generalisation performance and

exploring better representations beyond disentanglement.

More specifically, I first conduct a comprehensive survey on learning disentangled represen-

tations in the imaging domain. The theory of disentangled representation learning has been

briefly concluded. Different frameworks enforcing disentanglement, the building blocks for
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disentanglement as well as metrics of measuring disentanglement have been thoroughly revised.

The survey is inspired by a tutorial I co-organised at the International Conference on Medical

Image Computing and Computer-Assisted Intervention (MICCAI) on disentangled represen-

tations (https://vios.science/tutorials/dream2021) and benefits greatly from

feedback received from participants in the tutorial. Part of the content of the survey has been

included in Chapter 3 and Chapter 7, where the publication is:

• Liu, X.*, Sanchez, P.*, Thermos, S.*, O’Neil, A.Q. and Tsaftaris, S.A., 2022. Learn-

ing Disentangled Representations in the Imaging Domain. Medical Image Analysis,

p.102516. *Equal contribution.

Chapter 3 is also benefited from:

• Fragemann, J., Ardizzone, L., Liu, X., Tsaftaris, S.A., Egger, J. and Kleesiek, J., 2023.

Review of Disentanglement Approaches for Medical Applications: Towards Solving the

Gordian Knot of Generative Models in Healthcare. ACM Computing Surveys (under

review).

The code repository for Chapter 3 is publicly available at https://github.com/

vios-s/disentanglement_tutorial.

In Chapter 4, I examine the impact of various biases in the context of content-style disen-

tanglement and determine the relationship between the degree of disentanglement and task

performance. To achieve this objective, the following steps are taken: (i) A comprehensive

analysis of the key design choices and learning constraints for three popular content-style dis-

entanglement models is performed. (ii) The constraints of the models are relaxed or removed as

ablations. (iii) The degree of disentanglement is measured using two proposed metrics, and its

effect on task performance is evaluated. The results of the experiments indicate the existence

of a “sweet spot” between disentanglement, task performance, and content interpretability. The

findings show that an excessive emphasis on disentanglement may negatively affect model per-

formance and the semanticness of content factors. The results of this study, together with the

task-independent metrics used, provide valuable insights into the design and selection of mod-

els for applications that require disentangled content-style representations. Chapter 4 is based

on the following publication:
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• Liu, X.*, Thermos, S.*, Valvano, G.*, Chartsias, A., O’Neil, A. and Tsaftaris, S.A.,

2021. Measuring the Biases and Effectiveness of Content-Style Disentanglement. British

Machine Vision Conference 2021. *Equal contribution.

The code for Chapter 4 is publicly available at https://github.com/vios-s/

CSDisentanglement_Metrics_Library.

In Chapter 5, I propose methods to learn more generalisable disentangled representations. I

have introduced two data augmentation techniques aimed at enhancing the domain adaptation

and generalisation ability of state-of-the-art cardiac segmentation models. The “Resolution

Augmentation” method creates a more diverse dataset by rescaling images to different resolu-

tions within a range spanning different scanner protocols. The “Factor-based Augmentation”

method projects the original samples onto disentangled latent spaces and combines anatomy

and modality factors from different domains to generate more diverse data. However, these

augmentations only produce more diverse training data and do not ensure that the disentangled

representations will be able to generalise to unseen domains. Hence, it becomes necessary to

consider more advanced approaches.

I have also investigated the use of meta-learning to improve the generalisation ability of dis-

entangled representations. To this end, gradient-based meta-learning approaches, in which the

training data are divided into meta-train and meta-test sets to simulate and tackle domain shifts

during training, have demonstrated improved generalisation performance. However, the current

fully supervised meta-learning approaches are not scalable for medical image segmentation as

they require large efforts to create pixel-wise annotations. Furthermore, in low data regimes,

the simulated domain shifts may not accurately represent the true domain shifts between source

and unseen domains. To address these challenges, I propose a novel semi-supervised meta-

learning framework with disentanglement. The framework explicitly models representations

related to domain shifts, and disentangling and combining these representations to reconstruct

the input image enables the use of unlabelled data to more accurately approximate the true

domain shifts for meta-learning. As a result, the model can achieve better generalisation per-

formance, especially when there is a limited amount of labelled data. The experiments have

demonstrated the robustness of the proposed method on different segmentation tasks and have

achieved state-of-the-art generalisation performance on two public benchmarks. Chapter 5 is

based on the following publications:
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• Liu, X., Thermos, S., O’Neil, A. and Tsaftaris, S.A., 2021. Semi-supervised Meta-

learning with Disentanglement for Domain-generalised Medical Image Segmentation. In

International Conference on Medical Image Computing and Computer-Assisted Inter-

vention 2021.

• Liu, X., Thermos, S., Chartsias, A., O’Neil, A. and Tsaftaris, S.A., 2020. Disentan-

gled Representations for Domain-generalised Cardiac Segmentation. In International

Workshop on Statistical Atlases and Computational Models of the Heart (pp. 187-195).

Springer, Cham.

Chapter 5 is also benefited from:

• Campello, V.M., ..., Liu X., Tsaftaris, S.A., ..., Lekadir K. 2021. Multi-Centre, Multi-

Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge. IEEE Trans-

actions on Medical Imaging.

The code for Chapter 5 is publicly available at https://github.com/vios-s/RA_FA_

Cardiac and https://github.com/vios-s/DGNet.

In Chapter 6, I consider compositionality as a prior to learning generalisable and interpretable

representations. As discussed before, deep learning models often require a substantial amount

of labelled data for effective training. On the other hand, humans are able to quickly identify

crucial anatomy in medical images such as MRI scans with minimal instruction. This recog-

nition capability is easily generalisable to new images from different medical facilities and to

new tasks in different settings. This rapid and generalisable learning ability is largely due to the

compositional structure of image patterns in the human brain, which is not well represented in

current medical models. In Chapter 6, I examine the role of compositionality in learning more

interpretable and generalisable representations for medical image segmentation. I propose that

the underlying generative factors that produce medical images adhere to the compositional

equivariance property, where each factor is both compositional (i.e. corresponds to structures

in human anatomy) and equivariant to the task. As a result, a good representation that closely

approximates the ground truth factor is compositionally equivariant. By modelling the compo-

sitional representations with learnable von-Mises-Fisher (vMF) kernels, I explore how different

design and learning biases can be used to enforce compositional equivariance in un-, weakly-,

and semi-supervised settings. In particular, for the semi-supervised setting, I evaluate the pro-
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posed models on the task of semi-supervised domain-generalised medical image segmentation.

The results show that our methods outperform several strong baselines. Chapter 6 is based on

the following publications:

• Liu, X., Sanchez, P., Thermos, S., O’Neil, A. and Tsaftaris, S.A., 2023. Compositionally

Equivariant Representation Learning. IEEE Transactions on Medical Imaging (under

review).

• Liu, X., Thermos, S., Sanchez, P., O’Neil, A. and Tsaftaris, S.A., 2022. vMFNet: Com-

positionality Meets Domain-generalised Segmentation. In International Conference on

Medical Image Computing and Computer Assisted Intervention 2022.

The code for Chapter 6 is publicly available at https://github.com/vios-s/

vMFNet. Note that the paper “Compositionally Equivariant Representation Learning” has been

submitted to the IEEE Transactions on Medical Imaging and is under review during the thesis

writing.

1.4 Thesis Structure

Here I provide an overview of the thesis contents. Chapter 2 contains background information

on medical imaging, as well as presents the datasets used. Chapter 3 presents a technical back-

ground on deep learning and representation learning, as well as a literature review on the main

research areas of the thesis. Chapter 4 introduces our proposed metrics measuring content-style

disentanglement. Chapter 5 introduces the solutions to generalisable disentangled represen-

tations. Then, Chapter 6 proposes new methods for compositional representation learning.

Finally, Chapter 7 concludes the manuscript, discussing limitations and future extensions of

this work.
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Chapter 2
Clinical and Medical Imaging

Background

In this chapter, I will give the clinical and medical imaging background that is relevant to the

proposed methods in Chapter 4, Chapter 5 and Chapter 6. In this thesis, I mainly utilised

magnetic resonance imaging (MRI) images. I first briefly demonstrate how MRI works. Cine-

MRI is particularly discussed to motivate the segmentation task. Then, a discussion of the

human heart and the spinal cord and gray matter is included. In particular, the anatomical

variations and imaging variations causing domain shifts are presented. Finally, I discuss how

the data preprocessing is performed on the multi-centre, multi-vendor & multi-disease cardiac

image segmentation (M&Ms) dataset [5] and spinal cord gray matter segmentation (SCGM)

dataset [7], which are heavily used in Chapter 5 and Chapter 6. For other datasets used in this

thesis, the details and data preprocessing steps are discussed specifically in each chapter.

2.1 Magnetic Resonance Imaging

As a noninvasive imaging technology, MRI is becoming one of the gold standards for disease

detection, diagnosis, and treatment monitoring [44]. In principle, MRI forms the visualisation

of soft tissues by exciting and detecting the change in the direction of the rotational axis of

hydrogen protons found in the water that makes up living tissues. As depicted in Fig. 2.1, an

MRI scanner contains the major magnet, gradient coils and radio frequency (RF) coils. MRI

scanning is performed with the following steps:

Alignment. Without any external magnetic field, the hydrogen protons spin in random direc-

tions in the human body. When the magnet of an MRI scanner applies a strong magnetic field

B0, the protons are aligned and spin parallel with or antiparallel to this external field B0 at a

frequency known as Larmor frequency.

Excitation. After aligning the hydrogen protons, the RF coil sends an electromagnetic RF
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Figure 2.1: The illustration of the cutaway of an MRI scanner. Image is taken from [1].

pulse, which changes the spin direction of the hydrogen protons. This process is known as the

excitation phrase.

Relaxation. After the RF pulse ends, the protons gradually change to the initial spin direction

i.e. B0 direction. During this relaxation phase, the protons release energy by emitting electro-

magnetic waves. The time required for the protons to reach 63% of the original spin direction is

known as the T1 relaxation time. Stopping the RF pulse, also results in dephasing of the protons

in the transverse direction, in which their spins are not aligned anymore. The time needed to

dephase 37% of the original protons is called T2 relaxation time. T1 and T2 times vary across

different tissues due to variations in their water and fat content.

Detection. The emitted electromagnetic waves (the echo signal) can be detected by the radio

frequency receiver coils in the MRI scanner. Note that the energy of the emitted electromagnetic

waves decays over time. With the measured echo signal, the MRI scanner gathers the received

information in the k-space. The final image in MRI is produced by applying the Fourier trans-

form to the k-space data. K-space, also known as frequency space or spatial frequency domain,

is a mathematical representation of the raw data acquired during an MRI scan. It is a 2D or 3D

grid of points that contains information about the phase and spatial frequencies of the image

pixels. I show an example of the frequency data and the corresponding image in Fig. 2.2.

Localisation. To localise the hydrogen protons that emit the signal, The gradient coils of the

MRI scanner modulate the magnetic field B0 in a predictable manner. This modulation causes

a variation of the Larmor frequency of proton spins according to their position. Hence, the

position is encoded in the echo signals enabling spatial localisation.
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Fourier Transform

Frequency Space Image Space

Figure 2.2: Reconstruction example from k-space (frequency space). Image is taken from [2].

There are many commonly used MRI protocols such as Brain MRI, Spine MRI and Cine-MR

that contain standardised sets of procedures and parameters to acquire specific types of images.

Different protocols provide significantly different information for visualising different aspects

of tissues in the body, causing imaging variation across datasets. For example, T1-weighted

and T2-weighted images are created by manipulating the timing of the signal acquisition to

emphasise the differences in T1 and T2 relaxation times between tissues. For Brain MRI, T1-

weighted images typically provide detailed anatomical information and T2-weighted images

highlight pathology, such as edema and inflammation. In Section 2.1.1, I will describe more

details about Cine-MR.

2.1.1 Cine-MR

Cardiovascular diseases (CVD) have been identified as the top cause of death globally by World

Health Organization, accounting for 17.9 million lives each year [45]. Possible early signals of

CVD include a raised blood pressure, level of glucose, and lipids, as well as obesity. Primary

care facilities can easily measure these symptoms and if appropriate early treatment is provided

for those at the highest risk of CVD, premature deaths can be efficiently prevented [46].

In clinics, cine-MR is the most commonly used protocol for CVD diagnosis, involving a tem-

poral sequence with 10-30 frames. For cine-MR, the contraction and expansion of the heart are

triggered by electrical signals that stimulate the myocardium, resulting in a consistently rhyth-

mic cycle (as a heartbeat). This electrical activity is captured and measured using electrodes

placed on the skin, as depicted in Fig.2.3, through a technique called electrocardiogram (ECG).
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Figure 2.3: An example ECG showing the electrical activity of the heart, with the systole and

diastole phases marked. Image is taken from [3].

ECG is used for imaging of the cardiac cycle. To ensure high-quality image acquisition, fre-

quency space data for each frame are collected across different cycles. The synchronisation of

the sampled data with specific frames is achieved using ECG gating, which detects the R-wave

signal indicating the start of the systolic phase in the cardiac cycle. Both MR imaging and ECG

pulse, which define the R-R interval of a heartbeat (see Fig. 2.3), are executed simultaneously,

and synchronisation is carried out retrospectively. During an imaging session, multiple breath

holds are required, and each cine-MR slice is scanned within approximately 10 seconds. To

shorten the scanning time, non-isotropic images are acquired with a lower spatial resolution,

typically with slice thickness ranging between 8mm and 10mm.

Cine-MR is a bright-blood technique due to its high signal intensity within vessels compared

to other tissues. It is frequently used to calculate functional indices like ejection fraction, wall

thickness, myocardial mass and ventricle volumes for CVD diagnosis. These biomarkers are

crucial for diagnosing and monitoring various cardiac conditions, including heart failure, coro-
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Figure 2.4: Example images and the corresponding segmentation masks of the end diastole

frame of the cine-MR data. The segmentation masks mark the pixels of the left

ventricle (circle shape), myocardium (torus shape) and right ventricle (white area).

Images are taken from the M&Ms dataset [4]. Reproduced with permission.

nary artery disease, and congenital heart defects, etc. To obtain these functional indices, clini-

cians manually identify the different components of the heart (i.e. manual segmentation), such

as the chambers, valves, and blood vessels, which is tedious and labour-intensive. Moreover,

cross-corrections between clinicians are required to ensure accurate and consistent annotations

of cardiac boundaries across all image slices and cardiac phases. In Fig. 2.4, I chose to show ex-

ample cine-MRI images and the corresponding segmentation masks for the end diastole frame.

This demand for accurate and automatic identification of the heart components motivates med-

ical image segmentation with machine learning and deep learning techniques. Medical image

segmentation refers to the process of separating an image into multiple segments or regions,

each of which corresponds to a specific anatomical structure or tissue type, which is the major

medical image analysis task considered in this thesis.

2.2 The Heart

In this thesis, the proposed methods in Chapter 5 and Chapter 6 were initially motivated by

the clinical applications of cardiovascular disease analysis and diagnosis. Here, I specifically

introduce the structure of the human heart and the mechanism of how the heart works. I also

briefly discuss how the heart’s anatomical structure varies across different populations. In par-

ticular, I discuss how aging affects the heart anatomical structure as an example of illustrating

the variation of heart anatomy caused by different patient populations.
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Figure 2.5: The cutaway figure of the human heart with labels to different anatomy. Image is

produced based on the heart 3D model created by Microsoft Powerpoint.

Figure 2.6: The cutaway figure of the human heart. 4 different views of the heart cutaway are

depicted. Image is produced based on the heart 3D model created by Microsoft

Powerpoint.

2.2.1 The structure of human heart

As illustrated in Fig. 2.5, the human heart contains four chambers i.e. the right atrium, right

ventricle, left atrium and left ventricle. In Fig. 2.6, four different views of the cutaway of the

human heart are depicted for better visualisation. Overall, the heart and lungs are the core or-

gans of the human circulatory system. The heart and lungs oxygenate the blood before it is

distributed to the rest of the body. The process of oxygenation occurs in several stages: firstly,

deoxygenated blood from the body is received by the right atrium through the vena cava; sec-

ondly, the right atrium pumps the blood to the right ventricle; thirdly, the right ventricle pumps

the low-oxygen blood to the lungs where it is replenished with oxygen; fourthly, oxygenated

blood is received by the left atrium from the lungs, and then pumped to the left ventricle; fi-

nally, the left ventricle pumps the oxygen-rich blood through the aorta to the rest of the body.

The whole process happens throughout a cardiac cycle from end systole to end diastole. At end
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systole, the myocardium is fully contracted to pump blood. At end diastole, the myocardium is

fully expanded to receive blood.

Figure 2.7: Synthetic aging cardiac MRI images. Image is taken from [4]. Reproduced with

permission.

2.2.2 The anatomical variation

The differences in the anatomy of hearts across different clinical centres primarily arise from

variations in patient populations. This variation in populations can affect the underlying

anatomical and pathological features due to factors like age, gender, and ethnicity, which can

vary among patients in different locations [24, 26]. For example, as I and the co-authors stud-

ied in [4], age has a positive correlation with morphological modifications in the heart, such as

an enlarged left atrial diameter [47], increased thickness of the left ventricular (LV) wall, and

reduced LV dimensions [48, 49]. These changes are linked with conditions like atrial fibril-

lation and heart failure with preserved ejection fraction [49, 50]. There are also gender-based

differences in the aforementioned alterations, with women showing a higher prevalence of in-

creased LV wall thickness [51]. Age-related deposition of epicardial adipose tissue has been

also observed to increase significantly [51]. In Fig. 2.7, I show an example of synthetic aging

cardiac MRI images to demonstrate the simulated anatomical variation caused by aging. The

alterations tend to be spatially localised, with a focus on the interventricular septum and aorta,

and these changes vary in opposite directions for different age ranges.

2.2.3 The imaging variation

Using different MRI scanners or under different acquisition settings in the same manner, the

acquired MRI images can be significantly different. In Fig. 2.8, I chose to present 4 example
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cine-MR images that are produced by four different scanners, which are Siemens MAGNE-

TOM Avanto, Philips Achieva, General Electric Signa Excite and Canon Vantage Orian. Note

that the magnetic field strengths of B0 are the same for the four scanners i.e. 1.5 Teslas (1.5T).

As Fig. 2.8 shows, the four images have significant differences in terms of contrast, brightness,

resolution and noise levels, etc. Moreover, for different field strengths, the collected images will

also vary in appearance. In principle, a stronger echo signal can be produced by the stronger

field strength. Hence, a clearer image may be produced because the stronger signal overcomes

more background noise. On the other hand, different scanners or different acquisition settings

used may produce different artifacts in the images, resulting in a difference in image appear-

ance. Overall, these factors cause domain shifts in the imaging characteristics across different

clinical centres.

(c) General Electric (d) Canon(a) Siemens (b) Philips

Figure 2.8: Examples of cardiac MRI images that have anatomically similar structures and are

produced by four different scanners. Images are taken from [5]. The figure is

reproduced with permission.

2.3 Spinal Cord and Gray Matter

Apart from the cardiac data analysis, I also consider the other application of spinal cord and

gray matter segmentation to verify the task robustness of the proposed approaches. For spinal

cord and gray matter, I present the anatomical structure and functionality. As the population

variation contributes little to the domain shifts, I chose to specifically demonstrate the domain

shits caused by imaging characteristics variations. Finally, I discuss how the data preprocessing

is performed on this dataset.

2.3.1 The structure of spinal cord and gray matter

The spinal cord is situated within the vertebral canal and facilitates the transmission of nerve

impulses to 31 pairs of spinal nerves, enabling communication between the brain and periph-
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Gray Matter

White Matter

Figure 2.9: The illustration of the spinal cord with labels to the gray matter and white matter.

Image is taken from [6].

eral nerves [52]. Two fundamental mechanisms underlie this transmission process, namely

afferent signals that convey sensations originating from nervous tissue in the trunk, neck, and

forelimbs to the brain, and efferent signals that transmit instructions from the brain to effector

organs in the trunk, neck, and limbs, causing them to execute specific actions. In addition to

these communication functions, the spinal cord is also responsible for regulating immediate

and vegetative movements, such as reflex actions, central nervous system functions, and the

sympathetic and parasympathetic systems. As depicted in Fig. 2.9, in a cross section of the

spinal cord, the central region comprises the gray matter, which has a butterfly-like shape. Es-

sentially, the gray matter is primarily made up of neuronal bodies and cells that modulate the

immune system. The white matter contains axons that transmit information up and down the

spinal cord. Segmenting the gray and white matter in the spinal cord plays a crucial role in the

tissue specific analysis to help clinicians with diagnosis, prognosis, and treatment planning of

diseases such as spinal cord injury, multiple sclerosis, and spinal cord tumours.

(c) Zurich (d) Vanderbilt(a) UCL (b) Montreal

Figure 2.10: Examples of the MRI images for the spinal cord and gray matter segmentation.

The images are scanned by different scanners on different sites i.e. UCL, Mon-

treal, Zurich and Vanderbilt. Images are taken from [7].
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2.3.2 The imaging variation

As shown in Fig. 2.10, I present 4 example images that are scanned in different sites with

different scanners. Although the variation in the anatomical structure is negligible, the variation

in image appearance introduces remarkable domain shifts. Similar to cine-MR data, different

images from different sites have varying contrasts, brightness, resolutions and noise levels, etc.

2.4 Data Preprocessing

In this thesis, I mainly used the multi-centre, multi-vendor & multi-disease cardiac image seg-

mentation (M&Ms) dataset [5]. The dataset contains 320 subjects. Subjects were scanned at

6 clinical centres in 3 different countries (Spain, Germany and Canada) using 4 different mag-

netic resonance scanner vendors (Siemens, Philips, General Electric, and Canon). For each

subject, only the end systole and end diastole phases are annotated. Voxel resolutions range

from 0.85 × 0.85 × 10 mm to 1.45 × 1.45 × 9.9 mm. The number of time frames for the

subjects ranges from 25 to 30. For more details about this dataset, I refer the readers to the

M&Ms challenge page (https://www.ub.edu/mnms/) and the accompanying journal

paper [5]. For data preprocessing, I first split the data into 4 subsets based on the scanner

vendor. In Chapter 5 and Chapter 6, each subset is considered as one domain for the task of

domain generalisation. The 4 subsets or domains have 95, 125, 50 and 50 subjects. For each

subject, the data is in Neuroimaging Informatics Technology Initiative (NIFTI) format [53],

which has 4 dimensions corresponding to the number of slices for each frame, the number

of time frames, the height of the image and the width of the image. For each subject, the 4-

Dimensional data is re-stored as hundreds of 2-Dimensional (2D) images. For each 2D image,

multiple augmentation techniques are applied including random rotation, and random scaling

with a scaling ratio ranging from 0.8 to 1.2, random cropping to the size of 288× 288, random

horizontal and vertical flipping and adding Gaussian noise with the kernel size 5 and the ran-

domly chosen deviation in the range of 0.25 to 1.25. All the augmentations are performed with

the embedded functions in PyTorch [54]. The data preprocessing code is publicly available

at https://github.com/vios-s/DGNet.

The other dataset, spinal cord and gray matter segmentation (SCGM) dataset, is heavily used

in Chapter 5 and Chapter 6. The SCGM dataset is collected from 4 different medical centres in

UCL, Montreal, Zurich and Vanderbilt with 3 different MRI scanners (Philips Achieva, Siemens
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Trio, Siemens Skyra), which are considered as 4 domains in this thesis. The voxel resolutions

range from 0.25× 0.25× 2.5 mm to 0.5× 0.5× 5 mm. Each domain has 10 labelled subjects

and 10 unlabelled subjects. For more details of the SCGM dataset, I refer the readers to the

dataset page (http://niftyweb.cs.ucl.ac.uk/challenge/index.php) and the

accompanying journal paper [7]. For data preprocessing, the 2D images are randomly cropped

into the size of 144 × 144. The data preprocessing code is publicly available at https:

//github.com/vios-s/DGNet.

2.5 Summary

In this chapter, I described the necessary clinical and medical imaging background for un-

derstanding the main technical contributions and clinical impact of the proposed methods. In

particular, MRI and the cine-MR protocol are briefly introduced. Then, the anatomical struc-

ture, the anatomical and imaging variations of the heart and the spinal cord and gray matter

are presented. Finally, the data preprocessing is described for the datasets used throughout the

thesis. In the next chapter, I will introduce the technical background covering representation

learning and compositionality.
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Chapter 3
Technical Background

In this chapter, I will give the technical background that is relevant to the proposed methods in

Chapter 4, Chapter 5 and Chapter 6. To define disentanglement I first revisit key concepts in

learning representations. I then provide an overview of key generative frameworks forming the

basis of many subsequent models; building blocks of disentanglement; and evaluation metrics.

Then, I discuss the lessons that we can learn from computer vision tasks for representation

learning in medical image analysis. Last but not least, I briefly review compositionality in deep

learning for the compositional representation learning that is studied in Chapter 6. This chapter

is also accompanied by a repository offering links to the implementations of key methods and to

existing metrics: https://github.com/vios-s/disentanglement_tutorial.

For a more detailed discussion of disentangled representation learning (DRL) theory and the

applications of DRL on medical tasks, I refer readers to our surveys [12] and [55]. The

tutorial (DREAM 2021: Disentangled Representations for Efficient Algorithms for Medical

data https://vios.science/tutorials/dream2021) and workshop (Medical Ap-

plications with Disentanglements https://mad.ikim.nrw/) I co-organised at the Inter-

national Conference on Medical Image Computing and Computer Assisted Intervention also

provide useful information.

3.1 Introduction

Imagine the need to develop a method to localise the ventricles in Magnetic Resonance Imaging

(MRI) and Computed Tomography (CT) scans of the brain in patients. This method must be

robust to any changes in the imaging process, scanner, and noise, as well as to anatomical and

pathological variation. The current deep (supervised) learning paradigm indicates that we must

This chapter is based on:

• Liu, X.*, Sanchez, P.*, Thermos, S.*, O’Neil, A.Q. and Tsaftaris, S.A., 2022. Learning Disentangled
Representations in the Imaging Domain. Medical Image Analysis, p.102516. *Equal contribution.
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Figure 3.1: Examples of factors of variations: style, scale, and rotation in the context of cardiac

scans [8], brain scans [9], cars [10], and 3D shapes [11]. This figure was originally

created by Pedro Sanchez. Reproduced with permission.

present to the system as many examples as possible to instill robustness by learning what is

unnecessary, or nuisance [56], e.g. the patient being placed at a rotated angle in the scanner, as

opposed to what matters, i.e. the location of the ventricle. However, collecting and annotating

enough data to cover such real-world variation is an unrealistically time-consuming and costly

solution.

Surprisingly, we may not always need annotated data or carefully crafted data augmentations to

achieve this. With DRL, one learns to encode the underlying factors of variation into separate

latent variables [28, 57], which ultimately capture sensitive and useful information for the task

at hand and also understand the underlying causal relations amongst the variables. I choose

to introduce the reader to DRL by presenting 3 indicative examples of disentangled factors in
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Fig. 3.1, which affect the colour, scale, and rotation of the rendered object in the corresponding

scene. By adopting DRL, one can design deep models that will be robust to representations

from unseen domains, a result that cannot always be achieved through data augmentation.

3.2 Key Concepts in Representation Learning

Notation. I use x, x and X to denote scalars, vectors, and higher-dimensional tensors respec-

tively, drawn from the domain X of corresponding dimensions. I use Xi to refer to a datum of

the above tensors (of any dimension) for presentation simplicity where tensor dimensionality

is implied by the context. I will assume we have access to a dataset containing samples of Xi,

where i ∈ [1, N ], N denoting the number of samples. I use X to denote the observed variables

of the input domain, Z for latent representations, S for real generating factors, and Y for the

output domain. For example, if we choose to solve a classification task, then Y is a space of

scalars y.

3.2.1 Model learning

Considering the task of learning a mapping between two domains [58] i.e. f : X → Y , one can

split f into two components, f : Eϕ ◦ Dθ. Eϕ maps to an intermediate latent representation

Z (Eϕ : X → Z) whereas Dθ maps to the output (Dθ : Z → Y). I will term Eϕ the

“encoder” and Dθ the “decoder”.1 Thus, the goal of model learning is the solution to the task

at hand by learning a good representation. Below, I discuss the desirable properties of a good

representation.

3.2.2 Representation learning

Finding good representations for the task at hand is fundamental in machine learning [28, 29].

Consider the task of detecting brain tumours by placing a bounding box Yi around each tumour

in the image Xi. A dataset may contain brain samples with different morphologies, acquired

using different protocols in different sites (hospitals), etc. The goal is to create a representation

suitable for the task. If the tumour changes location in the image, we would like the bounding

box output to change location accordingly; the representation will be equivariant to the location

1Dθ is often referred to as a classifier or a regressor, however, I avoid this nomenclature here to be more general.
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of the object of interest. On the other hand, we would like the representation to be invariant to

acquisition-related changes.

Symmetries. Symmetries Ω are transformations that leave some aspects of the input intact [59,

60, 61]. For instance, the category of an object does not change after applying shift operations

to the image, therefore these operations are considered symmetries in the object recognition

domain. Using the model f and symmetries Ω, I now proceed to define the equivariance and

invariance properties.

Equivariance. A mapping Eϕ : X → Z is equivariant w.r.t. the group Ω, if there is an action

(transformation in our case) of the group ω ∈ Ω of the input X ∈ X that affects the output

Z ∈ Z in the same manner. Formally, this means that Ω-equivariance of Eϕ is obtained when

there exist mappings Mω : Rd → Rd and M ′
ω : Rd

′ → Rd
′

applying ω to the input and the

output such that:

Eϕ(Mω ◦X) =M ′
ω ◦Eϕ(X), ∀ω ∈ Ω. (3.1)

In practice, one chooses transformations that induce the desired equivariance and learned prop-

erties in accordance with the task at hand, thus a good understanding of the problem (also

known as domain knowledge) is required [62]. Classical examples where equivariance to trans-

lation, shift, and mirroring might be important, are image segmentation, pose estimation, and

landmark detection tasks. Note that the compositional equivalence theory proposed in Chap-

ter 6 is based on the definition here. I will revise the definition of equivariance in Chapter 6.

Invariance. Formally, Eϕ is invariant to transformations of Ω if:

Eϕ(Mω ◦X) = Eϕ(X), ∀ω ∈ Ω. (3.2)

The transforms we want to adhere to are usually task-specific. In Chapter 4, I will introduce

the transformations used in popular content-style disentanglement methods.

3.2.3 Generating factors

Considering a distribution that characterises the domain X , the generating factors S are the un-

derlying variables that fully characterise the variation of the data –seen or expected to be seen.

Recent studies [28, 29] argue that representations should enable the decomposition (i.e. disen-

tanglement) of the input data into separate factors. Each factor should correspond to a variable
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of interest in the underlying process that generated the data. For the rest of the chapter, I will re-

fer to the real-world generating factors as “real” and to those learned by a model as “learned”.
2 In the brain tumour detection example, several variables such as tumour texture/location,

brain shape, acquisition protocol, image contrast, etc. may be involved. In general, the more

complex the image, the more variables, and the higher the number of possible combinations.

Enumerating all these combinations readily leads to a combinatorial explosion in the possi-

ble combinations that a dataset must contain to enable a model to learn (from data alone) the

desired in/equi-variances. It is not realistic to identify every factor and cover every possible

combination. Domain knowledge enables the elucidation of as many factors as possible and

allows us to define which real factors we want to be in/equi-variant to.

3.2.4 Domain shifts

An i.i.d. data distribution is easy to consider but forms a strong and often unrealistic assump-

tion. All non-synthetic datasets are somewhat biased due to the finite nature of the acquired

data. If learning algorithms are trained with standard supervised learning [58] without addi-

tional assumptions, there is little hope that the learned function will be robust to domain shifts.

A model’s ability to maintain the desired behaviour across domain changes is also referred to

as out-of-distribution generalisation [63]. For the brain tumour detection example, both CT or

MRI scanners acquire images, but we might know that a given hospital uses CT. In this case,

modality-related factors are linked to the hospital-related variables. Therefore, understanding

the data generation process and the underlying relations between variables can help to distill

the important visual information, and to create mechanisms that are more generalisable. Such

reasoning enables the design of principled strategies for mitigating the data bias [64]. In fact,

we can explicitly define the changes we want our model to be invariant or equivariant to, by

modeling domain shifts such as: i) population i.e. different cohorts, ii) acquisition i.e. different

cameras, sites or scanners, and iii) annotation shift i.e. different annotators.

3.2.5 Disentangled representations

Disentangled representations can address some of the challenges described until now by learn-

ing representations with equi/in-variances to specific undesired variables, whilst considering the

2In Chapter 6, I will define that the generative factors satisfy the compositional equivariance property.
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data generation process and potential domain shifts. Although a widely accepted definition of

disentangled representations is yet to be defined, the main intuition is that by disentangling, we

separate out the main factors of variation that are present in our data distribution [28, 57, 65, 31].

I characterise a factor as “disentangled” when any intervention on this factor results in a specific

change in the generated data [65, 66].

3.2.5.1 Formalising disentanglement

Higgins et al. [57] have recently presented a generic definition for disentanglement. Given a

compositional worldW and a set of transformations Ω (as defined in Section 3.2.2), they define

a function f : W → Z that can induce Ω in the latent representation Z ∈ Z in an equivariant

manner. The representationZ is defined as “disentangled” if there is a decompositionZ = Z1×

· · · × Zn such that a transformation ω applied on Zi will result in an equivalent transformation

in the input domain X , leaving all other aspects controlled by Zj ̸=i unchanged. This definition

meets the desired properties of a disentangled representation as defined by several works in

DRL [28, 67, 18, 68]: a) modularity i.e. each latent dimension should encode no more than one

generative factor, and b) informativeness i.e. all underlying generative factors are encoded in

the representation.

A complementary view to the definition of Higgins et al. [57] comes from the Information

Bottleneck (IB) principle introduced in [69]. IB allows for learning “good” representations for

the task at hand, by trading-off sufficiency and complexity. Adopting IB, Achille et al. [56]

argue that such representations should be: i) sufficient for the task, meaning that we do not

discard information required for the output; ii) among all sufficient representations, it should

be minimal retaining as little information about the input as possible; and finally iii) it should

be invariant to nuisance effects so that the final classifier will not overfit to any correlations

between the dataset nuisances and the ground truth labels.

3.2.5.2 Identifiability

Learning disentangled representations without any type of supervision is impossible as an infi-

nite family of models that could have generated the observed data exist [31]. Thus, identifying

the model that generated the data without any additional information is impossible. Given an

observation Xi, there is an infinite number of generative models that could have generated a
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sample from the same marginal distribution [31, 70, 71].

This follows from prior work in non-linear independent component analysis (ICA) [72]: even

though the linear case is identifiable, the flexibility given by the non-linear case makes it non-

identifiable without extra information. Recently Khemakhem et al. [71] bridged the gap be-

tween non-linear ICA and other deep latent variable models, and showed that unsupervised

disentanglement methods are non-identifiable without additional assumptions.

3.2.5.3 Disentanglement as inductive bias

The solution to identifiability is the use of domain knowledge i.e. the inductive bias, instead of

using explicit supervision [31, 70, 71]. Current representation learning already benefits from

the inductive biases of Convolutional Neural Networks (CNNs) [73] and Recurrent Neural Net-

works (RNNs) [74]. Outside of the visual domain, language has been modeled with recurrent

neural networks that capture the sequential nature of data for making predictions [75]. Recent

attention and self-attention models, such as the transformer architecture [76], focus on learning

the internal structure of the input data. These self-attention models essentially approximate the

best inductive biases for each sample in the data distribution. Overall, disentanglement priors

add structure to the learned representations to better correspond to the underlying generation

process. It is this useful bias that makes the utilised models identifiable. One of the goals of

this chapter is to highlight the various inductive biases used.

3.3 Frameworks Enforcing Disentanglement

3.3.1 Variational autoencoders

Auto-Encoders (AEs) or Variational Auto-Encoders (VAEs) [30, 77] decompose factors via

image reconstruction [78, 79]. A typical VAE, depicted in Fig. 3.2(a), discovers and disen-

tangles factors of variation by forcing independence between different dimensions of z, while

reconstructing the input X. Notably, the three content-style disentanglement methods I study

in Chapter 4 are either based on VAEs or inspired by VAEs.

A widely-used VAE that encourages disentanglement is the β-VAE [80]. Its main objective is
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Figure 3.2: Fundamental architectures for disentanglement: a) VAE, b) GAN, c) Normalising

Flows, d) Content-Style disentanglement. X and X′ are the input and reconstructed

images. z,C are the latent representations, where C represents a tensor latent vari-

able (e.g. image content) and z represents a vector latent variable. The dashed line

in (d) denotes the use of C for learning a representation Y′ for a parallel equivariant

task (e.g. semantic segmentation). Finally, N denotes the normal distribution with

zero mean and unit variance, whilst q(z) can be any prior distribution. This figure

is taken from [12]

the maximisation of the Evidence Lower-Bound Optimisation (ELBO):

LELBO(θ, ϕ;X, z, β) = Eqϕ(z|X)[log pθ(X | z)]− βDKL(qϕ(z | X)||pz), (3.3)

to balance (via β > 1) the reconstruction error versus adherence to the approximate posterior

qz|X from the latent prior pz. pθ(X | z) is modeled as the decoder with weights θ. qϕ(z | X) is

modelled as the encoder with weights ϕ. The first term can be expanded as:

Eqϕ(z|X)[log pθ(X | z)] =
∫
z
qϕ(z | X) log pθ(X | z) (3.4)

The Kullback–Leibler divergence is defined as:

DKL(qϕ(z | X)||pz) = Eqϕ(z|X)[log qϕ(z | X)− log pz] =

∫
z
qϕ(z | X) log

qϕ(z | X)

pz
. (3.5)

Note that pz is usually a normal distribution with identity covariance matrix N (0, I). The

diagonal covariance forces an orthogonal factorisation of the latent space, similar to a principle
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component analysis, which reasonably explains the disentanglement capabilities of VAEs [81,

82]. A β > 1 encourages disentanglement by forcing q(z | X) to carry less information about

the reconstruction by increasing the weight of the Kullback–Leibler divergence term [82] and

consequently, increasing independence between the factors of z.

3.3.2 Generative adversarial networks

Generative Adversarial Networks (GANs) [83], see Fig. 3.2(b), typically employ a generator

G and a discriminator D in an adversarial game. G generates an image by sampling from an

isotropic Gaussian distribution, while D is given the synthetic image and a real one (X), and

tries to identify which input is real/fake. The game is formalised as:

min
G

max
D

LGAN (G,D) = Ep(z)[log(1−D(G(z))] + Ep(X)[log(D(X))], (3.6)

where z is a vector with values sampled from the aforementioned Gaussian and G(z) is the

generated image. Recent advances in GAN design and training have led to high-fidelity image

generation [84, 85, 86]. GANs can learn disentangled representations by adding regularisation

terms [67], by creating an architectural prior [84], or even by a post-hoc decomposition of the

learned manifold after training [87].

3.3.3 Content-style disentanglement

The aforementioned models typically decompose factors into a single vector representation.

However, a recent trend in disentanglement focuses on the decomposition of the input image

into different latent variables that encode different properties, such as geometry vs. style. This

form of disentanglement is the so-called Content-Style Disentanglement (CSD) [88], where

an image is decomposed into domain-invariant “content” and domain-specific “style” repre-

sentations [89, 90]. Most works in CSD encode content in spatial (tensor) representations to

preserve the spatial correlations and exploit them for a spatially equivariant task, such as Image-

to-Image (I2I) translation [32, 33] and semantic segmentation [13]. The corresponding style i.e.

the information that controls the image appearance such as colour and intensity, is encoded in

a vector. An abstract visualisation of a CSD model is depicted in Fig. 3.2(d). Note that decom-

posing content from style is not a trivial process, and encoding content as a high-dimensional

representation is not enough. Recent work introduces several design (in terms of the model
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[1] Chartsias, A., Joyce, T., Papanastasiou, G., Semple, S., Williams, M., Newby, D.E., Dharmakumar, R. and Tsaftaris, S.A., 2019. Disentangled 
representation learning in cardiac image analysis. Medical image analysis, 58, p.101535.
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Figure 3.3: The Spatial Decomposition Network (SDNet). Two paths are designed in the model

i.e. reconstruction and segmentation. The input image is decomposed into a spatial

anatomy space and a vector modality space. Combining the two factors reconstruct

the image. The segmentation mask is predicted with the anatomy factor as input.

Figure is reproduced with permission of Chartsias et al. [13].

architecture) and learning (in terms of loss functions) biases to achieve this separation. I denote

these inductive biases as “building blocks” and discuss them in the following section.

3.3.3.1 SDNet

A frequently referred content-style disentanglement framework in this thesis is Spatial De-

composition Network (SDNet) [13]. Here, I discuss SDNet thoroughly. SDNet decomposes

2D medical images into spatial anatomical factors (content) and non-spatial modality factors

(style). Regarding single-modal medical image segmentation, the input images are acquired

with only one modality e.g. MRI images. When temporal information is available, tempo-

ral consistency objectives can be applied to boost the performance as in [91]. Based on SD-

Net, Jiang et al. [92] additionally disentangle the pathology factor to perform semi-supervised

pathology segmentation. SDNet-based methods in segmentation also provide the possibility to

handle the domain shifts across different domains Additionally, the variational encoding of the

style representation allows for sampling and interpolation of the appearance factors, enabling

the synthesis of new plausible images [93]. To learn generalisable representations, gradient-

based meta-learning can be applied as a learning strategy when giving multi-domain data [16].

Shin et al. [94] disentangle intensity and non-intensity for domain adaptation in CT images.
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Kalkhof et al. [95] also disentangles content from style information using a conditional GAN

for cross-domain segmentation.

As shown in Fig 3.3, SDNet uses two different encoders for factorising content into a spatial

representation and style into a vector one. A decoder is responsible for reconstructing the

input by combining the two latent variables, while a segmentation module is applied on the

content latent space to learn to predict the segmentation mask for each cardiac part. SDNet

learns the content which is represented as multi-channel binary maps of the same resolution

as the input. This is obtained with a softmax and a thresholding function. To encourage the

style encoder to encode only style-related information, the authors employ a VAE network.

Then, style and content are combined to reconstruct the input image by applying a series of

convolutional layers with FiLM layers [96] (see Section 3.4). SDNet has been extensively

evaluated on the ACDC [8], MM-WHS [97, 98, 99], CHAOs [100], and M&Ms [5] cardiac

datasets, as well as on the SCGM [7] spinal one.

3.4 Disentanglement Building Blocks

I now describe common layers and modules that are used at various levels of the model design

to encourage disentanglement. I associate these so-called building blocks with different high-

level parts of the aforementioned AEs and generative models. Note that typically several of

these are combined. In principle we would like to have the minimal set required to solve the

task, noting that at times these blocks can compete.

3.4.1 Encoding modules

The following are commonly used at various levels of the encoder(s) in popular architectures

as bottlenecks. I use representation bottlenecks as a way of reducing the amount of information

in the data which will force the network to encode mainly useful concepts.

Instance normalisation. Instance Normalisation (IN), originally proposed in [101] for style

removal, is commonly used after each convolutional layer of the content encoder to suppress

style-related information. In fact, IN removes any contrast-related information from each in-

stance (data sample), encouraging content-related features to be propagated to the following

layers. An indicative example is the content encoder in [102], where IN replaces all batch
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normalisation layers [103].

Average pooling. Contrary to IN, average–pooling or global–pooling is commonly used to

suppress the content information in the style encoder [102]. By averaging values and flattening

a spatial feature into a vector, this operator removes any spatial correlation and encodes the

global mean statistics (i.e. image style).

Parsimony. For CSD models that require semantic and parsimonious content for parallel spa-

tially equivariant tasks, there is a need for discretisation of the encoded continuous information.

Such discretisation also can help to remove style-related information. The Gumbel Softmax op-

erator is a differentiable solution to this problem. This operator mimics the reparametrisation

trick performed in VAEs by sampling from a standard Gumbel distribution and using the Soft-

max as an approximation of the “argmax” step that is usually coupled with one-hot operators

for discretisation. Another tool that can further restrict the amount of information in a latent

space is known as Vector Quantisation (VQ) [104]. VQ uses a dictionary of learnable entries to

restrict the latent features to discrete set of values.

3.4.2 Entanglement modules

Effective recombination or entanglement of the content and style representations in a decoder is

vital. The following approaches or layers are commonly used for this purpose at various levels

of the decoder in popular CSD architectures.

Concatenation. Simple concatenation allows the content and style to be more flexible in cap-

turing the desired information [33, 37]. However, this may limit the controllability of learning

the content and style as the representations may not capture desired information e.g. style

representation capturing the shape information.

Adaptive instance normalisation. The Adaptive Instance Normalisation (AdaIN) layer [102]

is commonly used at multiple decoder levels to recombine the content and style representations.

As depicted in Fig. 3.4(a), each AdaIN layer performs the following operation:

AdaIN = γ
Cj − µ(Cj)

σ(Cj)
+ βj , (3.7)

where each feature map Cj is first normalised separately by subtracting the mean µ(Cj) and

dividing the variance σ(Cj) of the feature map, and then is scaled and shifted based on γ and
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Figure 3.4: Disentanglement building blocks that combine content C with style z: a) AdaIN,

b) FiLM, and c) SPADE. ⊙ and
⊕

denote element-wise multiplication and addi-

tion, respectively. MLP and CONV denote multilayer perceptron and convolutional

layers. This figure is taken from [12].

β, which are parameters of an affine transformation of the style representation (adaptive mean

and standard deviation).

Feature-wise linear modulation. As shown in Fig. 3.4(b), Feature-wise Linear Modulation

(FiLM) [96] is similar to AdaIN. FiLM was initially proposed as a conditioning method for

visual reasoning (the task of answering image-related questions). Using FiLM, each channel of

the network’s intermediate features Cj is modulated based on γj and βj as follows:

FiLM(Cj |γj , βj) = γj · Cj + βj , (3.8)

where element-wise multiplication (·) and addition are both broadcast over the spatial dimen-

sions. It is used in [13] to combine the content and style in the decoder, where γ and β param-

eterise the affine transformation of style vectors.

Spatially-adaptive denormalisation. An alternative approach for combining content with style

is the use of multiple Spatially-Adaptive Denormalisation (SPADE) [105] layers. As depicted in

Fig. 3.4(c), a SPADE block receives the content channels and projects them onto an embedding

space using two convolutional layers to produce the modulation parameters (tensors) γ and β.

These parameters are then used to scale (γ) and shift (β) the normalised activations of the style

representation.
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3.4.3 Encouraging disentanglement in the latent space

The following operations and priors can be applied on a latent space to encourage disentangle-

ment.

Gaussian prior. Encouraging the distribution of the encoded (vector) latent representation to

match a Gaussian is a common prior. As reported in Section 3.3.1, such prior encourages the

unsupervised disentanglement of the factors of variation and enables sampling for generating

new images.

Task priors. As discussed in Section 3.3.3, content representation can be used for a downstream

equivariant task e.g. semantic segmentation. Task losses, such as the segmentation loss, also

contribute at learning a disentangled content representation [13]. Other task-based priors e.g.

the number of human body parts [36], can be leveraged to encourage certain properties for the

content.

Gradient reversal layer. The Gradient Reversal Layer (GRL) was introduced in [106] for do-

main adaptation, where the gradient is reversed to prevent the model from predicting undesired

results. GRL is effective in learning domain-specific style representations [107]. Specifically,

when using the style from one domain to generate images with style from another domains, the

gradient is reversed to prevent this from happening.

Latent projection. Motivated by the findings of Michal et al. [81], which suggest that VAE

encoders cannot model the arbitrary rotations of the representation space, Zhao et al. [108]

propose the projection of the latent space onto the direction with more information about a gen-

erating factor. Latent projection allows the information to be disentangled between particular

orientations of the data.

Frequency decomposition. Recent studies have investigated the use of frequency decompo-

sition transformations to encourage CSD. For example, Liu et al. [109] use the fast Fourier

transform to extract image amplitude and phase. Intuitively, the former reflects image style,

whereas the latter corresponds to image content. Huang et al. [110] use Discrete Cosine Trans-

formation (DCT) to extract the domain invariant and domain specific frequency components,

as an approximation of content and style factors, respectively.

Structured latent. A causal approach to representation learning solves the identifiability prob-

lem by enforcing the latent space to be structured. Structured latents create strong inductive
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biases because one might not only define the desired variables –which correspond to the gener-

ating factors– but also the relationship between them. This idea can be implemented in different

settings, for example:

1. decomposing of a VAE latent space into separate parts, where each component is further

processed at different levels of the decoder [111];

2. constraining the latent variable of a Bidirectional GAN (BiGAN) [112, 113] with

Bayesian networks [114];

3. forcing the latent variables of a BiGAN-style architecture [115] to follow a graph struc-

ture prior defined as an adjacency matrix [116].

3.4.4 Learning setups for disentanglement

Popular learning setups can encourage disentanglement by harmonising the interaction between

blocks.

Cycle-consistency. Cycle-consistency [117, 118, 119, 120] is a technique for regularising im-

age translation settings. In particular, it can be useful for reinforcing correspondence between

input and generated images [121, 122], or to improve stability and reconstruction fidelity in

unsupervised and semi-supervised settings [123].

Latent regression. There is a gentle balance to be made in the complexity of these blocks:

too complex and with lots of parameter capacity may lead to information captured within their

parameters that can lead to this information not being captured in the latent variables. Latent

regression has been employed to force the reconstructed image to contain information encoded

into this representation [32]. In particular, considering an input image X, the representation z

and the reconstructed image X′, we wish to extract a new latent representation z′ from encoding

X′, which will be as similar as possible to z. In other words, we need to minimise the distance

between z and z′ using a latent regression loss. The latent regression (LR) loss is defined as the

ℓ1 distance between z and z′:

LLR(z, z′) = |z− z′|1, (3.9)

where ℓ1 distance is defined in Eq. 3.10.
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3.5 Metrics for Disentanglement

To understand disentanglement and design models that improve it, we need to be able to quan-

tify how disentangled is (are) the encoded representation(s). Below, I briefly report the most

popular disentanglement metrics, splitting them into 2 categories: i) disentanglement of factors

in a single vector latent variables, and ii) disentanglement between two latent variables of the

same or different dimensionality.

Single vector-based latent variable. This category consists of both qualitative and quantitative

methods for measuring how disentangled a representation is.

Qualitatively, we can evaluate disentanglement by traversing a single latent dimension that al-

ters the reconstructed image by a single aspect (e.g. increase image intensity). In practice,

these traversals are linear interpolations which are used to perform “walks” in non-linear data

manifolds and to interpret the variation controlled by each factor [124, 125]. Latent traver-

sals do not require ground truth information about the factors. Duan et al. [126] propose a

way to quantify latent traversals in a post-hoc fashion, using the unsupervised disentanglement

ranking metric to select the most disentangled version of the trained model. Quantitatively,

there has been considerable effort to create metrics to evaluate vector representations. Since

there are different proxies for disentanglement, popular metrics focus on measuring different

aspects. For example, Higgins et al. [80] propose the first metric to quantify disentanglement

when the ground truth factors of a data set are available. In fact, they evaluate disentanglement

using the prediction accuracy of a linear classifier that is trained as follows: they first choose

a factor k and generate data with this factor fixed, but all others varying randomly. After ob-

taining the representations of the generated data, they take the absolute value of the pairwise

differences of these representations. Then, the mean of these statistics across the pairs gives

one training input for the classifier, and the fixed factor index k is the corresponding training

output. Subsequently, Kim and Mnih [127] adopt the metric of [80], but construct the training

set of the linear classifier by considering the empirical variance of normalised representations

rather than the pairwise differences. Chen et al. [128] argue that given a factor of variation,

the first two dimensions of the latent vector should have the highest MI. They measure the gap

between these two dimensions using the introduced mutual information gap metric. Ridgeway

and Mozer [68] propose to measure the modularity of latent representations by measuring the

MI between factors, ensuring that each vector dimension encodes at most one factor of varia-

tion. Eastwood and Williams [18] first train an encoder on a synthetic dataset with predefined
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factors of variation z, and encode a representation c for each data sample. Then, they train a

regressor to predict each factor z given a c representation. Based on the prediction accuracy,

they measure the disentanglement, completeness, and informativeness of each representation.

Finally, Kumar et al. [129] propose the separated attribute predictability score to first compute

the prediction errors of the two most predictive latent dimensions for each factor, and then use

the average error difference as a disentanglement metric. A more comprehensive review of

metrics for vector-based disentanglement can be found in [130].

Two latent variables. The aforementioned metrics are not applicable in CSD as they rely on

either having ground truth for the factors or assuming that the latent manifold is solely vector-

based. To evaluate CSD one should consider more than one latent variable and a possible

difference in dimensionality e.g. spatial content (tensor) and vector style. To the best of my

knowledge, the only work that focuses on CSD metrics is that I will present in Chapter 4 pub-

lished in [14]. In this work, I consider the properties of uncorrelation and informativeness, and

propose to combine the empirical distance correlation [131] and a metric termed information

over bias, to measure the degree of disentanglement between content and style representations.

Two other methods for measuring the uncorrelation-independence between variables of differ-

ent dimensionality are the kernel-target alignment [132] and the Hilbert-Schmidt independence

criterion [133]. However, both methods require pre-defined kernels.

3.6 From Computer Vision to Medical Image Analysis

We are now well aware that learning disentangled representations requires supervision or de-

sign and learning biases. Using task-prior knowledge to incorporate proper biases to learn the

desired disentangled representations is key for disentanglement in both domains. Medical ap-

plications can use, for instance, building blocks (Section 3.4) originally designed for computer

vision tasks. One can also draw inspiration from how prior knowledge on the vision tasks has

motivated the specific biases used. Below, with some exemplar computer vision tasks, I will

discuss the connections between disentanglement in computer vision and medical domains.

3.6.1 Image-to-image translation

Image-to-image (I2I) translation aims to translate one image into another without changing the

shape, i.e. content, which differs in a specific characteristic (e.g. style). A representative model
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is MUNIT [102].

Connections to medical. Image-to-image translation in computer vision motivated many med-

ical applications. In fact, several medical models are directly built based on MUNIT such as

the ones in medical I2I translation [134], multi-modal and cross-modal segmentation [135],

and registration [136]. The parallels here of domain-invariant spatial content and the domain-

specific style representation, relate to separating anatomy and modality representations in the

corresponding medical applications. A major difference though is that typically in medical

image translation, we are particularly sensitive to maintaining identity when changing style.

Several vision works show examples of day to night where content has changed slightly in the

background. Such change will not be desired in medical tasks.

3.6.2 Facial attribute transfer

This task concerns the generation of a synthetic face that contains the target attribute, but with-

out altering the subject identity (e.g. adding bangs to a subjects forehead). Most methods

that focus on facial attribute transfer struggle with: a) transferring more than one attribute at a

time, b) generating images based on exemplars, and c) achieving high-fidelity results. The first

model to address the aforementioned challenges is ELEGANT [34], which encodes disentan-

gled attribute representations of two exemplars in a vector latent space and performs attribute

swapping. Apart from ELEGANT, Lin et al. [35] propose a GAN model with a domain classi-

fier to learn to transfer attributes between multiple domains. He et al. [137] present a GAN that

conditions the face generation of opposite samples (e.g. smile, no smile) using one-hot attribute

vectors. Zhou et al. [138] exploit cycle consistency to transfer attributes, with the limitation that

the attributes should have approximately the same spatial location.

Connections to medical. When transferring facial attributes, the subject identity should be

preserved and only some attributes transferred. This transferral is desirable in several medical

applications such as brain aging [121] and controllable synthesis [139], where the synthesised

brain or heart images should contain the identity information of the original images but with

different ages or pathology. ELEGANT preserves the identity information by only modifying

the local part of the image. The medical models similarly modify the local anatomy parts but

also apply the identity or consistency losses to the remaining parts of the image. We should

note that most face models rely on pre-trained or pre-extracted strong priors to identify facial

features. Such strong priors are rarely available in medical imaging.
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3.6.3 Pose estimation

For pose estimation, the human body constitutes a strong content prior that can be exploited to

encode body structure in a spatial and semantic latent space, to be used for equivariant tasks that

require body joint position. Lorenz et al. [36] propose to apply the equivariance and invariance

losses to learn the equivariant (content) and invariant (style) representations and use this type

of disentanglement for this challenging articulated body pose estimation task. Esser et al. [37]

adopt the disentanglement of the human body pose from the corresponding appearance (style)

information in the context of a dual-encoder VAE setting, where they use the body-related

factors for human appearance transfer and synthesis [140].

Connections to medical. Similar to the human body, human organs e.g. brain and heart, have

strong anatomical structure priors, which can be similarly used for learning disentangled repre-

sentations with equivariance and invariance properties. For example, similar to the invariance

loss in [36], Bercea et al. [141] apply the shape consistency loss to encourage the shape embed-

dings of brain MRI images to be invariant to Gamma shifts. However, it is not always possible

to assume such strong structural priors as diseases or abnormalities exist.

3.7 Compositionality

Lastly, I review the compositionality in modern machine learning and deep learning. Composi-

tionality is a fundamental concept in computer vision, where it refers to the ability to recognize

complex objects or scenes by combining simpler components or features [142]. Recently, there

has been a growing interest in developing models that can effectively capture the compositional

nature of visual information, leading to improved performance on various vision tasks [143].

To integrate compositionality, compositional representation learning is an area of active re-

search in computer vision [144] and natural language processing [145]. Intuitively, learning a

good latent representation should also reflect the compositional property if the compositional

structure is exhibited in the input data [146]. The compositionality of latent space has already

been explored extensively in language processing because of the compositionality of languages

[147]. Recently, the language processing community has started to explore whether compo-

sitionality arises in learning problems where the compositional structure has not been built in

from the start [148].
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In addition, there is also some research about using compositionality in computer vision [149,

150]. Compositional representation learning in computer vision involves learning representa-

tions of complex objects by combining representations of their constituent parts [143, 151, 152].

The goal is to learn representations that are robust to changes in the appearance of the object and

that can generalise to new objects [153, 154, 155]. Early approaches to compositional represen-

tation learning in computer vision include the bag-of-visual-words model [156] and part-based

models [149]. The bag-of-visual-words model involves representing an image as a histogram

of visual words, which are learned from a training set of images. Part-based models involve

learning representations of objects by decomposing them into parts and learning representations

of the parts and their relationships. Compositional representation learning has been applied to

fine-grained recognition tasks in computer vision, such as recognizing bird species [152, 157].

These tasks require learning representations that capture subtle differences between objects

and their parts. Compositional representation learning has been shown to be effective for fine-

grained recognition by allowing the model to reason about the relationships between parts and

the whole object. In addition, compositionality has been also incorporated for robust image

classification [153, 149] and recently for compositional image synthesis [158, 159]. Among

these work, Compositional Networks [149] originally designed for robust classification under

object occlusion is easier to extend to pixel-wise tasks as it learns spatial and interpretable vMF

likelihoods. Previous work integrates the vMF kernels and likelihoods [149] for object locali-

sation [160] and recently for nuclei segmentation (with the bounding box as supervision) in a

weakly supervised manner [161].

3.8 Training Losses

In the thesis, several training losses are frequently used. Here, I define these losses with the

example of considering the inputs for the loss functions as 2D images or segmentation masks

i.e. X the ground truth and X̂ the prediction. H and W are the height and width of X.

The ℓ1 distance is defined as:

Lℓ1(X, X̂) = |X− X̂|1 =
1

H ∗W
∑
h∈H

∑
w∈W

|X(h,w)− X̂(h,w)|. (3.10)

The Mean Squared Error (MSE) is defined as:
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LMSE(X, X̂) = |X− X̂|2 =
1

H ∗W
∑
h∈H

∑
w∈W

(X(h,w)− X̂(h,w))2. (3.11)

Dice is a measure of overlap and is used to evaluate categorical images e.g. segmentation masks.

The Dice loss is defined as:

LDice(X, X̂) = 2
|X ∩ X̂|
|X|+ |X̂|

. (3.12)

The Kullback–Leibler divergence (KLD) loss is defined as:

LKL(p(X)||p(z)) = Ep(X)[log p(X)− log p(z)]. (3.13)

3.9 Summary

In this chapter, I introduced the key concepts of representation learning, focusing on the defini-

tion of disentanglement, generative models for learning disentangled representations, the fun-

damental disentanglement building blocks, and metrics of disentanglement. I also discussed

what we can learn from computer vision for medical image analysis tasks. Then, I introduced

compositionality which is detailed in Chapter 6. Finally, several training losses used in the

thesis are defined. In the next chapter, I will discuss how different learning and design biases

including those discussed in this chapter affect disentanglement.
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Chapter 4
Metrics for Exposing the Biases of

Content-Style Disentanglement

4.1 Introduction

In this chapter, I will describe how extensive inductive biases and learning biases (mostly re-

vised in Chapter 3) are applied to achieve certain disentanglement. To fully understand how

disentangled representations are learnt, I conduct a comprehensive review of popular disentan-

glement models in different applications and summarised the frequently used building blocks.

I further study content-style models by using two proposed metrics to measure the degree of

disentanglement between content and style representations.

4.1.1 Motivation of the approach

Recent work in representation learning argues that to achieve explainable and compact rep-

resentations, one should separate out, or disentangle, the underlying explanatory factors into

different dimensions of the considered latent space [28, 57]. In other words, it is beneficial

to obtain representations that can separate latent variables that capture sensitive and useful

information for the task at hand from the less informative ones [56]. Disentanglement has

recently been shown to improve task performance, model generalisation, and representation

interpretability [162, 163, 164, 165, 166, 79, 167, 140]. Unfortunately, disentangling without

supervision is an ill-posed and impossible task [31, 168, 169] and, to obtain it, we must in-

troduce restrictions and inductive priors [31, 168]. These priors are different forms of “bias”

imposed by model design (design bias), learning objectives (learning bias), and data (data bias).

This chapter is based on:

• Liu, X.*, Thermos, S.*, Valvano, G.*, Chartsias, A., O’Neil, A. and Tsaftaris, S.A., 2021. Measuring
the Biases and Effectiveness of Content-Style Disentanglement. British Machine Vision Conference 2021.
*Equal contribution.
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Figure 4.1: (a) A schematic representation of disentanglement between spatial content C and

vector style S in the context of a primary and a secondary spatially equivariant task

(I′, I∗). Measuring the degree of C-S disentanglement using distance correlation (b)

and information encoded over the input bias (c). (d) A visual description of degrees

of C-S (dis)entanglement. This figure was originally produced by Dr. Spyridon

Thermos. Reproduced with permission.

In this chapter, I set out to reveal such choices of bias in state-of-the-art (SOTA) disentangle-

ment methods. The particular focus is on “content-style” disentanglement, which decomposes

input images into spatial “content” and vector “style” representations. In principle, content (C)

should contain the semantic information required for spatially equivariant tasks (e.g. segmen-

tation and pose estimation), whereas style (S) contains information on image appearance (e.g.

color intensity and texture). However, contrary to extensive research on quantifying the degree

of disentanglement between vectors [129, 128, 18, 68, 84, 170, 171], there is no analysis of C-S

disentanglement. In fact, to the best of my knowledge, there is no study identifying the training

biases enforced in C-S disentanglement settings or exposing the true relationship between the

degree of disentanglement and model performance.

4.1.2 Approach overview

The overview of the approach is illustrated in Fig. 4.1. Considering the C-S disentanglement

framework, I and the co-authors propose two complementary metrics to evaluate two properties

in the context of C-S disentanglement: (un)correlation, and informativeness.

4.1.3 Contributions

Herein, I attempt to bridge these gaps with the contributions:

• I identify and analyse the key biases in SOTA models that employ C-S disentanglement.
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I show how the biases affect disentanglement and task performance (utility) in three

popular vision tasks: image translation, segmentation, and pose estimation.

• To make a quantitative analysis possible, I propose two complementary metrics building

on existing work, to evaluate C-S disentanglement in terms of the amount of informa-

tion encoded in each latent variable (informativeness) and (un)correlation between the

encoded spatial tensor content and vector style (a proxy for independence).

• I find that: a) lower C-S disentanglement benefits task performance if a specific style-

related prior is not violated; and b) performance is highly correlated with latent variable

informativeness. I also assess content semanticness (interpretability).

This chapter is organised as follows. Section 4.2 mentions previous work related to ours. Sec-

tion 4.3 describes the proposed metrics. Section 4.4 presents the validation of the effectiveness

of the proposed metrics with the toy dataset. Section 4.5 talks about the considered applications

and models. Section 4.6 shows the experiments and results. Section 4.7 discusses the corre-

lation of the metrics. Section 4.8 answers the key questions and presents the major findings.

Finally, this chapter is concluded in Section 4.9.

4.2 Related Work

Content-Style disentanglement. Image-to-Image translation has extensively explored the de-

coupling of image style and content [172, 33, 32, 173]. Content-style disentanglement was

also used in other applications, such as semantic segmentation [13] and pose estimation [174],

where the content serves as a robust representation for downstream tasks. In general, most

methods derive latent spaces capturing C or S information using auto-encoder variants.

These models achieve C-S disentanglement through different biases, such as architectural

choices (e.g. AdaIN [102], content binarization [13]), learning objectives (e.g. Kullback-

Leibler divergence, latent regression loss, de-correlation losses in vector representations [175,

176]), or supervisory signals (e.g. using content for segmentation [13]). However, the precise

effect of each bias on disentanglement and model performance is not thoroughly explored.

Evaluating disentanglement. Recently, several methods have been proposed for assessing the

degree of disentanglement in a vector latent variable. A classical approach is latent traversals:

a visualization showing how traversing single latent dimensions generates variations in the
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image reconstruction. Latent traversals do not need ground truth information on the factors,

and can be used in mixed tensor spaces [13, 36] to offer qualitative evaluations. Alternatively,

latent traversals can be combined with pre-trained networks to measure the perceptual distance

between the produced embeddings [84].

There exist several ways in quantitatively evaluating representations learned by VAEs and

GANs. Unfortunately, these methods rely only on vector representations, and some also peruse

ground truth knowledge about the latent factors. In particular, some methods try to associate

known factors of variations (e.g. rotation) with specific latent dimensions [80, 127] or mani-

fold topology [177]. Others measure the ability to isolate one factor in a single vector latent

variable [129], measuring compactness or modularity [128, 18, 170], linear separability [84],

consistency and restrictiveness [178], and explicitness of the representation [68]. Lastly, there

is work on measuring the factor informativeness in a vector latent variable w.r.t. the input,

independence among factors, as well as interpretability [171, 18].

The aforementioned metrics cannot be directly employed to C-S disentanglement settings,

where the latent factors have different dimensionality (e.g. the style is a vector and the content

a spatial multi-channel tensor). However, in this chapter I attempt to transfer these concepts

to the C-S disentanglement domain, incorporating both spatial (tensor) and vector representa-

tions1 to expand our understanding of the relation between C-S disentanglement and: a) biases

adopted by each model; b) task performance; c) representation interpretability.

4.3 Measuring Properties of Disentangled Content and Style

Given N image samples {Ii}Ni=1, I assume two representations of content and style: {Ci}Ni=1

and {si}Ni=1, respectively. Building on existing work in vector-based disentanglement [18, 171],

I present two complementary metrics to evaluate two properties in the context of C-S disen-

tanglement: (un)correlation, and informativeness. I provide evidence that the metrics offer

complementary information in Section 4.7. Then, I discuss two properties of the disentangled

representations, namely their utility and interpretability.

Distance Correlation (DC). Disentangled representations separate content and style into in-

dependent latent spaces [57], satisfying p(C, s) = p(C)p(s).However, directly measuring in-

1Note that the metrics used for the analysis are generic and can be readily applied to vector-based C-S disentan-
glement methods, such as [89].

44



Metrics for Exposing the Biases of Content-Style Disentanglement

dependence between spatial C and vector S with existing metrics is not feasible. Since indepen-

dent representations (variables) must be uncorrelated [128, 179], I use the empirical Distance

Correlation (DC) [131] to measure the correlation of distance between tensors of arbitrary

dimensionality. Note that DC is bounded in the [0, 1] range, while differently from other

correlation-independence metrics, such as the kernel target alignment [132] and the Hilbert-

Schmidt independence criterion [133], it has the advantage of not requiring any pre-defined

kernels. Moreover, DC is 0 if and only if the random variables are independent. Thus, distance

correlation measures both linear and nonlinear relationships between two random variables.

ForN samples, consider twoN -row matrices T1 and T2. In general, T1 and T2 row dimension

varies as they are formed by concatenating images Ii, content features Ci or style features si.

For Ii and Ci I first concatenate the channels and then row-scan to form a vector; si is already

a vector. DC is then defined as:

DC(T1,T2) =
dCov(T1,T2)√

dCov(T1,T1)dCov(T2,T2)
, with dCov(X,Y) =

√√√√ N∑
i=1

N∑
j=1

Ai,jBi,j

N2
.

(4.1)

Here, dCov is the distance covariance between any two N -row matrices X and Y, while A

and B are their respective distance matrices. In particular, each matrix element Ai,j of A is the

Euclidean distance between two samples ∥Xi −Xj∥, after subtracting the mean of row i and

column j, as well as the matrix mean. Formally, we define the distance matrix as:

ai,j = ∥Xi −Xj∥, āi,· =
1

N

N∑
i=1

ai,j , ā·,j =
1

N

N∑
j=1

ai,j ,

ā·,· =
1

N2

N∑
i,j=1

ai,j , Ai,j = ai,j − āi,· − ā·,j − ā·,·.

(4.2)

B is similarly calculated for Y. I estimate disentanglement between C and S using distance

correlation, DC(C, s), with values closer to 0 indicating higher disentanglement. C and S can

be uncorrelated, e.g. DC(C, s) = 0, either when they encode unrelated information or when

one encodes all information and the other encodes noise. The latter indicates posterior collapse,

thus full entanglement. To tackle this, DC(C, s) needs a complementary metric to measure the

representations’ informativeness.

Information Over Bias (IOB). To measure the amount of information encoded in C and S, I
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introduce the Information Over Bias (IOB) metric, aiming to detect posterior collapse when C

and S are disentangled, but one (C or S) is not informative about the input. Given z ∈ {C, s}

produced from N images at inference, I measure the amount of information encoded in each

representation. I train a decoder Gθn , a neural network with parameters θn, to reconstruct

images I by minimising the Mean Squared Error (MSE) between the reconstructed images

and the original images, given z. Each decoder is trained for 40 epochs with batch size 10

using Adam optimiser [180]. Using MSE to measure the quality of the reconstruction, we can

evaluate how informative z is with respect to the image I. In addition, any network design for

the decoder will introduce biases. To de-bias, we also train a decoder to reconstruct images

with a fixed input, where all the elements are 1. IOB is defined as the expectation over the test

images of the ratio:

IOB(I, z) = E
i

[
MSE(Ii,Gθ1(1))

MSE(Ii,Gθ2(zi))

]
=

1

N

∑N

i=1

(
1
K

∑K
k=1 ||Iki −Gθ1(1)||2

1
K

∑K
k=1 ||Iki − Ĩi

k||2 + ε

)
, (4.3)

where I and Ĩ are an image and its reconstruction obtained through Gθn ; i = 1 . . . N , k =

1 . . .K, n = 1 · · · + ∞ are indices iterating on the test images, the image pixels, and the

generator model index (different for each run); ε is a small value that prevents division by zero.

Note that the ratio aims at ruling out from IOB both data correlations (common structure,

colors, pose, etc., across the images of the dataset) and architectural biases that one could

introduce in the design of Gθn . In particular, this is done by computing the ratio between the

MSE obtained after training Gθn to reconstruct the images from their informative representation

z (e.g. MSE(Ii,Gθ2(zi)), and after training Gθn from an uninformative constant tensor 1

(e.g. MSE(Ii,Gθ1(1))). In the latter case, Gθn will only learn the dataset bias it can model,

given θn. Hence, high values of IOB can be associated with higher information inside the

representation z, while the lower bound IOB = 1 means that no information of the images I

is encoded in z.2

Utility and interpretability. As discussed, I can use DC and IOB to measure the degree of

disentanglement between latent representations. However, one of the primary goals of disen-

2Optimising Gθ with stochastic gradient descent can introduce noise and slightly alter the measure. For example,
IOB may, in practice, even be slightly smaller than 1. Thus, I average results across multiple runs and initializations
of Gθ , which contributes to the computational load of estimating IOB.
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tanglement is to improve task performance (utility) and representation interpretability, hence I

also investigate the relationship between C-S disentanglement and these two notions. In par-

ticular, I measure utility by quantifying performance on a downstream task, which for disen-

tangled representations is typically image translation [32, 33] to translate image content from

one domain to another. I also consider tasks using content e.g. to extract segmentations [13]

or landmarks [36], and therefore assess how effectively it can be used in downstream tasks. I

detail performance metrics for each application in Section 4.6.

Assessing interpretability is not trivial. Here, I assume that interpretability implies semantic

representations. Previously, vector representations were considered semantic if a portion of the

latent space corresponded to specific data variations [181, 182]. Style semantics were qualita-

tively evaluated with latent traversals of individual dimensions [13]. Thus, I consider a style

interpretable if images produced by linear traversals in the style latent space are realistic and

smoothly change intensity. In spatial representations, such data variation should be confined to

individual objects: thus, semantic content should split distinct objects into separate channels of

C. Wherever possible, I evaluate this with qualitative visuals.

4.4 Validating the Effectiveness of DC and IOB

To verify the effectiveness of DC and IOB, I design an experiment using the synthetic teapot

dataset [18], which consists of 200k of 64×64 pixel resolution images of a teapot with varying

pose and colour. Each image of this dataset is generated using 5 ground truth (GT) generating

factors (scalars), e.g. azimuth, elevation, red, green, and blue colour, independently sampled

from 5 different uniform distributions. I consider the 3 color factors as the GT style (GT S)

representation, while as GT spatial content representation (GT C) I leverage the segmentation

mask of the object, which correlates with the azimuth and elevation factors (for visual examples

see Fig 4.2).

As the content and style representations for the teapot dataset are independent, I first evaluate

DC and IOB using the GT C and S representations, and the input images, which are expected

to reflect the independence between the GT C and S representations, hence justifying the de-

sired properties of the metrics i.e. measuring (un)correlation. Then, I sample from a uniform

distribution U [0, 1] to generate a new, random style and content representations for each im-

age, and evaluate the metrics using the following scenarios: a) random content, GT style and
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Figure 4.2: Visuals for the empirical study with the teapot dataset. Top: examples of origi-

nal images, ground truth generating factors and segmentation masks. I also show

the randomly sampled content and style representations. Bottom: examples of tar-

get images and output images for the IOB decoders. The artefacts in the recon-

structed images indicate the biases introduced by the network design. Figure is

taken from [14].

images; b) GT content, random style and images; c) random content, random style and images.

These scenarios simulate that the models learn disentangled representations that are not infor-

mative to the image i.e. posterior collapse cases. Finally, to approximate the highly entangled

C and S scenario, I construct the content-correlated style representations (correlated S) as the

azimuth, elevation and red colour factors. For each experiment, I randomly sample 5k images

and the GT representations, while all results are the average of 3 different runs.

For the structure of IOB decoders, I vary the number of layers for different applications due

to the different dimensions of the representations. The design of the decoders for the teapot

dataset can be found in Table 4.1. Overall, Gθ(s) consists of several linear layers, followed by

transpose (upsampling steps) and one plain CONV layer that generates the final image. Gθ(C)

follows an autoencoder structure with several encoder and decoder CONV layers. For the teapot

dataset, the content representation has a size of 1 × 64 × 64 and the style representation has a
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Decoder Input Shape→Output Shape Layer Information

Gθ(C)

(1,64,64)→(8,64,64) CONV-(O:8,K:7x7,S:1,P:3), IN, Leaky ReLU

(8,64,64)→(16,32,32) CONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,32,32)→(32,16,16) CONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU

(32,16,16)→(64,8,8) CONV-(O:64,K:4x4,S:2,P:1), IN, Leaky ReLU

(64,8,8)→(32,16,16) DECONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU

(32,16,16)→(16,32,32) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,32,32)→(8,64,64) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU

(8,64,64)→(3,64,64) CONV-(O:3,K:7x7,S:1,P:3), Tanh

Gθ(s)

(3)→(256) FC-(O:256)

(256)→(4096) FC-(O:4096), Flatten

(64,8,8)→(32,16,16) DECONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU

(32,16,16)→(16,32,32) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,32,32)→(8,64,64) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU

(8,64,64)→(3,64,64) CONV-(O:3,K:7x7,S:1,P:3), Tanh

Table 4.1: IOB decoders design for the teapot dataset. The notations in the tables are: O: the

number of output channels; K: the kernel size; S: the stride size; P: the padding size;

FC: fully-connected layer; IN: instance normalisation;

size of 3.

From Table 4.2, I observe that for any combination of C and S (except for the correlated S

one), the DC(C, s) is low, which indicates that the representations are highly uncorrelated.

This result meets the expectation as the colour (S) and the azimuth or the elevation factors (C)

are independent in the teapot dataset. However, I also observe a high DC(C, s) value, e.g.

0.53, between GT C and correlated S, which verifies that DC can indeed detect the entangled

representations case. Additionally, the effectiveness of the DC metric is validated by the high

DC(I,C) values when using GT C representations, versus the low values when using random

C ones. Note that the DC between the GT S and image is higher than the one between GT C

and image, which is reasonable as S and image have nearly one-to-one mapping relationship,

while the segmentation masks for different images can be similar. The IOB results, reported

in Table 4.2, also reflect that the segmentation mask is less informative (IOB(I,C) = 1.73)

about the input image compared to S (IOB(I, s) = 2.47) for the GT C and GT S case. This is

a result of the strong dataset bias, where given that the object is always a teapot, it is the colour

of the reconstructed image that makes it more similar to the input one in terms of MSE.
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Metric
GT C Random C GT C Random C GT C

GT s GT s Random s Random s Correlated s

DC(C, s) (↓) 0.17 ±0.00 0.13 ±0.04 0.05 ±0.00 0.13 ±0.04 0.53±0.02

DC(I,C) (↑) 0.64 ±0.03 0.16 ±0.05 0.64 ±0.03 0.16 ±0.05 0.64±0.03

DC(I, s) (↑) 0.87 ±0.00 0.87 ±0.00 0.04 ±0.00 0.04 ±0.00 0.33±0.00

IOB(I,C) (↑) 1.73 ±0.10 1.41 ±0.20 1.73 ±0.10 1.41 ±0.20 1.73±0.10

IOB(I, s) (↑) 2.47 ±0.78 2.47 ±0.78 0.76 ±0.15 0.76 ±0.15 2.70±0.26

Table 4.2: Empirical study results for the DC and IOB metrics evaluation using the teapot

dataset [18]. Results are in “mean ±std” format.
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Figure 4.3: Model schematics. a) MUNIT: Instance normalisation is used to remove style from

content; Es uses global pooling. b) SDNet: the content is represented with binary

features; style is forced to approximate a normal prior. c) PANet: content and style

are encouraged to be equivariant to intensity and spatial transformations. Figure is

taken from [14].

Visual examples and qualitative results of the empirical study on the proposed metrics with the

teapot dataset are included in Fig. 4.2. It is notable that the artifacts in the reconstructed images

introduced by the decoder bias are observed in the results of both decoders and bias decoders,

which demonstrates the motivation of de-biasing design in IOB.

4.5 Considered Vision and Medical Applications

Many applications disentangle C from S [183, 89, 184, 90] or other attributes, such as pose,

geometry, and motion [185, 186, 187, 188], to improve performance in vision tasks. For the

analysis, I select and discuss three popular approaches (see Fig. 4.3) from diverse applica-

tions, namely image translation (MUNIT [32]), semantic segmentation (SDNet [13]), and pose

estimation (PANet [36]). All resemble auto-encoders, mapping input images to disentangled
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features but use several biases, which are detailed below. The scope is to elucidate how each

bias affects disentanglement using these models and their chosen biases as exemplars.

4.5.1 MUNIT for image-to-image translation

Multimodal Unsupervised Image-to-image Translation (MUNIT) [32] does not impose strict

constraints on the learned representations, and achieves disentanglement with both design and

learning biases. The model is depicted in Fig. 4.3(a).

The basic assumption is that multi-domain images (a necessary data bias), share common con-

tent information, but differ in style. A content encoder maps images to multi-channel feature

maps, by removing style with Instance Normalisation (IN) layers [102] (design bias). A sec-

ond encoder extracts global style information with fully connected layers and global pooling.

Finally, style and content are combined in a decoder with AdaIN modules [102] (design bias).

Disentanglement is additionally promoted with a bidirectional reconstruction loss [189] that

enables style transfer. To learn a smooth representation manifold, two Latent Regression (LR)

losses (learning bias) are applied: content LR penalizes the distance to the content extracted

from reconstructed images, whereas style LR encourages encoded style distributions to match

their Gaussian priors. Finally, adversarial learning encourages realistic synthetic images.

4.5.2 SDNet for medical image segmentation

SDNet [13] is a semi-supervised framework that disentangles medical images in anatomical fea-

tures (content) and imaging-specific characteristics (style). The model is depicted in Fig. 4.3(b).

Similarly to other models, SDNet uses separate content and style encoders, but here a segmenta-

tion network is applied on the content features trained with supervised objectives and annotated

images (data bias).

However, in contrast to MUNIT, SDNet does not impose a design bias on the encoder, but

rather on the content which is represented as multi-channel binary maps of the same resolution

as the input (design bias).

This is obtained with a softmax and a thresholding function with the straight-through oper-

ator [190], such that any style is removed from the content. To encourage style features to

encode residual information (and not content), a loss enforces the style representation to ap-

51



Metrics for Exposing the Biases of Content-Style Disentanglement

proximate a standard Gaussian, following the VAE formulation [30] (learning bias). In this

setup, any information encoded in style comes at a cost, and thus encoding redundant informa-

tion is prevented [191]. Furthermore, a LR loss of the style is employed to prevent posterior

collapse of the decoder (learning bias).

Finally, style and content are combined to reconstruct the input image by applying a series

of convolutional layers with feature-wise linear modulation (FiLM) conditioning. Similarly

to AdaIN, FiLM modules are restrictive, allowing the style only to normalise the conditioned

feature maps, and thus further discouraging the style from encoding content information (design

bias).

4.5.3 PANet for pose estimation

For the pose estimation task, I consider a dual-stream autoencoder denoted as Pose Appearance

Network (PANet) [36]. PANet consists of two branches that decouple pose (content) and ap-

pearance (style) but employs heavily entangled encoders-decoders. The model is depicted in

Fig. 4.3(c).

The content is represented as a multi-channel feature map, where each channel corresponds to

a specific body part (since the number of parts are fixed, this imposes a strong data bias). A

Gaussian distribution is applied to each feature map to remove any style information, whilst

also preserving the spatial correspondence (design bias).

The corresponding style information is extracted from the encoder features using average pool-

ing (design bias). More critically, style vectors do not correspond to global image style, since

they are applied to specific content parts during decoding (design bias).

Finally, disentanglement is encouraged with a transformation equivariance loss (learning bias).

This ensures that the spatial transformations, such as translations and rotations, affect only the

content, while the intensity ones, such as the color and texture information, affect only the style.

4.5.4 Summary of the applications

Table 4.3 summarizes the design and learning biases of the methods. Note that the biases are

reported as modules, without indicating the way they are used in the experiments (e.g. AdaIN is

reported without specifying that it is removed from the original MUNIT, but is added to PANet
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MUNIT SDNet PANet

Design Bias

AdaIN
√ √

Instance √
Normalisation

SPADE
√

Binarization
√

MLP
√

Learning Bias

Latent √ √
Regression

KL Divergence
√

Equivariance
√

Table 4.3: Overview of the design and learning biases that are investigated in the context of the

three investigated vision tasks: a) image-to-image translation (MUNIT), b) medical

segmentation (SDNet), and c) pose estimation (PANet). Note that the biases here

specifically mean model designs or learning objectives.

as a variant).

4.6 Experimenting on Vision and Medical Applications

Here I briefly summarise how each bias is enforced, whilst the detailed model descriptions and

a summary of their design and learning biases can be found in Section 4.5. In particular, for: a)

MUNIT I consider ablations removing IN [192], AdaIN layers, or style LR loss (for fairness,

I do not remove LR of the content as it is fundamental for the functioning of the model); b)

SDNet I identify content binarization, Gaussian approximation, LR and the FiLM-based [96]

decoder as the main biases that affect C-S disentanglement. I investigate their impact on the

representations and their effect on semantic segmentation; c) PANet I remove the Gaussian

prior and replace its specific C-S conditioning with AdaIN. I analyse PANet performance in

pose estimation. These models help us cover the following diverse cases: i) no supervision and

weak C constraints (MUNIT), ii) no supervision with strong C constraints (PANet), and iii)

supervision with strong C constraints (SDNet).

General setup. For each model, I analyse the effect that design choices and learning objectives

have on disentanglement and task performance, and I evaluate utility and interpretability of the
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learned representations. I use the implementations provided by the authors, ablating only the

components needed for the analysis. In all tables, arrows (↑, ↓) indicate direction of metric

improvement; best results are in bold. Numbers are the average of 5 different runs.

4.6.1 Model design and training scheme for IOB

The design of the decoders can be found in Table 4.4, Table 4.5, Table 4.6. Overall, Gθ(s)

consists of several linear layers, followed by transpose (upsampling steps) and one plain CONV

layer that generates the final image. Gθ(C) follows an autoencoder structure with several

encoder and decoder CONV layers. For MUNIT, the content representation has size 128 ×

64× 64 and the style representation has size 8. For SDNet, the content representation has size

8 × 224 × 224 and the style representation has size 8. For PANet, the content representation

has size 3× 64× 64 and the style representation has size 1024. Note that it is not necessary to

have exactly same design as in the tables, where the key suggestion is to design the decoders to

generate as high-quality as possible reconstructed images.

All the decoders are trained using the Adam optimiser [180] (β1 = 0.5, β2 = 0.999) with a

learning rate of 1e−4 for 40 epochs using batch size 10.

4.6.2 Image-to-image translation

I consider the original MUNIT and three variants: i) I replace the AdaIN modules of the decoder

with simple style concatenations, reducing the restrictions on the re-combination of C and S.

ii) I remove the LR loss, responsible for the style following a Gaussian. iii) I remove IN from

the content encoder, to confirm that it helps to cancel out original style and retain the content

only [102]. As [32] I evaluate quality and diversity of the translated images using the Fréchet

Inception Distance (FID) [193] and (Learned Perceptual Image Patch Similarity) LPIPS [194].

Data. I use SYNTHIA [19], which consists of over 20, 000 rendered images and corresponding

pixel-level semantic annotations, where 13 classes of objects are labeled for aiding segmenta-

tion and scene understanding problems. I also use Cityscapes [20], which contains a set of

diverse street scene stereo video sequences and over 5k frames of high-quality semantic anno-

tations, where 30 classes of instances are labeled in the segmentation masks.

Training setup. MUNIT achieves unsupervised multi-modal image-to-image translation by
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Decoder Input Shape→Output Shape Layer Information

Gθ(C)

(128,64,64)→(128,64,64) CONV-(O:128,K:7x7,S:1,P:3), IN, Leaky ReLU

(128,64,64)→(128,32,32) CONV-(O:128,K:4x4,S:2,P:1), IN, Leaky ReLU

(128,32,32)→(128,16,16) CONV-(O:128,K:4x4,S:2,P:1), IN, Leaky ReLU

(128,16,16)→(64,32,32) DECONV-(O:64,K:4x4,S:2,P:1), IN, Leaky ReLU

(64,32,32)→(32,64,64) DECONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU

(32,64,64)→(16,128,128) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,128,128)→(3,128,128) CONV-(O:3,K:7x7,S:1,P:3), Tanh

Gθ(s)

(8)→(256) FC-(O:256)

(256)→(4096) FC-(O:4096)

(4096)→(8192) FC-(O:8192), Flatten

(128,8,8)→(64,16,16) DECONV-(O:64,K:4x4,S:2,P:1), IN, Leaky ReLU

(64,16,16)→(32,32,32) DECONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU

(32,32,32)→(16,64,64) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,64,64)→(8,128,128) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU

(8,128,128)→(3,128,128) CONV-(O:3,K:7x7,S:1,P:3), Tanh

Table 4.4: IOB decoders design for MUNIT. The notations in the tables are: O: the number

of output channels; K: the kernel size; S: the stride size; P: the padding size; FC:

fully-connected layer; IN: instance normalisation;
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Decoder Input Shape→Output Shape Layer Information

Gθ(C)

(8,224,224)→(8,224,224) CONV-(O:8,K:7x7,S:1,P:3), IN, Leaky ReLU

(8,224,224)→(16,112,112) CONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,112,112)→(32,56,56) CONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU

(32,56,56)→(64,28,28) CONV-(O:64,K:4x4,S:2,P:1), IN, Leaky ReLU

(64,28,28)→(128,14,14) CONV-(O:128,K:4x4,S:2,P:1), IN, Leaky ReLU

(128,14,14)→(64,28,28) DECONV-(O:64,K:4x4,S:2,P:1), IN, Leaky ReLU

(64,28,28)→(32,56,56) DECONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU

(32,56,56)→(16,112,112) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,112,112)→(8,224,224) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU

(8,224,224)→(1,224,224) CONV-(O:1,K:7x7,S:1,P:3), Tanh

Gθ(s)

(3)→(256) FC-(O:256)

(256)→(4096) FC-(O:4096)

(4096)→(25088) FC-(O:25088), Flatten

(128,14,14)→(64,28,28) DECONV-(O:64,K:4x4,S:2,P:1), IN, Leaky ReLU

(64,28,28)→(32,56,56) DECONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU

(32,56,56)→(16,112,112) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,112,112)→(8,224,224) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU

(8,224,224)→(1,224,224) CONV-(O:1,K:7x7,S:1,P:3), Tanh

Table 4.5: IOB decoders design for SDNet. The notations in the tables are: O: the number

of output channels; K: the kernel size; S: the stride size; P: the padding size; FC:

fully-connected layer; IN: instance normalisation;

Decoder Input Shape→Output Shape Layer Information

Gθ(C)

(3,64,64)→(16,64,64) CONV-(O:16,K:7x7,S:1,P:3), IN, Leaky ReLU

(16,64,64)→(32,32,32) CONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU

(32,32,32)→(16,64,64) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,64,64)→(8,128,128) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU

(8,128,128)→(3,128,128) CONV-(O:3,K:7x7,S:1,P:3), Tanh

Gθ(s)

(1024)→(1,32,32) Flatten

(1,32,32)→(16,64,64) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,64,64)→(8,128,128) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU

(8,128,128)→(3,128,128) CONV-(O:3,K:7x7,S:1,P:3), Tanh

Table 4.6: IOB decoders design for PANet. The notations in the tables are: O: the number

of output channels; K: the kernel size; S: the stride size; P: the padding size; FC:

fully-connected layer; IN: instance normalisation;
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Learning Bias Design Bias

Metric
Original w/o Latent w/o w/o Instance

Model Regression (LR) AdaIN Normalisation (IN)

DC(C, s) (↓) 0.44 ±0.06 0.40 ±0.08 0.43 ±0.01 0.66 ±0.03

DC(I,C) (↑) 0.57 ±0.07 0.57 ±0.08 0.58 ±0.08 0.73 ±0.03

DC(I, s) (↑) 0.70 ±0.02 0.73 ±0.03 0.56 ±0.03 0.63 ±0.05

IOB(I,C) (↑) 4.36 ±0.38 4.34 ±0.58 4.85 ±0.10 5.01 ±0.12

IOB(I, s) (↑) 1.31 ±0.04 1.46 ±0.05 1.17 ±0.04 1.28 ±0.06

FID (↓) 73.48 ±8.35 104.51 ±4.21 52.48 ±5.03 71.4 ±4.86

LPIPS (↑) 0.08 ±0.01 0.09 ±0.01 0.06 ±0.01 0.10 ±0.01

Table 4.7: Comparative evaluation of MUNIT variants using the proposed metrics. I use FID

and LPIPS to measure translation quality and diversity between SYNTHIA [19] and

Cityscapes [20] samples. Results are in “mean ±std” format.

minimizing the following loss function:

Ltotal = LGAN + λ1Lrec + λ2Lc−rec + λ3Ls−rec, (4.4)

where Lrec is the image reconstruction loss i.e. the ℓ1 distance between the input image and

the reconstructed image, Lc−rec and Ls−rec are the content and style latent regression losses,

and λ1 = 10, λ2 = 1 are the hyperparameters used by the authors in [32].

Results. Table 4.7 reports the results of the ablations on the SYNTHIA [19] and City-

scapes [20] datasets. Replacing AdaIN (w/o AdaIN) with simple concatenation does not affect

the level of C-S disentanglement, but it leads to a 0.14 absolute decrease in IOB(I, s) and

DC(I, s), indicating that the style becomes less informative and less correlated with the input.

Here, I observe an information shift to the content (lower IOB(I, s), higher IOB(I,C)) lead-

ing to better translation quality but worse diversity (LPIPS= 0.06). I infer that this variant is

worse than the original model, which had more balanced quality/diversity scores. By removing

the LR learning bias (w/o LR), the style becomes more correlated to the input image. If the

style distribution is no longer Gaussian, the style has more degrees of freedom to encode non-

relevant information, which contributes to higher IOB(I, s) and higher C-S disentanglement.

This ablation leads to a significant translation quality decrease, while contrary to the analysis
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in [32], the diversity is not negatively affected. Finally, by removing IN (w/o IN) I expect

a more entangled content that is encoding also some style information. The expectations are

confirmed by the decrease in C-S disentanglement (DC(C, s) = 0.66), and a more informative

content (which is also more correlated to the input image). Interestingly, relaxing the content

constraints for a task that does not require a strictly semantic content (such as image segmenta-

tion), leads to the best quality/diversity balance. Note that I define the best balance as achieving

the highest average ranking in FID and LPIPS (e.g. the “w/o IN” model variant is the 1st in

LPIPS and 2nd in FID).

Summary. The experiments reveal a trade-off between the translation quality/diversity and

disentanglement in a translation task. The proposed metrics indicate that a partially disentan-

gled C-S space –with a near-Gaussian style latent space– leads to the best quality/diversity

performance. For MUNIT this is achieved by removing the IN design bias.

4.6.3 Medical segmentation

In SDNet, content binarization and style Gaussianity are the key representation constraints. I

evaluate their effect and those of decoder design on segmentation performance measuring the

Dice Score [195, 196] after: i) removing content thresholding (w/o Binarization), ii) removing

style Gaussianity (w/o Kullback-Liebler Divergence (KLD) and LR), and iii) considering a

new decoder, obtained replacing the FiLM style conditioning with SPADE [105]. SPADE is

less restrictive, allowing the style to encode more image-related information, such as textures,

rather than just intensity.

Data. I use data from the Automatic Cardiac Diagnosis Challenge (ACDC) [8], which contains

cardiac cine-MR images acquired from different MR scanners and resolution on 100 patients.

Images were resampled to 1.37 mm/pixel resolution and cropped to 224× 224 pixels. Manual

segmentations are provided for the left ventricular cavity, the myocardium and right ventricle

in the end-systolic and end-diastolic cardiac phases. In total there are 1920 images with manual

segmentations and 23,530 images with no segmentations.

Training setup. SDNet is trained by minimizing the following loss function:

Ltotal = λ1LKL + λ2Lseg + λ3Lrec + λ4Lzrec , (4.5)

where LKL is the KL Divergence measured between the sampled and the predicted style vec-
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tors, Lrec is the image reconstruction loss i.e. the ℓ1 distance between the input image and the

reconstructed image, Lseg is the segmentation Dice loss, and Lzrec is the LR loss of the style

vector. λ1 = 0.01, λ2 = 10, λ3 = 1, and λ4 = 1 are the hyperparameters used by the authors

in [13].

Learning Bias Design Bias

Metric
Original w/o KLD w/o

SPADE
Model and Latent Reg. (LR) Binarization

DC(C, s) (↓) 0.49 ±0.02 0.64 ±0.03 0.44 ±0.00 0.52 ±0.01

DC(I,C) (↑) 0.94 ±0.01 0.94 ±0.01 0.98 ±0.02 0.93 ±0.01

DC(I, s) (↑) 0.43 ±0.02 0.66 ±0.00 0.44 ±0.01 0.45 ±0.01

IOB(I,C) (↑) 4.71 ±0.26 4.84 ±0.23 5.89 ±0.22 5.09 ±0.00

IOB(I, s) (↑) 1.00 ±0.01 1.00 ±0.04 0.98 ±0.04 1.00 ±0.04

Dice (↑) 0.62 ±0.02 0.61 ±0.04 0.63 ±0.04 0.75 ±0.02

Table 4.8: Comparative evaluation of SDNet variants using the proposed metrics. I use the Dice

score to measure semantic segmentation performance on the ACDC [8] dataset with

1.5% annotation masks. Results are in “mean ±std” format.

Learning Bias Design Bias

Metric
Original w/o KLD w/o

SPADE
Model and Latent Regression Binarization

DC(C, s) (↓) 0.48 0.57 0.43 0.59

DC(I,C) (↑) 0.97 0.95 0.97 0.94

DC(I, s) (↑) 0.44 0.53 0.44 0.57

IOB(I,C) (↑) 5.66 3.86 6.21 5.63

IOB(I, s) (↑) 0.99 0.96 1.00 1.02

Dice (↑) 0.82 0.81 0.82 0.83

Table 4.9: Comparative evaluation of SDNet [13] variants on the ACDC [8] dataset with 100%

annotation masks, using the proposed metrics. The Dice metric is used to measure

the performance in terms of semantic segmentation.

Results. Table 4.8 reports the findings on the ACDC [8] dataset. From the results reported in

Table 4.9, it can be seen that when using all the available annotations (fully supervised learn-

ing), all SDNet variants achieve a similar accuracy, suggesting that strong learning biases, such

as supervised segmentation costs, make disentanglement less important. Thus, I consider the
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semi-supervised training case with minimal supervision, using only the 1.5% of available la-

belled data. Overall, the style encodes little information in all SDNet variants, probably because

all medical images in ACDC have similar styles (data bias), and reconstructing using an aver-

age style is enough to have low IOB(I, s). However, C-S disentanglement is still important

to obtain a good content representation. For example, intermediate levels of disentanglement

(SPADE) lead to the best segmentation performance. In this variant, disentanglement decreases

compared to the original model, as some style information is probably leaked to the content

(higher DC(C, s) and IOB(I,C)). On the other hand, also removing C binarization (w/o Bi-

narization) makes content more informative; since the correlation between C and S decreases,

I assume that the extra information encoded in C is not part of the style. Lastly, removing the

Gaussian prior constraints from the style (w/o KLD and LR) leads to the lowest degree of

disentanglement as there is no information bottleneck on S, and a slight decrease of the Dice

score.

Summary. I find disentanglement to have minimal effect on task performance when training

with strong learning signals (e.g. supervised costs). In the semi-supervised setting, a higher

(but not full) degree of disentanglement leads to better performance, while the amount of infor-

mation in C alone is not enough to achieve adequate segmentation performance.

4.6.4 Pose estimation

I consider the original PANet model and four possible variants, relaxing design biases on both

C and style, and learning biases. In detail: i) I experiment with a different conditioning mecha-

nism to re-entangle S and C, that consists of the use of AdaIN, rather than just multiplying each

S vector with a separate C channel (introducing a bias on S, similar to MUNIT). ii) I consider

the case where, instead of learning a different S for each channel of C, I extract a global S vec-

tor, predicted by an MLP (relaxing the tight 1:1 correspondence between C and S channels). iii)

I also consider the case where each C part is not approximated by a Gaussian prior. Since we

cannot use the original decoder to combine C and S, I reintroduce S using AdaIN. iv) Finally, I

evaluated the effect of the equivariance constraint, by removing it from the cost function.

Data. I use DeepFashion [21], a large-scale dataset with over 800,000 diverse images of people

in different poses and clothing, that also has annotations of body joints. I only used full-body

images, specifically 32k images for training and 8k images for testing.
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Learning Bias Design Bias

Metric
Original

w/o Equivar.
AdaIN

AdaIN MLP
Model w/o Gaussian

DC(C, s) (↓) 0.65 ±0.01 0.76 ±0.08 0.25 ±0.01 0.36 ±0.02 0.69 ±0.03

DC(I,C) (↑) 0.59 ±0.01 0.60 ±0.02 0.53 ±0.01 0.56 ±0.01 0.58 ±0.02

DC(I, s) (↑) 0.83 ±0.01 0.82 ±0.01 0.38 ±0.06 0.81 ±0.01 0.82 ±0.03

IOB(I,C) (↑) 1.50 ±0.08 1.50 ±0.08 1.53 ±0.06 1.52 ±0.08 1.49 ±0.06

IOB(I, s) (↑) 1.09 ±0.04 1.13 ±0.06 1.12 ±0.09 1.10 ±0.15 1.21 ±0.09

SIM (↑) 0.71 ±0.02 0.47 ±0.04 0.58 ±0.00 0.64 ±0.01 0.68 ±0.01

Table 4.10: Comparative evaluation of PANet variants using the proposed metrics. I use SIM

to measure the performance in terms of pose estimation from landmarks on the

DeepFashion [21] dataset. Results are in “mean ±std” format.

Training setup. PANet is trained in an unsupervised way with the following loss function:

Ltotal = λ1Lrec + λ2Lequiv, (4.6)

where Lrec is the reconstruction loss i.e. the ℓ1 distance between the input image and the

reconstructed image. Lequiv is an equivariance cost, that ensures that the content information

does not change after applying some style transformations such as changing the colour of

the image. Formally, considering I is the original image and I′ is the transformed image

that has a different style compared to I, EC(I) encodes the content information. Here,

Lequiv = |EC(I) − EC(I
′)|1. Based on the implementation details presented in [36], I set

λ1 = λ2 = 1.

Results. Table 4.10 reports results of the ablations on the DeepFashion [21] dataset. I assess

model performance using (Similarity or Histogram Intersection) SIM [197] to measure the sim-

ilarity between the predicted and ground truth landmarks visualized as heatmaps. Whilst the

original model is the best to predict landmarks, it only achieves average disentanglement (see

DC(C, s)). Using an AdaIN-based decoder consistently improves disentanglement as it has a

strong inductive bias on the re-entangled representation (see DC(C, s) for AdaIN, and AdaIN

w/o Gaussian), but it leads to worse landmark detection – the representation adapts tightly to

the strongly-biased decoder, and the content loses transferability to other tasks. Using an MLP
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Figure 4.4: Pearson correlation coefficients of the proposed metrics across all models visualized

as a heatmap. Values close to 1 and -1 indicate a strong correlation. Figure is taken

from [14].

to encode S relaxes the specific conditioning between C and S (a design bias) and reduces dis-

entanglement. In fact, there is an information shift from C to S, as indicated by the higher

IOB(I, s), and I observe a high DC(C, s). Here, a moderate decrease of disentanglement

shows slightly lower task performance. Finally, the equivariance cost is the most important

factor for disentanglement; removing it (w/o Equivariance) leads to the most entangled repre-

sentation (high DC(C, s)), and accuracy decrease in landmark detection.

Summary. Overall, learning more entangled representations (higherDC(C, s) values) leads to

better landmark detection. Balance is the key to improve the auxiliary tasks. In PANet, partial

disentanglement is achieved by carefully balancing the design biases used to extract the style

and to reintroduce it to the content while decoding. Relaxing such biases with AdaIN or MLP

makes landmark detection worse.

4.7 Complementary Metrics

As noted in Section 4.3, I report that the proposed metrics are uncorrelated with each other.

Here, I present the Pearson correlation computed between disentanglement and performance

metrics for each of the investigated models. Intuitively, contrary to the desired low (or no)

correlation between disentanglement metrics across all models (see Fig. 4.4), I would expect

that the performance metric(s) of each application would be correlated with at least one DC

or IOB variant. In fact, this correlation can be exploited to find the “sweet spot” between
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Figure 4.5: Pearson correlation of the proposed metrics across all applications/models visual-

ized as heatmap. Values close to 1 and -1 indicate strong correlation. Figure is

taken from [14].

disentanglement and performance. Fig. 4.5 confirms the intuition for all investigated models,

highlighting the strong correlation of FID and LPIPS in the MUNIT scenario, which is the only

model that utilizes both C and S directly in the main task, e.g. I2I translation.

4.8 Discussion

I now discuss the relationship between C-S disentanglement and inductive biases, task perfor-

mance, interpretability of the latent representations.

Do biases affect C-S disentanglement? Results in Section 4.6 illustrate that learning and

design biases critically affect disentanglement. However, no evaluation can specifically char-

acterize the relative importance of each one, since this depends on the task at hand, as well

as the utilized data. In MUNIT, disentanglement is mainly encouraged by the content-related

design and learning biases. In fact, IN is key to removing style information from the content,

and the model cannot be successfully trained without LR of the content. Disentanglement in

SDNet is susceptible to the biases that affect both latent variables. Using a SPADE decoder

or removing content thresholding leads to more entanglement, while making the style Gaus-

sian through learning constraints restricts its informativeness and encourages disentanglement.

Similarly, PANet disentanglement is affected both by designing the content as Gaussian, and

by the equivariance of C and S w.r.t. spatial or intensity transformations, respectively.

What is the relationship between C-S disentanglement and task performance? The results
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Style Traversal

Input

Content (8 of 128 channels)
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Original 
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Difference of 
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Figure 4.6: MUNIT: Qualitative examples to assess the interpretability of the content and style

representations of the investigated model variants for different biases. For each

variant, I show 8 channels of the content and 7 indicative style traversals and the

difference between the first and last traversal images. The input image is depicted

at the top left of the figure. Figure is taken from [14].
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Figure 4.7: SDNet: Qualitative examples to assess the interpretability of the content and style

representations of the investigated model variants for different biases. For each

variant, I show 8 channels of the content and 7 indicative style traversals and the

difference between the first and last traversal images. The input image is depicted

at the top left of the figure. Figure is taken from [14].
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Input

Original 
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Figure 4.8: PANet: Qualitative examples to assess the interpretability of the content and style

representations of the investigated model variants for different biases. For each

variant, I show 8 channels of the content. Note that since PANet does not assume

a prior distribution on the style, no style are shown. The input image is depicted at

the top left of the figure. Figure is taken from [14].
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showcase a clear sweet spot between C-S disentanglement and downstream task performance.

In particular, I observe that lowering disentanglement by relaxing constraints on the content

(e.g. removing IN), but preserving the biases that enforce style priors, such as C-S equivariance,

leads to better performance.

Does disentanglement affect content interpretability? Interpretability is hard to quantify

without metrics. I visualize the content and style representations in order to reason about their

interpretability. I consider the content semantic if distinct objects appear in different channels,

whereas the style is semantic when images reconstructed while traversing the style manifold

between two points have smooth appearance changes, and are realistic.

I provide visualizations for all model variants. In particular, Figs. 4.6 and 4.7 depict several

channels of content, as well as style traversals for different MUNIT and SDNet model variants,

respectively. However, Fig. 4.8 presents solely content representations, as PANet does not

assume a prior distribution on the style latent vector, thus style traversals are not possible. When

interpolating between two style vectors, the originally proposed MUNIT produces realistic

images, and smooth appearance changes. Instead, removing the LR constraint affects the image

quality. Similarly, the original SDNet presents high image quality and smooth transitions, while

removing the content Binarization leads to low intensity (style) diversity.

4.9 Summary

In this chapter, I evaluated the disentanglement between image C and S through experimenting

on 3 popular models, and showcased how design and learning biases affect disentanglement and

by extension task performance. The findings suggest that whilst content-style disentanglement

enables the implementation of certain equivariant tasks, partially (dis)entangled can lead to bet-

ter performance than fully disentangled ones. Using the findings and the presented metrics will

enable the design of better models that achieve the degree of disentanglement that maximizes

performance, rather than blindly pursuing very high (or low) disentanglement, which motivates

the design of low-rank regularisation in Chapter 5. In addition, the qualitative evaluation of

content interpretability inspires how I evaluate compositional equivariance in Chapter 6.
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Chapter 5
Disentanglement for

Domain-Generalised Medical Image
Segmentation

In Chapter 4, I studied how to measure the degree of content-style disentanglement and explored

how disentanglement affects task performance. With this knowledge, in this chapter, I focus on

deploying disentanglement to improve task performance and to learn models that have better

generalisation ability.

5.1 Introduction

I first explore how to augment the training data from multiple source domains such that the

model can be trained with more diverse data hence possibly dealing with the domain shifts.

Based on our group’s previous work SDNet [13], I propose a post-hoc method to randomly mix

the latent factors to generate new images to augment the training dataset. I find that this method

does not provide guaranteed generalisation ability if the target domain has novel anatomy and

modality, which do not exist in the augmented data. Also, the augmentations take advantage

of the learnt representation but do not help explicitly in learning better representations. I then

explore more advanced approaches to regularise the representations. I propose to combine

meta-learning and disentanglement. The proposed approach can capture the latent factors cor-

responding to certain domain shifts with disentanglement and meta-learning training strategy

This chapter is based on:

• Liu, X., Thermos, S., Chartsias, A., O’Neil, A. and Tsaftaris, S.A., 2020. Disentangled Representations for
Domain-generalised Cardiac Segmentation. In International Workshop on Statistical Atlases and Computa-
tional Models of the Heart (pp. 187-195). Springer, Cham.

• Liu, X., Thermos, S., O’Neil, A. and Tsaftaris, S.A., 2021. Semi-supervised Meta-learning with Disen-
tanglement for Domain-generalised Medical Image Segmentation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention 2021.
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learns the changes of latent factors across domains. Taking the advantage of unsupervised dis-

entanglement, the method can also be trained with unlabeled data, which addresses the under-

estimated domain shifts problem of previous meta-learning approaches.

5.1.1 Motivation of the approaches

Despite recent progress in medical image segmentation [8, 198, 199], inference performance on

unseen datasets, acquired from distinct scanners or clinical centres, is known to decrease [7, 5].

Such reduction is mainly caused by shifts in data statistics between different clinical centres

i.e. domain shifts [23], due to variation in patient populations, scanners, and scan acquisition

settings [200]. The variation in population impacts the underlying anatomy and pathology due

to factors such as gender, age, ethnicity, which may differ for patients in different locations [24,

25, 201]. The variation in scanners and scan acquisition settings impacts the characteristics of

the acquired image, such as brightness and contrast [23].

The naive approach to handling domain shift is to acquire and label as many and diverse data

as possible, the cost implications and difficulties of which are known to this community. Alter-

natively one can train a model on source domains to generalise for a target domain with some

information on the target domain available i.e. domain adaptation [202] such as cross-site MRI

harmonisation [203] to enforce the source and target domains to share similar image-specific

characteristics [204]. A more strict alternative is to not use any information for the target do-

main, known as domain generalisation [205]. Herein, I focus on this more challenging and

more widely applicable approach.

In domain generalisation, the overarching goal is to identify suitable representations that en-

code information about the task at hand whilst being insensitive to domain-specific informa-

tion. There are several active research directions aiming to address this goal, including: di-

rect augmentation of the source domain data [23], feature space regularisation [206, 207, 208,

110, 209], alignment of the source domain features or output distributions [210], and learning

domain-invariant features with gradient-based meta-learning [211, 212, 213].

As a more advanced approach, gradient-based meta-learning methods have the advantage of

not overfitting to dominant source domains which account for the more populous data in the

training dataset [212]. Gradient-based meta-learning [205, 214] exploits an episodic training

paradigm [215] by splitting the source domains into meta-train and meta-test sets at each it-
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eration. The model is trained to handle domain shift by simulating it during training. By

using constraints to implicitly eliminate the information related to the simulated domain shifts,

the model can learn to extract domain-invariant features. Previous work introduced different

constraints in a fully supervised setting e.g. global class alignment and local sample cluster-

ing [212], shape-aware constraints [213] or simply the task objective [205, 216], where [216]

extends [205] to medical image segmentation.1 These approaches do not scale in medical im-

age segmentation as pixel-wise annotation is time-consuming, laborious, and requires expert

knowledge. Meanwhile, in a low data regime where centres only provide a few labeled data

samples, these methods may only learn to extract domain-invariant features from an under-

represented data distribution [23, 216]. In other words, the simulated domain shifts may not

well approximate the true domain shifts between source and unseen domains.

5.1.2 Approach overview

I first propose two data augmentation methods, termed Resolution Augmentation (RA) and

Factor-based Augmentation (FA) (as in Fig. 5.1), which are combined to improve domain adap-

tion and generalisation, thus improving the performance of state-of-the-art models in Cardiac

Magnetic Resonance (CMR) image segmentation. In particular, I use RA to remove the reso-

lution bias by randomly rescaling the training images within a predetermined resolution range,

while FA is used to increase diversity in the labeled data through mixing spatial and imaging

factors, which I denote as the anatomy and modality factors, respectively. To extract these fac-

tors for FA, I pre-train the SDNet model introduced in [13] using the original (prior to augmen-

tation) data. Experiments on the diverse dataset from the STACOM 2020 Multi-Centre, Multi-

Vendor & Multi-Disease Cardiac Image Segmentation Challenge (M&Ms challenge) show the

superiority of the proposed methods when combined with the U-Net [218] and SDNet models.

The augmentations only take advantage of the learnt representations e.g. mixing the modality

and anatomy factors. To regularise the representations to be generalisable during training, I

then propose to explicitly disentangle the representations related to domain shifts for meta-

learning as I illustrate in Fig. 5.2. Learning these complete and sufficient representations [56]

via reconstruction brings the benefit of unsupervised learning, thus we can better simulate the

domain shifts by also using unlabeled data from any of the source domains. I consider two

1With the exception of [217] which clusters unlabeled data to generate pseudo labels, but unfortunately is not
applicable to segmentation.
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(a) SDNet (b) Factor-based Augmentation

(c) Example images of  Factor-based Augmentation

Anatomy Images Modality Images Generated Images

Figure 5.1: (a) SDNet: Ea: anatomy encoder, Em: modality encoder, D(AdaIN): AdaIN de-

coder. I is the input image to the model and Irec is the output image of the AdaIN

decoder i.e. the reconstructed image. Mask is the predicted segmentation mask for

the input image. (b) Illustration of Factor-based Augmentation: D̃(AdaIN) is a

pre-trained AdaIN decoder. (c) Example images produced by Factor-based Aug-

mentation. Anatomy Images provide anatomy factors, Modality Images provide

modality factors, and Generated Images are the combination of the anatomy and

modality factors. Figure is taken from [15]
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Figure 5.2: At each iteration, the training dataset is split into meta-train and meta-test sets in-

cluding labeled and unlabeled data. A feature network Fψ extracts features Z for

a task network Tθ to predict segmentation masks. The model is trained in a semi-

supervised setting, where LDT , Lrec and Lcls do not require pixel-wise annotation.

In the inner-loop update, ψ′ and θ′ are computed for the meta-test step (see Eq. 5.3).

Finally, all the gradients are computed to update Fψ and Tθ as in Eq. 5.4. The disen-

tanglement networks decompose image X to common s and specific to the domain

d representations to be disentangled with Z for meta-train and meta-test sets with

the constraints (LDT and Lrec and Lcls). See Section 5.3.1 for loss definitions. Fig-

ure is taken from [16]
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sources of shifts: one due to scanner and scan acquisition setting variation, and one due to

population variation. Because the task is segmentation, we want to be sensitive to changes

in anatomy but insensitive to changes in imaging characteristics be it some common across

domains or domain-specific. I use spatial (grid-like) features as a representation of anatomy

(Z) and two vectors (s,d) to encode common or domain-specific imaging characteristics. I

apply specific design and learning biases to disentangle the above. For example, a spatial Z is

equivariant to segmentation and this has been shown to improve performance [32, 13]. I further

encourage Z to be disentangled from s and d by exploiting a low-rank regularisation [210].

Gradient-based meta-learning also encourages Z, s, and d to generalise well to unseen domains

whilst at the same time improves (implicitly) their disentanglement.

5.1.3 Contributions

The main contributions of this chapter are summarised as follows:

• I propose two novel augmentation approaches based on disentanglement models.

• I propose the first, to the best of my knowledge, semi-supervised domain-generalisation

framework combining meta-learning and disentanglement.

• Use of low-rank regularisation as a learning bias to encourage better disentanglement and

hence improved generalisation performance.

• Extensive experiments on cardiac and gray matter datasets show improved performance

over several baselines especially for the limited annotated data case.

This chapter is organised as follows. Section 5.2 presents the two proposed augmentation

approaches and the corresponding results. Section 5.3 describes the proposed approach that

combines meta-learning and disentanglement. Finally, this chapter is concluded in Section 5.4.

5.2 Augmenting the Latent Space for Generalisation

5.2.1 Method

I train the SDNet model and employ RA and FA to generate a more diverse dataset. The model

and FA setup is illustrated in Fig. 5.1.
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5.2.1.1 Resolution Augmentation (RA):

It is common in MRI data that the imaging resolution (the variation in physical pixel size over

image samples) is different for each study due to variation of the scanner parameters. Variation

in the imaging resolution can cause the cardiac anatomy to vary significantly in size (i.e. area

in pixels), beyond normal anatomical variability.

The training dataset contains subjects scanned by scanners from three vendors i.e. Vendors A,

B and C. In Fig. 5.3, I show histograms of the training dataset image resolutions (Section 5.2.2

has more details on the dataset).
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Figure 5.3: Resolution histograms of the M&Ms challenge training data, broken down by ven-

dor (from left to right: Vendors A, B and C).

I observed that the histograms of subjects imaged by scanners from different vendors are dis-

tinct from one other i.e. this is a bias with respect to the dataset. To reduce this bias, I propose

to augment the training dataset such that the resolutions of subjects are equally distributed from

0.954 mm to 2.692 mm per pixel (the minimum and maximum values observed in the data from

the 3 vendors), by rescaling the original image to a random resolution in this range. Finally I

center-crop the rescaled image to uniform dimensions of 224× 224 pixels.

5.2.1.2 Factor-based Augmentation (FA):

Fig 5.4 illustrates the Factor-based Augmentation method, where a pre-trained SDNet is first

used to extract the factors and I mix the factors to generate new images. As shown in Fig. 5.1(a),

SDNet decomposes the input image into two latent representations, i.e. anatomy and modality

factors, respectively. In particular, the anatomy factor contains spatial information about the

input, and the modality factor contains non-spatial information only, namely imaging specific

characteristics. Ideally, the anatomy factors would not encode the variation caused by different
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Learned factors can bridge the domain gap

• Factor mixing to create augmented data for M&Ms challenge
• Adds diversity to bridge the “vendor” domain gap 

Pre-trained SDNet extracts factors Mix the factors to generate new images

Anatomy 
Encoder

Vendor A Vendor B

Vendor C

Decoder

Three sets of anatomy 
factors

Sample

Sample

Generated 
image

Modality 
Encoder

Three sets of modality factors

* M&Ms Challenge (12:00 PM - 1:30 
PM BST on Sunday, 4 October)

Liu, Thermos, Chartsias, O'Neil, & Tsaftaris (2020) Disentangled Representations for 
Domain-generalized Cardiac Segmentation. arXiv 2008.11514 M&Ms STACOM@MICCAI 2020 Challenge

Figure 5.4: For Factor-based Augmentation, I pre-train a SDNet to extract the factors and then

I mix the factors to generate new images.

scanners, rather this information would be encoded in the modality factors. Motivated by this,

I propose to augment the training dataset by combining different anatomy and modality factors

to generate new data.

Considering the three sets of data from Vendors A, B and C, I first pre-train a SDNet model in a

semi-supervised manner using the original data. Using this model at inference, I decompose the

three sets of data into three sets of anatomy and modality factors. In total, there are 9 possible

combinations of the factors resulting in 9 sets of augmented data, where the original training

set covers 3 sets and the other 6 sets are novel. As shown in Fig. 5.1(b), I randomly sample an

anatomy factor from the three anatomy factor sets and a modality factor from the three modality

factor sets. A new image can be generated by processing the two factors with the decoder of

the pre-trained SDNet model. By repeating this augmentation process, I generate a larger and

more diverse labelled dataset. The segmentation mask of the generated data is the mask of the

image providing the anatomy factor, if the image is labeled, otherwise the generated data is

unlabeled. Some indicative examples of FA are visualized in Fig. 5.1(c).

5.2.1.3 Model Architecture

As depicted in Fig. 5.1(a), the SDNet model consists of 4 modules, namely the anatomy encoder

Ea, the modality encoder Em, the segmentor, and the AdaIN-based decoder D(AdaIN).

The anatomy encoder is realized as a U-Net network that consists of 4 downsampling and up-

sampling convolutional layers coupled with batch normalisation [103] layers and ReLU [219]

non-linearities. The output feature of the anatomy encoder has 8 channels, while the feature
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values are thresholded to 0 and 1 by a differentiable rounding operator. By adopting the thresh-

olding constraint and supervision provided by the segmentation masks, the encoded anatomy

factor is forced to contain more spatial information about the image.

The modality encoder consists of 2 downsampling convolutional layers (4 × 4 kernel size)

that are followed by a global averaging pooling layer, which is used to eliminate the spatial

(anatomical) information. The output of the pooling layer is then projected to an 8-dimensional

vector (modality factor) using a Multi-Layer Perceptron (MLP) network.

The segmentor has 2 convolutional layers using 3×3 kernels, coupled with batch normalisation

and ReLU activation layers, as well as a 1×1 convolution followed by a channel-wise softmax.

The input to the segmentor is the thresholded anatomy factor. The target is the ground truth

segmentation masks when the masks are available. In the learning process, this segmentor

encourages the anatomy encoder to encode more spatial information about the image such that

the segmentor can learn to predict the corresponding masks more efficiently.

Finally, for the AdaIN decoder, I use the AdaIN module as in [102], in order to combine the

anatomy and modality representations to reconstruct the image. In particular, the decoder con-

sists of 3 convolutional layers (3× 3 kernel size) coupled with adaptive instance normalisation

and ReLU activation layers. A final convolutional layer with 7 × 7 kernels is used for the

reconstruction, followed by a hyperbolic tangent activation that normalises the values of the

generated image into the [0,1] range. As discussed in [102], the AdaIN decoder normalises

the anatomy factor by firstly applying instance normalisation to significantly remove the non-

spatial information, then allowing the modality factor to define the new mean and standard

derivation of the normalised anatomy factor. In this way, the decoder encourages the anatomy

factor to contain spatial information and also force the modality factor to contain non-spatial in-

formation. On the other hand, by using AdaIN, the decoder does not simply ignore the modality

factor that has a much smaller dimensionality than that of the anatomy factor.

5.2.1.4 Objective function and model training

Apart from the original SDNet objective, I additionally use the focal loss as presented in [220].

Focal loss is widely used in segmentation tasks and helps the model to achieve better accuracy

by addressing the class imbalance problem. The augmented overall objective is defined as:
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Ltotal = λ1Lrec + λ2Lzrec + λ3LDice + λ4Lfocal, (5.1)

where Lrec is the ℓ1 distance between the input and the reconstructed image. Lzrec denotes the

ℓ1 distance between the encoded modality vector zrec of the original image and the encoded

modality vector z′rec of the reconstructed image i.e. latent regression described in Chapter 3.4.

LDice is the segmentation Dice loss [221]. Lfocal is the segmentation focal loss [220] that is

defined as:

Lfocal = − 1

N

∑
i

∑
j

(1− Ŷi(j))
γYi(j) log Ŷi(j), (5.2)

where N denotes the number of pixels of the image or the segmentation mask. Yi(j) is the

ground truth of segmentation mask for class i at pixel j and Ŷi(j) is the prediction. γ is a

hyperparameter that is set as 2.

Since I train SDNet in both fully supervised and semi-supervised setups, I set the hyperparam-

eters λ1 = λ2 = λ3 = λ4 = 1 when training using labeled data, while when training using

unlabeled data I set λ1 = λ2 = 1 and λ3 = λ4 = 0.

5.2.2 Experiments

5.2.2.1 Dataset description and preprocessing

I train and validate the proposed method on the M&Ms challenge dataset of 350 subjects. Some

subjects have hypertrophic and dilated cardiomyopathies (and some are healthy) but disease

labels are not provided. Subjects were scanned in clinical centres in 3 different countries using

4 different magnetic resonance scanner vendors i.e. Vendor A, B, C and D in this section. The

M&Ms Challenge training dataset contains 75 labeled subjects scanned using technology from

Vendor A, 75 labeled subjects scanned by Vendor B, and 25 unlabeled subjects scanned by

Vendor C.I denote subjects scanned by scanners of Vendor A and B as labeled. However, it is

notable that only the end diastole and end systole phases are labeled. The M&Ms challenge test

dataset contains 200 subjects (50 from each vendor, including the seen 25 unlabeled subjects

from Vendor C). From these, 80 subjects (20 from each vendor) are used to validate the model

and the rest will be used for final challenge rankings. Subjects scanned by Vendor D were

unseen during model training. For each subject, we have 2D cardiac image slice acquisitions

captured at multiple phases in the cardiac cycle (including end systole and end diastole). I train
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Model
Vendor A Vendor B Vendor C Vendor D

LV MYO RV LV MYO RV LV MYO RV LV MYO RV

U-Net+RA 0.900 0.829 0.811 0.937 0.877 0.907 0.856 0.837 0.852 0.762 0.651 0.503

FS SDNet 0.901 0.837 0.822 0.942 0.877 0.920 0.851 0.826 0.853 0.734 0.618 0.474

FS SDNet+RA 0.905 0.846 0.828 0.945 0.886 0.921 0.855 0.843 0.843 0.819 0.749 0.624

SS SDNet+RA 0.909 0.854 0.841 0.945 0.887 0.916 0.843 0.837 0.813 0.811 0.752 0.553

SS SDNet+RA+FA 0.909 0.846 0.778 0.939 0.882 0.909 0.863 0.847 0.843 0.812 0.712 0.498

Table 5.1: Evaluation of the 5 models. Average Dice similarity coefficients are reported. Bold

numbers denote the best performances across the 5 models. LV: left ventricle, MYO:

left ventricular myocardium and RV: right ventricle.

on the 2D images independently because I adopt 2D convolution neural networks in the model.

Following [222], I normalise the training data intensity distribution to a Gaussian distribution

with a mean of 0 and a standard deviation of 1. Overall, there are 1,738 pairs of images and

masks from A and 1,546 pairs of images and masks from B. Apart from these labeled images,

there are 47,346 unlabeled images from A, B and C.

5.2.2.2 Model training

Models are trained using the Adam [180] optimizer with an initial learning rate of 0.001. To

stabilize the training, I set the new learning rate to 10% of the previous rate when the validation

Dice similarity coefficient between the predicted and the ground truth masks does not improve

for 2 consecutive epochs. Following the original training setting of SDNet, I set the batch size

to 4 and train the model for 50 epochs. All models are implemented in PyTorch [54] and trained

using an NVidia 1080 Ti GPU.

5.2.2.3 Results and discussions

To verify the effectiveness of the proposed augmentation methods, I train 5 models for the

purpose of ablation: a) the U-Net model using samples augmented with RA (U-Net+RA), b) the

original SDNet model trained in a fully supervised fashion (FS SDNet), c) the fully supervised

SDNet model using samples augmented with RA (FS SDNet+RA), d) the SDNet model trained

in a semi-supervised fashion, using samples augmented with RA (SS SDNet+RA), and e) the

semi-supervised SDNet using samples augmented with both FA and RA (SS SDNet+RA+FA).

I train the fully supervised models with labeled samples from vendors A and B, while in the
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semi-supervised scenario I use all available data (labeled and unlabeled) for training. Table 5.1

reports the per vendor average Dice scores. Since we are allowed to validate the model a limited

number of times, the results are not comprehensive, therefore I will do pairwise analysis below.

5.2.2.4 Does RA help?

By inspection of the FS SDNet and FS SDNet+RA results, I observe that for Vendor A and

B, RA helps to achieve better overall performance compared to the respective baseline and

RA substantially improves performance on the unseen Vendor D. Subsequently, for Vendor C,

the models have similar performance in the LV class, while FS SDNet+RA achieves the best

performance in the MYO class (0.843 Dice score). However, the models using RA do not

perform well in the RV class. In the case of Vendor C (no labelled examples), we know that

the sample resolution of 24 out of 25 subjects made available at training time from Vendor C

is 2.203 mm, and the resolution of 32 out of 75 Vendor A training subjects is around 2.000

mm, thus I argue that the resolution bias for Vendor A and Vendor C are already similar in

the original data, and becoming invariant to this bias by rescaling the Vendor A data does not

further help the performance on Vendor C.

5.2.2.5 Does FA help?

Inspection of SS SDNet+RA and SS SDNet+RA+FA results shows that FA has mixed perfor-

mance. It performs well on Vendor C for the scenario of domain adaptation (target samples

available but unlabeled), where Vendor C is one of the vendors providing modality factors.

However, FA performs poorly on Vendor D for domain generalisation (unseen target), where

Vendor D is not involved in the augmentation process.

5.2.2.6 Best model:

Out of the two augmentation methods, I observe that RA has the most reliable performance, and

I choose to submit the FS SDNet+RA model for final evaluation in the M&Ms challenge. We

can see by comparing U-Net+RA with FS SDNet+RA that the chosen architecture of SDNet

has good generalisation performance compared to a standard U-Net, and this is particularly

evident for the unseen vendor D, supporting the choice of the disentangled SDNet architecture

even when FA is not employed.
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5.2.2.7 Improvements to FA:

Satisfyingly, the FA method yields a benefit for Vendor C (whilst RA did not give a significant

benefit to Vendor C). However, FA does not give considerable improvements on domain gener-

alisation. It may be that improvements to the model training would further enhance the benefit

of FA. On the other hand, we should also distinguish the effect of simply training on recon-

structed images from the effect of FA. This method can be extended to achieve better domain

generalisation once I can manipulate the factors realistically to generate out-of-distribution

samples.

5.3 Learning to Learn Generalised Disentangled Representations

With the two proposed augmentation methods, I show how to take advantage of the learnt

disentangled representations to generate more diverse data. A natural question to answer is if

it is possible to regularise the representations such that they are learnt to be more generalisable

to address the domain shifts. In this section, I introduce the combination of meta-learning

and disentanglement as a solution to the problem of learning more generalisable disentangled

representations.

5.3.1 Method

Consider a multi-domain training dataset D = {Xk
i ,Y

k
i }
Nk
i=1, k ∈ {1, 2, · · · ,K} that is defined

on a joint space X × Y , where Xk
i is the ith training datum from the kth source domain with

corresponding ground truth segmentation mask Yk
i , and Nk denotes the number of training

samples in the kth source domain. I aim to learn a model containing a feature network Fψ :

X → Z to extract the anatomical features Z and a task network Tθ : Z → Y to predict the

segmentation masks, where ψ and θ denote the network parameters.

5.3.1.1 Gradient-based meta-learning for domain generalisation

In gradient-based meta-learning for domain generalisation, the domain shift is simulated by

training the model on a sequence of episodes [211, 215]. Specifically, the meta-train set Dtr

and the meta-test set Dte are constructed by randomly splitting the source domains D for each

iteration of training. Each iteration comprises a meta-train step followed by a meta-test step.

80



Disentanglement for Domain-Generalised Medical Image Segmentation

For the meta-train step, the parameters ψ and θ of Fψ and Tθ are calculated by optimising the

meta-train loss Lmeta−train with data from Dtr (inner-loop update), as defined by:

(ψ′, θ′) = (ψ, θ)− α∇ψ,θLmeta−train(Dtr;ψ, θ), (5.3)

where α is the learning rate for the meta-train update step. Typically, Lmeta−train is the task

objective, e.g. the Dice loss [195] for a segmentation task. This step rewards accurate predic-

tions on the meta-train source domains. For the meta-test step, the meta-test source domains

Dte are processed by the updated parameters (ψ′, θ′) and the model is expected to contain cer-

tain properties quantified by the Lmeta−test loss. Lmeta−test is computed using the updated

parameters (ψ′, θ′), whilst the gradients are computed towards the original parameters (ψ, θ).

The final objective is defined as:

argmin
ψ,θ

Lmeta−train(Dtr;ψ, θ) + Lmeta−test(Dte;ψ
′, θ′). (5.4)

The intuition behind this scheme is that the model should not only perform well on the source

domains, but its future updates should also generalise well to unseen domains. Below, I will

describe our meta-train and meta-test objectives but first I present how I disentangle represen-

tations related to domain shifts.

5.3.1.2 Learning disentangled representations

To model appearance in a single-domain setting, typically a single vector-based variational

representation is used [13]. Here, due to our multi-domain setting, inspired by [223, 224], I

separately encode domain-specific imaging characteristics as an additional vector-based vari-

ational representation. Hence, I aim to learn two independent vector representations, where

one (s) captures common imaging characteristics across domains and the other one (d) cap-

tures specific imaging characteristics for each domain. In addition, I encode spatial anatomy

information in a separate representation Z, which I encourage to be disentangled from s and d.

In particular, the input image X is first encoded in a common (appearance) representation

s = ES(X), and a domain representation d = ED(X) that is followed by a shallow do-

main classifier TC(d) which predicts the source domain (ĉ) label of X. Then, a decoder DE

combines the extracted features Z = Fψ(X) and the representations s and d to reconstruct
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the input image, i.e. X̂ = DE(Z, s,d). Note that DE combines Z and s,d using adaptive

instance normalisation (AdaIN) layers [102]. As shown in [32], AdaIN improves disentangle-

ment and encourages Z to encode spatially equivariant information, i.e. anatomical information

useful for segmentation, and s,d to only encode common or domain-specific appearance.

To achieve such “triple” disentanglement I consider several losses: 1) KL divergences

LKL(s, N(0, 1)),LKL(d, N(0, 1)) to induce a GaussianN(0, 1) prior in s and d, encouraging

the representations to be robust on unseen domains [80]; 2) Hilbert-Schmidt Independence Cri-

terion (HSIC) loss LHSIC(s,d), to force s and d to be independent from each other [225]; 3) a

classification loss (ℓ1 distance) Lcls(c, ĉ) such that the domain representation d is highly corre-

lated with the domain-specific information [224]; and 4) a reconstruction loss Lrec(X, X̂), de-

fined as the ℓ1 distance between X and X̂, to learn representations without supervision [13, 32].

Specifically, considering the kernel function k : RO × RO → R where O denotes the vector

dimension, the HSIC loss is defined in [225] as:

LHSIC(s,d) = (m− 1)−2trace(KsHKdH), (5.5)

where m ̸= 1 is the batch size in our case. Ksij = k(si, sj) and Kdij
= k(di,dj) are the

entries of Ks ∈ Rm×m and Kd ∈ Rm×m. H is the centering matrix H = Im − 1
m⊮m⊮Tm.

Following [225], we choose the Gaussian kernel k(si, sj) ∼ exp(−1
2 ||si − sj ||2/σ2), where σ

is a hyperparameter that is set as 5.

I further encourage the extracted features Z to be invariant across the meta-train source do-

mains i.e. invariant to domain shifts and improve disentanglement between Z and s, d by

applying rank regularisation [210]. Specifically, consider a batch {X1
i1
,X2

i2
, · · · ,XKtr

iKtr
} from

Ktr meta-train source domains, andKtr features {Z1
i1
,Z2

i2
, · · · ,ZKtr

iKtr
} extracted using the fea-

ture network Fψ. By flattening and concatenating these features, we end up with a matrix Z

with dimensions [C, Ktr ×H ×W ], where C,H,W denote the number of channels, height,

and width of Z. Then, by forcing the rank of Z to be m (i.e. the number of the segmenta-

tion classes), Z is encouraged to encode only globally-shared information across Ktr source

domains in order to predict the segmentation mask as discussed in [210]. I achieve that by min-

imising the (m + 1)th singular value σm+1 of Z. The rank regularization loss and its gradient

can be formulated as:

82



Disentanglement for Domain-Generalised Medical Image Segmentation

Lrank = σm+1,
∂σm+1

∂Z
= UVT , (5.6)

where we perform singular value decomposition (SVD) i.e. U,Σ,V = SV D(Z) and Σ is the

singular value matrix.

Overall, LDT is defined as:

LDT =λrankLrank(Z) + λKL(LKL(s, N(0, 1)) + LKL(d, N(0, 1)))

+ λrecLrec(X, X̂) + λHSICLHSIC(s,d) + λclsLcls(c, ĉ),
(5.7)

where c is the domain label. I adopt hyperparameter values according to our extensive early

experiments and discussion from [13, 210] as λrank = 0.1, λKL = 0.1, λrec = 1 and λcls = 1.

Note that all the losses do not need ground truth masks. The domain class label is available, as

we know the centre where the data belong.

5.3.1.3 Meta-train and meta-test objectives

Our meta-train objective contains two components:

Lmeta−train = λDiceLDice(Y, Ŷ) + LDT , (5.8)

where λDice = 5 when labeled data are available.

For the meta-test step, the model is expected to: 1) accurately predict segmentation masks (by

applying the task objective), and 2) disentangle Z and s,d to the same level as meta-train sets. A

naive strategy for the latter is to use LDT for meta-test sets. However, as analysed in [226, 213],

the meta-test step is unstable to train: the gradients from the meta-test loss are second-order

statistics of ψ and θ. Our experiments revealed that including the unsupervised losses LKL and

LHSIC make training even more unstable (even leading to model collapse). In addition, I use

one domain for meta-test in experiments, while Lrank requires multiple domains. According

to [31, 14], considering fixed learning and design biases, the level of disentanglement can be

proxied by the reconstruction quality (with ground truth image X) and the domain classification

accuracy (with ground truth label c). Hence, I adopt as the meta-test loss:

Lmeta−test = λDiceLDice(Y, Ŷ) + λrecLrec(X, X̂) + λclsLcls(c, ĉ). (5.9)
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Note that for unlabeled data, Lrec and Lcls do not need ground truth masks.

5.3.2 Experiments

5.3.2.1 Tasks and datasets

Multi-centre, multi-vendor & multi-disease cardiac image segmentation (M&Ms)

dataset [5]: The M&Ms challenge dataset contains 320 subjects. Subjects were scanned at

6 clinical centres in 3 different countries using 4 different magnetic resonance scanner vendors

(Siemens, Philips, General Electric, and Canon) i.e. domains A, B, C and D. For each sub-

ject, only the end systole and end diastole phases are annotated. Voxel resolutions range from

0.85 × 0.85 × 10 mm to 1.45 × 1.45 × 9.9 mm. Domain A contains 95 subjects. Domain B

contains 125 subjects. Both domains C and D contain 50 subjects.

Spinal cord gray matter segmentation (SCGM) dataset [7]: The data from SCGM [7]

are collected from 4 different medical centres with different MRI systems (Philips Achieva,

Siemens Trio, Siemens Skyra) i.e. domains 1, 2, 3 and 4. The voxel resolutions range from

0.25 × 0.25 × 2.5 mm to 0.5 × 0.5 × 5 mm. Each domain has 10 labeled subjects and 10

unlabelled subjects.

5.3.2.2 Baseline models

nnUNet [227]: is a self-adapting framework based on 2D and 3D U-Nets [218] which does

not specifically target domain generalisation. Given a labelled training dataset, nnUNet auto-

matically adapts its model design and hyperparameters to obtain optimal performance. In the

M&Ms challenge, methods based on nnUNet achieved the top performance [5].

SDNet+Aug. [15]: disentangles the input image to a spatial anatomy and a non-spatial modal-

ity factors. Here I use intensity- and resolution- augmented data in a semi-supervised setting.

Compared to our method, “SDNet+Aug.” only poses disentanglement to the latent features

without meta-learning.

LDDG [210]: is the latest state-of-the-art model for domain-generalised medical image analy-

sis. It also uses a rank loss and when applied in a fully supervised setting, LDDG achieved the

best generalisation performance on SCGM.

SAML [213]: is another gradient-based meta-learning approach. SAML proposed to enforce

the compactness and smoothness properties of segmentation masks across meta-train and meta-
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test sets in a fully supervised setting.

5.3.2.3 Implementation details

Models are trained using the Adam optimiser [180] with a learning rate of 2e−5 for 50K itera-

tions using batch size 4. Images are cropped to 224×244 for M&Ms and 144×144 for SCGM.

Fψ is a 2D UNet [218] to extract Z features with 8 channels of same height and width as input

image. I follow the designs of SDNet [13] for ES , Tθ and DE. ED has the same architecture

as ES . Both s and d have 8 dimensions. TC is a single fully-connected layer. I use AdaIN

module (as described in Chapter 3) in the decoder DE to combine Z and s,d.

All models are implemented in PyTorch [54] and are trained using an NVidia 2080 Ti GPU. In

the semi-supervised setting, I use specific percentages of the subjects as labeled data and the

rest as unlabeled data. I use Dice (%) and Hausdorff Distance [228] as the evaluation metrics.

5.3.2.4 Qualitative results

I show the qualitative results, i.e. predicted segmentation masks, in Fig. 5.5. When training

the baseline models with less labeled data, the performance drops significantly. In contrast, our

model can produce satisfactory masks in every case.

5.3.2.5 Quantitative results and discussion

Tables 5.2, 5.3, 5.4 and 5.5 show that the proposed method consistently achieves the best gen-

eralisation performance on cardiac and gray matter segmentation. Particularly in the low data

regime I improve Dice by ≈ 5% on M&Ms and ≈ 3% on SCGM compared to the best per-

forming baseline. For 100% annotations in M&Ms, our model still outperforms the baselines.

M&Ms: Compared to “SDNet+Aug.” which can also use (due to disentanglement) unlabeled

data, our model performs consistently better. The results agree with the conclusion in [39]:

without specific designs tuned to the tasks, disentanglement can not provide guaranteed gener-

alisation ability. For LDDG and SAML, the generalisation performance significantly drops with

small amounts of labeled data. Note that nnUNet adapts the model design per each run/training

set. However, adapting the model design for different training data limits the scalability of

nnUNet. I also report the Dice (%) and Hausdorff Distance results on the cases of giving 100%

85



Disentanglement for Domain-Generalised Medical Image Segmentation

Image

Ground-truth
Mask

SDNet+Aug. LDDG SAML OursnnUNet

100%

5%

2%

Image

Ground-truth
Mask

100%

20%

Figure 5.5: I show the example images and predicted segmentation masks of each model for

different cases.

86



Disentanglement for Domain-Generalised Medical Image Segmentation

Source Target nnUNet SDNet+Aug. LDDG SAML Ours

2%

B,C,D A 52.8719 54.4818 59.4712 56.3113 66.0112

A,C,D B 64.6317 67.8114 56.1614 56.3215 72.7210

A,B,D C 72.9714 76.4612 68.2111 75.708.7 77.5410

A,B,C D 73.2711 74.3511 68.5610 69.949.8 75.148.4

Average 65.948.3 68.288.6 63.165.4 64.578.5 72.854.3

5%

B,C,D A 65.3017 71.2113 66.229.1 67.1110 72.4012

A,C,D B 79.7310 77.3110 69.498.3 76.357.9 80.309.1

A,B,D C 78.0611 81.408.0 73.409.8 77.438.3 82.516.6

A,B,C D 81.258.3 79.957.8 75.668.5 78.645.8 83.775.1

Average 76.096.3 77.473.9 71.293.6 74.884.6 79.754.4

100%

B,C,D A 80.8411 81.507.7 82.626.3 81.337.2 83.217.4

A,C,D B 86.765.8 85.046.1 85.685.7 84.155.9 86.535.3

A,B,D C 84.927.1 85.646.5 86.496.3 84.526.2 87.226.1

A,B,C D 86.945.9 84.965.2 86.736.1 83.965.9 87.164.9

Average 84.872.5 84.291.6 85.381.6 83.491.3 86.031.7

Table 5.2: Dice (%) results and the standard deviations on M&Ms dataset. For “SDNet+Aug.”

and our method, the training data contain all the unlabeled data and 2% or 5% of

labeled data from source domains. The other models are trained by 2% or 5% labeled

data only. Bold numbers denote the best performance.
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Source Target nnUNet SDNet+Aug. LDDG SAML Ours

2%

B,C,D A 26.487.5 24.697.0 25.565.9 25.575.7 23.556.5

A,C,D B 23.116.8 21.846.2 25.445.2 24.915.5 19.956.3

A,B,D C 16.754.6 16.574.2 18.983.9 16.463.5 16.294.0

A,B,C D 17.514.9 17.574.1 18.083.8 17.943.8 17.484.7

Average 20.964.0 20.173.3 22.023.5 21.224.1 19.322.8

5%

B,C,D A 23.046.7 22.846.3 23.355.7 23.105.9 22.556.6

A,C,D B 18.184.7 20.265.5 20.564.7 18.974.9 19.376.4

A,B,D C 16.444.2 16.223.9 17.143.3 16.293.2 15.773.8

A,B,C D 15.244.2 15.153.3 15.803.2 15.583.2 14.242.8

Average 18.223.0 18.623.1 19.213.0 18.492.9 17.983.2

100%

B,C,D A 17.865.5 17.394.5 17.484.1 17.704.2 17.283.9

A,C,D B 14.823.4 15.553.7 15.423.4 16.053.7 14.993.6

A,B,D C 13.723.3 13.673.0 13.522.8 14.213.3 13.112.8

A,B,C D 12.813.4 13.642.9 13.113.0 14.122.8 12.722.6

Average 14.801.9 15.061.6 14.881.7 15.521.5 14.531.8

Table 5.3: Hausdorff distance results and the standard deviations on M&Ms dataset. For “SD-

Net+Aug.” and our method, the training data contain all the unlabeled data and 2%

or 5% or 100% of labeled data from source domains. The other models are trained

by 2% or 5% or 100% labeled data only. Bold numbers denote the best performance.
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Source Target nnUNet SDNet+Aug. LDDG SAML Ours

20%

2,3,4 1 59.0721 83.0716 77.719.1 78.7125 87.456.3

1,3,4 2 69.9412 80.015.2 44.0812 75.5812 81.055.2

1,2,4 3 60.257.2 58.5710 48.045.5 54.367.6 61.857.3

1,2,3 4 70.134.3 85.272.2 83.422.7 85.362.8 87.962.1

Average 64.855.2 76.7311 63.3117 73.5012 79.5811

100%

2,3,4 1 75.278.3 90.254.5 88.214.9 90.225.6 90.014.9

1,3,4 2 76.322.9 84.134.2 83.763.1 86.653.5 85.482.3

1,2,4 3 62.596.9 62.1810 56.119.3 58.279.4 64.239.7

1,2,3 4 71.872.5 88.931.9 89.082.7 88.662.6 89.262.5

Average 71.515.4 81.3711 79.2913 80.9513 82.2511

Table 5.4: Dice (%) results and the standard deviations on SCGM dataset. For “SDNet+Aug.”

and our method, the training data contain all the unlabeled data and 20% or 100% of

labeled data from source domains. The other models are trained by 20% or 100% of

labeled data only. Bold numbers denote the best performance.
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Source Target nnUNet SDNet+Aug. LDDG SAML Ours

20%

2,3,4 1 3.090.25 1.520.33 1.750.26 1.530.38 1.500.30

1,3,4 2 3.160.09 1.970.16 2.730.33 2.070.35 1.910.16

1,2,4 3 3.380.27 2.450.27 2.670.25 2.520.24 2.230.23

1,2,3 4 4.310.14 2.340.21 2.370.14 2.300.18 2.220.13

Average 3.490.49 2.070.36 2.380.39 2.110.37 1.970.30

100%

2,3,4 1 3.260.21 1.370.25 1.500.23 1.430.36 1.430.29

1,3,4 2 3.190.09 1.880.16 2.190.19 1.800.19 1.810.15

1,2,4 3 3.370.27 2.340.24 2.640.28 2.430.33 2.230.32

1,2,3 4 4.300.15 2.130.17 2.120.15 2.150.15 2.110.13

Average 3.530.45 1.930.36 2.110.41 1.950.38 1.920.31

Table 5.5: Hausdorff distance results and the standard deviations on SCGM dataset. For “SD-

Net+Aug.” and our method, the training data contain all the unlabeled data and 20%

or 100% of labeled data from source domains. The other models are trained by 20%

or 100% of labeled data only. Bold numbers denote the best performance.
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Source Target A Target B Target C Target D

100%
Trained on B 78.8211 94.584.3 83.608.0 85.816.8

Trained on D 80.0310 84.357.0 84.018.9 94.745.4

Table 5.6: Dice (%) results and the standard deviations on M&Ms dataset.

labeled data for each model. For M&Ms, the unlabeled data (of labeled subjects) from phases

between end-systole and end diastole phases still gives the proposed model slightly better per-

formance i.e. 0.65% of improvement compared with the best baseline model.

SCGM: I obtain consistent improvements also on SCGM, demonstrating application in other

organs. The model benefits from the additional 10 unlabeled subjects of each domain leading

to better performance overall.

5.3.2.6 Analysis of M&Ms data

To explore why nnUNet can outperform other models on cases of A,C,D to B and A,B,C to D,

I train nnUNet models with 100% labeled data only from domain B or domain D. Then I test

the models with data from domain A, B, C and D. As shown in Table 5.6, the model trained on

domain B can achieve 85.81% Dice on domain D (highest Dice compared to A and C). Also,

the model trained on domain D can achieve 84.35% Dice on domain B (highest Dice compared

to A and C). Hence, nnUNet possibly overfits the source domains e.g. B, to achieve the best

performance on domains (e.g. D) similar to B. However, other methods have to generalise to

distinct domains i.e. A and C, which causes slightly worse performance on the domains similar

to source domains.

5.3.2.7 Ablation study

Here I conduct ablations on key losses crucial to disentanglement and the extraction of good

anatomical features for good generalisation performance. I omit ablations on the KL losses

as [80, 224] showcase that variational encoding helps to learn robust vector representation for

better generalisation. To illustrate that Lrank helps to disentangle Z to (s,d), and improves

performance, I use Distance Correlation (DC) [14] (described in Chapter 4) to measure dis-

entanglement (lower DC means a higher level of disentanglement). For M&Ms 5% cases,

without Lrank, the average DC on the test dataset between Z and (s,d) is 0.22 (an increase
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compared to 0.19 with Lrank), and the average Dice is 78.54% (a decrease compared to 79.75%

with Lrank). I also ablate Lcls and LHSIC . The proposed model on M&Ms 5% cases had an

average Dice 79.75% but without Lcls, average Dice drops to 77.45% and without LHSIC ,

average Dice drops to 77.86%.

5.4 Summary

In this chapter, two data augmentation methods were first proposed to address the domain

adaptation and generalisation problems in the field of CMR image segmentation. In particu-

lar, a geometry-related augmentation method was introduced, which aims to remove the scale

and resolution bias of the original data. Further, the second proposed augmentation method

aims bridge the gap between populations and data captured by different scanners. To achieve

this, the original data is projected onto a disentangled latent space and generates new sam-

ples by combining disentangled factors from different domains. The presented experimental

results showcase the contribution of the geometry-based method to CMR image segmentation

through improving the domain generalisation, while also demonstrating the contribution of the

disentangled factors mixing method to the domain adaptation. Then, I have presented a novel

semi-supervised meta-learning framework for domain generalisation. Using disentanglement,

the proposed approach models domain shifts, and thanks to the reconstruction approach to dis-

entanglement, the model can be trained also with unlabeled data. By applying the designed con-

straints (including the low-rank regularisation) to the gradient-based meta-learning approach,

the model extracts robust anatomical features useful for predicting segmentation masks in a

semi-supervised manner. Extensive quantitative results, especially when insufficient annotated

data are available, indicate remarkable improvements compared to previous state-of-the-art ap-

proaches. It is notable that both methods are considering enforcing independence in the latent

space to learn disentangled representations. In practice, the generative factors are not neces-

sarily always independent of each other. In this case, enforcing independence does not help

in learning the representations that approximate well the true generative factors, leading to a

limitation on generalising to new domains. In the next chapter, I will discuss how to consider

compositionality as a proxy for learning better representations.
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Chapter 6
Compositional Representation

Learning

In Chapter 5, I presented the methods for generalisation based on learning disentangled repre-

sentations. As I discussed in Chapter 3 and Chapter 4, most of the disentanglement methods

enforce independence or uncorrelation between the latent representations. The SDNet [13]

backbone I used for the data augmentations and the proposed meta-learning disentanglement

approach are not excluded from the independent representation learning family in Chapter 5.

In this chapter, I study how compositionality can be taken into account as a better prior to learn

more generalisable and interpretable representations.

6.1 Introduction

The real world has way more complex generative factors that are not trivially independent of

each other. For example, as discussed in [43], there exhibits a strong positive correlation in

observed data between foot length and body height. When learning the representations for the

foot length and body height, forcing them to be independent does not approximate well the real-

ity. In this chapter, I will study using compositionality as a prior to learning the representations

i.e. compositional representation learning. In this case, when generating the images, I compose

the representations, where the relationship between representations is modeled with the com-

posing operations that are learnt from the data. Overall, compositionality is a better inductive

bias beyond independence for learning generalisable and interpretable representations. More

importantly, extensive annotations are not necessary for learning compositional representations.

This chapter is based on:

• Liu, X., Thermos, S., Sanchez, P., O’Neil, A. and Tsaftaris, S.A., 2022. vMFNet: Compositionality Meets
Domain-generalised Segmentation. In International Conference on Medical Image Computing and Com-
puter Assisted Intervention 2022.

• Liu, X., Sanchez, P., Thermos, S., O’Neil, A. and Tsaftaris, S.A., 2023. Compositionally Equivariant
Representation Learning. IEEE Transactions on Medical Imaging (under review).
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6.1.1 Motivation of the approach

When a large amount of labelled training data are available, deep learning techniques have

demonstrated remarkable accuracy in medical image analysis tasks like diagnosis and segmen-

tation [8]. However, by contrast, humans are able to learn quickly with only limited supervision,

and their recognition is not only fast but also robust and easily generalisable [153, 158]. For

instance, clinical experts tend to remember configurations (components) of human anatomical

structures from multiple medical images they have seen. When searching for anatomy of in-

terest in new images, they use these configurations to locate and identify the anatomy in the

image. This compositionality has been shown to enhance the robustness and interpretability in

computer vision tasks [153, 157, 149] but has received limited attention in medical applications.

6.1.2 Approach overview

In this chapter, I investigate the application of compositionality to learn good representations

in the medical field. Drawing inspiration from Compositional Networks [149]. I model the

compositional representations of human anatomy as learnable von-Mises-Fisher (vMF) ker-

nels. Note that vMF kernels are similar to prototypes in [229]. However, prototypes are often

calculated as the mean of feature vectors for each class using the ground truth masks, while

vMF kernels are learned as the cluster centres of the feature vectors. Considering that medical

images are first processed by deep models into deep features, I transform the features into vMF

activations that determine the extent to which each kernel is activated at each position. Without

any other constraints, the compositional representations do not carry meaningful information

that corresponds to the generative factors. I claim that each generative factor is compositional

(e.g. the patterns of human anatomy) and also equivariant to the task, i.e. compositionally

equivariant. To approximate well the generative factors, I consider different settings i.e. un-,

weakly-, and semi-supervised settings and different learning biases that enforce the representa-

tions to be more compositionally equivariant. An approach overview is included in Fig. 6.1.

To evaluate the level of compositional equivariance, I measure the interpretability and gener-

alisation ability of the representations. I first qualitatively evaluate the interpretability of the

activations of each representation for different settings. As expected, I observe that stronger

learning biases (e.g. weak supervision or some supervision) lead to better interpretability.

Then, I consider the task of semi-supervised domain generalisation [16, 12, 205] on medical

image segmentation and compare my methods with several strong baselines. Extensive quan-
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Figure 6.1: The overview of compositionally equivariant representation learning. After decom-

posing the image features into compositional kernels, different design and learning

biases are considered under different settings.

titative results on the multi-centre, multi-vendor & multi-disease cardiac image segmentation

(M&Ms) dataset [5] and spinal cord gray matter segmentation (SCGM) dataset [7] show that

the compositionally equivariant representations have superior generalisation ability, achieving

state-of-the-art performance.

This chapter is based on vMFNet that I published at the MICCAI conference [12]. Compared

to vMFNet, I propose the compositional equivariance theory. I consider more learning settings

as well as more design and learning biases to learn the compositional representations. vMFNet

is only one out of the four methods. Moreover, I conduct more experiments, especially on

the proposed semi-supervised setting with pseudo supervision on the domain generalisation

setting, where better results are observed for some cases compared to vMFNet. I believe that

this chapter demonstrates more comprehensively the benefits and potential of the application of

compositionality in the medical domain.

6.1.3 Contributions

Overall, the contributions are the following:
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• I propose the compositionality theory and propose that the generative factors satisfy the

compositional equivariance property.

• By modelling the compositional representations with the vMF kernels, I study different

settings and different learning biases that can be used to learn compositional equivariant

representations.

• I consider the interpretability and generalisation ability of the learnt representations as

the measurement of compositional equivariance.

• I propose a reconstruction module to compose the vMF kernels with the vMF likelihoods

to facilitate reconstruction of the input image, which allows the model to be trained also

with unlabeled data.

• I apply the proposed method to two settings: semi-supervised domain generalisation and

test-time domain generalisation.

• I perform extensive experiments on two medical datasets and compare our methods with

several strong baselines.

• I show that different learning biases can help to achieve different levels of compositional

equivariance with extensive qualitative and quantitative results.

6.2 Related work

6.2.1 Compositionality

Compositionality has been mostly utilized in robust image classification [230, 153, 149] and

recently in compositional image synthesis [158, 159]. Among these works, Compositional Net-

works [149] — designed originally for robust classification under object occlusion — can be

easily adapted to pixel-wise tasks as they learn spatial and interpretable vMF activations. Pre-

vious research has combined vMF kernels and activations [149] for object localisation [160]

and, recently, for nuclei segmentation (with bounding box supervision) in a weakly supervised

manner [161]. In the proposed approach, I model compositional representations using vMF

kernels. By incorporating more learning biases that constrain the kernels, we can assign infor-

mation about each generative factor more specifically to each kernel, resulting in compositional
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equivariance. Using unlabelled data, I learn vMF kernels and activations in a semi-supervised

manner for domain-generalised medical image segmentation.

6.2.2 Domain generalisation

Many solutions are proposed to address the domain generalisation problem in medical image

analysis. Various methods have been used, such as augmentation of the source domain data [23,

231], regularisation of the feature space [208, 110], alignment of the source domain features or

output distributions [210], design of robust network modules [232], or the use of meta-learning

to adapt to possible domain shifts [212, 213, 109, 16]. Most of these approaches are based on

fully supervised learning. More recently, a gradient-based meta-learning model was proposed

to handle semi-supervised domain generalisation by integrating disentanglement [16]. Another

method used a pre-trained ResNet as a backbone feature extractor, augmenting the source data,

and leveraging the unlabelled data through pseudo-labelling [233]. The proposed approach

aligns image features to the same von-Mises-Fisher distributions to handle domain shifts. In

the semi-supervised setting with reconstruction, the reconstruction further enables the model to

handle domain generalisation with unlabelled data. For the semi-supervised setting with pseudo

supervision, the pseudo supervision as in [233] enables the model to be trained with unlabelled

data and the final prediction is equivalently ensembled from two models.

6.3 Method

I denote x as a scalar, x as a vector and X as a tensor. Consider a dataset D = {Xi,Yi}Ni=1 that

is defined on a joint space X×Y , where Xi is the ith training datum with corresponding ground

truth label Yi (e.g. for a segmentation task, Yi is the ground truth segmentation mask), and

N denotes the number of training samples. I aim to learn a model containing a representation

encoding network Fψ : X → Z to extract the representations, and a task network Tθ : Z → Y

to perform the downstream task, where ψ and θ denote the network parameters.

6.3.1 Compositionality theory

Finding good latent representations for the task at hand is fundamental in machine learn-

ing [28, 29]. Where supervision is available for the latent representations (the ground truth
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generative factors) and the downstream task (the ground truth labels), it is natural to train Fψ

and Tθ with supervised losses as in the Concept Bottleneck Model [234]. However, in practice,

it is common that not all the generative factors of the data are known. When there is insufficient

supervision for either the latent representations or the downstream task, learning generalisable

and interpretable representations is a challenging problem to solve. To tackle this issue, I pro-

pose to use compositional equivariance as an inductive bias to learn the latent representations.

I later show that with the compositional equivariance, the model can learn representations that

are useful for downstream tasks without any supervision, with weak supervision, or with sparse

supervision i.e. un-, weakly-, semi-supervised settings.

6.3.1.1 Compositionality

Following [235], I define a compositional representation as satisfying:

Fψ(S ◦X) = S′ ◦ Fψ(X), (6.1)

where S and S′ denote the separation operations (e.g. masking operations as discussed in

[235]), which are the same operation but operate on different domains. If the representation

of the separated generative factor in X is equivalent to the separated representation of X using

the same separation operation, then the representation S ◦ Fψ(X) is compositional. For exam-

ple, the separation operation can be masking the image with the masks of objects as in [235].

Typically, designing such separation operations requires knowing the ground truth generative

factors.

6.3.1.2 Compositional equivariance

Equivariance is defined as:

Fψ(Mg ◦X) =M ′
g ◦ Fψ(X), (6.2)

where Mg and M ′
g denote a set of transformations. Here, Fψ(X) is equivariant if there exist

Mg and M ′
g such that the transformations of the input X that transform the output Fψ(X) in
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the same manner. I then define a compositionally equivariant representation as satisfying:

Fψ(Mg ◦ S ◦X) =M ′
g ◦ S′ ◦ Fψ(X). (6.3)

This implies that a representation is compositionally equivariant if it represents a generative fac-

tor that is defined by performing the separation operation on X and there exist transformations

that equivariantly affect the factor in the X space and in the Z space. In the real world, the gen-

erative factors are usually compositionally equivariant. A simple example is that considering

car wheels as a generative factor, composing car wheels with other car components (equivalent

to performing transformations on the car wheels) can represent different cars, which does not

affect the separation of the car wheels from different cars. I claim that when the learnt latent

representations satisfy compositional equivariance, the representations approximate well the

ground truth generative factors.

6.3.1.3 Compositionally equivariant representations

To learn a compositionally equivariant representation, the key is to find a proper separation

operation or its approximation and to design the transformations. Motivated by [57, 236, 237,

238], I assume that it is known that for a group of data samples {X1
k, · · · ,X

Nk
k }, there ex-

ists at least one generative factor that is shared across all samples. In this case, comparing

{X1
k, · · · ,X

Nk
k }, we can identify the shared factor. If we compose the shared factor with dif-

ferent factors to generate the different data {X1
k, · · · ,X

Nk
k }, this is equivalent to performing

transformations on the shared factor. Hence, with the limited information that the data group

shares some factors, we can design an objective to train the model to learn compositionally

equivariant representations. In particular, for any i ∈ {1, · · · , Nk} and h ∈ {1, · · · , Nk}, I aim

to minimise the compositionally equivariant objective:

Li,h = |Fψ(Xi
k)j − Fψ(X

h
k)j |1, (6.4)

where j denotes the index of the shared factor. Note that directly minimising Eq. 6.4 requires

knowing which factors are shared across the data group, which is a strong assumption, espe-

cially for medical data. Hence, it is more feasible to design specific learning objectives or design

biases to implicitly minimise Eq. 6.4. In the following, I study several different approaches that

implicitly achieve compositional equivariance.
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Figure 6.2: The decomposing module. Z is the features encoded by a feature encoder network.

The feature vector zi ∈ RD is defined as a vector across channels at position i on

the 2D lattice of the feature map. The jth vMF kernel is defined as µj ∈ RD. With

Eq. 6.5, we can obtain the vMF activations ZvMF . Figure is taken from [17]

6.3.2 Modeling compositional representations

I first model compositional representations with the learnable von-Mises-Fisher (vMF) kernels

as shown in Fig. 6.2. In other words, I represent deep features in a compact low dimensional

vMF space. I denote the features extracted by Fψ as Z ∈ RH×W×D, where H and W are the

spatial dimensions andD is the number of channels. The feature vector zi ∈ RD is defined as a

vector across channels at position i on the 2D lattice of the feature map. I follow Compositional

Networks [149] to model Z with J vMF distributions, where the learnable mean of the jth vMF

kernel distribution is defined as µj ∈ RD. To make the modelling tractable, the variance σ of all

distributions is fixed. In particular, the vMF activation for the jth distribution at each position i

can be calculated as:

zi,j ≡ p(zi|µj) =
eσjµ

T
j zi

C(σ)
, s.t. ||µj || = 1, (6.5)

where the feature vector is normalised i.e. ||zi|| = 1 and C(σ) is a constant. The inner prod-

uct between the feature vectors and the kernels is first calculated, which indicates how much

the kernel is activated by each feature vector. After modelling the image features with J vMF

distributions according to Eq. 6.5, the tensor of vMF activations ZvMF ∈ RH×W×J can be ob-

tained, indicating how much each kernel is activated at each position. Note that it is possible to

replace vMF kernels with Gaussian kernels. However, during training, the gradients for updat-

ing the kernels and the feature vectors are based on the activations, where vMF activations and

the gradients are easier and faster to calculate in implementation (using GPUs) as it simply cal-

culates the inner products and the exponential terms. Moreover, I will introduce the composing
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Figure 6.3: Unsupervised compositionally equivariant representation learning model. I train

the vMF kernels with Eq. 6.6. Fψ is the encoding part of a U-Net that is pre-trained

to reconstruct the input image.

method later that linearly combines the kernels to represent the original feature vectors, where

the original feature space can be well reconstructed with the vMF kernels. I leverage the com-

positional kernels as compositional representations. However, simply decomposing the features

into a compositional latent space does not ensure the assignment of meaningful information to

each compositional representation i.e. compositional equivariance.

6.3.3 Achieving compositional equivariance

The decomposition process described above allows us to extract compositional representations.

However, these representations are not bound to be compositionally equivariant. In other words,

the decomposed representations usually do not correspond to the underlying generative factors.

In the following, I consider three different settings that can assign generative factors’ informa-

tion to the representations in order to achieve compositional equivariance.

6.3.3.1 Unsupervised setting

I first consider that no supervision information is provided. I use the clustering loss in [12] to

enforce the compositional representations to correspond to the centres of any clusters of the

input feature vectors (as in Fig. 6.3). The loss Lclu that updates the kernels to be the cluster

centres of the feature vectors is defined in [149] as:

Lclu(µ,Z) = −(HW )−1
∑
i

max
j

µTj zi, (6.6)

where I only train the kernels and the feature vectors are fixed and produced by the encoding

network Fψ. Here, the feature vectors that maximally activate the kernels are first searched.
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Figure 6.4: Overall model design for weakly supervised compositionally equivariant represen-

tation learning. The image is first encoded and then the vMF activations are cal-

culated as the input of the classifier. I use the presence or absence of heart in the

image as weak supervision.

Then, the distance between the feature vectors and the kernels is minimised. Note that Fψ is

the encoding part of a U-Net that is pre-trained to reconstruct the input image. If the group of

data that shares some factors forms a cluster in latent space, then using the clustering loss will

possibly align the kernels with the cluster centres of the data groups. One can expect that the

assumption of groups of data forming clusters is not always true in practice. Also, multiple

kernels may be aligned to the same cluster centre. It is likely to be that with the clustering

loss, the compositional representations can capture part of the information of the factors i.e.

achieving a certain level of compositional equivariance.

6.3.3.2 Weakly-supervised setting

Next, I consider using weak supervision describing whether or not a given shared factor is

present in each image (e.g. heart in cardiac images), as shown in Fig. 6.4. Note that I consider

the task of medical image segmentation in this chapter. Hence, to help with downstream tasks,

it is important to consider the shared factors that are corresponded to the task. In this case, I can

learn compositionally equivariant representations of the heart and potentially use the activations

for heart localisation and segmentation. I define the label as c which indicates the presence

or absence of the heart in the image. Here, the task network is a binary classifier i.e. ĉ =

Tθ(ZvMF ). The weak supervision loss to train the model is:

Lweak(ĉ, c) = |ĉ− c|1. (6.7)

I combine this weakly supervised loss with the clustering loss to obtain the overall objective:
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Figure 6.5: The composing module. I construct a new feature space Z̃ (with Eq. 6.9) to ap-

proximate the encoded features Z, enabling the reconstruction of the input image.

Figure is taken from [17] and is reproduced.

argmin
ψ,θ,µ

Lweak(ĉ, c) + Lclu(µ,Z). (6.8)

After adding weak supervision about the heart, we expect that some of the learned composi-

tional representations will be assigned corresponding information i.e. will be compositionally

equivariant representations corresponding to the heart factor.

6.3.3.3 Semi-supervised setting with reconstruction

I further consider a semi-supervised setting, by leveraging a reconstruction network Rω to train

also on data without labels for the downstream segmentation task. As proposed in the confer-

ence paper (vMFNet) [12], the model composes the vMF kernels to reconstruct the image with

Rω by using the vMF activations as the composing operations. Then, the vMF activations that

contain spatial information are used to predict the segmentation mask with Tθ. The composing

module is shown in Fig. 6.5. The overall model design of the vMFNet is shown in Fig. 6.6. Note

that using more unlabeled data in training implicitly constructs more groups of data with the

same factors, which enforces the learnt representation to be more compositionally equivariant.

After decomposing the image features with the vMF kernels and the activations, I re-compose to

reconstruct the input image. Reconstruction requires that complete information about the input

image is captured [56]. In this case, it is possible to observe if the compositional representations

have captured information about all the generative factors for the image. However, the vMF

activations contain only spatial information, as observed in [149], while style information is

compressed as the kernels µj , j ∈ {1 · · · J}, where the compression is not invertible. Consider
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Figure 6.6: Overall model design for semi-supervised compositionally equivariant representa-

tion learning for domain-generalised medical image segmentation. The model has

been presented in the conference paper [12]. Apart from decomposing and compos-

ing modules, the segmentation module is used to predict the segmentation mask by

taking the vMF activations as input. Figure is taken from [17] and is reproduced.

that the vMF activation p(zi|µj) denotes how much the kernel µj is activated by the feature

vector zi. I construct a new feature space Z̃ (as in [12]) with the vMF activations and kernels.

Let zvMF
i ∈ RJ be a normalised vector across ZvMF channels at position i. I devise the new

feature vector z̃i as the combination of the kernels with the normalised vMF activations as the

combination coefficients, namely:

z̃i =

J∑
j=1

zvMF
i,j µj , where ||zvMF

i || = 1. (6.9)

After obtaining Z̃ as the approximation of Z, the reconstruction network Rω reconstructs the

input image with Z̃ as the input, i.e. X̂ = Rω(Z̃). The reconstruction loss is defined as:

Lrec(X, X̂) = |X− X̂|1, (6.10)

As the vMF activations contain only spatial information of the image that is highly correlated

to the segmentation mask, I design a segmentation module, i.e. the task network Tθ, to predict

the segmentation mask with the vMF activations as input, i.e. Ŷ = Tθ(ZvMF ). Specifi-

cally, the segmentation mask tells what anatomical part the feature vector zi corresponds to,

which provides further guidance for the model to learn the vMF kernels as the components

of the anatomical parts. Then the vMF activations will be further aligned when trained with
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multi-domain data and hence perform well on domain generalisation tasks. Overall, the feature

vectors of different images corresponding to the same anatomical part will be clustered and

activate the same kernels. In other words, the vMF kernels are learnt as the components or

patterns of anatomical parts i.e. compositionally equivariant representations. Hence, the vMF

activations ZvMF for the features of different images will be aligned to follow the same distri-

butions (with the same means). In this case, comparing with the content-style disentanglement

paradigm [13, 14], the vMF activations can be considered as containing the content information

and the vMF kernels as containing the style information.

Overall, the model contains trainable parameters ψ, θ, ω and the kernels µ. The model can be

trained end-to-end with the following objective:

argmin
ψ,θ,ω,µ

λDiceLDice(Y, Ŷ) + Lrec(X, X̂) + Lclu(µ,Z), (6.11)

where λDice = 1 when the ground truth mask Y is available, otherwise λDice = 0. LDice is

the Dice loss as defined in [239].

6.3.3.4 Semi-supervised setting with cross pseudo supervision

An alternative way to take advantage of unlabeled data for the downstream segmentation task

is using cross pseudo supervision as proposed in [240]. In particular, I train simultaneously

two identical models that are initialised differently, where the pseudo supervision of one model

(with networks Fψ and Tθ and kernels µ) is the output of the other model (with networks

Fψ′ and Tθ′ and kernels µ′) with the same input. Such cross pseudo supervision is equivalent

to ensembling multiple models to minimise the uncertainty of the prediction. Here, I design

the segmentation model by directly using the vMF activations as the input to a segmentation

module as shown in Fig. 6.7. The cross pseudo supervision (CPS) loss is defined as:

LCPS(Ypseudo, Ŷ) = LDice(Ypseudo, Ŷ), (6.12)

where Ypseudo is the pseudo ground truth segmentation mask and is detached during training

(to stop gradients). Overall, the model is trained with the following objective:
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argmin
ψ,θ,µ,ψ′,θ′,µ′

λDiceLDice(Y, Ŷ) + Lclu(µ,Z′)+

λDiceLDice(Y, Ŷ′) + Lclu(µ′,Z′)+

λCPSLCPS(Ŷ, Ŷ′) + λCPSLCPS(Ŷ′, Ŷ),

(6.13)

where λDice = 1 when the ground truth mask Y is available, otherwise λDice = 0. I set λCPS

as 0.1. The model is termed vMFPseudo.
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Figure 6.7: Overall model design for semi-supervised compositionally equivariant representa-

tion learning with cross pseudo supervision for domain-generalised medical image

segmentation. I simultaneously train two models and use the prediction of one

model as the pseudo supervision for the other model. The segmentation module is

used to predict the segmentation mask by taking the vMF activations as input.

6.4 Experiments

For all the experiments, I adopt multi-centre, multi-vendor & multi-disease cardiac im-

age segmentation (M&Ms) dataset [5] and spinal cord gray matter segmentation (SCGM)

dataset [7].

6.4.1 Implementation details

All models are trained using the Adam optimiser [180] with a learning rate of 1 × e−4 for

50K iterations using a batch size of 4 for the semi-supervised settings. Images are cropped to

288× 288 for M&Ms and 144× 144 for SCGM.

106



Compositional Representation Learning

Fψ contains all the downsampling and part of the upsampling layers of a 2D U-Net [218] to

extract features Z, where the last upsampling and output layers are dropped and the skip con-

nections are reserved between the downsampling and upsampling layers. The last upsampling

layers are dropped. Note that Fψ can be replaced by other encoders such as a ResNet [241] and

the feature vectors can be extracted from any layer of the encoder where performance may vary

for different layers. For all settings, I pre-train the U-Net for 50 epochs with unlabeled data

from the source domains. For the weakly supervised setting, the classifier Tθ has 5 CONV-

BN-LeakyReLU layers (kernel size 4, stride size 2 and padding size 1) and two fully-connected

layers that down-sample the features to 16 dimensions and 1 dimension (for output). For the

semi-supervised settings, Tθ and Rω have similar structures, where a double CONV layer (ker-

nel size 3, stride size 1 and padding size 1) in U-Net with batch normalisation and ReLU is

first used to process the features. Then a transposed convolutional layer is used to upsample

the features followed by a double CONV layer with batch normalisation and ReLU. Finally, an

output convolutional layer with 1 × 1 kernels is used. For Tθ, the output of the last layer is

processed with a sigmoid operation.

I follow [149] to set the variance of the vMF distributions to 30. The number of kernels is set

to 12, as it was found empirically in early experiments that this number performed the best.

For different medical datasets, the best number of kernels may be slightly different. All models

are implemented in PyTorch [54] and are trained using an NVIDIA 2080 Ti GPU. In semi-

supervised settings, I use specific percentages of the subjects as labelled data and the rest as

unlabeled data. I train the models with 3 source domains and treat the 4th domain as the target

one. I use Dice (expressed as %) [195] and Hausdorff Distance (HD) [228] as the evaluation

metrics.

6.4.2 How to evaluate compositional equivariance?

The generative factors are considered to be generalisable and interpretable. I hence consider

how interpretable the activations of the compositionally equivariant representations are and

how generalisable the representations are. For interpretability, I follow [14] to consider how

much each vMF activation channel is meaningful (carries information that is relevant to spe-

cific anatomy) and how homologous each channel is. For generalisation ability, I consider the

performance of the model on the task of semi-supervised domain generalisation as in [12].
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6.4.3 Unsupervised setting

I train the model as shown in Fig. 6.3 with Eq. 6.6 for 200 epochs with all the labelled data of

the M&Ms dataset. I show the qualitative results for the unsupervised setting in Fig. 6.8. With

only the clustering loss, some channels are already meaningful i.e. corresponding to specific

anatomy. For example, channel 1 (red box) contains information on the left ventricle (LV)

and right ventricle (RV) of the heart. Part of channel 2 is relevant to the lungs. Channel 3

corresponds to the background.

6.4.4 Weakly-supervised setting

For the weakly supervised setting, I train the model as shown in Fig. 6.4 with Eq. 6.8 for

200 epochs with all the labelled data of M&Ms dataset. The qualitative results are shown in

Fig. 6.9. It is clearly shown that a stronger compositional equivariance is achieved compared to

the unsupervised setting. Channels 1 and 2 (red box) are more related to the heart. Channel 3

(yellow box) shows the shape of the lungs even without any supervision on the task. Channel 4

contains mostly the background. Overall, the activations of the compositional representations

are more interpretable and each channel is more homologous i.e. more compositionally equiv-

ariant. Interestingly, for both unsupervised and weakly supervised settings, I observe that one

compositional representation represents the lungs even though no information about the lungs

is provided. This means that the learnt representations are ready to be used for lung localisa-

tion/segmentation when there is a small amount of relevant labelled data available i.e. robust to

the task of lung localisation/segmentation.

6.4.5 Semi-supervised setting with reconstruction

For the semi-supervised settings, I test the methods on semi-supervised domain generalisation

problems.

6.4.5.1 Baseline models

For a fair comparison, I compare all models with the same backbone feature extractor, i.e. U-

Net [218], without any pre-training on other datasets. The baseline models have been described

in Chapter 5. DGNet [16] is the semi-supervised gradient-based meta-learning approach intro-
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Figure 6.8: Visualisation of images, ground truth segmentation masks, and 12 vMF activa-

tion channels for 2 example images using the unsupervised setting from M&Ms

dataset. The channels are manually ordered. The red box highlights the activation

of the kernel (partially) corresponding to the heart.
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Figure 6.9: Visualisation of images, ground truth segmentation masks, and 12 vMF activation

channels for 2 examples of the weakly supervised setting from M&Ms dataset.

The channels are manually ordered. The red box highlights the activation of the

kernel (partially) corresponding to the heart. The yellow box relates to the channel

that contains information about the lungs.
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duced in Chapter 5.

6.4.5.2 Generalisation

Table 6.1 reports the average results over four leave-one-out experiments that treat each domain

in turn as the target domain; more detailed results can be found in Tables 6.2 – 6.5. I highlight

that the proposed vMFNet is 14 times faster to train compared to the previous SOTA DGNet.

Training vMFNet for one epoch takes 7 minutes, while DGNet needs 100 minutes for the

M&Ms dataset due to the need to construct new computational graphs for the meta-test step in

every iteration.

With limited annotations, vMFNet achieves 7.7% and 3.0% improvements (in Dice) for 2%

and 5% cases compared to the previous SOTA DGNet on M&Ms dataset. For the 100%

case, vMFNet and DGNet have similar performance of around 86% Dice and 14 HD. Over-

all, vMFNet has consistently better performance for almost all scenarios on the M&Ms dataset.

Similar improvements are observed for the SCGM dataset.

6.4.5.3 Interpretability

Overall, the segmentation prediction can be interpreted as the activation of corresponding com-

positional representations (kernels) at each position, where false predictions occur when the

wrong representations are activated i.e. the wrong vMF activations are used to predict the

mask. I show example images, reconstructions, predicted segmentation masks, and the 12 vMF

activations channels in Fig. 6.11. As shown, channels 1 and 2 (red box) are mostly activated

by LV feature vectors and channels 3 (blue box) and 4 (green box) are mostly for RV and

myocardium (MYO) feature vectors. Interestingly, channel 2 is mostly activated by papillary

muscles in the left ventricle even though no supervision about the papillary muscles is provided

during training. This supports that the model learns the kernels as the compositionally equiv-

ariant representations (patterns of papillary muscles, LV, RV and MYO) of the heart. Although

part of channel 10 corresponds to the lungs, the other channels (e.g. channels 8-12) contain

mixed (not interpretable and homologous) information about the image as the representations

have to contain complete information about the image.
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Percent metrics nnUNet SDNet+Aug. LDDG SAML DGNet vMFPseudo vMFNet

M&Ms 2%
Dice (↑) 65.948.3 68.288.6 63.165.4 64.578.5 72.854.3 77.974.7 78.433.6

HD (↓) 20.964.0 20.173.3 22.023.5 21.224.1 19.322.8 16.611.8 16.561.7

M&Ms 5%
Dice (↑) 76.096.3 77.473.9 71.293.6 74.884.6 79.754.4 82.552.6 82.123.1

HD (↓) 18.223.0 18.623.1 19.213.0 18.492.9 17.983.2 15.101.5 15.301.8

M&Ms 100%
Dice (↑) 84.872.5 84.291.6 85.381.6 83.491.3 86.031.7 85.491.6 85.922.0

HD (↓) 14.801.9 15.061.6 14.881.7 15.521.5 14.531.8 13.991.1 14.051.3

SCGM 20%
Dice (↑) 64.855.2 76.7311 63.3117 73.5012 79.5811 75.5811 81.118.8

HD (↓) 3.490.49 2.070.36 2.380.39 2.110.37 1.970.30 2.170.36 1.960.31

SCGM 100%
Dice (↑) 71.515.4 81.3711 79.2913 80.9513 82.2511 85.015.8 84.038.0

HD (↓) 3.530.45 1.930.36 2.110.41 1.950.38 1.920.31 1.890.25 1.840.31

Table 6.1: Average Dice (%) and Hausdorff Distance (HD) results and the standard deviations

on M&Ms and SCGM datasets. For semi-supervised approaches, the training data

contain all unlabeled data and different percentages of labelled data from source do-

mains. The rest are trained with different percentages of labelled data only. Results

of baseline models are taken from [12]. Bold numbers denote the best performance.

Source Target nnUNet SDNet+Aug. LDDG SAML DGNet vMFPseudo vMFNet

2%

B,C,D A 52.8719 54.4818 59.4712 56.3113 66.0112 70.1216 73.139.6

A,C,D B 64.6317 67.8114 56.1614 56.3215 72.7210 78.7710 77.017.9

A,B,D C 72.9714 76.4612 68.2111 75.708.7 77.5410 81.758.6 81.578.1

A,B,C D 73.2711 74.3511 68.5610 69.949.8 75.148.4 81.237.0 82.026.5

5%

B,C,D A 65.3017 71.2113 66.229.1 67.1110 72.4012 78.068.8 77.0610

A,C,D B 79.7310 77.3110 69.498.3 76.357.9 80.309.1 83.497.1 82.297.8

A,B,D C 78.0611 81.408.0 73.409.8 77.438.3 82.516.6 83.717.3 84.017.3

A,B,C D 81.258.3 79.957.8 75.668.5 78.645.8 83.775.1 84.936.1 85.136.1

100%

B,C,D A 80.8411 81.507.7 82.626.3 81.337.2 83.217.4 82.727.1 82.677.2

A,C,D B 86.765.8 85.046.1 85.685.7 84.155.9 86.535.3 86.564.9 85.955.6

A,B,D C 84.927.1 85.646.5 86.496.3 84.526.2 87.226.1 85.867.5 87.804.4

A,B,C D 86.945.9 84.965.2 86.736.1 83.965.9 87.164.9 86.814.5 87.264.7

Table 6.2: Dice (%) results and the standard deviations on M&Ms dataset. Bold numbers de-

note the best performance.

112



Compositional Representation Learning

Source Target nnUNet SDNet+Aug. LDDG SAML DGNet vMFPseudo vMFNet

2%

B,C,D A 26.487.5 24.697.0 25.565.9 25.575.7 23.556.5 19.516.2 19.144.8

A,C,D B 23.116.8 21.846.2 25.445.2 24.915.5 19.956.3 16.845.3 17.013.7

A,B,D C 16.754.6 16.574.2 18.983.9 16.463.5 16.294.0 15.063.7 15.303.5

A,B,C D 17.514.9 17.574.1 18.083.8 17.943.8 17.484.7 15.043.2 14.803.0

5%

B,C,D A 23.046.7 22.846.3 23.355.7 23.105.9 22.556.6 17.544.9 18.194.9

A,C,D B 18.184.7 20.265.5 20.564.7 18.974.9 19.376.4 14.864.2 15.243.2

A,B,D C 16.444.2 16.223.9 17.143.3 16.293.2 15.773.8 14.353.3 14.173.3

A,B,C D 15.244.2 15.153.3 15.803.2 15.583.2 14.242.8 13.642.8 13.612.8

100%

B,C,D A 17.865.5 17.394.5 17.484.1 17.704.2 17.283.9 15.823.9 15.993.5

A,C,D B 14.823.4 15.553.7 15.423.4 16.053.7 14.993.6 13.943.2 14.583.2

A,B,D C 13.723.3 13.673.0 13.522.8 14.213.3 13.112.8 13.123.1 12.702.8

A,B,C D 12.813.4 13.642.9 13.113.0 14.122.8 12.722.6 13.072.5 12.942.5

Table 6.3: Hausdorff Distance results and the standard deviations on M&Ms dataset. Bold

numbers denote the best performance.

Source Target nnUNet SDNet+Aug. LDDG SAML DGNet vMFPseudo vMFNet

20%

2,3,4 1 59.0721 83.0716 77.719.1 78.7125 87.456.3 87.648.8 88.086.9

1,3,4 2 69.9412 80.015.2 44.0812 75.5812 81.055.2 63.5016 81.214.2

1,2,4 3 60.257.2 58.5710 48.045.5 54.367.6 61.857.3 64.849.3 66.744.9

1,2,3 4 70.134.3 85.272.2 83.422.7 85.362.8 87.962.1 86.352.8 88.392.4

100%

2,3,4 1 75.278.3 90.254.5 88.214.9 90.225.6 90.014.9 89.784.7 90.964.7

1,3,4 2 76.322.9 84.134.2 83.763.1 86.653.5 85.482.3 83.394.8 84.893.2

1,2,4 3 62.596.9 62.1810 56.119.3 58.279.4 64.239.7 76.273.7 70.719.2

1,2,3 4 71.872.5 88.931.9 89.082.7 88.662.6 89.262.5 90.602.0 89.573.1

Table 6.4: Dice (%) results and the standard deviations on SCGM dataset. Bold numbers denote

the best performance.
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Source Target nnUNet SDNet+Aug. LDDG SAML DGNet vMFPseudo vMFNet

20%

2,3,4 1 3.090.25 1.520.33 1.750.26 1.530.38 1.500.30 1.550.34 1.470.33

1,3,4 2 3.160.09 1.970.16 2.730.33 2.070.35 1.910.16 2.400.39 1.920.14

1,2,4 3 3.380.27 2.450.27 2.670.25 2.520.24 2.230.23 2.430.31 2.250.16

1,2,3 4 4.310.14 2.340.21 2.370.14 2.300.18 2.220.13 2.300.19 2.180.14

100%

2,3,4 1 3.260.21 1.370.25 1.500.23 1.430.36 1.430.29 1.490.32 1.350.25

1,3,4 2 3.190.09 1.880.16 2.190.19 1.800.19 1.810.15 1.880.17 1.800.19

1,2,4 3 3.370.27 2.340.24 2.640.28 2.430.33 2.230.32 2.130.21 2.130.30

1,2,3 4 4.300.15 2.130.17 2.120.15 2.150.15 2.110.13 2.060.17 2.070.18

Table 6.5: Hausdorff Distance results and the standard deviations on SCGM dataset. Bold num-

bers denote the best performance.
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Figure 6.10: Visualisation of images, ground truth segmentation masks, predicted segmenta-

tion masks and 12 vMF activation channels for 2 examples of vMFPseudo from

M&Ms dataset. The channels are manually ordered. The yellow box highlights

the channel that contains information about the lungs.
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Percent B,C,D→ A A,C,D→ B A,B,D → C A,B,C→ D Average Improvement

2% 77.11 18.98 80.23 16.82 83.06 14.85 84.29 14.64 81.17 16.32 3.5% 0.14%

5% 78.97 17.97 83.83 15.18 84.13 14.29 86.04 13.45 83.24 15.22 1.4% 0.05%

100% 83.98 15.76 85.75 14.28 88.57 12.39 88.64 12.66 86.74 13.77 0.95% 0.2%

Table 6.6: Dice (%) Hausdorff Distance results on M&Ms dataset with test-time training. Im-

provements are the comparison between the average results of with or without test-

time training.

6.4.5.4 Which losses help more?

I ablate two key losses of vMFNet in the 2% of M&Ms setting. Note that both losses do

not require the ground truth masks. Removing Lrec results in 74.83% Dice and 18.57 HD,

whereas removing LvMF gives 75.45% Dice and 17.53 HD. Removing both gives 74.70%

Dice and 18.25 HD. Compared with 78.43% Dice and 16.56 HD, training with both losses gives

better generalisation results when the model is trained to learn better kernels and with unlabeled

data. When removing the two losses, the model can still perform adequately compared to the

baselines due to the decomposing mechanism.

6.4.5.5 Alignment analysis

To show that the vMF likelihoods from different source domains are aligned, for M&Ms 100%

cases, I first mask out the non-heart part of the images, features and vMF likelihoods. Then, I

train classifiers to predict which domain the input is from with the masked images X or masked

features Z or masked vMF likelihoods ZvMF as input. The average cross-entropy errors are

0.718, 0.701 and 0.756, which means that it is harder to tell the domain class with the heart part

of ZvMF , i.e. the vMF likelihoods for the downstream task are better aligned compared to the

features Z from different source domains.

6.4.5.6 Test-time domain generalisation

As discussed in Section 6.4.5.3, poor segmentation predictions are usually caused by the wrong

kernels being activated. This results in the wrong vMF likelihoods being used to predict masks.

The reconstruction quality is also affected by wrong vMF likelihoods. In fact, the average re-

construction error is approximately 0.007 on the training set and 0.011 on the test set. Inspired
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by [242, 243] I perform test-time training (TTT) to better reconstruct by fine-tuning the recon-

struction loss Lrec(X, X̂) to update Fψ and Rω with the kernels and Tθ fixed. This should in

turn produce better vMF likelihoods. For images of each subject at test time, I fine-tune the

reconstruction loss for 15 iterations (saving the model at each iteration) with a small learning

rate of 1 × e−6. Out of the 15 models, I choose the one with minimum reconstruction error to

predict the segmentation masks for each subject. The detailed results of TTT for M&Ms are

included in Table 6.6. For M&Ms 2%, 5% and 100% cases, TTT gives around 3.5%, 1.4% and

1% improvements in Dice compared to results (without TTT) in Table 6.1.

6.4.6 Semi-supervised setting with pseudo supervision

6.4.6.1 Generalisation

The results of vMFPseudo can be found in Table 6.1, Table 6.2, Table 6.3, Table 6.4 and Ta-

ble 6.5. It is notable that vMFPseudo has a similar advantage in the computational load and

training speed as vMFNet compared to DGNet. Training vMFPseudo for one epoch takes

around 14 minutes, while DGNet needs 100 minutes for the M&Ms dataset.

Similar to the improvement of vMFNet over the previous SOTA DGNet, vMFPseudo achieves

7.0% and 3.5% improvements (in Dice) for 2% and 5% cases on the M&Ms dataset. For the

100% case, vMFNet is slightly worse than DGNet and vMFNet, which is around 85.5% Dice

and 14 HD. Overall, vMFPseudo consistently performs better for most of the cases compared

to the baseline methods for the M&Ms dataset and SCGM dataset. Compared to vMFNet, I ob-

serve that for some cases (e.g. 5% B,C,D→A on the M&Ms dataset and 100% 1,2,4→3 on the

SCGM dataset), vMFPseudo has clearly better performance. Note that the domain difference

between the source domains and the target domain is relatively larger than that in other cases.

Hence, the model may produce highly uncertain results for some images in the target domain.

In these cases, the cross pseudo supervision loss may help more in mitigating the uncertainty,

which produces better results.

6.4.6.2 Interpretability

Overall, I observe more interpretable results with vMFPseudo. First of all, the lungs in the

images are more clearly shown in channel 1 (yellow box), which means better robustness re-

garding generalising to other tasks. Channels 1-3 correspond to LV, RV and MYO. As no
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Figure 6.11: Visualisation of images, reconstructions, predicted segmentation masks and 12

vMF activation channels for 2 examples of vMFNet from M&Ms dataset. The

channels are manually ordered. The red box, blue box and green box highlight

the activation of the kernels corresponding to the left ventricle, right ventricle and

myocardium. The yellow box relates to the channel that contains information

about the lungs.
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reconstruction is needed for vMFPseudo, we can see that the other channels are more homolo-

gous. For example, channel 10 may relate to the contours of the images.

6.5 Summary

In this Chapter, I have presented that using compositional equivariance as an inductive bias

helps to learn generalisable and interpretable compositional representations. In particular, I

used different learning biases in different settings to constrain the representations to be compo-

sitionally equivariant. For the unsupervised setting and weakly supervised setting, I observed

that the representations achieve a certain level of compositional equivalence, which is partially

interpretable. For the semi-supervised settings, I qualitatively showed that some of the repre-

sentations are well interpretable when little supervision is given. Quantitatively, vMFNet and

vMFPseudo, the models built based on decomposing the compositional representations with

different design biases and learning biases, achieved the best generalisation performance com-

pared to several strong baselines. Overall, as I discussed in Section 6.3 and demonstrated with

the results, different learning settings and biases allow the model to learn the representations

that are compositionally equivariant at different levels. I conclude that strong prior knowledge

(e.g. weak supervision “heart or not”) or some supervision significantly improves the ability

to achieve compositional equivariance. Taking advantage of the unlabeled data also plays a key

role to learn compositionally equivariant representations as it implicitly constructs more groups

of data that have shared factors.
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Chapter 7
Summary, Limitations and Future

Directions

In the final chapter, I summarise the thesis contributions and discusses the significance of our

work in Section 7.1. I present the limitations and opportunities in Section 7.2. The future

directions inspired by the conducted work are discussed in Section 7.3.

7.1 Summary

This thesis focuses on learning representations for more generalisable solutions to medical im-

age analysis. I first conducted a comprehensive survey on disentangled representation learning

and proposed two metrics to measure content-style disentanglement to systematically study the

effect of different biases. Then, two disentanglement-based generalisation solutions are pro-

posed to handle the domain shifts between multi-domain data that are collected from different

clinical centres or hospitals. Finally, I considered compositionality as a prior to learn more

generalisable and interpretable representations.

In Chapter 4, I evaluated the disentanglement between image content and style through ex-

perimenting on 3 state-of-the-art models, and showcased how design and learning biases af-

fect disentanglement and by extension task performance. The findings suggest that whilst

content-style disentanglement enables the implementation of certain equivariant tasks, partially

(dis)entangled can lead to better performance than fully disentangled ones. Additionally, the

analysis suggests that strict design constraints on the content space lead to increased inter-

pretability, which could be exploited in post-hoc tasks. Using the findings and the presented

metrics will enable the design of better models that achieve the degree of disentanglement that

maximises performance, rather than blindly pursuing very high (or low) disentanglement.

In Chapter 5, two data augmentation methods were first proposed to address the domain adap-

tation and generalisation problems in the field of cardiac image segmentation. In particular, a

geometry-related augmentation method was introduced, which aims to remove the scale and
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resolution bias of the original data. Further, the second proposed augmentation method aims

to bridge the gap between populations and data captured by different scanners. To achieve

this, the original data is projected onto a disentangled latent space and generates new sam-

ples by combining disentangled factors from different domains. The presented experimental

results showcase the contribution of the geometry-based method to cardiac image segmenta-

tion through boosting the domain generalisation, while also demonstrating the contribution of

the disentangled factors mixing method to the domain adaptation. Then, I presented a novel

semi-supervised meta-learning framework for semi-supervised domain generalisation. Using

disentanglement the proposed approach models domain shifts, and thanks to the reconstruction

approach to disentanglement, the proposed model can be trained also with unlabeled data. By

applying the designed constraints (including the low-rank regularisation) to the gradient-based

meta-learning approach, the model extracts robust anatomical features useful for predicting

segmentation masks in a semi-supervised manner. Extensive quantitative results, especially

when insufficient annotated data are available, indicate remarkable improvements compared to

previous state-of-the-art approaches.

In Chapter 6, I have presented that using compositional equivariance as an inductive bias helps

to learn generalisable and interpretable compositional representations. In particular, I used

different learning biases in different settings to constrain the representations to be composi-

tionally equivariant. For the unsupervised setting and weakly supervised setting, we observed

that the representations achieve a certain level of compositional equivalence, which is partially

interpretable. For the semi-supervised settings, I qualitatively showed that some of the repre-

sentations are well interpretable when little supervision is given. Quantitatively, vMFNet and

vMFPseudo, the models built based on decomposing the compositional representations with

different design biases and learning biases, achieved the best generalisation performance com-

pared to several strong baselines. Overall, as I discussed in Section 6.3 and demonstrated with

the results, different learning settings and biases allow the model to learn the representations

that are compositionally equivariant at different levels. I conclude that strong prior knowledge

(e.g. weak supervision “heart or not”) or some supervision significantly boosts the ability to

achieve compositional equivariance. Taking advantage of the unlabeled data also plays a key

role to learn compositionally equivariant representations as it implicitly constructs more groups

of data that have shared factors.

The broader significance of the work is over two aspects: a) a new problem setting – semi-
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supervised domain generalisation; b) a new theory for learning representations in the medical

domain – compositional equivariance. As discussed in Chapter 5, I proposed a solution to

the problem of domain-generalised medical image segmentation with unlabeled data. In fact,

it is the first work that considers solving such a problem. Apart from the proposed methods

in Chapter 6, there are already several follow-up works such as [233]. Solving the problem

of semi-supervised domain generalisation for medical image segmentation is extremely chal-

lenging but also very practically applicable. I believe that future works will be inspired by

our solution of combining meta-learning and disentanglement to eventually find the most reli-

able solution. The compositional equivariance theory opens the door to learning generalisable

and interpretable representations for medical image analysis by incorporating compositionality.

Considering compositional equivariance as an inductive bias, researchers can focus on devising

learning and design biases with prior and expert knowledge. Achieving compositional equiv-

ariance provides more guarantee of generalisation and interpretability.

7.2 Limitations and Opportunities

In this section, I identify the limitations of the proposed methods and discuss ideas and oppor-

tunities for improvement.

In Chapter 4, I reported that a sweet spot between task performance and disentanglement needs

to be achieved. However, it is still an unanswered question on how to achieve such sweet spot.

It is possible to exploit the metrics to improve disentanglement itself in an iterative manner,

as Esterman et al. [244] have done, while simultaneously monitoring task performance when

improving disentanglement. As studied in [245], the distance correlation metric can be used

as a learning objective to train the model to learn more disentangled representations, which

has not been widely tested in the medical domain, remaining as an opportunity. In terms of

the proposed IOB metric, incorporating it as a training objective may cause memory issues

as additional networks are required and the metric performs on the whole training dataset.

One may consider to exploit the batch-data based IOB objective. The moving average over

multiple data batches of IOB during training can be one possible solution. On the other hand,

it is unclear if the proposed metrics generalise to vector-form disentangled representations.

Moreover, the proposed metrics may fail when there exist correlated factors of variation in

the data. As experiments in [41] show, most existing metrics struggle when measuring the

disentanglement of models trained with data that include correlated factors of variation. For
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the correlated factors, one may consider a correlation calibration term that is based on the prior

knowledge of the data to regularise the DC and IOB metrics. For example, for IOB, an

additional correlation calibration network can be trained to un-bias the correlation.

For the Factor-based Augmentation approach presented in Chapter 5, only mixing the anatomy

and modality is performed. This approach approximates the scenario that the same patients

are scanned in different hospitals. It creates more combinations of anatomy and modality but

does not introduce more diversity in the anatomy and modality. To create plausible anatomy, I

and the co-authors investigated augmenting the anatomy by doing anatomy arithmetic in [246].

We combine disentangled anatomical factors of different input images, to create new plausible

images with desired characteristics. We showed that these generated images and accompanied

metadata can be used to augment existing data for improved performance. This approach im-

proves the anatomy diversity of the augmented data. However, it is still not interpolating or

extrapolating the latent space. One possible solution for interpolation is linearly combining the

modality factors as the new modality factor. Then adding the adversarial training mechanism

to SDNet may allow the model to generate images with a plausible modality. More advanced

methods of extrapolating the anatomy and modality spaces may better address this issue. As a

possible solution, integrating the pre-trained generative models (e.g. pre-trained diffusion mod-

els [247]) may help on extrapolating the latent spaces. For example, one may take the SDNet

anatomy channels of different patients as the input for ControlNet [248] to generate multiple

medical images that may have plausible anatomical structures to better solve the anatomy arith-

metic problem. In terms of the proposed semi-supervised meta-learning approach, the segmen-

tation module is not trained when the data are not labeled, where only the reconstruction path

has gradients. This possibly has a negative effect on the segmentation module as the segmentor

is not trained to process the latent space of unlabelled data. One can learn from the advances in

semi-supervised image segmentation to design better learning objectives to address this issue

such as the cross pseudo supervision I studied in Chapter 6.

For compositionally equivariant representation learning, I have shown improved generalisa-

tion and interpretability as evidence of better compositional equivariance. However, the direct

measurement of compositional equivariance is still missing. Ideally, a metric for measuring

compositional equivariance that can also be leveraged as a training objective will have a sig-

nificant impact on future work. The key of compositional equivariance is that the composi-

tional equivariant representation of a generative factor should not be affected when modifying
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other representations or composing it with other representations. Consider the compositionally

equivariant representations of a generative model. A possible metric can consider two aspects:

a) when fixing one representation and modifying all other representations (i.e. composing the

fixed representation with different sets of other representations), the generated images should

always contain the information of the fixed representation; b) when modifying one representa-

tion and keep other representations fixed, the generated images should always reflect the mod-

ifications/transformations on the representation. Then, it is possible to construct other forms of

weak supervision such as the presence/absence of the anatomy (e.g. left ventricle) of the heart.

Also, one may use weak supervision to help with the segmentation task. Finally, I have studied

the un-, weakly- and semi-supervised settings for compositionally equivariant representation

learning. Self-supervised learning is a missing puzzle for compositional equivariance. One

may construct more groups of data that implicitly share some generative factors under con-

trastive learning settings [238]. In this case, the text information from health reports of medical

imaging data can be leveraged for augmenting the imaging data for self-supervised learning.

7.3 Future Directions and Open Challenges

Apart from the limitations of the proposed methods, there are several open challenges existing

in representation learning for medical image analysis. In this section, I discuss these opportu-

nities and future directions.

7.3.1 New strategies for learning disentangled representations

Learning disentangled representations requires complex architectures and objective functions.

Most approaches employ several loss functions and modules and, hence multiple hyperparam-

eters. While flexibility is desirable, tuning complex systems can be difficult and it creates a

barrier for further adoption of the disentanglement paradigm by the broader research commu-

nity. Methods that require less hyperparameter tuning or techniques for automating this process

or less complex approaches will be welcomed. Below, I discuss two possible strategies to learn

disentangled representations in a simpler fashion.

Part of the content in Section 7.3.1 and Section 7.3.4 is based on :

• Liu, X.*, Sanchez, P.*, Thermos, S.*, O’Neil, A.Q. and Tsaftaris, S.A., 2022. Learning Disentangled
Representations in the Imaging Domain. Medical Image Analysis, p.102516. *Equal contribution.
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Integrating self-supervised and contrastive learning. Fundamentally speaking most dis-

entanglement approaches we reviewed here use a reconstruction approach. This may not be

necessary. Recently, contrastive learning [249, 250, 251, 252, 253] has shown impressive

performance for self-supervised representation learning. In particular, patch-wise contrastive

learning [254] has been successfully used as an auxiliary loss function for reinforcing disentan-

glement [255, 256]. Additionally, Mitrovic et al. [257] and Vonkugelgen et al. [258] developed

an understanding of contrastive learning from a causal perspective and argue that it can be

interpreted as CSD where the representation is focusing on learning only the content, whilst

developing style invariance. Methods such as MOCO [249], SimCLR [250, 251], BYOL [252],

and the Barlow Twins [253] achieve this through augmentation and regularisation. Wang et

al. [238] use contrastive learning for disentangling group invariant representations. Ren et

al. [259] propose to discover the disentangled representations with contrasting learning at the

post-hoc stage. Zimmermann et al. [260] have taking it a step further to suggest that contrastive

learning under certain assumptions can indeed invert the data generating process. While it is

possible to learn representations that are robust (invariant) to specific interventions, it remains

challenging to design augmentations and regularisations which are invariant to general inter-

ventions.

Intervention as a prior. Caselles et al. [65] suggest that a symmetry-based understanding of

disentanglement can only be achieved upon interaction with an environment. To illustrate this

point, Suter et al. [261] propose a disentanglement metric based on interventional robustness.

Moreover, statistical independence between latent variables might not hold for real-life settings

where the generating factors are correlated [42, 43]. With this intuition, Besserve et al. [262]

provide a causal understanding of disentanglement in generative models based on interventions

and counterfactuals. Leeb et al. [263] propose a strategy for probing the latent space of VAEs

by applying interventions. Their method allows quantification of the consistency of the repre-

sentation with a chosen prior as well as finding holes in the latent manifold. These works pave

a new path for using interventions as a prior for disentangled representation learning.

7.3.2 Structured representation learning

In Chapter 3, I discussed the disentangled representations in a vector form, which can be learnt

via different models e.g. VAEs and GANs. In Chapter 4 and Chapter 5, I explored and proposed

the content-style disentanglement approaches. Eventually, in Chapter 6, I studied the compo-
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sitional representations. Overall, all the studies do not consider any hierarchical structure of

representations. In practice, there exist more complex structures in real data. For example, con-

sidering a dataset containing images of different animals, the factors “dog” and “cat” are the

parent factors and the factors “colour of hairs”, “tail length”, etc., are the child factors, as illus-

trated in [264]. Prior work has primarily focused on developing hierarchical networks to learn

hierarchically structured representations, either for simplified hierarchical structures [265] or

on toy synthetic datasets [152]. Additionally, Li et al. [266] proposed to progressively learn

the disentangled representations with VAEs from high- to low-levels of abstractions on the toy

dataset. Wang et al. [264] have explored learning complete hierarchical structures of repre-

sentations on large-scale, real-world datasets with extensive annotations of the structures and

factors. Recently, causal representations consider the parent and child factors following a causal

relationship [267], which is a specific form of structured representation. Overall, it is still an

unsolved problem to learn the structured representations for real-world datasets, especially for

medical data, without full supervision of the structures. In fact, medical imaging data typically

accompanies extensive health reports that can be leveraged to learn hierarchical structures of

representations from text information and subsequently learn the corresponding representations

from imaging data, representing an area of great potential. On the other hand, the physical struc-

ture of the organs or anatomy inside organs can be considered for constructing the structure of

representations. For example, the left ventricle, myocardium and right ventricle of human heart

follow a nested structure. Similarly, the nested structure of brain tumors has been leveraged

for better task performance as shown in [268]. For such nested structures, one may construct a

hierarchical structure for the corresponding representations.

7.3.3 Interactive representation learning

I discussed in Chapter 3 that to learn the (disentangled) representations, we need to introduce

different biases to make the representations identifiable. A novel form of introducing bias to the

learning process is integrating humans into the loop i.e. introducing human interaction [236].

Particularly, we may favour incorporating human interactions into a model’s latent representa-

tions e.g. to correct confounding behaviour [236]. This area of research is closely related to

explanatory interactive learning (XIL) [269], which allows a learner to query the user or another

information source interactively to obtain desired outputs for data points. In this interaction,

the learner predicts a label for a data point, and the user corrects the learner’s prediction as

necessary, providing slightly improved feedback that is not necessarily optimal. XIL typically
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incorporates the human user into the training loop by allowing for interaction via a model’s ex-

planations [270, 271]. Most XIL approaches interact via post-hoc explanations [264, 271]. To

learn better representations, we instead should interact directly with the latent representations

of a model, as studied in [236]. This line of research is also related to active learning [272, 273],

where a learning algorithm can interactively query a user to label new data points with the de-

sired outputs. Interactive representation learning has great potential in the medical domain,

which can boost the ability to learn from fewer data and less annotation with the help of hu-

man interaction and significantly improves the explainability of deep models. To facilitate

the integration of human interactions into learning good representations for medical data, the

challenges mainly are constructing human understandable latent space and introducing proper

structure to the representations as we discussed before.

7.3.4 Fair and disentangled representation learning

An important limitation is learning disentangled representation from correlated data [41]. As

detailed in Section 3.2.4, real data is not i.i.d. and bias exists due to domain shifts. In these

cases, it has been shown that factorization-based inductive biases as described in Section 3.3.1

are not enough to learn the true generating factors. These biases can have significant impli-

cations for fairness (biased towards sensitive attributes). Fairness is an important concept in

machine learning whenever an algorithm tends to be biased towards sensitive attributes such as

race or gender [274, 201]. Therefore, a fair model should be invariant to sensitive attributes.

Developing fair algorithms is tightly related to domain generalisation as detailed in [275] and

disentanglement provides a useful framework for dealing with this issues [276, 277, 278, 279].
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[190] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through
stochastic neurons for conditional computation,” arXiv:1308.3432, 2013.

[191] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational information bot-
tleneck,” in Proc. International Conference on Learning Representations (ICLR), 2017.

141



References

[192] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing ingre-
dient for fast stylization,” arXiv:1607.08022, 2016.

[193] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs trained
by a two time-scale update rule converge to a local Nash equilibrium,” in Proc. Advances
in Neural Information Processing Systems (NeurIPS), pp. 6626–6637, 2017.

[194] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable ef-
fectiveness of deep features as a perceptual metric,” in Proc. IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 586–595, 2018.

[195] L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology,
vol. 26, no. 3, pp. 297–302, 1945.

[196] T. Sørensen, “A method of establishing groups of equal amplitude in plant sociology
based on similarity of species content and its application to analyses of the vegetation on
danish commons,” Royal Danish Academy of Sciences and Letters, vol. 5, no. 4, pp. 1–
34, 1948.

[197] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand, “What do different evalua-
tion metrics tell us about saliency models?,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 41, no. 3, pp. 740–757, 2019.

[198] F. Isensee, P. F. Jaeger, P. M. Full, I. Wolf, S. Engelhardt, and K. H. Maier-Hein, “Auto-
matic cardiac disease assessment on cine-mri via time-series segmentation and domain
specific features,” in Proc. International Workshop on Statistical Atlases and Computa-
tional Models of the Heart (STACOM), pp. 120–129, Springer, 2017.

[199] C. Chen, C. Qin, H. Qiu, et al., “Deep learning for cardiac image segmentation: A
review,” Frontiers in Cardiovascular Medicine, vol. 7, no. 25, pp. 1–33, 2020.

[200] Q. Tao, W. Yan, Y. Wang, E. H. Paiman, Shamonin, et al., “Deep learning–based method
for fully automatic quantification of left ventricle function from cine mr images: a mul-
tivendor, multicenter study,” Radiology, vol. 290, no. 1, pp. 81–88, 2019.

[201] E. Puyol-Antón, B. Ruijsink, S. K. Piechnik, S. Neubauer, S. E. Petersen, R. Razavi, and
A. P. King, “Fairness in cardiac MR image analysis: An investigation of bias due to data
imbalance in deep learning based segmentation,” in Proc. International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 413–423,
Springer, 2021.

[202] C. Bian, C. Yuan, J. Wang, M. Li, X. Yang, S. Yu, K. Ma, J. Yuan, and Y. Zheng,
“Uncertainty-aware domain alignment for anatomical structure segmentation,” Medical
Image Analysis, vol. 64, p. 101732, 2020.

[203] R. Pomponio, G. Erus, M. Habes, J. Doshi, D. Srinivasan, E. Mamourian, V. Bashyam,
I. M. Nasrallah, T. D. Satterthwaite, Y. Fan, et al., “Harmonization of large mri datasets
for the analysis of brain imaging patterns throughout the lifespan,” NeuroImage, vol. 208,
p. 116450, 2020.

142



References

[204] B. E. Dewey, L. Zuo, A. Carass, et al., “A disentangled latent space for cross-site mri
harmonization,” in Proc. International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), pp. 720–729, Springer, 2020.

[205] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Learning to generalize: Meta-
learning for domain generalization,” in Proc. AAAI Conference on Artificial Intelligence
(AAAI), 2018.

[206] K. Muandet, D. Balduzzi, and B. Schölkopf, “Domain generalisation via invariant fea-
ture representation,” in Proc. International Conference on Machine Learning (ICML),
pp. 10–18, PMLR, 2013.

[207] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, “Deep domain gener-
alization via conditional invariant adversarial networks,” in Proc. European Conference
on Computer Vision (ECCV), pp. 624–639, 2018.

[208] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi, “Domain general-
isation by solving jigsaw puzzles,” in Proc. IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2229–2238, 2019.

[209] S. Zhao, M. Gong, T. Liu, H. Fu, and D. Tao, “Domain generalization via entropy reg-
ularization,” in Proc. Advances in Neural Information Processing Systems (NeurIPS),
vol. 33, 2020.

[210] H. Li, Y. Wang, R. Wan, S. Wang, et al., “Domain generalisation for medical imag-
ing classification with linear-dependency regularization,” in Proc. Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[211] H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalisation with adversarial feature
learning,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5400–5409, 2018.

[212] Q. Dou, D. C. Castro, K. Kamnitsas, and B. Glocker, “Domain generalisation via model-
agnostic learning of semantic features,” in Proc. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019.

[213] Q. Liu, Q. Dou, and P.-A. Heng, “Shape-aware meta-learning for generalising prostate
mri segmentation to unseen domains,” in Proc. International Conference on Medical Im-
age Computing and Computer-Assisted Intervention (MICCAI), pp. 475–485, Springer,
2020.

[214] X. Li, L. Yu, Y. Jin, C.-W. Fu, L. Xing, and P.-A. Heng, “Difficulty-aware meta-learning
for rare disease diagnosis,” in Proc. International Conference on Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI), pp. 357–366, Springer, 2020.

[215] D. Li, J. Zhang, Y. Yang, C. Liu, Y.-Z. Song, and T. M. Hospedales, “Episodic train-
ing for domain generalisation,” in Proc. International Conference on Machine Learning
(ICML), pp. 1446–1455, 2019.

[216] P. Khandelwal and P. Yushkevich, “Domain generalizer: A few-shot meta learning
framework for domain generalization in medical imaging,” in Proc. MICCAI Workshop
on Domain Adaptation and Representation Transfer (DART), pp. 73–84, Springer, 2020.

143



References

[217] H. Sharifi-Noghabi, H. Asghari, N. Mehrasa, and M. Ester, “Domain generalisation via
semi-supervised meta learning,” arXiv:2009.12658, 2020.

[218] O. Ronneberger, P. Fischer, and T. Brox, “UNet: Convolutional networks for biomedical
image segmentation,” in Proc. International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI), pp. 234–241, Springer, 2015.

[219] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”
in Proc. International Conference on Machine Learning (ICML), p. 807–814, 2010.

[220] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” in Proc. IEEE/CVF International Conference on Computer Vision (CVPR),
pp. 2980–2988, 2017.

[221] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. Jorge Cardoso, “Generalised
dice overlap as a deep learning loss function for highly unbalanced segmentations,” in
Proc. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support, pp. 240–248, Springer, 2017.

[222] C. F. Baumgartner, L. M. Koch, M. Pollefeys, and E. Konukoglu, “An exploration of 2D
and 3D deep learning techniques for cardiac MR image segmentation,” in Proc. Inter-
national Workshop on Statistical Atlases and Computational Models of the Heart (STA-
COM), pp. 111–119, 2017.

[223] X. Yu, Y. Chen, T. Li, S. Liu, and G. Li, “Multi-mapping image-to-image translation via
learning disentanglement,” in Proc. Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[224] M. Ilse, J. M. Tomczak, C. Louizos, and M. Welling, “DIVA: Domain invariant varia-
tional autoencoders,” in Proc. International Conference on Medical Imaging with Deep
Learning (MIDL), pp. 322–348, PMLR, 2020.

[225] W.-D. K. Ma, J. Lewis, and W. B. Kleijn, “The hsic bottleneck: Deep learning without
back-propagation,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, pp. 5085–5092, 2020.

[226] A. Antoniou, H. Edwards, and A. Storkey, “How to train your MAML,” in Proc. Inter-
national Conference on Learning Representations (ICLR), 2019.

[227] F. Isensee, P. F. Jaeger, et al., “nnUNet: a self-configuring method for deep learning-
based biomedical image segmentation,” Nature Methods, vol. 18, no. 2, pp. 203–211,
2021.

[228] M.-P. Dubuisson and A. K. Jain, “A modified hausdorff distance for object matching,”
in Proc. International Conference on Pattern Recognition (ICPR), vol. 1, pp. 566–568,
IEEE, 1994.

[229] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” in
Proc. Advances in Neural Information Processing Systems (NeurIPS), pp. 4080–4090,
2017.

144



References

[230] J. Tubiana and R. Monasson, “Emergence of compositional representations in restricted
boltzmann machines,” Physical review letters, vol. 118, no. 13, p. 138301, 2017.

[231] C. Chen, K. Hammernik, C. Ouyang, C. Qin, W. Bai, and D. Rueckert, “Cooperative
training and latent space data augmentation for robust medical image segmentation,” in
Proc. International Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pp. 149–159, Springer, 2021.

[232] R. Gu, J. Zhang, R. Huang, W. Lei, G. Wang, and S. Zhang, “Domain composition and
attention for unseen-domain generalizable medical image segmentation,” in Proc. Inter-
national Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI), pp. 241–250, Springer, 2021.

[233] H. Yao, X. Hu, and X. Li, “Enhancing pseudo label quality for semi-supervised domain-
generalized medical image segmentation,” in Proc. AAAI Conference on Artificial Intel-
ligence (AAAI), 2022.

[234] P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann, E. Pierson, B. Kim, and P. Liang,
“Concept bottleneck models,” in Proc. International Conference on Machine Learning
(ICML), pp. 5338–5348, PMLR, 2020.

[235] A. Stone, H. Wang, M. Stark, Y. Liu, D. Scott Phoenix, and D. George, “Teaching com-
positionality to CNNs,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5058–5067, 2017.

[236] W. Stammer, M. Memmel, P. Schramowski, and K. Kersting, “Interactive disentan-
glement: Learning concepts by interacting with their prototype representations,” in
Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 10317–10328, 2022.
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