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Lay Summary

In popular culture, black holes (BH) are often surrounded by an aura of intricacy

and mystery. This is to some extent justified. Their beautiful mathematical and

physical properties have stimulated a wealth of research and discoveries, with

some questions still left unanswered. On the other hand, a potato can be a much

more complicated object in terms of degrees of freedom: this is because black holes

are also very constrained objects. If we study their classical behaviour in long-

range scattering problems, then they turn out to be more similar to elementary

point particles, meaning that we can describe them with a handful of parameters.

The recent experimental detection of gravitational waves (GW) has started a

new era of astronomical observations, and a great source of the signal is released

by black hole mergers. These incredibly powerful processes release an enormous

amount of energy in the form of gravitational waves. However, we were only

able to measure this type of radiation just over a few years ago for the first

time: the GW signals that we observe on earth reach us with a minuscule

amplitude. Nonetheless, interferometers are becoming more and more advanced,

with a new generation of systems starting to operate over the next few years.

As a consequence, state-of-the-art detections will call for an even better analytic

characterisation and theoretical understanding of waveform templates.

It is in this scenario that this thesis fits in. Here, we will describe our small

contribution to classical black hole scattering through the lenses of quantum

mechanics. In fact, we will be able to compute classical gravity observables

starting from quantum matrix elements, and by taking the limit ℏ → 0 of

gauge theory amplitudes. This will allow us to show how efficient and applicable

particle perturbation theory is, and at the same time to unveil new structures

and simplifications that occur in the classical limit of gravity amplitudes.
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Abstract

In recent years the double copy has provided a bridge between scattering

amplitudes and gravitational interactions, allowing physicists to perform com-

putations once unthinkable. Its strength relies on borrowing perturbative (much

easier) results from gauge theories, and extracting classical results from quantum

amplitudes. Recently, the gravitational two-body problem, central for the

blooming field of gravitational wave physics, is being scrutinized under the

light of such duality. In this thesis we work towards understanding how the

double copy can help us compute classical gravity observables through the so-

called “KMOC formalism”. This is a framework that has already received great

interest from both the gravitational waves and the amplitude community, since it

focuses directly on the computation of physical observables (for instance, without

resorting to a Hamiltonian) allowing for a deeper understanding of underlying

structures present in the classical limit of amplitudes.
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Chapter 1

Foreword

In this thesis we will study classical aspects of black holes through the use of gauge

theory amplitudes. At a superficial glance, these two topics may appear unrelated.

Quantum field theory (QFT) describes weak, strong and electromagnetic (EM)

interactions within the standard model, while gravity dictates the dynamics of

the cosmos and spacetime itself. It would then seem that amplitudes are tools

confined to the realm of collider physics, but this is not the case. In fact, recent

years have seen an incredible surge of research concerning amplitudes applications

to gravity [4, 6–33]. This remarkable body of work has been prompted by the

recent revolutionary observations of gravitational waves (GW) [34–68], made

by the LIGO-Virgo-KAGRA collaboration [69–73]. Scattering amplitudes can

indeed be used to describe gravitating bodies in a variety of methods: they can be

used to compute interaction potentials [6, 34, 35], deflected angles [5, 49, 50], EFT

Lagrangians [36–39, 74, 75], bound state observables [8, 57–59, 76] and radiated

waveforms [3, 33, 77–79]. New generations of gravitational wave observatories

will work at higher signal-to-noise ratios, thus calling for more advanced analytic

templates [80–83].

Luckily, at this point in time, particle physicists have developed a powerful arsenal

of theoretical instruments that are usually applied to the calculation of challenging

multiloop processes. Some of the most important tools are generalized unitarity,

recursion relations, differential equations of Feynman integrals and integration

by parts techniques [84–91]. All this technology can be efficiently re-applied to

gravity. In fact, this poses an exciting new challenge to particle theorists: to

compute cutting-edge gravity observables using amplitudes and QFT technology.
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Indeed, some of these state of the state-of-the-art expressions have already been

determined using scattering amplitudes [92].

However, there is another important reason for looking at classical GR, and black

holes, through the lens of scattering amplitudes: the double copy. The double

copy correspondence is a ground-breaking computational algorithm which allows

us to compute graviton amplitudes from knowledge of gauge theory ones. This

is done via a precise algorithm which instructs us to “square” YM amplitudes

in order to generate gravity ones. This duality was first discovered in string

theory as a tree-level relationship between open and closed string amplitudes in

[93]. Recently, this correspondence was given new and more powerful light by

Bern, Carrasco and Johansson [94] who deepened its scope and explored loop

applications.

It is obvious then the double copy provides an entirely new way to look at

gravitational processes, which is very different from the standard geometric way

to study Einstein’s equations. A crucial advantage of this duality resides in

its extraordinary efficiency when compared to usual gravity perturbations. By

looking at much simpler YM perturbation theory, theorists are able to push

calculations to an accuracy level which was unthinkable before.

Even more, the double copy duality has been further extended beyond pertur-

bative treatment to exact solutions of Einstein’s field equations, first expored in

[95]. This second formulation however, applies to solutions of general relativity

which admit the so called “Kerr-Schild” (KS) decomposition, it is purely classical

and holds to complete metric solutions. On the other hand, the BCJ double copy

applies to quantum scattering amplitudes, which are computed perturbatively.

This raises the question of whether the double copy is a fundamental property

of nature or not. In fact, a definitive mathematical proof of the BCJ duality to

all orders is still missing, and it is in general hard to make connection between

the BCJ and the KS double copy. Nonetheless, a vast amount of high-loop

calculations have been performed and support the conjecture with evidence.

Thus, we have a direct link between gravity and gauge theory at the level of

scattering amplitudes. However, amplitudes are quantum mechanical in nature

so a procedure for extracting the classical part has to be developed. In recent

years, one framework that have received considerable attention is the so-called

“KMOC” formalism, after Kosower, Maybee and O’Connell [49, 50]. Their idea

is to use amplitudes in a region where the correspondence regime can be applied
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and quantum effects can be easily isolated. In this way one can compute classical

observables as expectation values of hermitian operators taken between suitable

semiclassical states. If certain reasonable classical conditions are met, one is able

to extract the classical limit of an amplitude by reinstating ℏ and performing an

expansion around it.

In this way one is able to focus directly on the computation of physical, on-

shell, quantities without the needing to resort to off-shell quantities (such as

an interaction potential). In turn, this allows for a deeper understanding of

underlying structures present in the classical limit of amplitudes and at the same

time we can make use of all the existing amplitude tools.

An important advantage of the KMOC formalism is its applicability. Indeed,

one can compute a great variety of observables such as: scattering angles,

momentum deflections, spin precessions and memory effects. Furthermore, within

this framework the core principles of unitary evolution and conservation laws are

implemented naturally from the beginning. This implies that both conservative

and non-conservative (i.e. radiative) effects can be computed [3, 4, 96].

In fact, the KMOC formalism was originally conceived with GW observables

in mind. From this perspective, a gravitational perturbation produced by two

scattering black holes is characterised by computing the expectation value of

Riemann’s tensor in a quantum sense and then taking its classical limit. The

curvature tensor is often referred to as “waveform” in this case. The scalar

components of this, in the long-range limit, are often called “Newman-Penrose”

scalars [97, 98]. They are the quantities directly measured in interferometric

observations and of interest to numerical relativists [99]. These analytical

templates, computed in a KMOC way, turn out to be essentially Fourier

transforms of scattering amplitudes. Furthermore, we will argue that classical

waveforms are extremely interesting objects for yet another reason: they can

be seen as expectation values of coherent states. This makes sense classically:

coherent states saturate Heisenberg’s uncertainty bound, re-summing infinitely

many light/gravity modes into one classical state. However, from the amplitude

side, we will see how coherence implies non-trivial structures and new recursions.

In this work we will thus investigate different aspects revolving around the

fascinating topics of the gravitational two-body problem employing scattering

amplitudes, the double copy and the KMOC formalism.
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1.0.1 Summary

This thesis is structured as follows. In chapter 2 we introduce the necessary

technical tools of on-shell classical observables, in preparation for the thesis main

body. We begin with a discussion of waveforms and GR solutions in chapter

3, where we study these through a certain spacetime continuation called “split

signature”. Then, we extend our findings to waveforms with support in Minkowski

spacetime, at one loop, in chapter 4. Here, to better interpret the physics,

we divide waveform amplitude kernels into real and imaginary parts. Then, in

chapter 5, we propose a general coherent and eikonal state structure in Minkowski,

dictated by classical factorisation. This will allow us to discover an infinity of

classical relations and factorisation properties between amplitudes. Finally, we

conclude in chapter 6.

1.0.2 Miscellaneous conventions

Before moving onto a more technical overview, we find it useful to outline below

few conventions.

Throughout the rest of this thesis we write covariant vectors as xµ = (x0, xi) =

(t,x) and work with mostly minus signature (+1,−1,−1,−1), or (+1,+1,−1,−1)

in the split signature chapter. Fourier transforms are defined by

f(x) =

∫
dnq

(2π)n
e−iq·xf̃(q), f̃(q) =

∫
dnx eiq·xf(x), (1.1)

and we will consistently hide powers of 2π via

d̂nq ≡ dnq

(2π)n
, δ̂(n)(q) ≡ (2π)nδ(n)(q). (1.2)

Furthermore, we find it convenient to define Lorentz invariant phase space delta

functions and measures through

δΦ(p1 − p2) ≡ 2Ep1 δ̂
(3)(p1 − p2), dΦ(p) ≡ d̂4p δ̂(p2 −m2)Θ(p0), (1.3)

with Ep =
√

p2 +m2. For the states we take

|p⟩ ≡ a†(p)|0⟩, [a(p1), a
†(p2)] = δΦ(p1 − p2), (1.4)
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we indicate tensor products as

|p1, p2 · · · pn⟩ ≡ |p1⟩ ⊗ |p2⟩ ⊗ · · · |pn⟩, (1.5)

and products of measures similarly

dΦ(p1, p2 · · · pn) ≡ dΦ(p1)dΦ(p2) · · · dΦ(pn). (1.6)

We set c = 1 but keep ℏ ̸= 1 unless otherwise stated. We also choose ϵ0123 = 1.

For a given tensor we (anti)symmetrize without normalising

u(µvν) ≡ uµvν + uνvµ, u[µvν] ≡ uµvν − uνvµ, (1.7)

and so on for higher ranks. Finally, this is our choice of phase for the sum over

diagrams

iAmplitude δ̂(4)(ptot) =
∑

Feynman diagrams. (1.8)

In gravity we take the coupling to be κ =
√
32πG. Another choice of convention

we adopt is to take incoming momenta of initial states to be ingoing and final

momenta to be outgoing. Thus

pµtot =
∑
n∈ in

pµn −
∑

m∈ out

pµm = 0. (1.9)

Split signature spinor conventions are given their own section in the appendix

A.1.
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Chapter 2

Overview of preliminary topics

In this chapter we gather some of the necessary existing knowledge that will be

needed for the research presented here. As we outlined, our original work builds

upon few important elements: the KMOC formalism, the double copy, waveforms

and coherent states. Let us discuss these starting from the KMOC framework.

2.1 KMOC: Observables from Amplitudes

The KMOC formalism [49] is a framework for extracting classical observables

from quantum-mechanical amplitudes. The core intuition of the authors was to

exploit the correspondence principle: any classical observable can be seen as some

classical limit of a quantum expectation value. We will better explain what we

mean by “classical limit” soon, but for now the reader can think of it as a ℏ → 0

limit. Obviously, not every quantum matrix element is well behaved classically,

so we will have to understand what exactly characterises ℏ → 0.

To this end, we find it illuminating to present the KMOC framework through a

textbook example: relativistic Rutherford scattering in classical electrodynamics.

Let us then begin from the classical side of the story. Here, the two scattering

particles are scalars with charges Q1, Q2 and masses m1, m2. Furthermore, we

take the two bodies to be initially well separated by a space-like vector bµ. After

the particles have interacted, one finds that the bodies (without loss of generality

we focus on particle one) will come out deflected by a certain amount. This
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deflection can be computed perturbatively1 at each order in the coupling. For

instance, one straightforward way to do this is to solve the Maxwell equations of

motion

m1
dpµ1
dτ

= Q1F
µν
12 (x)p1ν (2.1)

iteratively. Above, the Lorentz force field strength F µν
12 is sourced by particle

“two” and causes the other one to deviate. In the end one finds that the four-

momentum changes by the following amount, [49]

∆pµ1 = pµ1,out − pµ1,in =
Q1Q2

2π

γ√
1− γ2

bµ

−b2
+O((Q1Q2)

2). (2.2)

Above, γ−1 =
√

1− β2 is the usual Lorentz factor, β = |v| is the relative velocity
and ∆pµ2 = −∆pµ1 in the COM frame.

At this point our goal is to reproduce (2.2) using quantum amplitudes and

the correspondence principle. First of all, it is somewhat intuitively clear that

amplitudes (or some limit of them) could be used to solve the equations of motion.

In fact, these entail quantum-mechanical evolution through the unitary S-matrix

operator S = 1 + iT

iA(p1 · · · pm → p′1 · · · p′n)δ̂(4)(p1+ · · ·+pm−p′1−· · ·−p′n) = ⟨p′1 · · · p′n|iT |p1 · · · pm⟩.
(2.3)

For Rutherford scattering specifically, we will have to focus on 2 → 2

scattering (as will be clear soon). This is actually a general property of

conservative processes. Indeed, later we will see how radiative observables need

2 → 3 amplitudes: different phenomena may (in principle) require different

multiplicities.

Subsequently, we have to choose a way to model classical point particles. We do

so by employing a 2-particle tensor state. This reads in Fourier space

|ψ⟩ =
∫

dΦ(p1, p2)ϕb(p1, p2)|p1, p2⟩, (2.4)

specifying the initial state of the system in the Heisenberg picture. Here, |p1, p2⟩
are plane wave momentum eigenstates and ϕb is the wavefunction of the system.

The latter deserves some scrutiny.

1Actually, if we neglect radiation, this problem can be solved analytically to all orders [100]
but for the purposes of our narrative we want to think of it in terms of a perturbative expansion.
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Given our goal to set up a scattering problem which well describes a classical one,

it is clear that we have to make some appropriate assumptions on the wavepackets.

We can begin by taking the two particles to be separated at past infinity by an

impact parameter bµ. We then write

ϕb(p1, p2) = ϕ1(p1)ϕ2(p2)e
ib·p1

ℏ = ϕ(p1, p2)e
ib·p1

ℏ ,

∫
dΦ(pi)|ϕi(pi)|2 = 1, (2.5)

where the second equation is a normalization condition. For what we are

concerned with, the distance b =
√
−bµbµ is typically very large although this

is not the only length at play. In fact, there are two more scales: the Compton

length λc and the characteristic spread of the wavefunction lw. In [49] it was

argued that if the following set of “Goldilocks” inequalities are satisfied

λc ≪ lw ≪
√
−b2, (2.6)

then one expects that matrix elements taken on the state (2.4) will exhibit

classical behavior. Let us interpret such conditions. The first inequality λc ≪ lw

tells us that the wavepacket widths are such that the point particle description

is valid: ϕi(pi) is a wavefunction peaked around the classical value of momenta

pµ ≈ muµ, where uµ is a four velocity. The second one lw ≪
√
−b2 guarantees

that the wavefunctions are initially distant enough such that no overlap occurs

(which is what we look for in long range scattering). Finally λc ≪
√
−b2

is best interpreted in terms of the classical radius of the particle, which in

electrodynamics and gravity are, respectively

rs =

(
Q2

4πm
, 2Gm

)
. (2.7)

Thus the final inequality determines that the following parameters are small

Q2

4πmb
,

2Gm

b
, (2.8)

which renders amplitudes good tools for computing observables in a series of

powers of (2.8). This perturbation scheme is known as “Post-Minkowskian” (PM)

approximation, and it is a weak field framework whose zeroth order corresponds

to special relativity. We showed that the third goldilock inequality implies good

behaviour (convergence) of the PM perturbation series. Although beyond the

scope of this thesis, it would be certainly interesting to study what happens

when we relax the other two inequalities while keeping this last one to hold.
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λc

lw

λc

lw

√
−b2

Figure 2.1 A pictorial representation of the Goldilocks inequalities (2.6).

It is important to stress that other computational frameworks are available in

classical GR. For instance, another very powerful method is the “Post-Newtonian”

(PN) expansion. There, the fields can be strong but velocities are small and one

expands in powers of v/c ∼ GM/(rc2) ≪ 1. However, this is not unrelated to

the PM framework: each relativistic PM expression can always be re-expanded

for small velocities and compared to its analogue PN one.

Let us go back to the momentum deflection observable. With these assumptions

of classicality in mind, we can proceed to set up the observable ∆pµ as a matrix

element. We can write this quantum mechanically as the difference between the

time-evolved momentum operator of particle one (subtracted by its initial value)

taken on the state (2.4)

∆pµ1 = ⟨ψ|S†P µ
1 S|ψ⟩ − ⟨ψ|P µ

1 |ψ⟩. (2.9)

Here the momentum operator of particle one is defined as usual through its action

on momentum states

P µ
1 |p1, p2⟩ = pµ1 |p1, p2⟩. (2.10)

Next we can be further rewrite (2.9) using S = 1 + iT , so

∆pµ1 = ⟨ψ|[P µ
1 , iT ]|ψ⟩+ ⟨ψ|T †P µ

1 T |ψ⟩ ≈ ⟨ψ|[P µ
1 , iT ]|ψ⟩. (2.11)

Where for now we are working at first order in T (leading order in perturbation

theory), although we will be back to O(T †T ) corrections later. Now, plugging in
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the formulae for the initial states we obtain

∆pµ1 =

∫
dΦ(p1, p2, p

′
1,p

′
2)ϕ(p1, p2)ϕ

∗(p′1, p
′
2)e

ib·(p1−p′1)/ℏ(p1 − p′1)
µ

× δ̂(4)(p1 + p2 − p′1 − p′2)A(p1, p2 → p′1, p
′
2),

(2.12)

where we have expanded the modes of ⟨ψ| with primed variables and the modes

of the ket with unprimed ones. To further simplify our expression we introduce

a change of variables, and write primed variables in terms of a massless mode

mismatch qi:

p′i = pi + qi. (2.13)

Which in turns allows us to rewrite the two of the phase space measures as qi

integrals

dΦ(pi + qi) = d̂4qi δ̂(2pi · qi + q21)Θ(p01 + q0i ), (2.14)

with the four-fold momentum conservation delta simply enforcing qµ1 + qµ2 = 0.

In order to proceed, we have to now re-introduce powers of ℏ. These can enter in

two ways: in the couplings which must be rescaled by g → g/
√
ℏ and in massless

momenta. These are to be interpreted classically in terms of wavelength vectors

times ℏ: qµ → ℏq̄µ. After doing so, we have to perform a Laurent series as ℏ → 0.

With this in mind, we can carry out few simplifications in (2.12)

∆pµ1 = ℏ3
∫

dΦ(p1, p2)ϕ(p1, p2)ϕ
∗(p1 + ℏq̄1, p2 + ℏq̄2)

×
∫

d̂4q̄1d̂
4q̄2δ̂(2p1 · q̄1 + ℏq̄21)δ̂(2p2 · q̄2 + ℏq̄22)e−ib·q̄1

× q̄µ1A(p1, p2 → p1 + ℏq̄1, p2 + ℏq̄2)δ̂(4)(q̄1 + q̄2)

≈ ℏ3
∫

dΦ(p1, p2)|ϕ(p1, p2)|2
∫

d̂4q̄1d̂
4q̄2δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)e−ib·q̄1

× q̄µ1A(p1, p2 → p1 + ℏq̄1, p2 + ℏq̄2)δ̂(4)(q̄1 + q̄2),

(2.15)

where in the second equality we have approximated ϕ(pi + ℏq̄i) ≈ ϕ(pi) and

dropped q-corrections inside on-shell measures

δ̂(2pi · q̄i + ℏq̄2i )Θ(p0i + ℏq̄0i ) ≈ δ̂(2pi · q̄i)Θ(p0i ). (2.16)

10



In the future, it will be convenient to employ the following piece of notation〈〈
f(p1, p2)

〉〉
≡
∫

dΦ(p1, p2)|ϕ(p1, p2)|2f(p1, p2), (2.17)

which indicates an on-shell average over initial states.

Note that at this stage (2.15) is a very general expression which can be used to

compute deflections of any theory, depending on what amplitude is inserted. Then

let us specialise to quantum scalar electrodynamics, this is the theory needed to

reproduce Rutherford scattering of spinless particles. In our case the four-point

amplitude is obtained from the Feynman rules of scalar QED with Lagrangian

L = −1

4
F µνFµν +

∑
i=1,2

(
Dµ

i Φ
†
iDiµΦi −miΦ

†
iΦi

)
, Dµ

i = ∂µ + iQiA
µ, (2.18)

which gives the tree level amplitude

iA(p1, p2 → p1 + ℏq̄1, p2 + ℏq̄2) = i
Q1Q2

ℏ
4p1 · p2 + ℏ2q̄21

ℏ2q̄21
. (2.19)

The expression above makes us already appreciate how amplitudes generally have

a non-homogeneus dependence on ℏ. This means that care must be taken in

Laurent expanding these expressions. We observe now that the leading piece in

ℏ above exactly cancels the prefactor in equation (2.15)! We get, integrating out

the momentum conserving delta by setting qµ1 = qµ = −qµ2

∆pµ1 =

〈〈∫
d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄)e−ib·q̄iQ1Q2

4p1 · p2
q̄2

q̄µ
〉〉
. (2.20)

At this point the wavefunction average can be carried out. As it is expected when

the wavepackets are well peaked around their classical value, this average simply

sets the values of massive momenta to be

pµi = miu
µ
i , (2.21)

where ui is a timelike four velocity vector. We finally obtain

∆pµ1 = iQ1Q2

∫
d̂4q̄ δ̂(u1 · q̄)δ̂(u2 · q̄)e−ib·q̄u1 · u2

q̄2
q̄µ, (2.22)

telling us that the deflection experienced by the particle is a Fourier transform

(constrained to the plane of scattering by delta functions) in impact parameter

11



space of the t-channel pole 1/q2. To this end, let us observe an important point

which will be used profusely in later chapters: in (2.19) we have neglected the

quantum contribution A ∼ (q2)0, which is also an analytic contact term. This is

intuitive: we do not expect such contributions to enter long range interactions.

Even more, had we kept this term we would have gotten, from performing

the Fourier transform, a contribution which is local in position space ∼ δ2(b).

However, the impact parameter is not zero by definition so this term integrate to

zero from having no support.

Finally, to show the equivalence between (2.22) and (2.2) we need to perform the

q̄ integral, this is easily done in a frame where

uµ1 = γ(1, 0, 0, β), uµ2 = (1, 0, 0, 0), (2.23)

one finds [49]

∆pµ1 =
iQ1Q2

βγ

∫
d̂2q̄ eib·q̄

γ

−q̄2
(0, q̄x, q̄y, 0) =

Q1Q2

2π

γ√
γ2 − 1

b̂

b2
, (2.24)

which is indeed (2.2) (recall that βγ =
√
γ2 − 1). We give below a graphical

description of the scattering process

b

θ
p1

p1
′

p2

p2
′

∆p

θ

θ

p′

p

b

π
2
− θ

Figure 2.2 Particle scattering in the center of mass.

Note that the scattering angle is readily derived from the knowledge of ∆pµ from

contracting with b. The geometry is such that one has

sin
θ

2
=

|∆p1|
2|p1|

=
−∆p1 · b̂

2m1

√
γ2 − 1

. (2.25)
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We believe this derivation efficiently shows how amplitudes nicely pack classical

data and how to extract it. Even though we illustrated how KMOC works through

a specific example, it will soon be clear that the steps we took can be adapted to

a great number of phenomena and to different theories. For instance, we will soon

see how classical radiation can be computed in the next sections. The algorithm

for computing observables will always be the same: we express an observable

as an quantum expectation value on the states (2.4), and then we consider its

classical limit reinstating powers of ℏ. Of course, different technical challenges

may arise in each situations and will have to be tackled accordingly.

One obvious difficulty will be presented by loops, which arise at higher order

computations. Indeed, perturbation theory in the sense of the PM expansion of

(2.8) corresponds precisely to taking into account classical loops. Curiously, it is

often believed that loops in QFT are always quantum but this is incorrect [101].

As we will see in the main body of this work, having massive propagators inside

loops has the effect of generating classical non-linear contributions.

To this end, let us then investigate the structure of the next-to-leading (NLO)

momentum deflection. In fact, above in (2.11) we neglected the O(T †T ) cut term,

but what happens if we keep this in? As such, at one loop both contributions to

(2.11) will be needed: one is a linear in T and another one involves the product

T †T . The linear one-loop term will simply be

∆pµ1 → Iµ(1)

= ℏ3
〈〈∫

d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄)e−ib·q̄ q̄µA1Loop(p1, p2 → p1 + ℏq̄, p2 − ℏq̄)
〉〉
,

(2.26)

where A1Loop is the classical one loop amplitude. However, now we have an

additional contribution which happens to be a cut of a one-loop amplitude, or an

integral of two tree-level amplitudes weighted by on-shell delta functions. This

is treated in the same manner of the first term, except that we have to insert a

13



complete set of states to resolve the cut. One arrives at

∆pµ1 → Iµ(2) = ⟨ψ|T †P µ
1 T |ψ⟩ =

∑
X

∫
dΦ(p̃1, p̃2)⟨ψ|T †P µ

1 |p̃1, p̃2, X⟩⟨p̃1, p̃2, X|T |ψ⟩

≈ −iℏ5
〈〈∫

d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄)e−ib·q̄
∫

d̂4ℓ̄ δ̂(2p1 · ℓ̄)δ̂(2p2 · ℓ̄)ℓ̄µ

×Atree(p1, p2 → p1 + ℏℓ̄, p2 − ℏℓ̄)Atree(p1 + ℏℓ̄, p2 − ℏℓ̄→ p1 + ℏq̄, p2 − ℏq̄)
〉〉
,

(2.27)

having neglected the quantum corrections inside δ̂(pi · ℓ̄). These cuts come from

the intermediate on-shell states, which we have expanded in a similar fashion to

what was done in (2.13) as p̃i = pi + ℏℓ̄. We note that above, X is a set of states

(both a discrete or continuum) that can in principle run inside the cut. At this

order, the only term which survives in the completeness relation is the one which

generates the product of tree amplitudes above. Meaning that we have really

used

1 ≈
∫

dΦ(p̃1, p̃2)|p̃1, p̃2⟩⟨p̃1, p̃2|. (2.28)

Thus, we have learnt that at one loop ∆p is composed of a “pure” one-loop

amplitude part subtracted by a cut. This is indeed a very general structure of

any higher order observable and it will be investigated, in two different ways,

throughout chapter 4 and 5. In the latter, we will also interpret these cuts in

terms of dissipative forces and momentum conservation. Furthermore, in chapter

5 we will derive the NLO deflection Iµ(1) + Iµ(2) for classical Einstein gravity, and

in chapter 4 for electrodynamics.

Let us comment on a few more things. As we explained loops introduce further

difficulties, amongst the most obvious ones are the actual extraction of the one

loop classical amplitude and its loop integration. Typically, these steps are

tackled with modern QFT and amplitude technology: IBP identities, dimensional

regularization, on-shell techniques, unitarity and double copy (if doing gravity).

But there is another subtlety which comes up. In contrast to the tree level

computation, at one loop one finds that the leading ℏ behaviour of the observable

is not classical, but is proportional to a singular term ℏ−1 [5, 49]. Similarly, at two

loops one encounters both ℏ−2 and ℏ−1 singularities, and so on at higher orders.

These terms have to cancel in the physical observable and are usually referred to as

“superclassical” terms. Currently, there is no formal proof that these singularities

vanish at all orders, although it has been verified in each occasion. Efficient
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treatment of superclassical terms is in fact an important aspect, which we deal

with in both chapters 4 and 5.

2.2 A Practical Double Copy Interlude

In this section we want to describe how gravity can be studied using amplitudes

and the double copy. The double copy is a correspondence between gravity and

gauge theory, proposed in [94, 102] but which first appeared in the stringy tree-

level incarnation of [93]. This is a perturbative duality which relates “squares” of

YM amplitudes to gravity ones. In its most common form, the BCJ double copy

starts from considering an n-point L-loop YM amplitude An,L and writing it as

a sum over cubic diagrams

iAn,L = iL+1gn−2+2L
∑
i∈Γ

∫ L∏
j=1

d̂4ℓj
nici
di

. (2.29)

In this formula, the denominators di contain all relevant products of propagators

at each order, and the ni are (gauge dependent) kinematic factors associated with

the i-th graph. These can be Lorentz invariant products of polarization tensors,

loop and external momenta. Finally, ci are colour factors dressing each vertex

with products of Lie group structure constants. BCJ duality (or color-kinematics

duality) conjectures that for each color Jacobi identity obeyed by ci, there exists

at least one set of kinematic numerators ni that satisfies the same relation. For

instance if cα ± cβ ± cγ = 0, exploiting gauge redundancy, we can always find

numerators such that nα ± nβ ± nγ = 0. Needless to say, the BCJ choice of ni

numerators is not always manifest nor easy to find, but once implemented the

double copy states that

iMn,L = −iL+1
(κ
2

)n−2+2L∑
i∈Γ

∫ L∏
j=1

d̂4ℓj
niñi

di
, (2.30)

is an n-point L-loop gravity amplitude with κ =
√
32πG, and graviton field

hµν defined by 2 gµν = ηµν + κhµν . In the above expression ñi may be

a distinct set of YM-numerators satisfying colour-kinematics duality. The

choice of n and ñ determines the resulting gravity theory. For instance if

2One can choose different parametrizations, for instance one can decide to expand around
flat space not gµν but

√
−ggµν , in this thesis we stick with the first choice.
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both numerators correspond to pure non-supersymmetric Yang-Mills (YM),

the theory yielding amplitudes (2.30) is general relativity coupled to a 2-form

field and a dilaton. These modes correspond to breaking the tensor product

Aµ ⊗ Ãν = h(µν) ⊕B[µν] ⊕ ϕ into irreps. They are the modes one finds in the low

energy limit of string theory. In fact as already hinted at, at tree level the double

copy can be tracked down to the KLT relations between open and closed strings

[103]. Note that if one is interested in pure Einstein gravity spurious modes have

to be removed, this can be laborious but can be done in different ways [48, 104–

106]. Even so, it is obvious that this remarkable duality brings a great deal of

efficiency and simplifications, since gauge theories are typically much easier to

deal with than gravity ones.

Let us see how the double copy works with another instructive example. We

have just seen how Rutherford scattering is described by (a classical limit of) the

scalar QED amplitude (2.19). Why not obtain Newton scattering in a similar

fashion then? As we will see, this problem will be characterised by a four-point

scalar amplitude, the difference is that the interaction between massive states

will be mediated by a graviton. First, in light of the double copy, it is useful to

rethink the QED amplitude in therms of tree level unitarity. This allows us to

construct amplitudes from knowledge of their lower order sub-amplitudes. In this

case there is only one channel (the t-channel) so we can write

iA(p1, p2 → p1+q, p2−q) =
i

q2

∑
η

A(p1 → p1+q, q
η)A∗(p2 → p2−q, qη). (2.31)

We see that on the RHS we have a product of on-shell three level amplitudes with

a photon emission

iA(p1 → p1 + q, qη) = iQ1(2p1 + q) · εη(q). (2.32)

Is is obvious that (2.31) yields (2.19) after summing over intermediate physical

states using the usual quantum-mechanical completeness relation

∑
η

εµηε
∗ν
η = −

(
ηµν − q(µkν)

q · k
+ q2

kµkν

(k · q)2

)
. (2.33)

Here however, we are entitled to drop any q or k-dependent terms since they

vanish on the support of the integration.

In this tree level example, we can apply a double copy prescription in a

16



very simple, KLT-like, manner without having to consider non-Abelian color

coefficients. Putting aside couplings for now, the double copy dictates squaring

the numerator while leaving the propagator fixed, effectively implying

pi · εη(q̄) → (pi · εη(q̄))2 = eµνη piµpiν , (2.34)

having already discarded the quantum, q dependent, contribution3. The RHS of

the equation above is exactly the three-point scalar-graviton vertex, where gravity

degrees of freedom are simply described by tensoring light polarization vectors

eµνη (q̄) = εµη(q̄)ε
µ
η(q̄). (2.35)

Observe that this is traceless and symmetric due to ε2η = 0. The simple step (2.34),

together with the replacement prescription for the coupling constants [94, 107]

Q→ κ

2
, κ =

√
32πG, (2.36)

allows us to immediately obtain

iM(p1, p2 → p1 + ℏq̄, p2 − ℏq̄) =
(

κ

2
√
ℏ

)2
i

ℏ2q̄2
∑
η

(p1 · εη(q̄))2(p2 · ε∗η(q̄))2

=
κ2

4

i

ℏ3q̄2
p1µp1νp2ρp2σ

∑
η

εµηε
∗ν
η ε

ρ
ηε

∗σ
η ,

(2.37)

being the four point gravitational amplitude of two massive scalars exchanging a

graviton.

3Also note that εµ(q) = εµ(q̄), since polarizations only depend on the direction.
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q1

p1

p2 + q2p1 + q1

p2

Figure 2.3 Cut needed for the calculation of the gravitational deflection ∆p.

In the case under study, we can restrict to Einstein gravity explicitly. Any

spurious dilaton term can be in fact projected out by summing over physical

states only4 (traceless and symmetric). Then, the helicity summation yields the

well known expression of the completeness relation in gravity

∑
η

εµηε
∗ν
η ε

ρ
ηε

∗σ
η =

1

2
(ηµρηνσ + ηµσηνρ − ηµνηρσ) + (q − terms), (2.38)

where we also note that, just like in gauge theory, any gauge dependent q-term

above can be dropped: these will be plugged inside the expression (2.15) and

contracted with at leas one pµ, but pi · q̄ = 0. Thus, the classical piece reads

iM(p1, p2 → p1 + ℏq̄, p2 − ℏq̄) =
κ2

8

i

ℏ3q̄2
(
2(p1 · p2)2 − p21p

2
2

)
, (2.39)

which is all we need to obtain the momentum deflection by black holes scattering

off each other. To this end, one proceeds exactly as in (2.20) and (2.21),

integrating out the wavefunctions to set pµi = miu
µ
i . The interpretation of the

initial wavepacket (2.4) is different here: these now describe black holes in their

point particle approximation. The O(G) momentum deflection formula finally

4Had we simply squared the numerator of (2.19) we would have obtained M ∼ (p1 · p2)2/q2
which includes a spurious dilaton mode. This is subtracted by the last term in (2.38):
−ηµνηρσ/2.
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reads

∆pµ1 =
iκ2m1m2

8

∫
d̂4q̄ δ̂(u1 · q̄)δ̂(u2 · q̄)e−ib·q̄ q̄

µ

q̄2
(2γ2 − 1)

=
κ2m1m2

8

bµ

2πb2
2γ2 − 1√
γ2 − 1

= 2Gm1m2
bµ

b2
2γ2 − 1√
γ2 − 1

.

(2.40)

It is worth commenting on our result. We managed to derive the (relativistically

corrected) Newton momentum deflection starting from just electrodynamics! This

was both fascinating and efficient. In fact, although in this specific tree-level

example Feynman rules wouldn’t have been too bad to deal with, at higher loops

standard diagrammatic methods become soon inefficient. It is here that the

double copy shows its incredible advantage over usual methods. It is however

worth noting that at higher orders the extraction of pure Einstein gravity can

still be trickier. In our example we were able to insert an explicit sum over

physical states, but at higher loops things are more involved. Then, one can

either insert a physical sum, but may encounter many diagrams, or construct BCJ

numerators (as in (2.30)) but may have to subtract spurious states (axions and

dilatons). Although these procedures can be laborious, at higher perturbative

orders the double copy still remains the only way to go in most cases, having

already provided us with many spectacular calculations [108]. This explains why

modern amplitude methods are particularly well suited for GR calculations.

We would like to stress how this surprising squaring algorithm was not only

useful, but also largely unexpected at the level of the Lagrangian. There is

no hint of a spin-2 field in (2.18), nor of this striking correspondence. This is

indeed a general feature of the double copy: its origin at the Lagrangian level

is often quite mysterious. Nonetheless, partial results on its interpretation as a

hidden “kinematic symmetry” of the equation of motions have been investigated

[109, 110] and may soon clarify the physical origin of the duality. On the other

hand this correspondence is usually manifest at the amplitude level. In fact, that

the classical gravity amplitude M ∼ (2γ2 − 1)/q2 is some kinematic square of

A ∼ γ/q2 is very easy to see, at least in this simple case. If one expresses Lorentz

factors using a rapidity variable ϕ we would find5

coshϕ = γ, cosh 2ϕ = 2γ2 − 1. (2.41)

So, the gravity amplitude is obtained by doubling the rapidity variable ϕ → 2ϕ

5Not to be confused with any scalar field!
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which is another instance of the double copy6, first observed in [90, 107].

We will see in all the upcoming chapters how the double copy reverberates in

different forms. For instance in chapter 3 we will study how the simple tree level

amplitudes (2.34) source QED and GR waveforms in split-signature space times.

This analytic continuation is needed because, strictly speaking, three-point tree-

level amplitudes can only be on-shell in Minkowski if they are zero.7 Instead in

chapter 4 we will see how a double copy involving Compton amplitudes describes

radiation reaction and gravitational self force.

However, before we move onto waveforms we would like to give a brief review of

another kind of double copy: the Kerr-Schild (KS) double copy. In contrast to

the BCJ/KLT duality, this double copy is non perturbative (in the sense that the

duality is manifest at all orders in the chare or Newton’s constant), and applies

to purely classical solutions of GR and gauge theory which can be recasted in a

KS form. This was first discovered by Monteiro, White and O’Connell in [95].

As a start, we begin by introducing Kerr-Schild coordinates, which are most often

employed in the context of gravity [111]. There exists a special class of solutions

of the full Einstein field equations (EFE) which admit the following choice of

coordinates

gµν(x) = ηµν + ϕ(x)kµ(x)kν(x), (2.42)

such solutions are referred to as “KS” spacetimes. Above, ϕ and kµ are a space-

time dependent scalar and vector with the crucial properties

kµkνηµν = 0 = kµkνgµν , ηαβk
α∂βkµ = 0. (2.43)

This means that kµ is null and geodesic with respect to the flat space metric,

which is then used to contract indices. These simple but powerful properties

imply that

gµν(x) = ηµν − ϕ(x)kµ(x)kν(x),
√
−g(x) = 1 (2.44)

hold everywhere as exact statements. Another striking consequence of (2.43) is

that KS coordinates linearise Einstein’s field equations fully: the (mixed-index)

Ricci tensor Rµ
ν is linear in the metric hµν . One immediate consequence of this

is that (2.42) is a full solution of the EFE, even if its form is reminiscent of the

6The denominator
√
γ2 − 1 = sinhϕ in the final result is instead coming from a Jacobian

factor in the q integral.
7Another way to get around this issue is to complexify momenta, which we have tacitly done

in (2.31) and (2.37): our three-point subamblitudes would otherwise be trivial.
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one of a perturbation. We can further observe that if we define a vector

Aµ(x) = ϕ(x)kµ(x), (2.45)

then the vacuum EFE imply that Aµ satisfies the YM equations of motion [95].

Doing so allows us to construct a gauge theory for the gauge potential ϕ(x)kµ(x).

For further developments on the KS double copy see [1, 2, 5, 42, 44, 48, 98, 105,

112–173].

In fact, these observations led the authors of [95] to introduce a classical

correspondence relating solutions of the EFE to gauge theory ones, in a

purely classical and nonperturbative fashion. Luckily, many important curved

spacetimes admit a choice of KS coordinates and can indeed be related to YM

accordingly. Among some of them we find Schwarzschild and Kerr-Newmann

metrics, together with different shock-wave and gravitational-wave solutions.

Although this is a duality between gauge theory and gravity, it appears evidently

different from the perturbative one of [94]. However, in chapter 3 we will

show how, following [1], the BCJ and the KS double copy are actually the

same thing! This result is another fascinating consequence of split-signature

spacetimes, together with a suitable choice of boundary conditions.

2.3 Waveforms and Coherent States of Radiation

In this final part of the introduction we present an introduction to two other

cardinal aspects of the thesis: waveforms and coherent states. As we will see,

both these topics play an essential role in classical radiative observables, which

are of particular interest to the field of gravitational waves. As before, we study

them adopting the KMOC formalism. In this case, the observables which compute

radiation are curvature fields [4, 33, 174]. We will then be interested in computing

Maxwell’s tensor (in electrodynamics) and the Riemann curvature (in gravity).

It is useful to understand electrodynamics first, so let us do that. Consider the

second quantized field strength

Fµν(x) = −i
∑
η=±

∫
dΦ(k)ℏ−

3
2

(
aη(k)k

[µεν]η e
−i k·xℏ − a†η(k)k

[µε∗ν]η ei
k·x
ℏ

)
. (2.46)

We want to measure its expectation value in the future assuming the past
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boundary condition

aη(k)|ψ⟩ = 0, (2.47)

i.e. no radiation was present in the far past. Evolving this field operator with

the S-matrix we then obtain

F µν ≡ ⟨ψ|S†FµνS|ψ⟩ = 2Re i⟨ψ|FµνT |ψ⟩+ ⟨ψ|T †FµνT |ψ⟩ . (2.48)

As before, let us work at leading order which allows us to approximate

F µν(x) ≃ 2Re i⟨ψ|Fµν(x)T |ψ⟩. (2.49)

Substituting the initial semiclassical state (2.4), the expectation value becomes

F µν(x) =2ℏ−
3
2 Re

∑
η

∫
dΦ(k) ⟨ψ|aη(k)T |ψ⟩ k[µεν]η e−i k·xℏ

=2ℏ−
3
2 Re

∑
η

∫
dΦ(p′1, p

′
2, p1, p2, k)ϕ

∗(p′1, p2)ϕ(p1, p2) e
−ik·x/ℏei(p1−p′1)·b/ℏ

× ⟨p′1, p′2|aη(k)T |p1, p2⟩ k[µεν]η ,
(2.50)

where we see the appearance of a five-point amplitude with a massless external

state, describing the emission of a photon

⟨p′1, p′2, k|iT |p1, p2⟩ = iA(p1, p2 → p′1, p
′
2, k

η)δ̂(4)(p1 + p2 − p′1 − p′2 − k). (2.51)

Next, we would like to simplify this expression for the field strength in the classical

approximation. We can do this using the same change of variables (2.15)

p′i = pi + qi = pi + ℏq̄i. (2.52)

We note again that the classical approximation is valid when the scales in our

problem satisfy x ≫ lw ≫ λc. This means that when working in Fourier space,

we require that k ≪ 1/lw ≪ m (where k is a massless momentum, sometimes

referred to as “messenger”). It is only when these inequalities are satisfied that

our classical expressions are valid. Thus, we assume that the integrals appearing

in the equation above are defined (e.g. with cutoffs) so that these inequalities are

satisfied. For instance, taking advantage of such an approximation, we can ignore

the shift k in the wave function ϕ(p + q) ≃ ϕ(p), because this shift is small on
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the scale 1/lw of the wave function.

At this point, it is also useful to introduce a wavenumber k̄ associated with the

momentum k by k = ℏk̄. Making use of (2.14) we then have

F µν(x) =2ℏ7/2Re
∑
η

〈〈∫
dΦ(k̄)e−ik̄·x

∫
d̂4q̄1d̂

4q̄2δ̂(2p1 · q1)δ̂(2p2 · q2)e−ib·q̄1

×A(p1, p2 → p1 + ℏq̄1, p2 + ℏq̄2, k̄η) k̄[µεν]η δ̂(4)(q̄1 + q̄2 + k̄)

〉〉
.

(2.53)

This important expression will be useful below and throughout the rest of the

thesis. Let us consider gravity now.

The derivation of the analogous gravity expression for the Riemann tensor follows

in exactly the same manner. This just involves more spacetime indices

Rµνρσ(x) =2ℏ7/2Re
iκ

2

∑
η

〈〈∫
dΦ(k̄)e−ik̄·x

∫
d̂4q̄1d̂

4q̄2δ̂(2p1 · q1)δ̂(2p2 · q2)e−ib·q̄1

×M(p1, p2 → p1 + ℏq̄1, p2 + ℏq̄2, k̄η) k̄[µεν]η k̄[ρεσ]η δ̂(4)(q̄1 + q̄2 + k̄)

〉〉
.

(2.54)

This expression is again obtained by second-quantizing the graviton potential hµν

and by taking its derivatives via

gµν(x) = ηµν + hµν(x), Rµνρσ =
κ

2
(∂σ∂[µhν]ρ − ∂ρ∂[µhν]σ). (2.55)

To be precise, gravitational radiation should be characterised by the components

of the Weyl tensor; this is a version of the Riemann one with traces removed.

However, these two are equal in empty space [175] so we won’t make a

distinction. In fact, one can immediately verify that all the traces vanish in

(2.54). Furthermore, we observe that for all our purposes we can drop any non

linear curvature elements, since the typical distances we are interested in are

astronomical. As a consequence, any Rµνρσ ∼ ΓµνλΓ
λ
ρσ ∼ 1/r2 will always be

suppressed.

A few comments on formulae (2.53) and (2.54) are in order. First of all, their

double copy structure is evident: the gravity curvature field is a tensored square
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of the electrodynamic one [98]. Roughly, the field integral kernels are related by

A k[µεν] → (A k[µεν])⊗2 ∼ (A)2 k[µεν]k[ρεσ] ∼ M k[µεν]k[ρεσ]. (2.56)

Secondly, we see that the leading order amplitude governing the emission of

radiation is a five point amplitude. We will see explicit expressions for these

amplitudes in the chapter 4 at one loop, while the tree-level one were examined

in [33, 48].

Even so, one might still wonder to what extent the five-point A5 is the most

“fundamental” building block which describes radiation. We believe this is not

the case. As such, in (2.34) we already showed how the elementary building

block of the four-point amplitude really was the three-point vertex between two

massive particles and a massless messenger (p · ε)n, n = 1, 2. However, there is

one extra difficulty which prevents us now from pursuing the same logic here.

In our previous ∆pµ examples, the emitted boson εµ(q) was only necessary to

build the four-point amplitude. There, this is eventually “integrated” out in the

sum over states. For this reason, in that case we could think of the three-point

tree-level amplitudes as analytically continued to complex momenta: they could

be taken on-shell without vanishing, yet no external state was complex in the

final expression. Indeed, for the three legs of the p · ε vertex to be all on shell we

have to require

p · k = 0 and k2 = 0. (2.57)

For real kinematics this implies that k0 = 0 and |k| = 0, leaving no space for

invariants in Minkowski spacetime. For this reason, if we considered a single

initial massive particle

|ψ⟩ =
∫

dΦ(p)ϕ(p)|p⟩ (2.58)

sourcing a curvature field, we would find8 the curvature to be linear in the on-

shell vertex p · ε. This quantity would be either zero on-shell, or would describe

complex physical radiation. We will see how this can be avoided by working in

a different signature of spacetime in chapter 3. There, we will consider a metric

of signature ηµν = diag(+1,+1,−1,−1), which we call split signature. Doing

so will allow us to have both on-shell three-point kinematics and real variables.

Importantly, the latter condition guarantees well defined reality conditions of

the radiative observables F µν , Rµνρσ. Again, this is not at all guaranteed if we

8As we will see this is because in this case ⟨ψ|S†FµνS|ψ⟩ ∼ ⟨p′|aT |p⟩ is a three-point
amplitude.
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complexify momenta, thus obscuring the physical picture of the problem.

Let us now move to a final key ingredient to the characterisation of classical

waveforms: coherence [4, 33]. Let us consider EM in this introduction. We want

to compare the field operator Fµν(x) (2.46) to the textbook expression for the

classical Maxwell field strength. The latter reads

F µν
cl (x) = −i

∑
η=±

∫
dΦ(k̄)

(
αη(k̄)k̄

[µεν]η e
−ik̄·x − α†

η(k̄)k̄
[µε∗ν]η eik̄·x

)
, (2.59)

where the αη(k̄) are here simple Fourier modes. What is a straightforward way

to get F µν
cl from its operator cousin? The coherent state defined by

|α⟩ ≡ N−1
α exp

[∑
η

∫
dΦ(k̄)αη(k̄)a

†
η(k̄)

]
|0⟩, (2.60)

is the answer. Here, Nα is a normalization easily computed to be

Nα = exp

[
1

2

∑
η

∫
dΦ(k̄)|αη(k̄)|2

]
. (2.61)

The state (2.60) is such that the following important operator identities are

obeyed

aη(k̄)|α⟩ = αη(k̄)|α⟩, ⟨α|a†η(k̄) = ⟨α|α∗
η(k̄). (2.62)

A simple way to remember these is to think of the action aη|α⟩ as a functional

derivative with respect to the creation operator, and vice-versa. Thanks to these

relations we can elucidate the physical significance of (2.60), which is made clear

by sandwiching Fµν on these states. In fact, a simple application of (2.62) and of

the Baker-Campbell-Hausdorff identity yields the remarkable relations

⟨α|Fµν(x)|α⟩ = F µν
cl (x) +O(ℏ), (2.63)

together with

⟨α|Fµν(x)Fρσ(y)|α⟩ = F µν
cl (x)F

ρσ
cl (y) +O(ℏ). (2.64)

This means that coherent states are the massless equivalents of the semiclassical

KMOC states (2.4)! Here, the function representing the Fourier transform of

the beam of light αη(k̄) plays the role of the wavefunction ϕi(pi). Thus we have

learnt that by summing over an infinite amount of exponentiated light modes
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(each weighted by α(k̄)) we are able to reproduce classical electromagnetic light.

This is the main property of coherent states, first unveiled by Glauber in his

seminal work [176]. Moreover, in the classical limit, coherence further assures us

that products c-numbers commute (see (2.64)), as they should.

In [33] coherent states were first9 used within the KMOC formalism to describe

massless initial states; and it was shown how one is able to rightly reproduce with

them classical light scattering, such as Thomson scattering. In this thesis we will

push this idea even further: we will employ coherent states to describe scattered

radiation of the outgoing state. We will first see this in a split signature scenario

and then in Minkowski space in chapter 5. This will allow us to interpret the

waveforms (2.53) and (2.54) (and the one-loop ones of chapter 4) as an expectation

value of a coherent state whose parameter function is a five (or three) point

amplitude

αη(k̄) ∼ A(p1, p2 → p1 + ℏq̄1, p2 + ℏq̄2, k̄η). (2.65)

Eventually, this will lead to investigate whether the action of the classical S-

matrix fully re-sums itself into a coherent state exponential. To this end, we

will often refer to the coherent state parameter αη(k) as “waveshape”, especially

in chapters 4 and 5. We will also show in chapter 5 how conservative effects

also exponentiate into an eikonal phase, this will be instead characterised by a

four-point amplitude.

Another fascinating aspect we will investigate is what the exponential structure

can tell us about classical amplitudes and the hierarchies among themselves.

Interestingly, we will find that once we assume coherence, the classical factoriza-

tion property (2.64) will yield an infinity of nontrivial factorization relations for

classical amplitudes. For instance, at one loop, having a coherent state predicts

that the five-point one-loop amplitude factorizes into a product of a five-point

and a four-point tree. We will be able to explicitly verify this in two instances,

in both chapters 4 and 5.

Finally let us quickly comment on the gravitational coherent state. This will be

defined analogously and (2.63), (2.64) will hold after changing: Fµν → Rµνρσ and

F µν
cl → Rµνρσ

cl . In gravity we will see that the coherent state parameter will be

specified by the gravitational five-point amplitude

αη(k̄) ∼ M(p1, p2 → p1 + ℏq̄1, p2 + ℏq̄2, k̄η), (2.66)

9Here we are interested in coherent states of radiation, but these can also be employed to
describe classical color particles [20] and classical high-spin states [51].

26



with an on-shell graviton state. The classical limit of this tree-level amplitude

was first computed in [48], so we will investigate its structure at NLO in chapter

4.
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Chapter 3

Split Signature Solutions and the

Double Copy

3.1 Introduction

Three-point scattering amplitudes are the building blocks in our modern approach

to computing interactions between particles in quantum field theory. Using

BCFW [91] and generalised unitarity [88, 89], it is possible to construct the

complete S-matrix for Yang-Mills theory and (up to ultraviolet divergences) for

general relativity from their respective three-point amplitudes. These amplitudes

are gauge invariant and beautifully simple objects, completely specified by the

helicities of the massless gluons and gravitons [177]. This basic simplicity carries

over to the case of massive particles, for any spin [178]. But in spite of all these

virtues, three-point amplitudes have a peculiarity: they do not exist in Minkowski

space. As for any n-point amplitude, the external particles involved in a three-

point amplitude must all be on shell. But there is no solution to the on-shell

conditions in Minkowski space for three particles with different momenta (which

are not complex).

It should be evident by now that the tools of quantum field theory have deep

implications for classical physics. Certain amplitudes are closely connected with

specific classical concepts: for example, the four-point amplitude between massive

particles in gravity is closely related to the classical potential [179, 180]. But the

three-point amplitude has so far received no classical interpretation, because it is
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not present in Minkowski space.

Of course, the fact that the three-point amplitude vanishes in Minkowski space

is no obstacle for the programme of determining more complicated amplitudes.

BCFW taught us a simple trick: we analytically continue the momenta so that the

on-shell conditions do have a solution. We can take the momenta to be complex-

valued, or else continue to a spacetime with metric signature (+,+,−,−).1 This

second option has some conceptual virtues: we can choose real momenta and

polarisation vectors; the spinor variables we frequently use exist and are real; the

chirality properties in a four-dimensional manifold with this split signature mean

that the two types of spinors are independent.

Another virtue of a real spacetime with signature (+,+,−,−) is that real classical

equations exist in this spacetime and their solutions can be studied. In this

chapter, we find a classical interpretation for the three-point amplitude in a split-

signature spacetime: it computes the Newman-Penrose scalars [97] (a spinorial

version of the curvature of the field) for the classical solution that is generated by

the massive particle in the amplitude. For example, the three-point amplitude

between a massive scalar and a gauge boson computes the electromagnetic

field strength of a static point charge in split signature. In gravity, the three-

point amplitude between a massive scalar and a graviton computes the Weyl

spinor of the split-signature analogue of the Schwarzschild solution. Solutions

in split signature which are determined by three-point amplitudes are, from the

perspective of scattering amplitudes, the simplest non-trivial classical solutions.

The Newman-Penrose (NP) formalism can be illuminated by taking a spinorial

approach to field theory. The Lorentz group in split signature is locally isomorphic

to SL(2,R) × SL(2,R), and the spinorial representations of SO(2, 2) are the

(real) two-dimensional fundamental representations of each SL(2,R) factor. In

electrodynamics, for example, we can pass from the tensorial field strength Fµν(x)

to a spinorial equivalent known as the Maxwell spinor ϕαβ(x). This is obtained

by contracting the Lorentz indices of Fµν(x) with matrices σµν
αβ which are

proportional to the Lorentz generators in the spinor representation (that is, the

σµν
αβ generate one of the SL(2,R) subgroups of the Lorentz group). We have

ϕαβ(x) = σµν
αβFµν(x) . (3.1)

In split signature, the Maxwell spinor is a real quantity, symmetric in its

1In our conventions, the (+)-directions are timelike and the (−)-directions are spacelike.
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spinor indices. There is a second Maxwell spinor associated with the spinor

representation of the other chirality:

ϕ̃α̇β̇(x) = σ̃µν
α̇β̇Fµν(x) , (3.2)

where σ̃µν
α̇β̇ are again proportional to the Lorentz generators, but now of the

other “antichiral” SL(2,R) subgroup.

To obtain Newman-Penrose scalars, we expand the Maxwell spinor (and its

antichiral friend) on a basis of spinors. Let us consider the Maxwell spinor due

to some localised source, such as a point-like charge. Solving the field equations

with a retarded boundary condition, we can introduce spinors at any spacetime

point by taking the light-cone direction k from the charge to the point. Using the

notation of spinor-helicity, the vector k is also the bispinor |k⟩[k|. To complete

the basis of (chiral) spinors, we choose another spinor |n⟩. Now we may write out

the Maxwell spinor in this basis:2

ϕαβ(x) = ϕ0(x)|n⟩α|n⟩β − ϕ1(x)|k⟩(α|n⟩β) + ϕ2(x)|k⟩α|k⟩β . (3.3)

The three scalar fields ϕi(x) are Newman-Penrose scalars. There are three more

NP scalars in the antichiral field strength: these are the six different components

of the field strength. In split signature, all the quantities in (3.3) are real, and

the chiral quantities are independent from the antichiral ones.

In gravity, the story is very similar. We pass from the Weyl curvature Wµνρσ(x)

(via a frame) to a Weyl spinor Ψαβγδ(x), which is real and completely symmetric

in its four spinor indices. Expanding the Weyl spinor on our basis of spinors, we

encounter five real NP scalars, namely

Ψαβγδ(x) = Ψ0(x)|n⟩α|n⟩β|n⟩γ|n⟩δ −
1

6
Ψ1(x)|k⟩(α|n⟩β|n⟩γ|n⟩δ)

+
1

4
Ψ2(x)|k⟩(α|k⟩β|n⟩γ|n⟩δ) −

1

6
Ψ3(x)|k⟩(α|k⟩β|k⟩γ|n⟩δ)

+Ψ4(x)|k⟩α|k⟩β|k⟩γ|k⟩δ .

(3.4)

Together with their compatriots in the antichiral Weyl spinor Ψ̃, these are the

ten real components of the Weyl tensor.

In Minkowski space, the NP scalars have an important property known as peeling

2Details of our notation can be found in appendix A.1. For later convenience, our
(anti)symmetrisation symbols do not include the 1/n! factor.
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[97, 181]. This is a hierarchy in their fall-off with large distance r between the

observer and the localised source. In electrodynamics, we have

ϕ0(x) = ϕ1
0(x̄)

1

r3
+O(1/r4) ,

ϕ1(x) = ϕ1
1(x̄)

1

r2
+O(1/r3) ,

ϕ2(x) = ϕ1
2(x̄)

1

r1
+O(1/r2) ,

(3.5)

where x̄ denotes non-radial dependence. Thus, the scalar ϕ2(x) is the dominant

component of the field at large distances: it describes the asymptotic radiation

field. Meanwhile, ϕ1(x) is Coulombic. In gravity, the situation is very similar:

Ψ0(x) = Ψ1
0(x̄)

1

r5
+O(1/r6) ,

Ψ1(x) = Ψ1
1(x̄)

1

r4
+O(1/r5) ,

Ψ2(x) = Ψ1
2(x̄)

1

r3
+O(1/r4) ,

Ψ3(x) = Ψ1
3(x̄)

1

r2
+O(1/r3) ,

Ψ4(x) = Ψ1
4(x̄)

1

r1
+O(1/r2) .

(3.6)

Asymptotic gravitational radiation is described by Ψ4(x), while Ψ2(x) describes

a potential-type contribution, as in Schwarzschild. We will see aspects of this

structure in our split-signature examples.

The double copy relation between scattering amplitudes in gravity and in Yang-

Mills theory [94, 102, 103, 182] is quite a surprise from the classical geometric

perspective on general relativity: geometrically, there seems to be little hint that

gravity is some kind of “square” of Yang-Mills theory. In recent years, it has been

clear that some aspects of gravity are analogues of aspects of gauge theory (or,

in simple settings, of electrodynamics), and the application of the double copy to

classical solutions in recent years has provided a unified understanding to several

such analogies [42, 44, 48, 95, 98, 105, 110, 112–124, 126–131, 138, 139, 143–

145, 147, 148, 151–156, 165, 168, 169, 183–188]. For instance, the structure

of the gravitational Newman-Penrose scalars is evidently analogous to that of

the electromagnetic NP scalars. This is particularly clear for special classes

of solutions, such as the Petrov type N class, which has only Ψ4 ̸= 0 for an
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appropriate choice of spinor basis. Then the Weyl spinor is simply

Ψαβγδ(x) = Ψ4(x)|k⟩α|k⟩β|k⟩γ|k⟩δ . (3.7)

In electrodynamics, we can consider a similar situation where the Maxwell spinor

is simply

ϕαβ(x) = ϕ2(x)|k⟩α|k⟩β . (3.8)

Roughly speaking, type N spacetimes look like two copies of purely radiative

electromagnetic solutions. A more careful analysis led to a sharp proposal of an

exact “Weyl” double copy for special classes of solutions [98], where the Maxwell

and Weyl spinors are related by

Ψαβγδ(x) =
1

S(x)
ϕ(αβ(x)ϕγδ)(x) . (3.9)

Here, S(x) is a scalar field satisfying the (flat space) wave equation. The proposal

was first proven for vacuum solutions of type D, which have only Ψ2 ̸= 0, but has

also been studied for vacuum solutions of type N [128]; see [129] for the relation

to the twistor correspondence in the linearised case. In split signature, we will

show that the double copy relation between the three-point amplitudes in gauge

theory and gravity directly relates the Newman-Penrose scalars of the Coulomb

charge and the Schwarzschild solution at linearised level. This relation between

the Newman-Penrose scalars in gauge theory and gravity is directly expressed in

the on-shell momentum space formalism of [49], but the translation to position

space for these particular solutions precisely reproduces the Weyl double copy

(3.9).

At the quantum level, it is natural to expect that the Coulomb field or the

Schwarzschild field should be described by a coherent state. For instance, in the

Schwarzschild case, the metric would be given by the expectation value of the

all-order metric quantum operator on the coherent state (this operator would

include all higher-order perturbative terms). We show that the coherent state

is uniquely described by the relevant three-point amplitude. This is a gauge-

invariant characterisation of the classical field. Thus, both the field strengths and

the coherent state are determined by the same data. This is satisfying: classically,

knowledge of the field strength is complete knowledge of the field, so it should

be that one can determine the coherent state from the field strength. Indeed,

this is the case. The structure of the coherent state we encounter is strongly

reminiscent of the eikonal exponentiation which is receiving renewed attention in

32



the context of the dialog between scattering amplitudes and classical physics. It

is exactly this structure which will be presented in the final chapter of the thesis,

this time in Minkowski space. From this point of view then, split signatures act

as a guiding compass eventually yielding to a Minkowski generalisation.

Our results concerning the classical double copy have direct implications for

Lorentzian signature. Indeed, as we will see, the Newman-Penrose scalars we

construct have a close Lorentzian analogue. The Coulombic ϕ1(x) and the

Schwarzschild-like Ψ2(x) that we compute from our coherent states in split

signature are essentially trivial analytic continuations of their Minkowski-space

counterparts.

The double copy between Coulomb and Schwarzschild is expected to be exact, but

our methods based on amplitudes are perturbative. To go beyond perturbation

theory, we use the Kerr-Schild double copy [95] to find the exact classical metric

set up by our static particle, subject to the precise boundary conditions we impose

in split signature. We believe that this example is the first time that the double

copy has been used to find a novel exact solution in gravity. While we could in

principle obtain the exact solution using purely gravitational methods, some care

would be required to ensure that the correct boundary conditions are imposed

at non-linear level. Using the Kerr-Schild double copy, the boundary conditions

in gravity are trivially imported from those of the ‘single copy’ gauge theory

solution.

In the final part of the chapter, we will present a more general double copy and

coherent state to source solutions which correspond to NS-NS gravity. This is a

classical N = 0 supergravity solution of the EFE involving dilaton and axions.

We will find that simple QED amplitudes will not be enough to source such

extra field, thus naturally leading us to the inclusion of extra couplings: spin and

magnetic charge.

This part of the thesis is organised as follows. In section 3.2, we explain how to

compute electromagnetic and gravitational field strengths using the methods of

quantum field theory, making direct contact with three-point amplitudes. We

also discuss the corresponding coherent states. We point out a double copy

between the Maxwell and Weyl spinors in momentum space, induced directly

by the corresponding amplitudes. Building on this observation in section 3.3, we

determine the nature of the double copy in position space by performing integrals

over on-shell momentum space. We recover the Weyl double copy, thereby directly
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connecting the Weyl form of the classical double copy to scattering amplitudes. In

section 3.4, we use a Kerr-Schild Ansatz to determine the exact spacetime metric

in the gravitational context. The implications of our split-signature results for

Minkowski space are described in section 3.5. An extended “mixed” double copy

is then described in 3.6, showing how classical gravity solutions involving dilatons

and axions can also be characterised by simple three-point amplitudes. Finally,

the discussion contains a summary of our results with an overview of some of

their implications. We provide a detailed exposition of our choice of retarded

Green’s function for split signature in the appendix, together with a brief recap

of Riemann-Cartan gravity.

3.2 Classical Solutions from Three-Point

Amplitudes

To connect three-point amplitudes to Newman-Penrose scalars, all that is needed

is a direct computation using the methods of quantum field theory. The first

order of business, then, is to define the quantum fields we use in split signature.

In the following chapter we stick to D = 4 since spinor variables are not so easy

to extend to arbitrary dimensions, it would be certainly fascinating to explore

our results in higher D.

Given that our spacetime has two time directions, which we will denote as t1 and

t2, there are two notions of energy. Correspondingly, the choice of vacuum is not

unique. Much of the interesting physics we exploit actually arises from this non-

uniqueness. For our force-carrying “messenger” particles (photons or gravitons),

we impose the condition that the fields are in a vacuum state for t1 → −∞. The

corresponding mode expansion of the field operator in the electromagnetic case

is then3

A
µ(x) =

∑
η=±

∫
dΦ(k) ℏ−

1
2

(
aη(k)ε

µ
η(k)e

−i k·xℏ + a†η(k)ε
µ
η(k)e

i k·xℏ

)
, (3.10)

where the position and momentum are given by x = (t1, t2,x) and k = (E1, E2,k),

3The notation is that (aη(k))
† ≡ a†η(k). Notice that the helicity polarisation vectors are

real in split signature. Also polarization vectors are taken real here, see the appendix as well:
ε∗µη = εµη .
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while the measure is now

dΦ(k) = d̂4k δ̂(k2)Θ(E1) . (3.11)

The sum is over the helicity η. Notice that we have retained factors of ℏ; it will be
reassuring to check that these factors drop out for classical quantities. The theta

function ensures that quanta created around the vacuum have momenta directed

into the future with respect to t1; in other words, they have positive energy with

respect to this choice of time direction.

We also introduce a scalar particle which will be our source. In order for our

calculation to be in the regime of validity of the classical approximation, we place

our particle in a wave packet of the type discussed in detail in reference [49],

or in the introduction. We will discuss the properties of these wave packets in

more detail shortly. For now, note simply that the wave packet is such that the

uncertainties in the position and the momentum of our source are small. We will

treat this scalar particle as a probe.

To benefit from the unusual possibilities of a split-signature spacetime, we choose

the expectation value of the probe’s momentum to be ⟨pµ⟩ = muµ = m (0, 1, 0, 0).

Thus, the particle’s worldline can be chosen to be the t2 axis. As a probe particle,

we will not need a field operator for this state. Here, it is enough to define the

state itself:

|ψ⟩ =
∫

dΦ(p)ϕ(p) |p⟩, dΦ(p) = d̂4p δ̂(p2 −m2)Θ(E2) , (3.12)

where the wave function ϕ(p) is sharply-peaked around the momentum pµ = muµ.

Note that in this case the theta function4 enforces positive energy along t2. For

brevity of notation, we left it implied that a measure dΦ(p) involves a factor

Θ(E2) while a measure dΦ(k) involves Θ(E1) = Θ(E1).

3.2.1 The electromagnetic case

Now, let us investigate the electromagnetic field set up by endowing our probe

with a charge Q. For large negative t1 we have chosen a trivial electromagnetic

field. To characterise the field for other times t1 we must perform a computation.

4We write Θ(E2) rather than Θ(E2) to emphasise that the second component of the
momentum vector is constrained, avoiding confusion with a squared energy. Recall that
E2 = E2 in our conventions.
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As we will see, the result is non-trivial.

We evolve the state along t1 with

|ψout⟩ = lim
t1→∞

U(−t1, t1)|ψ⟩ = S|ψ⟩, (3.13)

and we measure the expectation value of the quantum operator

F
µν(x) = −i

∑
η=±

∫
dΦ(k)ℏ−

3
2

(
aη(k)k

[µεν]η e
−i k·xℏ − a†η(k)k

[µεν]η e
i k·xℏ

)
. (3.14)

While the scattering picture may suggest that we reproduce the electromagnetic

field only for large positive t1, in fact we reproduce the field for any time t1

much larger than any time scale characteristic of the scattering. In our case, the

largest spacetime length associated with the scattering is the size of the wave

packet of the source particle (the Compton wavelength of the particle is very

small compared to the size of the wave packet, as we saw in the introduction).

Defining the T matrix via S = 1 + iT , we find that this expectation value5 is

F µν ≡ ⟨ψ|S†
F

µνS|ψ⟩ = 2Re i⟨ψ|FµνT |ψ⟩+ ⟨ψ|T †
F

µνT |ψ⟩ . (3.15)

Notice that we imposed

⟨ψ|Fµν |ψ⟩ = 0 , (3.16)

which holds because of our boundary conditions (there are no photons in the

initial state).

In the Minkowski case, the expectation value of the field of a static massive

charge is of course the Coulomb field, and can be computed exactly. In our split-

signature case the expectation value, although less familiar, is evidently some

sort of analytic continuation of Coulomb. We will determine the field to all

orders of perturbation theory below. Before doing so, however, it is instructive

to recompute the leading order field strength at this order, closely following the

methods of section 2.3.

At leading order in perturbation theory, we can approximate

F µν(x) ≃ 2Re i⟨ψ|Fµν(x)T |ψ⟩. (3.17)

5Note that we have dropped the cl subscript used in the introduction Fµν
cl → Fµν .
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Inserting the explicit initial state of equation (3.12), the expectation value

becomes

F µν(x) = 2ℏ−
3
2 Re

∑
η

∫
dΦ(k) ⟨ψ|aη(k)T |ψ⟩ k[µεν]η e−i k·xℏ

=2ℏ−
3
2 Re

∑
η

∫
dΦ(k)dΦ(p′)dΦ(p)ϕ∗(p′)ϕ(p) ⟨p′|aη(k)T |p⟩ k[µεν]η e−i k·xℏ .

(3.18)

Expanding the matrix element ⟨p′|aη(k)T |p⟩ appearing in equation (3.18) in terms

of a three-point amplitude and the momentum-conserving delta function, we can

equivalently write

F µν(x) = 2ℏ−
3
2 Re

∑
η

∫
dΦ(k)dΦ(p)Θ(E2 + k2)δ̂(2p · k + k2)

× ϕ∗(p)ϕ(p+ k)A(3)
−η(k) k

[µεν]η e
−ik·x/ℏ .

(3.19)

where A(3)
η (k) is the three-point scattering amplitude for the process shown in

figure 3.1. The helicity labels of our amplitudes are for incoming messengers;

since our photons are outgoing, we encounter the amplitude for the opposite

helicity −η.

This expression for the field strength simplifies in the classical approximation, as

argued in the introduction. Introducing wavenumbers, we obtain

F µν(x) = 2Re
∑
η

∫
dΦ(k̄)dΦ(p) |ϕ(p)|2 δ̂(2p · k̄ + ℏk̄2)

√
ℏA(3)

−η(k̄) k̄
[µεν]η e

−ik̄·x .

(3.20)

Now, the wave function is sharply-peaked about an average (classical) momentum

muµ. The integral of this sharply-peaked function over the amplitude, which is

smooth near the peak momentum, sets the momenta appearing in the amplitude

to muµ, and at the same time will broaden the explicit delta function. We can

therefore drop the ℏk̄2 shift in the delta function, arriving at

F µν(x) =
1

m
Re
∑
η

∫
dΦ(k̄) δ̂(u · k̄)

√
ℏA(3)

−η(k̄) k̄
[µεν]η e

−ik̄·x . (3.21)

Notice that the field strength is given by the scattering amplitude, up to a

universal (theory independent) integration and essential kinematic factors.

For our static charge in electromagnetism, the amplitude is the three-point scalar
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p− k

p

k, η

Figure 3.1 The three-point electromagnetic amplitude. Notice that the photon
with polarization η is incoming.

QED vertex,

A(3)
− (k) = −2

Q√
ℏ
p · ε−(k) =

√
2m

Q√
ℏ

1

X
,

1

X
:= −

√
2u · ε−,

A(3)
+ (k) = −2

Q√
ℏ
p · ε+(k) = −

√
2m

Q√
ℏ
X, X :=

√
2u · ε+,

(3.22)

where we have written A in terms of the kinematics-dependent X-factor

introduced in [178].6 We observe that XX−1 = −2uµuνε
µ
+ε

ν
− = 1. Notice that the

amplitude depends on k only through the polarisation vector εη(k): it therefore

does not depend on whether we treat k as a momentum or as a wave vector.

Taking the factor 1/
√
ℏ in the amplitude into account, we see that the ℏ

dependence of equation (3.21) reassuringly drops out. This is obviously consistent

with the computation of a classical quantity. Since all factors of ℏ will similarly

disappear for classical quantities in the remainder of the chapter, we will

henceforth set ℏ = 1, restoring it only when necessary.

Our expressions simplify further if we pass from the field strength tensor to the

associated spinorial quantity, the Maxwell spinor defined in equation (3.1), which

we reproduce here for convenience:

ϕαβ(x) = σµν
αβFµν(x) . (3.23)

The σµν matrices are symmetric on their spinor indices α and β. These

matrices project two-forms onto their self-dual parts,7 and are proportional to

the generators of SL(2,R). (Details of our spinor conventions are given in

appendix A.1.) In view of the fact that the σµν matrices matrices are real (as

are their antichiral counterparts σ̃µν), we can write the expectation value of the

6We use the notation X for this factor rather than x to avoid confusion with the position x.
7In our nomenclature, a two-form F is self-dual if ∗F = F , and anti-self-dual if ∗F = −F .

38



Maxwell spinor as

ϕαβ(x) =
1

m
Re
∑
η

∫
dΦ(k) δ̂(u · k)σµν αβ k

[µεν]η e
−ik·xA(3)

−η(k)

= −
√
2

m
Re

∫
dΦ(k) δ̂(u · k) |k⟩α|k⟩β e−ik·xA(3)

+ (k) ,

(3.24)

where we have used the fact that a negative helicity plane wave has a self-dual

field strength (equation (A.14)), while a positive helicity plane wave has an anti-

self-dual field strength (equation (A.15)). For the other chirality, we similarly

find

ϕ̃α̇β̇(x) = +

√
2

m
Re

∫
dΦ(k) δ̂(u · k) [k|α̇[k|β̇ e

−ik·x A(3)
− (k) . (3.25)

Thus, the two helicity amplitudes correspond directly to the two different

chiralities of Maxwell spinor. In split signature, these spinorial field strengths are

real (as is evident in the particular case of our expressions) and independent. We

will focus on the chiral case of ϕαβ below, though the story for ϕ̃α̇β̇ is completely

parallel.

More concretely, we can evaluate the field strength by inserting the standard

expressions (3.22) for the amplitude. The Maxwell spinor becomes simply

ϕαβ(x) = 2QRe

∫
dΦ(k) δ̂(u · k) |k⟩α|k⟩β e−ik·xX . (3.26)

In other words, the spinorial field strength is in essence an on-shell Fourier

transform of the unique kinematic factor X.

3.2.2 The coherent state

In the previous section, we found the classical electromagnetic field produced

by a static source. Even in split signature, it is reasonable to expect that this

field should be very simple, so it is a little unsatisfying that we performed a

perturbative approximation along the way, at equation (3.17). Fortunately, it is

not hard to determine the final quantum state to all orders in the perturbative

coupling Q. We only compute the classical approximation to the field, which (in

this particular electromagnetic case) means that we should restrict to tree-level

amplitudes. The diagrams are shown in figure 3.2.
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p′ p′

p p

kπ(1)

kπ(2)

kπ(3)

kπ(n−1)

kπ(n)

kπ(1)

kπ(2)

kπ(3)

kπ(n−1)

kπ(n)

Figure 3.2 Diagrams of the form shown on the left contribute to the radiation
field to all orders in the coupling, but leading classical order.
Loop effects, as shown in the diagram on the right, are quantum
corrections.

In fact, the final state of the electromagnetic field is coherent:

S|ψ⟩ = 1

N

∫
dΦ(p)ϕ(p) exp

[∑
η

∫
dΦ(k) δ̂(2p · k) iA(3)

−η(k) a
†
η(k)

]
|p⟩ , (3.27)

where N is a normalisation factor ensuring that ⟨ψ|S†S|ψ⟩ = 1. The exponential

structure of the state captures the intuition that the outgoing field contains a

great many photons. It is also consistent with the intuition that coherent states

are the natural description of classical wave phenomena in quantum field theory.8

The coherence of the state could also be demonstrated by taking advantage of the

linear coupling between the gauge field Aµ and a massive probe source worldline,

so it comes as no surprise. However, it is satisfying to see that the state is

completely controlled by the on-shell three-point amplitude.

To see how the exponentiation in (3.27) comes about in our approach, we expand

the S matrix acting on our initial state as

S|ψ⟩ = 1

N
(1 + iT3 + iT4 + · · · )|ψ⟩ , (3.28)

8More discussion of coherent states, amplitudes and classicality is in [33].
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where the Tn are defined by

Tn+2 =
1

n!

∑
η1,...,ηn

∫
dΦ(p′)dΦ(p)

n∏
i=1

dΦ(ki)A(n+2)
−η1,...,−ηn(p→ p′, k1 · · · kn)

× δ̂4
(
p− p′ −

∑
ki

)
a†η1(k1) · · · a

†
ηn(kn) a

†(p′)a(p) .

(3.29)

That is, the Tn+2 are projections of the transition matrix T onto final states

with n photons, in addition to the massive particle. We denote the creation and

annihilation operators for the massive scalar state by a†(p′) and a(p), respectively,

as opposed to the photon creation operators a†ηi(ki). Note that we include

precisely one creation and one annihilation operator for our scalar, which is

consistent with treating it as a probe source. We omit all terms in Tn+2 containing

photon annihilation operators since these would annihilate the initial state |ψ⟩.
The factor n! in equation (3.29) is a symmetry factor associated with n identical

photons in the final state.

We begin by computing the action of T3 and T4 on |ψ⟩ explicitly. It will then be

a small step to the general case and the exponential structure. First, the case of

T3 is straightforward:

iT3|ψ⟩ =
∑
η

∫
dΦ(p′)dΦ(p)dΦ(k)ϕ(p) iA(3)

−η(k)|p′, kη⟩ δ̂4 (p− p′ − k)

=
∑
η

∫
dΦ(p)dΦ(k)ϕ(p+ k)Θ(E2 + k2)δ̂(2p · k) iA(3)

−η(k)|p, kη⟩ ,
(3.30)

where, in the second line, we integrated over p with the help of a four-fold

delta function, and we relabelled p′ to p. As we saw for the field strength, this

expression simplifies when we compute in the domain of validity of the classical

approximation. We find

iT3|ψ⟩ =
∑
η

∫
dΦ(p)dΦ(k)φ(p) δ̂(2p · k) iA(3)

−η(k) a
†
η(k)|p⟩ . (3.31)

Comparing to the form for the coherent state we advertised in equation (3.27),

we now see how the exponent can begin to emerge.

The four-point case requires a little more work on the actual amplitude. Working

at the textbook level of Feynman diagrams (using the notation in figure 3.3), we
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p′

p

k1, η1

k2, η2

+

p′

p

k2, η2

k1, η1

+

p′

p

k1, η1

k2, η2

Figure 3.3 The familiar Feynman diagrams for the four point scalar QED
amplitude. In this figure, the photons are outgoing.

find

iA(4) = −iQ24p · ε−η1(k1) p
′ · ε−η2(k2)

2k1 · p+ iϵ
+iQ24p · ε−η2(k2) p

′ · ε−η1(k1)

2k1 · p′ − iϵ

+ 2iQ2ε−η1(k1) · ε−η2(k2) .

(3.32)

Now, of these three terms the last is suppressed relative to the other two in

the classical approximation. The suppression factor is of order p · k/m2, which

is of order the energy of a single photon in units of the mass of the particle.

(Equivalently, the suppression factor is ℏk̄/m, where k̄ is a typical component

of the wave vector of the photon. From this perspective, the contact term is

explicitly down by a factor ℏ.) We therefore neglect the contact diagram. In

terms of a more modern unitarity-based construction of the amplitude, this means

that we can simply “sew” three-point amplitudes to compute the dominant part

of the four-point amplitude relevant for this computation.9

We can make this sewing completely manifest in our four-point amplitude by

writing

k1 · p′ = k1 · p+O(ℏ) , p′ · ε(k) = p · ε(k) +O(ℏ) , (3.33)

and neglecting the ℏ corrections. (In dimensionless terms, these corrections are

again suppressed by factors of the photon energy over the particle mass.) It is

9It may be worth emphasising that a one-loop computation of a classical observable such
as the impulse also involves the four-point tree amplitude. But in that case the contact term
is absolutely necessary to recover the correct classical result, and in fact the terms we are
concentrating on cancel.
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then a matter of algebra to see that

iA(4) = δ̂(2p · k1) (−2iQ p · ε−η1(k1))(−2iQ p · ε−η2(k2))

= δ̂(2p · k1) iA(3)
−η1(k1) iA

(3)
−η2(k2) .

(3.34)

We picked up a delta function from the sum of two propagators. It is perhaps

worth pausing to note that the two photon emissions are completely uncorrelated

from one another.

Now we can compute the action of T4 on our initial state. Using the

definition (3.29) of T4 and the fact that

a(p)|ψ⟩ = ϕ(p)|0⟩ , (3.35)

we find

iT4|ψ⟩ =
1

2

∑
η1,η2

∫
dΦ(p′)dΦ(p)dΦ(k1)dΦ(k2)ϕ(p) iA(4)

−η1,−η2(p→ p′, kη11 k
η2
2 )

× δ̂4(p− p′ − k1 − k2)|p′ kη11 k
η2
2 ⟩ .
(3.36)

The integration over the momentum p is trivial using the explicit four-fold delta

function. The measure dΦ(p) contains a theta function, requiring that the E2

component of p′+k1+k2 is positive. Since the dΦ(p
′) measure already requires the

relevant energy of p′ to be positive, and the photon energies are small compared to

the mass, we can ignore this theta function. We also encounter the wave function

evaluated at p′ + k1 + k2; since the photon energies are small compared to the

width of the wave function, we may approximate as before ϕ(p′+k1+k2) ≃ ϕ(p′).

Finally, dΦ(p) contains a delta function requiring

p2 = (p′ + k1 + k2)
2 = m2 . (3.37)

Since p′2 = m2, this becomes a factor

δ̂(2p′ · (k1 + k2) + (k1 + k2)
2)
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=
∑
π
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p′

Figure 3.4 The dominant term in the n+ 2 point amplitude can be obtained by
sewing n three-point amplitudes. The full amplitude is obtained by
summing over permutations π of the n outgoing photon lines.

in T4|ψ⟩. Once again, we may neglect this shift of the delta function, finding

iT4|ψ⟩ =
1

2

∑
η1,η2

∫
dΦ(p)dΦ(k1)dΦ(k2)ϕ(p) iA(4)

−η1,−η2(p+ k1 + k2 → p, k1k2)

× δ̂(2p · (k1 + k2))|p kη11 k
η2
2 ⟩ ,

(3.38)

where we relabelled the momentum p′ to p. Now we may use our result (3.34) for

the four-point amplitude, arriving at

iT4|ψ⟩ =
1

2

∑
η1,η2

∫
dΦ(p)dΦ(k1)dΦ(k2)ϕ(p) δ̂(2p · k1)δ̂(2p · k2)

× iA(3)
−η1(k1) iA

(3)
−η2(k2)|p k

η1
1 k

η2
2 ⟩

=
1

2

∫
dΦ(p)ϕ(p)

(∑
η

∫
dΦ(k)δ̂(2p · k)iA(3)

−η(k)a
†
η(k)

)2

|p⟩ ,

(3.39)

consistent with the exponential structure of the coherent state in equation (3.27).

Now we turn to the general term, evaluating Tn+2|ψ⟩. We can make use of

the knowledge gained from the four-point example, including the fact that the

leading term in the (n + 2)-point amplitude can be obtained by sewing n three-

point amplitudes. We must nevertheless sum over permutations of the external

44



photon momenta as shown in figure 3.4. The dominant term in the amplitude is

iA(n+2) =

(
n∏

i=1

iA(3)
−ηi(ki)

)∑
π

i

2p · kπ(1) + iϵ

i

2p · (kπ(1) + kπ(2)) + iϵ
· · ·

× i

2p · (kπ(1) + kπ(2) + · · · kπ(n−1)) + iϵ
.

(3.40)

The sum is over permutations π of the n final-state photons.

At four points, the sum over sewings led to a delta function, and the same happens

here. We can state the result most simply at the level of Tn+2|ψ⟩, which can be

written as

iTn+2|ψ⟩ =
1

n!

∑
η1,...,ηn

∫
dΦ(p)

n∏
i=1

dΦ(ki)ϕ(p) δ̂

(
2p ·

n∑
j=1

kj

)
iA(n+2) |p kη11 · · · kηnn ⟩ ,

(3.41)

using the properties of the wave function, and neglecting terms suppressed in the

classical region. We may now simplify the sum in equation (3.40) using the result

δ̂

(
n∑

i=1

ωi

)∑
π

i

ωπ(1) + iϵ

i

ωπ(1) + ωπ(2) + iϵ
· · · i

ωπ(1) + ωπ(2) + · · ·ωπ(n−1) + iϵ

= δ̂(ω1)δ̂(ω2) · · · δ̂(ωn) .

(3.42)

This result, which is an on-shell analogue of the eikonal identity, is proven (for

example) in appendix A of reference [168]. We find that

iTn+2|ψ⟩ =
1

n!

∫
dΦ(p)ϕ(p)

(∑
η

∫
dΦ(k) δ̂(2p · k) iA(3)

−η(k) a
†
η(k)

)n

|p⟩ . (3.43)

Performing the sum over n, we confirm the exponential structure of the state in

equation (3.27).

What about the normalisation factor of the coherent state (3.27)? As usual, to

ensure a correct normalisation we need to include disconnected vacuum bubble

diagrams. It is simpler to demand that the factor N appearing in equation (3.27)

is such that S†S = 1, and this is the procedure we adopt.

Now that we have seen that the final state is indeed given by equation (3.27), let

us return to the evaluation of the expectation value of the field strength. The

computation is simplified when we recall that (as usual for a coherent state) the
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annihilation operator acts as a derivative on the state:

aη(k)S|ψ⟩ = δ̂(2p · k) iA(3)
−η(k)S|ψ⟩

=
δ

δa†η(k)
S|ψ⟩ .

(3.44)

The field strength is therefore

⟨ψ|S†
F

µν(x)S|ψ⟩ = −2Re i
∑
η

∫
dΦ(k) ⟨ψ|S† aη(k)S|ψ⟩ k[µεν]η e−ik·x

=
1

m
Re
∑
η

∫
dΦ(k) δ̂(u · k)A(3)

−η(k) k
[µεν]η e

−ik·x .

(3.45)

Notice that this agrees with our previous expression, equation (3.21), which we

now see is correct to all orders in the classical limit. Similarly, the Maxwell spinor

is

⟨ψ|S† ϕαβ(x)S|ψ⟩ = −
√
2

m
Re

∫
dΦ(k) δ̂(u · k) |k⟩α|k⟩β e−ik·xA(3)

+ (k)

= 2QRe

∫
dΦ(k) δ̂(u · k) |k⟩α|k⟩β e−ik·xX ,

(3.46)

in agreement with our earlier equations (3.24) and (3.26).

It is worth pausing to comment on this agreement. Classically, the field strength

fully characterises the (electromagnetic) radiation field. We are using a quantum-

mechanical formalism, but we now see that it is still true that knowledge of the

field strength is also knowledge of the full state of the electromagnetic field, once

we add the extra piece of information that this state is coherent. Mathematically,

the field strength operator essentially differentiates the exponential form of the

coherent state once, pulling down the parameter of the state. The structure

of this computation is strongly reminiscent of eikonal methods which have also

been of interest as a method of connecting classical field theory to scattering

amplitudes [6, 13, 14, 66, 189–207]. We will get back to such methods in the final

chapter.
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3.2.3 The gravitational case and the momentum-space Weyl

double copy

We have seen that a coherent state, equation (3.27), beautifully captures the

radiation field in the electromagnetic case. What about gravity?

Graviton self-interactions could spoil the exponentiation present in electromag-

netism. Clearly there are additional diagrams in gravity, for example at four

points we could encounter the diagram

which involves a graviton three-point interaction. However, self-interactions of

gravitons are suppressed compared to the dominant diagram

where the gravitons connect directly to the massive line. The reason is simply

that the graviton self-interaction involves powers of the momenta of the gravitons,

while the coupling to the massive line involves the particle mass. Since the particle

mass is large compared to the graviton momenta, we may neglect graviton self-

interactions. We may also neglect contact vertices (as in electromagnetism) for

the same reason.

This does not mean that all self-interactions of the gravitational field are

eliminated. The metric quantum operator has a perturbative expansion which

includes these self-interactions. The expectation value of this all-order operator

on our coherent state reproduces the classical metric. Notice that the coherent

state is gauge invariant, while the quantum operator may not be (in quantum
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gravity, only asymptotic observables may be associated with gauge-invariant

operators). This procedure would allow us to perturbatively construct the

Schwarzschild metric, along the lines of [25, 208, 209] but in a manifestly on-shell

formalism; see also [36] for an alternative approach based on an intermediate

matching with an effective theory of sources coupled to gravitons.

The computation of the final state S|ψ⟩ proceeds in the gravitational case

precisely as in the electromagnetic case. Writing the gravitational three-point

amplitude as M(3), we find that

S|ψ⟩ = 1

N

∫
dΦ(p)ϕ(p) exp

[∑
η

∫
dΦ(k) δ̂(2p · k) iM(3)

−η(k) a
†
η(k)

]
|p⟩ , (3.47)

where once more N is a normalisation factor.

We can now compute the gravitational field strength in the classical limit. We

place an observer far from the source; then the gravitational field is weak, and

we can work in the formalism of linearised quantum gravity. The graviton field

operator is

h
µν(x) = 2Re

∑
η

∫
dΦ(k) aη(k)ε

µ
η(k)ε

ν
η(k) e

−ik·x , (3.48)

where we have written the polarisation tensor of a graviton as the outer product

of polarisation vectors εµη(k). The Weyl tensor Wµνρσ(x) in empty space equals

the curvature tensor Rµνρσ(x), which in linearized gravity is

Rµνρσ(x) =
κ

2

(
∂σ∂[µhν]ρ + ∂ρ∂[νhµ]σ

)
. (3.49)

Thus, the Weyl tensor operator is

W
µνρσ(x) = κRe

∑
η

∫
dΦ(k) aη(k)ε

[µ
η (k)k

ν]ε[ρη (k)k
σ] e−ik·x . (3.50)

It is now very easy to compute the expectation value of the Weyl tensor, taking

advantage once again of the fact that the action of aη(k) on the coherent state is

the same as a functional derivative with respect to the creation operator:

W µνρσ(x) ≡ ⟨ψ|S†
W

µνρσ(x)S|ψ⟩

= κRe
∑
η

∫
dΦ(k) δ̂(2p · k) iM(3)

−η(k) ε
[µ
η (k)k

ν]ε[ρη (k)k
σ] e−ik·x .

(3.51)
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The expectation value of the Weyl spinor is obtained by contracting with σµν

matrices, leading to

⟨ψ|S†Ψαβγδ(x)S|ψ⟩ = 2κRe

∫
dΦ(k) δ̂(2p · k) iM(3)

+ (k) |k⟩α|k⟩β|k⟩γ|k⟩δ e−ik·x .

(3.52)

This expression for the Weyl tensor is very interesting from the perspective of the

double copy. Comparing to the Maxwell spinor (3.46), note that the amplitudes

A(3)
+ (k) and M(3)

+ (k) are related by the double copy. Let us define momentum-

space versions of the Maxwell and Weyl spinors by

ϕαβ(x) = −Re

∫
dΦ(k) δ̂(2p · k)ϕαβ(k) e

−ik·x ,

Ψαβγδ(x) = κRe

∫
dΦ(k) δ̂(2p · k)Ψαβγδ(k) e

−ik·x ,

(3.53)

so that
ϕαβ(k) = 2

√
2 |k⟩α|k⟩β A(3)

+ (k) ,

Ψαβγδ(k) = 2|k⟩α|k⟩β|k⟩γ|k⟩δ iM(3)
+ (k) .

(3.54)

Let us also consider the scalar field theory analogue,

S(x) = Re

∫
dΦ(k) δ̂(2p · k)S(k) e−ik·x , (3.55)

where the three-point amplitude iS(k) is a real constant. Notice that S(x)

manifestly satisfies the wave equation; more precisely, it is the Green’s function,

as we shall see later. With this scalar counterpart in hand, we obtain an on-shell

momentum-space analogue of the position-space Weyl double copy (3.9),

Ψαβγδ(k) =
1

S(k)
ϕ(αβ(k)ϕγδ)(k) , (3.56)

which follows from the double copy relating the three-point amplitudes in gauge

theory and in gravity.

We will verify in the next section the position-space version of the expression

above, i.e. after performing the on-shell momentum integrals in (3.53). These

integrals affect the algebraic structure of the spinors. Notice that the momentum-

space Weyl and Maxwell spinors are of type N, if we use the analogue of

the position-space characterisation of Weyl spinors. This is consistent with

the intuition that the on-shell three-point amplitudes describe radiation of

messengers. However, there is something of a puzzle: the field strength of a
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point charge should have a Coulomb term, and a point mass should have a type

D Schwarzschild term. In fact, these terms are present in the Weyl (3.52) and

Maxwell (3.46) spinors. They emerge when we perform the Fourier integrals to

determine the position-space form of the field strength spinors, as we now show.

3.3 The Position-Space Fields and Weyl Double

Copy

In the previous section, we saw that quantum field theory relates the Maxwell

and Weyl spinors for a static charge and mass, respectively, by the double copy,

at least in Fourier space. We would like to express these quantities in position

space. In fact, it is not hard to perform the Fourier integrals to arrive at explicit

expressions in position space, where the double copy will still be manifest.

3.3.1 The Maxwell spinor in position space

We will discuss the case of electrodynamics explicitly. Starting from the field

strength expectation, equation (3.45), we insert the explicit scalar QED three-

point amplitudes to find

F µν(x) ≡ ⟨ψ|S†
F

µν(x)S|ψ⟩

= −2QRe
∑
η

∫
dΦ(k) δ̂(k · u) e−ik·x k[µεν]η ε−η · u .

(3.57)

This expression simplifies if we resolve the proper velocity onto a Newman-

Penrose-like basis of vectors given by kµ, εµ± and a gauge choice nµ, such that

k · n ̸= 0 while n · ε± = 0. Since k · u = 0 on the support of the integration, the

velocity is

uµ =
u · n
k · n

kµ − ε− · u εµ+ − ε+ · u εµ− . (3.58)

Consequently, the field strength is given by the simple formula

F µν(x) = 2QRe

∫
dΦ(k) δ̂(k · u) e−ik·x k[µuν] . (3.59)

Before we perform any integrations, let us pause to interpret this formula. Note
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that we may write

F µν(x) = 2Q∂[µuν] Re i

∫
dΦ(k) δ̂(k · u) e−ik·x . (3.60)

We recognise the definition of the field strength as the (antisymmetrised)

derivative of the gauge potential,

Aµ(x) = Re 2iQ uµ
∫

dΦ(k) δ̂(k · u) e−ik·x . (3.61)

To interpret this formula, it’s worth briefly digressing to discuss our situation

from a classical perspective.

Consider solving the Maxwell equation with a static point charge

∂µF
µν(x) =

∫
dτ Quν δ4(x− uτ) , (3.62)

where uµ = (0, 1, 0, 0), with the boundary condition that the electromagnetic

field vanishes for t1 < 0. Choosing Lorenz gauge, we can write the solution as a

familiar Fourier integral:

Aµ(x) = −
∫

d̂4k δ̂(k · u) e−ik·x 1

k2
Quµ . (3.63)

As usual, we need to define the k integral taking our boundary conditions into

account. These boundary conditions are also familiar: they are just traditional

retarded boundary conditions. The only novelty lies in the signature of the metric.

But even the unfamiliar pattern of signs in split signature disappears for the

problem at hand, because of the factor

δ̂(k · u) = δ̂(k2)

in the measure. Consequently, the second component of the wave vector kµ is

guaranteed to be zero. We end up with an integral of Minkowskian type, but

in 1 + 2 dimensions. This is a consequence of translation invariance in the t2

direction.

Treating the k integration as a contour integral, the only poles in the integration

of equation (3.63) occur when

(k1)2 = k2 , (3.64)
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where k = (k3, k4) are the spatial components of the wave vector. Taking the sign

of the exponent in equation (3.63) into account, retarded boundary conditions

are obtained by displacing the poles below the real axis:

1

k2
→ 1

k2ret
=

1

(k1 + iϵ)2 + (k2)2 − (k3)2 − (k4)2
, (3.65)

while advanced boundary conditions correspond to

1

k2
→ 1

k2adv
=

1

(k1 − iϵ)2 + (k2)2 − (k3)2 − (k4)2
. (3.66)

Notice that

1

k2ret
− 1

k2adv
=

1

k2 + i(k1)ϵ
− 1

k2 − i(k1)ϵ
= −i sign(k1)δ̂(k2) , (3.67)

where, in the first equality, we have written (k1) for the first component of the

4-vector k and have freely rescaled ϵ by positive quantities (as is conventional, we

take ϵ→ 0 from above at the end of our calculation).

Returning to the gauge field of equation (3.63), we have

Aµ(x) = −
∫

d̂4k δ̂(k · u) e−ik·x
(
−i sign(k1)δ̂(k2) + 1

k2adv

)
Quµ

= i

∫
d̂4k δ̂(k · u) e−ik·x sign(k1)δ̂(k2)Quµ

= i

∫
dΦ(k) δ̂(k · u)Quµ

(
e−ik·x − eik·x

)
.

(3.68)

We dropped the advanced term because, with our boundary conditions, the

position x has positive t1. But equation (3.68) is just the result we found from

the quantum expectation (3.61). Thus, our quantum mechanical methods are

computing the complete gauge field, as expected.

Given that we have made contact with a classical situation, we can use classical

intuition to perform the Fourier integrals. The integrals to be performed in

equation (3.63) are the same as the integrals in the computation of the retarded

Green’s function in 1 + 2 dimensions. We discuss this Green’s function in

appendix A.2. We find

Aµ(x) =
Quµ

2π
Θ(t1)

Θ(x2 − (x · u)2)√
x2 − (x · u)2

. (3.69)
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In many respects, this result is familiar: it is just the usual 1/‘distance’ fall-off.

There is no other possibility: the dimensional analysis requires this behaviour

with distance. The key new feature in split signature is the theta function Θ(x2−
(x · u)2). To see why, let’s differentiate to compute the field strength, which is10

F µν(x) = − QΘ(t1)x[µuν]

2π(x2 − (x · u)2)1/2

(
Θ(x2 − (x · u)2)
x2 − (x · u)2

− 2 δ
(
x2 − (x · u)2

))
.

(3.70)

The term involving the Θ(x2 − (x · u)2) is the familiar Coulomb field. However,

there is an additional δ function describing the impulsive radiation field when the

charge “appears” from the point of view of the observer. Although the radiation

field looks very singular classically, this should not really trouble us: the delta

function distribution is only present in the approximation that the source wave

function is treated as of zero size. In reality, this wave function must have some

spatial size lw (see (2.6)), and the delta function will be broadened into a smooth

function when this width is taken into account.

It will also be interesting to investigate the Maxwell spinor generated by our set

up, especially when comparing to the Weyl spinor in the gravitational case. First,

let’s break up our field strength into two terms,

Fµν(x) = F (1)
µν (x) + F (2)

µν (x) , (3.71)

where

F (1)
µν (x) = −

QΘ(t1)x[µuν]
2π(x2 − (x · u)2)3/2

Θ(x2 − (x · u)2) ,

F (2)
µν (x) =

QΘ(t1)x[µuν]
π(x2 − (x · u)2)1/2

δ(x2 − (x · u)2) .
(3.72)

It’s natural to define the “radial distance” (i.e. its analogue under analytic

continuation)

ρ2 = x2 − (x · u)2 (3.73)

and the associated vector

Kµ = xµ − (x · u)uµ . (3.74)

The Maxwell spinor ϕ
(1)
αβ(x) associated with the Coulombic field strength F (1) is11

10We assume that the point x is not on the worldline of the source particle, so we drop a
term in the field strength involving δ(t1)Θ(x2 − (x · u)2), which is only non-vanishing on this
worldline.

11Here, ϕ
(1)
αβ corresponds to the middle term on the right-hand side of (3.3). Likewise, ϕ

(2)
αβ

53



ϕ
(1)
αβ(x) = −QΘ(t1)

2πρ3
σµν

αβK[µuν]Θ(ρ2) . (3.75)

Meanwhile, on the support of the delta function factor in F (2), the vector Kµ

becomes null. Furthermore, a simple computation shows that, in general,

K · u = 0 . (3.76)

Therefore, we may erect a Newman-Penrose basis using the vectorK, an arbitrary

gauge choice, and two “polarisation” vectors ε±(K) which can be taken to be the

standard spinor-helicity vectors associated with the “on-shell momentum” K;

these are defined explicitly in equation (A.12). In this basis we may once again

decompose the proper velocity using the obvious analogue of equation (3.58). It

follows that the Maxwell spinor is

ϕ
(2)
αβ(x) =

Q

π ρ
Θ(t1)X |K⟩α|K⟩β δ(ρ2) . (3.77)

Evidently, ϕ
(2)
αβ(x) has the structure expected for the radiative part of the field

strength. We will encounter an analogous situation in gravity.

3.3.2 The Weyl spinor and the double copy in position space

We can perform the Fourier integrals for gravity in exact analogy with the

electromagnetic case. Beginning from the Weyl tensor (3.51), we insert the

explicit amplitudes

M(3)
η (k) = −κm2(u · εη(k))2 (3.78)

to find that

W µνρσ(x) = −Re iκ2m2

∫
dΦ(k) δ̂(2k · p) e−ik·x

[
(ε+ · u)2k[µεν]−k[ρε

σ]
−

+(ε− · u)2k[µεν]+k[ρε
σ]
+

]
.

(3.79)

Again, this expression is easily interpreted in the classical theory. We define the

metric perturbation by

gµν = ηµν + κhµν . (3.80)

further below corresponds to the last term in (3.3).
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By solving the linearised Einstein equation in De Donder gauge, we find that the

metric perturbation is

hµν(x) = −2Re iκm2

∫
dΦ(k) δ̂(2k · p) e−ik·x

(
uµuν −

1

2
ηµν

)
. (3.81)

The Riemann tensor (3.49) is explicitly

Rµνρσ(x) = Re iκ2m2

∫
dΦ(k) δ̂(2k · p) e−ik·x

(
k[µuν]k[σuρ] − 1

2
k[µην][ρkσ]

)
.

(3.82)

It is not obvious in this form that the traces of the Riemann tensor vanish.

Of course, they must do so since our observer at x is in empty space. In

fact, it is possible to simplify the tensor structure of this Riemann tensor by

resolving the vector u onto the Newman-Penrose-like basis of k, ϵ±(k) and n as

in equation (3.58). The flat metric tensor in this basis is

ηµν =
1

k · n
k(µnν) − ε

(µ
+ ε

ν)
− . (3.83)

It follows that

k[µην][ρkσ] = −k[µεν]+ε
[ρ
−k

σ] − k[µε
ν]
−ε

[ρ
+k

σ] , (3.84)

while the other tensor structure in the Riemann tensor simplifies to

k[µuν]k[σuρ] = (ε+ · u)2k[µεν]−k[σε
ρ]
− + (ε− · u)2k[µεν]+k[σε

ρ]
+

− 1

2
k[µε

ν]
−k

[σε
ρ]
+ − 1

2
k[µε

ν]
+k

[σε
ρ]
− .

(3.85)

Combining, the Riemann tensor manifestly has no traces and we recover the Weyl

tensor of equation (3.155).

Now it is easy to perform the Fourier integrals, for example at the level of the

metric perturbation, which yields

hµν(x) = −κm
4π

Θ(t1)
Θ(x2 − (x · u)2)√
x2 − (x · u)2

(
uµuν −

1

2
ηµν

)
. (3.86)

The expectation value of the (linearised) Weyl tensor can be computed by

differentiation. There are various terms, depending on whether derivatives act

on the delta functions or the 1/ρ fall-off factors. Analogously to (3.71), we can

write the Weyl tensor as

Wµνρσ = W (2)
µνρσ +W (3)

µνρσ +W (4)
µνρσ , (3.87)
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with

W (2)
µνρσ =

3κ2mΘ(t1)Θ(ρ2)

32π ρ5
wµνρσ , (3.88)

W (3)
µνρσ = −κ

2mΘ(t1) δ(ρ2)

8π ρ3
wµνρσ , (3.89)

W (4)
µνρσ =

κ2mΘ(t1) δ′(ρ2)

8πρ
wµνρσ , (3.90)

where

w µν
ρσ = 4K [µuν]K[ρuσ] + 2K [µδ

ν]
[ρKσ] + 2 ρ2 u[µδ

ν]
[ρuσ] +

2ρ2

3
δ
[µ
[ρ δ

ν]
σ] . (3.91)

The corresponding Weyl spinor is

Ψαβγδ = Ψ
(2)
αβγδ +Ψ

(3)
αβγδ +Ψ

(4)
αβγδ , with Ψ

(i)
αβγδ = W (i)

µνρσσ
µν
αβσ

µν
γδ . (3.92)

If we now compare these expressions with the ones for the Maxwell spinor

obtained in the previous subsection, we find the position-space double copy

relations

Θ(ρ2)Θ(t1)

2π ρ
Ψ

(2)
αβγδ =

3κ2m

4 · 4!Q2
ϕ
(1)
(αβϕ

(1)
γδ) , (3.93)

Θ(ρ2)Θ(t1)

2π ρ
Ψ

(3)
αβγδ =

κ2m

2 · 4!Q2
ϕ
(1)
(αβϕ

(2)
γδ) , (3.94)

δ2(ρ2)Θ(t1)

2π ρ
Ψ

(4)
αβγδ =

κ2mδ′(ρ2)

4 · 4!Q2
ϕ
(2)
(αβϕ

(2)
γδ) . (3.95)

Notice that, in the first two lines, the relation (3.9) is satisfied with

S(x) =
Θ(t1)Θ(ρ2)

2π ρ
,

up to numerical factors. The clearest example is that of Ψ
(2)
αβγδ, which is the only

one that has support in the interior of the future light-cone, as opposed to just

the future light-cone itself. Hence, it satisfies on its own the Bianchi identity in

that region. Indeed, its analytic continuation is the linearised Weyl tensor of the

Lorentzian Schwarzschild solution, in the same way that the term F
(1)
µν in (3.71)

is associated to the Coulomb solution. Therefore, the terms corresponding to the

interior of the light-cone satisfy the position space Weyl double copy for type D
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solutions, equation (3.9), as discussed for the Lorentzian solutions in [98].

The spinors Ψ
(3)
αβγδ and Ψ

(4)
αβγδ are distributional, and supported only on the future

light-cone, where Kµ is null. Analogously to (3.77), they are both proportional

to |K⟩α|K⟩β|K⟩γ|K⟩δ.12 They look very singular, and they do not satisfy the

Bianchi identity on their own on the light-cone, since this identity receives

contributions from the three terms. Nevertheless, a type of double copy is still

evident in position space, satisfying the expectation of the type N position-space

Weyl double copy [128]. In fact, this follows from (3.56), when the on-shell

momentum integrands of (3.53) are evaluated only at kµ ∝ Kµ.

3.4 The Kerr-Schild Double Copy and the Exact

Metric

In the previous sections, we computed the linearised metric and curvature

generated by a massive particle. It is actually straightforward for us to compute

the exact metric. To do so, we exploit the Kerr-Schild double copy presented in

the introduction. As a reminder of the Kerr-Schild double copy, recall that, in

the case of Lorentzian (1, 3) signature, we start with a Green’s function

Φ(L) =
1

4π
√
x2 + y2 + z2

, (3.96)

satisfying

−(∂2x + ∂2y + ∂2z ) Φ
(L) = δ(x)δ(y)δ(z) . (3.97)

The Coulomb solution is

A(L) = QΦ(L) dt , (3.98)

or in “Kerr-Schild” gauge,

A(L,KS) = QΦ(L) dt− Q

4π
d log

√
x2 + y2 + z2

r0
= QΦ(L) L(L) ,

L(L) = dt− xdx+ ydy + zdz√
x2 + y2 + z2

, (3.99)

where K(L) is null and r0 is a constant needed for dimensional purposes.

12Notice that ϕ
(1)
αβ degenerates on the light-cone (its principal rank-1 spinors coincide), and

it becomes proportional to ϕ
(2)
αβ .

57



The (vacuum) double copy of this solution is the Schwarzschild solution, which

can be written in Kerr-Schild coordinates as

ds2(L) = dt2 − dx2 − dy2 − dz2 − κ2m

4
Φ(L) L(L)L(L) . (3.100)

It can also be written in static coordinates as

ds2(L) =

(
1− κ2m

4
Φ(L)

)
dt′2−dx2−dy2−dz2−

κ2m
4

Φ(L)

1− κ2m
4

Φ(L)

(xdx+ ydy + zdz)2

x2 + y2 + z2
,

(3.101)

with

dt′ = dt+
κ2m
4

Φ(L)

1− κ2m
4

Φ(L)

xdx+ ydy + zdz√
x2 + y2 + z2

. (3.102)

The commonly-seen Schwarzschild coordinates are obtained by changing from

rectangular to spherical coordinates,

ds2(L) =

(
1− κ2m

4
Φ(L)

)
dt′2 − dr2

1− κ2m
4

Φ(L)
− r2(dθ2 + sin2 θ dϕ2) , (3.103)

with r =
√
x2 + y2 + z2 and Φ(L) = (4πr)−1.

Following the same steps as in the Lorentzian case, let us consider the case of split

signature discussed in previous sections. As we saw earlier (and as is discussed

in appendix A.2), the retarded Green’s function is

Φ =
Θ(t1 −

√
x2 + y2)

2π
√
t21 − x2 − y2

= Θ(t1 −
√
x2 + y2) Φ̂ , (3.104)

satisfying

(∂2t1 − ∂2x − ∂2y) Φ = δ(t1)δ(x)δ(y) . (3.105)

The causal boundary condition breaks the t1 parity. There are major differences

with respect to the Lorentzian Green’s function, including the singularity

structure. The Lorentzian Green’s function is singular only at the origin — the

locus of the delta-function source. The split-signature Green’s function is singular

along the future light-cone, even though it is only sourced at the origin of the

light-cone. This singularity, both via the denominator and via the discontinuity

of the step function, requires some care but, as was seen previously, presents no

difficulty in Fourier space.

58



The associated gauge field is

A = QΦdt2 . (3.106)

We can now try to proceed to obtain the “Kerr-Schild” gauge, but two apparent

difficulties arise. The first is that a complex gauge transformation is required

for the gauge field to be null. This is acceptable as a means to obtain a gravity

solution in complex Kerr-Schild form, but which can be made real by a complex

diffeomorphism.13 The second difference is more subtle and is related to the

breaking of t1 time reversal symmetry: the Green’s function is not solely a

function of t21 − x2 − y2. Let us proceed in the region t1 >
√
x2 + y2, strictly

inside the future (3D) light-cone, since the subtlety only affects the light-cone.

Then we can obtain the complex ‘Kerr-Schild’ gauge,

t1 >
√
x2 + y2 : A(KS) = Q Φ̂ dt2 −

Q

2πi
d log

√
t21 − x2 − y2

r0
= Q Φ̂L ,

L = dt2 + i
t1dt1 − xdx− ydy√

t21 − x2 − y2
. (3.107)

The exact gravity solution, in complex Kerr-Schild coordinates, is then given as

t1 >
√
x2 + y2 : ds2 = dt22 + dt21 − dx2 − dy2 − κ2m

4
Φ̂LL . (3.108)

It can be expressed in terms of real coordinates as

t1 >
√
x2 + y2 :

ds2 =

(
1− κ2m

4
Φ̂

)
dt′2

2 + dt21 − dx2 − dy2 +
κ2m
4

Φ̂

1− κ2m
4

Φ̂

(t1dt1 − xdx− ydy)2

t21 − x2 − y2
,

(3.109)

using

dt′2 = dt2 − i
κ2m
4

Φ̂

1− κ2m
4

Φ̂

t1dt1 − xdx− ydy√
t21 − x2 − y2

. (3.110)

13In what regards complexification, this situation is analogous to the double copy
interpretation of the Taub-NUT solution from the dyon, and more generally of generic type
D vacuum solutions.
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Now it is clear how to extend the solution beyond t1 >
√
x2 + y2 ,

ds2 =

(
1− κ2m

4
Φ

)
dt′2

2 + dt21 − dx2 − dy2 +
κ2m
4

Φ

1− κ2m
4

Φ

(t1dt1 − xdx− ydy)2

t21 − x2 − y2
.

(3.111)

This gives us the final answer of the exact gravity solution.14 To check its

consistency with the previous linearised result, we can put (3.109) in de Donder

gauge. This can be done by applying the diffeomorphism generated by

ξ =
κ2m

16π
d log

√
t21 − x2 − y2

r0
=
κ2m

8
Φ̂ (t1dt1 − x dx− y dy) . (3.114)

The resulting linearised metric is

hµν = −κm
2

Φ̂

(
uµuν −

1

2
ηµν

)
. (3.115)

Once again, this result is valid inside the lightcone. If we wish to extend it outside,

we can replace Φ̂ by Φ, recovering (3.86).

3.5 Analytic Continuation to Lorentzian Signature

The discussions above focus on split signature, but there are direct implications

for Lorentzian signature, via analytic continuation.

Let us compare again the Green’s functions. In the split-signature case, we chose

boundary conditions such that the Green’s function is

Φ =
Θ(t1 −

√
x2 + y2)

2π
√
t21 − x2 − y2

, (3.116)

14We could also write the line element in coordinates analogous to the Schwarzschild spherical
coordinates, but would have to split into spacetime regions. Inside the light-cone, with χ =√
t21 − x2 − y2 and Φ̂ = (2πχ)−1, we pick t1 = χ coshψ inside the future light-cone and t1 =

−χ coshψ inside the past light-cone, obtaining

t21 > x2 + y2 : ds2 =

(
1− κ2m

4
Θ(t1)Φ̂

)
dt′2

2 +
dχ2

1− κ2m
4 Θ(t1)Φ̂

− χ2(dψ2 + sinh2 ψ dϕ2) .

(3.112)
Outside the light-cone, with χ̃ =

√
x2 + y2 − t21, we can write

t21 < x2 + y2 : ds2 = dt′2
2 − dχ̃2 + χ̃2(−dψ̃2 + sin2 ψ̃ dϕ2) . (3.113)
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not causal

causal

particle

Figure 3.5 The left image shows the 4D light-cone in split signature. The
“inner” part of the cone contains all the events that are not causally
connected to the vertex, whereas the events in the “exterior” can
be reached by causal curves. On the right, the diagram shows the
support of the Green’s function for our choice of t1-retarded boundary
conditions. The point particle trajectory is represented by the thick
line moving along the t2 axis. The shaded surface is t1 − |x| = 0,
which contains the radiation. The dashed lines enclose the region
where the retarded Green’s function is non-zero, i.e. the t1-future of
the particle. The dotted volume is the t1-past of the particle.

satisfying

(∂2t1 − ∂2x − ∂2y) Φ = δ(t1)δ(x)δ(y) . (3.117)

Since we have the 3D wave operator, we made a choice that exhibits causality in

the subspace {t1, x, y} by picking the retarded Green’s function. This is shown

in figure 3.5, where the support of the retarded Green’s function is represented

as a dashed volume.

We could have picked a t1-symmetric Green’s function, which is perhaps more

natural from the point of view of analytic continuation to Lorentzian spacetime.

With the latter choice, we would have

Φt1sym =
Θ(t21 − x2 − y2)

4π
√
t21 − x2 − y2

. (3.118)

This follows from the fact that equation (3.117) is satisfied by both the

retarded Green’s function (3.116), which is supported on the future light cone,

and the advanced Green’s function, obtained from (3.116) by the substitution

t1 −
√
x2 + y2 → t1 +

√
x2 + y2 in the argument of the theta function. Then

Φt1sym is the average of the retarded and advanced Green’s functions and has

support on the dashed and dotted volumes in figure 3.5.15

15We could also have chosen the Green’s function to be Θ(x2 + y2 − t21)/(4π
√
x2 + y2 − t21),
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Now, if we perform an analytic continuation to the Lorentzian case via t1 → iz,

we obtain −iΦ(L), with

Φ(L) =
1

4π
√
x2 + y2 + z2

(3.119)

satisfying

−(∂2x + ∂2y + ∂2z ) Φ
(L) = δ(x)δ(y)δ(z) . (3.120)

From this Green’s function, we can construct solutions in electromagnetism and

in gravity, and they obviously correspond to the Coulomb and Schwarzschild solu-

tions, respectively. Therefore, the discussions above concerning the description of

solutions in terms of scattering amplitudes and the origin of the classical double

copy from the double copy of scattering amplitudes extend to the Lorentzian case.

The three-point scattering amplitudes that underlie those discussions would then

be supported on complex kinematics.

3.6 Non-diagonal double copies: NS-NS fields

As a final application of our set up we want to now study how the double copy

can source the following extra fields: dilatons and axions. In fact, in general

the duality will not only generate pure Einstein gravity, but more general NS-NS

gravity. Besides the graviton, this theory includes a scalar field ϕ, the dilaton, and

a two-form field Bµν known as the B-field or the Kalb-Ramond field. A complete

classical double copy map should include all three fields on its gravitational side.

Examples of such maps have been found using double field theory, both for certain

exact solutions [116, 130, 161, 162, 185] and for perturbative solutions [210, 211].

In all these studies, the map is written in terms of fields, in contrast to the Weyl

double copy, where the map relates curvatures, which are gauge invariant at the

linearised level.

We will address this challenge by investigating a generalised curvature that

packages all the NS-NS fields in geometric degrees of freedom, and show how

this is sourced by a “non-diagonal” type of double copy. On the amplitude side

we will also endow amplitude with both magnetic and spin charges. These new

couplings, at tree-level-three-point, will be incorporated by exponential phases

which is acausal from the 3D perspective, but for which the analytic continuation below seems
perhaps more straightforward.
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according to [23, 107].

Let us go back to the classical geometric side of the story for a moment. In the

appendix A.3 we have summarised the main geometric aspects relevant to this

section. For the main purpose of this section, we will only need to know how the

Riemann tensor packages the new NS-NS data. This is sometimes referred to as

“fat” Riemann or generalised curvature field. In what follows, we will restrict to

linearised fields. Then, the curvature can be now written as

Rµν
ρσ = −κ

2

(
∂[µ∂

[ρhν]
σ] − δ[µ

[ρ∂ν]∂
σ]ϕ− ∂[µ∂

[ρBν]
σ]
)

= −κ
2

(
∂[µ∂

[ρhν]
σ] − δ[µ

[ρ∂ν]∂
σ]ϕ+ ϵρσλ[µ∂ν]∂λσ

) (3.121)

Note that the second expression follows from dualisation in d = 4:

Hµνρ = ∂[µBνρ] = −ϵµνρσ∂σσ , (3.122)

allowing us to characterise the B-field as a scalar.

Soon, we will see how the different products of gauge theory amplitudes are

associated to the different components of the generalised curvature. To this end,

we will work in d = 4 where it is convenient to use the spinor-helicity formalism

for the amplitudes. The relation between the amplitudes and the generalised

curvature is, therefore, much clearer if we also express the latter spinorially. Thus,

we decompose the generalised Riemann tensor as

Rαα̇ββ̇γγ̇δδ̇ = Xαβγδ ϵα̇β̇ ϵγ̇δ̇ + X̃α̇β̇γ̇δ̇ ϵαβ ϵγδ

+Φαβγ̇δ̇ ϵα̇β̇ ϵγδ + Φ̃α̇β̇γδ ϵαβ ϵγ̇δ̇ ,
(3.123)

where we use the bold typeface in order to distinguish the spinors from those of

Rµνρσ.

At linearised level, we can compare the right-hand side of (3.123) to the

right-hand side of (3.121): the first line of the former corresponds to the

graviton contribution, whereas the second line corresponds to contributions from

combinations of the dilaton and the axion (which is the single degree of freedom of

the B-field in d = 4). Our next step is to characterise these components through

amplitudes. In this part of the chapter, our emphasis will be more on the gravity

side than the gauge theory.
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3.6.1 NS-NS fields from Amplitudes

Here, the main ingredient will be the following double copy map

MηLηR = − κ

4Q2
cηLηR A(L)

ηL
A(R)

ηR
, (3.124)

where there are four choices for (ηL, ηR):

(+,+) , (−,−) , (+,−) , (−,+) . (3.125)

These correspond, respectively, to the gravity field being: positive-helicity

graviton, negative-helicity graviton, complex scalar (dilaton and axion), and

conjugate complex scalar. In general, we allow for four distinct couplings cηLηR
of our massive particle to these gravity fields. Any choice of these couplings will

lead to a linearised gravity solution. In practice, we will be most interested in

the case where the particle couples equally to the two chiralities, in which case

we take c++ = c−− and c+− = c−+.

Consider the following mode expansion of the fat Riemann operator

Rµνρσ = κ Re

∫
dΦ(k)

[∑
ηLηR

aηLηR ε
[µ
ηL
(k)kν]ε[ρηR(k)k

σ]

]
e−ik·x . (3.126)

The operator version of the linearised spinor coefficients are computed by

contracting with the sigma matrices as before [212], except now we have more

possibilities

Xαβγδ = σµν
αβσ

ρσ
γδ Rµνρσ , X̃α̇β̇γ̇δ̇ = σ̃µν

α̇β̇
σ̃ρσ

γ̇δ̇
Rµνρσ , (3.127)

Φαβγ̇δ̇ = σµν
ABσ̃

ρσ

γ̇δ̇
Rµνρσ , Φ̃α̇β̇γδ = σ̃µν

α̇β̇
σρσ

γδ Rµνρσ . (3.128)
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The resulting spinors are

Xαβγδ = κ Re 2

∫
dΦ(k) a−−|k⟩α|k⟩β|k⟩γ|k⟩δ e−ik·x , (3.129)

X̃α̇β̇γ̇δ̇ = κ Re 2

∫
dΦ(k) a++[k|α̇[k|β̇[k|γ̇[k|δ̇ e

−ik·x , (3.130)

ΦABγ̇δ̇ = −κ Re 2

∫
dΦ(k) a−+ |k⟩α|k⟩β|γ̇[k|δ̇ e

−ik·x , (3.131)

Φ̃α̇β̇γδ = −κ Re 2

∫
dΦ(k) a+− [k|α̇[k|β̇|k⟩γ|k⟩δ e

−ik·x . (3.132)

In order to link these objects to the amplitudes (3.124), we would like to use the

equivalent of the coherent state for the NS-NS fields. This is easily generalized

from (3.47) as

S|ψ⟩ = 1

N

∫
dΦ(p)φ(p) exp

[ ∫
dΦ(k) i δ̂(2p · k)

×

(∑
ηLηR

M−ηL,−ηR(k) a
†
ηLηR

(k)

)]
|p⟩ .

(3.133)

Hence, we conclude that

aηLηR(k)S|ψ⟩ = δ̂(2p · k) iM−ηL,−ηR(k)S|ψ⟩

=
δ

δa†ηLηR(k)
S|ψ⟩ .

(3.134)

Equation (3.134) implies that we can easily exchange annihilation operators for

amplitudes inside expectation values, so that we find

Rµνρσ(x) = κ Re i

∫
dΦ(k)δ̂(2k ·p)

[∑
η

M−ηL,−ηR ε
[µ
ηL
(k)kν]ε[ρηR(k)k

σ]

]
e−ik·x .

(3.135)

The same can be done in the spinor coefficients. The application of the map
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(3.124) results in

Xαβγδ = −κ
2c++

2Q2
Re i

∫
dΦ(k)δ̂(2p · k)A(L)

+ A(R)
+ |k⟩α|k⟩β|k⟩γ|k⟩δ e−ik·x ,

(3.136)

X̃α̇β̇γ̇δ̇ = −κ
2c−−

2Q2
Re i

∫
dΦ(k)δ̂(2p · k)A(L)

− A(R)
− [k|α̇[k|β̇[k|γ̇[k|δ̇ e

−ik·x , (3.137)

Φαβγ̇δ̇ = +
κ2c+−

2Q2
Re i

∫
dΦ(k)δ̂(2p · k)A(L)

+ A(R)
− |k⟩α|k⟩β[k|γ̇[k|δ̇ e

−ik·x ,

(3.138)

Φ̃α̇β̇γδ = +
κ2c−+

2Q2
Re i

∫
dΦ(k)δ̂(2p · k)A(L)

− A(R)
+ [k|α̇[k|β̇|k⟩γ|k⟩δ e

−ik·x .

(3.139)

The above expressions make it clear that every quadratic term in the amplitudes

sources a different component of the spinorial curvature. We note that the double

copy structure is remarkably explicit when all fields are expressed in a spinorial

way.

Let us specify the amplitudes now. In earlier sections, we constructed gravity

starting from the most basic amplitude in QED for a static point particle. Now,

we will generalise this amplitude to allow for magnetic charge and classical spin.

In fact, as we will soon see, a non trivial axion field can only be sourced if there

is an additional degree of freedom in the gauge amplitude.

The magnetic charge will be achieved by an electromagnetic duality rotation,

which transforms the amplitudes as [23, 213]

Aη(k) → Aη(k) e
θ η , (3.140)

Notice that the rotation parameter has been continued from Lorentzian space

θ → −iθ as well.16 Angular momentum can be induced by a Newman-Janis shift

[107, 214]. It acts on the amplitudes as

Aη(k) → Aη(k) e
i η k·a . (3.141)

16This can be justified by noting that the stress energy tensor has to be invariant under
duality transformations.

66



The vector aµ is related to the classical angular momentum. It will be taken

to lie along the Wick rotated coordinate: aµ = (a, 0, 0, 0). Consequently, the

Lorentzian exponent −η k · a has been analytically continued to split signature

as i η k · a. Neither of these transformations obstructs the exponentiation leading

to the coherent state already derived.

Inspired by this we, consider the gauge amplitudes

A(L)
η = −2Q(p · εη)eη(θL+ik·aL),

A(R)
η = −2Q(p · εη)eη(θR+ik·aR),

(3.142)

which under the double copy map imply that, for the spinors above

Xαβγδ(x) = eθ̄XJNW
αβγδ(x− ā) ,

X̃α̇β̇γ̇δ̇(x) = e−θ̄X̃JNW
α̇β̇γ̇δ̇

(x+ ā) ,

Φαβγ̇δ̇(x) = e∆θΦJNW
αβγ̇δ̇

(x−∆a) ,

Φ̃α̇β̇γδ(x) = e−∆θΦ̃JNW
α̇β̇γδ

(x+∆a) ,

(3.143)

where we have defined

θ̄ := θL + θR , ∆θ := θL − θR , (3.144)

ā := aL + aR, ∆a := aL − aR . (3.145)

The superscript JNW refers to the solution where both single copies are Coulomb.

In fact, in the previous work [105, 123, 185], it was argued that the most general

real spacetime that can be interpreted as a double copy of the Coulomb solution is

the solution discovered by Janis, Newman and Winicour (JNW) [215]. The JNW

solution has two parameters: mass (‘graviton parameter’) and dilaton parameter;

Schwarzschild is the case with vanishing dilaton parameter. In the framework

we present here, the two parameters arise from the linear combination of the

real graviton field, such that (ηL, ηR) = (±1,±1), and the real dilaton field with

vanishing axion, (ηL, ηR) = (±1,∓1).

Notice that, at linearised level, the first two spinors in (3.143) match those of the

Schwarzschild solution. The various parameters are elegantly distributed over the
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different spinors. The parameter ā corresponds to the spin of Kerr, and appears

as expected via the Newman-Janis shift, while θ̄ corresponds to the split-signature

version of the rotation between the mass and the NUT parameter; together, these

two parameters correspond to the Kerr-Taub-NUT solution [23]. The parameters

∆a and ∆θ correspond, respectively, to a novel type of Newman-Janis shift for

the axion and dilaton, and to the standard axion-dilaton supergravity duality

transformation.

The spinorial language is better fitted for displaying the double copy, but it is

instructive to think about the dilaton and axion further. We can map (3.135) to

the field degrees of freedom using (3.121), together with the mode expansions of

the fields

h
µν(x) = 2 Re

∑
η

∫
dΦ(k)aηη(k)ε

µ
η(k)ε

ν
η(k) e

−ik·x , (3.146)

ϕ(x) = 2 Re

∫
dΦ(k) aϕ(k) e

−ik·x , (3.147)

B
µν(x) = 2 Re

∫
dΦ(k) aB(k)

(
εµ+(k)ε

ν
−(k)− εµ−(k)ε

ν
+(k)

)
e−ik·x . (3.148)

Substituting in (3.121) implies that (3.135) can be re-expressed as

Rµνρσ(x) = κ Re

∫
dΦ(k)

[∑
η

aηε
[µ
η (k)k

ν]ε[ρη (k)k
σ]

+ aϕ k
[µην][ρkσ] + aB k

[µ(ε
ν]
+ε

[ρ
− − ε

ν]
−ε

[ρ
+)k

σ]

]
e−ik·x . (3.149)

The first term in the second line of (3.149) needs simplification. This is achieved

by expanding the flat metric in terms of the null tetrad

k[µην][ρkσ] = −k[µεν]+ε
[ρ
−k

σ] − k[µε
ν]
−ε

[ρ
+k

σ] . (3.150)

Comparison to (3.126) then implies the following relations between annihilation

operators

a++ = a+ , a−+ = aϕ + aB ,

a−− = a− , a−+ = aϕ − aB ,
(3.151)
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and hence the corresponding relation for amplitudes

Mηη = − κ

4Q2
cηη A(L)

η A(R)
η ,

Mϕ = − κ

4Q2

1

2

(
c+−A(L)

+ A(R)
− + c−+A(L)

− A(R)
+

)
,

MB = − κ

4Q2

1

2

(
c+−A(L)

+ A(R)
− − c−+A(L)

− A(R)
+

)
.

(3.152)

In the next sections this prescription will be put into practice to compute the

classical fields. In the following we will restrict to the case c++ = c−− and

c+− = c−+ since these solutions naturally continue to real solutions in Minkowski

signature.

3.6.2 Duality rotation

We will now turn to a concrete example. Consider left and right amplitudes that

differ in their EM duality angle,

A(L)
η = −2Q(p · εη)eθLη,

A(R)
η = −2Q(p · εη)eθRη,

(3.153)

the effect of this difference will be the existence of a rotation between dilaton and

axion. The double copied amplitudes are obtained by applying the map (3.152),

Mη = −c++κm
2(u · εη)2 eθ̄η ,

Mϕ =
κ c+−

2
p2 cosh∆θ =

c̃ m

2
cosh∆θ ,

MB =
κ c+−

2
p2 sinh∆θ =

c̃ m

2
sinh∆θ ,

(3.154)

where we have defined c̃ = κ c+−m. To test the effect of the rotation on the

metric, let us compute the transformed Weyl tensor,

W µνρσ(x) = −Re iκ2 c++m
2

∫
dΦ(k) δ̂(2k · p) e−ik·x

[
(ε+ · u)2k[µεν]−k[ρε

σ]
− e

θ̄

+(ε− · u)2k[µεν]+k[ρε
σ]
+ e

−θ̄
]
.

(3.155)
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A little algebra shows that this can be rewritten as

W µνρσ(x) = −Re iκ2 c++m
2

∫
dΦ(k) δ̂(2k · p) e−ik·x

×
[
cosh θ̄

(
k[µuν]k[ρuσ] +

1

2
k[µην][ρkσ]

)
−1

2
sinh θ̄ ϵµντλ

(
k[τuλ]k

[ρuσ] +
1

2
k[τδ

[ρ
λ]k

σ]

)]
.

(3.156)

The first term, with the hyperbolic cosine, corresponds to the Schwarzschild

solution, expression (3.26) of [1], which we will denote W µνρσ
Schw.. Making use of

this notation leads to the compact result

W µνρσ = cosh θ̄ W µνρσ
Schw. − sinh θ̄

1

2
ϵµντλ W Schw. ρσ

τλ . (3.157)

The second term represents the dual of WSchw., in analogy with electromagnetic

duality. We conclude that the angle θ̄ indeed rotates the mass and the NUT

charge of the solution [121, 213].

The Weyl tensor we have computed represents the graviton degrees of freedom in

Rµνρσ. The next step is to obtain the classical expectation value of the dilaton and

axion degrees of freedom. Instead of computing the corresponding components

of Rµνρσ, we will obtain the field profiles ϕ and σ directly.

Let us start with the classical expectation value of the dilaton field, ϕ =

⟨ψ|S†ϕS|ψ⟩. We use the field operator (3.147), exponentiation of the coherent

state (3.133) with the amplitude given in (3.154). The result is

ϕ(x) = c̃ m cosh∆θ Re i

∫
dΦ(k) δ̂(2p · k)e−ik·x . (3.158)

Performing the integration (see the appendix A.2), we obtain

ϕ(x) = c̃ cosh∆θ
Θ(ρ2)

8π

1

ρ
. (3.159)

We will now tackle the axion field. Recalling (3.148) and taking a derivative, we

quickly find

Hµνρ(x) =
1

2
∂[µBνρ](x) =

c̃

2
sinh∆θRe

∫
dΦ(k)δ̂(u · k)k[µε+ν ε−ρ] e

−ik·x . (3.160)

At this stage, it is very helpful to note that

ϵµνρσk[νε
+
ρ ε

−
σ] = k[µnνερ+ε

σ]
−k[νε

+
ρ ε

−
σ] = −3! kµ , (3.161)
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having expressed the Levi-Civita in a convenient basis ϵµνρσ = k[µnνερ+ε
σ]
− . Hence,

⇒ ϵµνρσHνρσ(x) = −3 c̃ sinh∆θ Re

∫
dΦ(k) δ̂(k · u) kµ e−ik·x

= −3 c̃ sinh∆θ ∂µ
(
Θ(ρ2)

4π

1

ρ

)
.

(3.162)

This expression provides direct information on the axion σ. To see how, note

from equation (A.40), expanded to leading order, that the relation between H

and σ is simply

Hµνρ = −ϵµνρσ ∂σσ ⇒ ϵµνρσHνρσ = −3! ∂µσ . (3.163)

Comparing with the previous expression, we find

σ(x) = c̃ sinh∆θ
Θ(ρ2)

8π

1

ρ
, (3.164)

which vanishes if ∆θ → 0.

3.6.3 Newman-Janis shift

Now we turn our attention to the spin parameter. Just as we did in the previous

section, we can use the prescription (3.124) to source an axion and a dilaton.

However, we now consider products of gauge theory amplitudes with different

spins

A(L)
η = −2Q(p · εη)ei η aL·k,

A(R)
η = −2Q(p · εη)ei η aR·k.

(3.165)

These yield the following gravity amplitudes

Mη = −κ c++m
2(u · εη)2 ei η ā·k ,

Mϕ =
c̃ m

2
cos(∆a · k) ,

MB =
c̃ m

2
sin(∆a · k) .

(3.166)

Once more, the graviton components of the fat curvature tensor found in (3.135)

reduce to the Weyl tensor

W µνρσ(x) = κ c++ Re i

∫
dΦ(k)δ̂(2k ·p)e−ik·x

∑
η

Mηε
[µ
−ηk

ν]ε
[ρ
−ηk

σ]eiηk·ā. (3.167)
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It is not difficult to see that this matches the classical computation with a spinning

source. The linearised EOMs are, writing gµν(x) = ηµν + κhµν(x)

∂2hµν(x) = −κPµν
αβT

αβ(x), Pµν
αβ =

1

4
δ(µ(αδ

ν)
β) −

1

2
ηµνηαβ, (3.168)

with the following stress-energy tensor for Kerr [214, 216]

T µν(x) = m

∫
dτ u(µexp(ā ∗ ∂)ν)ρu

ρδ(4)(x− uτ) , (3.169)

where we defined (ā ∗ ∂)µν = ϵµνρσā
ρ∂σ. Solving (3.168) with the usual boundary

conditions, we find the linearised metric

hµν(x) = −κm2Re i

∫
dΦ(k)δ̂(p · k)e−ik·x Pµν

αβ u
(αexp(−iā ∗ k)β)ρu

ρ

= −κm2Re i

∫
dΦ(k)δ̂(p · k)e−ik·x

[(
uµuν − 1

2
ηµν
)
cos(ā · k)

− i

2
u(µϵν)(ā, k, u)

sin(ā · k)
ā · k

]
,

(3.170)

from which the curvature can be computed. After some tedious but straightfor-

ward algebra one finds

W µνρσ(x) = −κ2m2Re i
∑
η

∫
dΦ(k)δ̂(2p · k)e−ik·x(εη · u)2k[µεν]−ηk

[ρε
σ]
−ηe

iηk·ā.

(3.171)

The result matches the one we obtained from amplitudes upon setting c++ = 1.

For the dilaton and the axion, the calculations are formally analogous to the ones

outlined in 3.6.2, except that now we have momentum dependent trigonometric

functions which characterise the spin mixing. We find for the dilaton

ϕ(x) =
c̃

2
Re i

∫
dΦ(k) δ̂(u · k)e−ik·x cos(∆a · k)

=
c̃

8
(S∆a,0(x) + S−∆a,0(x)) ,

(3.172)
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where the scalar potential is a straightforward extension of the one in (3.55)

Sa,θ(x) := 2Re i

∫
dΦ(k)δ̂(k · u) e−i k·(x−a)eθ

=
eθ

2π

Θ((t1 − a)2 − r2)√
(t1 − a)2 − r2

= eθS0,0(x− a).
(3.173)

The axion is instead given by

ϵµνρσHνρσ(x) = −3 c̃ ∂µRe i

∫
dΦ(k) δ̂(k · u) e−ik·x sin(∆a · k), (3.174)

telling us that the scalar σ is at leading order

σ(x) =
c̃

2
Re i

∫
dΦ(k) δ̂(u · k)e−ik·x sin(∆a · k)

=
c̃

8
(S∆a,0(x)− S−∆a,0(x)) ,

(3.175)

which is again vanishing in the spinless limit.

3.6.4 Comparison with known solutions

The linearised solution obtained in section 3.6.2 corresponds to an axi-dilaton

Taub-NUT black hole. This solution is known exactly; see (17), (19) in [217]. It

is interesting to check that our results agree with the linearisation of the known

solution. There, dilaton and axion are given as17

e−ϕ = (1 + ϵ2)
Λδ

ϵ2Λ2δ + 1
, σ =

ϵ(Λ2δ − 1)

ϵ2Λ2δ + 1
, (3.176)

where

Λ = 1− R0

R
,

δ R0 is the charge of the dilaton and ϵ is a duality rotation parameter between

dilaton and axion. Notice that R is the (3,1) signature equivalent of ρ. At

linearised level, the fields decouple and the metric is equivalent to Taub-NUT.

Expanding at linear order the other fields and defining ϵ = − tan ∆θ
2
, we find

ϕ = cos∆θ
δ R0

R
, σ = sin∆θ

δ R0

R
. (3.177)

17Ignoring factors of
√
3 that can be absorbed into δ at linear order..
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Our solution (3.159), (3.164) agrees with this up to an overall constant (c̃ =

16π δ R0). Then, ∆θ is just the parameter inside SL(2,R) that generates linear

rotations between dilaton and axion.

In the special case where θL = θR both single copies are identical, and we have

no mixing: ∆θ = 0. From (3.154), we see that this implies that the axion will

vanish, leaving a linearised solution that would be the equivalent to Taub-NUT

plus the dilaton. In [217], this corresponds to (17) and (18).

On the contrary, if θR = −θL, θ̄ vanishes and the resulting metric has vanishing

NUT charge. The result is a linearised Schwarzschild metric plus axion plus

dilaton, corresponding to the linearisation of (10) and (13) in [217].

When both rotation angles are zero, both the NUT charge and axion vanish. We

are left with a linearised JNW solution.

The solutions considered in section 3.6.3 involving spin are not so well understood

in the literature. There have been attempts to apply a Newman-Janis shift to the

JNW solution, with the prospects of obtaining a spinning generalisation. How-

ever, these claimed generalisations fail to satisfy the Einstein-dilaton equations

of motion [218]. Although linear, our solution might help to find a satisfactory

generalisation of the JNW metric with spin.

3.7 Discussion

Let us summarise the results gathered in this chapter. We used the building block

of the on-shell approach to scattering amplitudes, the three-point amplitude,

to study classical solutions in electromagnetism and in gravity. The three-

point amplitudes studied correspond to the emission of a messenger (photon or

graviton) by a charged/massive particle, and the classical solutions are precisely

the solutions sourced by the massive particle. In order for the three-point

amplitude to be non-trivial, we worked with a split-signature spacetime. The

alternative would have been to consider complexified momenta in Lorentzian

signature, as often done in the scattering amplitudes literature, but we found

the split-signature choice more straightforward, given that relevant quantities

like spinors are real. Moreover, split signature is interesting in its own right,

particularly regarding boundary conditions and the meaning of causality. We

discussed how our results are related via analytic continuation to Lorentzian
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signature.

Building on the KMOC formalism [49], we used the three-point amplitude

to determine the coherent state generated by the massive particle, which is

associated to the split-signature versions of the Coulomb and Schwarzschild

solutions, for electromagnetism and gravity respectively. We described how

to extract from that a classical field, namely via the expectation value of a

quantum operator on the coherent state, in the classical limit. As operators,

we considered the ‘curvatures’: the field strength in electromagnetism and the

spacetime curvature in vacuum (Weyl or Riemann, as they match in vacuum).

These are gauge-invariant quantities (for gravity, in the linearised approximation).

We found that the vacuum expectation value of these curvatures is an on-shell

Fourier transform of the corresponding three-point amplitudes. This is easier to

verify when we express the curvatures in terms of spinors, namely the Maxwell

and Weyl spinors.

The expressions we obtained for the Maxwell and Weyl spinors exhibit a Weyl-

type classical double copy in on-shell momentum space, which follows directly

from the double copy of the three-point scattering amplitudes. We then showed

that this leads to the previously known Weyl double copy in position space, which

applies to certain algebraically special classes of solutions [98, 128].

Then, we also used the Kerr-Schild-type classical double copy to obtain the exact

gravity solution, rather than the linearised one. This is, to our knowledge, the first

use of the classical double copy to write down a novel solution: the split-signature

version of Schwarzschild. Although this could also have been achieved by analytic

continuation of the Lorentzian Schwarzschild solution, with due attention paid to

the split-signature boundary conditions, it was easier for us to use the classical

double copy given that the split-signature boundary conditions were directly

related to those in gauge theory.

Finally, building upon knowledge gathered from the Coulomb-Schwarzschild

correspondence, we generalised our double copy map to source new types of

fields: axions and dilatons. These are obtained from more general gauge theory

amplitudes which involve additional magnetic and spin couplings. Although now

the classical spinor fields correspond to more complicated gravity solutions, the

underlying philosophy remains the same: the fundamental building block in (2, 2)

is still the simple three-point tree-level gauge theory amplitude. Furthermore, the

Weyl double copy structure continues to be straightforward at the spinorial level,
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confirming the power of on-shell variables.

The domain of applicability of the classical double copy is a natural question.

Although many previous results support these ideas, we have provided here the

ultimate connection to the double copy of scattering amplitudes. TheWeyl double

copy in on-shell momentum space is the amplitudes double copy.

This discussion brings the end of the chapter and at a good point to start the

next one. Indeed, we will now focus on NLO waveforms, this time in Minkowski

space signature.
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Chapter 4

One-Loop Waveforms: Radiation

and Reaction

4.1 Introduction

Gravitational waveforms sourced by compact binary coalescence events are now

the basic physical observable in precision studies of General Relativity. As we

argued in the introduction, these waveforms are closely related to the Riemann

curvature: in the transverse traceless gauge, the waveform’s second derivative is

a curvature component.

In this chapter, we will make heavy use of generalised unitarity [88, 89] to

study these objects. This method allows us to construct loop-level scattering

amplitudes from tree amplitudes. We can further combine the double copy and

generalised unitarity, effectively building the dynamical information necessary for

gravitational waveforms from tree amplitudes in Yang-Mills theory. The union of

generalised unitarity and the double copy has already proven very fruitful in the

study of General Relativity, and provides a fresh perspective on the relativistic

two-body problem [4–33, 51, 74, 75, 96, 219–229].

We make use of a method for constructing radiation fields from amplitudes which

has been developed in recent years [8, 33, 42, 44, 49, 137, 174, 230]. Similarly to

the previous chapter, the basic idea is to use a quantum-mechanical language

to describe the event; the physical observable to be computed becomes the

expectation value of the Riemann curvature (this time in (3, 1) signature). As
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we will see, the formalism is general and can be applied to field strengths in a

variety of theories: electromagnetism, Yang-Mills theory, and gravity.

In this chapter, we build on previous work which studied scattering encounters

between classical, point-like objects at leading order (LO) [33, 44, 48, 49, 137].

We describe the structure of field strength observables at next-to-leading order

(NLO) in terms of scattering amplitudes. As we have hinted at in the introductory

section 2.1, the structure of on-shell observables is remarkably simple. These are

always made of two types of contributions: one which is linear in the amplitude

and another one with cuts of amplitudes. We will see this here as well, applied

to waveforms. At NLO, these will turn out to be associated with the real and

imaginary parts of a one-loop five-point amplitude (the latter being related to

cuts). We will see that the imaginary part has the classical interpretation of the

portion of radiation emitted by an object accelerating under its own self-field.

That is, the imaginary part arises as a consequence of radiation reaction at one

loop order. This radiation from radiation-reaction is determined by Compton

amplitudes in electrodynamics, YM theory, and in gravity. Our treatment makes

it clear that this aspect of radiation reaction double-copies in a straightforward

manner at NLO.

We begin in section 4.2 with a discussion the general structure of field-strength

observables at NLO before describing some technical simplifications we can take

advantage of at this order in section 4.3. After those preliminaries, we dive

into the main computations of the chapter. First, in section 4.4, we determine

the radiation at one loop which is associated with the real part of the scattering

amplitude. This part of the radiation field is classically associated with essentially

conservative forces (eg the Lorentz force in electromagnetism). Then, we inspect

the role of the imaginary part in section 4.5. This will turn out to be related to

radiation reaction and dissipative forces. Finally, we address infrared divergences

in 4.6 and then we conclude.

4.2 Field strengths from amplitudes

Our goal is to compute the radiation field generated by a scattering event involv-

ing two point-like classical objects using the methods of scattering amplitudes.

The basic observable of interest is the field strength (in electrodynamics and YM

theory) or the Riemann curvature (in gravity), both of which are very similar in
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structure; we will refer to both generically as “field strengths”. In this section,

we explain how to determine these field strengths from scattering amplitudes at

next-to-leading order accuracy. We begin with a short review of the connection

between amplitudes and observables, focusing on the case of the field strength.

4.2.1 States and observables

Field strengths, as observables in themselves, were first discussed from the

perspective of amplitudes in references [1, 33] and were recently reviewed

in [231, 232]. Amplitudes are quantum-mechanical objects, so we must start

by specifying an initial quantum state which happens to be in the domain of

validity of the classical approximation. If we also arrange initial conditions so

that we may rely on the classical approximation throughout the scattering event,

the equivalence principle guarantees that the quantum treatment will agree with

a classical treatment up to small quantum corrections which we systematically

drop. As in the previous chapter, we will follow the notation of KMOC closely

below.

We choose our initial state to be the usual two-particle one

|ψ⟩ =
∫

dΦ(p1, p2)ϕb(p1, p2)|p1, p2⟩ , (4.1)

with

ϕb(p1, p2) ≡ eib1·p1eib2·p2ϕ1(p1)ϕ2(p2) , (4.2)

being a sharply-peaked wavefunction on classical momenta values. The two-

particle wavefunction in equation (4.2) displaces particle i by a distance bi relative

to an origin; then the impact parameter is b12 = b1 − b2.

Our basic task is to compute the future expectation value of a field strength

operator. In Yang-Mills theory, the relevant operator is the field strength tensor

F
a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabc

A
b
µA

c
ν . (4.3)

There is one immediate simplification from working in the far-field limit. In

the far field, the expectation value of the Yang-Mills potential A(x) is inversely

proportional to the large radius r between the observer and the scattering event.

We will only be interested in this leading 1/r behaviour. As a result we may
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replace the full non-Abelian field strength with its abelianised version:

F
a
µν ≃ ∂µA

a
ν − ∂νA

a
µ . (4.4)

In gravity, we are only interested in the expectation value of the linearised

Riemann tensor for the same reason. It may be worth emphasising that there is

still non-linear (non-Abelian) dynamics in the core of spacetime.

The state in the far future is S|ψ⟩ since the S matrix is the all-time evolution

operator. Placing our detector at a position x near lightlike future infinity, the

observable of interest to us in Yang-Mills theory is

F a
µν(x) ≡ ⟨ψ|S†

F
a
µν(x)S|ψ⟩ . (4.5)

As we did before, we connect with scattering amplitudes using the mode

expansion for the quantum field Aa
µ:

A
a
µ(x) =

∑
η

∫
dΦ(k)

[
εηµ(k)a

a
η(k)e

−ik·x + h.c.
]
, (4.6)

so that

F a
µν(x) = 2Re

∑
η

∫
dΦ(k)

[
−ik[µεην](k)⟨ψ|S

†aaη(k)S|ψ⟩e−ik·x
]
. (4.7)

Most of our focus in this chapter will be on the computation of ⟨ψ|S†aaη(k)S|ψ⟩.
Once this quantity is known, an explicit expression for the field strength can be

found by integration.

In gravity, defining the curvature expectation

Rµνρσ(x) ≡ ⟨ψ|S†
Rµνρσ(x)S|ψ⟩ , (4.8)

it similarly follows that

Rµνρσ(x) = κRe
∑
η

∫
dΦ(k)

[
k[µε

η
ν](k)k[ρε

η
σ](k)⟨ψ|S

†aη(k)S|ψ⟩e−ik·x
]
. (4.9)

We have introduced the annihilation operator aη(k) of a graviton state with

helicity η and momentum k. As in gauge theory, the key dynamical quantity

to be determined is ⟨ψ|S†aaη(k)S|ψ⟩.
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The field strength of equation (4.7) and the curvature (4.9) both involve an

integration over the phase space of a massless particle. At large distances, this

integral can be reduced to a one-dimensional Fourier transform using standard

methods (see [231, 232] for a recent review). Writing the observation coordinate

as x = (x0,x) and introducing the retarded time u = x0 − |x|, the results are

F a
µν(x) =

−1

4π|x|
2Re

∫ ∞

0

d̂ω e−iωu
∑
η

k[µε
η
ν](k) ⟨ψ|S

†aaη(k)S|ψ⟩ , (4.10)

in Yang-Mills theory, and

Rµνρσ(x) =
−κ
4π|x|

Re

∫ ∞

0

d̂ω e−iωu
∑
η

ik[µε
η
ν](k)k[ρε

η
σ](k) ⟨ψ|S

†aη(k)S|ψ⟩ ,

(4.11)

in gravity. Note that in both integrals (4.10) and (4.11) the momentum of the

messenger reads kµ = ω(1, x̂).

In terms of amplitudes and quantum field theory, then, the object we need to

compute is

αη(k) ≡ ⟨ψ|S†aη(k)S|ψ⟩ , (4.12)

where aη(k) is an annihilation operator for the relevant field. We will refer to this

quantity as the “waveshape”, since it is the parameter describing the coherent

state of radiation which has the same field strength as given in equation (4.7).

The connection between amplitudes, coherent states and radiation will be the

topic of the next chapter.

Having discussed the general connection between amplitudes and field strengths,

let us now understand how to construct the waveshape from perturbative

scattering amplitudes.

One obvious way to proceed is simply to extend the KMOC framework, as

previously done. We compute the matrix element by expanding S = 1 + iT .

This immediately leads to the leading order expression

αη(k) =

∫
dΦ(p′1, p

′
2, p1, p2)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2)δ̂

D(ptot) iA5,0(p1, p2 → p′1, p
′
2, kη) ,

(4.13)

where we are adopting the notation thatAn,L is an n point, L loop amplitude. The

waveshape is slightly more involved at one loop (order g5), where we encounter

81



two terms

αη(k) =

∫
dΦ(p′1, p

′
2, p1, p2)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2)δ̂

D(ptot) ( iA5,1(p1, p2 → p′1, p
′
2, kη)

+

∫
dΦ(p̃1, p̃2)δ̂

D(p̃tot)A5,0(p1, p2 → p̃1, p̃2, kη)A∗
4,0(p̃1, p̃2 → p′1, p

′
2)

)
,

(4.14)

with the delta functions imposing the usual conservation of energy and momen-

tum

ptot = p1 + p2 − p′1 − p′2 − k = 0, p̃tot = p̃1 + p̃2 − p′1 − p′2 = 0, (4.15)

for external states and across the cut.

It is easy to see that the structure of the one-loop waveshape (4.14) is indeed

very similar to the impulse described in the intoduction chapter [49]: one sums

(i times) the one-loop amplitude and the specific cut shown in equation (4.14).

However, here we find it to be very useful to rearrange the observable in a form

which clarifies the physics while also simplifying aspects of the computation.

4.2.2 Real and imaginary parts

One clue that there is another way of constructing the observable is the fact

that the two terms in (4.14), instruct us to sum i times the amplitude and the

cut of the amplitude. The Cutkowski rules however tell us that cuts arise from

imaginary parts of amplitudes, it is clear that the combination iA + CutA in

(4.14) is effectively removing an imaginary part of the one-loop amplitude then.

However, it is natural to ask whether the the cut in equation (4.14) gives the

complete imaginary part of the amplitude or just a contribution of it: we will

indeed find that other cuts can be taken. To make this clear we will soon proceed

with a better rearrangement for the waveshape than the one given in (4.14).

The usefulness of real and imaginary parts of amplitudes in the construction of

KMOC-style classical observables was first emphasised in reference [32] which

studied the impulse in classical scattering. The authors found that classically-

singular terms1 are absent in the real part of the amplitude, while singular terms

did appear in the imaginary part. These classically-singular terms cancelled

1These terms involve inverse powers of ℏ and must cancel in observables. They are sometimes
known as “superclassical” or “hyperclassical” terms.
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among the different contributions to the imaginary part. We will soon find an

analogous phenomenon in the waveshape.

Real and imaginary parts of amplitudes are intimately connected to unitarity of

the S matrix. To separate these parts of the amplitude, we first use S = 1 + iT

and the unitarity relation

−i(T − T †) = T †T (4.16)

to write the waveshape (4.12) as

αη(k) =
1

2
⟨ψ|iaη(k) (T + T †)− iaη(k)T

†T + 2T † aη(k)T |ψ⟩

=
1

2
⟨ψ|iaη(k) (T + T †)− [aη(k), T

†]T + T † [aη(k), T ]|ψ⟩ .
(4.17)

The first of these terms involves the combination (T +T †)/2; up to a momentum-

conserving delta function, this is the “real” part of the amplitude. It can be

evaluated by cutting one internal propagator, and replacing all others by principal

value prescriptions as we discuss below in section 4.3.4.

The other terms involve cuts of the amplitude and are therefore linked to its

imaginary part.

Because the cuts involve two T matrices (one conjugated), and we work at order

g5, it follows that we need one insertion of a g2 tree amplitude and a g3 tree

amplitude. There is a short list of possible amplitudes: at order g2, we encounter

four-point amplitudes involving four scalars, Compton-type amplitudes with two

scalars and two messengers, or four messenger amplitudes. At order g5 we simply

dress the order g2 amplitudes with one additional messenger. Furthermore, the

commutator [aη(k), T ] vanishes unless the corresponding amplitude contains at

least one outgoing messenger.

Let us first consider the term

αη(k) ⊃
1

2
⟨ψ|T † [aη(k), T ]|ψ⟩

=
1

2

∫
dΦ(p′1, p

′
2, p1, p2)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2) ⟨p′1, p′2|T † [aη(k), T ]|p1, p2⟩ .

(4.18)

The T matrix here acts on the incoming two-scalar state, and (because of the

commutator) must involve at least one outgoing messenger. The only possibility

in our list of order g2 and g3 amplitudes is the 2 → 3 amplitude involving radiation
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of one messenger as the two scalars scatter. Similarly ⟨p′1, p′2|T † must evaluate

to the four-point four-scalar amplitude as the only order g2 amplitude with two

final-state scalars. Thus2,

⟨p′1, p′2|T †[aη(k), T ]|p1, p2⟩ =

p1

p2

p′1

p′2k

. (4.19)

Now we turn to the final structure in our new formulation (4.17) of the waveshape,

namely

αη(k) ⊃ −1

2
⟨ψ|[aη(k), T †]T |ψ⟩

= −1

2

∫
dΦ(p′1, p

′
2, p1, p2)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2) ⟨p′1, p′2|[aη(k), T †]T |p1, p2⟩ .

(4.20)

First, consider the action of T on the initial state |p1, p2⟩. There are two

possibilities on our list of g2 and g3 trees: the 2 → 2 four scalar scattering

amplitude, or the 2 → 3 five-point amplitude involving four scalars and an

outgoing messenger. Considering first the order g2 possibility, the remaining

factor ⟨p′1, p′2|[aη(k), T †] must be the order g3 2 → 3 five-point amplitude. On

the other hand, if the T matrix contributes as the 2 → 3 five-point amplitude

then we must extract an order g2 amplitude from [aη(k), T
†]. The only order

g2 amplitude with one final messenger that we can insert here is the Compton

2Throughout this chapter, we adopt the convention of drawing massive particle lines as solid
lines. We will always indicate particle 1 with a red line and particle 2 with a blue one.
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amplitude. That is,

⟨p′1, p′2|[aη(k), T †]T |p1, p2⟩ =

p1

p2

p′1

p′2

k

+

p1

p2

p′1

p′2 k

+

p1

p2

p′1

p′2

k

.

(4.21)

The presence of Compton amplitudes in this cut is significant. In fact, we will

see that in the classical limit it is only these cuts which survive.

4.3 Technical simplifications

Given that the KMOC formalism is a “quantum-first” framework, the full

quantum structure of the waveshape αη(k) could also be constructed from

amplitudes using this formalism. While there are may be many interesting

aspects of the quantum-mechanical case (for instance the computation of quantum

corrections to coherent states), the focus on this thesis is on the classical

waveshape. Obviously the classical case is simpler than the full quantum case, and

we now wish to discuss the details and the simplifications we can take advantage

of to simplify our work. More specifically, we are interested in the classical limit

of small angle scattering, or the “post-Minkowski” expansion in the gravitational

context. This is the relativistically covariant perturbative expansion of classical

quantities which we introduced in (2.8).

4.3.1 Classical LO waveshape and heavy-particle crossing

We have seen the on-loop structure of the waveshape in (4.14) but let us go back

to the LO term for a moment. The waveshape (4.13) can be written at leading
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order as

αη(k) =

∫
dΦ(p′1, p

′
2, p1, p2)ϕ

∗(p′1, p
′
2)ϕ(p1, p2) e

ib1·(p1−p′1)eib2·(p2−p′2)

× iA5,0(p1, p2 → p′1, p
′
2, kη) δ̂

D(p′1 + p′2 + k − p1 − p2).

(4.22)

Again, let’s simplify this expression in the classical limit. This will allow us to

learn something new about the tree waveshape.

First, write the “outgoing” momenta3 as usual

p′i = pi + qi . (4.23)

The momenta qi are messenger momenta, satisfying4 k = −q1− q2. Applying the

classical considerations presented in the introduction chapters, the waveshape can

be simplified down to

αη(k) =

∫
dΦ(p1, p2)d̂

Dq1d̂
Dq2 δ̂(2p1 · q1)δ̂(2p2 · q2) |ϕ(p1, p2)|2 e−ib1·q1e−ib2·q2

× iA′∗
5,0(p1, p2 → p1 + q1, p2 + q2, kη) δ̂

D(k + q1 + q2) .

(4.24)

On the other hand, returning to equation (4.22) and instead setting

pi = p′i − qi , (4.25)

we find, using the same logic,

αη(k) =

∫
dΦ(p′1, p

′
2)d̂

Dq1d̂
Dq2 δ̂(2p

′
1 · q1)δ̂(2p′2 · q2) |ϕ(p′1, p′2)|2 e−ib1·q1e−ib2·q2

× iA5,0(p
′
1 − q1, p

′
2 − q2 → p′1, p

′
2, kη) δ̂

D(k + q1 + q2) .

(4.26)

There is nothing stopping us from dropping the primes in this equation, since p′i

are simply variables of integration.

Comparing equations (4.24) and (4.26), the only difference is in the details of the

momentum dependence in the tree amplitude. The wavefunction is unspecified;

we have only used properties it must have in the classical limit. We conclude that

3As our observable is an expectation value, the apparent in and out states are both in states.
Nevertheless it can be convenient at times to think of the primed momenta as outgoing.

4Sometimes, in the next chapter 5 we may use instead k = q1 + q2.
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A5,0(p1, p2 → p1 + q1, p2 + q2, kη) = A5,0(p1 − q1, p2 − q2 → p1, p2, kη) . (4.27)

This expression can only hold for the classical “fragment” of the amplitude, in

the sense of reference [4] (see next chapter): at tree level, the classical fragment

is simply the dominant term in the classical Laurent expansion. An alternative

perspective is that this crossing relation follows from the scale separation between

the heavy-mass scale m1 and m2 in the momenta of the scalar particles, and the

light scale of order q in the messengers.

The result, then, is a kind of crossing relation valid for heavy particle effective

theories.5 It essentially allows us to cross the messenger momentum leaving the

large particle momentum untouched. We will find this result is very useful below.

It is straightforward to check this heavy-particle crossing relation in explicit

examples: the QED amplitude is visible in equation 5.46 of reference [49] while

the gravitational five point case is written in equation 4.21 of reference [48]. In

both cases, heavy-particle crossing is achieved by eliminating the momentum k

in favour of q1 + q2, and then replacing qi → −qi. This has the effect of replacing
pi + qi with the desired pi − qi without clashing with the relation between k and

the qi (this relation does not pick up a sign in the crossing).

Returning to the waveshape, we shall write

αη(k) =

〈〈∫
d̂Dq1d̂

Dq2 δ̂(2p1 · q1)δ̂(2p2 · q2) e−ib1·q1e−ib2·q2 (· · · )
〉〉

(4.28)

at LO and NLO. Here the dots signify a general integrand, made of amplitudes

and cuts. The large angle brackets remind us that the result must be integrated

against the wavefunctions. However, once the integrand has been fully simplified

in the classical limit, in particular to cancel terms involving singular powers of

ℏ, the integrand is smooth on the scale of the wavepacket. As before, we take

the wavepacket size to zero, so that the wavepacket integral simply localises the

incoming momenta pi on their classical values.

5In fact, recently EFT/HEFT approaches have shown prominent results and applications.
Inspired by the success of heavy-quark effective theory [233–237], the HEFT approach
implements the classical limit as a large mass limit. For more on these see [15, 60, 74, 74,
75, 75, 225, 238].
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4.3.2 Vanishing cuts

Earlier, we advertised that certain cuts which contribute to the full quantum

waveshape cancel in the classical waveshape. We are now in a position to show

this in detail. The result of this subsection is that∫
dΦ(p′1, p

′
2, p1, p2)ϕ

∗(p′1, p
′
2)ϕ(p1, p2) e

ib1·(p1−p′1)eib2·(p2−p′2) δ̂D(p′1 + p′2 + k − p1 − p2)

×


p1

p2

p′1

p′2
k

−

p1

p2

p′1

p′2

k

 = 0 .

(4.29)

In other words, these two cuts make no contribution to the classical waveshape.

This cancellation can be interpreted as the cancellation of classically-singular

(“superclassical”) terms which occur in the five point one-loop amplitude. The

result can be seen as a generalisation of the removal of iterated trees in an

exponentiated form of the amplitude along the lines of the eikonal or radial action

at four points (we will see this more in detail soon in the next chapter).

To see how the cancellation works, we adjust the initial and final states under

the integral signs to reach∫
dΦ(p1, p2, p1 + q1, p2 + q2) |ϕ(p1, p2)|2 e−ib1·q1e−ib2·q2 δ̂D(k + q1 + q2)

×


p1

p2

p1 + q1

p2 + q2
k

−

p1 − q1

p2 − q2

p1

p2

k

 .

(4.30)
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Writing out the cut, this becomes〈〈∫
d̂Dq1d̂

Dq2 δ̂(2p1 · q1)δ̂(2p2 · q2)δ̂D(k + q1 + q2) e
−ib1·q1e−ib2·q2

×
∫

d̂Dℓ1d̂
Dℓ2 δ̂(2p1 · ℓ1)δ̂(2p2 · ℓ2) δ̂D(ℓ1 + ℓ2 + k)

[A5,0(p1, p2 → p1 + ℓ1, p2 + ℓ2, k)A4,0(p1 + ℓ1, p2 + ℓ2 → p1 + q1, p2 + q2)

−A4,0(p1 − q1, p2 − q2 → p1 − ℓ1, p2 − ℓ2)A5,0(p1 − ℓ1, p2 − ℓ2 → p1, p2, k)]

〉〉
.

(4.31)

Using heavy-particle crossing, the two five point trees are shown to be equal. As

for the four point trees, one could use a result analogous to this crossing to show

that they match. Alternatively, it is a simple point that these trees only depend

on the t-channel Mandelstam variable, which is the same in both terms, times

the point-particle data. Thus, we conclude that the result vanishes.

4.3.3 Vanishing integrals

In our one-loop computations, we will encounter topologies including pentagons,

boxes, triangles etc. Here we largely work at the level of the integrand.

Nevertheless it is very useful to simplify our integrand by dropping terms which

integrate to zero.

The situation with loop integrals in the classical limit at four-points at one and

two loops is very well understood and is thoroughly discussed for example in

references [8, 14]. There are some similarities between four and five points. For

example, we note that∫
d̂Dℓ

(ℓ− q1)
2

ℓ2(ℓ− q1)2(p1 · ℓ)(p2 · ℓ)
= 0 . (4.32)

One viewpoint is that this occurs because the integral is scaleless in dimensional

regulation. An alternative viewpoint is that the integral is irrelevant classically

with any choice of regulator because it leads to a contact term connecting the

two point-like particles. These contact terms are only non-vanishing outside the

domain of validity of the classical theory when the two particles are spatially

separated by less than their Compton wavelength.

89



As another example, consider the integral∫
d̂Dℓ

ℓ2

ℓ2(ℓ− q1)2(p1 · ℓ)(p2 · ℓ)
=

∫
d̂Dℓ

1

(ℓ− q1)2(p1 · ℓ)(p2 · ℓ)

=

∫
d̂Dℓ

1

ℓ2(p1 · ℓ)(p2 · (ℓ+ q1))
.

(4.33)

In the second step, we simply set ℓ′ = ℓ−q1, and then dropped the prime. We also

set p1 · q1 = 0, assuming that the ℏ-suppressed correction term of order q21 could

be neglected. This integral is not scaleless: indeed, there is a scale p2 ·q1 = −p2 ·k
in the integral. Nevertheless we may still drop this integral:∫

d̂Dℓ
ℓ2

ℓ2(ℓ− q1)2(p1 · ℓ)(p2 · ℓ)
=

1

m1m2

∫
d̂Dℓ

1

ℓ2(u1 · ℓ)(u2 · (ℓ− k))
→ 0 .

(4.34)

Again, the reason is that, since the integral is analytic in q1, after carrying out the

on-shell the Fourier transform integrals in (4.28) it leads to a contact term in b-

space. Note that care must be taken in the context of eg pentagon diagrams with

three massless internal propagators; pinching one of these need not necessarily

lead to a vanishing contact term.

4.3.4 Real parts from single cuts and principal values

Let us now return to the waveform, and look in more detail at the term containing

the real part of the amplitude:

αη(k)|1 ≡
1

2
⟨ψ|iaη(k) (T + T †)|ψ⟩

=
1

2

∫
dΦ(p′1, p

′
2, p1, p2)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2) i⟨p′1, p′2, kη|T + T †|p1, p2⟩ .

(4.35)

The matrix element appearing here can be expressed in terms of amplitudes as

⟨p′1, p′2, kη|T + T †|p1, p2⟩ =
(
A5,0 +A′∗

5,0

)
δ̂D(p1 + p2 − p′1 − p′2 − k) , (4.36)

where the five-point tree amplitudes are more explicitly

A5,0 ≡ A(p1, p2 → p′1, p
′
2, kη) ,

A′
5,0 ≡ A(p′1, p

′
2, k−η → p1, p2) .

(4.37)
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Notice that the initial and final states are swapped in A′
5,0 relative to A5,0. The

close relationship between the conjugated amplitude A′∗
5,0 and the amplitude A5,0

is discussed in many quantum field theory textbooks, though the focus in typically

on the imaginary part i(A5,0 − A′∗
5,0) because of its relevance to unitarity (see,

for example, [239–242] for helpful discussions in this particular context). Because

the real part A5,0 + A′∗
5,0 is relevant to us, it is worth giving an example to see

how the combination works.

We consider a one-loop diagram contributing to the amplitude A5,0 in Yang-Mills

theory:

p1

p2

p1 + q1

p2 + q2

ℓ

k

= g5C
∫

d̂DℓNP .
(4.38)

This diagram depends on a color factor C, a kinematic numerator N and a

propagator structure P . The Feynman rules lead to

P−1 = (ℓ2 + iϵ)[(q1 − ℓ)2 + iϵ][(p1 + ℓ)2 −m2
1 + iϵ][(p2 − ℓ)2 −m2

2 + iϵ]

× [(p2 − ℓ− k)2 −m2
2 + iϵ] ,

N = ε∗η · (2p2 − 2ℓ)(2p1 + ℓ) · (2p2 − ℓ)(2p1 + ℓ+ q1) · (2p2 − ℓ+ q1 + 2q2) .

(4.39)

Note the appearance of the (possibly complex) polarisation vector ε∗h. To describe

the color factor, we suppose the initial color of particle i is specified by a color

vector χi, while another vector χ′
i defines the final color. Let us further suppose

that the outgoing gluon has adjoint color a. Then we have

C = χ̄′
1 · T b

1 · T c
1 · χ1 χ̄

′
2 · T b

2 · T a
2 · T b

2 · χ2 . (4.40)

The contribution of this diagram to the amplitude is

A5,0 ⊃ −ig5C
∫

d̂DℓNP , (4.41)

since (in our conventions) the Feynman rules evaluate to i times the amplitude6.

As the initial and final states are interchanged in A′
5,0, we instead encounter the

6This is consistent with S = 1+iT , and the convention that, for example, the tree four-point
amplitude in λϕ4/4! theory is λ.
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diagram

p1

p2

p1 + q1

p2 + q2

ℓ

k

= g5C ′
∫

d̂DℓN ′P ′ .
(4.42)

The color factor, numerator and propagators are now

P ′−1 = (ℓ2 + iϵ)[(q1 − ℓ)2 + iϵ][(p1 + ℓ)2 −m2
1 + iϵ][(p2 − ℓ)2 −m2

2 + iϵ]

× [(p2 − ℓ− k)2 −m2
2 + iϵ] ,

N ′ = εη · (2p2 − 2ℓ)(2p1 + ℓ) · (2p2 − ℓ)(2p1 + ℓq1) · (2p2 − ℓ+ q1 + 2q2) ,

C ′ = χ̄1 · T c
1 · T b

1 · χ′
1 χ̄2 · T c

2 · T a
2 · T b

2 · χ′
2 .

(4.43)

It is important that N ′ is the complex conjugate of N , and C ′ is the complex

conjugate of C while the propagator structures are equal: P = P ′. As a

consequence, we can write

A′∗
5,0 ⊃ ig5C

∫
d̂DℓNP ∗ . (4.44)

This is a general fact: the one-loop Feynman diagrams contributing to A′∗
5,0 can

be obtained from the diagrams for A5,0 by (i) changing the overall sign, and (ii)

replacing the iϵ prescription in propagators by −iϵ. For the two diagrams at

hand, we have

A5,0(p1, p2 → p′1, p
′
2, kη) +A′∗

5,0(p
′
1, p

′
2, k−η → p1, p2) ⊃ g5C

∫
d̂DℓN [−i(P − P ∗)]

= 2g5C
∫

d̂DℓN ImP .

(4.45)

The general conclusion is that

αη(k)|1 =
∫

dΦ(p′1, p
′
2, p1, p2)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2) δ̂

D(p1 + p2 − p′1 − p′2 − k)

× i ImpropA5,0(p1, p2 → p′1, p
′
2, kη) .

(4.46)

The instruction Improp tells us to take the imaginary part of the propagator

structure of the amplitudes. Alternatively, we can think of this instruction as the

imaginary part of the amplitude, treating colour factors and polarisation vectors

as real quantities.
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It is very natural to obtain the imaginary part of the propagator structure using

1

p2 −m2 + iϵ
= PV

(
1

p2 −m2

)
− i

2
δ̂(p2 −m2) , (4.47)

where PV is the principal value7. The delta function here is equivalent to cutting

a single particle. By counting powers of i, it is clear that the imaginary part of

our propagator structure is obtained by cutting an odd number of propagators.

(This contrasts with the usual unitarity cuts at one loop which involve cutting

two propagators, we will see how these cuts are related to different phenomena

in a later section. These will give imaginary part of the waveshape instead.)

Our diagrams contain five propagators, so in principle there are imaginary parts

when we cut one, three or five propagators. However, three point amplitudes

have no support in Minkowski space — so there is no need to consider cutting five

propagators. It is also easy to see that cutting three propagators necessarily leads

to one three-point amplitude. Thus our imaginary parts necessarily arise from

single cuts; all other propagators are then to be evaluated with the principal-value

pole prescription. It is worth emphasising that this pole prescription appears

naturally from general considerations.

4.4 Radiation

In this chapter we discuss the complete real part of the QED and QCD waveshape

in detail at the level of their integrand. As we will see, taking the real part of

the one-loop amplitude corresponds to isolating “conservative” contributions in

radiative fields. By that we mean all radiation which is caused by one particle

accelerating in the Lorentz/geodesic fields of the second one. That is, the forces

acting on the particle are conservative, and (classically) omit the self-field of

the particle. We return to these intrinsically dissipative self-force corrections

to the radiation field in the next chapter of this manuscript. It may be worth

commenting that the factor of i between the real and imaginary parts of the

waveshape is itself a signal of time-reversal violation.

We begin with electrodynamics. The waveshape in QED is remarkably simple yet

it is physically interesting and closely connected to more complicated radiation

7In the closed time-path (Schwinger-Keldysh) approach to computing expectation values in
field theory, the T † matrix arises from the part of the contour which goes “backwards” in time.
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fields. This is why we find it is useful to discuss it in detail. Indeed, the QED

waveshape computes well-defined parts of the QCD waveshape, associated with

specific ordered amplitudes. We will discuss how QED is embedded in QCD in

more detail later.

4.4.1 QED

We are now at a good place to compute the QED waveshape. At NLO, this is fifth

order in the coupling. But in electrodynamics we are free to give our two particles

different charges Q1 and Q2, and correspondingly the five coupling powers in the

NLO waveshape can be decomposed into four different charge sectors: Q1Q
4
2,

Q2
1Q

3
2, Q

3
1Q

2
2, and Q4

1Q2. (There can be no terms of order Q5
1 or Q5

2 since at

least one photon must connect the two particles for radiation to occur.) In the

language of scattering amplitudes, the one-loop five-point amplitude in QED

can be decomposed into four different partial amplitudes corresponding to these

four charge sectors. There are really only two independent partial amplitudes to

compute, which we can take to be the Q2
1Q

3
2 and Q1Q

4
2 amplitudes. The Q3

1Q
2
2

and Q4
1Q2 partial amplitudes can be recovered by interchanging particles 1 and

2.

In this section, we start with the Q2
1Q

3
2 partial amplitude. In order to show how

this waveshape can be extracted most simply, it is convenient to digress briefly

on a related computation: the impulse at next-to-leading order.

NLO impulse

The impulse at NLO involves a one-loop four-point amplitude. This amplitude

has real and imaginary parts, which play rather different roles in the observable.

In particular, at one loop, the real part controls the scattering angle, while the

imaginary part ensures that the on-shell condition is satisfied. Here it is most

relevant to focus on the contribution of the real part of the amplitude to the

observable, so we define

∆pµ1 |real ≡
∫

dDq δ̂(2p1 · q)δ̂(2p2 · q2) iqµ e−iq·bReA4,1(p1, p2 → p1 + q, p2 − q) .

(4.48)

One-loop four-point amplitudes involve at most four propagators. In this case,
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two of those propagators involve photons while the other two are associated with

the massive particles with momenta p1 or p2. The real part of the amplitude

arises by replacing a propagator with the corresponding delta function: this places

one line on shell, effectively performing a single cut of the amplitude. First, we

consider the result of placing the propagator for line 2 on shell. Diagrammatically,

we must then consider

p1

p2

p1 + q

p2 − q

ℓ ℓ− q

. (4.49)

The contribution of this diagram to the amplitude is

ReA4,1|p2 =
∫

d̂Dℓ
1

ℓ2(ℓ− q)2
1

2
δ̂(2p2 · ℓ)N(ℓ) , (4.50)

where N(ℓ) is a numerator function we must fix.

We fix the numerator by cutting all the propagators in the diagram: we

have explicitly cut the massive propagator, and any terms in N(ℓ) which are

proportional to ℓ2 or (ℓ− q)2 integrate to zero. In other words we can take each

of the blobs in the diagram to be on-shell amplitudes, so that

N(ℓ) =
∑

helicities

A3,0(p2, ℓ)A4,0(p1, ℓ, ℓ− q)A3,0(p2 − ℓ, ℓ− q) . (4.51)

In D dimensions, the helicity sum is straightforward using formal polarisation

vectors. Let us write the polarisation vector for a photon of momentum k and

gauge q as ε(k; q). If we choose the gauge to be q = p1, then the Compton

amplitude8 appearing in the cut is

A4,0(p1, ℓ, ℓ− q) = 2Q2
1 ε(ℓ, p1) · ε∗(ℓ− q, p1) . (4.52)

The three-point amplitudes are trivially obtained from

A3,0(p2, ℓ) = 2Q2 ε(ℓ, p1) · p2 . (4.53)

8The reader will/might have noticed the frequent appearance of Compton amplitudes in
this chapter. These are in fact extremely important in waveforms computations and will play a
crucial role when including spin effects: here the role of spin is still not completely understood
due to the appearance of spurious poles for high spin terms. For more on this see [243–247].
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To perform the helicity sum, we only need the completeness relation which, in

case of a massive gauge vector, is

∑
helicities

εµ(k, q)εν∗(k, q) = −
(
ηµν − kµqν + kνqµ

k · q
+ q2

kµkν

(k · q)2

)
. (4.54)

This summation involves products of a polarisation vector and its conjugate. As

usual in generalised unitarity, this structure naturally arises in the product of

amplitudes appearing in the diagram (4.49) because a photon connecting two

amplitudes must be outgoing with respect to one amplitude and incoming with

respect to the other.

It then follows that the numerator is

N(ℓ) = 8Q2
1Q

2
2

(
m2

2 +
(p1 · p2)2

(p1 · ℓ)2
ℓ · (ℓ− q)

)
. (4.55)

As a result, the contribution to the observable is

∆pµ1 |real,p2 =
iQ2

1Q
2
2

2

∫
dDq δ̂(u1 · q)δ̂(u2 · q2) qµ e−iq·b

×
∫

d̂Dℓ

ℓ2(ℓ− q)2
δ̂(u2 · ℓ)
m1

(
1 +

(u1 · u2)2

(u1 · ℓ)2
ℓ · (ℓ− q)

)
,

(4.56)

where we used the proper velocities ui = pi/mi.

The contribution from cutting the massive propagator with incoming momentum

p1 can be obtained from equation (4.56) by symmetrising on particles 1 and 2.

By summing these two contributions we find agreement with the impulse given

in equation 5.38 of reference [49]9.

In this way, we reproduce the one-loop impulse in a very straightforward manner.

However we did so by cutting only the massive propagators, omitting possible

cuts of the massless photon propagators. These cuts do not contribute to the

classical impulse. Indeed, from a purely classical perspective the messengers are

Fourier transforms of the Coulomb field, and therefore can transport no energy in

the rest frame of the source. Thus, they cannot go on shell. From the perspective

of amplitudes and cuts, one can show that when one of the messenger lines are

cut the resulting amplitude is suppressed by a power of ℏ. (This involves choosing
a specific gauge for the polarisation objects of the messengers and a remaining

9Terms in that equation 5.38 which involve derivatives of delta functions arise from the
imaginary part of the amplitude when included correctly in the observable.
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cancellation among Feynman diagrams.) We shall omit this class of cuts in the

following discussion for the same reason.

Lorentz impulse: heavy mass

We now turn to the radiation at order Q2
1Q

3
2. Classically, this radiation results

from the acceleration of particle 2 due to the Lorentz force in the field of particle

1. To determine the radiation field we recycle much of the computation of the

impulse.

As in the case of the impulse above, we do not cut internal photon lines (the

internal photons are both potential modes.) We focus first on the contribution

arising by cutting line 1, leading to the diagram

p2

p1

p2 + q2

p1 + q1

k

ℓ− q1ℓ

. (4.57)

We will soon see that this diagram gives the dominant contribution to the

waveshape when the mass m1 of particle 1 is large. Its contribution to the

amplitude can be computed in a manner which is almost identical to the impulse.

The main novelty relative to our discussion of the impulse is the appearance of a

five-point tree amplitude:

iA5,0 = p2 p2 + q2

k

ℓ− q1ℓ
. (4.58)

If we choose the gauge of both polarisation vectors to be p2, there are only
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three possible Feynman diagrams leading to a compact and (for our purposes)

convenient expression for the amplitude:

A5,0 = −4Q3
2

[
ε∗(ℓ) · ε(ℓ− q1) ε

∗(k) · q1
2p2 · q1

− ε∗(ℓ) · ε∗(k) ε(ℓ− q1) · q2
2p2 · (ℓ− q1)

+
ε(ℓ− q1) · ε∗(k) ε∗(ℓ) · q2

2p2 · ℓ

]
.

(4.59)

Notice that the second and third terms are related by swapping the momenta ℓ

and q1 − ℓ. This is a symmetry of the rest of the diagram (4.57), so these last

two terms in the five-point tree make an identical contribution in the cut. We

do not indicate the helicity of the polarisation vectors: this information washes

out in the completeness relation (since each polarisation vector in the product of

amplitudes is multiplied by its conjugate polarisation).

To determine the contribution of the cut (4.57) to the real part of the one-loop

amplitude, we must sum the product of the five-point tree (4.59) and two three-

point amplitudes over helicities. The helicity sum can be performed using the

completeness relation of equation (4.54). Because the last two terms in the five-

point tree (4.59) make an identical contribution to the cut, there are only two

different polarisation sums to consider. The first term in equation (4.59) leads to

the sum∑
helicities

p1 · ε(ℓ) p1 · ε∗(ℓ− q1)
ε∗(ℓ) · ε(ℓ− q1) ε

∗(k) · q1
2p2 · q1

=

(
m2

1 +
ℓ · (ℓ− q1)(p1 · p2)2

p2 · ℓ p2 · (ℓ− q1)

)
ε∗(k) · q1
2p2 · q1

.

(4.60)

Notice that this term — specifically, the part appearing in brackets — bears a

strong structural similarity with the numerator which appeared in the impulse,

equation (4.55). The relationship between radiation and the impulse is an

example of the “memory” effect, encountered here at the level of the one-loop

integrand.

The second class of polarisation sum to be performed is

∑
helicities

p1 · ε(ℓ) p1 · ε∗(ℓ− q1)
ε(ℓ− q1) · ε∗(k) ε∗(ℓ) · q2

2p2 · ℓ

=

(
p1 · q2 +

p1 · p2 ℓ · q2
p2 · ℓ

)(
p1 · ε∗(k)−

p1 · p2
p2 · (ℓ− q1)

(ℓ− q1) · ε∗(k)
)

1

2p2 · ℓ
.

(4.61)
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Putting these together, diagram (4.57) leads to terms in the one-loop five-point

amplitude given by

A5,1 = −4Q2
1Q

3
2

∫
d̂Dℓ

ℓ2(ℓ− q1)2
1

p1 · ℓ+ iϵ

[(
m2

1 +
ℓ · (ℓ− q1)(p1 · p2)2

p2 · ℓ p2 · (ℓ− q1)

)
ε∗(k) · q1
p2 · q1

+

(
p1 · q2 +

p1 · p2 ℓ · q2
p2 · ℓ

)(
p1 · ε∗(k)−

p1 · p2
p2 · (ℓ− q1)

(ℓ− q1) · ε∗(k)
)

2

p2 · ℓ

]
+ · · · ,

(4.62)

where the ellipsis indicates terms not captured by the cut.

The contribution of this part of the amplitude to the waveshape involves taking

the imaginary part of the explicit massive propagator. Including the rest of the

structure of the waveshape, we find

αη(k)|1 =
iQ2

1Q
3
2

2m1m2

∫
d̂4q1d̂

4q2 δ̂(q1 · u1)δ̂(q2 · u2)δ̂D(q1 + q2 + k)e−iq1·b1e−iq2·b2

×
∫

d̂4ℓ

ℓ2(ℓ− q1)2
δ̂(p1 · ℓ)

[(
m2

1 +
ℓ · (ℓ− q1)(p1 · p2)2

p2 · ℓ p2 · (ℓ− q1)

)
ε∗(k) · q1
p2 · q1

+

(
p1 · ε∗(k)−

p1 · p2
p2 · (ℓ− q1)

(ℓ− q1) · ε∗(k)
)

2p1 · q2
p2 · ℓ

+

(
p1 · ε∗(k)−

p1 · p2
p2 · (ℓ− q1)

(ℓ− q1) · ε∗(k)
)

2p1 · p2 ℓ · q2
(p2 · ℓ)2

]
.

(4.63)

To see how this term scales with the masses of the particles, scale the masses out

from the momenta via pi = miui. It is then clear that this part of the waveshape

is proportional to m0
1m

−2
2 so that, as we advertised above, this cut corresponds

to the radiation emitted in the large m1 limit.
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Lorentz impulse: symmetric mass

The remaining single-particle cuts at order Q2
1Q

3
2 are proportional to 1/(m1m2).

The cut diagrams are:

p1

p2

p1 + q1

p2 + q2

k

ℓ ℓ− q1

+

p1

p2

p1 + q1

p2 + q2

k

ℓℓ− q1

.

(4.64)

This topology can easily be determined using the methods discussed above; the

only (slight) novelty is that the two Compton amplitudes which appear are

most simply evaluated in terms of polarisation vectors in different gauges. Both

diagrams make an equal contribution to the waveform so we may study only the

first diagram.

The contribution of this diagram to the one-loop five-point amplitude can be

written as

iAB
5,1 = −i

∫
d̂Dℓ

ℓ2(ℓ− q1)2
1

−2p2 · ℓ+ iϵ
KB , (4.65)

where KB is the evaluation of the cut, namely

iKB = −8iQ2
1Q

3
2

∑
helicities

p2 · ε∗(ℓ) ε(ℓ, p1) · ε∗(ℓ− q1, p1) ε(ℓ− q1, p2) · ε∗(k, p2) .

(4.66)

We have introduced the notation ε(k, p) for the polarisation vectors corresponding

to a photon with momentum k in gauge p. Note that we used different gauges for

the polarisation vectors in different tree Compton amplitudes in the cut. However,

it is an easy matter to change the gauge, and in particular we find it convenient

to write

εµ(ℓ− q1, p1) = εµ(ℓ− q1, p2)− (ℓ− q1)
µp1 · ε(ℓ− q1, p2)

p1 · ℓ
. (4.67)

The helicity sum can then be performed in D dimensions straightforwardly. The
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contribution of the cut to the waveform is

iQ2
1Q

3
2

m1m2

∫
d̂Dq1d̂

Dq2 δ̂(q1 · u1)δ̂(q2 · u2)δ̂D(q1 + q2 + k) e−iq1·b1e−iq2·b2

×
∫

d̂Dℓ
δ̂(u2 · ℓ)
ℓ2(ℓ− q1)2

KB .

(4.68)

where the quantity KB, which is directly proportional to the polarisation sum, is

KB =
1

(u1 · ℓ)2

[
u1 · ε∗(k, p2) (u1 · ℓ u2 · q1 − u1 · u2 ℓ · q1)

+ (ℓ− q1) · ε∗(k, p2)
(
u1 · u2 u1 · ℓ−

(u1 · u2)2ℓ · q1
u2 · q1

+
(u1 · ℓ)2

u2 · q1

)
−ℓ · ε∗(k, p2)u1 · u2 u1 · ℓ

]
.

(4.69)

It is straightforward to recover Q3
1Q

2
2 terms in the waveshape by swapping the

particle labels 1 and 2. The Q4
1Q2 and Q1Q

4
2 partial waveshapes are described

below.

We have tested these results in a number of ways. Firstly, we have compared our

expressions to the one-loop five-point Yang-Mills amplitudes presented in [26]. We

also compared with the work of Shen [137], who iterated the classical equations

to this order.

4.4.2 QCD

Let us move to Yang-Mills at this point, and analyse some of the main features of

the waveshape in QCD. For the purposes of this chapter, the main difference

between QED and Yang-Mills amplitudes is the handling of color degrees of

freedom. In fact, now the waveshape will also include various color-dependent

factors which enter diagram vertices. Here, we choose to represent the massive

scalars and gluons in our problem in the fundamental T a
ij and adjoint fabc

representation of the color group, respectively. Overall, our treatment of classical

color follows [20].

Our strategy is to proceed in the usual way, by exploiting the following gauge
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theory structure

[T a, T b]ij = fabcT c
ij,

fdacf cbe − fdbcf cae = fabcfdce,
(4.70)

to organise and expand our amplitudes (or cuts thereof) in a color basis, and

focus on each gauge invariant sector independently.

Schematically, the one-loop amplitude can be expanded in a basis of color

coefficients

A5,1(p1...k) = C
( )

A1 + C
( )

A2

+ C
( )

A3 + C
( )

A4 + C
( )

A5 + · · · ,
(4.71)

where Ai is the partial amplitude corresponding to the color factor Ci, and the

expression in the ellipsis includes quantum corrections. Once the full amplitude

is organised in terms of independent partial amplitudes, we can consider the

classical limit of each one separately. However, now we have to restore factors of

ℏ in both momenta and color coefficients, according to the prescription of [20],

where color and non-Abelian theories were studied from a classical perspective.

We now take a moment to consider the partial amplitudes in (4.71). As we show

in Table 4.1 – where we list the topologies appearing in the partial amplitudes –

A1 and A2 involve only diagrams with no non-Abelian (pure-gluon) vertices. We

recognise these as the QED amplitude sectors computed in the previous section.

The contributions from these sectors can therefore be plugged into the QCD

expression simply by dressing them with their given color factor. In this section

we therefore focus on the terms which appear for the first time in the case of

QCD – namely A3, A4 and A5. As shown in Table 4.1 these partial amplitudes

do involve non-Abelian topologies and must be calculated to find the full QCD

result. We will refer to A3 and A4, A5 as the pentagon- and maximally non-

Abelian partial amplitudes, respectively.
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Color type Ai Topologies

C
( )

A1, A2 ,

C
( )

A3 , , , ,

C
( )

A4, A5

, , , ,

, ,

Table 4.1 Topologies contributing to the partial amplitudes of the color factors
C.

Pentagon

We begin by looking at the partial amplitude A3. The color factor of this

amplitude is simply the color structure of the pentagon topology, given by

C
( )

= fAbcCb
1 · Cd

1 C
c
2 · Cd

2 , (4.72)

where A is the adjoint index of the emitted gluon and Ca
i is the classical color

charge of the massive body i [20]. In this section we will only discuss cutting the

p2 propagator, as remaining cuts can be obtained by relabelling particles. There

are two cuts to consider:

p1

p2

p1 + q1

p2 + q2

k

ℓ ℓ− q1

(4.73)

103



and

p1

p2

p1 + q1

p2 + q2

k

ℓ ℓ+ q2
(4.74)

We analyse the cuts along the same lines as in QED, extract the coefficient of

the pentagon color factor, and merge the resulting expressions. For instance, the

contribution of the first cut to the pentagon involves two Compton amplitudes.

Here, the color structure (4.72) is obtained through the following observation.

The YM-Compton can be essentially written only in terms of the QED one,10

which is just ∝ ε1 · ε2 in a convenient gauge. In fact, one finds

A4,0 = 2ig2Ca
i C

b
i ε1 · ε2 + 2g2fabcCc

i

2p · k1
q2

ε1 · ε2 . (4.75)

Then, in the cut 4.73 using the first term above for the upper sub-amplitude

and the second for the lower one we reconstruct (4.72). Furthermore, since the

polarisation vector structure is the same as in the symmetric-mass QED case, we

can reuse our evaluation (4.69) of the quantity KB in this cut.

The second cut requires parts of the QCD five-point amplitude. We may restrict

to those parts of the amplitude which involve a single fabc color structure to

match to this pentagon. The relevant terms in the amplitude are

iA(1f)
5,0 =

4g3fabdCc
1C

d
1

(k1 + k2)2

[
ε1 · k2 ε2 · ε3 +

ε1 · ε2
p · (k1 + k2)

p · k2ε3 · k1 − (1 ↔ 2)

]
+ cycles .

(4.76)

We extract from this contribution terms which are missed by the previous cut.

Here, it will be convenient to work in the gauge p1 · ε = 0 for all external gluons,

so we get to use the completeness relation (4.54) with q = p1. At the end, we

10The importance of this point was already stressed in [40]. One can verify this explicitly in
D = 4 or, perhaps even more clearly, by dimensionally reducing the D = 6 amplitudes of [248].
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find the following expression for the real-part of the pentagon partial amplitude

ReA3 = g5
∫

d̂Dℓ
δ̂(ℓ · p2)

ℓ2(ℓ+ q2)2(ℓ− q1)2

[(
ε∗ · p2

p1 · p2
p1 · ℓ

+ ε∗ · q2
(p1 · p2)2

p1 · ℓ p1 · k

)
(ℓ− q1)

2

2

−ε∗ · p2
(
(k · p2)2

p1 · ℓ
+
p1 · ℓ ℓ · k + p1 · k ℓ · q1

(p1 · ℓ)2

)
+ ε∗ · ℓp1 · p2 p2 · k

p1 · ℓ

+ε∗ · (ℓ+ q2)

(
p22 +

p1 · p2
p1 · ℓ

p2 · q1 −
(
p1 · p2
p1 · ℓ

)2

ℓ · q1

)]
.

(4.77)

Maximally non-Abelian partial amplitude

Two of the most physically interesting gauge invariant sectors are A4 and A5.

We will refer to as “maximally non-Abelian” as their color factors involve

two structure constants. Noting that these two sectors are related by particle

relabelling, we will focus on A4 only. The color structure corresponding to this

partial amplitude is now

C
( )

= Ca
1f

adbfdAcCc
2 · Cb

2. (4.78)

To compute the real part of A4 we work along the same lines of 4.4.1 and 4.4.2,

so we skip some of the technical steps in this chapter. Furthermore, in order to

avoid proliferation of long formulae, we only detail terms which involve a 1/q21

denominator. In fact, this pole is important for radiation reaction purposes as

we will explain later. We find that, for the aforementioned pole

ReA4 →
16g5m1m2

q21

∫
d̂Dℓ δ̂(u2 · ℓ) ε∗η(k) ·

4∑
i=1

Ji, (4.79)

from cutting line 2. Above, we have conveniently defined the vectors Jµ
i as

Jµ
1 = − ℓµ

(ℓ+ q2) 2 (ℓ− q1) 2

(
γ

4u2 · q1
+
ℓ · u1
ℓ2

)
, (4.80)

Jµ
2 =

qµ1
ℓ2 (ℓ+ q2) 2 (ℓ− q1) 2

(ℓ · u1 + γ u2 · q1), (4.81)
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Jµ
3 =

uµ1
ℓ2

(
1

4(ℓ+ q2)2
− (u2 · q1) 2

(ℓ+ q2) 2(ℓ− q1)2

)
, (4.82)

Jµ
4 =

uµ2
ℓ2

(
− ℓ · u1
4 (ℓ− q1) 2 u2 · q1

− γ

4 (u2 · q1)2
+

(γ q1 · q2 − q1 · u2 q2 · u1)
(ℓ+ q2) 2 (ℓ− q1) 2

)
.

(4.83)

This gauge invariant sector is actually simple enough that it can also be described

through Feynman diagrams. Indeed, classically we find that only five diagrams

contribute to A4. These are

, ,, , .

Figure 4.1 Feynman diagrams contributing classically to A4.

Thus, we find it instructive to see how (4.79) can also be derived this way. To

this end, and to further ease our narrative, we employ the gauge ε · u2 = 0 and

only look at the propagator structure

P−1 = ℓ2(ℓ+ q2)
2(ℓ− q1)

2. (4.84)

Then, it turns out that such pieces arise from the following diagram only

ℓ

q1

k

p2 + q2p2

p1 + q1p1

p2 − ℓ

Using usual scalar QCD Feynman rules, this diagram is seen to correspond to

ReA4 →
4g5m1m2

q21

∫
d̂Dℓ δ̂(u2 · ℓ)

N

ℓ2(ℓ+ q2)2(ℓ− q1)2
. (4.85)
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Above, the numerator is found to have the following expression

N = uα1 Παβγ(−q1, q1 − ℓ, ℓ)uγ2 Π
βρσ(ℓ− q1,−k,−ℓ− q2)ε

∗
η, ρ(k)u2σ, (4.86)

where we conveniently defined the three gluon vertex with all incoming momenta

as

Παβγ(k, q, r) ≡ (k − q)γηαβ + (q − r)αηβγ + (r − k)βηαγ. (4.87)

Let us focus on this numerator then. A little algebra shows that this reduces to

N = −4ε∗η · ℓ ℓ · u1 + 4ε∗η · q1(ℓ · u1 + γq1 · u2)− 4ε∗η · u1(q1 · u2)2, (4.88)

which is valid on shell of the delta functions and classically. The remaining

propagator structures can be confirmed in the same fashion. We omit their

derivations since they are straightforward and do not present any new features.

Furthermore we have checked (4.79) both against the results of [137] and with

our automated code.

We will soon see how this kinematic sector is also responsible for non-Abelian

radiation reaction.

4.5 Reaction

As we have seen in section 4.4.1 our amplitude expressions are well able to

reproduce conservative classical data. In this part of the chapter we show that

the same happens for non conservative effects. For example, such contributions to

observables can be explained in terms of the ALD force (after Abraham, Lorentz

and Dirac) in classical electrodynamics, see for instance [49]. However, treatment

of dissipative forces in both QCD and gravity is, at best, much more challenging.

This is why our goal here is to show how these subtle classical effects can be

treated in a concise and universal manner through amplitudes. As we will see, it

is the imaginary part of amplitudes that has the effect of sourcing dissipation in

this context.

Incidentally, as perhaps overlooked until now, we also demonstrate how radiation

reaction enters the waveshape already at one loop. In fact, usually one has to deal

with it at two loops or higher when computing momentum deflections [49, 249].
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4.5.1 QED radiation reaction...

Let us begin with electrodynamics. As elucidated in section 4.2.2, to discuss non

conservative dynamics we will only need the imaginary part of the amplitude.

To be more precise, we will consider cuts in the channel involving Compton

amplitudes. Indeed, we learnt in section 4.3.2 that these are the only ones that are

not subtracted classically. Furthermore, as to the the real part of such diagrams,

this will be rendered quantum by an appropriate choice of renormalisation scheme

[49]. Conveniently for us, ImA is simply obtained by appropriately cutting all

relevant diagrams at this order. For simplicity we will be taking particle 1 to be

static: m2/m1 ≪ 1.

We start by considering cuts of diagrams of the following type

q1 k

p1

p2 + q2

p1 + q1

ℓ

p2

Figure 4.2 One of the Feynman diagram cuts needed for the radiated waveform
calculation. The arrows indicate momentum flow.

To ease our calculation we will employ another useful trick. This consists of

placing the q1 photon line on-shell too. Being rigorous, we shouldn’t be allowed

to do so: this cut isolates a tree point amplitude which vanishes on-shell in

Minkowski. Nevertheless, it turns out that we can effectively cut this line as

well. In fact, multiplying 1/q21 by q21 does not strictly yield zero, but only gives a

contact term which integrates to zero. Thus, for all our purposes 1/q21 ∝ δ(q21).

With these considerations in place, we can realise that we only need cuts of the

following type
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p2

q1

ℓ −ℓ

k

p2 − q1 + ℓ

p2 + q2

Figure 4.3 Unitarity cut isolating two tree level Compton amplitudes (4.89).

which are two particle cuts separating two tree level Compton amplitudes. We

write such four point amplitude as

A4,0(p1, k1 → p2, k2) = 2iQ2εµη(k1)ε
∗ν
η′ (k2)Jµν(p1, k1 → p2, k2), (4.89)

where we are taking p1, k1 incoming and p2, k2 outgoing. Above, we have also

defined

Jµν(p1, k1 → p2, k2) =
p1µp2ν
p1 · k1

+
p2µp1ν
−p1 · k2

− ηµν , p1 + k1 = p2 + k2, (4.90)

satisfying

Jµνk
µ
1 ε

ν(k2) = Jµνε
µ(k1)k

ν
2 = 0. (4.91)

Making use of these definitions, the cut is given explicitly by

Cut2 = −4Q4
∑
η′′

∫
d̂Dℓ δ̂(2p2 · (ℓ− q1))δ̂(ℓ

2)ε∗µη (q1)ε
ν
η′′(ℓ)ε

∗ρ
η′′(ℓ)ε

∗σ
η′ (k)

× Jµν(p2,−q1 → p2 − q1 + ℓ,−ℓ)Jρσ(p2 − q1 + ℓ,−ℓ→ p2 + q2, k).

(4.92)

We now proceed by using, just as in the previous sections, the gauge where

ε · p2 = 0. This means performing the helicity sum through (4.54) with q = p2.

One soon obtains

Cut2 =
2Q4

m2

∫
d̂Dℓ δ̂(u2 · (ℓ− q1))δ̂(ℓ

2)

(
ε∗η(q1) · ℓ ε∗η′(k) · ℓ

(u2 · q1)2
+ ε∗η(q1) · ε∗η′(k)

)
.

(4.93)

The loop integrals are easy to do here. The scalar one was first evaluated in [49],
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taking here D = 4∫
d̂4ℓ δ̂(u2 · (ℓ− q1))δ̂(ℓ

2) =
u2 · k
2π

Θ(u2 · k), (4.94)

and the tensor one follows by reduction. We obtain∫
d̂4ℓ δ̂(u2 · (ℓ− q1))δ̂(ℓ

2)ℓµℓν = −(u2 · k)3

6π
(ηµν − 4uµ2u

ν
2)Θ(u2 · k), (4.95)

finally leading to,

Cut2 =
2Q4

m2

∫
d̂4ℓ δ̂(u2 · (ℓ− q1))δ̂(ℓ

2)

(
ε∗η(q1) · ℓ ε∗η′(k) · ℓ

(u2 · q1)2
+ ε∗η(q1) · ε∗η′(k)

)
=

2Q4

m2

u2 · kΘ(u2 · k)
1

3π
ε∗η(q1) · ε∗η′(k).

(4.96)

This result is quite simple and remarkable: the cut isolating two Compton

amplitudes is proportional to a tree-level Compton amplitude itself (in the ε · p2
gauge) times a geometric factor 1/6π.

Having computed the two particle cut, we now have to fuse back the three point

amplitude we had isolated at the start. To do so we reintroduce polarisation

vectors in a generic gauge, getting

ε∗η(q1) · ε∗η′(k) = ε∗µη (q1)ε
∗ν
η′ (k)Jµν(p2,−q1 → p2 + q2, k). (4.97)

This allows us to obtain the total five point cut-amplitude Cut3(q1, k) ≡
Cut [A5,1(q1, k)] from tree-level unitarity. At this point we also dress electric

couplings with particle labels Q→ Qi

Cut3,η′ =
iQ1

q21

∑
η

(2p1 + q1)ρε
ρ
η(q1)Cut2,ηη′(q1, k)

=
4iQ1Q

4
2

m2
2

p2 · k
3π

1

q21

(
p1 · ε∗η′(k)−

ε∗η′(k) · p2 p1 · k
k · p2

+
p1 · p2 ε∗η′(k) · q1

p2 · k
−
p1 · p2 ε∗η′(k) · p2k · q1

(p2 · k)2

)
.

(4.98)

Above we have also set Θ(u2 · k) = 1, which holds on the support of the dΦ(k)

integral of (4.7). Finally observe that 2i ImA = DiscA where the cutting rules

110



give the latter, thus the imaginary part of the amplitude is

ImA5,1 =
4Q1Q

4
2

m2
2

p2 · k
6π

1

q21

(
p1 · ε∗η′(k)−

ε∗η′(k) · p2 p1 · k
k · p2

+
p1 · p2 ε∗η′(k) · q1

p2 · k
−
p1 · p2 ε∗η′(k) · p2k · q1

(p2 · k)2

)
.

(4.99)

We find the end result of our derivation to be evocative and simple: the classical

one-loop five-point amplitude is, up to a factor, the tree level one times p2 · k. To
complete the waveform calculation we substitute the amplitude into (4.7), giving

F µν(x) = −iQ1Q
4
2

6πm2
2

∑
η

∫
dΦ(k)

∫
d̂4q1d̂

4q2 δ̂(q1 · u1)δ̂(q2 · u2)δ̂4(k + q1 + q2)

× k · u2
q21

k[µεν]η ε
∗
η · J (k, q1)e

−i(k·x+q1·b1+q2·b2) + c.c.

(4.100)

Where we defined for convenience the classical current

J ν(k, q1) =

(
uν1 + qν1

u1 · u2
k · u2

− uν2
k · u1
k · u2

− uν2
u1 · u2 k · q1
(k · u2)2

)
= J ν(−k,−q1).

(4.101)

We have also checked that an independent computation, which makes judicious

use of purely classical ALD forces, correctly reproduces (4.100). These are non-

conservative forces (not time invariant) which supplement the usual Lorentz force

and which acts on the particle’s trajectory through

dpµ2
dτ

=
Q2

2

6πm2

(
d2pµ2
dτ 2

+
pµ2
m2

2

dp2
dτ

· dp2
dτ

)
. (4.102)

By solving for F µν at the desired order one finds a complete match with (4.100).

4.5.2 ...QCD radiation reaction...

We now analyse in some detail the non conservative dynamics of QCD. As it

happens, the preparatory work of 4.4.2 will be very convenient for us.

In non-Abelian theories radiation reaction will be present as well, only under a

more sophisticated disguise. In fact, from an amplitude standpoint, self force
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effects can be sourced by every diagram which has a cut isolating a Compton

amplitude. As we explained, these cuts will yield an imaginary part of the

waveshape that is not subtracted classically. What is more in Yang-Mills, is that

we will have QED-like contributions as well as purely non-Abelian ones which

involve three or four gluon vertices. We find that the non-Abelian radiation

reaction channels are precisely those characterised by A4 (and A5) which we

studied in section 4.4.2.

,

Figure 4.4 Two cuts contributing to non-Abelian radiation reaction. While the
second cut appears in both kinematic sectors A4 (through a sub-sub-
leading ℏ expansion of its color) and A2 (here with a leading color
factor), the first topology belongs in A4 only. Here, we have also cut
the single gluon line as explained in 4.5.1.

Let us then compute the radiation reaction diagrams of QCD. As before, we

consider the following cut diagram

a A

b b

Figure 4.5 Cut relevant to radiation reaction in QCD. For clarity we have just
indicated color indices, momentum routing is the same as in figure
4.3.

We keep in mind that the gluon a will have to be joined to particle 1. Indicating

the full left/right YM Compton amplitudes with Aab
L,R the diagram reads

Cut2 =
∑

helicities

∫
dΦ(ℓ) δ̂(2p2 · (ℓ− q1))Aab

L · AbA
R . (4.103)
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At this point it is useful to note again that the non-Abelian Compton amplitude

Aab ≡ Aab
4,0 can be written as (4.75)

Aab = Ca · CbA+ fabcCcA′, (4.104)

where both A and A′ are abelian Compton amplitudes, which differ only by a

factor. Using this piece of knowledge we can expand the integrand in the following

manner

Aab
L · AbA

R =
(
Ca

2 · Cb
2AL + fabdCd

2A
′
L

)
·
(
Cb

2 · CA
2 AR + f bAeCe

2A
′
R

)
≈ Ca

2 · Cb
2 · Cb

2 · CA
2 ALAR + fabdf bAeCd

2 · Ce
2A

′
LA

′
R,

(4.105)

having ignored the cross terms since it’s quantum.

Now, the simple relation above makes it very easy to interpret the structure of the

cut in non-Abelian gauge theories. The first term in (4.105), the one proportional

to Ca
2 ·Cb

2 ·Cb
2 ·CA

2 , is exactly the one already encountered in QED in (4.96)! That

is to say that

∑
helicities

∫
dΦ(ℓ) δ̂(2p2 · (ℓ− q1))ALAR =

2g4

m2

u2 · k
1

3π
ε∗η(q1) · ε∗η′(k). (4.106)

In other words, what we had computed in QED was also part of the QCD story,

only now multiplied by a constant color structure. It is immediate to see that

the last, non-Abelian, term of (4.105) has (up to relabelling) the structure (4.78).

This is precisely the color of the partial amplitude A4. Then, for the computation

of this channel we need precisely the 1/q21 pole that we described in (4.79),

entailing non-Abelian radiation reaction. From (4.79), the imaginary part of

the five point amplitude is immediately obtained and it reads

ImA4 =
8g5m1m2

q21
ε∗µ(k)

∫
dΦ(ℓ)δ̂(u2 · (ℓ− q1))

(u1 · ℓ+ γq1 · u2)qµ1 − (u2 · q1)2uµ1
(q1 − ℓ)2(ℓ+ k)2

,

(4.107)

in a gauge where ε · p2 = 0.

4.5.3 ...GR radiation reaction

As a final application of this section, we will here tackle gravity self force radiation.

This will indeed demonstrate how the dissipative effects are cleanly taken into

account by our analytic framework.

113



Following the examples of QED and QCD we again focus on the 2-particle cut,

just involving graviton lines now

p2

q1

ℓ −ℓ

k

p2 − q1 + ℓ

p2 + q2

having taken the leg with momentum q1 to be on-shell as well (as before, we

keep in mind that this graviton will have to be reconnected with the worldline of

particle 1). The cut-amplitude is given by

Cut2 =
∑

helicities

∫
dΦ(ℓ) δ̂(2p2 · (ℓ− q1))

×M4,0(p2,−q1 → p2 − q1 + ℓ,−ℓ)M4,0(p2 − q1 + ℓ,−ℓ→ p2 + q2, k).

(4.108)

This quantity can be greatly simplified by choosing, as we did before, a gauge in

which graviton polarisations are orthogonal to p2: εµενp
µ
2 = εµενp

ν
2 = 0. In this

case the product of amplitudes becomes proportional to a single contraction [250]

M4,0(p2, q1, ℓ)M4,0(p2, k, ℓ) =
κ4

4

(p2 · k)4

(ℓ+ k)2(ℓ− q1)2
(ε∗(q1) · ε(ℓ) ε∗(ℓ) · ε∗(k))2.

(4.109)

At this point we have to evaluate the sum over physical states. Note that we

haven’t been explicit about helicity assignments since these always come with

opposite signs inside the loop. We have∑
helicities

(ε∗(q1) · ε(ℓ) ε∗(ℓ) · ε∗(k))2 = ε∗µ(q1)ε
∗ν(k)ε∗ρ(q1)ε

∗σ(k)Pµνρσ(ℓ), (4.110)

where the projector over physical states reads, for the case of a massive gauge

vector p2

Pµνρσ(ℓ) =
∑

helicities

εµ(ℓ)ε
∗
ν(ℓ)ερ(ℓ)ε

∗
σ(ℓ) =

1

2

(
PµνPρσ + PµσPρν −

2

D − 2
PµρPσν

)
.

(4.111)
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Above we have defined

P µν(ℓ) = −

(
ηµν − ℓ(µu

ν)
2

ℓ · u2
+

ℓµℓν

(ℓ · u2)2

)
, (4.112)

which is the projection over on shell states that we had used in the electromagnetic

case. The contraction is then straightforward and yields11

ε∗µε∗νε∗ρε∗σPµνρσ =

(
ε∗(q1) · ε∗(k) +

ε∗(q1) · ℓ ε∗(k) · ℓ
(u2 · ℓ)2

)2

− 1

2

(
ε∗(q1) · ℓ ε∗(k) · ℓ

(u2 · ℓ)2

)2

,

(4.113)

finally giving us a direct expression of the cut

Cut2 =
κ4

8
(p2 · k)4ε∗µ(q1)ε∗ν(q1)ε∗ρ(k)ε∗σ(k)

∫
dΦ(ℓ) δ̂(p2 · (ℓ− q1))

1

(ℓ+ k)2(ℓ− q1)2

×
(
ηµρηνσ +

1

(u2 · ℓ)2
ηµρℓνℓσ +

1

2(u2 · ℓ)4
ℓµℓνℓρℓσ

)
.

(4.114)

The integral is IR divergent; we discuss IR divergences further below.

It is then straightforward to reproduce a very compact expression of the five point

amplitude’s imaginary part from tree level unitarity

ImM5,1 =
κ5(p2 · k)4

16 q21
Pαβµν(q1)p

α
1p

β
1ε

∗
ρ(k)ε

∗
σ(k)

∫
dΦ(ℓ)

δ̂(p2 · (ℓ− q1))

(ℓ+ k)2(ℓ− q1)2

×
(
ηµρηνσ +

1

(u2 · ℓ)2
ηµρℓνℓσ +

1

2(u2 · ℓ)4
ℓµℓνℓρℓσ

)
.

(4.115)

We remind the reader that this result was achieved in a gauge where ε · p2 = 0,

but one can still retrieve the explicitly gauge invariant expression substituting in

εµ(k) → εµ(k)− ε(k) · p2
k · p2

kµ. (4.116)

It would be interesting to replicate (4.115) using purely classical methods, as

we did for QED. One way to do this would be through the “MiSaTaQuWa”

equations12 of [251, 252], which are known to describe linear self force in gravity.

However, practical computations based on these (non-local) forces happen to

11At this point we have taken D = 4.
12After Mino, Sasaki, Tanaka, Quinn, Wald.
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be subtle. This is because they involve integrals of the (curved space) Green

functions over the complete past history of the particle.

As a final remark for this section, we would like to underline the universality

of the two-particle cuts of Compton amplitudes (4.92), (4.103) and (4.108). As

we hope it is clear by now, this object is crucial for the characterisation of the

imaginary part of the full five point amplitude describing the waveform. However,

the same object can be used, as was done for instance in [49], to describe O(g6)

radiation reaction effects that alter the integrated momentum kick of the particle.

Classically speaking, the physics of these two situations is different. The radiation

reaction O(g5) contribution is a transient one13 that doesn’t affect the final

trajectory. However, the emitted radiation can still be observed in the waveform.

Instead, at O(g6), one is able to change the final net trajectory of the particle

∆pµ. Nonetheless, this second (two-loop) process is still entailed by Cut2: in this

case one has to attach both massless states of the cut into the second massive

worldline. See the figure below for a graphic depiction of this property of the cut

considered

Figure 4.6 Universality of the Compton amplitude cut. This can be seen as a
building block of different phenomena which correspond to distinct
classical contributions for the EOM, however both can be generated
from the same amplitude entity.

4.6 Infrared divergences

We will now discuss the effect of infrared divergences arising from soft virtual

photons in loop amplitudes. These virtual IR divergences arise from diagrams

13In QED this is described by a total derivative Schott term.
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where soft photon loops are attached to on-shell external legs of a scattering

amplitude in the manner illustrated below.

p1 p′1

p2 p′2

k

p1

p2

p′1

p′2

k

p′1

p′2

k

p1

p2

Jnm = + + + · · ·

Figure 4.7 Infrared divergent diagrams in the in the 1-loop amplitude

IR divergences arise from the region where the virtual loop momentum |ℓ| is much

smaller than the momenta of of external particle pi. In this region, it is possible

to show that the IR divergent amplitudes take the form [253]:

AIR =

(
1

2

1

(2π)4

∑
nm

e2QnQmηnηmJnm

)
×AHard, (4.117)

where AHard is what is left of the amplitude after removing the virtual photons

lines, and the divergent factor Jnm is given by14

Jnm ≡ −i (pn · pm)
∫
µ≤|ℓ|≤Λ

d̂4ℓ

[ℓ2 + iϵ] [pn · ℓ+ iηnϵ] [−pm · ℓ+ iηmϵ]
(4.118)

where Λ is a scale that defines the soft photons, µ is an IR cutoff and ηn = ±1

for outgoing and incoming particles respectively. In what follows, we will use

primed indices to refer to outgoing particles so that η1 = η2 = −1 an η′1 = η′3 =

+1. Specifically, we will be interested in IR divergences of one-loop five-point

amplitudes, so that AIR ≡ AIR
5,1, AHard ≡ AHard

5,0 .

Turning to the integral Jnm, we perform the integration over ℓ0 by residues. In

doing so, we will consider two distinct cases. First, we consider the case where

one particle is incoming and the other outgoing. Then we consider the same

integral when both particles are incoming/outgoing.

Let us start by taking particle n to be outgoing and m to be incoming. In this

case the poles are ℓ0 = ±|ℓ|± iϵ , ℓ0 = pn·ℓ
p0n

− iϵ and ℓ0 = pm·ℓ
p0m

− iϵ. The important

point in this case is that the poles associated with the massive propagators both

lie on the same half of the complex ℓ0 plane, so their contribution can be avoided

entirely by closing the contour on the other side of the complex plane. In this

14D = 4 here.
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case, we close the contour on the upper half plane, picking the pole ℓ0 = |ℓ|+ iϵ.

Evaluating the integral in this manner yields the result15

Re Jnm =
2π2

βnm
ln

(
1 + βnm
1− βnm

)
ln

(
Λ

µ

)
, (4.119)

where βnm is the relative velocity

βnm ≡

√
1− m2

nm
2
m

(pn · pm)2
. (4.120)

We now consider the case where both particles are either incoming or outgoing.

For definiteness, consider the case where both particles are outgoing so that

ηn = ηm = 1. In which case the poles are located at

ℓ0 = ±|ℓ| ± iϵ

ℓ0 =
pn · ℓ
p0n

− iϵ

ℓ0 =
pm · ℓ
p0m

+ iϵ

(4.121)

In this case, the poles of massive propagators lie on opposite sides of the complex

plane, so that we would inevitably pick up one of these poles whichever way the

contour is closed. Supposing we close the contour from above, we pick up a pole

associated with the photon propagator and one from the massive propagators.

The former contribution is identical to the integral above and gives the real part

of the integral. The latter pole contributes another term which is [254]

Im Jnm = −i (pn · pm)
∫
µ≤|ℓ|≤Λ

|ℓ|2d̂|ℓ| d̂Ω(n)[
(pm·ℓ

p0m
)2 − |ℓ|2 + iϵ

]
[p0n(pm · ℓ) + p0m(pn · ℓ) + iϵ]

= 2π (pn · pm) ln
(
Λ

µ

)∫
d̂Ω(n)[

(pm·n
p0m

)2 − 1 + iϵ
]
[p0n(pm · n) + p0m(pn · n) + iϵ]

(4.122)

The last integral is most easily evaluated by going to the rest frame of particle

m such that pm · n = 0 and p0m(pn · n) = mmmnγnmβnm(β̂ · n) where γnm =

pn · pm/mnmm is the Lorentz factor and βnm the relative velocity. In this frame

the integral becomes

15The same result can be translated to dimreg by replacing log(Λ/µ) → 1/(2ε).
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4π2 (pn · pm) ln
(
Λ

µ

)∫ 1

−1

d̂x

mnmmγnmβnm [x+ iϵ]
(4.123)

where we have oriented such that β̂ · n = cos θ ≡ x. Finally, we make use of the

identity
1

x+ iε
= PV

(
1

x

)
− i

2
δ̂(x) (4.124)

and, noting that only the second term contributes to the integral by parity, we

arrive at the result

Im Jnm = −4iπ3

βnm
ln

(
Λ

µ

)
. (4.125)

Note that is also possible to recover this imaginary divergence in the spirit of

section 4.2.2. It is straightforward to check that cutting the massive propagators

attaching to the virtual photon lines recovers the result above. To summarise,

we find that the infrared divergences contain both real and imaginary parts. The

diagrams where the virtual photons attach to one incoming and one outgoing leg

yield purely real IR divergences, while the diagrams in which the virtual photon

attaches to two incoming/outgoing legs give both real and imaginary divergences.

We are now ready to address the issue of whether these IR divergences contribute

to the classical waveshape. We do so by examining the ℏ expansion of the sum:

1

2(2π)4

∑
nm

QnQmηnηmJnm. (4.126)

Noting that the one-loop amplitude is suppressed by a factor Q2/ℏ relative to

the tree amplitude, we identify the quantum parts of Jnm as those of order

ℏ2. We denote the incoming and outgoing massive momenta by p1, p2 and p′1, p
′
2

respectively such that η1 = η2 = −1 and η′1 = η′2 = +1 and Q1 = Q′
1 , Q2 = Q′

2.

Using momentum conservation, we write

p′1 = p1 + q

p′2 = p2 − q − k.
(4.127)

Furthermore, from the on-shell conditions we have

p1 · q = O(ℏ2)

p2 · q = −p2 · k +O(ℏ2)
(4.128)

Using this it is straightforward to expand Jnm in powers of ℏ noting that the
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ℏ dependence of follows from expanding the dot products pn · pm using the on-

shell conditions. We will find it convenient to express our results in terms of the

Lorentz factor and relative velocity

γ ≡ p1 · p2
m1m2

v ≡
√

1− 1

γ2
. (4.129)

4.6.1 Real divergence

We now examine the ℏ expansion of the real divergences in (4.119). To ensure

that these divergences are quantum, we must show that the O(ℏ0) and O(ℏ)
terms vanish in the sum over (n,m). Since we are considering real divergences,

all values of (n,m) contribute to the sum. Considering the O(ℏ0) terms first, it

is easy to check the sum of terms cancels exactly. Consider for example the part

of the sum proportional to Q2
1 , we have

1

2(2π)4
e2Q2

1Re (η1η1J11 + 2η1η
′
1J11′ + η′1η

′
1J1′1′) (4.130)

To this order, we have that p1·p1 = p1·p′1 = p′1·p′1 = m2
1 and since Jnm is a function

of pn ·pm we conclude that J11 = J11′ = J1′1′ but due to the sign differences arising

from the η factors, we find that this sum vanishes. It is easy to verify that a similar

cancellation occurs for the terms proportional to Q2
1 and Q1Q2. We conclude that

the O(ℏ0) terms do not contribute to the real IR divergences.

Turning to the O(ℏ) terms, we start by noting that the terms in the sum

proportional to Q2
i for i = 1, 2 still cancel in the same manner as before. This is

because the equality pi ·pi = pi ·p′i = p′i ·p′i still holds to this order (they only differ

by terms of O(ℏ2)). We therefore only need to look at the terms proportional to

Q1Q2. Noting that the terms J12 = J21 do not contribute powers of ℏ, we are left
with:

1

(2π)4
e2Q1Q2Re (η1η

′
2J12′ + 2η′1η2J1′2 + η′1η

′
2J1′2′). (4.131)

Expanding each term to linear order in ℏ using (4.119) and the kinematics (4.128)

we find that
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Re η1η
′
2J12′ =

2π2m1m2k · p1
(
2γ2m2

1m
2
2 +m2

1m
2
2

(
v log

(
1−v
1+v

)
− 2
))

γ3v4
(4.132)

Re η′1η2J1′2 = −
2π2m1m2k · p2

(
2γ2m2

1m
2
2 +m2

1m
2
2

(
v log

(
1−v
1+v

)
− 2
))

γ3v4
(4.133)

Re η′1η
′
2J1′2′ = −

2π2m1m2(k · p1 − k · p2)
(
2γ2m2

1m
2
2 +m2

1m
2
2

(
v log

(
1−v
1+v

)
− 2
))

γ3v4

(4.134)

These terms once again cancel in the sum. Having established that the terms

of ℏ cancel, we conclude that the real infrared divergences do not contribute

classically.

4.6.2 Imaginary part

The ℏ expansion of the imaginary IR divergences proceeds in the manner as in

the previous sections, where we now expand:

Im Jnm = −4iπ3

βnm
ln

(
Λ

µ

)
. (4.135)

This time however, the sum does not run over all pairs (n,m) but only those

for which ηn = ηm. It is precisely this restriction of the sum which prevents the

classical contributions from cancelling. We find that the term (n,m) = (1′, 2′) in

the sum yields a classical contribution which survives the sum due to the absence

of the terms (1, 2′) and (1′, 2) in the imaginary part, so that the imaginary part

of the amplitude contains a classical IR divergence. Nevertheless, this divergence

drops out of the waveform due to the simplification discussed in section 4.3.2.

4.6.3 QCD and gravity

The analysis of IR divergences in QCD and gravity proceeds broadly in the same

manner. Soft divergences arising from graphs where a soft messenger connects
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two massive lines have the same fate as in QED, and do not contribute to the

waveshape.

There are two major differences in QCD and gravity, however. First, in both

theories, soft divergences also arise in diagrams where a soft messenger connects a

massive to a massless line. Imaginary IR divergences in such diagrams do indeed

have classical implications, and are discussed in references [77, 78, 255, 256].

Second, in QCD, collinear divergences arise at the level of the amplitude. It would

be interesting to explore the classical implications of these collinear divergences

in future.

4.7 Discussions

In this chapter we investigated how next-to-leading-order radiation fields can be

elegantly computed using the techniques of modern scattering amplitudes.

Building upon the KMOC formalism of [49], we characterised NLO radiation

fields in terms of the real and imaginary parts of a waveshape. The real part is

extracted by cutting one massive line of a five-point one-loop amplitude, whereas

the imaginary part is obtained by a double cut of this amplitude. With this

arrangement, all remaining propagators are defined through a principal-value

prescription. This propagator structure emerges directly from the Feynman iϵ

prescription together with the split into real and imaginary parts, with no further

intervention by hand.

Our organisation of the observable provides two key benefits. First, it improves

computational efficiency: the cancellation of apparently singular inverse powers

of ℏ (the “superclassical” terms) can be trivialised. Second, this organisation

clarifies the underlying physics. Both real and imaginary parts have separate,

gauge invariant, physical meaning.

The real part describes the radiation emitted by a body moving under the

influence of essentially conservative forces: for example, a charge accelerated by

the Lorentz force in the field of a different charge. In contrast, the imaginary part

captures intrinsically dissipative effects: radiation generated under the influence

of the particle’s self field. In electrodynamics, this can be understood as the

portion of radiation generated by the action of the ALD force on the charge.

In our description, this aspect of radiation reaction at one loop order is directly
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related to a simple unitarity cut involving a product of two Compton amplitudes

in electrodynamics, Yang-Mills theory and gravity.

An interesting aspect of the waveform is that in electrodynamics, all infrared

divergences cancel in the waveshape. However theories with self-interacting

massless messengers (Yang-Mills theory and gravity) retain a residual IR

divergence [77, 78, 255, 256].

We found scalar QED to be a good guide for the understanding of, more compli-

cated, YM and GR. In fact, although electrodynamics is a comparatively simple

theory, it is rich enough to provide a very stimulating laboratory to understand

many aspects of the dialogue between amplitudes and classical physics, especially

since it is often rather straightforward to pass from electrodynamics to Yang-Mills

theory [20, 257, 258].

We will use QED as a guide the upcoming, final, chapter of the thesis too. There,

we will look out for exponentiation structures (i.e. eikonal phase and coherence)

which are expected to characterise scattering in the classical regime.
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Chapter 5

Eikonal and Coherent State

Exponentiation

5.1 Introduction

In this final chapter we try to understand what are the structures that arise

classically. There are many reasons to be interested in scattering amplitudes

besides gravitational wave physics. In fact, we believe amplitudes are fascinating

in their own right because of their internal structure. In many theories, including

general relativity, amplitudes have uniqueness properties which allow us (in

principle) to determine the entire S matrix from basic knowledge of the helicities

of the interacting particles [90, 177]. In this way amplitudes provide a way

to define a quantum field theory. Since amplitudes are intrinsically quantum-

mechanical objects this definition hard-wires key aspects of quantum mechanics,

such as the uncertainty principle, into the physics.

Taking the viewpoint that scattering amplitudes define the physics, an old

question reappears. How do we understand the classical limit? It is more common

to define quantum field theories in terms of path integrals: then (thanks to

Feynman) it is clear how the classical limit arises: it comes from the stationary

phase in the path integral. But amplitudes, as a quantum-first definition of a

quantum field theory, do not have as clear a link to classical physics.

Here, we want to focus again on this important point. How is the classical

limit encoded in the quantum-first definition of field theory through scattering
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amplitudes? To answer this question we take another look at the link between

amplitudes and classical physics.

As we have already argued and showed, by now there are several methods available

for converting amplitudes into classical quantities. It has long been understood

that four-point amplitudes are closely connected to classical potentials [40, 101,

179, 180, 259], and it is possible to deduce interaction potentials from four-point

multiloop amplitudes. More generally, effective Lagrangians are often used to

compute amplitudes — and this procedure can be reversed, allowing Wilson

coefficients in effective Lagrangians to be extracted from amplitudes [36–39].

The versatility of effective Lagrangians allows information and the potential, spin

effects [6, 257], etc to be readily extracted from amplitudes and applied to bound

gravitational systems.

In this chapter we will be particularly interested in two other links between

amplitudes and classical physics. We will do this again employing the versatility of

the KMOC formalism, which is our first link here. In fact, it is worth emphasising

that the methods of KMOC apply equally well to quantum observables which

do not make sense in the classical theory (for example, the number of photons

radiated during a scattering event). In this sense KMOC is a quantum-first

method: it takes the quantum field theory as the basic starting point, making

contact with classical physics only at the end of the computation.

The eikonal approximation is the second link between amplitudes and classical

physics of particular interest to us. Eikonal physics has a long history, going

back to nineteenth century work on the relation between geometric and wave

optics. The “eikonal analogy” was a guide in the early development of quantum

mechanics. In its long history the precise meaning of the word “eikonal” seems

to have undergone some drift. We are interested in the eikonal approximation

to (especially four-point) massive amplitudes in quantum field theory [260–267].

In this approximation, the incoming s-channel energy is large compared to

momentum transfers. The key fact in this limit is that the amplitude can be

separated into two factors. One of these factors is the exponent of an eikonal

function which, as we will see, is analogous to a classical action, and is the part

of the amplitude which describes classical physics. The remaining terms in the

amplitude, which do not exponentiate, are quantum mechanical.

The quintessential difference between classical and quantum physics is uncer-

tainty. Quantum observables naturally have a variance which is absent in classical
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physics. We begin our study by computing the variance in important classical

observables using scattering amplitudes, following the methods of KMOC. In the

classical limit the variance must be negligible. We find that this condition of

negligible variance can be potentially used to discover infinitely many relations

between classical amplitudes1. More specifically, in the correspondence regime we

can expand our amplitudes in powers of momentum transfer over centre-of-mass

energy. This is a semi-classical expansion because the momentum transfers in

KMOC are order ℏ2. The zero-variance conditions relate certain terms in this

“transfer” expansion between amplitudes with different numbers of loops and

legs. For example, five-point amplitudes in the transfer expansion are related to

lower loop five-point and four-point amplitudes.

At four points, the zero-variance conditions are very familiar: they are the

relations required for eikonal exponentiation. Our work therefore shows that

there is a generalisation of the eikonal formula beyond four points. We outline the

structure of the generalisation, which involves a coherent radiative state entangled

with the four-point dynamics.

As in the previous parts of the thesis, we consider semiclassical scattering events

involving two point-like particles. The particles may interact electromagnetically,

gravitationally, or via classical Yang-Mills forces. We begin our work in section 5.2

with a discussion of a basic requirement for a successful quantum description of

such a classical event: negligible variance in a measurement of the field strength.

As we will see, this requirement becomes a non-trivial constraint on scattering

amplitudes. The leading obstruction is given by the six-point tree amplitude; this

amplitude must be suppressed relative to the corresponding six-point one-loop

amplitude. As a check we compute the tree amplitude, demonstrating explicitly

that it has the required suppression. We build on this observation in section 5.3 to

find an infinite series of constraints on multi-loop, multi-leg scattering amplitudes,

verifying the first non-trivial constraint on the five-point one-loop amplitude

in section 5.3.2. In section 5.4 we interpret these zero-variance conditions in

eikonal terms, arguing that radiation exponentiates in a manner analogous to

the conservative terms. We propose a formula for the S matrix acting on our

state which is a product of a coherent radiative state entangled with the more

1This infinity is meant in the sense that one can consider more and more complicated matrix
elements, impose minimal uncertainty, and find relationships between higher loops (and point)
amplitude with lower ones. But given a specific amplitude only finitely many relations will exist
between it and its easier fragments.

2Alternatively one can think of the expansion as a large-mass expansion because the centre-
of-mass energy is dominated by the particle masses.
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traditional eikonal (conservative) dynamics.

The main body of our chapter concludes in section 5.5 with a discussion.

5.2 Negligible Uncertainty

In classical electrodynamics, a key role is played by the field strength Fµν(x).

This object is a complete gauge-invariant characterisation of the field; once it is

known, quantities such as the energy-momentum radiated to infinity and the field

angular momentum are easily determined. In a quantum description, the field

becomes an operator Fµν(x). In a semiclassical situation, the expectation value

of this operator on a state |ψ⟩ should equal the classical field, up to negligible

quantum corrections:

⟨ψ|Fµν(x)|ψ⟩ = Fµν(x) +O(ℏ) . (5.1)

Note that we have schematically indicated the presence of small, order ℏ,
quantum corrections. More precisely, these corrections must be suppressed by

dimensionless ratios involving Planck’s constant; the precise ratios depend on the

actual physical context.

Since in the quantum theory a single-valued field is replaced by the expectation

value of an operator, we must address the quintessentially quantum mechanical

issue of uncertainty. The uncertainty can be characterised by the variance

⟨ψ|Fµν(x)Fρσ(y)|ψ⟩ − ⟨ψ|Fµν(x)|ψ⟩⟨ψ|Fρσ(y)|ψ⟩ . (5.2)

In the domain of validity of the classical approximation, this variance must be

negligible. We have already seen in (2.63) and (2.64) that initial coherent states

satisfy the conditions (5.1) and (5.2), we will see in this chapter what are the

implications for emitted light.

Precisely the same remarks hold in a quantum mechanical approach to GR. The

curvature tensor Rµνρσ(x) in the classical theory is replaced by the expectation

value of the curvature operator Rµνρσ(x). The variance

⟨ψ|Rµνρσ(x)Rαβγδ(y)|ψ⟩ − ⟨ψ|Rµνρσ(x)|ψ⟩⟨ψ|Rαβγδ(y)|ψ⟩ (5.3)
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must be negligible.3

This section is devoted to an investigation of this condition of negligible uncer-

tainty. Working in the KMOC formalism at lowest order in perturbation theory,

we will see that the expectations ⟨ψ|Fµν(x)Fρσ(y)|ψ⟩ and ⟨ψ|Rµνρσ(x)Rαβγδ(y)|ψ⟩
are determined by tree-level six -point amplitudes while ⟨ψ|Fµν(x)|ψ⟩ together

with ⟨ψ|Rµνρσ(x)|ψ⟩ are determined by five-point tree amplitudes. We must

then face the question of how it can be that the variance is negligible.

5.2.1 Field strength expectations

We begin by reviewing the evaluation of single field-strength observables in

KMOC. The gravitational case is completely analogous to the electromagnetic

case, so we only quote key results.

The EM four-potential operator is

Aµ(x) =
1√
ℏ

∑
η=±

∫
dΦ(k)

[
aη(k) ε

(η)∗
µ (k) e−ik̄·x + h.c.

]
. (5.4)

thus the field’s strength can be written as

Fµν(x) =
1√
ℏ

∑
η=±

∫
dΦ(k)

[
−iaη(k) k̄[µε

(η)∗
ν] (k) e−ik̄·x + h.c.

]
. (5.5)

Analogously in gravity, the linearised Riemann tensor operator is, as before

Rµνρσ(x) =
κ

2

(
∂σ∂ [µhν] ρ − ∂ρ∂ [µhν]σ

)
= −κ

2

1√
ℏ

∑
η=±

∫
dΦ(k)

[
aη(k) k̄[µε

(η)∗
ν] (k) k̄[σε

(η)∗
ρ] (k) e−ik̄·x + h.c.

]
.

(5.6)

As frequently done in earlier chapters, we still consider KMOC’s two-particle

states

|ψ⟩ =
∫

dΦ(p1, p2)ϕ(p1, p2)e
ib·p1/ℏ |p1, p2⟩ , (5.7)

as our initial two-particle state to be evolved with the S-matrix.

3Here we focus on linearized curvature fields.
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In the far future, the expectation value of the field becomes

⟨ψ|S†
Fµν(x)S|ψ⟩

=
1√
ℏ

∑
η

∫
dΦ(k)

[
−i⟨ψ|S†aη(k)S|ψ⟩ k̄[µε

(η)∗
ν] (k) e−ik̄·x + h.c.

]
.

(5.8)

We evaluate it at lowest perturbative order by writing S = 1+ iT . Thus we have

⟨ψ|S†aη(k)S|ψ⟩ = i⟨ψ|(aη(k)T − T †aη(k))|ψ⟩+ ⟨ψ|T †aη(k)T |ψ⟩

= i⟨ψ|aη(k)T |ψ⟩+ ⟨ψ|T †aη(k)T |ψ⟩

≃ i⟨ψ|aη(k)T |ψ⟩ .

(5.9)

In the middle line above, we used the fact that aη(k)|ψ⟩ = 0; in the last line we

neglected the term involving two T matrices which does not contribute at lowest

order by counting powers of g.

Further expanding the state using eq. (5.7), and taking advantage of the short-

hand notation defined the introduction, we may write

⟨ψ|S†
Fµν(x)S|ψ⟩ = 2Re

1√
ℏ

∑
η

∫
dΦ(p′1, p

′
2, p1, p2, k)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2)×

× ⟨kη, p′1, p′2|T |p1, p2⟩ k̄[µε
(η)∗
ν] e−ik̄·x .

(5.10)

The matrix element ⟨kη, p′1, p′2|T |p1, p2⟩ is, at lowest order, a five-point tree

amplitude so it is proportional to g3. This is consistent with a classical analysis

of the outgoing radiation field.

In GR, the equivalent expression is

⟨ψ|S†
Rµνρσ(x)S|ψ⟩ = 2Re

−i√
ℏ
κ

2

∑
η

∫
dΦ(p′1, p

′
2, p1, p2, k)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2)×

× ⟨kη, p′1, p′2|T |p1, p2⟩ k̄[µε
(η)∗
ν] k̄[σε

(η)∗
ρ] e−ik̄·x .

(5.11)

It will be useful for us to simplify these expressions further, following again the

discussions in previous chapters. The matrix element ⟨kη, p′1, p′2|T |p1, p2⟩ is the

amplitude times a momentum-conserving delta function; our expectation value

instructs us to integrate over all momenta in the amplitude. We may relabel

these external momenta as shown in fig. 5.1. The measure can then be written
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p1 p2

p1 + q1 p2 + q2k

Figure 5.1 The kinematic configuration we choose for the five-point amplitude
which determines the leading-order radiation field.

as

dΦ(p′1, p
′
2, p1, p2, k) = dΦ(p1, p2, k)d̂

4q1d̂
4q2δ̂(2p1 · q1 + q21)δ̂(2p2 · q2 + q22) . (5.12)

In this form, the overall momentum-conserving delta function reads δ̂4(q1+q2+k).

Now, in the classical regime the photon momentum is of order ℏ thus, denoting

an n point L loop amplitudes as An,L (or Mn,L in gravity), the field strength

becomes

⟨ψ|S†
Fµν(x)S|ψ⟩ = 2Re ℏ7/2

∑
η

〈〈∫
dΦ(k̄) d̂4q̄1d̂

4q̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)

× A5,0(p1p2 → p1 + q1, p2 + q2, k
η) δ̂4(k̄ + q̄1 + q̄2) k̄[µε

(η)∗
ν] e−i(k̄·x+q̄1·b)

〉〉
.

(5.13)

Similarly, in gravity, one finds

⟨ψ|S†
Rµνρσ(x)S|ψ⟩ = −2Re ℏ7/2

iκ

2

∑
η

〈〈∫
dΦ(k̄) d̂4q̄1d̂

4q̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)

×M5,0(p1p2 → p1 + q1, p2 + q2, k
η)δ̂4(k̄ + q̄1 + q̄2) k̄[µε

(η)∗
ν] k̄[σε

(η)∗
ρ] e−i(k̄·x+q̄1·b)

〉〉
.

(5.14)

For these expressions to make sense classically, it better be that the overall ℏ
dependence of the amplitudes cancels that of the observable. Indeed we may

write

A5,0(p1p2 → p1 + q1, p2 + q2, k
η) = ℏ−7/2A(0)

5,0(p1p2 → p1 + q1, p2 + q2, k
η) +O(ℏ)

M5,0(p1p2 → p1 + q1, p2 + q2, k
η) = ℏ−7/2M(0)

5,0(p1p2 → p1 + q1, p2 + q2, k
η) +O(ℏ) ,

(5.15)

where the quantities A(0)
5,0 and M(0)

5,0 are independent of ℏ, as was noticed in [49].

We will return to this structure below.

The physical interpretation of these expectation values is that they compute the
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radiative part of the field at large distances. To see this explicitly, the k̄ integral

needs to be performed taking advantage of the large distance between the point

of measurement x and the particles. The integration can be performed using

textbook methods and was recently reviewed in detail in ref. [33]. The question

of central interest to us in this section, however, is to compute the uncertainty

in the field strength; to do so, we turn to computing the expectation of two field

strengths.

5.2.2 Expectation of two field strengths

It will be quite straightforward for us to compute expectations of products

of operators using precisely the methods of the previous subsection. In

electrodynamics, we need to compute

⟨ψ|S†
Fµν(x)Fρσ(y)S|ψ⟩ = −1

ℏ
∑
η,η′

∫
dΦ(k′, k)⟨ψ|S†

[
−iaη(k) k̄[µε

(η)∗
ν] e−ik̄·x + h.c.

]
×
[
−iaη′(k′) k̄′[ρε

′(η′)∗
σ] e−ik̄′·y + h.c.

]
S|ψ⟩ .
(5.16)

Working at lowest order, and taking advantage of the fact that aη(k)|ψ⟩ = 0, the

expectation simplifies to

⟨ψ|S†
Fµν(x)Fρσ(y)S|ψ⟩ = −2

ℏ
Re
∑
η,η′

∫
dΦ(k′, k)⟨ψ|aη(k)aη′(k′)iT |ψ⟩

× k̄[µε
(η)∗
ν] k̄′[ρε

′(η′)∗
σ] e−i(k̄·x+k̄′·y) ,

(5.17)

up to a purely quantum single-photon effect [33]. Expanding the wavefunctions,

we encounter the matrix element ⟨p′1, p′2|aη(k)aη′(k′)T |p1, p2⟩: a six-point tree

amplitude. The classical limit is determined precisely as in the previous section

with the result

⟨ψ|S†
Fµν(x)Fρσ(y)S|ψ⟩ = −2ℏ5Re

∑
η,η′

〈〈∫
dΦ(k̄′, k̄) d̂4q̄1d̂

4q̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)

× iA6,0 δ̂
4(k̄ + k̄′ + q̄1 + q̄2) k̄[µε

(η)∗
ν] k̄′[ρε

′(η′)∗
σ] e−i(k̄·x+k̄′·y+q̄1·b)

〉〉
.

(5.18)

The amplitude is shown in figure 5.2.
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p1 p2

p1 + q1 p2 + q2kk′

Figure 5.2 The kinematic configuration we choose for the six-point amplitude
appearing at leading-order expectation of a pair of field strength
operators.

Similarly, in gravity, we find

⟨ψ|S†
Rµνρσ(x)Rαβγδ(y)|ψ⟩

= −2ℏ5Re
(
−iκ

2

)2∑
η,η′

〈〈∫
dΦ(k̄′, k̄) d̂4q̄1d̂

4q̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)M6,0

× δ̂4(k̄ + k̄′ + q̄1 + q̄2) k̄[µε
(η)∗
ν] k̄[ρε

(η)∗
σ] k̄′[αε

′(η′)∗
β] k̄′[γε

′(η′)∗
δ] e−i(k̄·x+k̄′·y+q̄1·b)

〉〉
.

(5.19)

In both cases, the expectation of two field strengths is given to leading order in

g by a tree-level six-point amplitude.

5.2.3 Negligible variance?

We have now seen explicitly that the expectation of a single field strength is

determined by a five-point amplitude, while the expectation of two field strengths

is a six-point tree amplitude at lowest order in the coupling g. But for the

uncertainty in the field strength to be negligible, we need the variance to be

negligible. How can this happen?

Let us count powers of the coupling in the electromagnetic variance. The product

of two field-strength expectations is

⟨ψ|Fµν(x)|ψ⟩⟨ψ|Fρσ(y)|ψ⟩ ∼ (A5,0)
2 ∼ (g3)2 . (5.20)

while the expectation of two field strengths is

⟨ψ|Fµν(x)Fρσ(y)|ψ⟩ ∼ A6,0 ∼ g4 . (5.21)

Thus the situation seems to very bad: the variance is dominated by the
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ℏ−2

ℏ−1

ℏ−1

Figure 5.3 A sample Feynman diagram contributing to the six-point tree
amplitude, indicating powers of ℏ assigned by naive power counting
to the propagators and vertices.

expectation of two field-strength operators! For the classical limit to emerge

as expected, we need the six-point tree amplitude to be suppressed somehow.

One possibility is that it is suppressed by powers of ℏ, but naively that is not the

case. Consider, for example, the 6-point Feynman diagram shown in figure 5.3.

Counting powers of ℏ we conclude that the six-point tree amplitude contains

terms of order ℏ−6. Referring back to eq. (5.18) or eq. (5.19) for the expectation

of two field strengths, we see that the observables contribute a total of ℏ+5. Based

on this counting, the observable seems to scale as ℏ−1, which would be a serious

obstruction to the emergence of a classical limit. Evidently there is more to

understand here.

However, it is a familiar story that power counting Feynman diagrams can be

misleading: upon combining diagrams to evaluate an amplitude, there can be

cancellations. In fact this already happens in the case of the five-point tree; there,

naive power counting suggests that the amplitude scales as ℏ−9/2 but in fact the

leading term in the amplitude is of order ℏ−7/2 [48]4. The question, then, of the

fate of the six-point tree amplitude in the expectation value of two field strengths

becomes a question of the overall ℏ scaling of six-point tree amplitudes in QED

and gravity. We will shortly demonstrate explicitly that the QED amplitude in

fact scale as ℏ−4; the gravitational case will be discussed in reference [268]. Two

powers of ℏ cancel; consequently the contribution of the six-point tree to the

variance is entirely at the quantum level.

It is amusing that at next-to-leading order in the perturbative coupling g, namely

order g6, the expectation value of two field strengths is sensitive to one-loop

4In reference [48], the analysis of the five-point tree amplitude was performed in gravity
using the large mass expansion, which is equivalent to expanding in small ℏ.
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six-point amplitudes and to products of two tree five-point amplitudes. These

products of tree-level five-point amplitudes can be viewed as the cut of a six-point

one-loop amplitude. It is easy to check that these scale as ℏ−5, so in this sense

they are enhanced relative to the six-point tree amplitude. This is as desired for

negligible uncertainty:

⟨ψ|Fµν(x)|ψ⟩⟨ψ|Fρσ(y)|ψ⟩ ∼ (A5,0)
2 ∼ (g3)2 ;

⟨ψ|Fµν(x)Fρσ(y)|ψ⟩ ∼ A6,1 ∼ (A5,0)
2 ∼ (g3)2 .

(5.22)

5.2.4 Explicit six-point tree amplitudes

We now compute the leading contribution in ℏ of the six-point tree amplitude.

We will discuss the computation explicitly in electromagnetism, and explain only

the mechanism for cancellation of apparent excess powers of ℏ in gravity (see also

[268]).

Suppose particle 1 has charge Q1 while particle 2 has charge Q2. Then there are

three gauge-invariant six-point tree partial amplitudes:

A6,0(p1 + q1, p2 + q2 → p1, p2, k) = Q3
1Q2A(3,1) +Q2

1Q
2
2A(2,2) +Q1Q

3
2A(1,3) .

(5.23)

The “charge-ordered” partial amplitudes A(3,1), A(2,2), and A(1,3) are analogues of

color-ordered amplitudes in gauge theory, which motivates our choice of notation.

Evidently there can be no cancellation of powers of ℏ between these partial

amplitudes because of the different powers of the charges. Thus the problem

reduces to computing the leading-in-ℏ terms in these amplitudes. There are two

partial amplitudes to consider, since A(1,3) can be obtained from A(3,1) by trivially

swapping the labels 1 and 2.

Here, we present a computation of the partial amplitudes A(3,1) in a convenient

gauge which greatly reduced the labour necessary to see that two powers

of ℏ cancel. The gauge we chose (referring to the momentum routing in

equation (5.23)) is

p1 · ε(ki) = 0 for i = 1, 2, (5.24)

where p1 is the momentum of particle 1 while ki is the outgoing momentum of

photon i.
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Figure 5.4 Diagrams in Q3
1Q2 sector.

The effect of this choice is twofold; it removes many diagrams from the calculation

and those that remain get an ℏ enhancement from each emission vertex. For

example, consider A(3,1): in this case, the emitted photon is radiated from

particle 1. With our momentum labelling convention the emission vertices will

produce factors of the form (2p1 + ℏQ̄)) · ε(ki), where Q̄ is some combination

of wavenumbers. The first part vanishes leaving only the ℏ enhanced ε(ki) · Q̄
term. Any diagram with a photon emitted from the outgoing line of particle 1

vanishes, as it is proportional to (2p1 + ℏk̄i) · ε(ki) = 0. In what follows we will

write ε(ki) = εi. We will also suppress the iϵ factors in the propagators5; they all

implicitly come with +iϵ. Finally we will refer to each diagram contributing to

the amplitude by, for example, D(3, 1) so that

iA(3,1) = iD(3,1)cubic + iD(3,1)quartic. (5.25)

Some of the sub-amplitudes are given by a single diagram, whereas others are

made up of multiple diagrams.

Our gauge choice is most powerful in the case of A(3,1), so we discuss this case

in most detail. The Feynman diagrams that constitute this amplitude can be

split into 3 classes: the first involves single photon emissions coming from cubic

vertices, the second has precisely one photon emitted into the final state from

a quartic vertex, while the third class has two photons emitted from the same

quartic vertex. These classes are shown in figure 5.4, after removing diagrams

which vanish by gauge choice. The first diagram is an example of the first class,

the second an example of the second class and the last two diagrams are in the

third class.

We choose a particular ordering of k1 and k2 for the calculation, and include the

permuted case by swapping k1 ↔ k2. For the first class there is a single diagram

to compute after gauge fixing, and it is trivial to write down the leading term in

5The iϵ factors are often important — and will play an important role in section 5.3.2 —
but in this computation they are spectators.
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the amplitude and see that it has the desired scaling. This diagram is

D(3,1)|cubic =
1

ℏ4q̄22

[
2(ε2 · q̄1)(ε1 · (2q̄1 − k̄2))(2p2 + ℏq̄2) · (2p1 − ℏq̄2)
(−2p1 · q̄2 + ℏq̄22)(2p1 · (q̄1 − k̄1) + ℏ(q̄1 − k̄1)2)

]
=

1

ℏ4q̄22

[
4p1 · p2(ε2 · q̄1)(ε1 · (2q̄1 − k̄2))

2(−p1 · q̄2)(p1 · (q̄1 − k̄1)
+O(ℏ)

]
=
2p1 · p2
ℏ4q̄22

[
(ε2 · q̄1)(ε1 · (q̄1 − q̄2))

(p1 · (k̄1 + k̄2))(p1 · k̄1)

]
+O(ℏ−3).

(5.26)

We used momentum conservation q1 + q2 = k1 + k2 to write our expressions in

terms of just the ki or the qi. The choice here is most natural for obtaining a

similarly simple expression for the amplitude with k1 and k2 swapped.

The second class is actually tractable without fixing a gauge, as there is only a

single cancellation to show. However with our gauge fixing this class becomes

trivial, and there is only a single diagram to compute. This is

D(3,1)|cubic/quartic =
4(p2 · ε2)(q̄1 · ε1)

ℏ4q̄22p1 · k̄1
. (5.27)

The final class is unaffected by our choice of gauge as it is proportional to ε1 · ε2.
After gauge fixing this is naively ℏ−5, so we must find a single cancellation.

The mechanism of the cancellation is identical to the case of the five-point tree

amplitude. This is done in [48, 269], but we shall review it here for completeness.

The key step is to make use of the on-shell conditions

(pi + qi)
2 = p2i = m2

i , i = 1, 2, (5.28)

which allows us, after the ℏ rescaling, to replace 2pi·q̄i → −ℏq̄2i in the propagators.

Lastly, we Taylor expand. There are two diagrams to compute which are,

D(3,1)|quartic,1 =− 2ε1 · ε2
ℏ5q̄22

[
(2p1 + ℏ(2q̄1 + q̄2)) · (2p2 + ℏq̄2)
2p1 · (k̄1 + k̄2) + ℏ(k̄1 + k̄2)2

]
=− 2ε1 · ε2

ℏ5q̄22

[
4p1 · p2

2p1 · (k̄1 + k̄2)

+ℏ
(
4p2 · q̄1 + 2p1 · q̄2
2p1 · (k̄1 + k̄2)

− 4p1 · p2(k̄1 + k̄2)
2

(2p1 · (k̄1 + k̄2))2

)]
(5.29)
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and

D(3,1)|quartic,2 =− 2ε1 · ε2
ℏ5q̄22

[
4p1 · p2

−2p1 · (k̄1 + k̄2)

+ ℏ
(

4p1 · q̄2
−2p1 · (k̄1 + k̄2)

+
4p1 · p2((k̄1 + k̄2)

2 − q̄21)

(2p1 · (k̄1 + k̄2))2

)]
.

(5.30)

Notice the most singular terms are equal up to a sign, and so cancel. Combining

the remaining terms we obtain

D(3,1)|quartic = −ε1 · ε2
ℏ4q̄22

[
4(p1 · p2)(q̄2 · (k̄1 + k̄2))

(p1 · (k̄1 + k̄2))2
+

4p2 · q̄1 + 2p1 · q̄2
p1 · (k̄1 + k̄2)

]
. (5.31)

These can be combined as A(3,1) = D(3,1)cubic +D(3,1)quartic yielding,

A(3,1) =
1

ℏ4q̄22

[
4p1 · p2(ε2 · q̄1)(ε1 · (q̄1 − q̄2))

2(p1 · (k̄1 + k̄2))(p1 · k̄1)
+

4p1 · p2(p2 · ε2)(q̄1 · ε1)
p1 · k̄1

− (ε1 · ε2)
(
4(p1 · p2)(q̄2 · (k̄1 + k̄2))

(p1 · (k̄1 + k̄2))2
+

4p2 · q̄1 + 2p1 · q̄2
p1 · (k̄1 + k̄2)

)]
+ (k1 ↔ k2).

(5.32)

The story is very similar for A(2,2). We can split into the same 3 classes, use gauge

fixing to get rid of one factor of ℏ and then massage using the on-shell constraints

to show the final cancellation. Here we just quote the result, the details are in

[4]. The result is

A(2,2) =
4

ℏ4(q̄2 − k̄2)2

[
4ε1 · ε2 +

(ε1 · p2)(ε2 · q̄2)
p2 · k̄2

− (ε2 · p2)(ε1 · (q̄2 + q̄1))

2p2 · k̄2
p1 · p2(ε1 · q̄1)(ε2 · q̄2)

(p2 · k̄2)(p1 · k̄1)
− (p1 · k̄2)(ε1 · q̄1)(ε2 · p2)

(p2 · k̄2)(p1 · k̄1)

− (ε1 · p2)(ε2 · p2)(q̄2 · k̄2)
(p2 · k̄2)2

− p1 · p2(ε1 · q̄1)(ε2 · p2)q̄2 · k̄2
(p2 · k̄2)2(p1 · k̄1)

]
+ (k1 ↔ k2)

(5.33)

Finally A(1,3) can be obtained by swapping the labels 1 ↔ 2 in the expression for

A(3,1) (written in the gauge where p2 · εi = 0. Of course the partial amplitudes

themselves are gauge-invariant.) In all cases, the ℏ scaling is as required from

negligible variance.
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5.3 Transfer relations

Our discussion so far reveals that scattering amplitudes, viewed as Laurent series

in ℏ, obey certain properties which permit the emergence of a classical limit

through negligible uncertainty. This Laurent expansion can also be viewed as

an expansion in small momentum transfers divided by the centre-of-mass energy
√
s. In fact, the emergence of the classical limit imposes an infinite set of these

relationships, which we will call “transfer relations” on scattering amplitudes.

In this section we will describe the origin of these relations, and explicitly

demonstrate a non-trivial example at one loop and five points.

5.3.1 Mixed variances

To see where these relationships are coming from, recall that the double field-

strength expectation (5.18) depends on a six-point amplitude. We have seen

that the dominant term is actually the six-point one-loop amplitude, occuring

at next-to-leading order in the expansion in g. At this order an additional term

contributes to the double field-strength expectation; this term is the product

of two five-point amplitudes. Now, negligible uncertainty demands that the

complete double field-strength expectation must be the product of two single

field-strength expectations. At leading order in the coupling, and leading non-

trivial order in ℏ, we conclude that there must exist a relationship between the

leading-in-ℏ six-point one-loop amplitude and the product of two five-point trees.

Further examples of relationships between amplitudes can be obtained by

considering expectations of three (or more) field strengths, leading to relationships

between seven- (or higher-) point loop amplitudes and products of three (or more)

five-point amplitudes.

Yet more relationships occur by considering expectations of products of operators

including field strengths and momenta. For example, consider the variance

Vµνρ ≡ ⟨ψ|S†
Fνρ(x)SPµ|ψ⟩ − ⟨ψ|S†

Fνρ(x)S|ψ⟩⟨ψ|Pµ|ψ⟩ . (5.34)

This is the variance in a measurement of the initial momentum and the future

field strength; it must be negligible in the classical regime. In a quantum-first
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approach, however, this variance will not vanish. Indeed it need not be real:

V ∗
µνρ = ⟨ψ|PµS

†
Fνρ(x)S|ψ⟩ − ⟨ψ|S†

Fνρ(x)S|ψ⟩⟨ψ|Pµ|ψ⟩ ≠ Vµνρ. (5.35)

We can derive an interesting constraint on the five-point one-loop amplitude

by demanding that imaginary part of this variance vanishes in the classical

approximation. We therefore define

Oµνρ = i(V ∗
µνρ − Vµνρ)

= i⟨ψ|PµS
†
Fνρ(x)S − S†

Fνρ(x)SPµ|ψ⟩ .
(5.36)

Expanding the states as usual, we easily find

Oµνρ =

∫
dΦ(p′1, p

′
2, p1, p2)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2)i(p

′
1µ − p1µ)

× ⟨p′1p′2|i(Fνρ(x)T − T †
Fνρ(x)) + T †

Fνρ(x)T |p1p2⟩ .
(5.37)

The factor i(p′1µ − p1µ) is important here: working at leading perturbative order,

this factor is of order ℏ. It is also worth noting that we may write the expectation

of the field strength itself as

⟨ψ|Fνρ|ψ⟩ =
∫

dΦ(p′1, p
′
2, p1, p2)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2)

× ⟨p′1p′2|i(Fνρ(x)T − T †
Fνρ(x)) + T †

Fνρ(x)T |p1p2⟩ .
(5.38)

Thus the i(p′1µ − p1µ) ∼ ℏ factor in the variance is the key distinction between

the variance, which vanishes classically, and the field strength which of course

should not vanish classically. As we have already seen that the field strength is

related to five-point amplitudes, it is now clear that condition of vanishing Oµνρ

will become a condition on five-point amplitudes.

It is useful to break the variance Oµνρ up into two structures:

O(1)
µνρ =

∫
dΦ(p′1, p

′
2, p1, p2)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2)i(p

′
1µ − p1µ)

× ⟨p′1p′2|i(Fνρ(x)T − T †
Fνρ(x))|p1p2⟩ ,

(5.39)

and

O(2)
µνρ =

∫
dΦ(p′1, p

′
2, p1, p2)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2)i(p

′
1µ − p1µ)

× ⟨p′1p′2|T †
Fνρ(x)T |p1p2⟩ .

(5.40)
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Both of these objects are real, which is convenient in terms of keeping the

expressions simple.

We may simplify these structures using the explicit expression for the field

strength given in equation (5.5). For O(1) we find

O(1)
µνρ = 2Re

1√
ℏ

∑
η

∫
dΦ(p′1, p

′
2, p1, p2, k)ϕ

∗
b(p

′
1, p

′
2)ϕb(p1, p2)×

× i(p′1µ − p1µ)⟨kη, p′1, p′2|T |p1, p2⟩ k̄[νε
(η)∗
ρ] e−ik̄·x .

(5.41)

which should be compared to equation (5.10). Again we see that the crucial new

ingredient is a factor i(p′1µ− p1µ). In the classical regime, we may write this term

as

O(1)
µνρ = 2Re ℏ9/2

∑
η

〈〈∫
dΦ(k̄) d̂4q̄1d̂

4q̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)

× iq̄µA5(p1p2 → p1 + q1, p2 + q2, k
η) δ̂4(k̄ + q̄1 + q̄2) k̄[νε

(η)∗
ρ] e−i(k̄·x+q̄1·b)

〉〉
.

(5.42)

Referring back once more to equation (5.13), the additional ℏ suppression is now

manifest.

In order to control the ℏ expansion of scattering amplitudes, it is useful to

introduce some further notation. Let us write the amplitudes as explicit Laurent

series in ℏ building on equation (5.15). For example, at five-points we may write

A5,0(i→ f) = ℏ−7/2
(
A(0)

5,0(i→ f) + ℏA(1)
5,0(i→ f) + · · ·

)
,

A5,1(i→ f) = ℏ−9/2
(
A(0)(i→f)

5,1 + ℏA(1)
5,1(i→ f) + · · ·

)
.

(5.43)

We have scaled out the dominant (inverse) power of ℏ; the quantities A(p)
n,L are ℏ-

independent gauge-invariant sub-amplitudes; it is precisely these quantities that

are related by our reasoning. This expansion defines an infinite set of objects

A(p)
n,L which could in principle be reassembled into the full amplitude. They are a

kind of partial amplitude, but distinct from the usual use of this term. We will

therefore refer to them as “fragmentary amplitudes”, or simply as “fragments.”

Since ℏ is dimensionful, it is useful to view these fragmentary amplitudes in a

slightly different way. Amplitudes are functions of Mandelstam invariants; in

the semi-classical region, we are expanding in powers of momentum transfers,

such as q2 = ℏ2q̄2 at four points, divided by Mandelstam s = (p1 + p2)
2. The
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semiclassical expansion is an expansion in powers of ℏ
√
−q̄2/s. More general

amplitudes involve a richer set of momentum transfers q̄2ij; our expansion is in

powers of ℏ
√
−q̄2ij/s. We only consider amplitudes with two incoming massive

particles.

We may also view the expansion as being in (inverse) powers of the large mass of

the scattering particles [15, 48, 60, 238]. This makes contact with effective field

theory, especially heavy quark effective theory or, more generally, heavy particle

effective theories as has been emphasised in references [15, 60, 238].

Notice that this expansion is analogous, but different, to a soft expansion. In

the soft expansion we take the momentum of an individual particle soft. In this

transfer expansion we take the momenta in all messenger lines to be of the same

order, and small compared to the incoming centre of mass energy. It is possible

to perform the transfer expansion and then, in a second stage, to single out

some line, say an outgoing photon, and take its momentum to be softer than

all other messenger lines. This yields the soft limit of the transfer expansion. It

corresponds to the low-frequency limit in the classical approximation. Interesting

classical physics, including memory effects, appear in this region [31, 52, 53, 270–

275].

Now at classical order (ℏ0) the tree level amplitude A5,0 does not appear in O(1)
µνρ

on account of the explicit factor ℏ9/2 in equation (5.42). The leading in g, non-

trivial, classical contribution arises from the fragment A(0)
5,1. We conclude then

that

O(1)
µνρ = 2Re

∑
η

〈〈∫
dΦ(k̄) d̂4q̄1d̂

4q̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)×

× iq̄µA(0)
5,1(p1p2 → p1 + q1, p2 + q2, k

η) δ̂4(k̄ + q̄1 + q̄2) k̄[νε
(η)∗
ρ] e−i(k̄·x+q̄1·b)

〉〉
.

(5.44)

The relevant fragmentary amplitude is the leading-in-ℏ five-point one-loop

amplitude, sometimes known as the “superclassical” part of the one-loop

amplitude. Of course in this context this fragment of the amplitude is

contributing precisely at classical order.

Now the full Oµνρ should vanish at classical order. Since O(1)
µνρ ̸= 0, it must be

that the second structure O(2)
µνρ cancels the contribution of equation (5.44). We
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find that

O(2)
µνρ = 2Re

∑
η

〈〈∫
dΦ(k̄) d̂4q̄1d̂

4q̄2d̂
4w̄1d̂

4w̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)δ̂(2p1 · w̄1)δ̂(2p2 · w̄2)

× q̄µ δ̂
4(k̄ + q̄1 + q̄2)δ̂

4(q̄1 + q̄2 − w̄1 − w̄2) k̄[νε
(η)∗
ρ] e−i(k̄·x+q̄1·b)

×A(0)
5,0(p1p2 → p1 + w1, p2 + w2, k

η)A(0)
4,0(p1 + w1, p2 + w2 → p1 + q1, p2 + q2)

〉〉
.

(5.45)

Comparing equations (5.44) and (5.45), the condition for vanishing O is

iA(0)
5,1(p1p2 → p1 + q1, p2 + q2, k

η)

= −
∫

d̂4w̄1d̂
4w̄2 δ̂(2p1 · w̄1)δ̂(2p2 · w̄2)δ̂

4(q̄1 + q̄2 − w̄1 − w̄2)

×A(0)
5,0(p1p2 → p1 + w1, p2 + w2, k

η)A(0)
4,0(p1 + w1, p2 + w2 → p1 + q1, p2 + q2) .

(5.46)

Thus the dominant part of the five-point one-loop amplitude is given by the tree

five-point and tree four-point amplitudes; we will check this relation explicitly in

the next subsection. We remark that this relation, together with others one can

obtain, only hold for classical amplitudes and on-shell of our integration measures.

Clearly this explicit example is one among an infinite set of relationships.

Variances involving one field strength operator and two momenta will lead to

relationships among two-loop five-point amplitudes and the product of one five-

point tree and two four-point trees. We can continue, in principle, as far as we

wish generating similar relations. These negligible uncertainty relations generalise

the well-known relations between multiloop four-point amplitudes required for

eikonal exponentiation. Indeed consideration of expectations such as

⟨ψ|S†
Pµ1Pµ2 · · ·PµnS|ψ⟩ ≃ ⟨ψ|S†

Pµ1|ψ⟩⟨ψ|S†
Pµ2 |ψ⟩ · · · ⟨ψ|S†

Pµn|ψ⟩ , (5.47)

shows that there must be a relationship between the n − 1 loop four-point

amplitude and the product of n tree amplitudes.

Thus we find a remarkable abundance of relationships between multiloop, multileg

amplitudes, considered as Laurent series in ℏ, forced on us by the absence of

uncertainty in the classical regime. In the next section, we will interpret these

relationships in terms of a radiative generalisation of the eikonal exponentiation.

As well as finding explicit relations between different fragmentary amplitudes, we

can use similar ideas to determine the ℏ scaling associated with fragments in the
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transfer expansion. The kinds of multiple cancellations of ℏ powers we saw at six

points must continue to occur at higher points. The reason again follows from

considering expectations of products of more than two field-strength operators.

The arguments are based simply on counting powers of coupling and ℏ. We know

that for the single expectation, at leading order, we have

⟨Fµν⟩ ∼ g3. (5.48)

This means that we must also have ⟨Fn⟩ ∼ (g3)n. Now we perform the KMOC

analysis of ⟨Fn⟩. Following the steps of the calculation earlier in section 5.2.2 we

find, schematically, that

⟨Fn⟩ ∼ ℏ3n/2+2

∫
A4+n. (5.49)

These relations allow us to deduce two things. Firstly the relevant fragment of the

complete amplitude A4+n must scale as ℏ−3n/2−2. Secondly this fragment must

have 3n powers of the coupling g — this corresponds to having n−1 loops. From

this we can also infer the scaling of all other loop and tree amplitudes, in the

classical limit, since each loop contributes an extra factor of ℏ−1. In particular

the tree scaling will be

A4+n,0 ∼ ℏ−n/2−3. (5.50)

This is consistent with the scaling we computed above for six points (n = 2),

and we have also checked explicitly at seven points. It is interesting to see how

these two very simple power counting arguments have completely constrained the

ℏ scaling of all 2 → 2 + n amplitudes.

5.3.2 One loop factorisation

We now turn to verifying equation (5.46). For simplicity we focus on the case

of scalar QED, though the general nature of our arguments indicates that the

result should also hold in gravity and in Yang-Mills theory. In order to keep the

computational labour to the minimum necessary, we take advantage of lessons we

learned in the context of the six-point tree amplitude in section 5.2.4. First, we

note that the scalar QED five-point amplitudes can be reduced to gauge-invariant

partial amplitudes analogous to colour-ordered amplitudes in Yang-Mills theory.
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In particular we write

A(0)
4,0(p1p2 → p1 + w1, p2 + w2) = Q1Q2A(1,1) ,

A(0)
5,0(p1p2 → p1 + q1, p2 + q2, k) = Q1Q

2
2A(1,2) +Q2

1Q2A(2,1) ,

A(0)
5,1(p1p2 → p1 + q1, p2 + q2, k) = Q2

1Q
3
2A(2,3) +Q3

1Q
2
2A(3,2) .

(5.51)

In view of the symmetry between A2,3 and A3,2 we may compute just one choice:

we choose to focus on the charge sector Q2
1Q

3
2.

Second, we find it useful to choose an explicit gauge, namely

εη(k̄) · p2 = 0 . (5.52)

This choice drastically reduces the relevant number of terms in the ℏ expansion.

It is trivial to determine the tree partial amplitudes in this gauge, which are

A(1,1) = e2
4p1 · p2
w̄2

1

, (5.53)

and

A(1,2) =
4e3

q̄21

(
p1 · εη +

p1 · p2 εη · q̄1
p2 · k̄

)
. (5.54)

The anatomy of (5.46) is that the leading-in-ℏ fragment of the one-loop five-

point amplitude A(2,3) will organise itself into a product of A(1,1) times the four

terms that constitute A(1,2). Our strategy will be to isolate these terms one by

one. Let us start gathering the relevant diagrams of A(2,3). At one loop, and in

the classical limit, we need to consider the transfer expansion of the following

five-point diagrams with a photon emitted in the final state:

p1 + q1 p2 + q2
k

p1 p2

=

+ + +

+ +

+

+

+ + + · · ·
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p1 + q1

p1 p2

p2 + q2

l

l − q1

p2 − l
p1 + l

p2 − l − k

Figure 5.5 Momentum routing for the pentagon contribution to the five-point
one-loop amplitude.

The ellipsis indicate purely quantum diagrams which are not relevant for us.

As in 5.2.4 we tidy our expressions up by making use of the on-shell conditions.

Using the momentum labelling in the figure above these read

p1 · q̄1 = p2 · q̄2 = O(ℏ). (5.55)

Keeping this in mind6 we start to compute the diagrams. It is helpful to compute

the first six diagrams in the figure above, which involve only three-point vertices,

separately from the rest of the diagrams (which involved contact four-point

vertices). We therefore write

A(2,3) = A3pt
(2,3) + A4pt

(2,3) . (5.56)

We focus first on the six diagrams which constitute A3pt
(2,3). For clarity, let us begin

by describing the contribution from the pentagon diagram, in our gauge (5.52)

in detail. We choose the momentum routing shown in figure 5.5. On the support

of the momentum-conserving delta function δ̂4(q1 + q2 + k), its contribution to

A(2,3) is

ie5
∫

d̂4l̄

l̄2(l̄ − q̄1)2
(4p1 · p2)2(−2 εη · l̄)

(2p1 · l̄)(−2p2 · l̄)(−2p2 · (k̄ + l̄))
. (5.57)

The sum of the cubic diagrams yields

6Here’s a random quote for you: “When two numbers a and b are different, they can only
be equal if they are both zero”. Marcel Proust.
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A3pt
(2,3) = ie5

∫
d̂4l̄

l̄2(l̄ − q̄1)2
(4p1 · p2)2×(

−2εη · l̄
(2p1 · l̄)(−2p2 · l̄)(−2p2 · (k̄ + l̄))

− 2εη · q̄1
(2p1 · l̄)(−2p2 · l̄)(2p2 · k̄)

+
2εη · (l̄ − q̄1)

(2p1 · l̄)(2p2 · (k̄ + l̄))(2p2 · l̄)
− 2εη · q̄1

(2p1 · l̄)(2p2 · (k̄ + l̄))(2p2 · k̄)

)
.

(5.58)

Note that the signs in the linearised propagators are important! We use them to

indicate the hidden iϵ’s,

1

±p · l̄
≡ 1

±p · l̄ + iϵ
̸= ± 1

p · l̄
=

1

±p · l̄ ± iϵ
. (5.59)

which allows us to make use of the following identity

−iδ̂(p · l̄) = 1

p · l̄
+

1

−p · l̄
. (5.60)

In order to make use of this identity we apply a change of variables l → q̄1 − l

in the last two terms in (5.58). This, along with the on-shell conditions, allows

pairs of terms to take an almost identical form — denominators differ only by

a sign in the p1 · l term which is precisely what is needed to apply (5.60). The

amplitude then reduces to

A3pt
(2,3) = 4e5(p1 · p2)2

∫
d̂4l̄

l̄2(l̄ − q̄1)2
δ̂(p1 · l̄)
−p2 · l̄

(
−εη · q̄1
p2 · k̄

− εη · l̄
−p2 · (k̄ + l̄)

)
. (5.61)

It is possible to expose a second delta function in this expression by writing

−εη · q̄1 = εη · (l̄ − q̄1) − εη · l̄. The two terms involving εη · l̄ under the integral

sign can be simplifed by a partial fraction, yielding

A3pt
(2,3) = 4e5(p1 · p2)2

∫
d̂4l̄

l̄2(l̄ − q̄1)2
δ̂(p1 · l̄)
p2 · k̄

(
εη · (l̄ − q̄1)

−p2 · l̄
− εη · l̄

−p2 · (l̄ − q̄1)

)
= 4ie5(p1 · p2)2

∫
d̂4l̄

l̄2(l̄ − q̄1)2
δ̂(p1 · l̄)δ̂(p2 · (l̄ − q̄1))

εη · l̄
p2 · k̄

.

(5.62)

To obtain the second of these equalities, we redefined the variable of integration

to l̄′ = −(l̄ − q̄1) in the first term, and dropped the prime.

Next, we address the remaining diagrams contributing to A(2,3) which now involve
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four-point vertices. After a straightforward computation, we find

A4pt
(2,3) = 4ie5p1 · p2 εη · p1

∫
d̂4l̄

l̄2(l̄ − q̄1)2
δ̂(p1 · l̄)δ̂(p2 · (l̄ − q̄1)) . (5.63)

At this stage we can see the structure of the required factorisation — we have

exposed the delta functions present in equation (5.46).

Combining the contact terms of equation (5.63) with the rest of the diagrams,

equation (5.62), we find that the total expression for the amplitude fragment is

A(2,3) = 4ie5 p1 · p2
∫

d̂4l̄

l̄2(l̄ − q̄1)2
δ̂(p1 · l̄)δ̂(p2 · (l̄ − q̄1))

(
εη · p1 + p1 · p2

εη · l̄
p2 · k̄

)
.

(5.64)

The final step is to compare this result with the prediction for A(2,3) from

equation (5.46). Using the amplitudes of equation (5.51), it is easy to see that

the prediction is

A(2,3) =

∫
d̂4w̄1d̂

4w̄2 δ̂(2p1 · w̄1)δ̂(2p2 · w̄2)δ̂
4(q̄1 + q̄2 − w̄1 − w̄2)

× 4e3

w̄2
1

(
p1 · εη +

p1 · p2 εη · w̄1

p2 · k̄

)
4e2

(q̄1 − w̄1)2
p1 · p2 .

(5.65)

Upon performing the integral over w̄2 using the four-fold delta function,

relabelling w̄1 = l̄ and recognising that k̄ = −q̄1 − q̄2, we immediately recover

equation (5.64).

5.4 Generalising the Eikonal

We have now seen that the uncertainty, or the variance, in the measurement of

a scattering observable can be computed in terms of amplitudes and, moreover,

that the classical absence of uncertainty leads to an infinite set of relationships

among fragments of amplitudes expanded in powers of momentum transfer, which

is a Laurent series in ℏ. In a purely conservative limit, these relationships can

be understood in terms of eikonal exponentiation. Our goal now is to review the

eikonal formula, emphasising its connection to final state dynamics. We will then

build on this eikonal state to incorporate radiative dynamics as a kind of coherent

state so that the variance is naturally small.
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5.4.1 Eikonal final state

Eikonal methods have long been used to extract classical physics from quantum

mechanics. Recent years have seen a renewed surge of interest in this approach,

especially in the context of gravitational scattering [9, 11, 14, 22, 32, 54,

66, 168, 172, 199, 200, 203, 205, 206, 224, 230, 254, 276–282], though this

has roots in earlier work [193, 195, 283]. Originally born out of the study

of high energy/Regge scattering [260–267] where the Feynman diagrammatics

dramatically simplify, eikonal physics now have much wider application. The

simplification in this regime allows diagrams, expressed in impact parameter

space rather than momentum space, to be summed exactly to an exponential

form. This exponential depends on the 2 → 2 scattering amplitude, and contains

information about classical quantities such as the deflection angle. There are

rich connections to soft/IR physics and Wilson lines [196, 198, 284–287] which

lead to a formal proof of the exponentiation quite generally [196]. Nowadays

the exponentiation is taken as a starting point and applied to various scattering

regimes.

In this section our goal is to explain the link between eikonal methods and the

KMOC approach. Firstly it is worth noting that the small ℏ expansion in the

KMOC formalism is essentially the same as the soft expansion in the eikonal

literature; the ℏ scaling counts the order of softness. The key connection is

to compute the final state using the methods of KMOC instead of computing

observables directly. We will see that this final, outgoing, state is controlled by

the usual eikonal function. In this section we restrict to a purely conservative

scattering scenario: then eikonal exponentiation is exact. We take two incoming

particles and (since the scattering is conservative) assume that the outgoing state

is also an element of the two-particle Hilbert space.

We begin with the standard definition of the eikonal as the transverse Fourier

transform of the four-point amplitude

eiχ(x; s)/ℏ(1 + i∆(x; s))− 1 = i

∫
d̂4q δ̂(2p1 · q)δ̂(2p2 · q)e−iq·x/ℏA4(s, q

2) , (5.66)

where χ(x; s) is the eikonal function and ∆(x; s) is the so-called quantum

remainder which takes into account contributions that do not exponentiate (see

for example [9]). This remainder is important for computing the eikonal function

— but it will play no role in the remainder of the chapter, so we will omit it.
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p′1 p′2

p1 = p′1 − q p2 = p′2 + q

Figure 5.6 Momentum labelling at four points

Meanwhile the two Dirac delta functions appearing in equation (5.66) ensure

that we integrate only over the components of q transverse to the momenta. This

is often just written instead as d̂D−2q⊥ (times a Jacobian factor). Indeed, the

parameter x should be thought of as an element of the D− 2 dimensional spatial

slice perpendicular to p1 and p2: this is most evident on the right-hand-side of

the equation, where the Dirac delta functions project away any components of q

in the (timelike) p1 and p2 directions. Consequently no components of x in the

space spanned by p1 and p2 enter the dot product q · x.

The eikonal can be written as an expansion in powers of the generic coupling g

χ(x; s) =
∞∑
n=0

χn(x; s) , χn(x; s) ∼ g2n , (5.67)

and we will, as others have (see for example [9, 11, 14, 203, 205, 288]), assume

that this holds to all orders. The structure has been formally proven at leading

order, (see for example [196, 199]), however an all orders proof has not been given

(to the best of our knowledge).

Starting with the in state (5.7) from section 5.2.2, we obtain the final state by

acting with the S matrix. Writing S = 1 + iT and inserting a complete set of

states, we have

S|ψ⟩ =|ψ⟩+ i

∫
dΦ(p′1, p

′
2, p1, p2)ϕb(p1, p2)|p′1, p′2⟩⟨p′1, p′2|T |p1, p2⟩

=|ψ⟩+ i

∫
dΦ(p′1, p

′
2, p1, p2)ϕb(p1, p2)A4(s, q

2)δ(4)(p1+p2−p′1−p′2)|p′1, p′2⟩ .
(5.68)

Notice that we made explicit use of our assumption of conservative scattering by

restricting the complete set of states to the two-particle Hilbert space.
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With the momentum labelling in figure 5.6 we can convert the p1 and p2 phase

space integrals to integrals over q. Doing so, we may write

S|ψ⟩ = |ψ⟩

+ i

∫
dΦ(p′1, p

′
2) d̂

4q δ̂(2p′1 ·q−q2)δ̂(2p′2 ·q+q2)ϕb(p
′
1−q, p′2+q)A4(s, q

2)|p′1, p′2⟩.
(5.69)

At this point, the q integral is tantalising similar to the q integral in the

eikonal formula (5.66). However there is a key difference in the nature of the

delta functions: those in equation (5.69) involve q2 terms which are absent in

equation (5.66). This issue appeared recently in reference [75]: there the authors

proceeded using a “HEFT” phase, which is analogous to yet distinct from the

eikonal phase. We will instead continue with the eikonal phase.

It may be worth remarking that the q2 terms in these delta functions are

suppressed in specific examples. One such example is the leading order

impulse [49]. Nevertheless the impulse at NLO does indeed involve the full delta

functions [49].

To incorporate the full delta functions, we follow the route described in [14]. We

introduce new momentum variables p̃ as

p̃1 = p′1 −
q

2
p̃2 = p′2 +

q

2
. (5.70)

Now, rather than using the eikonal equation (5.66) directly we can take advantage

of its inverse Fourier transform in the following form7

iδ̂(2p̃1 · q)δ̂(2p̃2 · q)A4(s, q
2) =

1

ℏ4

∫
d4x eiq·x/ℏ

{
eiχ(x⊥; s)/ℏ − 1

}
, (5.71)

where we have written x⊥ as one of the arguments of the eikonal function χ(x⊥; s)

to emphasise that χ(x⊥; s) only depends on components of x which are orthogonal

to the space spanned by p̃1 and p̃2. Indeed, integrating over the two components

of x which are in the space spanned by p̃1 and p̃2, one recovers the two Dirac

delta functions on the left-hand-side of equation (5.71). In this way, we find that

the final state is

S|ψ⟩ =
∫

dΦ(p′1, p
′
2) |p′1, p′2⟩

1

ℏ4

∫
d̂4q d4x eiq·x/ℏ eiχ(x⊥; s)/ℏ ϕb(p

′
1 − q, p′2 + q) .

(5.72)

7As noted above, we dropped the quantum remainder ∆ which plays no role in our analysis.

150



It is worth emphasising once again that x⊥ is perpendicular to p̃i, rather than to

pi, so that

p̃1 · x⊥ = 0 = p̃2 · x⊥. (5.73)

In particular, x⊥ depends on q.

5.4.2 The impulse from the eikonal

In this subsection, we will recover one beautiful result from the literature on

the eikonal function: the scattering angle can be extracted from the eikonal

function using a stationary phase argument. As our interest is not so much in

this conservative case but rather in its radiative generalisation (which we discuss

below), we wish to emphasise that it is, in fact, possible to extract the full final

momentum from the eikonal using stationary phase. Later, in section 5.4.4, we

will use the same ideas to extract the final momentum in the case of radiation

— with radiation, of course, knowledge of the direction of the final momentum is

insufficient to recover the full momentum.

The impulse is the observable

∆pµ1 ≡ ⟨ψ|S†
P

µ
1S|ψ⟩ − ⟨ψ|Pµ

1 |ψ⟩

= ⟨ψ|S†[Pµ
1 , S]|ψ⟩ .

(5.74)

It is convenient to focus on

[Pµ
1 , S]|ψ⟩ . (5.75)

As we shall see, in essence the operator [Pµ
1 , S] pulls out a factor of the momentum

transfer multiplying S|ψ⟩. We will evaluate [Pµ
1 , S]|ψ⟩ by stationary phase; it is

then trivial to determine ⟨ψ|S† in the same way.

We begin our expression for the final-state wavepacket, equation (5.72), quickly

finding

[Pµ
1 , S]|ψ⟩ =

∫
dΦ(p′1, p

′
2) e

ib·p′1/ℏ |p′1, p′2⟩
1

ℏ4

∫
d̂4q d4x eiq·x/ℏe−ib·q/ℏ

× eiχ(x⊥; s)/ℏ ϕ(p′1 − q, p′2 + q) qµ .

(5.76)

To obtain formulae for the impulse, we apply the stationary phase approximation

to the x and q integrals. (Our approach is very similar to that of Ciafaloni and

Colferai [289] who previously discussed wavepacket dynamics, the eikonal, and
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stationary phase.)

The stationary phase condition for x is

qµ = − ∂

∂xµ
χ(x⊥, s) . (5.77)

One thing to note immediately is that this qµ is not of order ℏ: it is a classical

momentum, of order g2. Further, it is useful to note that χ is actually a function

of x2⊥ (since the four-point function is a function of s and q2.) Therefore we may

write the momentum transfer as

qµ = −2χ′(x2⊥, s)x
µ
⊥ , (5.78)

where χ′(x2⊥, s) is the derivative of χ with respect to its first argument. Since

p̃1 · x⊥ = 0 = p̃2 · x⊥, it now follows that p̃1 · q = 0 = p̃2 · q: thus the on-shell

delta functions in equation (5.71) have reappeared, now as “equations of motion”

following from the stationary phase conditions8.

The second stationary phase condition, associated with q, is

xµ − bµ +
∂

∂qµ
χ(x2⊥, s) = 0 . (5.79)

The q derivative is non-vanishing because x⊥ depends on q. It is often useful to

introduce a particular notation for the variables q and x when they satisfy the

stationary phase conditions: we will denote these by q∗ and x∗. Armed with this

notation, we may use equation (5.77) we may write equation (5.79) as

xµ = bµ + q∗ν
∂

∂qµ
xν⊥ . (5.80)

Performing the derivative is straightforward, but requires some notation which

we relegate to appendix A.4. The result may be expressed in the form

xµ∗⊥ = bµ − Ñq(p
µ
1 − pµ2)− Ñ0q(p

µ
1 + pµ2) , (5.81)

where Ñq and Ñ0q can be interpreted as Lagrange multipliers which ensure that

x⊥ · p̃1 = 0 = x⊥ · p̃2.
8Since some of the x integrations may be performed exactly to yield delta functions, we

are slightly abusing terminology by referring to all of the conditions on x and q as “stationary
phase conditions”. Some of the conditions arise approximately by stationary phase, and some
are exact conditions due to the delta functions. Nevertheless it is most convenient to treat all
the conditions as one set.
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Our result for x∗⊥ takes a familiar form in the CM frame. Then x0∗⊥ = 0 and,

using, p2 = −p1, we have

x∗⊥ = b− 2Nqp

⇒ b · x∗⊥ = b2 .
(5.82)

Denoting the scattering angle by Ψ, we may write this result9 as

|b| = |x∗⊥| cos(Ψ/2) , (5.83)

where Ψ is the scattering angle.

p1

b

p′
1

Ψ/2
Ψ/2

q∗
∝eq

x⊥

Figure 5.7 Geometry of eikonal scattering.

In this way, we have performed the integrals over q and x. The result has been

to evaluate the factor qµ as a derivative of the eikonal function. To obtain the

full expectation, we simply evaluate ⟨ψ|S† using stationary phase in precisely the

same way: the only difference (apart from the obvious Hermitian conjugation) is

the absence of the qµ factor. We then exploit unitarity to conclude that

∆pµ1 = qµ = −∂µχ(x⊥, s) , (5.84)

where all quantities are defined on using the solution of the stationary phase

conditions.

Notice that we have determined the complete impulse four-vector, not just

the scattering angle. The distinction between these quantities is obviously

unimportant at the level of conservative dynamics, but it is important when

radiation occurs. The key aspect of our argument which leads to the full impulse

rather than the scattering angle is the presence of the perpendicular projector.

To see how this works, let us discuss an explicit example: the impulse at next-

to-leading order in gravitational fast scattering.

9In this context, the quantity x⊥ is sometimes referred to as the “eikonal” impact parameter.
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Focusing on the scattering between two massive bodies in general relativity, the

eikonal phase at next-to-leading order in G is

χ = −2Gm1m2

(
(2γ2 − 1)√
γ2 − 1

log |x⊥| −
3π

8

(5γ2 − 1)√
γ2 − 1

G (m1 +m2)

|x⊥|

)
, (5.85)

where we have defined γ = u1 ·u2 as the scalar product between the four-velocities

of the particles. Using equation (5.84) and straightforward differentiation, we

obtain the following expression in terms of xµ⊥,

∆pµ1 =
2Gm1m2x

µ
⊥

|x2⊥|

(
(2γ2 − 1)√
γ2 − 1

+
3π

8

(5γ2 − 1)√
γ2 − 1

G (m1 +m2)

|x⊥|

)
, (5.86)

where the four-velocities in γ can now be identified with the incoming four-

velocities of the particles due to the integrals over the wavepackets that took

place to arrive at (5.84). At this point, it is important to remember that xµ⊥ is

not quite bµ. It is trivial to show that xµ⊥ coincides with bµ at leading order in

the gravitational coupling, but this is no longer the case at next-to-leading order;

then instead

xµ⊥ = bµ − G(2γ2 − 1)

(γ2 − 1)3/2
(uµ1(m2 + γm1)− uµ2(m1 + γm2)) , (5.87)

where

|x2⊥| = |b2| . (5.88)

We can now express the impulse in terms of the impact parameter bµ. At the

order we are interested in we find,

∆pµ1 =
2Gm1m2b

µ

|b2|

(
(2γ2 − 1)√
γ2 − 1

+
3π

8

(5γ2 − 1)√
γ2 − 1

G (m1 +m2)

|b|

)

−G
2m1m2 (2γ

2 − 1)
2
((γm1 +m2)u

µ
1 − (γm2 +m1)u

µ
2)

(γ2 − 1)2 |b2|
,

(5.89)

in perfect agreement with the literature [32].

From the perspective of this chapter, the key achievement of the eikonal

resummation is that negligible variance becomes automatic in the stationary

phase argument. Indeed since the stationary phase condition (5.77) sets the

momentum transfer to a specific, classical, value it is clear that the expectation

value of any polynomial in the momentum operator will evaluate to the classical
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expectation.

5.4.3 Extension with coherent radiation

The exponentiated eikonal final state of equation (5.72) beautifully describes

semiclassical conservative dynamics, leading to a transparent method for ex-

tracting the impulse (or scattering angle) from amplitudes in a manner which

automatically enforces minimal uncertainty. We have also seen that coherent

states naturally enforce minimal uncertainty for radiation. Now let us put these

two ideas together to form a proposal for an eikonal-type final state in the fully

dynamical, radiative, case.

It is very natural to consider a modification of the eikonal formula which includes

radiation, and indeed this idea has received attention [278] in the literature.

Given that our motivation is to extend the eikonal while maintaining its minimal

uncertainty property, an obvious way to proceed is to include an additional

factor in the eikonal formula which has the structure of a coherent state, also

inspired by the split signature chapter 3. If this radiative part of the state has

large occupation number, expectations of products of field-strength operators will

naturally factorise into products of expectations of the operators.

We will simply propose one possibility for the structure of this final state,

depending on a coherent waveshape parameter α(η)(k) (of helicity η) in addition

to an eikonal function χ. We believe there is strong evidence in favour of the

basic structure of our proposal, and in particular in the idea that two objects χ

and α(η)(k) suffice to define it; however, it seems possible to implement the idea

in somewhat different ways. We will discuss the basic virtues of our proposal

in the remainder of this section, leaving it to future work to determine further

details. Since we are primarily interested in classical effects, we will continue to

neglect the quantum remainder ∆ in this discussion10.

To describe our proposal, we begin with the eikonal final state (5.72). With an eye

towards a situation where momentum is lost to radiation, we need a description

in which the sum of the momenta of the two final particles differs from the initial

momenta. A first step, then, is to Fourier transform the wavepacket to position

10Indeed radiative quantum effects will require ∆ to be upgraded to an operator.
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space:

S|ψ⟩|conservative =
∫

dΦ(p′1, p
′
2)

∫
d̂4q̄ d4x d4x1 d

4x2 ϕ̃b(x1, x2) e
i(p′1·x1+p′2·x2)/ℏ

× ei[q·(x−x1+x2)+χ(x⊥;s)]/ℏ |p′1, p′2⟩ .
(5.90)

Our proposal is now very straightforward: we simply incorporate a coherent state

by assuming that

S|ψ⟩ =
∫

dΦ(p′1, p
′
2)

∫
d̂4q̄ d4x d4x1 d

4x2 ϕ̃b(x1, x2) e
i(p′1·x1+p′2·x2)/ℏ

× ei[q·(x−x1+x2)+χ(x⊥;s)]/ℏ exp

[∑
η

∫
dΦ(k)α(η)(k, x1, x2)a

†
η(k)

]
|p′1, p′2⟩ .

(5.91)

This is a minimal proposal: more generally, one could imagine that the coherent

waveshape parameter α(η) depends on other variables, for example x or q which

appear in the eikonal dynamics. We will nevertheless restrict throughout this

chapter to our minimal proposal. However, it is important that the state is not

merely an outer product of a conservative eikonal state with a radiative factor.

Some entanglement is necessary so that the radiation can backreact on the motion.

In the case of the present proposal, the integrals over the variables x1, x2 and x

perform this role. There is a connection between our proposal here and recent

work [281] on the exponential structure of the S matrix.

We know that the waveshape should be proportional to ℏ−3/2 so we may also

write the state as

S|ψ⟩ =
∫

dΦ(p′1, p
′
2)

∫
d̂4q̄ d4x d4x1 d

4x2 ϕ̃b(x1, x2) e
i(p′1·x1+p′2·x2)/ℏ

× ei[q·(x−x1+x2)+χ(x⊥;s)]/ℏ exp

[
1

ℏ3/2
∑
η

∫
dΦ(k)ᾱ(η)(k, x1, x2)a

†
η(k)

]
|p′1, p′2⟩ .

(5.92)

In this expression, the classical waveshape ᾱ(η) is independent of ℏ, just as the

eikonal function χ is independent of ℏ.

In order to determine α(η), we follow the same steps as in sections 5.2.2 and 5.4.1;

we act on the incoming state with the S matrix, and then expand in terms of

integrals of amplitudes. To isolate the waveshape, we consider the overlap of our
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proposed final state with the bra ⟨p′1 p′2 kη|:

⟨p′1 p′2 kη|S|ψ⟩ =
∫

d̂4q̄ d4x d4x1 d
4x2 ϕ̃b(x1, x2) e

i(p′1·x1+p′2·x2)/ℏ

× ei[q·(x−x1+x2)+χ(x⊥;s)]/ℏ α(η)(k, x1, x2) .

(5.93)

Next we expand the S matrix as

⟨p′1 p′2 kη|S|ψ⟩ =
∫

dΦ(p1, p2)ϕb(p1, p2) ⟨p′1 p′2 kη|S|p1p2⟩

=

∫
dΦ(p1, p2)

∫
d4x1 d

4x2 ϕ̃b(x1, x2) e
i(p1·x1+p2·x2)/ℏ

× iA5(p1p2 → p′1p
′
2k

η) δ̂4(p1 + p2 − p′1 − p′2 − k) .

(5.94)

We note that the five-point amplitude appearing here could in principle include

disconnected components beginning at order g. This order g disconnected term

would involve exactly zero-energy photons, and does not contribute to observables

such as the radiated momentum or the asymptotic Newman-Penrose scalar. We

therefore omit this term in the remainder of this chapter.

To continue, it is useful to perform a change of variable in the phase space

measures, taking q1 ≡ p1 − p′1 and q2 ≡ p2 − p′2 as variables of integration.

Neglecting Heaviside theta functions (which will always be unity in the domain

of validity of our calculation) we find

⟨p′1 p′2 kη|S|ψ⟩ =
∫

d4x1 d
4x2 ϕ̃b(x1, x2) e

i(p′1·x1+p′2·x2)/ℏ

×
∫

d̂4q1 d̂
4q2 δ̂(2p

′
1 · q1 + q21)δ̂(2p

′
2 · q2 + q22) e

i(q1·x1+q2·x2)/ℏ

× iA5(p
′
1 + q1, p

′
2 + q2 → p′1, p

′
2, k

η) δ̂4(q1 + q2 − k) .

(5.95)

Requiring equations (5.93) and (5.95) to be equal for any (appropriately classical)

initial wavepacket ϕ̃b(x1, x2) we deduce that

α(η)(k, x1, x2) =i

∫
d̂4q1 d̂

4q2 δ̂(2p
′
1 · q1 + q21)δ̂(2p

′
2 · q2 + q22)e

i(q̄1·x1+q̄2·x2)

× δ̂4(q1 + q2 − k)A5(p
′
1 + q1, p

′
2 + q2 → p′1, p

′
2, k

η)

×
[∫

d̂4q d4x eiq·xeiq·(x2−x1)/ℏeiχ(x⊥;s)/ℏ
]−1

.

(5.96)

It is easy to use the eikonal equation (5.66) to show that equivalently we may
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write the waveshape as

α(η)(k, x1, x2) =i

∫
d̂4q1 d̂

4q2 δ̂(2p
′
1 · q1 + q21)δ̂(2p

′
2 · q2 + q22)e

i(q̄1·x1+q̄2·x2)

× δ̂4(q1 + q2 − k)A5(p
′
1 + q1, p

′
2 + q2 → p′1, p

′
2, k

η)

×
[
1 +

∫
d̂4q δ̂(2p̃1 · q)δ̂(2p̃2 · q) eiq·(x2−x1)/ℏiA4(s, q

2)

]−1

.

(5.97)

This last expression makes the physical meaning transparent: the waveshape is

obtained by removing iterated contributions of four-point amplitudes from the

five-point amplitude.

To see this in more detail, it is instructive to expand the α(η)(k) order-by-order

in perturbation theory. We again consider a generic coupling g and expand the

waveshape as

α(η)(k) = α
(η)
0 (k) + α

(η)
1 (k) + · · · . (5.98)

The leading order term, α
(η)
0 (k), follows immediately from equation (5.97):

α
(η)
0 (k, x1, x2) = i

∫
d̂4q1 d̂

4q2 δ̂(2p
′
1 · q1 + q21)δ̂(2p

′
2 · q2 + q22)δ̂

4(q1 + q2 − k)

× ei(q1·(x1+b)+q2·x2)/ℏA5,0(p
′
1 + q1, p

′
2 + q2 → p′1, p

′
2, k

η) .

(5.99)

It is determined by the tree-level five-point amplitude A5,0, so it is of order g3

in gauge theory and gravity. The fact that the leading-order classical radiation

field is intimately related to five-point amplitudes was already discussed in [33,

48, 269, 272]. The basic structure of this leading-order waveshape is strikingly

reminiscent of a coherent state which describes the static Coulomb/Schwarzschild

background on analytic continuation to signature (+,+,−,−) previously seen.

More precisely, α
(η)
0 (k) is really determined by A(0)

5,0. This follows by counting

powers of ℏ. Indeed extracting dominant powers of ℏ using equation (5.43), we

find

α
(η)
0 (k, x1, x2) =

i

ℏ3/2

∫
d̂4q̄1 d̂

4q̄2 δ̂(2p
′
1 · q̄1)δ̂(2p′2 · q̄2)δ̂4(q̄1 + q̄2 − k̄)

× ei(q̄1·x1+q̄2·x2)A(0)
5,0(p

′
1 + q1, p

′
2 + q2 → p′1, p

′
2, k

η) .

(5.100)

Note that the factor ℏ−3/2 arises as expected on general grounds. The conclusion

is that the leading-in-ℏ part of the five-point tree amplitude determines the
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radiation. The amplitude itself contains higher order terms in ℏ; rather than

arising from the radiative factor in our proposal (5.92), these terms arise from a

generalised quantum remainder.

The next-to-leading order correction to the waveshape following from equa-

tion (5.97) is

α
(η)
1 (k, x1, x2) = i

∫
d̂4q1 d̂

4q2 δ̂(2p
′
1 · q1 + q21)δ̂(2p

′
2 · q2 + q22)δ̂

4(q1 + q2 − k)

× ei(q1·x1+q2·x2)/ℏA5,1(p
′
1 + q1, p

′
2 + q2 → p′1, p

′
2, k

η)

− α
(η)
0 (k, x1, x2)

∫
d̂4q δ̂(2p̃1 · q)δ̂(2p̃2 · q) eiq·(x2−x1)/ℏiA4,0(s, q

2) .

(5.101)

This correction involves the five-point one-loop amplitude, after subtracting an

iteration term. To understand the role of the subtraction, it is instructive to

extract the leading-in-ℏ part of α
(η)
1 (k):

α
(η)
1 (k, x1, x2) =

i

ℏ5/2

∫
d̂4q̄1 d̂

4q̄2 δ̂(2p
′
1 · q̄1)δ̂(2p′2 · q̄2)δ̂4(q̄1 + q̄2 − k̄)

× ei(q̄1·x1+q̄2·x2)A(0)
5,1(p

′
1 + q1, p

′
2 + q2 → p′1, p

′
2, k

η)

− 1

ℏ5/2
ᾱ
(η)
0 (k, x1, x2)

∫
d̂4q̄ δ̂(2p′1 · q̄)δ̂(2p′2 · q̄) eiq̄·(x2−x1)iA(0)

4,0(s, q
2)

+O(ℏ−3/2) .

(5.102)

At this stage it seems that there is an unwanted order ℏ−5/2 term in the NLO

waveshape! Consistency with our proposal therefore demands∫
d̂4q̄1 d̂

4q̄2 δ̂(2p
′
1 · q̄1)δ̂(2p′2 · q̄2)δ̂4(q̄1 + q̄2 − k̄)ei(q̄1·x1+q̄2·x2)

×A(0)
5,1(p

′
1 + q1, p

′
2 + q2 → p′1, p

′
2, k

η)

= −ᾱ(η)
0 (k, x1, x2)

∫
d̂4q̄ δ̂(2p′1 · q̄)δ̂(2p′2 · q̄) eiq̄·(x2−x1)A(0)

4,0(s, q
2) .

(5.103)

Since ᾱ
(η)
0 is determined by A(0)

5,0, this requirement relates A(0)
5,1 to A(0)

5,0 and

A(0)
4,0. The requirement is nothing but a Fourier transform of the zero-variance

relation (5.46) which we encountered in section 5.3.1. So we see that the zero-

variance relations retain their importance in the context of this eikonal/coherent

resummation: their validity admits the possibility of exponentiation.

In the same vein, it is interesting to project our proposal onto a two-photon final
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state:

⟨p′1, p′2, k
η1
1 , k

η2
2 |S|ψ⟩ =

∫
d̂4q̄ d4x d4x1 d

4x2 ϕ̃b(x1, x2) e
i(p′1·x1+p′2·x2)/ℏ

× ei[q·(x−x1+x2)+χ(x⊥;s)]/ℏ α(η1)(k1, x1, x2)α
(η2)(k2, x1, x2) .

(5.104)

Since the waveshape is at least of order g3, it follows that this overlap begins

at order g6. However by expanding the S matrix out directly, we encounter a

six-point amplitude. The conclusion is that our proposal does not populate the

(order g4) tree-level six-point amplitude. Of course this is as it should be: we

saw that the six-point tree is suppressed in the classical region in section 5.2.4.

Similarly the seven-point tree and one-loop amplitudes are suppressed, etc.

As a final remark, note that we did not introduce any normalisation factor in

our proposal. This may be surprising, yet unitarity must already guarantee the

normalisation of the final state. As is by now well understood, at two loops the

eikonal function χ ceases to be real in the radiative case. Instead the imaginary

part of χ is related to
∑

η |α(η)(k)|2; this supplies the necessary normalisation.

5.4.4 Radiation reaction

Once there is radiation, there must also be radiation reaction: the particle’s

motion must change in the radiative case relative to the conservative case to

account for the loss of momentum to radiation. In this section we will see that

the waveshape indeed contributes to the impulse of a particle in the manner

required.

We begin by acting on our conjectural final state, equation (5.91), with the

momentum operator of the field corresponding to particle 1:

P
µ
1S|ψ⟩ =

∫
dΦ(p′1, p

′
2)

∫
d̂4q̄ d4x d4x1 d

4x2 ϕ̃b(x1, x2) e
i(p′1·x1+p′2·x2)/ℏ

× ei[q·(x−x1+x2)+χ(x⊥;s)]/ℏ exp

[∑
η

∫
dΦ(k)α(η)(k, x1, x2)a

†
η(k)

]
p′µ1 |p′1, p′2⟩ .

(5.105)

The operator simply inserts a factor p′µ1 . We proceed by rewriting this factor

in terms of a derivative −iℏ∂/∂x1µ acting on the exponential factor in the first

line of equation (5.105), and then integrating by parts. Neglecting the boundary
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term, the result is

P
µ
1S|ψ⟩ =

∫
dΦ(p′1, p

′
2)

∫
d̂4q̄ d4x d4x1 d

4x2 e
i(p′1·x1+p′2·x2)/ℏei(q·x+χ(x⊥; s))/ℏ

× iℏ∂µ1

(
ϕ̃b(x1, x2)e

iq·(x2−x1)/ℏ exp

[∑
η

∫
dΦ(k)α(η)(k, x1, x2)a

†
η(k)

])
|p′1, p′2⟩ .

(5.106)

Expanding out the derivative, we encounter three terms. In the first, the

derivative acts on the spatial wavefunction: as usual in quantum mechanics,

this term will evaluate (in the expectation value of the final momentum) to

the contribution of the initial momentum. The second term arises when the

derivative operator acts on eiq·(x2−x1)/ℏ, which inserts a factor of qµ. This term is

familiar from equation (5.76) in section 5.4.2, and contributes to the impulse as

a (suitably projected) derivative of the eikonal function. Only the final term is

new: it involves the waveshape, and must then be the origin of radiation reaction

in our approach.

Since we have discussed the conservative impulse in detail in section 5.4.2, we

focus on the final (new) term here. In this term, the derivative brings down a

factor of ∑
η

∫
dΦ(k) ∂µ1α

(η)(k, x1, x2)a
†
η(k). (5.107)

Now to extract the momentum observable we multiply by ⟨ψ|S†. Since this

will introduce yet more integrals, it is helpful to define a modified KMOC style

‘classical average angle brackets’

〈〈
...

〉〉
, defined here by

〈〈
...

〉〉
=

∫
dΦ(p′1, p

′
2)

∫
d̂4q̄ d4x d̂4Q̄ d4y d4x1 d

4x2 d
4y1 d

4y2 ϕ̃
∗
b(y1, y2)ϕ̃b(x1, x2)

× ei(p
′
1·(x1−y1)+p′2·(x2−y2)/ℏei(q·(x2−x1)−Q·(y2−y1))/ℏei(q·x+χ(x⊥; s)−Q·y−χ∗(y⊥; s))/ℏ

× exp

[
−1

2

∑
η

∫
dΦ(k)

∣∣α(η)(k, x1, x2)− (α(η))∗(k, y1, y2)
∣∣2] (...) .

(5.108)

The a†(k) will act on this left state will produce a delta function and α∗. After

using the delta function it gives just a factor α∗. Putting this together, and using

the angle brackets shorthand we obtain

⟨Pµ
1⟩reaction =

〈〈
i
∑
η

∫
dΦ(k)α(η),∗(k, x1, x2)∂

µ
1α

(η)(k, x1, x2)

〉〉
. (5.109)
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Notice that the manipulations leading to equation (5.109) were exact (under the

assumption of equation (5.91).) However equation (5.109) involves a number of

integrals which would need to be performed to arrive at a concrete expression for

the impulse. In section 5.4.2, we performed these integrals by stationary phase.

In the present (radiative) case a similar approach would be possible, but the

stationary phase conditions are significantly more complicated. For example,

demanding the phase of the q integral to be stationary leads to a condition

involving the variables x2 and x1; further demanding that the phases of these

xi integrals should be stationary leads to an equation involving the integral of a

quadratic function of the waveshape. In this way the stationary phase conditions

involve an intricate interplay of the eikonal and the waveshape. Of course this

is as it should be: the complexity of radiation reaction must be captured by the

final state.

As a simpler sanity check of our machinery, we evaluate the radiation reaction

contribution to the impulse at lowest non-trivial perturbative order. In [49] the

leading order radiation reaction term was written as

Iµrad = e6
〈〈∫

dΦ(k̄)
∏
i=1,2

d̂4q̄id̂
4q̄′i q̄

µ
1 Y(q̄1, q̄2, k̄)Y∗(q̄′1, q̄

′
2, k̄)

〉〉
, (5.110)

with

Y(q̄1, q̄2, k̄) = δ(p1 · q̄1)δ(p2 · q̄2)δ̂4(q̄1 + q̄2 − k)eib·q̄1A(0)
5,0(q̄1, k̄

η). (5.111)

It is straightforward to verify that this is equivalent to the second term in

equation (5.109). In fact, recalling the leading order waveshape formula (5.100),

the match between the two expressions (5.110) and (5.109) is immediate, once

our definition of average over wave packets (5.108) is taken into account.

We note in passing that the expectation ⟨ψ|S†FµνS|ψ⟩ (or ⟨ψ|S†RµνρσS|ψ⟩) can
be determined in a similar way. The annihilation operators in the field strength

operator immediately bring down a single power of the waveshape. At leading

non-trivial order in g, it is then straightforward to see that the field strength is

determined by the five-point tree amplitude (specifically the leading fragment

in ℏ) consistent with reference [33]. Similarly, the momentum radiated into

messengers can be computed as the expectation

⟨ψ|S†
∑
η

∫
dΦ(k) kµ a†η(k)aη(k)S|ψ⟩ . (5.112)
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In this case, the creation and annihilation operators bring down the waveshape

times its conjugate. At leading perturbative order, the momentum radiated is

the square of the five-point tree, as observed in [49]. The result is also consistent

with classical field theory: in that context, radiation is described the the energy-

momentum tensor, which is quadratic in the field strength. Finally, we note that

conservation of momentum holds as discussed in [49].

5.5 Discussion

The central theme of this chapter has been that the classical limit emerges from

scattering amplitudes via an infinite set of relationships satisfied by multiloop,

multileg amplitudes in a transfer expansion. These relationships arise from

requiring negligible uncertainty in the measurement of observables computed from

amplitudes in the correspondence limit where the classical approximation is valid.

One can write scattering amplitudes in an exponential form as a result of these

relationships, as has long been recognised in the conservative sector through the

eikonal approximation. We have argued that the same holds for radiative physics.

While we focused on the eikonal approach to classical dynamics, it is worth

emphasising that we could have phrased our discussion in terms of other, closely

related, quantities. Recently the radial action has received particular attention

in the literature [7]; this radial action is a classical limit of the usual quantum

phase shifts [290], and is a close cousin of the eikonal function [10].

The eikonal and the radial action arise directly in other approaches to grav-

itational dynamics. While this chapter started with quantum field theory,

undergraduate classes start more simply with worldline actions — and indeed

pragmatic approaches to gravitational phenomena start with analogous worldline

theories [22, 230, 291–294]. Nevertheless there is one inescapable fact about

the dynamics that quantum field theory makes blatantly clear: radiation is not

suppressed in fully relativistic physics. Thus in our approach radiation is encoded

in α, fully as important as χ. Similarly the physics of radiation reaction is

clear from the outset and is a consequence of a basic principle: conservation of

momentum.

One of our central observations was that six-point tree amplitudes are suppressed

in the classical region. We showed explicitly that this suppression hold in scalar
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QED, but our more general arguments indicate that the suppression should hold

in general relativity [268] and in perturbative/classical applications of Yang-Mills

theory. This suppression of the six-point tree amplitude is consistent with classical

intuition. Classical electrodynamics, for example, involves two main ingredients:

knowledge of the electromagnetic field, and knowledge of the particle motion.

As our work has focussed on determining the asymptotic properties of particles

and waves, the relevant part of the classical field is the radiation field: this is

the part which determines the energy and momentum in the field, for example.

Similar remarks hold in gravity. In a quantum approach, asymptotic particle

motion is captured by the eikonal function (or the radial action.) The radiation

field is described at the leading quantum level by the five-point amplitude [33, 48,

269]. Our work generalises this last statement: we have argued that the all-order

radiation field is described by the waveshape parameter α, itself determined by

the all-order five-point amplitude together with the eikonal function. As the four-

and five-point amplitudes are enough to describe the classical dynamics, it makes

sense that higher-point amplitudes are classically suppressed.

From a classical perspective, the waveshape α is essentially [33] a Newman-

Penrose scalar: either ϕ2 in gauge theory or ψ4 in gravity. Our contention is

then that a complete description of the classical radiative dynamics is given

by knowledge of one of these scalars, and knowledge of the eikonal function χ.

It is important for us in this context that the full impulse can be deduced by

differentiation of χ, not just the scattering angle. Indeed in a radiative context,

knowledge of the angle needs to be supplemented by knowledge of the outgoing

energy to fully determine the outgoing particle trajectory.

We emphasise that our goal was to provide evidence for an exponential classical

structure of the evolved state. It would be certainly fascinating to investigate if

and how our proposal can be proved true to all orders. This however appears to

be a formidable task. In fact, even just for the eikonal sector, the exponentiation

is only verified up to few loop orders. On the other hand, we provided arguments

in support of the exponentiation, and indeed at leading non-trivial order it is

clear that the radiation is described by a coherent state. Beyond this order much

less is known. It certainly seems possible that the waveshape α could depend, in

general, on more variables. We leave these fascinating quests to future research.
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Chapter 6

Conclusions

In this thesis we have shown how gauge theory amplitudes were secretly holding

precious on-shell data that, when properly decoded through the double copy,

revealed an impressive effectiveness towards the description of classical black hole

scattering. Indeed, the central aim of this work has been to bring advancement

in understanding how to carry out such “decoding” efficiently, and what are the

structures that can be deduced in the classical regime.

We began our journey in chapter 2 by describing the necessary tools needed: the

KMOC formalism [49] for classical observables, the double copy [94] to obtain

gravity from gauge theory and coherent states to describe long range radiative

waveforms [33].

Then, in chapter 3 we considered a split signature continuation of Minkowski

spacetime. This was done in order to describe real physical waveforms in terms

of the atomic building block of on-shell algorithms [91]: the three-point classical

vertex with an on-shell emitted boson. We started from scalar QED and then

double copied to obtain gravity radiation emitted by a single scalar particle.

This process is obviously impossible when using Minkowskian kinematics, but

not in split signatures. Moreover, split signature spacetimes still retained the

rich physical interpretation of usual Minkowski, and helped us introduce the

concept of coherence in the final state using a minimal set up. We then moved

on to discussing how, in this framework, the linearised fields are actually enough

to obtain the full gravity solution. This was done through the KS double copy

of [95]. We thus obtained for the first time the Schwarzschild metric in (2,2)

space, thereby providing the first explicit example of the equivalence between the
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BCJ and the KS double copy. Finally, we discussed how additional solutions of

axi-dilaton gravity can be sourced by adding spin and magnetic charge to the

emitted massless particle.

We then moved on to a thorough study of one-loop waveforms, going back to

Minkowski, in chapter 4. Here, in order to interpret the rich physics, we found it

wise to divide the waveform kernel (which is essentially the one-loop, five-point

amplitude) into its real and imaginary parts. This is a slight rewriting of the usual

KMOC cut terms [49]. Doing so allowed us to study separately conservative and

radiative contributions. The conservative ones are entailed by the real part: the

particle radiates under the acceleration dictated by the Lorentz/geodesic fields of

the other body. The imaginary part of the waveshape instead involves radiation

reaction: this is the radiation emitted under the particle’s own radiation field.

This separation is quite useful, since treatment of dissipative terms happens to

be quite subtle classically. Instead, from the amplitude standpoint, such effects

are clearly connected to two-particle unitarity cut, which in this case involve

a product of two tree-level Compton amplitudes. We finally concluded with a

discussion of infrared singularities, in the spirit of Weinberg’s soft theorems [253].

In the final chapter 5 we used all the gathered knowledge to argue for a general

structure that the classical S-matrix should enjoy. This was based on classical

considerations, such as factorizations of products of classical observables [49].

The final exponentiated structure that we proposed for the final state has again

a dual nature. The conservative part is dictated by an eikonal phase, which is

itself specified by a 2 → 2 scattering amplitude. The radiation sector is described

by a coherent state, whose parameter (or waveshape) is a five-point amplitude.

We then tested the consistency of our proposal in two different ways, by making

sure that the six-point amplitude (with two massless particles in the final state)

is quantum, and by showing that the one-loop five-point one factorises into a

product of tree-level amplitudes. Both of these conditions are dictated by the

exponentiated structure. Even more, expanding back our exponential state yields

an infinity of classical amplitude hierarchies and relations. Finally, we explicitly

reproduced some known observables using our developed formalism.

The directions that our research outlines are different. Among some of them,

we can readily identify the extension of our calculations to higher loops, the

inclusion of spin effects into the waveforms or using split signatures to source

new gravity solutions (such as accelerating spacetimes). Another outstanding

problem is the one involving bound-state observables, that is to include bound
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states in our formalism. Indeed, it is believed that a certain analytic continuation

can relate scattered data to bounded motion observables [57, 58]. However,

current proposals lack a clear understanding of bounded radiation. Perhaps,

the exponentiated structure proposed in 5 can take this into account: in the non-

relativistic limit the eikonal phase satisfies the Hamilton-Jacobi equations, which

are used to discuss bounded motion. Then, it would be interesting to understand

what happens to the coherent part of the state, and how bound-motion boundary

conditions can be taken into account in this way.

We thus believe there is a wealth of evidence and calculations that prove on-shell

amplitudes extremely useful for classical gravity and GW observations, paving

the way for many more exciting calculations and research avenues to be pursued.
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Appendix A

Spinor conventions and further

derivations

A.1 Spinor conventions

In coordinates (t1, t2, x1, x2), we work with a metric of signature (+1,+1,−1,−1).

Since this signature may be unfamiliar, we gather here a list of spinor-helicity

conventions appropriate for working in this signature. Our conventions are

designed to follow those of reference [34] as closely as possible, while taking

advantage of the different reality properties available in split signature.

The Clifford algebra is

σµσ̃ν + σν σ̃µ = 2ηµν1 . (A.1)

In our signature, it is possible to choose a real basis of σµ matrices. Our choice

is

σµ = (1, iσy, σz, σx) (A.2)

where σx,y,z are the usual Pauli matrices. The σ̃µ are obtained by raising spinor

indices, as usual:

σ̃µα̇α = ϵαβϵα̇β̇σµ

ββ̇
. (A.3)

We define ϵ12 = +1, while ϵ12 = −1, so that

ϵαβϵ
βγ = δγα , (A.4)
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and choose the same Levi-Civita sign for the opposite chirality,

ϵα̇β̇ = ϵαβ , ϵα̇β̇ = ϵαβ . (A.5)

We raise and lower all spinor indices (of either chirality) by acting from the left:

λα = ϵαβλ
β = ϵαβ(ϵ

βγλγ) . (A.6)

It is often helpful to note that

σαα̇ · σββ̇ = 2ϵαβϵα̇β̇ ,

σαα̇ · σ̃β̇β = 2δβαδ
β̇
α̇ .

(A.7)

The chiral structure of spinors in split signature is important in our work. This

structure is clarified by introducing the σµν matrices which are proportional to

the Lorentz generators in the spinor representations. In particular, we define

σµν =
1

4
(σµσ̃ν − σµσ̃ν) ,

σ̃µν =
1

4
(σ̃µσν − σ̃µσν) .

(A.8)

Since these matrices are antisymmetric in µ and ν, there are at most six

independent σµν (and at most six independent σ̃µν). However, the matrices enjoy

the duality properties

σµν =
1

2
ϵµνρσ σ

ρσ ,

σ̃µν = −1

2
ϵµνρσ σ̃

ρσ .
(A.9)

Consequently, there are only three independent σµν matrices, which generate the

group SL(2,R).

To pass between momenta k and spinors λ, λ̃, we define

k · σαα̇ = λαλ̃α̇ . (A.10)

We use the symbols |k⟩, ⟨k|, [k|, and |k] to indicate the spinors with the indices

in various positions as follows:

|k⟩ ↔ λα , ⟨k| ↔ λα , |k] ↔ λ̃α̇ , [k| ↔ λ̃α̇ . (A.11)
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As usual, we choose a basis of polarisation vectors of definite helicity η = ±.

Unlike the Minkowski case, these vectors can be chosen to be real, and we make

such a choice. Given a momentum k and gauge choice q satisfying k · q ̸= 0,

k2 = 0 = q2, we define

εµ− = −⟨k|σµ|q]√
2[kq]

, εµ+ =
[k|σ̃µ|q⟩√
2⟨kq⟩

. (A.12)

These polarisation vectors have the properties:

(εµh(k))
∗ = εµh(k) ,

ε2±(k) = 0 ,

ε+(k) · ε−(k) = −1 ,

(A.13)

assuming that both k and q are real.

A plane wave with negative polarisation has a self-dual field strength in our

conventions:
σµν k

[µε
ν]
− = −

√
2 |k⟩⟨k| ,

σ̃µν k
[µε

ν]
− = 0 .

(A.14)

Meanwhile, a positive helicity plane wave has anti-self dual field strength given

by

σµν k
[µε

ν]
+ = 0 ,

σ̃µν k
[µε

ν]
+ =

√
2 |k][k| .

(A.15)

A.2 The retarded Green’s function in 1 + 2

dimensions

Because of the translation symmetry in the t2 direction, much of our discussion

really takes place in a three-dimensional space with signature (+,−,−). In this

appendix, we compute the retarded Green’s function (for the wave operator) in

this space. We use the familiar notation x = (t,x) for points in this spacetime,

and write wave vectors as k = (E,k).

The Green’s function is defined to satisfy

∂2G(x) = δ(3)(x) , (A.16)
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with the boundary condition that

G(x) = 0 , t < 0 . (A.17)

It is easy to express the Green’s function in Fourier space as

G(x) = −
∫

d̂3k e−ik·x 1

k2ret
. (A.18)

The instruction ‘ret’ indicates that we must define the integral to enforce the

retarded boundary condition (A.17). As usual, we interpret the integral over the

first component E of kµ as a contour integral, and (as in the main text) we impose

the boundary condition by displacing the poles below the real E axis. It is easy

to compute the value of the E integral using the residue theorem, with the result

that

G(x) =
−i
8π2

Θ(t)

∫
d2k eik·x

ei|k|t − e−i|k|t

|k|

=
−i
8π2

Θ(t)

∫ ∞

0

dk

∫ 2π

0

dθ eikr cos θ
(
eikt − e−ikt

)
,

(A.19)

where, in the second equality, we defined r = |x| and introduced polar coordinates

for the k integration.

Our integral is still not completely well-defined. Notice that if we perform the

k integral in equation (A.19) first, we encounter oscillatory factors which do not

converge. The solution is again familiar: we introduce ikϵ convergence factors in

the exponents, adjusting the signs to make the integrals well-defined. The result

is

G(x) =
−i
8π2

Θ(t)

∫ ∞

0

dk

∫ 2π

0

dθ eikr cos θ
(
eik(t+iϵ) − e−ik(t−iϵ)

)
. (A.20)

Recognising the definition of the Bessel function, it is easy to perform the θ

integration next, yielding

G(x) =
−i
4π

Θ(t)

∫ ∞

0

dk J0(kr)
(
eik(t+iϵ) − e−ik(t−iϵ)

)
. (A.21)

We can perform the final integral using the result∫ ∞

0

du J0(u)e
iuv =

1√
1− v2

, (A.22)
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so that

G(x) =
i

4π
Θ(t)

(
1√

r2 − t2 + iϵ
− 1√

r2 − t2 − iϵ

)
. (A.23)

At this point, the iϵ factors come into their own. Evidently, the Green’s function

vanishes when we can ignore the ϵ’s: this occurs when r2 − t2 is positive. But

when r2 − t2 < 0, then the ϵ’s control which side of the branch cut in the square

root function we must choose. We have

G(x) =
i

4π
Θ(t)Θ(t2 − r2)

(
1√

−|t2 − r2|+ iϵ
− 1√

−|t2 − r2| − iϵ

)

=
i

4π
Θ(t)Θ(t2 − r2)

(
1

i
√

|t2 − r2|
− 1

(−i)
√

|t2 − r2|

)
=

1

2π
Θ(t)Θ(t2 − r2)

1√
t2 − r2

.

(A.24)

As discussed in more detail in section 3.5, this Green’s function is a Lorentzian

version of the familiar Euclidean Green’s function ∼ 1/r. The theta functions

are a result of our boundary conditions.1

A.3 A mini recap of NS-NS gravity

The standard notion of geometry in general relativity, a (pseudo-)Riemanian

manifold (M, g) endowed with the Levi-Civita connection ∇, can be generalised

by relaxing the requirements on the connection. If we allow the connection to

have torsion, while insisting on metric-compatibility, the result is called Riemann-

Cartan geometry.

Consider a d-dimensional manifold M equipped with a metric gµν and an affine

connection D. In a coordinate basis, the covariant derivative acts on a vector V

as

DνV
µ = ∂νV

µ + Γµ
νρ V

ρ . (A.25)

In general, the affine symbols Γµ
νρ do not have to be symmetric. Their anti-

symmetric part is the torsion tensor, T µ
νρ ≡ 1

2
(Γµ

νρ − Γµ
ρν) =

1
2
Γµ

[νρ] . We will

take (M, g,D) to be a Riemann-Cartan manifold by requiring that the connection

is metric-compatible,

Dλ gµν = 0 .

1An equivalent derivation can be found in [295].
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This condition constrains the affine symbols to take the form

Γµ
νρ =

{
µ
νρ

}
+Kµ

νρ , (A.26)

where the first term denotes the standard Christoffel symbols of the Levi-Civita

connection and the second, a tensor called contorsion, must satisfy Kµνρ =

−Kρνµ . It can be written uniquely in terms of the torsion as

Kµ
νρ =

1

2
gµλ
(
gντ T

τ
λρ + gρτ T

τ
λν + gλτ T

τ
νρ

)
. (A.27)

This generalised connection defines a generalised Riemann tensor, which in our

conventions we write as

Rµνρ
λ = DνΓ

λ
µρ −DµΓ

λ
νρ + Γλ

ντΓ
τ
µρ − Γλ

µτΓ
τ
νρ . (A.28)

It is important to note that this tensor does not have the symmetries of the usual

Riemann tensor. It satisfies Rµνρσ = 1
2
R[µν]ρσ = 1

2
Rµν[ρσ], but Rµνρσ ̸= Rρσµν

due to the lack of symmetry in the last two indices of the contorsion. Using

(A.26), it can be shown that

Rµνρ
λ = Rµνρ

λ +∇νK
λ
µρ −∇µK

λ
νρ +Kλ

ντK
τ
µρ −Kλ

µτK
τ
νρ , (A.29)

where ∇ denotes the Levi-Civita connection and Rµνσ
λ its Riemann tensor. In

general, R will denote curvatures with torsion, whereas R is reserved for the

standard Riemannian curvatures of the metric.

Riemann-Cartan manifolds have extra geometrical degrees of freedom in the

contorsion.2 These degrees of freedom can be used to accommodate the NS-

NS fields, giving them a geometric status similar to the metric. The dilaton is

assigned to the trace of the contorsion while the B-field is related to its fully

antisymmetric component

Kµ
νρ =

κ

2
√
3
e−

4κϕ
d−2 Hµ

νρ −
2κ

(d− 2)
√
d− 1

( δµν ∂ρϕ − gνρ g
µσ ∂σϕ) , (A.30)

where H = dB is the curvature of the B-field and κ is the gravitational coupling

constant. The contorsion (A.30) was chosen such that the Ricci scalar is

R = R− 4κ2

d− 2
∇µϕ∇µϕ− κ2

12
e−

8κϕ
d−2 HµνρH

µνρ +
4κ

√
d− 1

d− 2
∇µ∇µϕ , (A.31)

2Thank you for reading this thesis down to the appendix <3.
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the motivation being that
√

|g|R is equivalent to the usual NS-NS Lagrangian

density in the Einstein frame, up to a boundary term:

S =
1

2κ2

∫
ddx
√

|g|
(
R− 4κ2

d− 2
∇µϕ∇µϕ− κ2

12
e−

8κϕ
d−2 HµνρH

µνρ

)
, (A.32)

=
1

2κ2

∫
ddx
√

|g| R . (A.33)

In chapter 3, we will be interested in the curvature at linear order in the fields.

Starting from gµν = ηµν + κhµν , and expanding to linearised order, we obtain

Rµν
ρσ = −κ

2
∂[µ∂

[ρhν]
σ] +

κ

(d− 2)
√
d− 1

δ[µ
[ρ∂ν]∂

σ]ϕ+
κ

2
√
3
∂[µ∂

[ρBν]
σ] . (A.34)

In d = 4, the field redefinitions

ϕ→
√
3

2
ϕ , B →

√
3B , (A.35)

simplify the factors to reduce the linearised Riemann tensor to

Rµν
ρσ = −κ

2

(
∂[µ∂

[ρhν]
σ] − δ[µ

[ρ∂ν]∂
σ]ϕ− ∂[µ∂

[ρBν]
σ]
)
. (A.36)

At this order, the packaging can be taken one step further by using the ‘fat

graviton’ defined in [105] 3

Hµν = hµν −Bµν − P q
µν (2ϕ+ h) , (A.37)

where hµν is the trace-reversed graviton and P q
µν is a projector

hµν = hµν −
1

2
h ηµν , P q

µν =
1

2

(
ηµν −

qµ∂ν + qν∂µ
q · ∂

)
. (A.38)

The constant auxiliary null vector qµ is related to gauge choices. In fact, the terms

involving qµ drop out of the gauge-invariant curvature, which can be written as

the compact expression

Rµν
ρσ = −κ

2
∂[µ∂

[ρHν]
σ] . (A.39)

In this sense, our generalised curvature is the ‘fat Riemann’ associated to the ‘fat

graviton’.

3Some factors differ from [105] due to different normalisation conventions.
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There is yet another way to rewrite (3.121). In four dimensions, the two-form

Bµν can be traded for a pseudoscalar axion σ, defined by

Hµνρ = −e2
√
3ϕ ϵµνρσ∂

σσ . (A.40)

At linearised order, the exponential in the expression above is unity, so finally

Rµν
ρσ = −κ

2

(
∂[µ∂

[ρhν]
σ] − δ[µ

[ρ∂ν]∂
σ]ϕ+ ϵρσλ[µ∂ν]∂λσ

)
. (A.41)

A.4 Projection in the plane of scattering

The relation between the eikonal impact parameter xµ⊥ and bµ can be stated

clearly by first introducing some notation. Let us define the following four-vectors

in momentum space e
µ
0 ≡ N0(p̃

µ
1 + p̃µ2)

eµq ≡ Nq(p̃
µ
1 − p̃µ2)−N0q(p̃

µ
1 + p̃µ2) ,

(A.42)

where the normalization factors N0, Nq and N0q are fixed by requiring e20 = 1,

e2q = −1 and e0 · eq = 0. By definition of xµ⊥, the following identities hold:

e0 · x⊥ = 0 , eq · x⊥ = 0 . (A.43)

As a consequence, we can write the projection of xµ on the plane orthogonal to

p̃µ1 and p̃µ2 as

xµ⊥ = xµ − (x · e0)eµ0 + (x · eq)eµq , (A.44)

where the different signs in the the last two terms are a consequence of eµ0 being

time-like while eµq space-like. Using (A.44) we can easily compute some of the

derivatives involved in the evaluation of the stationary phase on xµ such as

∂x2⊥
∂xµ

= 2x⊥,ν(η
µν − eµ0e

ν
0 + eµq e

ν
q ) = 2xµ⊥ . (A.45)

Another example where the use of (A.44) is useful is when we apply the stationary

phase for the integral over qµ. In this case, the stationary condition for qµ can

be expressed as

xµ = bµ + qν,∗
∂xν⊥
∂qµ

∣∣∣∣
q=q∗

, (A.46)
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where qµ∗ satisfies the stationary phase condition on xµ given by qµ∗ = −2χ′(x⊥)x
µ
⊥.

One of the advantages in the definition (A.42) of eµ0 is that it is qµ independent

so that the previous stationary condition can be expressed as

xµ = bµ + qν,∗
∂

∂qµ

[
(x · eq)eνq

]∣∣∣∣
q=q∗

. (A.47)

Since qµ∗ is parallel to xµ⊥, we know that q∗ ·eq ∝ x⊥ ·eq = 0, and so equation (A.47)

simplifies to

xµ = bµ + qν,∗(x · eq)
∂eνq
∂qµ

∣∣∣∣
q=q∗

. (A.48)

The remaining derivative can be easily performed using the definition of eµq . The

result is

qν
∂eνq
∂qµ

∣∣∣∣
q=q∗

= −(Nq q
µ)

∣∣∣∣∣
q=q∗

. (A.49)

We can then write the eikonal impact parameter as

xµ⊥ = bµ − (x · e0)eµ0 −
[
(x · eq)Nqq

µ
]∣∣

q=q∗
+
[
(x · eq)eµq

]∣∣
q=q∗

. (A.50)

The scalar products x · e0 and x · eq, which can be viewed as Lagrange multipliers

for the phase which we are minimizing, are fixed by requiring the eikonal impact

parameter to be orthogonal to eµ0 and eµq . A straightforward calculation gives

xµ⊥ = bµ −
[
(eq · b)(Nqq

µ − eµq )
]∣∣

q=q∗
. (A.51)

Expressing eµq in terms of pµ1 , p
µ
2 and qµ we obtain

xµ⊥ = bµ −
[
(eq · b)

[
N0q(p

µ
1 + pµ2)−Nq(p

µ
1 − pµ2)

]]∣∣∣∣
q=q∗

, (A.52)

which agrees — when evaluated in the center of mass frame — with the expression

for the eikonal impact parameter in (5.82), where Ñq = −(eq · b)Nq and Ñ0q =

(eq · b)N0q.

176



Bibliography

[1] R. Monteiro, D. O’Connell, D. Peinador Veiga and M. Sergola, Classical

solutions and their double copy in split signature, JHEP 05 (2021) 268,

[2012.11190].

[2] R. Monteiro, S. Nagy, D. O’Connell, D. Peinador Veiga and M. Sergola,

NS-NS spacetimes from amplitudes, JHEP 06 (2022) 021, [2112.08336].

[3] A. Elkhidir, D. O’Connell, M. Sergola and I. A. Vazquez-Holm, Radiation

and Reaction at One Loop, 2303.06211.

[4] A. Cristofoli, R. Gonzo, N. Moynihan, D. O’Connell, A. Ross, M. Sergola

et al., The Uncertainty Principle and Classical Amplitudes, 2112.07556.

[5] G. Menezes and M. Sergola, NLO deflections for spinning particles and

Kerr black holes, JHEP 10 (2022) 105, [2205.11701].

[6] Z. Bern, A. Luna, R. Roiban, C.-H. Shen and M. Zeng, Spinning black

hole binary dynamics, scattering amplitudes, and effective field theory,

Phys. Rev. D 104 (2021) 065014, [2005.03071].

[7] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P.

Solon et al., Scattering Amplitudes and Conservative Binary Dynamics at

O(G4), Phys. Rev. Lett. 126 (2021) 171601, [2101.07254].

[8] E. Herrmann, J. Parra-Martinez, M. S. Ruf and M. Zeng, Gravitational

Bremsstrahlung from Reverse Unitarity, Phys. Rev. Lett. 126 (2021)

201602, [2101.07255].

[9] P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, The eikonal

approach to gravitational scattering and radiation at O(G3), JHEP 07

(2021) 169, [2104.03256].

177

http://dx.doi.org/10.1007/JHEP05(2021)268
https://arxiv.org/abs/2012.11190
http://dx.doi.org/10.1007/JHEP06(2022)021
https://arxiv.org/abs/2112.08336
https://arxiv.org/abs/2303.06211
https://arxiv.org/abs/2112.07556
http://dx.doi.org/10.1007/JHEP10(2022)105
https://arxiv.org/abs/2205.11701
http://dx.doi.org/10.1103/PhysRevD.104.065014
https://arxiv.org/abs/2005.03071
http://dx.doi.org/10.1103/PhysRevLett.126.171601
https://arxiv.org/abs/2101.07254
http://dx.doi.org/10.1103/PhysRevLett.126.201602
http://dx.doi.org/10.1103/PhysRevLett.126.201602
https://arxiv.org/abs/2101.07255
http://dx.doi.org/10.1007/JHEP07(2021)169
http://dx.doi.org/10.1007/JHEP07(2021)169
https://arxiv.org/abs/2104.03256


[10] Y. F. Bautista, A. Guevara, C. Kavanagh and J. Vines, From Scattering in

Black Hole Backgrounds to Higher-Spin Amplitudes: Part I, 2107.10179.

[11] Z. Bern, H. Ita, J. Parra-Martinez and M. S. Ruf, Universality in the

classical limit of massless gravitational scattering, Phys. Rev. Lett. 125

(2020) 031601, [2002.02459].

[12] N. Moynihan and J. Murugan, On-Shell Electric-Magnetic Duality and the

Dual Graviton, 2002.11085.

[13] A. Cristofoli, P. H. Damgaard, P. Di Vecchia and C. Heissenberg,

Second-order Post-Minkowskian scattering in arbitrary dimensions, JHEP

07 (2020) 122, [2003.10274].

[14] J. Parra-Martinez, M. S. Ruf and M. Zeng, Extremal black hole scattering

at O(G3): graviton dominance, eikonal exponentiation, and differential

equations, JHEP 11 (2020) 023, [2005.04236].

[15] K. Haddad and A. Helset, The double copy for heavy particles,

2005.13897.

[16] M. Accettulli Huber, A. Brandhuber, S. De Angelis and G. Travaglini,

Eikonal phase matrix, deflection angle and time delay in effective field

theories of gravity, Phys. Rev. D 102 (2020) 046014, [2006.02375].

[17] N. Moynihan, Scattering Amplitudes and the Double Copy in Topologically

Massive Theories, JHEP 12 (2020) 163, [2006.15957].

[18] A. Manu, D. Ghosh, A. Laddha and P. V. Athira, Soft radiation from

scattering amplitudes revisited, JHEP 05 (2021) 056, [2007.02077].

[19] B. Sahoo, Classical Sub-subleading Soft Photon and Soft Graviton

Theorems in Four Spacetime Dimensions, JHEP 12 (2020) 070,

[2008.04376].

[20] L. de la Cruz, B. Maybee, D. O’Connell and A. Ross, Classical Yang-Mills

observables from amplitudes, JHEP 12 (2020) 076, [2009.03842].

[21] D. Bonocore, Asymptotic dynamics on the worldline for spinning particles,

JHEP 02 (2021) 007, [2009.07863].

[22] G. Mogull, J. Plefka and J. Steinhoff, Classical black hole scattering from

a worldline quantum field theory, JHEP 02 (2021) 048, [2010.02865].

178

https://arxiv.org/abs/2107.10179
http://dx.doi.org/10.1103/PhysRevLett.125.031601
http://dx.doi.org/10.1103/PhysRevLett.125.031601
https://arxiv.org/abs/2002.02459
https://arxiv.org/abs/2002.11085
http://dx.doi.org/10.1007/JHEP07(2020)122
http://dx.doi.org/10.1007/JHEP07(2020)122
https://arxiv.org/abs/2003.10274
http://dx.doi.org/10.1007/JHEP11(2020)023
https://arxiv.org/abs/2005.04236
https://arxiv.org/abs/2005.13897
http://dx.doi.org/10.1103/PhysRevD.102.046014
https://arxiv.org/abs/2006.02375
http://dx.doi.org/10.1007/JHEP12(2020)163
https://arxiv.org/abs/2006.15957
http://dx.doi.org/10.1007/JHEP05(2021)056
https://arxiv.org/abs/2007.02077
http://dx.doi.org/10.1007/JHEP12(2020)070
https://arxiv.org/abs/2008.04376
http://dx.doi.org/10.1007/JHEP12(2020)076
https://arxiv.org/abs/2009.03842
http://dx.doi.org/10.1007/JHEP02(2021)007
https://arxiv.org/abs/2009.07863
http://dx.doi.org/10.1007/JHEP02(2021)048
https://arxiv.org/abs/2010.02865


[23] W. T. Emond, Y.-T. Huang, U. Kol, N. Moynihan and D. O’Connell,

Amplitudes from Coulomb to Kerr-Taub-NUT, 2010.07861.

[24] C. Cheung, N. Shah and M. P. Solon, Mining the Geodesic Equation for

Scattering Data, Phys. Rev. D 103 (2021) 024030, [2010.08568].

[25] S. Mougiakakos and P. Vanhove, Schwarzschild-Tangherlini metric from

scattering amplitudes in various dimensions, Phys. Rev. D 103 (2021)

026001, [2010.08882].

[26] J. J. M. Carrasco and I. A. Vazquez-Holm, Loop-Level Double-Copy for

Massive Quantum Particles, 2010.13435.

[27] J.-W. Kim and M. Shim, Gravitational Dyonic Amplitude at One-Loop

and its Inconsistency with the Classical Impulse, JHEP 02 (2021) 217,

[2010.14347].

[28] N. E. J. Bjerrum-Bohr, T. V. Brown and H. Gomez, Scattering of

Gravitons and Spinning Massive States from Compact Numerators, JHEP

04 (2021) 234, [2011.10556].

[29] R. Gonzo and A. Pokraka, Light-ray operators, detectors and gravitational

event shapes, JHEP 05 (2021) 015, [2012.01406].

[30] L. de la Cruz, Scattering amplitudes approach to hard thermal loops, Phys.

Rev. D 104 (2021) 014013, [2012.07714].

[31] Y. F. Bautista and A. Laddha, Soft Constraints on KMOC Formalism,

2111.11642.

[32] E. Herrmann, J. Parra-Martinez, M. S. Ruf and M. Zeng, Radiative

classical gravitational observables at O(G3) from scattering amplitudes,

JHEP 10 (2021) 148, [2104.03957].

[33] A. Cristofoli, R. Gonzo, D. A. Kosower and D. O’Connell, Waveforms

from Amplitudes, 2107.10193.

[34] M.-Z. Chung, Y.-T. Huang, J.-W. Kim and S. Lee, The simplest massive

S-matrix: from minimal coupling to Black Holes, JHEP 04 (2019) 156,

[1812.08752].

[35] M.-Z. Chung, Y.-T. Huang and J.-W. Kim, Classical potential for general

spinning bodies, JHEP 09 (2020) 074, [1908.08463].

179

https://arxiv.org/abs/2010.07861
http://dx.doi.org/10.1103/PhysRevD.103.024030
https://arxiv.org/abs/2010.08568
http://dx.doi.org/10.1103/PhysRevD.103.026001
http://dx.doi.org/10.1103/PhysRevD.103.026001
https://arxiv.org/abs/2010.08882
https://arxiv.org/abs/2010.13435
http://dx.doi.org/10.1007/JHEP02(2021)217
https://arxiv.org/abs/2010.14347
http://dx.doi.org/10.1007/JHEP04(2021)234
http://dx.doi.org/10.1007/JHEP04(2021)234
https://arxiv.org/abs/2011.10556
http://dx.doi.org/10.1007/JHEP05(2021)015
https://arxiv.org/abs/2012.01406
http://dx.doi.org/10.1103/PhysRevD.104.014013
http://dx.doi.org/10.1103/PhysRevD.104.014013
https://arxiv.org/abs/2012.07714
https://arxiv.org/abs/2111.11642
http://dx.doi.org/10.1007/JHEP10(2021)148
https://arxiv.org/abs/2104.03957
https://arxiv.org/abs/2107.10193
http://dx.doi.org/10.1007/JHEP04(2019)156
https://arxiv.org/abs/1812.08752
http://dx.doi.org/10.1007/JHEP09(2020)074
https://arxiv.org/abs/1908.08463


[36] D. Neill and I. Z. Rothstein, Classical Space-Times from the S Matrix,

Nucl. Phys. B 877 (2013) 177–189, [1304.7263].

[37] C. Cheung, I. Z. Rothstein and M. P. Solon, From Scattering Amplitudes

to Classical Potentials in the Post-Minkowskian Expansion, Phys. Rev.

Lett. 121 (2018) 251101, [1808.02489].

[38] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon and M. Zeng,

Black Hole Binary Dynamics from the Double Copy and Effective Theory,

JHEP 10 (2019) 206, [1908.01493].

[39] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon and M. Zeng,

Scattering Amplitudes and the Conservative Hamiltonian for Binary

Systems at Third Post-Minkowskian Order, Phys. Rev. Lett. 122 (2019)

201603, [1901.04424].

[40] N. E. J. Bjerrum-Bohr, J. F. Donoghue and P. Vanhove, On-shell

Techniques and Universal Results in Quantum Gravity, JHEP 02 (2014)

111, [1309.0804].

[41] N. E. J. Bjerrum-Bohr, J. F. Donoghue, B. R. Holstein, L. Planté and
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[249] C. Dlapa, G. Kälin, Z. Liu, J. Neef and R. A. Porto, Radiation Reaction

and Gravitational Waves at Fourth Post-Minkowskian Order, 2210.05541.

[250] Z. Bern, Perturbative quantum gravity and its relation to gauge theory,

Living Rev. Rel. 5 (2002) 5, [gr-qc/0206071].

196

http://dx.doi.org/10.1016/0370-1573(94)90091-4
https://arxiv.org/abs/hep-ph/9306320
http://dx.doi.org/10.1007/JHEP11(2019)070
https://arxiv.org/abs/1908.10308
http://dx.doi.org/10.1007/978-1-4684-2826-1_5
http://dx.doi.org/10.1007/978-1-4684-2826-1_5
http://dx.doi.org/10.1007/JHEP07(2022)072
https://arxiv.org/abs/2203.06197
https://arxiv.org/abs/2302.00498
https://arxiv.org/abs/2212.06120
https://arxiv.org/abs/2203.06202
https://arxiv.org/abs/2212.07965
http://dx.doi.org/10.1088/1126-6708/2009/07/075
https://arxiv.org/abs/0902.0981
https://arxiv.org/abs/2210.05541
http://dx.doi.org/10.12942/lrr-2002-5
https://arxiv.org/abs/gr-qc/0206071


[251] Y. Mino, M. Sasaki and T. Tanaka, Gravitational radiation reaction to a

particle motion, Phys. Rev. D 55 (1997) 3457–3476, [gr-qc/9606018].

[252] T. C. Quinn and R. M. Wald, An Axiomatic approach to electromagnetic

and gravitational radiation reaction of particles in curved space-time,

Phys. Rev. D 56 (1997) 3381–3394, [gr-qc/9610053].

[253] S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965)

B516–B524.

[254] C. Heissenberg, Infrared divergences and the eikonal exponentiation, Phys.

Rev. D 104 (2021) 046016, [2105.04594].

[255] W. D. Goldberger and A. Ross, Gravitational radiative corrections from

effective field theory, Phys. Rev. D 81 (2010) 124015, [0912.4254].

[256] R. A. Porto, A. Ross and I. Z. Rothstein, Spin induced multipole moments

for the gravitational wave amplitude from binary inspirals to 2.5

Post-Newtonian order, JCAP 09 (2012) 028, [1203.2962].

[257] L. de la Cruz, A. Luna and T. Scheopner, Yang-Mills observables: from

KMOC to eikonal through EFT, JHEP 01 (2022) 045, [2108.02178].

[258] Z. Bern, J. P. Gatica, E. Herrmann, A. Luna and M. Zeng, Scalar QED as

a toy model for higher-order effects in classical gravitational scattering,

JHEP 08 (2022) 131, [2112.12243].

[259] N. E. J. Bjerrum-Bohr, J. F. Donoghue and B. R. Holstein, Quantum

corrections to the Schwarzschild and Kerr metrics, Phys. Rev. D 68

(2003) 084005, [hep-th/0211071].

[260] R. Torgerson, Field-theoretic formulation of the optical model at high

energies, Phys. Rev. 143 (Mar, 1966) 1194–1215.

[261] H. D. I. Abarbanel and C. Itzykson, Relativistic eikonal expansion, Phys.

Rev. Lett. 23 (1969) 53.

[262] H. Cheng and T. T. Wu, High-energy elastic scattering in quantum

electrodynamics, Phys. Rev. Lett. 22 (1969) 666.

[263] H. Cheng and T. T. Wu, Impact factor and exponentiation in high-energy

scattering processes, Phys. Rev. 186 (Oct, 1969) 1611–1618.

[264] S. J. Wallace, Eikonal expansion, Annals of Physics 78 (1973) 190–257.

197

http://dx.doi.org/10.1103/PhysRevD.55.3457
https://arxiv.org/abs/gr-qc/9606018
http://dx.doi.org/10.1103/PhysRevD.56.3381
https://arxiv.org/abs/gr-qc/9610053
http://dx.doi.org/10.1103/PhysRev.140.B516
http://dx.doi.org/10.1103/PhysRev.140.B516
http://dx.doi.org/10.1103/PhysRevD.104.046016
http://dx.doi.org/10.1103/PhysRevD.104.046016
https://arxiv.org/abs/2105.04594
http://dx.doi.org/10.1103/PhysRevD.81.124015
https://arxiv.org/abs/0912.4254
http://dx.doi.org/10.1088/1475-7516/2012/09/028
https://arxiv.org/abs/1203.2962
http://dx.doi.org/10.1007/JHEP01(2022)045
https://arxiv.org/abs/2108.02178
http://dx.doi.org/10.1007/JHEP08(2022)131
https://arxiv.org/abs/2112.12243
http://dx.doi.org/10.1103/PhysRevD.68.084005
http://dx.doi.org/10.1103/PhysRevD.68.084005
https://arxiv.org/abs/hep-th/0211071
http://dx.doi.org/10.1103/PhysRev.143.1194
http://dx.doi.org/10.1103/PhysRevLett.23.53
http://dx.doi.org/10.1103/PhysRevLett.23.53
http://dx.doi.org/10.1103/PhysRevLett.22.666
http://dx.doi.org/10.1103/PhysRev.186.1611
http://dx.doi.org/https://doi.org/10.1016/0003-4916(73)90008-0
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