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Overcomplete tomography: a novel approach to imaging
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ABSTRACT

Regularized least-squares tomography offers a straightforward and efficient imaging method and has seen extensive application
across various fields. However, it has a few drawbacks, such as (i) the regularization imposed during the inversion tends to give
a smooth solution, which will fail to reconstruct a multi-scale model well or detect sharp discontinuities, (ii) it requires finding
optimum control parameters, and (iii) it does not produce a sparse solution. This paper introduces ‘overcomplete tomography’,
a novel imaging framework that allows high-resolution recovery with relatively few data points. We express our image in terms
of an overcomplete basis, allowing the representation of a wide range of features and characteristics. Following the insight of
‘compressive sensing’, we regularize our inversion by imposing a penalty on the L; norm of the recovered model, obtaining an
image that is sparse relative to the overcomplete basis. We demonstrate our method with a synthetic and a real X-ray tomography
example. Our experiments indicate that we can reconstruct a multi-scale model from only a few observations. The approach may
also assist interpretation, allowing images to be decomposed into (for example) ‘global’ and ‘local’ structures. The framework
presented here can find application across a wide range of fields, including engineering, medical and geophysical tomography.
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1 INTRODUCTION

In many imaging situations, it is not possible to observe the feature
of interest directly. Instead, we must rely on whatever informa-
tion can be extracted from secondary data sets. For example, our
knowledge of the Earth’s interior structure must be inferred from
surface observables, such as measurements of seismic waves or
variations in the gravity field. To achieve this, we first introduce
a mathematical framework for describing the target feature — a
model parametrization — and then develop techniques to simulate
the corresponding observables. Finally, in a process often known as
‘inversion’, we can infer the set of model parameters that generate
the best match to observations.

Usually, a system can be described using a wide variety of different
model parametrizations. For example, models of Earth structure have
been parametrized using (amongst others) spherical harmonics (e.g.
Woodhouse & Dziewonski 1984; Ritsema et al. 2011), voxels or
cells (Spakman 1991; Hilst et al. 1997), and wavelets (Simons et al.
2011). The choice of parametrization is sometimes regarded as a
somewhat arbitrary choice (Valentine & Trampert 2016), but it can
exert significant influence upon both the computational tractability
of an inversion scheme, and upon the characteristics of the solution
that is ultimately obtained — e.g. models expressed using spherical
harmonics are necessarily smooth, whereas voxel models may exhibit
sharp discontinuities.
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To illustrate the consequences of this, Fig. 1 shows a simple
synthetic X-ray imaging scenario. The true model, as shown in
Fig. 1b, comprises some sharp, isolated features (expressed in a
pixel basis; see below) superposed upon a smooth, long-wavelength
background structure (expressed in a discrete cosine basis). Using
synthetic attenuation data computed for the 300 ray paths shown in
Fig. 1a, we compare results from two inversions performed using a
Tikhonov-regularized least-squares algorithm: one seeking the best-
fitting model expressed in (only) a pixel basis (Fig. 1c), and the
other expressed in a discrete cosine basis (Fig. 1e). Unsurprisingly,
neither succeeds in fully capturing the features of the true structure.
While aspects of the isolated structures are visible in each, it is
difficult to appreciate their true extent and character, and they cannot
easily be distinguished from the background. In a real problem, this
would likely be a barrier to analysis and exploitation of results, and
interpretation might differ depending on the basis functions chosen
to parameterize the inversion.

An obvious solution presents itself: why restrict the inversion
to use only a single family of basis functions? In Fig. 1d, we
again show results from a Tikhonov-regularized least-squares
tomography, but with the model parametrized using both pixel
and discrete cosine bases in combination, which we refer to as
forming an ‘overcomplete’ basis, following Duffin & Schaeffer
(1952). Unfortunately, this does not appear to yield a marked
improvement in results: We see that most structure continues to
be expressed using the pixel part of the model, and the difficulties
of interpretation remain. However — as this paper describes — by
using the overcomplete basis in conjuction with an alternative
regularization scheme, we can achieve the results shown in Fig. 1f.
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Figure 1 An illustration of tomographic solutions recovered with various model parametrizations and regularization approaches. (a) 300 Ray paths with
randomly selected end points on a square boundary and (b) synthetic model used to generate line-integral X-ray attenuation data with equation (1). Recovered
images after imposing Tikhonov regularization (c) using pixel basis; (d) overcomplete basis (Tikhonov-regularized overcomplete tomography; TROT); and (e)
cosine basis functions. (f) Shows the recovered image using sparsity regularization and an overcomplete basis [referred to as sparsity-promoting overcomplete
tomography (SPOT) in text]. For each overcomplete case, (i) shows combined model, (ii) pixel model, and (iii) the cosine model.

We refer to this as ‘sparsity-promoting overcomplete tomography including those of Candes et al. (2006), Donoho (2006), and Candes

(SPOT)’, and it enables excellent recovery of the target structures, & Tao (2006), have demonstrated that it is possible to recover signals
revealing the distinct characteristics of background and anomalies. from data sampled well below the Nyquist limit, provided that certain

To achieve this, we build on a significant body of work developed conditions are met. Underpinning this are two key ideas: First, that
in support of the concept of ‘compressive sensing’. Various studies, many systems of interest have ‘sparse’ representations, and can be
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described using only a few parameters in an appropriately-chosen
basis; and second, that minimizing the L; norm of a model can
serve as a reasonably-accurate yet computationally-tractable proxy
for minimization of its Ly norm (Candes et al. 2006). Following
this approach, we assume that real imaging targets have a sparse
representation in the overcomplete basis, and we regularize the
inversion based on the L; norm of the resulting model vector. As we
show, this yields excellent practical results, particularly in situations
where only a limited amount of data is available.

2 THEORETICAL BACKGROUND

In any tomographic imaging problem, our goal is to characterize
a function m(x), representing spatial variations in some physical
property of interest. For example, in a geophysical setting m might
represent the velocity of seismic waves within the Earth’s interior;
while in a medical setting it might represent the density of body
tissue. However, rather than measuring m directly, we must infer it
from its signature in observable data. In this paper, we consider only
those problems where the data are assumed to be linearly dependent
upon m, so that the ith datum, d;, can be expressed:

d; = / gi(xm(x)d¥x. (1
X

Here, g;(x) is a kernel quantifying how the observation samples the
model, and X represents the N-dimensional space within which the
model is defined.

2.1 Least squares inversion

The conventional approach to inversion involves introducing some
family of basis functions, ¢;(x), (j =1, ..., M). We assume that this
family is sufficient to represent the system of interest, so that it forms
a complete basis for representing m, and write

M
mx) = > m;¢;(x) (2)
j=1

Within this representation, any model can be fully described by
specifying the M parameters m;._, which we collectively represent
as the model vector m. Substituting this into equation (1), we obtain

M
di=>m; [ atos,00a )
=1 X

and this can be written in the form d = Gm, where the matrix G is
defined to have elements G;; = [, g:(x)¢;(x) d"x.

In general, observational data will contain noise, and the system
may not adhere precisely to the assumptions inherent to equation (1).
We therefore do not expect to find a model that explains the data
perfectly; instead, we seek the ‘best-fitting” model and set out to
minimize some objective function:

1
x(m) =~ (d — Gm)" C;' (d — Gm) + xm(m) “)

where C; is a covariance matrix representing any noise and/or
correlations expected to be present within the data set, and where x ,
is a ‘regularization function’ that encodes any preferences we may
wish to express regarding the model sought. One common choice
is that of Tikhonov regularization, as already employed for Fig. 1,
whereby

Xm(m) = o [m]|3 ®)

with o (>0) chosen to balance the relative weights of data-fit and
regularization terms.
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2.2 Overcomplete inversion

To extend this, we introduce K distinct families of basis functions,
and use qb;k) (x) to denote the jth basis function in the kth set. In
analogy with equation (2), we then define

K My

mx) =Y > mP¢Px), (6)

k=1 j=1

with M) denoting the number of basis functions comprising the kth
set. The model function is therefore fully specifiedby M = Zle M,
parameters, which can be regarded both as a single M-dimensional
vector, m, and as a collection of K subsidiary model vectors m®,

As before, we can substitute this into equation (1), leading to a
system of equations of the form

K
d=> G¥m® @)
k=1

where each G® has elements defined by G fl;) =[y& (x)¢_§k)(x) dVx.
Defining

m®
G=(G"...G®) andm = (8)
m&

allows us to continue to pose the inverse problem in terms of the
minimization of x (m), as given in equation (4).

In principle, we could regularize this inversion using a Tikhonov-
style regularization function, as in equation (5). However, experimen-
tal results prove poor (as we have already seen in Fig. 1). Instead, we
adopt a regularization function of the form

K K
amm) =Y BT PGY | m® st D p=1. )
k=1 k=1
Here, o continues to control the overall balance between data-fit
and regularization terms, while the g, (with 0 < B; < 1) allow
for individual basis families to be up- or down-weighted relative to
one another. The (scalar) factors of HC; Y 2G(")H2 are included to
account for any differences in the ‘units of measurement’ associated
with different basis function families, rescaling model norms into a
common system; other choices may be possible here. We will refer
to inversion based on minimizing this misfit as ‘SPOT’; see below
for justification of this name.

3 EXAMPLES

3.1 A synthetic test

To illustrate the behaviour and performance of this scheme, we first
return to the simple example presented in Fig. 1. This is a simple
two-dimensional imaging problem based on X-ray tomography, as
discussed by Tarantola (2005, section 5.6). Our model function,
m(x, y) represents the ‘density’ of matter at location (x, y) within
adomain x € [0, 1], y € [0, 1]; we simulate X-ray transmission from
sources of known intensity located on the boundary of this domain
and compute the intensity received at distant receivers, also located
on the boundary. This allows us to compute synthetic sinogram
measurements:

d :/ m(x, y)ds (10)
I

where integration is along the straight-line path, I';, between source

and receiver.
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Figure 2 Visualization of the pixel and cosine basis functions. The first three rows/columns and the final row/column of the 20 x 20 set of basis functions are

shown.

We employ two sets of basis functions for our experiments. The
first comprises a 20 x 20 grid of square pixels (as shown in Fig. 2a),
such that

o (x, y)

m—1 m
1 % <x§%and20 <y_20

= with i =20(m —1)+n (11)
0 otherwise

while the second is a 20 x 20 Fourier cosine basis (Fig. 2b):

¢\(x, y) = cos(mmx)cos(nmry) withi =20(m —1)+n. (12)

The first of these is an example of a local basis, with each basis
function being non-zero in only a small region of the model domain.
Discontinuous structures can be represented at boundaries between
pixels. In contrast, the second set of basis functions are all non-zero
(other than at isolated points) throughout the domain: This is a global
basis, and it can only be used to construct continuous functions.
In this set-up, both sets of basis functions have a similar minimum
scale length.
We construct a synthetic model:

mye, )=y mP¢ ", )+ > me x, y) (13)

as shown in Fig. 1, with 20 randomly selected non-zero coefficients

(”) forming a smooth background, and 20 further non-zero coeffi-
01ents m(p ) chosen to simulate a target structure. We therefore have 40
non-zero coefficients within a parametrization that admits 800 model
parameters (Fig. 3a). We compute synthetic sinograms according to
equation (10) for 14400 paths, derived from a randomly chosen
distribution of sources and receivers, adding normally distributed
random noise with zero mean and a standard deviation chosen to be
1.5 per cent of the absolute maximum sinogram amplitude.

Using this set of 14400 simulated observables, we can select
smaller subsets of data. Using a subset of 300 randomly selected ray
paths, we conduct the experiments already presented in Fig. 1. As
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discussed above, we first pose and solve the inverse problem using
(only) the 400 pixel basis functions (Fig. 1¢) and, separately, the 400
cosine basis functions (Fig. 1e). In both cases, our objective function
is as given in equation (4), with x , as in equation (5); we employ the
solution algorithm of Valentine & Sambridge (2018) to automatically
determine the regularization weight, «. The features in the resulting
images can clearly be linked to those present in the ‘true’ structure
(Fig. 1b), but most detail is lost, with no clear distinction between
background and anomalies. Both images inherit characteristics from
their basis set: The pixel image is blocky and discontinuous, while
the cosine-derived image is smooth and blurry. Short-wavelength
artefacts in the cosine-derived image are likely to be caused by Gibbs’
phenomenon, with the continuous basis functions unable to represent
the sharp discontinuities in our input structure.

Next, we perform inversion in the overcomplete basis, comprising
a total of 800 basis functions (400 pixel; 400 cosine); we continue to
use a Tikhonov-style regularization term, defined as

K K
I =a > B|CPGN | [mP) st S g=1 (14)

k=1 k=1
in analogy with equation (9); we will refer to this as ‘Tikhonov-
regularised overcomplete tomography (TROT)’. We assign equal
weight to both basis subsets, choosing f”) = ) = 1, and adopt
a = 107*. We solve this by direct minimization of the objective
function (equation 4), using the L-BFGS algorithm (Liu & Nocedal
1989; Virtanen et al. 2020), and obtain results as shown in Fig. 1d.
These are rather similar to those obtained using just the pixel basis: It
continues to be difficult to convincingly interpret the image produced.
Finally, we repeat the overcomplete tomography, but instead use
the L;-based regularization function of equation (9). Again, we use
B = B = 1, and = 10~*. Results are markedly improved, both
qualitatively and quantitatively: SPOT can achieve good separation of
features across basis sets, and the image could readily be interpreted

and analysed.
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Figure 3 Histograms of model coefficients from the tomographic experiment in Fig. 1. (a) Shows the true model coefficients in Fig. 1b; (b) shows the TROT
model coefficients in Fig. 1d; and (c) shows the SPOT model coefficients from Fig. 1f. Pixel coefficients are shown in black and cosine in red. Notice how SPOT
produces few non-zero coefficients and is closer to the truth, whereas TROT has many non-zero coefficients. The constant background coefficient is omitted

from each histogram.

To provide a clearer illustration of the ‘sparsity-promoting’ nature
of our method, and justify this choice of name, Fig. 3 shows
histograms of the model coefficient values for true model, and for
the solutions obtained using the Tikhonov and sparsity-promoting
methods. By construction, the target model is sparse, with only 5 per
cent of coefficients non-zero. However, the Tikhonov-regularized
solution is not sparse: As is well-known, regularization based on an
L, norm smears the solution across all available model coefficients.
In contrast, regularization using the L; norm results in only a small
number of coefficients being significantly non-zero.

A key property of compressive sensing is the ability to accurately
recover signals sampled at only a small number of points. To
explore whether this result translates to overcomplete tomography,
we conduct a series of experiments with varying numbers of rays.
From our set of 14400 simulated observations, we initially select
10 ray paths and perform two inversions, both in the overcomplete
basis: one using TROT and the other using SPOT. This yields two
models; we evaluate each by computing data misfit across all 14 400
original ray paths and plot these as points on Fig. 4. The measure of
data misfit used is the objective function defined in equation (4), with
the regularization function y, omitted. This provides a measure of
the ability of the recovered model to give accurate predictions for
even unseen paths. We then repeat the process, systematically adding
more rays into the data set used for inversion.

Unsurprisingly, Fig. 4 shows that increasing data set size leads
to better inversion results. However, it also reveals that results
of SPOT have systematically better predictive power than those
obtained using TROT. This is most marked for the smallest data
set sizes, with sparsity-based results for a data set of 20 rays having
predictive performance comparable to a TROT data set of around
120 rays. Plotting the recovered images for selected data sets, we see
a similar story; even with comparatively small data sets, the sparsity-
regularized tomography is able to produce informative, interpretable
images, whereas the TROT results appear dominated by artefacts.
With sufficiently large data sets, TROT also performs well, but SPOT
is superior if data are limited.

3.2 Real data sets

To further illustrate this, we explore performance on two real X-
ray tomography data sets: one based on imaging of a lotus-root
(Bubba et al. 2016, containing 49248 ray paths), and the other
depicting a walnut (Hdméldinen et al. 2015, 19680 ray paths).
Together, these demonstrate a wide range of features common to
real structures, including sharp contrasts and geometric complexity.

Again, we select random subsets of the available data and perform
sparsity-based tomography in an overcomplete basis. For the lotus
root, our parametrization involves a total of 32768 basis functions
(16 384 pixel; 16 384 cosine); for the walnut, we have 53 792 basis
functions (26 896 pixel; 26 896 cosine). We compare our SPOT
results to a standard Tikhonov-regularized least squares in a pixel
basis (only), using 16384 basis functions for the lotus root, and
26 896 for the walnut.

The resulting images are shown in Fig. 5, and again we see that
sparsity-regularized overcomplete tomography can recover useful
interpretable images using a data set far smaller than that needed
for robust standard Tikhonov-derived results. Even with the smallest
data sets, SPOT is able to reveal the first-order features of the target
objects. In particular, our approach is able to resolve the gross features
of the lotus root, including some of the high-contrast features (which
represent various objects inserted into the lotus root prior to imaging),
using only 500 ray paths, as well as the overall shape of the walnut
using only 400 ray paths. In contrast, no coherent object can be
recognized within the standard least-squares results. Nevertheless,
with sufficient data, both methods can obtain a reasonable image.

4 DISCUSSION

This paper is underpinned by two complementary ideas. First, we
suggest that it is not necessary, nor necessarily desirable, to pose
imaging problems in terms of a single family of basis functions.
Second, we demonstrate that seeking sparse solutions can be an
effective means of regularizing inversions in these ‘overcomplete’
settings, allowing good-quality results to be obtained from even small
data sets. This is potentially powerful in settings such as geophysical
imaging, where data collection is expensive and time-consuming,
and where researchers may have limited control over acquisition
geometries or source characteristics. It may also offer benefits in
other fields, such as medical imaging, where exhaustive sampling
of the target is currently routine: The ability to obtain comparable
results using a smaller data set might offer tangible benefits such as
faster scans and lower radiation exposure for patients.

4.1 Compressive sensing

Our approach is built on the intuition that physical systems tend
towards simplicity — the principle of Occam’s razor — but this
simplicity may not conform to the rules of any one mathematical
framework. In particular, real systems may arise from the interaction
between multiple processes occurring at different scales and with
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Figure 4 Data misfit as a function of the number of ray paths used in the inversion. SPOT misfit reduction is shown in red, and TROT in blue. In the lower
panels, selected solutions for both cases are shown with increasing numbers of ray paths.

distinct characteristics. Each process may, individually, admit simple
representation in some basis, but this need not be the same basis in
each case. As a result, the combination of all processes may appear
complex and difficult to represent relative to any single system. This
motivates our use of an overcomplete basis, and we adopt the concept
of ‘sparsity’ — only a few non-zero model parameters — as a proxy
for ‘simplicity’.

We therefore seek to construct the model that uses the least number
of basis vectors necessary to explain the available data. Ideally, this
would require us to regularize our inversion based on the Ly norm
of the model vector — that is, x,, would simply count the number
of non-zero model coefficients. However, the minimization of an
objective with this form is known to be computationally intractable
in realistic-scale problems. Instead, we follow Candes et al. (2006),
who show that — with high probability — this would yield the same
result as is obtained when we minimize an objective that depends
upon the L; norm of the model vector. This is the same result that
underpins compressive sensing; the key difference in our work is its
use in combination with an overcomplete basis.

A characteristic feature seen in compressive sensing studies (e.g.
Candes et al. 2008) is a sudden transition between ‘poor’ and
‘excellent’ signal recovery once the data set size passes a certain
threshold. In Fig. 4, we saw a continual improvement in performance
as the data set grows, but not the sharp ‘cliff’ that might be anticipated.
However, if we perform an identical experiment using noise-free data,
we obtain results as depicted in Fig. 6, with the predictive power of
the sparsity-derived model abruptly improving by three orders of
magnitude once the data set contains around 300 rays — a pattern that
is also evident from the models themselves.

RASTAI 2, 207-215 (2023)

The absence of this cliff from Fig. 4 is probably attributable to
the fact that we have not adhered strictly to the formal conditions
necessary for compressive sensing to succeed. A central requirement
in compressive sensing is that the signal be sampled in a manner
that is incoherent to the basis in which it is sparse (Donoho &
Elad 2003; Candes & Romberg 2007): In other words, each piece
of data must carry information about many model components.
However, while each of our rays is sensitive to the complete set
of cosine model coefficients, each only samples a fraction of the
pixel parameters. Given that our noise is not correlated between
spatially adjacent measurements, it can easily be accommodated
within the pixel part of our model — leading to a slight weakening
of predictive performance. This could perhaps be mitigated through
additional terms in the regularization function, although the details
are likely to be problem-dependent; it may also suggest an alternative
application of overcomplete inversion, for denoising of data sets or
images.

4.2 Computational considerations

One major advantage of Tikhonov-style regularization is the resulting
objective function can be minimized analytically, via a Gauss-
Newton method. This is computationally efficient, allowing solutions
to be obtained cheaply and rapidly. Unfortunately, the objective
function underpinning our sparsity-promoting scheme (equation 9)
cannot be minimized analytically, and instead some iterative opti-
mization scheme must be used. For the examples presented here,
we have employed the L-BFGS algorithm (Liu & Nocedal 1989;
Virtanen et al. 2020), but a range of other approaches could also
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Figure 5 Reconstructed tomographic images as a function of the number of X-rays used in the real data experiment. The 1st and 3rd rows show the evolution of
the recovered images from the TROT approach, while the second and fourth rows demonstrate the SPOT approach for the lotus and walnut cases, respectively.
The number of data used in each case are displayed in the inset panel. These correspond to approximately 1 per cent, 2 per cent, 4 per cent, 10 per cent, 50 per

cent, and 100 per cent of the available data set.

be explored. In particular, techniques such as the Lasso (Tibshirani
1996) and least angle regression (Efron et al. 2004) have been specif-
ically designed to find sparse solutions to optimization problems,
and quadratic programming approaches can also be employed (e.g.
Solntsev et al. 2015). The suitability of these for use in SPOT remains
to be fully explored. As an indication, solving the synthetic problem
of Fig. 1 using our implementation of the SPOT approach takes 20.5
CPU-s, compared with 0.3 CPU-s for the TROT method and 0.2
CPU-s for a standard least-squares (Gauss-Newton) inversion.

As formulated in Section 2.2, implementation of SPOT requires
the ability to compute G® with respect to each of the basis sets
that are to be employed. In some cases, this may present a practical
barrier to adoption of the approach: Often, the numerical software
available to compute these matrices will be designed to support only
one specific basis. Similarly, any software that takes m(x) as an
input — perhaps to simulate observable phenomena — may expect
the model to be expressed in a certain way. In the long term, it
may be possible to develop codes that provide direct support for
computations using overcomplete models. Alternatively, one can
choose to express all basis functions d)l-(k) relative to some reference

basis {1, Y2, ..., Yar, }:
My

$00 ~ > WPy (13)
=

with, typically, M, > max;M; to ensure that all ¢,-(k) can
be approximated to a satisfactory level of accuracy. Then,
DWPGY, with
GE}/’): S i)Y (x)d¥x. Thus, quantities can be computed
in the reference basis and then mapped into each of the
overcomplete basis sets, allowing the SPOT approach to be
employed.

it is straightforward to show that G,(.f) ~

4.3 Choosing basis families

For the examples presented in this paper, we have relied upon two
families of basis functions: a pixel basis, and a discrete cosine basis.
These were chosen for their conceptual simplicity, and for their
clearly distinct properties: local versus global; discontinuous versus
continuous. However, the method can be applied with any collection
of basis vectors, and with more than two distinct families. The par-
ticular families used in any given situation are likely to be problem-
dependent, informed by prior knowledge of the characteristics and
features that should be present or are important to resolve. However,
we believe that in many scenarios there will be particular power in
mixing globally and locally supported basis functions: The former are
able to bridge across gaps in data coverage, while the latter ensure
that detailed features can be accurately reproduced. The trade-off
parameters « and B, govern the priority assigned to each basis set, and
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Figure 6 Results from a comparison of TROT and SPOT solutions for the synthetic experiment shown in Fig. 4 but for noiseless data. Notice that the SPOT
solutions experience a three orders of magnitude reduction in misfit, as the number of ray paths increases beyond about 300. At the same location the true image
(Fig. 1b) is recovered almost perfectly. This thresholding behaviour is consistent with that seen in experiments of compressed sensing.

their impact may need to be explored in the context of any particular
problem.

5 CONCLUDING REMARKS

This paper has developed a new approach to model parametrization
and regularization of inverse problems, which we refer to as ‘over-
complete tomography’. This allows models to be expressed using
a combination of basis functions from multiple distinct families,
with regularization based on minimising the L; norm of the model
coefficients. This enables the recovery of high-resolution images
from comparatively small data sets, and allows us to avoid imposing
arbitrary characteristics upon the solution.

‘We have demonstrated the efficacy of this approach using a number
of examples. In particular, we have applied the method to a pair
of real-world X-ray tomography data sets. We see that results are
comparable to existing methods when the available data provides ex-
haustive sampling of the target, with our new method outperforming
existing approaches when data are limited. We therefore foresee a
range of applications in scenarios where data sets are intrinsically
limited (e.g. geophysical imaging studies, where there may be little
control over the distributions of sources and/or receivers), or where
it is desirable to minimize the number of samples collected (e.g.
to restrict acquisition time and cost, or to limit radiation exposure
in medical settings). While our work has focussed exclusively on
the case where data is linearly dependent on model parameters, we

RASTAI 2, 207-215 (2023)

anticipate that the method can be employed iteratively for the solution
of weakly non-linear problems.

As a result, we see overcomplete tomography as a powerful
new methodology with applications in a range of settings such as
next-generation seismic and electromagnetic imaging of subsurface
anomalies beneath a volcano or in mineral resource provinces;
medical CT imaging to improve the contrast of target features
against background variations or other laboratory settings where
tomographic approaches are used to detect anomalous structures
within a target body. The basis functions must be chosen com-
mensurately in all applications with the class of anomalies sought.
With this new class of inference approach, we may soon see
a significant improvement in resolving multiple structure classes
within tomographic images, overcoming long-standing difficulties
in this field.

ACKNOWLEDGEMENTS

We thank Matthias Scheiter for his insightful comments on this
paper. This research was undertaken with the financial support by
the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) Deep Earth Imaging Future Science Platform PhD scholar-
ship, the Australian National University (ANU), and the Australian
Research Council (ARC) via DP200100053. We thank the editor
Zefeng Li and anonymous reviewers for their constructive comments
and suggestions, which have greatly enhanced the quality of this

paper.

€20z 1snBNny || uo 3senB Aq 8€89YL 21202/ L/Z/o10NE/)SEl/W0d"dNO"0IWSPED.//:SARY WO} POPEOJUMOQ


art/rzad010_f6.eps

DATA AVAILABILITY

The code associated with this article is available at https://github.c
om/buseet/OvercompleteTomo.

REFERENCES

Bubba T. A., Hauptmann A., Huotari S., Rimpeldinen J., Siltanen S., 2016,
preprint (arXiv:1609.07299)

Candes E., Romberg J., 2007, Inverse Probl., 23, 969

Candes E. J., Tao T., 2006, IEEE Trans. Inf. Theor., 52, 5406

Candes E. J., Romberg J., Tao T., 2006, IEEE Trans. Inf. Theor., 52, 489

Candes E. J., Wakin M. B., Boyd S. P., 2008, J. Fourier Anal. Appl., 14, 877

Donoho D. L., 2006, IEEE Trans. Inf. Theor., 52, 1289

Donoho D. L., Elad M., 2003, Proc. Natl. Acad. Sci., 100, 2197

Duffin R. J., Schaeffer A. C., 1952, Trans. Am. Math. Soc., 72, 341

Efron B., Hastie T., Johnstone 1., Tibshirani R., 2004, Ann. Stat., 32, 407

Himilédinen K., Harhanen L., Kallonen A., Kujanpdi A., Niemi E., Siltanen
S., 2015, preprint (arXiv:1502.04064)

Overcomplete tomography 215

Liu D. C., Nocedal J., 1989, Math. Prog., 45, 503

Ritsema J., Deuss a. A., Van Heijst H., Woodhouse J., 2011, Geophys. J. Int.,
184, 1223

Simons F. J. et al., 2011, Geophys. J. Int., 187, 969

Solntsev S., Nocedal J., Byrd R. H., 2015, Opt. Methods Softw., 30, 1213

Spakman W., 1991, Geophys. J. Int., 107, 309

Tarantola A., 2005, Inverse Problem Theory and Methods for Model Param-
eter Estimation. SIAM, Philadelphia, PA

Tibshirani R., 1996, J. R. Stat. Soc. B, 58, 267

Valentine A. P, Sambridge M., 2018, Geophys. J. Int., 215, 1003

Valentine A. P., Trampert J., 2016, Geophys. J. Int., 204, 59

Virtanen P. et al., 2020, Nature Methods, 17, 261

Van der Hilst R. D., Widiyantoro S., Engdahl E., 1997, Nature, 386, 578

Woodhouse J. H., Dziewonski A. M., 1984, J. Geophys. Res.: Solid Earth,
89, 5953

This paper has been typeset from a TeX/IATEX file prepared by the author.

RASTAI 2, 207-215 (2023)

€202 1SNBny || uo 1sonB Aq 8E89YL2//02/L/Z/2I01HE/ISEI/W0 dNODILSPED.//:SAIY WO} POPEOJUMOQ


https://github.com/buseet/OvercompleteTomo
http://arxiv.org/abs/1609.07299
http://dx.doi.org/10.1088/0266-5611/23/3/008
http://dx.doi.org/10.1109/TIT.2006.885507
http://dx.doi.org/10.1109/TIT.2005.862083
http://dx.doi.org/10.1007/s00041-008-9045-x
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1073/pnas.0437847100
http://dx.doi.org/10.1090/S0002-9947-1952-0047179-6
http://dx.doi.org/10.1214/009053604000000067
http://arxiv.org/abs/1502.04064
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1111/j.1365-246X.2010.04884.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05190.x
http://dx.doi.org/10.1080/10556788.2015.1028062
http://dx.doi.org/10.1111/j.1365-246X.1991.tb00828.x
http://dx.doi.org/10.1093/gji/ggy303
http://dx.doi.org/10.1093/gji/ggv440
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/386578a0
http://dx.doi.org/10.1029/JB089iB07p05953

	1 INTRODUCTION
	2 THEORETICAL BACKGROUND
	3 EXAMPLES
	4 DISCUSSION
	5 CONCLUDING REMARKS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES

