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A B S T R A C T 

Regularized least-squares tomography offers a straightforward and efficient imaging method and has seen e xtensiv e application 

across v arious fields. Ho we ver, it has a few drawbacks, such as (i) the regularization imposed during the inversion tends to give 
a smooth solution, which will fail to reconstruct a multi-scale model well or detect sharp discontinuities, (ii) it requires finding 

optimum control parameters, and (iii) it does not produce a sparse solution. This paper introduces ‘o v ercomplete tomography’, 
a no v el imaging frame work that allo ws high-resolution reco v ery with relativ ely few data points. We e xpress our image in terms 
of an o v ercomplete basis, allowing the representation of a wide range of features and characteristics. Following the insight of 
‘compressiv e sensing’, we re gularize our inv ersion by imposing a penalty on the L 1 norm of the reco v ered model, obtaining an 

image that is sparse relative to the overcomplete basis. We demonstrate our method with a synthetic and a real X-ray tomography 

e xample. Our e xperiments indicate that we can reconstruct a multi-scale model from only a few observations. The approach may 

also assist interpretation, allowing images to be decomposed into (for example) ‘global’ and ‘local’ structures. The framework 

presented here can find application across a wide range of fields, including engineering, medical and geophysical tomography. 

Key words: algorithms – data methods – L 1 -norm based inversion – model parametrization – multiscale tomography –
o v ercomplete basis. 
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 I N T RO D U C T I O N  

n many imaging situations, it is not possible to observe the feature
f interest directly. Instead, we must rely on whatever informa- 
ion can be extracted from secondary data sets. For example, our 
nowledge of the Earth’s interior structure must be inferred from 

urface observables, such as measurements of seismic waves or 
ariations in the gravity field. To achieve this, we first introduce 
 mathematical framework for describing the target feature – a 
odel parametrization – and then develop techniques to simulate 

he corresponding observables. Finally, in a process often known as 
inversion’, we can infer the set of model parameters that generate 
he best match to observations. 

Usually, a system can be described using a wide variety of different
odel parametrizations. For example, models of Earth structure have 

een parametrized using (amongst others) spherical harmonics (e.g. 
oodhouse & Dziewonski 1984 ; Ritsema et al. 2011 ), voxels or

ells (Spakman 1991 ; Hilst et al. 1997 ), and wavelets (Simons et al.
011 ). The choice of parametrization is sometimes regarded as a 
omewhat arbitrary choice (Valentine & Trampert 2016 ), but it can 
 x ert significant influence upon both the computational tractability 
f an inversion scheme, and upon the characteristics of the solution 
hat is ultimately obtained – e.g. models expressed using spherical 
armonics are necessarily smooth, whereas voxel models may exhibit 
harp discontinuities. 
 E-mail: buse.turunctur@anu.edu.au 
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To illustrate the consequences of this, Fig. 1 shows a simple
ynthetic X-ray imaging scenario. The true model, as shown in 
ig. 1 b, comprises some sharp, isolated features (expressed in a
ixel basis; see below) superposed upon a smooth, long-wavelength 
ackground structure (expressed in a discrete cosine basis). Using 
ynthetic attenuation data computed for the 300 ray paths shown in
ig. 1 a, we compare results from two inversions performed using a
ikhono v-re gularized least-squares algorithm: one seeking the best- 
tting model expressed in (only) a pixel basis (Fig. 1 c), and the
ther expressed in a discrete cosine basis (Fig. 1 e). Unsurprisingly,
either succeeds in fully capturing the features of the true structure.
hile aspects of the isolated structures are visible in each, it is

ifficult to appreciate their true extent and character, and they cannot
asily be distinguished from the background. In a real problem, this
 ould lik ely be a barrier to analysis and exploitation of results, and

nterpretation might differ depending on the basis functions chosen 
o parameterize the inversion. 

An obvious solution presents itself: why restrict the inversion 
o use only a single family of basis functions? In Fig. 1 d, we
gain show results from a Tikhono v-re gularized least-squares 
omography, but with the model parametrized using both pixel 
nd discrete cosine bases in combination, which we refer to as
orming an ‘o v ercomplete’ basis, follo wing Duf fin & Schaef fer
 1952 ). Unfortunately, this does not appear to yield a marked
mpro v ement in results: We see that most structure continues to
e expressed using the pixel part of the model, and the difficulties
f interpretation remain. Ho we ver – as this paper describes – by
sing the o v ercomplete basis in conjuction with an alternativ e
egularization scheme, we can achieve the results shown in Fig. 1 f.
This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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(a) (b)

(c) (d)

(e) (f)

Figure 1 An illustration of tomographic solutions reco v ered with various model parametrizations and regularization approaches. (a) 300 Ray paths with 
randomly selected end points on a square boundary and (b) synthetic model used to generate line-integral X-ray attenuation data with equation ( 1 ). Recovered 
images after imposing Tikhonov regularization (c) using pixel basis; (d) overcomplete basis (Tikhonov-regularized overcomplete tomography; TR O T); and (e) 
cosine basis functions. (f) Shows the reco v ered image using sparsity regularization and an overcomplete basis [referred to as sparsity-promoting o v ercomplete 
tomography (SPOT) in text]. For each overcomplete case, (i) shows combined model, (ii) pixel model, and (iii) the cosine model. 
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e refer to this as ‘sparsity-promoting o v ercomplete tomography
SPOT)’, and it enables excellent recovery of the target structures,
evealing the distinct characteristics of background and anomalies. 

To achieve this, we build on a significant body of work developed
n support of the concept of ‘compressive sensing’. Various studies,
ASTAI 2, 207–215 (2023) 
ncluding those of Cand ̀es et al. ( 2006 ), Donoho ( 2006 ), and Candes
 Tao ( 2006 ), have demonstrated that it is possible to reco v er signals

rom data sampled well below the Nyquist limit, provided that certain
onditions are met. Underpinning this are tw o k ey ideas: First, that
any systems of interest have ‘sparse’ representations, and can be
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escribed using only a few parameters in an appropriately-chosen 
asis; and second, that minimizing the L 1 norm of a model can
erve as a reasonably-accurate yet computationally-tractable proxy 
or minimization of its L 0 norm (Cand ̀es et al. 2006 ). Following
his approach, we assume that real imaging targets have a sparse
epresentation in the o v ercomplete basis, and we re gularize the
nversion based on the L 1 norm of the resulting model vector. As we
how, this yields excellent practical results, particularly in situations 
here only a limited amount of data is available. 

 T H E O R E T I C A L  B  AC K G R  O U N D  

n any tomographic imaging problem, our goal is to characterize 
 function m ( x ), representing spatial variations in some physical 
roperty of interest. F or e xample, in a geophysical setting m might
epresent the velocity of seismic waves within the Earth’s interior; 
hile in a medical setting it might represent the density of body

issue. Ho we ver, rather than measuring m directly, we must infer it
rom its signature in observable data. In this paper, we consider only
hose problems where the data are assumed to be linearly dependent 
pon m , so that the i th datum, d i , can be expressed: 

 i = 

∫ 
X 

g i ( x ) m ( x ) d N x . (1) 

ere, g i ( x ) is a kernel quantifying how the observation samples the
odel, and X represents the N -dimensional space within which the 
odel is defined. 

.1 Least squares inversion 

he conventional approach to inversion involves introducing some 
amily of basis functions, φj ( x ), ( j = 1, . . . , M ). We assume that this
amily is sufficient to represent the system of interest, so that it forms
 complete basis for representing m , and write 

 ( x ) = 

M ∑ 

j= 1 

m j φj ( x ) (2) 

ithin this representation, any model can be fully described by 
pecifying the M parameters m 1. . . M 

, which we collectively represent 
s the model vector m . Substituting this into equation ( 1 ), we obtain 

 i = 

M ∑ 

j= 1 

m j 

∫ 
X 

g i ( x ) φj ( x ) d 
N x (3) 

nd this can be written in the form d = Gm , where the matrix G is
efined to have elements G ij = 

∫ 
X 

g i ( x ) φj ( x ) d N x . 
In general, observational data will contain noise, and the system 

ay not adhere precisely to the assumptions inherent to equation ( 1 ).
e therefore do not expect to find a model that explains the data

erfectly; instead, we seek the ‘best-fitting’ model and set out to 
inimize some objective function: 

( m ) = 

1 

2 N 

( d − Gm ) T C 

−1 
d ( d − Gm ) + χm 

( m ) (4) 

here C d is a covariance matrix representing any noise and/or 
orrelations expected to be present within the data set, and where χm 

s a ‘regularization function’ that encodes any preferences we may 
ish to e xpress re garding the model sought. One common choice

s that of Tikhonov regularization, as already employed for Fig. 1 ,
hereby 

m 

( m ) = α ‖ m ‖ 2 2 (5) 

ith α ( ≥0) chosen to balance the relative weights of data-fit and
egularization terms. 
.2 Ov ercomplete inv ersion 

o extend this, we introduce K distinct families of basis functions,
nd use φ( k) 

j ( x ) to denote the j th basis function in the k th set. In
nalogy with equation ( 2 ), we then define 

 ( x ) = 

K ∑ 

k= 1 

M k ∑ 

j= 1 

m 

( k) 
j φ

( k) 
j ( x ) , (6) 

ith M k denoting the number of basis functions comprising the k th
et. The model function is therefore fully specified by M = 

∑ K 

k= 1 M k 

arameters, which can be regarded both as a single M -dimensional
ector, m , and as a collection of K subsidiary model vectors m 

( k) . 
As before, we can substitute this into equation ( 1 ), leading to a

ystem of equations of the form 

 = 

K ∑ 

k= 1 

G 

( k) m 

( k) (7) 

here each G 

( k) has elements defined by G 

( k) 
ij = 

∫ 
X 

g i ( x ) φ
( k) 
j ( x ) d N x .

efining 

 = 

(
G 

(1) . . . G 

( K) 
)

and m = 

⎛ 

⎜ ⎝ 

m 

(1) 

. . . 
m 

( K) 

⎞ 

⎟ ⎠ 

(8) 

llows us to continue to pose the inverse problem in terms of the
inimization of χ ( m ), as given in equation ( 4 ). 
In principle, we could regularize this inversion using a Tikhonov- 

tyle regularization function, as in equation ( 5 ). Ho we ver, experimen-
al results pro v e poor (as we have already seen in Fig. 1 ). Instead, we
dopt a regularization function of the form 

m 

( m ) = α

K ∑ 

k= 1 

βk 

∥∥C 

−1 / 2 
d G 

( k) 
∥∥

2 

∥∥m 

( k) 
∥∥

1 
s.t. 

K ∑ 

k= 1 

βk = 1 . (9) 

ere, α continues to control the o v erall balance between data-fit
nd regularization terms, while the βk (with 0 ≤ βk ≤ 1) allow 

or individual basis families to be up- or down-weighted relative to
ne another. The (scalar) factors of 

∥∥C 

−1 / 2 
d G 

( k) 
∥∥

2 
are included to 

ccount for any differences in the ‘units of measurement’ associated 
ith different basis function families, rescaling model norms into a 

ommon system; other choices may be possible here. We will refer
o inversion based on minimizing this misfit as ‘SPOT’; see below
or justification of this name. 

 EXAMPLES  

.1 A synthetic test 

o illustrate the behaviour and performance of this scheme, we first
eturn to the simple example presented in Fig. 1 . This is a simple
wo-dimensional imaging problem based on X-ray tomography, as 
iscussed by Tarantola ( 2005 , section 5.6). Our model function,
 ( x , y ) represents the ‘density’ of matter at location ( x , y ) within
 domain x ∈ [0, 1], y ∈ [0, 1]; we simulate X-ray transmission from
ources of known intensity located on the boundary of this domain
nd compute the intensity received at distant receivers, also located 
n the boundary. This allows us to compute synthetic sinogram 

easurements: 

 i = 

∫ 
� i 

m ( x , y ) d s (10) 

here integration is along the straight-line path, � i , between source
nd receiver. 
RASTAI 2, 207–215 (2023) 
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(a) (b)

Figure 2 Visualization of the pixel and cosine basis functions. The first three rows/columns and the final row/column of the 20 × 20 set of basis functions are 
shown. 
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We employ two sets of basis functions for our experiments. The
rst comprises a 20 × 20 grid of square pixels (as shown in Fig. 2 a),
uch that 

φ
( p) 
i ( x , y ) 

= 

⎧ ⎨ 

⎩ 

1 m −1 
20 < x ≤ m 

20 and n −1 
20 < y ≤ n 

20 
with i =20( m −1) + n 

0 otherwise 
(11) 

hile the second is a 20 × 20 Fourier cosine basis (Fig. 2 b): 

( c) 
i ( x , y ) = cos ( mπx) cos ( nπy) with i = 20( m − 1) + n . (12) 

he first of these is an example of a local basis, with each basis
unction being non-zero in only a small region of the model domain.
iscontinuous structures can be represented at boundaries between
ixels. In contrast, the second set of basis functions are all non-zero
other than at isolated points) throughout the domain: This is a global
asis, and it can only be used to construct continuous functions.
n this set-up, both sets of basis functions have a similar minimum
cale length. 

We construct a synthetic model: 

 s ( x , y ) = 

∑ 

i 

m 

( p) 
i φ

( p) 
i ( x , y ) + 

∑ 

i 

m 

( c) 
i φ

( c) 
i ( x , y ) (13) 

s shown in Fig. 1 , with 20 randomly selected non-zero coefficients
 

( c) 
i forming a smooth background, and 20 further non-zero coeffi-

ients m 

( p) 
i chosen to simulate a target structure. We therefore have 40

on-zero coefficients within a parametrization that admits 800 model
arameters (Fig. 3 a). We compute synthetic sinograms according to
quation ( 10 ) for 14 400 paths, derived from a randomly chosen
istribution of sources and receivers, adding normally distributed
andom noise with zero mean and a standard deviation chosen to be
.5 per cent of the absolute maximum sinogram amplitude. 
Using this set of 14 400 simulated observables, we can select

maller subsets of data. Using a subset of 300 randomly selected ray
aths, we conduct the experiments already presented in Fig. 1 . As
ASTAI 2, 207–215 (2023) 
iscussed abo v e, we first pose and solv e the inv erse problem using
only) the 400 pixel basis functions (Fig. 1 c) and, separately, the 400
osine basis functions (Fig. 1 e). In both cases, our objective function
s as given in equation ( 4 ), with χm 

as in equation ( 5 ); we employ the
olution algorithm of Valentine & Sambridge ( 2018 ) to automatically
etermine the regularization weight, α. The features in the resulting
mages can clearly be linked to those present in the ‘true’ structure
Fig. 1 b), but most detail is lost, with no clear distinction between
ackground and anomalies. Both images inherit characteristics from
heir basis set: The pixel image is blocky and discontinuous, while
he cosine-derived image is smooth and blurry. Short-wavelength
rtefacts in the cosine-derived image are likely to be caused by Gibbs’
henomenon, with the continuous basis functions unable to represent
he sharp discontinuities in our input structure. 

Ne xt, we perform inv ersion in the o v ercomplete basis, comprising
 total of 800 basis functions (400 pixel; 400 cosine); we continue to
se a Tikhonov-style regularization term, defined as 

m 

( m ) = α

K ∑ 

k= 1 

βk 

∥∥C 

−1 / 2 
d G 

( k) 
∥∥

2 

∥∥m 

( k) 
∥∥2 

2 
s.t. 

K ∑ 

k= 1 

βk = 1 (14) 

n analogy with equation ( 9 ); we will refer to this as ‘Tikhonov-
e gularised o v ercomplete tomography (TR O T)’. We assign equal
eight to both basis subsets, choosing β ( p) = β ( c) = 

1 
2 , and adopt

= 10 −4 . We solve this by direct minimization of the objective
unction (equation 4 ), using the L-BFGS algorithm (Liu & Nocedal
989 ; Virtanen et al. 2020 ), and obtain results as shown in Fig. 1 d.
hese are rather similar to those obtained using just the pixel basis: It
ontinues to be difficult to convincingly interpret the image produced.

Finally, we repeat the o v ercomplete tomography, but instead use
he L 1 -based regularization function of equation ( 9 ). Again, we use

( p) = β ( c) = 

1 
2 , and α = 10 −4 . Results are markedly impro v ed, both

ualitati vely and quantitati vely: SPOT can achie ve good separation of
eatures across basis sets, and the image could readily be interpreted
nd analysed. 

art/rzad010_f2.eps
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(a) (b) (c)

Figure 3 Histograms of model coefficients from the tomographic experiment in Fig. 1 . (a) Shows the true model coefficients in Fig. 1 b; (b) shows the TR O T 

model coefficients in Fig. 1 d; and (c) shows the SPOT model coefficients from Fig. 1 f. Pixel coefficients are shown in black and cosine in red. Notice how SPOT 

produces few non-zero coefficients and is closer to the truth, whereas TR O T has many non-zero coefficients. The constant background coefficient is omitted 
from each histogram. 
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To provide a clearer illustration of the ‘sparsity-promoting’ nature 
f our method, and justify this choice of name, Fig. 3 shows
istograms of the model coefficient values for true model, and for
he solutions obtained using the Tikhonov and sparsity-promoting 

ethods. By construction, the target model is sparse, with only 5 per
ent of coefficients non-zero. However, the Tikhonov-regularized 
olution is not sparse: As is well-known, regularization based on an 
 2 norm smears the solution across all available model coefficients. 
n contrast, regularization using the L 1 norm results in only a small
umber of coefficients being significantly non-zero. 
A key property of compressive sensing is the ability to accurately 

eco v er signals sampled at only a small number of points. To
xplore whether this result translates to o v ercomplete tomography, 
e conduct a series of experiments with varying numbers of rays.
rom our set of 14 400 simulated observations, we initially select 
0 ray paths and perform two inversions, both in the o v ercomplete
asis: one using TR O T and the other using SPOT. This yields two
odels; we e v aluate each by computing data misfit across all 14 400

riginal ray paths and plot these as points on Fig. 4 . The measure of
ata misfit used is the objective function defined in equation ( 4 ), with
he regularization function χm 

omitted. This provides a measure of 
he ability of the reco v ered model to give accurate predictions for
ven unseen paths. We then repeat the process, systematically adding 
ore rays into the data set used for inversion. 
Unsurprisingly, Fig. 4 shows that increasing data set size leads 

o better inversion results. Ho we ver, it also reveals that results
f SPOT have systematically better predictive power than those 
btained using TR O T. This is most marked for the smallest data
et sizes, with sparsity-based results for a data set of 20 rays having
redictive performance comparable to a TR O T data set of around
20 rays. Plotting the reco v ered images for selected data sets, we see
 similar story; even with comparatively small data sets, the sparsity-
egularized tomography is able to produce informative, interpretable 
mages, whereas the TR O T results appear dominated by artefacts. 

ith sufficiently large data sets, TR O T also performs well, but SPOT
s superior if data are limited. 

.2 Real data sets 

o further illustrate this, we explore performance on two real X- 
ay tomography data sets: one based on imaging of a lotus-root
Bubba et al. 2016 , containing 49 248 ray paths), and the other
epicting a walnut (H ̈am ̈al ̈ainen et al. 2015 , 19 680 ray paths).
ogether, these demonstrate a wide range of features common to 
eal structures, including sharp contrasts and geometric complexity. 
gain, we select random subsets of the available data and perform
parsity-based tomography in an o v ercomplete basis. F or the lotus
oot, our parametrization involves a total of 32 768 basis functions
16 384 pixel; 16 384 cosine); for the walnut, we have 53 792 basis
unctions (26 896 pixel; 26 896 cosine). We compare our SPOT
esults to a standard Tikhono v-re gularized least squares in a pixel
asis (only), using 16 384 basis functions for the lotus root, and
6 896 for the walnut. 
The resulting images are shown in Fig. 5 , and again we see that

parsity-re gularized o v ercomplete tomography can reco v er useful
nterpretable images using a data set far smaller than that needed
or robust standard Tikhono v-deriv ed results. Ev en with the smallest
ata sets, SPOT is able to reveal the first-order features of the target
bjects. In particular, our approach is able to resolve the gross features 
f the lotus root, including some of the high-contrast features (which
epresent various objects inserted into the lotus root prior to imaging),
sing only 500 ray paths, as well as the o v erall shape of the walnut
sing only 400 ray paths. In contrast, no coherent object can be
ecognized within the standard least-squares results. Nevertheless, 
ith sufficient data, both methods can obtain a reasonable image. 

 DI SCUSSI ON  

his paper is underpinned by two complementary ideas. First, we 
uggest that it is not necessary, nor necessarily desirable, to pose
maging problems in terms of a single family of basis functions.
econd, we demonstrate that seeking sparse solutions can be an 
f fecti ve means of regularizing inversions in these ‘overcomplete’ 
ettings, allowing good-quality results to be obtained from even small 
ata sets. This is potentially powerful in settings such as geophysical
maging, where data collection is e xpensiv e and time-consuming, 
nd where researchers may have limited control over acquisition 
eometries or source characteristics. It may also offer benefits in 
ther fields, such as medical imaging, where e xhaustiv e sampling
f the target is currently routine: The ability to obtain comparable
esults using a smaller data set might offer tangible benefits such as
aster scans and lower radiation exposure for patients. 

.1 Compressi v e sensing 

ur approach is built on the intuition that physical systems tend
owards simplicity – the principle of Occam’s razor – but this 
implicity may not conform to the rules of any one mathematical 
ramework. In particular, real systems may arise from the interaction 
etween multiple processes occurring at different scales and with 
RASTAI 2, 207–215 (2023) 
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Figure 4 Data misfit as a function of the number of ray paths used in the in version. SPO T misfit reduction is shown in red, and TR O T in blue. In the lower 
panels, selected solutions for both cases are shown with increasing numbers of ray paths. 
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istinct characteristics. Each process may , individually , admit simple
epresentation in some basis, but this need not be the same basis in
ach case. As a result, the combination of all processes may appear
omplex and difficult to represent relative to any single system. This
oti v ates our use of an o v ercomplete basis, and we adopt the concept

f ‘sparsity’ – only a few non-zero model parameters – as a proxy
or ‘simplicity’. 

We therefore seek to construct the model that uses the least number
f basis vectors necessary to explain the available data. Ideally, this
ould require us to regularize our inversion based on the L 0 norm
f the model vector – that is, χm 

would simply count the number
f non-zero model coef ficients. Ho we ver, the minimization of an
bjective with this form is known to be computationally intractable
n realistic-scale problems. Instead, we follow Cand ̀es et al. ( 2006 ),
ho show that – with high probability – this would yield the same

esult as is obtained when we minimize an objective that depends
pon the L 1 norm of the model vector. This is the same result that
nderpins compressive sensing; the key difference in our work is its
se in combination with an o v ercomplete basis. 
A characteristic feature seen in compressive sensing studies (e.g.

andes et al. 2008 ) is a sudden transition between ‘poor’ and
e xcellent’ signal reco v ery once the data set size passes a certain
hreshold. In Fig. 4 , we saw a continual impro v ement in performance
s the data set grows, but not the sharp ‘cliff’ that might be anticipated.
o we ver, if we perform an identical experiment using noise-free data,
e obtain results as depicted in Fig. 6 , with the predicti ve po wer of

he sparsity-derived model abruptly improving by three orders of
agnitude once the data set contains around 300 rays – a pattern that

s also evident from the models themselves. 
ASTAI 2, 207–215 (2023) 

V  
The absence of this cliff from Fig. 4 is probably attributable to
he fact that we have not adhered strictly to the formal conditions
ecessary for compressive sensing to succeed. A central requirement
n compressive sensing is that the signal be sampled in a manner
hat is incoherent to the basis in which it is sparse (Donoho &
lad 2003 ; Candes & Romberg 2007 ): In other words, each piece
f data must carry information about many model components.
o we ver, while each of our rays is sensitive to the complete set
f cosine model coefficients, each only samples a fraction of the
ix el parameters. Giv en that our noise is not correlated between
patially adjacent measurements, it can easily be accommodated
ithin the pixel part of our model – leading to a slight weakening
f predictive performance. This could perhaps be mitigated through
dditional terms in the regularization function, although the details
re likely to be problem-dependent; it may also suggest an alternative
pplication of o v ercomplete inv ersion, for denoising of data sets or
mages. 

.2 Computational considerations 

ne major advantage of Tikhonov-style regularization is the resulting
bjective function can be minimized analytically, via a Gauss-
ewton method. This is computationally efficient, allowing solutions

o be obtained cheaply and rapidly . Unfortunately , the objective
unction underpinning our sparsity-promoting scheme (equation 9 )
annot be minimized analytically, and instead some iterative opti-
ization scheme must be used. For the examples presented here,
e have employed the L-BFGS algorithm (Liu & Nocedal 1989 ;
irtanen et al. 2020 ), but a range of other approaches could also
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Figure 5 Reconstructed tomographic images as a function of the number of X-rays used in the real data experiment. The 1st and 3rd ro ws sho w the e volution of 
the reco v ered images from the TR O T approach, while the second and fourth rows demonstrate the SPO T approach for the lotus and walnut cases, respectively. 
The number of data used in each case are displayed in the inset panel. These correspond to approximately 1 per cent, 2 per cent, 4 per cent, 10 per cent, 50 per 
cent, and 100 per cent of the available data set. 
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e explored. In particular, techniques such as the Lasso (Tibshirani 
996 ) and least angle regression (Efron et al. 2004 ) have been specif-
cally designed to find sparse solutions to optimization problems, 
nd quadratic programming approaches can also be employed (e.g. 
olntsev et al. 2015 ). The suitability of these for use in SPOT remains

o be fully explored. As an indication, solving the synthetic problem 

f Fig. 1 using our implementation of the SPOT approach takes 20.5
PU-s, compared with 0.3 CPU-s for the TR O T method and 0.2
PU-s for a standard least-squares (Gauss-Newton) inversion. 
As formulated in Section 2.2 , implementation of SPOT requires 

he ability to compute G 

( k) with respect to each of the basis sets
hat are to be employed. In some cases, this may present a practical
arrier to adoption of the approach: Often, the numerical software 
vailable to compute these matrices will be designed to support only 
ne specific basis. Similarly, any software that takes m ( x ) as an
nput – perhaps to simulate observable phenomena – may expect 
he model to be expressed in a certain way. In the long term, it
ay be possible to develop codes that provide direct support for

omputations using o v ercomplete models. Alternativ ely, one can 
hoose to express all basis functions φ( k) 

i relative to some reference 
asis { ψ 1 , ψ 2 , . . . , ψ M ψ 

} : 

( k) 
i ( x ) ≈

M ψ ∑ 

j= 1 

W 

( k) 
ij ψ j ( x ) (15) 
ith, typically, M ψ � max k M k to ensure that all φ
( k) 
i can 

e approximated to a satisfactory lev el of accurac y. Then,
t is straightforward to show that G 

( k) 
ij ≈ ∑ M ψ 

l= 1 W 

( k) 
j l G 

( ψ) 
il , with

 

( ψ) 
il = 

∫ 
X 

g i ( x ) ψ l ( x ) d N x . Thus, quantities can be computed
n the reference basis and then mapped into each of the
 v ercomplete basis sets, allowing the SPOT approach to be
mployed. 

.3 Choosing basis families 

 or the e xamples presented in this paper, we hav e relied upon two
amilies of basis functions: a pixel basis, and a discrete cosine basis.
hese were chosen for their conceptual simplicity, and for their 
learly distinct properties: local v ersus global; discontinuous v ersus 
ontinuous. Ho we ver, the method can be applied with any collection
f basis vectors, and with more than two distinct families. The par-
icular families used in any given situation are likely to be problem-
ependent, informed by prior knowledge of the characteristics and 
eatures that should be present or are important to resolve. Ho we ver,
e believe that in many scenarios there will be particular power in
ixing globally and locally supported basis functions: The former are 

ble to bridge across gaps in data co v erage, while the latter ensure
hat detailed features can be accurately reproduced. The trade-off 
arameters α and βk go v ern the priority assigned to each basis set, and
RASTAI 2, 207–215 (2023) 
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R

Figure 6 Results from a comparison of TR O T and SPO T solutions for the synthetic experiment shown in Fig. 4 but for noiseless data. Notice that the SPOT 

solutions experience a three orders of magnitude reduction in misfit, as the number of ray paths increases beyond about 300. At the same location the true image 
(Fig. 1 b) is reco v ered almost perfectly. This thresholding behaviour is consistent with that seen in experiments of compressed sensing. 
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heir impact may need to be explored in the context of any particular
roblem. 

 C O N C L U D I N G  R E M A R K S  

his paper has developed a new approach to model parametrization
nd regularization of inverse problems, which we refer to as ‘o v er-
omplete tomography’. This allows models to be expressed using
 combination of basis functions from multiple distinct families,
ith regularization based on minimising the L 1 norm of the model

oefficients. This enables the reco v ery of high-resolution images
rom comparatively small data sets, and allows us to a v oid imposing
rbitrary characteristics upon the solution. 

We have demonstrated the efficacy of this approach using a number
f examples. In particular, we have applied the method to a pair
f real-world X-ray tomography data sets. We see that results are
omparable to existing methods when the available data provides ex-
austive sampling of the target, with our new method outperforming
xisting approaches when data are limited. We therefore foresee a
ange of applications in scenarios where data sets are intrinsically
imited (e.g. geophysical imaging studies, where there may be little
ontrol o v er the distributions of sources and/or receivers), or where
t is desirable to minimize the number of samples collected (e.g.
o restrict acquisition time and cost, or to limit radiation exposure
n medical settings). While our work has focussed e xclusiv ely on
he case where data is linearly dependent on model parameters, we
ASTAI 2, 207–215 (2023) 
nticipate that the method can be employed iteratively for the solution
f weakly non-linear problems. 
As a result, we see o v ercomplete tomography as a powerful

ew methodology with applications in a range of settings such as
ext-generation seismic and electromagnetic imaging of subsurface
nomalies beneath a volcano or in mineral resource provinces;
edical CT imaging to impro v e the contrast of target features

gainst background variations or other laboratory settings where
omographic approaches are used to detect anomalous structures
ithin a target body. The basis functions must be chosen com-
ensurately in all applications with the class of anomalies sought.
ith this new class of inference approach, we may soon see

 significant impro v ement in resolving multiple structure classes
ithin tomographic images, o v ercoming long-standing difficulties

n this field. 
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