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ABSTRACT

Practicing managers live in a world of ‘extremest management research is based on Gaussianicsatist
that rule out those extremes. On occasion, dewiatnplifying mutual causal processes among
interdependent data points cause extreme eventactbazed by power laws. They seem ubiquitousliste
80 kinds of them — half each among natural andat@tienomena. We draw a ‘line in the sand’ between
Gaussian (based on independent data points, Viaitance and emphasizing averages) and Paretigstista
(based on interdependence, positive feedback,itmfirariance, and emphasizing extremes). Quanttati
journal publication depends almost entirely on Gaaurs statistics. We draw on complexity and eartkgua
sciences to propose redirecting Management Studiesclusion No statistical findings should be
accepted into Management Studies if they gain sigitance via some assumption-device by which
extreme events and infinite variance are ignoredThe cost is inaccurate science and irrelevance to
practitioners.

Keywords: Power laws; fractals; Gaussian; Pareto; Mandglbrdistribution; robustness;
interdependence; positive feedback; extremes; aaxitp] earthquakes; normal science
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Virtually all of organizational research presumesu€sian (normal) distributions, with finite meansl aariances,
with appropriate statistics to match — for eviderstedy any random sample of current research paggour
choosing. It follows that virtually of our researbhsed lessons to managers stem from Gaussian-essszdch.
Suppose this premise is mostly wrong. What then?

The coast of England appears jagged no matter kitnéiiof measure is used: miles, kilometers, metars,
centimeters. This is calledcalability — no matter what the scale of measurement, tea@mena appear the same.
Scalability results from what Benoit Mandelbrot 829 calls fractal geometry A cauliflower is an obvious example.
Cut off a ‘branch’; cut a smaller branch from tivetfbranch; then an even smaller one; and then awether, and so
on. Now set them in line on a table. Each frdatabcomponent is smaller than the former; eactiteasame shape and
structure. They exhibit gbwer law effectbecause they shrink by a fixed ratio. Cauliflosieand more generally
power laws, call forscale-free theoriedecause the same theory applies to each of ffezeatit levels’ Power law
effects are Pareto distributed — they hdagtails, nearly infinite variance, unstable means, anstaiple confidence
intervals. Oppositely, Gaussian distributions heamishing tails, thereby allowing focus to dwelledp on limited
variance and stable means. As a result, confidenervals for statistical significance are cleaibfined, stable, and
narrowed, with the result that attaining statidtggnificance and publication are easier.

Quantitative management researchers tend to pre@amssian (normal) distributions with matchingistats — for
evidence, study any random sample of their cumesgarchSuppose this premise is mostly wrohdollows that (1)
publication decisions based on Gaussian statistickl be mistaken, and (2) advice to managers dmeilshisguided.
Should we change?

Power laws seem ubiquitous — they appear in leaeastlines, and music (Casti, 1994). Cities follbpower law
when ranked by population (Auerbach, 1913). Thecstire of the Internet follows a power law (Albettal., 1999), as
does the size of firms (Stanleyal, 1996; Axtell, 2001). Bak (1996) finds them irtavalanches of his famous sand
piles. Later on we list eighty kinds of power lafusth cites) ranging from atoms to galaxies, DNAsfzecies, and
networks to wars. Brock (2000) says scalabilitthis fundamental feature of the Santa Fe Instit{®fd) approach to
complexity science.

Several theories explain power laws (Newman, 2@80&triani and McKelvey, 2006). Frequently they hiraye
interdependencamong data points and a possible ensuing poséeaback process. Herein lies the problem for
‘normal’ science: Most quantitative research ineslthe use of statistical methods presunmidgpendencamong
data points and Gaussian ‘normal’ distributionseédie’s (2002) textbookconometric Analysjss excellent
compendium of ‘robustness’ techniques that all ddpmEn assuming away interdependence and eradi¢agngffects
of Paretian fat tails. The trouble is that the ménglings of power law phenomena across many nbamé social
sciences indicate that interdependent phenomerfaramore prevalent than ‘normal’ statistics asssiaed the
consequent extremes have far greater consequeantéhin ‘averages’ in between.

We argue that most, if not all, of the interdepeardebased power law theories apply to managemseareh.
Thus, there is good reason to believe that poweeléects are also ubiquitous in organizations lage far greater
consequence than current users of statistics peeslionthe extent this is true, researchers igngrmger law effects
risk drawing false conclusions in their articlesi gmomulgating useless advice to managers. Thiausecwhat is
important to most managers are the extremes tloey ft the averages. Given this, we raise thetignesiow to
redirect management research toward the study toéeres in ways that still fall within the boundsaof effective
science- one that still offers credible bases for assgrtiuth claims? By way of initiating such a chamge
management research, we suggest earthquake seaamore telling underlying discipline, along withntinuing
lessons from complexity science and econophysicK@ey, 2004; Mantegna and Stanley, 2000; Newrg@5).

We begin by with an introduction to power law pherma in both natural and social sciences, discgssire of
them in more detail. In Section 2 we focus on treelpminance of interdependence over independermieeinomena
studied by management researchers. We questidratie assumptions of statistics-based methodshenebbustness
techniques used to dismiss interdependence efi&esiraw implications for management research oti@e 3. Our
conclusion crystallizes the several arguments aiateddirecting quantitative research methods eggbh management
practice and organizational functioning.

1 POWER LAW PHENOMENA

! Simply put, fractals appear similar at any scélebservation. In mathematical terms, fractal ofsj@xhibit fractional
dimensionality, that is, they are neither lines, sirfaces or volumes. Their dimension falls innen the classical dimensions of
Euclidean geometry (Schroeder, 1991).

2 Our discussion of the organizational and manabjeniglications of scale-free theory is postponedauese of obvious space
limitations.
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In recounting the SFI Vision, Brock (2000, 29) says

The study of complexity...is the study of how a veoynplicated set of equations can generate somesirepfe patterns for certain

parameter values. Complexity considers whetheetpatterns have a property of universality aboertthHere we will call these patterns

scaling laws.
Many complex systems — resulting from emergent dhyos — tend to beself-similar across levels. That is, the same
process drives order-creation behaviours acrossptaulevels of an emergent system (Kaye, 1993{iCh894; West
et al, 1997). These processes are calgealing lawsbecause they represent empirically discoveretegysttributes
applying similarly across many orders of magnit(icief, 1949).Scalabilityoccurs when the relative change in a
variable is independent of the scale used to measuBrock (2000, 30) observes that the studyoohjglexity ‘...tries
to understand the forces that underlie the pattarssaling laws that develop’ as newly orderedesys emerge.

Included in fractal geometry are power laws, wtach frequently *...indicative of correlated, coopermat
phenomena between groups of interacting agents.00KEt al, 2004). Power laws often take the form of rarde’si
expressions such &s~ N7, whereF is frequencyN is rank (the variable) ant] the exponent, is constant. In
exponential functions the exponent is the varialéN is constant. Theories explaining power laws ase atale-free.
This is to say, the same explanation (theory) agpt all levels of analysis. Natural scientistslt® use the term
‘scale-free’ — as in measure-independent — as @upius‘level-free’. We will stay with their term.

Power law phenomena exhibit Paretian rather thars§€an distributions — see Figure 1. The differdigsein
assumptions about the correlations among events@aussian distribution the data points are assumee
independent-additivéhereinafter simply ‘independéntindependent events generate normal distribsti@arhich sit at
the heart of modern statistics. When causal elesremeindependent-multiplicativihey produce a lognormal
distribution, which turns into a Pareto distributias the causal complexity increases (West andiiggdr995). When
events aréenterdependentormality in distributions isotthe norm. Instead Paretian distributions domibaizause
positive feedback processes leading to extremetgweecur more frequently than ‘normal’, bell-shagalissian-based
statistics lead us to expect. Further, as tensiposed on the data points increases to the lin@y; tan shift from
independent to interdependent (more on this later).

For sure, not all data points interact to produnegr law effects. Especially in natural scienceagsints are
frequently independent. In social phenomena, how@amver laws seem more likely because interdeperels more
prevalent. It is also true that power laws may Itefsom causes other than interdependence-cauaethfs (Andriani
and McKelvey, 2006). Interdependence, nevertheiesscommon cause of power law effects and Palistobutions.
Given their scale-free nature, fractals always foalkcale-free theory. In what follows, howeveg zero in on the
implications of power law effects and fat tails mgathe use of Gaussian statistics. We developrozgtional scale-
free theory elsewhere (Andriani & McKelvey, 2006).

Physical, biological, social, organizational, ahec&onic systems show an impressive variety aftélgphenomena
(Kaye, 1993). We list many in Table 1 (many categoinclude several studies, though we mostlyjageone).
Below, we illustrate some lines of fractal resedtother. Many leading scholars believe that polaers are the best
analytical framework to describe the origin andpghaf many natural objects (Mantegna and Stan@§QR Given the
ubiquity of these findings, and the nature of thderlying scale-free theory, we think they are dgudiquitous
phenomena in organizations, but unknown and unajgteel as to their causes and effects. In sum, plawes usually
indicate the presence of three underlying featyfgdractal structure; (2) scale-free causes Guale-free theories);
and (3) Pareto distributions.

>>>|nsert Figure 1 and Table 1 about here<<<
1.1  Fractal Geometry

Fractal geometry was developed by Mandelbrot (187 ®ake sense of the rough, irregular shapes sf naiural
objects, from cauliflowers to coastlines, trees] galaxies. As Mandelbrot (1975: 1) writeSlouds are not spheres,
mountains are not cones, coastlines are not cir@ded bark is not smooth, nor does lightning traweh straight liné
The coasts of England and Norway exemplify scatgbthe length of the coast profile depends withdrse
proportionality on the length of the ruler — ine smaller the ruler, the longer the coast. Ateia@dlandelbrot and
Hudson, 2004, 118) is: ‘a pattern or shape whoss paho the whole’. Fractals are self-similar otgeLike the
cauliflower, so the Eiffel Tower: the four largesictions are made up of large trusses, which anpased of smaller
trusses, etc. (Mandelbrot, 1982, 131-1%32).

3 Mandelbrot argues that Eiffel's Tower ‘incorpomathe idea of a fractal curve full of branch painisst last year Weidman and Pinelis (2004)
proved that the four corner columns of the Towersiraped as two log normal distributions — onetfetbase and one for the upper tower. They
appear as Paretian distributions on end (more esettater). These formulas result from Eiffel'scdigery that by using Paretian shaped columns all
the trusses could be designed as tension truss ensntbereby vastly reducing the overall weighthef Tower — a truly remarkable achievement that
is still a marvel to observe!
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Fractals are not idle mathematical curiositiescfala and power laws are found from atomic nanosires (~10°
meters) to galactic megaparsecs ¢210) — across a range of 32 orders of magnitudes/$Bav and Teerikorpi, 2002).
In biology, West and Brown (2004) demonstrate agrdaw relationship between the mass and metabafsrintually
any organism and its components — based on frgetahetry of distribution of resources — across 12l of
magnitude (of mass). Self-similarity is key to adamental property of fractals and power laws:direcalability.
Power law systems do not exhibit a characteristidesand consequently enjoy some peculiar stalgtioperties.
Systems that scale linearly are part of a familglisfributions named after the French mathematiGianchy:

As a result of this linear scaling, the distribatiaf the average df identically distributed Cauchy variables is thensaas the original

distribution. Thus, averaging Cauchy variables da#smprove the estimate.... This is in stark costtta all probability distributions with a

finite variance &, for which averaging oveM variables reduces the uncertainties by a fagtof/N . This nonstandard behavior of the

Cauchy distribution is a consequence of its wedklyaying ‘tails’ that produce too many ‘outlierg’lead to stable averages (Schroeder,

1991, 159).

This observation appears over and over in thevialig examples — the point is crucfal.
1.2  Spatio-structural Properties of Systems

This category groups spatio-structural propertiasetworks, assuming nodes or links as units ofyaisea We
discuss two: (1) rank-size rules focusing on nodéssh can be cities (size of population), wordedtiency in
languages), profits of firms (production of wealtéic.; and (2) connectivity patterns that derieeeyic features of
networks from the connectivity topology.

Language and CitiesZipf (1949) found that a power law applies to wénehuencies (Estoup, 1916, had earlier found
a similar relationship). Casti (1994, Ch. 6) shdlaat, whereas a monkey at a typewriter generafésetit words of
equal length at equal probability, word usage iglish follows a perfect power law — if word usageguencies and
rank-order are plotted on double-log scales, thelgithe, of, and, to, I, or, say, really, quality diminish at a perfect —1
slope. Zipf's Law, a rank/frequency power law, iglassic example of a scale-free effect. Auerbd®i3) discovered
that the rank/size plot of American metropolitaties obeys a power law (on a double logarithm grajge and rank of
cities fit a straight line with slope of —1) — deigure 2. Krugman (1996) replicated it in the 1994is findings were so
remarkable that he concluded:

We are unused to seeing regularities this exaetonomics—it is so exact that | find it spodfy 40)

>>>|nsert Figure 2 about here<<<

Social NetworksThe legendary Hungarian mathematician Paul Eiddsfroducing random network theory,
assumed links are randomly distributed across nadégorm a bell-shaped distribution, wherein muastes have a
typical number of links with the frequency of remiag nodes rapidly decreasing on either side ofthgimum. Watts
and Strogatz (1998) show, instead, that real nédsvimlow thesmall worldphenomenon whereby society is visualized
as consisting of weakly connected clusters, eagmbdighly interconnected members within. Thisisture allows
cohesiveness (high clustering coefficient) and dfsgeead of information (low path length) acrosswinole network.

In their initial small worldmodel, Watts and Strogatz also assume that lirk&aussian distributed. Studying the
World Wide Web, however, Barabasi and colleague8@2find that the structure of the Web shows agrdaw
distribution, where most nodes have only a fewdiakd a tiny minority — the hubs — are dispropostely very highly
connected. The system is scale-free, no node ctakbe to represent the scale of the system. Debfisen $cale-free
network, the distribution shows (nearly) infinite variamand the absence of a stable mean. It turns aufrtbst real
life small worldnetworks are scale-free (Ball, 2004) and fractah@®t al., 2005). Scale-free networks appear in fields
as disparate as epidemiology, metabolism of delternet, and networks of sexual contacts (Lilje&2301)).

Industrial Agglomerations.Here we report the work that one of us has dongosver laws and industrial
agglomerations in Italy (Andriani, 2003a,b). Axt€2001) shows that the distribution of firm sizddws a power law.
Our work extends Axtell’s analysis to a sub-reglartatext.

The agglomerations we consider are the so-calisetiito-work areas (TWAS) in Italy. TWAs are relaty self-
contained economic and social units, calculatedibiging a national territory into units that maiza internal home-
to-work commuting and minimize inter-TWAs commutii§ TAT, 1997). In Italy, TWAs are organized into a
taxonomy (Sforzi, 1990; Cannari and Signorini, 200@t divides the agglomerations into two groughsster-based
(type D) and non-cluster-based (type A) agglomensti To test whether Italian industrial agglomeratiéoibow a

* Vilfredo Pareto discovered the ‘wealth’ power lawareto’s Law — and ‘Pareto distribution’ in 189%iough other related distributions exist —
Cauchy, Lévy — we stay with Pareto since he wasittste

® The basic idea is that the higher the percenthgerae-to-work commuting taking place within theubdaries of an area, the higher the chance of
capturing within the area some territorially-spiecifocial and industrial aspects. TWAs represerglgarithmic way to define the micro-units of
analysis of economic geography and economic sayola Italy the 1992 Census identified 784 urilise classification ranks industrial
agglomerations according to the probability of irthg within their boundary an industrial clust€ne theoretical ground for this work is rooted in
the Neo-Marshallian theory of industrial clusteBed¢attini, 1990; Storper, 1997). This is based amudti-criteria scale (ISTAT) that includes the
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power law, we use linear regression. The resuttbdith types of agglomerations (D and A) are diatiBy significant
(type D:r =0.997, p < 0.0001, sloge= - 0.995; type Ar = 0.995, p < 0.0001, sloge= - 0.997); they show that
interconnected agglomerations of firms very strgrigithe rank/size power law distribution with pk of —1 (see
Figure 3). The fact that the distribution of firnssze at a generic tinmds power law distributed indicates that the
growth mechanisms (that give rise to that distidnjtfollow a power law (see also Stanletyal., 1996). Interestingly,
the division between cluster and non-cluster typesd’t seem to affect the power law distributioteinms of
regression coefficient and/or slope. This is ssipg as it indicates that the growth mechanismsnalependent from
the internal logic of organizing. We speculate thatpower law distribution in firms’ size pointsstards a universal
growth mechanism, based on a fractal distributioeconomic resources.

>>>|nsert Figure 3 about here<<<
1.3  Dynamic Properties

Our second category covers theories describingyhamics of how and when new entities emerge.itndhse, a
power law characterizes the nature of the behaviwoperties of a system subjected to a perturbaifcsome kind.
Whereas the former category focuses on the typiéstifbution of the network-forming elements (nodesl links), this
one analyses a network’s emergent collective beha@iassical examples are phase transition madglysics
(Haken, 1977) anBak’s (1996)self-organized criticalitf{ SOC). In both cases, the emergence of a poweislawe to
emerging connectivity. However, in SOC the systewives spontaneously towards the critical threshwltereas in
phase transition models the order parameters neusttivated by an external agent (i.e., energycg)uo achieve
criticality.

Coevolution.In economics, the idea of positive returns dasekto Young (1928). Arrow (1962) introduces
mutual causal learning effects (see also HollaB86). Maruyama’s (1963) classic paper on deviagimplifying
mutual causal processes introduces the idea tha sderactions are not negative feedback procdsddester the
opposite — positive feedback. Interaction amongfjand mutual causality lie at the heart of SFI'ofties of
emergent self-organization (Arthur, 1983, 1988;l&fud, 1988). As time progresses, each agent makewections and
then may coevolve with other agents, perhapsla \itith all of them at first but then positive fdxtk sets in with
some negative feedback with others and some maausial relationships expand and others contraetrdsult may be
the formation of networks and perhaps groups ohtgehat is, new order. Assuming that the segehés is large
enough and enough time passes, a power law arramjerhconnected agents and perhaps newly fornmepgr
(agents) results. Axelrod and Bennet's (1993) stfdglliance formation is one example of emergéntcsure from
coevolution. Another is Carley and Hill's (2001)8y where (1) the formation of subgroups occudpiced by (2) the
emergence of culture that supervenes to alter sigesgvolutionary search for improved performance.

Economics, Finance, and Movie®areto (1987) first noticed power laws and fds i@ economics. Zipf (1949)
and Mandelbrot (1963) rediscovered them in tHe @tury, spurring a small wave of interest in fica (Fama, 1965;
Montroll and Shlesinger, 1984). However, the riéhe ‘standard’ model of efficient marketsent power law models
into obscurity. This lasted until the 1990s, whie@ dccurrence of catastrophic events, such aso@ié dand 1998
financial crashes, that were difficult to explaiitwthe ‘standard’ models (Bouchaatlal, 1998), re-kindled the fractal
model. The case against the ‘standard’ model iby&tandelbrot (Mandelbrot and Hudson, 2004, 13hwisimple
observation:

...By the conventional wisdom, August 1998 simplydtdanever have happened.... The standard theories Idwstimate the odds of that

final, August 31, collapse, at one in 20 millioar-event that, if you traded daily for nearly 1@D,§ears, you would not expect to see even

once. The odds of getting three such declinesarsime month were even more minute: about oneQrb#ibn (p. 4).... [An] index swing

of more than 7 percent should come once every B0Q/0ars; in fact, the twentieth century saw faight such days.

The reason for the discrepancy between realitytlaealry lies in the crucial assumption by Financth@uioxy:
variations in price are statistically independeamni] normally distributed. These assumptions alleewise of calculus,
modern probability and statistical theory, and gige to a vast edifice of sophisticated mathersatitowever, they
conflict with reality: The price of virtually anyt@ck or commodity exhibits punctuated equilibriuehivior, in which
chaotic and turbulent periods alternate with stalles (Mandelbrot, 1963; Fama, 1965; Bouchetuaml., 1998; Moss,
2002). Wassily Leontief, Nobel Laureate in econ@niecognized the struggle of orthodoxy with rgalit

In no field of empirical inquiry has so massive aophisticated a statistical machinery been us#édswuich indifferent results. (quoted in

Mandelbrot and Hudson, 2004, 275)

Another example of power laws in economics appieattse bookHollywood EconomicéDe Vany, 2004). He

relative weight of (a) manufacturing activities) @mployment in SMEs and (c) incidence of speddilin in manufacturing sectors.
¢ ‘Agent refers to semi-autonomous entities (igarts’ of systems), such as atoms, molecules, H@mtes, organelles, organs, organisms, species,
processes, people, groups, firms, industries, etc.

’ Signified by Portfolio Theory (Markowitz, 1959 Capital Asset Pricing Model (Sharpe, 1964), thedBlack-Scholes (1973) Option Pricing
Theory.
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shows that movie profits are Pareto distributed, form a power law. He demonstrates that th&aftst of the Pareto
distribution dominate the movie industry — extregvents occur that should be negligible in a Ganssiarld. The
industry survives thanks to blockbuster movies thave legsand compensate for the dismal failures of mostig®—
which have little effect on a studio’s financialrfsemance. In fact, movies don’t seem to show aggiicant
correlation between any of the variables used edipt final profits. Budgets are uncorrelated vatrnings and the
‘star system’ allows no indication about final sess. The only recognizable pattern is Paretianiloligions of profits.

Self-Organized CriticalityThis group of models is symbolized by Bak’s (199&hdpile experiments. A sandpile
subjected to an infinitesimal external perturbati@equentially adding single grains of sand) evekesvard a critical
state, characterized by a critical slope, wheretyyaalditional grain induces a systemic reactioh ¢ha span any order
of magnitude, with a frequency distribution expessby a power law. This is counter-intuitive. Wegeally assume a
linear relationship between perturbation size asgstem’s reaction, i.e., small causes yield sefédicts. This is true
before SOC is attained. Thus, before criticaligglefalling grain has a constant probability ofpthsing an adjacent
grain. The probability of an avalanche therefor@esx exponentially with the number of sand graliés makes large
avalanches highly unlikely. However, at critical&ypower law distribution results from the globahnectivity of the
sandpile. As Bak (1996, 60) writes: ‘In the critistate, the sandpile is the functional unit, hat grain of sand’. SOC
dynamics arise when an emergent system of linkeaxis local pockets into a coevolving whole suett #mall and
local fluctuations may be amplified to achieve eysit effects. More generally, as the tension insygtem increase to
the SOC limit (usually as a result of externallyimsed tension — in Bak’'s SOC this is a functiothefaccumulating
sand grains — independent data points become égterdienf. Mathematically this means that sandpile behavimys

a power law of the typd® ~ S, whereF represents avalanche frequency with Size

SOC occurs frequently (Buchanan, 2000). From theadycs of earthquakes (Gutenberg and Richter, 184d Yhe

succession of booms and busts in economic cyclagy(fan, 1996), to the dynamics of supply chaingé8ikman

and Woodford, 1994), a common pattern appears sdisparate fields. A few implications follow. Rirthe fact that a
self-critical system spontaneously tunes itselfamig a self-critical state (Bak and Chen, 1991 ;fitaan, 1995) — that
is, ‘...the system organizes itself towards the caitpoint where single events have the widest ptssange of effects’
(Cilliers, 1998, 97) — makes reductionism inappiaterfor the study of SOC. Second, the conventierplanation
regarding mass extinctions (e.g., dinosaurs ag¢tigeof Cretaceous Period) is imputed to exogeneeiste (asteroid or
eruptions). Instead, according to SOC, internakeaumay have been progressively amplified untdtastrophic chain
reaction took place (Raup, 1999, 217-218; Goul@019

Biological Growth Units.Take a simple biological entity attempting to suevand grow in its habitat. Bykoski
(2003) calls such a bioeconomic agent a ‘growth’ umhich is *...an integral robust entity’ At the simplest 1-cell
level, a unit gains some advantage in coping witihabitat — accomplishing all of Kauffman’s taSksif it grows.
Growth is for some reason and in the bio- and espineres the reason is usually coping with a demgretivironment
— resources, constraints, competitors. A bio-uait do this by growing in size, i.e., doubling, @hen doubling again,
and so on. Furthermore, from Ashby’s (1956)v of Requisite Varietye know that entities that increase internal
variety to match external variety have improvedpida capability. But, only multi-cell units canildiup variety.
These reasons are why many biota eventually grewv the initial 1-cell organisms to dinosaurs anchmmals.

While divisions increase by the square, howeveiy fhair-wise connections, increase by the formula(n-1)/2,
wheren = # of units; thus ih= 2, 4, 8, 16, 32, 64 ther= 1, 6, 28, 120, 496, 4032. A unit has to accoshptiivo
things: (1) Some of its energy must go toward cgpitth its environment — it has to move, find fopdpcess what it
ingests, accomplish Kauffman’s tasks, etc.; and(#je of its energy goes into maintaining and usiegpair-wise
communications with other units. Because ofrtgegatio, at some point the amount of energy goirng in
communication significantly detracts from the umnidbility to cope successfully with its environmehit this point the
unit divides into two units (often) specializingdifferent tasks, bringing the over-communicatioalpem back under
control. The underlying cause of the power lavhis basia|c relationship and the need to keep dividing todratope
with the environment but keep communication cosiden control. Carneiro (1987) focuses on the seffextume ratio
—a 2/3 power law called the Square-Cube Law xptaén why villages never exceed a relatively srsak.

8 A classic form of this, known as the ‘Bose-Einstedbndensate,” explains the onset of supercondiyctat the tension limit — in this case because of
extreme cold — particles shift from independendateractivity, thereby allowing superconductivior more, see:
http://en.wikipedia.org/wiki/Bose-Einstein_condetesa

9 Bykoski'sunitsare, of courseagents But, here we will use the teramit when we refer to aagentwith growth capabilities — since many agents do
not grow. Units can grow byoublingor byattractinga new unit into the system and then connecting thi¢ new unit. Cells grow by splitting;
species grow when members attract mates that pecoftspring.

0 Kauffman (2000), a biologist, argues that a bioernic agent survives by ‘earning a living’ (e.ghacterium swimming in the blood to find food
or a firm trying generate income). From this b&gissays, ‘work is the constrained release of enépgyt00). He then points out that to survive and
grow, agents have to complete a number of tasésttally self-organize — tasks ‘...involving work ,nsraint, constraint construction, propagating
work, measurements, coupling, energy, recordsemaitocesses, events, information, and organizagp. 104)
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Determinism First, we havenacrodeterministic theory in which the joint probabilibf equally probable higher-
level external constraints occurring at the same sets up a power laWin Table 2 we show several ecological
constraints regulating a species, each having $sonotional form. For each, there is some rate atkh could deviate
to significantly undermine advantageous specieptatian, say once in several hundred years, bec#usederlying
geological and climatic changes. This would sehotion a rank/size power law of species extinctiégasuld (1990),
Raup (1993), and Bak (1996) offer additional disauss of randomly occurring ecological causes ofsrextinctions
(or explosions}?

>>>|nsert Table 2 about here<<<

Second, we could havengicro-deterministic theory built from reductionist casisealso shown in Table 2. For a
particular species, each of these has some adesmtsgonfiguration. There is some probability #exth may not be
advantageous, leading to adaptive insufficiency atnanging world. This sets up a power law effBetup, 1986; Bak,
1996).

Intra-Organizational Power LawsStanleyet al. (1996) report out a study on the statistical prtps of all publicly
traded manufacturing firms listed in Compustat (f&8)the period 1975-1991. They start with Gibratsdel of
company growth, which assumes that growth in saleslependent of firm size and uncorrelated iretifire.,
lognormal). They find that, in reality, variancegrowth rate is Paretian not Gaussian, and follagswer law with
exponentg.

o (s)=as”
where:o () is standard deviation of growth per year basethitial sales value (sgrowth rate & = S/S = change in yearly sales;=In &; ais a
constant (~6.66); = the slope of factors affecting growth — randiran %2 to 0.

The equation holds over seven orders of magnitfifieno size. The power law holds when growth is sww&d as cost
of goods soldf ~.16), asset(~.17), property, plant and equipmefit{18), and number of employegs~(16).

Given their findings, Stanlegt al. conclude that processes governing growth raeesaale-free. They give an
example of a hierarchical ‘Fordist’ type organimativhere the CEO can order an increase in prodyatausing a
Markov chain along the hierarchical levels — eadisgquent action-step at timis a replica of action at stepl. If it
is carried out exactly from top to bottom of thenfj then the organization is strongly interdependgr O for total
top-down control). But lower level managers and leiyges rarely follow orders exactly. If thalf ignore the CEO’s
order, i.e.all parts of the firm operate independently, tffen%. Usually the employees follow orders with some
probability. Thus, for # = ~.15 or so (given the findings by Stané&tyal), we expect a power law effect to obtain.
Note tha{s ~.15 could be due to a CEO’s order implementetl wame probability or it could be due to an emetrgen
self-organizing process by the employees. Bottoex IEither top-down control or bottom-up self-orgation can
produces ~.15 — and a power law event — as depicted inrEigu

>>>|nsert Figure 4 about here<<<

Diatlov (2005) also applies power law dynamicsniod-organizational decision events. He sees aivaeut
‘power law of power’. For years Mintzberg has bgeshing the idea of strategies as weeds (MintzasdgMcHugh,
1985). Diatlov quotes Mintzbewg al as follows:

Strategies could be traced back to a variety i litctions and decisions made by all sorts o&dtifit people sometimes accidentally or

serendipitously, with no thought of their strategimsequences. Taken together over time, thesé cmaalges often produce major shifts in

direction. (Mintzberget al, 1998, 178).

Diatlov also observes that Braybrooke and Lindbk(1'963), disjointed incrementalishiits Mintzberg’s process and
quotes Lindblom (1968: 25-27) as saying: ‘Policyking is typically a never-ending process of suceessteps in
which continual nibbling is a substitute for a gdmtk’. Also building from Lindblom’s (1959)%tience of muddling
through, Cohen, March, and Olsen (1972) develop theiganized anarchyapproach — the ‘garbage-can model'.
Organized anarchy reflects both top-down and botipnareation ofp ~.15. These leading scholars, after intensive
studies of emergent strate@y, describe the base-line conditions for.15. Diatlov’s point is the idea thiabth Fordist
and self-organizing forms produce power law eff@tsgdeorganizations (see also Bak, 1996).

™ In general a multiplicative process can generiterea distribution calletbgnormalor a power law (West and Deering, 1995). In thenfer, the
logarithm of the variable generates a bell-shagethsetric distribution. It is often a matter of judgnt to decide whether experimental data fit a
Pareto or a lognormal distribution (West and Degri995). The difference between the two residéiséramplificative character of the power law.
As West and Deering (p. 126; 156, 157) point olite scale-free character of the underlying proiseskown to provide an amplification process
that induces the transition from lognormal to irseepower law.... As lognormal systems become evee mamplex, their distributions become
broader, and they take on more of the qualitiesaated with lftbehavior.... This means that increasingly complgntrmal phenomena take on
more of the fractal, or scale-invariant, charast@s of systems governed by inverse power laws.’

12 For a recent review of the arguments about amaigthit vs. the joint probability of other changesecological elements such as climate, sea level,
oxygen level, etc., see Wright (2005).
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Diatlov’s research (2005) tracks the implementatibfinformation technology’ inside financial ingitions,
ranging from local, lower level, short-term, fregtlg changed decision events to longer-term, up@est, and more
pervasive managerial decisions covering longer tiorézons. He is the first researcher we know obwhows a power
law configuration ofnternal organizational decision events.

So far, our separation of power law phenomenasptidio-structural and dynamic phenomena begs testign
whether the different phenomena described by péaves share a common property. Mandelbrot (1963)tefiin
2004, 170) writes:

...The cotton story shows the strange liaison amdffgrent branches of the economy, and between esiesand nature. That cotton
prices should vary the way income does; that inceanitions should look like Swedish fire-insuramtzms; that these, in turn, are in the
same mathematical family as formulae describingithg we speak, or how earthquakes happen—thisiig, the great mystery of all
Simon (195, 425) pointed to a common probabilitychanism:
[The power law’sappearancés so frequent, and the phenomena in which it apgpsa diverse, that one is led to the conjectuag ifithese
phenomena have any property in common, it canlmmly similarity in the structure of the underlyipgbability mechanism
Others also argue that the appearance of powerdaings to common underlying dynamic and coevohaiy
mechanisms (Bak, 1996; Leeal., 1998; Shin and Kim, 2004; West and Brown, 2084anley, a founder of
econophysics, writes:
If the same empirical laws hold for the growth dynes of both countries and firms, then a commorhar@sm might describe both
processeqStanleyet al, 1996, 3277)
We believe the underlying mechanism has becomerapp@cross all nine kinds of power law phenomemrasee that
the causal dynamic isterdependence among age(data points) that — with some probability — letmlpower law
effects. Their positive-feedback-based volatilipykes and consequences may be most obvious amatkgtsya
earthquakes, and hurricanes, but evidence inditagsappear everywhere, even among social phereregan
including organizations. For some natural sciesitigbwer laws have reached the mathematical reyuddipervasive
natural laws such as gravity or entropy produc{®ak, 1997; Halloy, 1998).

2 CONNECTIONISM VS. INDEPENDENCE IN ORGANIZATIONS
2.1  Mohr's Variance vs. Process Theories

As noted earlier, Mandelbrot started arguing ferithportance of fractal geometry and power lawkimig in
economics and finance in the 1960s. Perhaps ttepferson to go down this path in organization théolLaurence
Mohr, who argues for differentiating betweemriance and ‘processtheory. As it turns out, his argument also rests
the fundamental distinction between independendérgrerdependence. Mohr (1982) begins his boolelriewing
some 984 findings about what leads to innovatidre fesults are consistently one/third negative wiithing
unequivocally positive — i.e., no clear causal deteant. He concludes by asking, what is the pofritoing yet
another study, given these circumstances? He thseriles all the foregoing studies as examplegaoidnce theory’
and proposes ‘process theory’ instead. He defimam tas follows (our emphasis):

. ‘Variance theoryroughly, is the common sort of hypothesis or micglech as a regression model, whose orientatitowiard explaining the
variance in some dependent variable’.

. ‘Process theorpresents a series of occurrences in a sequencéroeeso as to explain how some phenomenon cobms .aDiffusion models
are often good examples of the latter’.

In discussing process theory, Mohr emphasizesettne, tinteractiori, and introduces the terngomplexity, drawing

from Brunner and Brewer (1971, 14):

...Complexityrefers to the interdependence of influences inmitbied itself, whereaiteractionrefers to the same sort of phenomenon as it
is formalized in one’s models of the world.
What is important is ‘their role as amplifiers @antractors of the impact of other causes’. (p. 14)
Process theory eschews efficient causality [Arist®Energy-based force] as explanation and depestsad omearrangement- that is, on
the joining or separation of two or more specifements rather than on a change in the magnitustenee element. (p. 45)
Mohr shifts from independence and variance anatgsigerdependenceonnectionispmutual causaland
coevolutionaryprocesses. In essence, he shifts from GaussRaré&tian science.

2.2 Pareto vs. Gauss

Scientists tend to place too much focus on averafehereas] much of the real world is controllechasch by the ‘tails’ of distributions as

means or averages: by the exceptional, not the cmplace; by the catastrophe, not the steady drifye.need to free ourselves from

‘average’ thinking. (Nobel Laureate P. W. Andersb#97, 566)

Extremes vs. Averagekinear thinking is normal. Scientific and matheioalt models are based on the concepts of
equilibrium and linearity. Linearity means two th (1) proportionality between cause and effeu, @) that the
dynamic of a system can be reconstructed by sumaprtge effects of single causes acting on singheponents
(Nicolis and Prigogine, 1989), which allows efficiecausality to operate, equations to be solved paedictive
modeling. Economics, for instance, is almost theistits (scarcely verified) assumption that ecoiophenomena
trend toward general equilibriurh(Mirowski, 1989, 1994; Ormerod, 1994). Howevdristassumption allows linear
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equations and analytical simplicity. Meyatral. (2005) cite Abbott’'s (2001, 7) discussion aboavtthe ‘general linear
model’ from Newtonian mechanics came to ‘subtlypEhsociologists’ thinking'.

By focusing on systems in equilibrium, researclmgdicitly accept that the number of possible sfaesystem may
attain is limited (and computable) and that sedéimb following the onset of instability is shortropared to
‘equilibrium’ time. For this to be true the manygrients comprising a system must be asstintspendent data
points. If we take 100 companies approximatelyhefsame size belonging to the same sector and assum
independence, and plot a variable, say profit, xpeet most events to pack around the mean, extifitie classic bell
curve. The bell shaped distribution is by far thestrstudied statistical distribution; it is assuni@dorrectly
characterize much of our discoveries about therabfund social worlds. In real life, howevdre crux of the point is
whether all events are independentreal life, for example, these companies cob&hchmark against each other,
imitate those perceived as successful, exchangemaftion, organize cartels, pursue mergers andsitiqns, compete
for limited resources, etc. In a word, they are ntigsly interdependentot independent!

Gaussian and Paretian distributions differ radjcdlhe Gaussian distribution is reliably charaaedi by its stable
mean and finite variance (Greene, 2002). A Pardlistnibution doesn’t show a well-behaved meanarihnce. A
power law, therefore, has naveragéthat can be assumed to represent the typicalifesof the distribution and no
finite variance upon which to base confidence irgkr (Moss, 2002). There are two major implications
1. The dream of social science, of building robustieavorks that allow prediction, is shattered byahsence of statistical regularities in

phenomena dominated by persistent interconnectikitgent stable mean and finite variance, the goitibtic assessment of individual

outcomes becomes much more difficult. This poifieots the more pervasive and structural issugoolinearity and emergence in complex
systems (Sornette, 2003).

2. Paretian tails decay more slowly than those of mbdistributions. These fat tails affect systemehéviors in significant ways. Extreme events,
that in a Gaussian world could be safely ignoreel rat only more common than expected but als@sfly larger magnitude and consequence.
For instance, ‘[standardfeory suggests the over that tifi®16-2003}here should be fifty-eight days when the Dow mawerk than 3.4
percent; in fact, there were 100Mandelbrot and Hudson, 2004, 13).

Statistics: Obscuring Rather than ClarifyingA power law world is dominated by extreme evegtsred in a
Gaussian-world. In fact, the fat tails of power ldistributions make large extreme events ordensrafnitude more
likely. In a ‘normal’ world, where distributions etv finite variance, extreme events are so diffeferh the typical
and so rare that they don't significantly influerether the mean or the variance. Hence, ignotiegitis a safe
strategy. However, insurance companies that usealdalistributions to assess likelihood of extremengs often get
their fingers burned. Hurricane Katrina of Augu03, the Christmas 2004 tsunami in Asia, the fauribanes hitting
Florida in 2004, the tremendous devastation foligiioods in Central Europe in 2003, earthquakescafe 7 and
higher, etc. indicate that we are not in a ‘normatrld. On the contrary, the action and highest m the tails
(Kirchgaessner and Kelleher, 2005). In the mowvikgtry, almost all the profit come from the bloc&tars, that is the
extreme events, with the majority of the moviestadbnting next to nothing to profitability. If thiss true, normal
distribution statistics obscure rather than clafifige practices of (1) searching for the mean o asnveniently
summarize the nature of a phenomenon without atigrtd the full range of its nature; (2) relying wariance to build
confidence intervals and therefore assess theHied of single events; and even more damaginth@habit of
excluding outlying events, all become misleadingpenly wrong in a power-law world. We need methaaid
statistics that include (if not actually celebrag&remes rather than assume them away!

Power Law StatisticsA non-Gaussian world demands methods accountingdiim-dependency, nonlinearities,
emergent properties of systems, and the dynamiosutifple punctuated equilibria. The assumptiomaependence of
events, which underlies the Gaussian world andldmsical reductioniswvariance processapproach (Mohr, 1982) and
the linear approach that underlies large partdasfsical and quantum sciences (West and Deerif@h)I®uld lead to
the wrong analytical tools and conclusions wheridgavith connectionist dynamics (Kauffman, 1993)lldnd,

1995). Nowhere is a case more compellingly mada fioansition from Gaussian to Paretian statistias by Meyeet
al. (2005). Even though they start with ‘normal’ angaation science research methods, in each oftinestudies
conducted they find interdependency effects dormgaind as a result have to throw out the conveatimethods they
start with. They conclude with a focus on ‘hubsjrectors, and power laws’, scale-free theory, &ed t
interdependency and positive feedback effects fonmetwork formations. In their discussion of i study, they
note that ‘...observing outliers may be more infoliwgthan observing average or typical entities..h&y then

3 The issue of independence depends on the lindarityonlinearity) of the dynamics that generatedata points (West and Deering, 1995). If a
system is linear, then its overall dynamic resiutisn (a) the linear addition of the dynamics ofsilsgle components and (b) the principle of
proportionality between cause and effect. Systérasare moderately nonlinear can be treated asoindination of a linear system plus a
perturbation term. In practical terms, this mednas the nonlinearity can be assumed away. In betks; the system’s dynamic is additive, and
respects the basic conditions for the applicaticth® Gaussian statistics. In the presence of qatige phenomena or of strong coupling between the
system’s parts, however, no perturbation theorytEansed to linearize the system. The parts anthé@sures obtained are strongly interdependent.
Under these conditions, the basic conditions ferapplication of Gaussian statistics are not rasge€&urthermore, the more tension imposing on a
system the more likely interdependence and SOGajisev
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mention the Anderson quote we started this segtitn

Where extreme events dominate and variabilityfigite, the most statistics can do is to indicéte shape of the
distribution, that is, the general attra¢faoward and around which the events will tend {b@eyanize (Gleick, 1987;
De Vany, 2004). The universality of the power lawvator — really the underlying interdependence-pasitive-
feedback effects — is confirmed by the fact thaséheffects exist at 27 magnitudes in the bioldgicald, as shown
across many sciences. In light of this vast geitgrale detail the main features of a power lawdabstatistical method
in Table 3.

>>>Insert Table 3 about here<<<

Robustness Tests Bury The Most Important Variance

All the world believes it firmly, because the mathécians imagine that it is a fact of observatamd the observers that it is a theorem of

mathematics(Henry Poincaré, 1913, about the Gaussian natistlbution)}®

Management researchers using statistics as th&s bbmaking truth claims — usually translatedirdings
significant at p < .05 or .01 — mainly use statatimethods calling for Gaussian distributions. €&n science, so to
speak, produces equations looking like this:

Variance of adlependent variable J variables + error term (1)

In Paretian science the expression looks like this:

Variance of adlependent variable= J. variables + extremes+ error term (2)

where ‘extremes’ includes power law events stemrfrioig interacting, self-organizing, mutual causgeat behaviors
rather than the ‘independent’ events underlyingvdngéables’ variance (Sornette, 2003). Normal Soéemvhich is
really normal-distribution-based science, wantagsume away the presence of #dreme’ turning instead to tests
of robustness within the Gaussian framework of hiagdiata to show this assumption is not damaging.

Greene's textbookEconometric Analysjg2002) is in its % edition and is the standard for many econometricia
and other social science researchers. He begir®B pages of analysis with linear multiple regras and its five
endemic assumptions: (1) independence among dattsp@) linear relationships among variables;g8pgenous
independent variables; (4) homoscedasticity anauatmtorrelation; and (5) normal distribution. Mgsthe book
focuses on how to make econometric methods workwine or more of these assumptions are untruesafdta.
Givennonlinearity, for example, Greene says, ‘by using logarithmppaentials, reciprocals, transcendental functions,
polynomials, products, ratios, and so on, thisédir’ model can be tailored to any number of situreti (p. 122). As for
thenormal distributionassumption, he says:

...large sample results suggest that although thal tandF statistics are still usable...they are viewed as@pmations whose quality

improves as the sample size increases..n isreases, the distribution...converges exactlyroranal distribution. (p. 105).

Greene observes that, ‘heteroscedasticity posesiaty severe problems for inferences based ast Isquares
[regression analysis].... It is useful to be abléetst for homoscedasticity and if necessary, maoalifiyestimation
procedures accordingly’ (p. 222). He then takeses@pages to discuss typically used methods tanize the effect
of varying variances: White test, Goldfeld-Quaretit{ Breusch-Pagan/Godfrey LM Test, weighted lsqstires, two-
step estimation, maximum likelihood estimation, elelolased tests (i.e., analysis of residuals, Wesdt tikelihood
ratio test, Lagrange multiplier test, multiplicaiand groupwise heteroscedasticity models), the ARDtoregressive,
conditionally heteroscedasticity (Engle, 1982)] mlog@hree variants), with the generalized form, GAR(Bollerslev,
1986), being most preferred — and now most widegduby finance scholars and practitioners alikeRGA °...allows
the variance to evolve over time’ (p. 242). ARCH/&®@H assumes that model errors appear in clusterthanthe
‘...forecast error depends on the size of the previdisturbance’ (p. 238) — it treats variance as.enbving average of
squared returns’ (Engle, 1982).

Econometrics always assumes that data points ditvadndependent. Conditions calling for GARCHcac, but
adjustments are made in modeling without ever givip on the independence assumption. A plot oARCH
moving average shows that gogwer law driven peak a volatility-extreme based on interdependencaie kind
(Mandelbrot and Hudson, 2004) — is adjusted dowslitintly above the average blip by the moving agerprocess.
This is clearly shown in Figure 5, where the helalagk line, representing variance according to GARE no way
represents extreme events — the 1929 and 1987sspikend well beyond the top of the graph.

14 We defineattractor as the dynamical state toward the system evoliessome passage of time. The simplest kind assintor equilibrium
point. The torus and ‘strange attractors’ are nadr&cure (see Gleick, 1987).

5 Quoted in West and Deering, 1995, 83
8 The 1929 spike extends 4’ above the top of thphgrtne 1987 spike extends 2’ above! If you dowdl@hysels, Santa-Clara, and Valkanov's
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Greene ignores thearetq Zipf, Cauchy or Lévydistributions. Nor does he disclisterdependentnteracting
connectionistinterconnectingcoevolutionary or mutual causatiata points, events, or agehitlor does he discuss
when independence shifts to interdependence, aetlegse. These possibilities don’t seem to apipear
econometricians’ assumptions about data. And geiur foregoing analysis, we see that most theameerlying every
kind of power law discovery include a referencénterconnection of some form — power law phenomena
overwhelmingly depend anterdependenagents that, with some probability, are set ofi itycle of positive feedback
progression resulting in an extreme event. In faahe of the robustness adjustments to failingalimaultiple
regression assumptions that Greene discusses iledhesreal-world’sorobable— not just possible — losses of
independence. None! Needless to say, even GARCbtegrihe power law extremes that Mandelbrot has bee
observing in financial markets for 50 years (Mabdai and Hudson, 2004).

Ironically, GARCH actually falls into a statisticaéver-never land. It uses its moving averageyttotinclude the
effects of interdependence-caused extremes bavérrets go of its assumption of independent gatats. It widens
the confidence intervals for those trying to staghvindependence assumptions fitting the ‘in betwegtremes’
phenomena but it doesn’t account for the extremianee effects of fat tails. Hence it fits neiti&aussian nor Paretian
worlds.

>>>|nsert Figures 5 and 6 about here<<<

To conclude, the various robustness tests Greagasties, even including the best and most widelg ase,
GARCH, give no assurance whatsoever that modermregaarchers account for the effects of extrematsve their
statistical analyses. Let’s put this in Califore&rthquake terms — where we average ~16,000 ifisggmi quakes every
year and a ‘really big one’ (e.g., where the gromules 30 feet north) once every 150-200 years, &vind 7-level
quakes occurring within decades. In effect, itdsfaGreene and virtually all modern regression gles want
Californians building and living in high-rise buitdys to think that using a moving average (GARCH)yuake
variance over the thousands of harmless (averagi®eg will lead to building codes that protect agathe 8- and 9-
level quakes. Anyone living through a significant@e in California will tell you this is nonsen$& amount of so-
called ‘robustness improvements’ to the standawehli multiple regression model allow it to mode difects of
extreme quakes on buildings, bridges, lives, andadge costs — i.e., the effects of fat-tailed Padettributions.
Needless to say, GARCH also doesn’'t accommodatpaiver law extremes that Mandelbrot has been olmgpiv
financial markets over the past 50 years (Mandéeliind Hudson, 2004Robustness tests and ‘solutions’ do not, and
cannot shift statistics from the Gaussian to Pagatiworlds

Normal science keeps searching for the Holy Grgilrediction even though leptokurtosis and volgtitilustering
suggest this is an act of faith rather than wefisidered strategy. Though it is hard enough toipreadrthquakes
occurring within an unchanging power law scale,sgdior social scientists, it is frequently the cides in social
systems, after an extreme event, some of the ymdgitausal dynamics (rules) are changed. Thudevelvien
governments can’'t change subsurface geology ate fgetonics, politicians can and did introduce$lagbanes-Oxley
Act after the Enron debacle. The latter makes tbelpm more difficult, but does not undermine tlasib issue
management research faces, of needing redirection Gaussian to Paretian science.

2.4  Confronting Extreme Variance Head On
What is the meaning of ‘robustness’ and how shawddlefine an effective science of extremes?
Paretian Rank/Frequency EffectsTable 4 defines four statistical possibilities:
>>>|nsert Table 4 about here<<<

Type 1 is the statistician’s dream. Direct lineglation; variance is critical; mean is ignored. fiehis a perfect
correlation, except for the anaerobic effect astight error in measuring calories. Type 2 is qtlite opposite. The
seat designer would prefer everyone to be ‘averdge variance is ignored. In Type 3 we are wordbdut the linear
relation of height/weight to sports performancejchithappens to be obscured by the large bulge o€ meerage
people in the middle. Here the mean is irrelevawtthe variance is what counts, as long as the imgfahvariance is
not overwhelmed by measurement error. The larggebiul the middle increases statistical significamgeealso
obscures the linear covariance relationship. Rinall Type 4, most of the people are irrelevantthaetone extreme is
truly deadly. In Type 1, the average is uninterggtin Type 2, the average is critical and varias@ nuisance. In
Type 3, we have a huge cluster around the meait isuthe extremes that tell the tale. In Typeh& only thing
interesting is the one extreme — neither mean anance is useful.

paper you can see their chart in colditp://www.personal.anderson.ucla.edu/rossen.valkeisk_return_paper.pdf

" Even more broadly, microeconomics does likewisenFand Lippi (1997) discuss ‘heterogeneous agémtsoncept central to complexity science
(Holland, 1988)] but never consider the idea thaytmight interact! As ludicrous as it may seemshad math and statistics in Economics is based
on the assumption that people neither communicdke learn from, nor influence each other!
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One point in making these distinctions is to obse¢hat management researchers tend to conductckseith the
ideal of Type 1 in mind. ‘Robustness’ is aimedrging to improve methods (or reshape distributidnghe point that
researchers can make Type 1-based truth claims,theegh they have Type 3 or 4 findings. A secooidtds that our
current ‘journal-approved’ quantitative researchthnds systematically miss the most important thingsost
managers’ work lives — the extreme events — sutheaélfred Sloan (GM), Jack Welch (GE), Bill Ga{ddicrosoft),
Andy Grove (Intel), Toyota and Honda, eBay, Gooflest-its and other dramatic successes as wetbasatic failures
like LTCM, Enron, California energy crisis, ParmaldY blackout, Iraq intelligence failures, the Efjgshe 1987 Asian
financial meltdown, and so on. For other managbespositive and negative extremes affecting tives don’t make
the headlines, but are nevertheless importanteténtividual concerned.

Implications of Unstable Means and Variancé&s we noted at the outset of Section 2.3, mogarehers are
concerned with the relative proportion of causal arror variance (Equation 1). Misplaced faithhie tobustness tests
discussed by Greene (2002) deludes them into tigntkiey can ignore the effect of extremes — andciet®d infinite
variance — on their analysis of covariance in theisumed Gaussian distribution. As we have nate@aussian
distributions some variance is essential, but wagan the tails is usually attributed to errooatlier effects; the latter
are often deleted.

As the influence of extremes in a function incrsasiee influence of the Paretian distribution gaiaer the
Gaussian distribution. The meanings that can bsilsigrattached to means and variances change fusrdatty. In
Pareto distributions the tails are fat and moreesé events have more powerful effects — Hurridéateina, strong
earthquakes, or the Enron bankruptcy. Becausesdftitails, variance is very large and unstabéeabise of possible
extreme events the mean of the distribution isliable. Research findings, in reality, risk becogimelevant when
means are unstable and variance is infinite. Resees keep assuming Equation 1 prevails even ththeghvidespread
findings of power law effects suggest that Equaflasften dominates. As Meyet al. tell their storythey; trying all the
time to be sound quantitative researchers, keemusethods fitting Equation 1 when, in fact, inlkeat their four
studies Equation 2 was the valid representatioventeially causing them to abandon Equation 1 method

3 REDIRECTING MANAGEMENT RESEARCH

On January'®, 1857 a #9 magnitude quake occurred, stretchifgn®izs along the San Andreas Fault in
California. At one point one may observe that the pf California west of the fault mov&® feetnorth. Californians
are still waiting for the next ‘big one’. The castthe #6.7 Northridge quake in 1994 — |ocal toltAearea with visible
earth movement of a feimches— was $44 billion, 51 people killed, 9000 injur@@,000 left homeless. A #9 quake is
more than 100 times larger!! The really big oneBriancial markets occurred in 1929 and 1987 — s6fhgears apart
(Figure 5). But just since 1987 we have had otR&eeme events: the Asian crisis of 1997, the Russialtdown of
1998, and the burst of the dotcom bubble and egdR@mmalat and Enraat al collapses in 2001-2003, with
multibillions lost each time. These are the negatimes. We also have multibillion dollar positiweets like
Microsoft, GE, Intel, eBay, Google, etc., in thgamizational/managerial world.

3.1 What Basis for Truth Claims, If Not ‘Normal’ Science Statistics?

Traditional Justification Logic and Normal Statistis. Instead of seeing extreme variance in manageraadtor
organization-based regression functions as songethiose robustness techniques to eradicate, vggsuthat a more
sensible approach is to draw on the way that plsgsiand engineers handle Newtonian Mechanics elsitiiity
Theory. Their world changes depending on the spediich phenomena are moving. On earth, almost/thiag
humans experience moves at speeds orders of mdgritower than the speed of light — hence thearesmethods
consistent with Newtonian mechanics remain valisl.oBjects in space get closer to the speed of lilgabries and
methods consistent with Relativity Theory becomeerimnding. For earth-bound scientists and engsdewever,
‘old’ Newtonian Mechanics is of much more use thelatively ‘new’ Relativity Theory.

Our view is that for organizational research thew is more relevant that theld'. For us,old is Gaussian-based
sciencenewis Paretian-based science. We argue thatelgrevails much more than tiodd. But we agree, theld is
still present in some proportion. A more sensilplpraach for management research is to begin eadk stith the
following test:

. Given Proof of IndependeneeUse Normal Statistics — ti@dd.
. Absent Proof of Independence Assume Interdependefitse Power-Law Thinking — thidew

We think this test is broadly important in managatresearch, and in other kinds of social resedtahh of the
nine broad categories of power law phenomena dieclgarlier (Section 1) — and to some extent itlatelerlying
theory — includes the possibility of an extremerg\stemming from interdependence among agents. Mgyertantly,
ALL of the various interdependency possibilitiepaar to apply in organizations. Not just one ouiwd some of the
time, but ALL OF THEM! This doesn’'t mean extremesgts occur all the time everywhere. But it doesnrteéat some
probability of thebenefit of positiver risk of negativeextremes is present all the time and everywhened-at a much
higher rate of occurrence: #9-level quakes occarriegion roughly once every 200 years; #9-equntdleancial
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disasters (Great Depression, 1997 Asian Crisishroata rate of around two per century. Mandelfinals that large
financial crises occur once every five years (Sgar€ 5).

Finally, there is a figure/ground reversal. Curner@thodology takes the Null Hypothesis plsenomena are
independent until proven otherwind current practice mostly attempts to assunsydlae problem). Rather, for a
redirected organization science the NULL assumploould be one ahterdependence until proof of independence
obtains

3.2 Lessons from Earthquake Science—A ‘New’ Underlyindiscipline?

Why Earthquake ScienceR®lanagement scholars draw on a wide variety of tyideg disciplines ranging from
natural science to social sciences such as ecompsticiology, and anthropology. Among the lattegn®mics is most
rigid in placing its faith in the Tcentury equilibrium-based mathematical methodsagsical physics (Mirowski,
1989, 1994; Ormerod, 1994; Colander, 2000), bualse see mathematical sociology (Abbott, 2001)rmathematical
anthropology (Read, 1990).

While many disciplines — from microbiology to agthysics — now report out power law phenomena (sdxeTl),
we zero in on earthquake science for four readdfguakes are unquestioned power law phenomehaatthquake
science is a fully legitimate natural science;g@@ryone knows about quakes and some have expediémem; and (4)
most importantly and most relevant to the presupradtitioner orientation of management researetiestlike Japan
and California have taken the lead in learning b@vnvestigate, live with, and protect against exte phenomena — as
opposed to, for example, Wall Street’s zeroingriregerages and ignoring the extremes.

Research ActivitiesTo give you some idea of what the componentsararf ‘extreme-oriented’ science, we draw
from the U.S. Geological Survey, which is locatecdan Francisco, which sits on top of the San AssiFault. We
don't give details on the geo-seismic origins & treadings (see their webpage). We just use theomgigest how an
extreme-based management research might decommosaare specific research activities. These afieeldin Table
5. As you can see, earthquake science readily ges\a model for an ‘extreme-based’ managementradsea

>>>|nsert Table 5 about here<<<

In their ‘concluding thoughts’ Meyaeat al. (2005) point to two disciplines, history and cdexity science, as part of
the frontier. Their paper seconds our assertionab@plexity science is a discipline aimed at stngyhe outcome
effects of interdependency. While they don't memt@rthquake science, their studies reflect it.

. They argue the importance of studying the *histafyéxtreme nonlinear events#t in Table 5;
. Their ™ study focuses orjdlts’ (p. 6) — the target of earthquake science;
. They focus on multiple levels of analyses #8&— deep structure analysis (plate tectonics inagdl

. They emphasize real-time analysis (‘get into te&fright away’, p. 6) #5in Table 5, and especially in their ongoing stofipetwork
formations;

. In study 3 they abandon the general linear modfehior of ‘vector autoregressive technique’ — acigdemethod new to organization science
and applicable to ‘interdependent systems of viegaljp. 13) #4 in Table 5;

. Their use of the Anderson quote (p. 18) mentiortiaigs’ suggests their recognition of interdepencies and fat-tailed Pareto distributions —
characteristic of earthquake dynamics;

. They say, ‘narrow your scope of observation...sgeamising exemplars’ (p. 6) — this is like earthkgiacientists studying samples of quakes
of the same size (i.e., all #9s) or kinds (i.ebdiiction or strike-slip);

. Throughout their paper they emphasize focus omdefgendencies, ending up mentioning power lawssaakb-free theory (p. 17). All four of
their studies sow the seeds of possible power féaets, and implicitly call for joint-probability-dsed deterministic kinds of studies, as we see
in earthquake science.

By now many studies have drawn from complexity scée Meyelet al. do this as well, but they especially, though

implicitly, underline our call for adding earthquakcience as an underlying discipline.

4  DISCUSSION

We won't go through the entire list, but many maragnt scholars have pointed to the growing disjanct
between multiparadigmatic ‘science’ appearing urj@als and practitioner-oriented writing (Beyer anite, 1982;
Lawleret al, 1985; Brief and Dukerich, 1991; Pfeffer, 19931d&rsoret al, 2001; Beer, 2001; Rynes al, 2001;
Weick, 2001; McKelvey, 2003a; Bennis and O’'Tool@03; Ghoshal, 2005; Van de Ven and Johnson, 2006;
McKelvey, 2006). We suggest that the fundamentabigm stems from favoring Gaussian over Paretisimiliitions.
Virtually all of the statistics-based journal resgrarests on assumptions of independent event&andsian
distributions. In obvious contrast, if one scanssiness media’ books, such@gyanization and Environment
(Lawrence and Lorsch, 1967y, Search of Excellend®eters and Waterman, 198B)iilt to Last(Collins and Porras,
1994),Rejuvenating the Mature Busing&aden Fuller and Stopford, 199#4yages of OrganizatiofMorgan, 1986),
Hidden ValugO'Reilly and Pfeffer, 2000¥;00d to Grea(Collins, 2001) Knowledge Emergend®onaka and
Nishiguchi, 2001), and on and on, one sees that aidse cases and stories are about extreme eveniscesses or
failures — but seldom about ‘averages’. Add to listsmany of the cases you use in the classroammwbhder there is a



Beyond Gaussian Averages 16

disjunction — managers live in the worldetremesresearchers use statistics to report findingsitdocerages There
is reason to believe that most of these extrenwda& to interdependency and positive feedback.

It is easy for people with no personal experienith an extreme event to think studies of averageseaceptable
substitutes. People who just experienced Hurri¢atena, the South East Asian tsunami or who Ilv@tigh
earthquakes in California or Japan, floods alomgRhnube, or survive an avalanche in the Alps thifferently.
Natural extremes seem mostly negative. Organizaltiextremes are both positive and negative. Eanlgleyees at
Microsoft have one view of an extreme; those whoevat Enron see theirs rather differently. The tineng we
scholars have to do is get over the idea that stgdgverages is the only ‘good’ science, is they ¢iming relevant to
good management research, and offers somethingl teeghanagers. Sometimes yes, but we think mostlfor
management researchers. Needless to say, thiemmgincal question — When and under what conditido
organizational data points shift from independennultiplicative to interdependent causal dynamics?

To bolster our argument, that organization scigrezts to attend to the consequenceéstefdependenas well as
independenevents, we start by listing eighty kinds of powav phenomena (in Table 1). In Nature, they ramgmf
atomic and microbiological to galactic fractalslffzae social; some pertain to organizations. Nohehese — from
physics, biology, social science, and managemeetreh — we describe in more detail. Power lanarebds an aspect
of natural and even social science that has bassped into management research — though we dohavtelohr
(1982) was the first to make the distinction betwbeth kinds of management-related research (thbegtid not quite
make the leap to fractals and power laws). We pagial attention to the standard practice of cotidgecobustness
tests (Greene, 2002) so as to conveniently sweegti@&aphenomena under the rug, so to speak, artthae with
Gaussian analyses and statistics — all to keepeefeand journal editors happy and get published.

Our review of power law phenomena significantlyl#ages the prevailing assumption about the inddpece of
data points. Once independence collapses, andi@endence or interaction occurs, then the sequswr law
formations are planted. It is just a matter of tifust a matter of probability, for interdependewénts to progress —
because of positive feedback — into an extremetedariong as researchers look at thal world through the ‘normal’
statistics lens — which means they have to maketlependence assumption — the result will be Ganseience and
with it a denial of extreme events, a denial oifité variance, a denial of unstable means — addmtp denial of
Paretian distributions. All of these denials ach&mrow confidence intervals and allow researcfasgly to claim
statistical significance and, then, assert thaihtclaims. This has produced many irrelevant areheous results but
fosters discipline-legitimacy.

We propose the obvious solution of adding, and #tessing more heavily, disciplines where emerggtieme
phenomena, rather than averages, are dominantdsaiWe mention two of thessgmplexityandearthquake science
Lessons from complexity science are conjoined witbnophysics and power laws, and thus embeddedghoot our
paper. From the seven sub-fields of earthquak&sejeve draw seven parallel application areas, ehalnich offers a
different perspective and approach for studyingeswe events, including prediction and protecticactEapplication
area calls for a different kind of management regeaA number of these already appear in the Meyat (2005)
article. Other examples are Perrow (1984) and Maarwd Nichols (1999) — nuclear reactors, and Hénilolsand
Sullivan (2002) — airline accidents, though thdselies do not get into power law effects.

One of the lessons from earthquake science isribad of lumpingll earthquakes together, they study separate
samples of ‘#7s, #8s or #9s. In point of fact, weeha large collection of case studies that adiesof extremes —
those mentioned in the business media books albalalao in many of the MBA teaching cases. We e
multiple studies of single extremes — parallel 8ample of #9s — i.e., Xerox, the IBM PC, INTEL, EQN and
Parmalat, crony capitalism, etc. With narrowed damspf similar extremes, Gaussian statistics ampam@metric
methods are highly appropriate. Starbuck (no daegents 59 slides suggesting other ways@drning from Extreme
Cases§ as he puts it.

We note that 50% of the power law findings wedist from highly respected natural sciences. In ap o we
want to suggest that effective science epistemolb@gseplaced by one-off case studies or the argnse leanings of
postmodernists (Holton, 1993; Koertge, 1998; Mclegh2003b). Earthquake science is a fully legitieriatird’
science. We can learn from it how to conduct aadtiffe science about extreme phenomena.

There are numerous conditions where natural datdasso remain independent — atoms and most moleculeg don’
study, relate to, look at, or learn from, othemascor molecules. In some cases, however, the iniposif energy past
some critical point — e.g., Bénard’s (1901)ctitical value and resulting phase transitionher Bose-Einstein
condensate effect — turns even independent natciexice data points into interdependent ones.turalascience,
perhaps, scientists should still start with the Nldlondition ofindependentiata points. But in social science, where
peopledo look at each othedotalk to each othedo learn from each othedp influence each other, etc., it seems to us
that the NULL condition is one d@fiterdependenceResearchers should start with this assumptianThey should start
with the idea in mind that extreme events are arabpart of the social worldNo statistical findings, therefore,
should be accepted into the business, organizatippamanagement received view if they gain sigo#hce via some
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assumption-device by which extreme events and (lyénfinite variance are ignored.
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Figure 1. Gaussian vs. Pareto Distributions
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Figure 3: Comparison of Cluster Power Law to the # Slope Power Law (cumulative
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Table 1: Some Examples of Natural and Social Powé&iaw Phenomena

Natural Science Social Science
1. Cities 1. Language word usage
2. Traffic jams 2. Social networks
3. Coastlines 3. Structure of WWW
4. Brush-fire damage 4. Structure of the Internet hardware
5. Water levels in the Nile 5. Number of hits received from website per day|
6. Hurricanes & floods 6. Blockbuster drugs
7. Earthquakes 7.  Sexual networks
8. Asteroid sizeshits 8.  “Fordist” power
9. Sun spots 9. Distribution of Wealth
10. Galactic structure 10. Publications and citations
11. Sandpile avalanches 11. Co-authorships
12. Brownian motion 12.  Actor networks
13. Music 13. Job vacancies
14. Epidemics 14. Salaries
15. Genetic circuitry 15. Firm size
16. Metabolism of cells 16. Supply chains
17. Functional networks in brain 17. Growth rates & internal structure of firms
18. Tumor growth 18. Casualties in war
19. Biodiversity 19.  Growth rate of countries GDP
20. Circulation in plants and animals 20. Price movements on exchanges
21. Size distributions in ecosystems; predators 21Delinquency rates
22. Fractals 22. Movie profits
23. Punctuated equilibrium 23. Consumer products
24, Mass extinctions 24. Size of villages
25. Brain functioning 25.  Cotton prices
26. Predicting premature births 26. Economic fluctuations
27. Laser technology evolution 27. Alliance networks among biotech firms
28. Fractures of materials 28. Entrepreneurship/innovation
29. Magnitude estimation of sensorial stimuli 29. Distribution of family names
30. Willis’ Law: number vs. size of plant genera| 30. Copies of books sold
31. Fetal lamb breathing 31. Number of telephone calls and emails
32. Bronchial structure 32. lItalian industrial districts
33. Frequency of DNA base chemicals 33. Deaths of languages
34. Protein—protein interaction networks 34. Director interlock structure
35. Genomic properties (DNA words) 35. Aggressive behavior among boys during recess
36. Heart beat rates 36. Number of inventions in cities
37. Cellular substructures 37. Macroeconomic effects of zero-rational agents
38. Phytoplankton 38. Global terrorism events
39. Death from heart attack 39. News website visitation decay patterns
40. Magma rising through earth’s crust 40. Intra-firm decision events

Natural: 1-(Estoup, 1916; Zipf, 1949); 2-(Nagel & PacauiR95); 3-(Casti, 1994); 4-(Bak, 1996); 5-(€ak994); 6-(Bak, 1996);
7-(Gutenberg & Richter, 1944); 8-(Hughes & NathB®94; Marsili & Zhang, 1996); 9-(Hughes et abp3); 10-( Baryshev &
Teerikorpi, 2002); 11-(Bak, 1996); 12-(West & Diag, 1995)Gardner, 1978); 13-( Gardner, 1978tiC4894); 14-(Liljeros et al.,
2001); 15-(Barabasi, 2002); 16-(West et al., 39977-(Shin & Kim, 2004); 18-( Bru et al., 2003)9-(Haskell et al. 2002); 20-(West
et al., 1997); 21-(Camacho & Solé, no date); B8k(& Sneppen, 1993); 24-(Bak, 1996); 25-(Stagsinlos & Bak, 1995);
26-(Sornette, 2002); 27-(Baum & Silverman, 20028-(Sornette, 2002); 29-(Roberts, 1979); 30-(#ilL922); 31-(Szeto et al.,
1992); 32-(Goldberger et al., 1990); 33-(Selvaf02); 34-(Song et al., 2005; Wuchty & Almaaspiass, no date2005a,b);
35-(Luscombe et al., 2002); 36-(Nahshoni et &198); 37-(Wax et al., 2002); 38- Jenkinson, 20@B-(Bigger et al., 1996);
40-(Weinberg & Podladchikov, 1994).

Social: 1-(Zipf, 1949); 2-(Watts, 2003); 3-(Albert ét,d4999); 4-(Faloutsos et al., 1999); 4-(Buchar004); 5-(Adamic &
Huberman, 2000); 6-(Buchanan, 2004); 7-(Liljeebsl., 2001); 8-(Diatlov, 2005); 9-(Pareto, 180@vy & Solomon, 1997);
10-(Lotka, 1926; deSolla Price, 1965); 11-(Newn20Q1); 12-(Barabasi & Bonabeau, 2003); 13-(Getrad., 2001); 14-(Buchanan,
20002); 15-(Axtell, 2001); 16-(Scheinkman & Woodf, 1994); 17-(Stanley et al., 1996); 18-(Cedern2003); 19-(Lee et al.,
1998); 20-(Mandelbrot & Hudson, 2004); 21-(Cootlale, 2004); 22-(De Vany, 2004); 23-(Moss, 2002%-(Carneiro, 1987);
25-(Mandelbrot, 1963); 26-(Scheinkman & Woodfdt€94); 27-( Barabasi & Bonabeau, 2003, p. 207dimg on Powell et al.);
28-(Poole et al., 2000); 29-(Zanette & Manrubi20®); 30-(Hackett, 1967); 31-(Aiello et al., 20@&bel et al., 2002); 32-(Andriani,
2003a); 33-(Abrams & Strogatz, 2003); 34-(Battis& Catanzaro, 2003); 35-(Warren et al., 20085:(Bettencourt et al., 2005);
37-(Ormerod et al., 2005); 38-( Dumé, 2005); I%et$ et al., 2005); 40-(Diatlov, 2005).
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Table 2 Macro and Micro Jointly Probably Causes of ExiteeEvents

Macro Micro
Land configuration — flat, hilly, mountainous, isth Mutation rate
protection, etc., lack of glaciers, floods, etc.
Water availability — rain, streams, rivers, lakets, Requisite variety
Sunlight — sheltered/unsheltered, forested/unfetgst Fission
brush, caves, etc.
Oxygen — in air, in water, in other sources Immaystem
Food — main sources, substitutes Coevolution

Shelter — holes, nests, caves, trees, bushes, etc.

Predation, parasitism, disease, etc.

Table 3: Key Elements of a Power Law-Based Statist

1. Paretian distributions: In Paretian distributions, the mode (most frequewent) is smaller than the median
(central point), which is smaller than the meanichhs stable. Contrary to the Gaussian, what agpasthe ‘mean’ in

a power law distribution is strongly and idiosyrimally influenced by extreme events,.

2. ‘Infinite’ variability: In Gaussian statistics, the larger the samplegltieer the convergence of the sample’s mean
and variance to the population’s mean and variaimc®aretian distributions, the sample’s mean dbesmverge to
any value, the variance is very large (approaclnfigity), and the ‘independence assumption’ is apiglied. This
means that the use of mean, variance and confidetergals for prediction is unreliable — confideriatervals change
with the occurrence of each new extreme. This peiads to theNobody knows anythihgrinciple (De Vany, 2004:
220): predicting single events under Gaussian aggsons is questionablelrf this world nothing is ‘typical’ and every
movie is uniquep. 258).

3. Extremes: The important part of Paretian statistics is ie tails. Extreme events are more frequent and
disproportionate in size than in a Gaussian dorathavorld. In fact, opposite to Gaussian statistibs, larger the
sample the more likely an even greater extreme odliur. See the body of literature known as thatistics of
extremes’ (Gumbel, 1958/2004; Coles 2001), initat®y engineers in the early 2Gentury for the purpose of
designing flood-control dams. Their tables shovs ttiearly. And, furthermore, in the Paretian wotltk larger the
sample the less likely one can assume indepenaemmmality.

4. Scale-Free Fractal Structure:Like the jaggedness of the English coastline, pdaxw phenomena show the same
characteristics no matter what the measure. Thardigs and appearance of the phenomena appearmigeataany
scale. What this suggests is that similar (comnaynamical patterns are in action at different lsv&/hether we take

a whole series of events or sample a part of it,fin@ the same pattern of large discontinuous evémegularly
appearing out of a background of finer perturbaidbiven this, we need a fractal-based statistics.

5. Amplification: Fat tails result from the amplification of smalleats giving rise to positive feedback dynamics
evolving to generate events of varying size. Th@nugifference between a Gaussian and a Paretsnydition is that
the former tends tcompresghe distribution of data points toward the meantl{@ts are normally ignored and the
assumption of independence restricts predictionsla@ within two or three standard deviations frdm mean)
whereas the latter (Paretian) captures the fulrexdf positive feedback effects.

6. Cascade dynamicsPower laws result from generalized self-organiesticality dynamics. As events unfold from
the propagation of an initial ‘tag’ or instigatirgimulus (Holland, 1995), given mutual causal, pesifeedback
processes, the logic of preferential attachmeith (get richer) generates a reinforcing trend, which extends the
distribution’s tails. For instance in the casergbrmation-based cascades, success breeds suseessq0 note 7).

7. Universality: The dynamics of multiplicative and/or interdepemge&onnectionist phenomena lead to power law
distributions forming the basis of a mathematiegwarity having many of the earmarks of a univieiisaw’ valid
across much of time and space — as our Table hd¥égisuggest (see also Bak, 1997 and Halloy, 199&) dynamics
underlying this Law may, therefore, play the rofeacuniversal ‘force’ toward which the dynamicsrofny kinds of
emergent phenomena are attracted
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Table 4: Four Different Configurations of Means andVariances

Type 1. We test the relation between number of steps clidyal burning calories. We study 1000 people. Theee
little variance because of different anaerobic bijiis and measurement error, but we see a ciedorm distribution
and a direct linear correlation. A Gaussian distitn gives us the mean level of energy burneceh step for the N =
1000 climbers — the covariance is critical andrttean ignored.

Type 2. We want to design airplane seats and so we metseineeeded seat widths of a sample of 1000 pedyde.
get a true Gaussian distribution; most people igfet at the average and we design accordingly. Heseextremes
don’t matter — to the seat designers anyway.

Type 3. We want to know what kinds of people are most ss&fce in professional football and basketball. Vilket
measures of height and weight of 1000 people arttfiat most people are at the average; small peoplineffective
at both sports; big people fare best. We get a Saslistribution, but clearly people at one eraltzatter suited for the
sport. In fact, we have a linear relation except the have most of the sample in the middle, whéctds to obfuscate
the results.

Type 4. We do a study of who is involved in spreading th¥ Mrus and we find that, in a sample of 1000 peopith
HIV, one person has 3000 partners whereas mostig@éape one or no partners (based on a power ladinfj about
number of sexual partners from Sweden). This i®wep law formation where people at one extreme dstrof the
damage — most people have no effect; the top feplpecan potentially infect thousands of partn@rgjeros et al.,
2001)

Table 5: Defining an ‘Extreme-Based’ OrganizationScience

1. Earthquake Geology—Historical Extreme Event AnalgsiThis finds out when, where, and how often past
extreme events occurred and, in addition, what gieg were. This is basic historical, descriptivalgsis. This also
includes finding out where extreme events don’tuoc€or social science, it also includes both paesiand negative
events. It should also include reflexive analysigeeple having experienced an extreme event canaler some of
the event-initiation or event-protection elementshereas molecules can't.

2. Crustal Studies—Visible Organizational Deformatioffhis involves studies of visible consequencesxtfeene
event dynamics on organizational employees, sugploeistomers, shareholders, communities, and gvegrnments —
all of which were deeply affected, say, by the Endebacle. This is more about more specific corsecgs than
causes, history, or broader description. This areald include Bill Starbuck’s (no date) slide show extreme case
analysis, for example.

3. Borehole Geophysics—Deep Structure Analysidhis is the organizational equivalent of platetaais, that is,
analysis of the very basic forces giving rise te tinder-creation dynamics studied by complexitemsiists. This could
focus on the origins of dissipative structures agdnt-rule-based positive feedback dynamics — sd#dnstein and
McKelvey (2004) for example.

4. Seismology—Special Methods Developmet this time organization researchers don’'t usatwiormal science
scholars would callrbbust methodsn extreme events. We have case analyses — atitelway, most examples given
in the business press and textbooks such as M@ig&6) are extreme events — but nothing equivdteseismology,
which has essentially translated extreme eveniysisaihto seismic wave analysis. We have Eisenlsafii®89) article
arguing for multiple case analysis, but it is nedlagous to seismology and some would questiotiaised robustness
standard. But, obviously, conventional statisteaalyses are inadequate, as we argue above. Thehoak and text-
message based, structural equation, & neural netokomputational approach’ suggested by Boisot sicKelvey
(2005) for pre-event counter-terrorism could begample of such a new kind of approach.

5. Strong Motion Seismology—Real-time Extreme Eventalysis What happens to buildings and bridgkesing a
quake is a key source of protecting against futdamsage by improving engineering and building codiestead of
historical organizational analysis, this is moiige€l and on the spot reporting. For organizatiosetreme events that
end up in court, we have the equivalent. Recememés — Enron, WorldCom, etc., have resulted irSdmdanes-Oxley
Act and the Enron case is slowly making its waytigh the court system. As this happens we willngete and more
information about the actual course of events alrmasa daily basis — very much like having instrafisemeasuring
shaking while it occurs. But not all extreme eveesl up in court. Very negative ones such as Edmmand very
positive ones such as Microsoft (antitrust violajioBut for most extreme events involving manadersyood or bad,
there is little record of the dynamics by whichytheafold, except when someone writes up a detaibexe analysis.




Beyond Gaussian Averages 27

This is better than nothing, but again, we havetrtih-claim and robustness problems. Earlier, h@wveve have noted
that one could use samples of extreme cases.

6. Hazards and Safety Codes—Protecting Against ExtreBvents in AdvanceThe difference between Wall Street
and California is striking. California has buildiegdes that, to the best of their ability, allowyolbuilding designs that
will withstand the most extreme events. Whadgnitudequake is possible from the fault near a buildimgl avhat
design will withstand the shaking? Cost is notssué. Buildings are designed to withstand extreraats, not average
quakes. The most worrisome aspects of financiastment organizational life are the extremes, metaverages, but
the code set by the governing body — the Bankrfarhational Settlements in Basel — is based oawss§an approach
to extremes. This is wrong on two counts (MandelBréiudson, 2004: 272): it ignores (1) the trueestof volatility
in financial markets; and (2) the long-term deperngewnhich causes catastrophic events to clustery \Wihere little
protection against financial extremes? Well, ex@gerdon’'t happen very often and protecting againikely events
seems like a lot of wasted money. Yet, in thd 2@ntury the U.S. lost far more billions in the mdmancial
meltdowns than it did from major quakes. Employeesthe Enron employees found out, are especiallyevable,
though early Microsoft employees have done very fvein their extreme event. The research quessonhat are the
costs of negative extreme events, and not jusbiies that make the headlines, but all the othevafe8e (2002) offers
one answer.

7. Code Violations and Punishment—lIf Courts Don’t Exi®& Should managers pay some price? There is no blame
for causing earthquakes. But after every quaken filve U.S. to Japan to Turkey we find that codéatiions occurred
and people died. Can individuals in organizatioesblamed if mutual causal volatility clusters o&&@an we even
define an initiating event? McKelvey (2002) argtiest positive feedback coevolution can be ‘mandgéds is not yet
a topic in any managerial training course. Can rgarsbe held accountable for not starting or stappiutual causal
processes soon enough, or not steering them iprtper direction? Much research needs to be dofueebere have
answers to questions like these.




