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ABSTRACT 

Practicing managers live in a world of ‘extremes’ but management research is based on Gaussian statistics 
that rule out those extremes. On occasion, deviation amplifying mutual causal processes among 
interdependent data points cause extreme events characterized by power laws. They seem ubiquitous; we list 
80 kinds of them – half each among natural and social phenomena. We draw a ‘line in the sand’ between 
Gaussian (based on independent data points, finite variance and emphasizing averages) and Paretian statistics 
(based on interdependence, positive feedback, infinite variance, and emphasizing extremes). Quantitative 
journal publication depends almost entirely on Gaussian statistics. We draw on complexity and earthquake 
sciences to propose redirecting Management Studies. Conclusion: No statistical findings should be 
accepted into Management Studies if they gain significance via some assumption-device by which 
extreme events and infinite variance are ignored. The cost is inaccurate science and irrelevance to 
practitioners. 

Keywords: Power laws; fractals; Gaussian; Pareto; Mandelbrot; distribution; robustness; 
interdependence; positive feedback; extremes; complexity; earthquakes; normal science 
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Virtually all of organizational research presumes Gaussian (normal) distributions, with finite means and variances, 
with appropriate statistics to match – for evidence, study any random sample of current research papers of your 
choosing. It follows that virtually of our research-based lessons to managers stem from Gaussian-based research. 
Suppose this premise is mostly wrong. What then? 

The coast of England appears jagged no matter what kind of measure is used: miles, kilometers, meters, or 
centimeters. This is called ‘scalability’ – no matter what the scale of measurement, the phenomena appear the same. 
Scalability results from what Benoit Mandelbrot (1982) calls ‘fractal geometry’. A cauliflower is an obvious example. 
Cut off a ‘branch’; cut a smaller branch from the first branch; then an even smaller one; and then even another, and so 
on. Now set them in line on a table. Each fractal1 subcomponent is smaller than the former; each has the same shape and 
structure. They exhibit a ‘power law effect’ because they shrink by a fixed ratio. Cauliflowers, and more generally 
power laws, call for ‘scale-free theories’ because the same theory applies to each of the different levels.2 Power law 
effects are Pareto distributed – they have ‘fat tails’, nearly infinite variance, unstable means, and unstable confidence 
intervals. Oppositely, Gaussian distributions have vanishing tails, thereby allowing focus to dwell solely on limited 
variance and stable means. As a result, confidence intervals for statistical significance are clearly defined, stable, and 
narrowed, with the result that attaining statistical significance and publication are easier. 

Quantitative management researchers tend to presume Gaussian (normal) distributions with matching statistics – for 
evidence, study any random sample of their current research. Suppose this premise is mostly wrong. It follows that (1) 
publication decisions based on Gaussian statistics could be mistaken, and (2) advice to managers could be misguided. 
Should we change? 

Power laws seem ubiquitous – they appear in leaves, coastlines, and music (Casti, 1994). Cities follow a power law 
when ranked by population (Auerbach, 1913). The structure of the Internet follows a power law (Albert et al., 1999), as 
does the size of firms (Stanley et al., 1996; Axtell, 2001). Bak (1996) finds them in the avalanches of his famous sand 
piles. Later on we list eighty kinds of power laws (with cites) ranging from atoms to galaxies, DNA to species, and 
networks to wars. Brock (2000) says scalability is the fundamental feature of the Santa Fe Institute’s (SFI) approach to 
complexity science.  

Several theories explain power laws (Newman, 2005; Andriani and McKelvey, 2006). Frequently they hinge on 
interdependence among data points and a possible ensuing positive feedback process. Herein lies the problem for 
‘normal’ science: Most quantitative research involves the use of statistical methods presuming independence among 
data points and Gaussian ‘normal’ distributions. Greene’s (2002) textbook, Econometric Analysis, is excellent 
compendium of ‘robustness’ techniques that all depend on assuming away interdependence and eradicating the effects 
of Paretian fat tails. The trouble is that the many findings of power law phenomena across many natural and social 
sciences indicate that interdependent phenomena are far more prevalent than ‘normal’ statistics assumes and the 
consequent extremes have far greater consequence than the ‘averages’ in between.  

We argue that most, if not all, of the interdependence-based power law theories apply to management research. 
Thus, there is good reason to believe that power law effects are also ubiquitous in organizations and have far greater 
consequence than current users of statistics presume. To the extent this is true, researchers ignoring power law effects 
risk drawing false conclusions in their articles and promulgating useless advice to managers. This because what is 
important to most managers are the extremes they face, not the averages. Given this, we raise the question: How to 
redirect management research toward the study of extremes in ways that still fall within the bounds of an effective 
science – one that still offers credible bases for asserting truth claims? By way of initiating such a change in 
management research, we suggest earthquake science as a more telling underlying discipline, along with continuing 
lessons from complexity science and econophysics (McKelvey, 2004; Mantegna and Stanley, 2000; Newman, 2005).  

We begin by with an introduction to power law phenomena in both natural and social sciences, discussing nine of 
them in more detail. In Section 2 we focus on the predominance of interdependence over independence in phenomena 
studied by management researchers. We question the basic assumptions of statistics-based methods and the robustness 
techniques used to dismiss interdependence effects. We draw implications for management research in Section 3. Our 
conclusion crystallizes the several arguments aimed at redirecting quantitative research methods applied to management 
practice and organizational functioning. 

1 POWER LAW PHENOMENA 

                                                 
1 Simply put, fractals appear similar at any scale of observation. In mathematical terms, fractal objects exhibit fractional 

dimensionality, that is, they are neither lines, nor surfaces or volumes. Their dimension falls in between the classical dimensions of 
Euclidean geometry (Schroeder, 1991).  

2 Our discussion of the organizational and managerial implications of scale-free theory is postponed because of obvious space 
limitations. 
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In recounting the SFI Vision, Brock (2000, 29) says, 
The study of complexity…is the study of how a very complicated set of equations can generate some very simple patterns for certain 
parameter values. Complexity considers whether these patterns have a property of universality about them. Here we will call these patterns 
scaling laws. 

Many complex systems – resulting from emergent dynamics – tend to be ‘self-similar’ across levels. That is, the same 
process drives order-creation behaviours across multiple levels of an emergent system (Kaye, 1993; Casti, 1994; West 
et al., 1997). These processes are called ‘scaling laws’ because they represent empirically discovered system attributes 
applying similarly across many orders of magnitude (Zipf, 1949). Scalability occurs when the relative change in a 
variable is independent of the scale used to measure it. Brock (2000, 30) observes that the study of complexity ‘…tries 
to understand the forces that underlie the patterns or scaling laws that develop’ as newly ordered systems emerge. 

Included in fractal geometry are power laws, which are frequently ‘…indicative of correlated, cooperative 
phenomena between groups of interacting agents…’ (Cook et al., 2004). Power laws often take the form of rank/size 
expressions such as F ~ N –β, where F is frequency, N is rank (the variable) and β, the exponent, is constant. In 
exponential functions the exponent is the variable and N is constant. Theories explaining power laws are also scale-free. 
This is to say, the same explanation (theory) applies at all levels of analysis. Natural scientists tend to use the term 
‘scale-free’ – as in measure-independent – as opposed to ‘level-free’. We will stay with their term. 

Power law phenomena exhibit Paretian rather than Gaussian distributions – see Figure 1. The difference lies in 
assumptions about the correlations among events. In a Gaussian distribution the data points are assumed to be 
independent-additive (hereinafter simply ‘independent’). Independent events generate normal distributions, which sit at 
the heart of modern statistics. When causal elements are independent-multiplicative they produce a lognormal 
distribution, which turns into a Pareto distribution as the causal complexity increases (West and Deering, 1995). When 
events are interdependent, normality in distributions is not the norm. Instead Paretian distributions dominate because 
positive feedback processes leading to extreme events occur more frequently than ‘normal’, bell-shaped Gaussian-based 
statistics lead us to expect. Further, as tension imposed on the data points increases to the limit, they can shift from 
independent to interdependent (more on this later).  

For sure, not all data points interact to produce power law effects. Especially in natural science, data points are 
frequently independent. In social phenomena, however, power laws seem more likely because interdependence is more 
prevalent. It is also true that power laws may result from causes other than interdependence-caused fractals (Andriani 
and McKelvey, 2006). Interdependence, nevertheless, is a common cause of power law effects and Pareto distributions. 
Given their scale-free nature, fractals always call for scale-free theory. In what follows, however, we zero in on the 
implications of power law effects and fat tails against the use of Gaussian statistics. We develop organizational scale-
free theory elsewhere (Andriani & McKelvey, 2006). 

Physical, biological, social, organizational, and electronic systems show an impressive variety of fractal phenomena 
(Kaye, 1993). We list many in Table 1 (many categories include several studies, though we mostly cite just one). 
Below, we illustrate some lines of fractal research further. Many leading scholars believe that power laws are the best 
analytical framework to describe the origin and shape of many natural objects (Mantegna and Stanley, 2000). Given the 
ubiquity of these findings, and the nature of the underlying scale-free theory, we think they are equally ubiquitous 
phenomena in organizations, but unknown and unappreciated as to their causes and effects. In sum, power laws usually 
indicate the presence of three underlying features: (1) fractal structure; (2) scale-free causes (and scale-free theories); 
and (3) Pareto distributions. 

>>>Insert Figure 1 and Table 1 about here<<< 

1.1 Fractal Geometry 
Fractal geometry was developed by Mandelbrot (1975) to make sense of the rough, irregular shapes of most natural 

objects, from cauliflowers to coastlines, trees, and galaxies. As Mandelbrot (1975: 1) writes: ‘Clouds are not spheres, 
mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line’. 
The coasts of England and Norway exemplify scalability: the length of the coast profile depends with inverse 
proportionality on the length of the ruler – i.e., the smaller the ruler, the longer the coast. A fractal (Mandelbrot and 
Hudson, 2004, 118) is: ‘a pattern or shape whose parts echo the whole’. Fractals are self-similar objects. Like the 
cauliflower, so the Eiffel Tower: the four largest sections are made up of large trusses, which are composed of smaller 
trusses, etc. (Mandelbrot, 1982, 131–132).3  

                                                 
3 Mandelbrot argues that Eiffel’s Tower ‘incorporates the idea of a fractal curve full of branch points.’ Just last year Weidman and Pinelis (2004) 
proved that the four corner columns of the Tower are shaped as two log normal distributions – one for the base and one for the upper tower. They 
appear as Paretian distributions on end (more on these later). These formulas result from Eiffel’s discovery that by using Paretian shaped columns all 
the trusses could be designed as tension truss members, thereby vastly reducing the overall weight of the Tower – a truly remarkable achievement that 
is still a marvel to observe! 
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Fractals are not idle mathematical curiosities. Fractals and power laws are found from atomic nanostructures (~10–10 
meters) to galactic megaparsecs (~1022 m) – across a range of 32 orders of magnitudes (Baryshev and Teerikorpi, 2002). 
In biology, West and Brown (2004) demonstrate a power law relationship between the mass and metabolism of virtually 
any organism and its components – based on fractal geometry of distribution of resources – across 27 orders of 
magnitude (of mass). Self-similarity is key to a fundamental property of fractals and power laws: linear scalability. 
Power law systems do not exhibit a characteristic scale and consequently enjoy some peculiar statistical properties. 
Systems that scale linearly are part of a family of distributions named after the French mathematician Cauchy:  

As a result of this linear scaling, the distribution of the average of N identically distributed Cauchy variables is the same as the original 
distribution. Thus, averaging Cauchy variables does not improve the estimate…. This is in stark contrast to all probability distributions with a 
finite variance, σ2, for which averaging over N variables reduces the uncertainties by a factor N/1 . This nonstandard behavior of the 

Cauchy distribution is a consequence of its weakly decaying ‘tails’ that produce too many ‘outliers’ to lead to stable averages (Schroeder, 
1991, 159).  

This observation appears over and over in the following examples – the point is crucial.4  

1.2 Spatio-structural Properties of Systems 
This category groups spatio-structural properties of networks, assuming nodes or links as units of analysis. We 

discuss two: (1) rank-size rules focusing on nodes, which can be cities (size of population), words (frequency in 
languages), profits of firms (production of wealth), etc.; and (2) connectivity patterns that derive generic features of 
networks from the connectivity topology. 

Language and Cities. Zipf (1949) found that a power law applies to word frequencies (Estoup, 1916, had earlier found 
a similar relationship). Casti (1994, Ch. 6) shows that, whereas a monkey at a typewriter generates different words of 
equal length at equal probability, word usage in English follows a perfect power law – if word usage frequencies and 
rank-order are plotted on double-log scales, the words, the, of, and, to, I, or, say, really, quality diminish at a perfect –1 
slope. Zipf’s Law, a rank/frequency power law, is a classic example of a scale-free effect. Auerbach (1913) discovered 
that the rank/size plot of American metropolitan cities obeys a power law (on a double logarithm graph, size and rank of 
cities fit a straight line with slope of –1) – see Figure 2. Krugman (1996) replicated it in the 1990s. His findings were so 
remarkable that he concluded: 

We are unused to seeing regularities this exact in economics—it is so exact that I find it spooky. (p. 40) 

>>>Insert Figure 2 about here<<< 
Social Networks. The legendary Hungarian mathematician Paul Erdos, in introducing random network theory, 

assumed links are randomly distributed across nodes and form a bell-shaped distribution, wherein most nodes have a 
typical number of links with the frequency of remaining nodes rapidly decreasing on either side of the maximum. Watts 
and Strogatz (1998) show, instead, that real networks follow the small world phenomenon whereby society is visualized 
as consisting of weakly connected clusters, each having highly interconnected members within. This structure allows 
cohesiveness (high clustering coefficient) and speed/spread of information (low path length) across the whole network.  

In their initial small world model, Watts and Strogatz also assume that links are Gaussian distributed. Studying the 
World Wide Web, however, Barabási and colleagues (2000) find that the structure of the Web shows a power law 
distribution, where most nodes have only a few links and a tiny minority – the hubs – are disproportionately very highly 
connected. The system is scale-free, no node can be taken to represent the scale of the system. Defined as a ‘scale-free 
network’, the distribution shows (nearly) infinite variance and the absence of a stable mean. It turns out that most real 
life small world networks are scale-free (Ball, 2004) and fractal (Song et al., 2005). Scale-free networks appear in fields 
as disparate as epidemiology, metabolism of cells, Internet, and networks of sexual contacts (Liljeros, 2001)). 

Industrial Agglomerations. Here we report the work that one of us has done on power laws and industrial 
agglomerations in Italy (Andriani, 2003a,b). Axtell (2001) shows that the distribution of firm size follows a power law. 
Our work extends Axtell’s analysis to a sub-regional context.  

The agglomerations we consider are the so-called travel-to-work areas (TWAs) in Italy. TWAs are relatively self-
contained economic and social units, calculated by dividing a national territory into units that maximize internal home-
to-work commuting and minimize inter-TWAs commuting (ISTAT, 1997). In Italy, TWAs are organized into a 
taxonomy (Sforzi, 1990; Cannari and Signorini, 2000) that divides the agglomerations into two groups: cluster-based 
(type D) and non-cluster-based (type A) agglomerations5. To test whether Italian industrial agglomerations follow a 

                                                 
4 Vilfredo Pareto discovered the ‘wealth’ power law – Pareto’s Law – and ‘Pareto distribution’ in 1897. Though other related distributions exist – 
Cauchy, Lévy – we stay with Pareto since he was the first. 
5 The basic idea is that the higher the percentage of home-to-work commuting taking place within the boundaries of an area, the higher the chance of 
capturing within the area some territorially-specific social and industrial aspects. TWAs represent an algorithmic way to define the micro-units of 
analysis of economic geography and economic sociology. In Italy the 1992 Census identified 784 units. The classification ranks industrial 
agglomerations according to the probability of including within their boundary an industrial cluster. The theoretical ground for this work is rooted in 
the Neo-Marshallian theory of industrial clusters (Becattini, 1990; Storper, 1997). This is based on a multi-criteria scale (ISTAT) that includes the 
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power law, we use linear regression. The results for both types of agglomerations (D and A) are statistically significant 
(type D: r = 0.997, p < 0.0001, slope β = - 0.995; type A: r = 0.995, p < 0.0001, slope β = - 0.997); they show that 
interconnected agglomerations of firms very strongly fit the rank/size power law distribution with slope of –1 (see 
Figure 3). The fact that the distribution of firms’ size at a generic time t is power law distributed indicates that the 
growth mechanisms (that give rise to that distribution) follow a power law (see also Stanley et al., 1996). Interestingly, 
the division between cluster and non-cluster type doesn’t seem to affect the power law distribution in terms of 
regression coefficient and/or slope. This is surprising as it indicates that the growth mechanisms are independent from 
the internal logic of organizing. We speculate that the power law distribution in firms’ size points towards a universal 
growth mechanism, based on a fractal distribution of economic resources.  

>>>Insert Figure 3 about here<<< 

1.3 Dynamic Properties 
Our second category covers theories describing the dynamics of how and when new entities emerge. In this case, a 

power law characterizes the nature of the behavioral properties of a system subjected to a perturbation of some kind. 
Whereas the former category focuses on the type of distribution of the network-forming elements (nodes and links), this 
one analyses a network’s emergent collective behavior. Classical examples are phase transition models in physics 
(Haken, 1977) and Bak’s (1996) self-organized criticality (SOC). In both cases, the emergence of a power law is due to 
emerging connectivity. However, in SOC the system evolves spontaneously towards the critical threshold, whereas in 
phase transition models the order parameters must be activated by an external agent (i.e., energy source) to achieve 
criticality. 

Coevolution. In economics, the idea of positive returns dates back to Young (1928). Arrow (1962) introduces 
mutual causal learning effects (see also Holland, 1986). Maruyama’s (1963) classic paper on deviation amplifying 
mutual causal processes introduces the idea that some interactions are not negative feedback processes but foster the 
opposite – positive feedback. Interaction among agents6 and mutual causality lie at the heart of SFI’s theories of 
emergent self-organization (Arthur, 1983, 1988; Holland, 1988). As time progresses, each agent makes connections and 
then may coevolve with other agents, perhaps a little with all of them at first but then positive feedback sets in with 
some negative feedback with others and some mutual causal relationships expand and others contract. The result may be 
the formation of networks and perhaps groups of agents, that is, new order. Assuming that the set of agents is large 
enough and enough time passes, a power law arrangement of connected agents and perhaps newly formed groups 
(agents) results. Axelrod and Bennet’s (1993) study of alliance formation is one example of emergent structure from 
coevolution. Another is Carley and Hill’s (2001) study where (1) the formation of subgroups occurs, followed by (2) the 
emergence of culture that supervenes to alter agents’ coevolutionary search for improved performance.  

Economics, Finance, and Movies. Pareto (1987) first noticed power laws and fat tails in economics. Zipf (1949) 
and Mandelbrot (1963) rediscovered them in the 20th century, spurring a small wave of interest in finance (Fama, 1965; 
Montroll and Shlesinger, 1984). However, the rise of the ‘standard’ model of efficient markets,7 sent power law models 
into obscurity. This lasted until the 1990s, when the occurrence of catastrophic events, such as the 1987 and 1998 
financial crashes, that were difficult to explain with the ‘standard’ models (Bouchaud et al., 1998), re-kindled the fractal 
model. The case against the ‘standard’ model is set by Mandelbrot (Mandelbrot and Hudson, 2004, 13) with a simple 
observation:  

…By the conventional wisdom, August 1998 simply should never have happened…. The standard theories…would estimate the odds of that 
final, August 31, collapse, at one in 20 million – an event that, if you traded daily for nearly 100,000 years, you would not expect to see even 
once. The odds of getting three such declines in the same month were even more minute: about one in 500 billion (p. 4)…. [An] index swing 
of more than 7 percent should come once every 300,000 years; in fact, the twentieth century saw forty-eight such days.  

The reason for the discrepancy between reality and theory lies in the crucial assumption by Finance Orthodoxy: 
variations in price are statistically independent, and normally distributed. These assumptions allow the use of calculus, 
modern probability and statistical theory, and give rise to a vast edifice of sophisticated mathematics. However, they 
conflict with reality: The price of virtually any stock or commodity exhibits punctuated equilibrium behavior, in which 
chaotic and turbulent periods alternate with stable ones (Mandelbrot, 1963; Fama, 1965; Bouchaud et al., 1998; Moss, 
2002). Wassily Leontief, Nobel Laureate in economics, recognized the struggle of orthodoxy with reality:  

In no field of empirical inquiry has so massive and sophisticated a statistical machinery been used with such indifferent results. (quoted in 
Mandelbrot and Hudson, 2004, 275) 

Another example of power laws in economics appears in the book Hollywood Economics (De Vany, 2004). He 

                                                                                                                                                                  
relative weight of (a) manufacturing activities, (b) employment in SMEs and (c) incidence of specialization in manufacturing sectors. 
6 ‘Agent’ refers to semi-autonomous entities (i.e. ‘parts’ of systems), such as atoms, molecules, biomolecules, organelles, organs, organisms, species, 
processes, people, groups, firms, industries, etc. 
7 Signified by Portfolio Theory (Markowitz, 1959), the Capital Asset Pricing Model (Sharpe, 1964), and the Black-Scholes (1973) Option Pricing 
Theory. 
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shows that movie profits are Pareto distributed, i.e., form a power law. He demonstrates that the fat tails of the Pareto 
distribution dominate the movie industry – extreme events occur that should be negligible in a Gaussian world. The 
industry survives thanks to blockbuster movies that ‘have legs’ and compensate for the dismal failures of most movies – 
which have little effect on a studio’s financial performance. In fact, movies don’t seem to show any significant 
correlation between any of the variables used to predict final profits. Budgets are uncorrelated with earnings and the 
‘star system’ allows no indication about final success. The only recognizable pattern is Paretian distributions of profits. 

Self-Organized Criticality. This group of models is symbolized by Bak’s (1996) sandpile experiments. A sandpile 
subjected to an infinitesimal external perturbation (sequentially adding single grains of sand) evolves toward a critical 
state, characterized by a critical slope, whereby any additional grain induces a systemic reaction that can span any order 
of magnitude, with a frequency distribution expressed by a power law. This is counter-intuitive. We generally assume a 
linear relationship between perturbation size and a system’s reaction, i.e., small causes yield small effects. This is true 
before SOC is attained. Thus, before criticality, each falling grain has a constant probability of displacing an adjacent 
grain. The probability of an avalanche therefore scales exponentially with the number of sand grains. This makes large 
avalanches highly unlikely. However, at criticality a power law distribution results from the global connectivity of the 
sandpile. As Bak (1996, 60) writes: ‘In the critical state, the sandpile is the functional unit, not the grain of sand’. SOC 
dynamics arise when an emergent system of links connects local pockets into a coevolving whole such that small and 
local fluctuations may be amplified to achieve systemic effects. More generally, as the tension in the system increase to 
the SOC limit (usually as a result of externally imposed tension – in Bak’s SOC this is a function of the accumulating 
sand grains – independent data points become interdependent.8 Mathematically this means that sandpile behavior obeys 
a power law of the type: F ~ S 

–α, where F represents avalanche frequency with size S.  

SOC occurs frequently (Buchanan, 2000). From the dynamics of earthquakes (Gutenberg and Richter, 1944) and the 
succession of booms and busts in economic cycles (Krugman, 1996), to the dynamics of supply chains (Scheinkman 
and Woodford, 1994), a common pattern appears across disparate fields. A few implications follow. First, the fact that a 
self-critical system spontaneously tunes itself towards a self-critical state (Bak and Chen, 1991; Kauffman, 1995) – that 
is, ‘…the system organizes itself towards the critical point where single events have the widest possible range of effects’ 
(Cilliers, 1998, 97) – makes reductionism inappropriate for the study of SOC. Second, the conventional explanation 
regarding mass extinctions (e.g., dinosaurs at the end of Cretaceous Period) is imputed to exogenous events (asteroid or 
eruptions). Instead, according to SOC, internal causes may have been progressively amplified until a catastrophic chain 
reaction took place (Raup, 1999, 217–218; Gould, 1990).  

Biological Growth Units. Take a simple biological entity attempting to survive and grow in its habitat. Bykoski 
(2003) calls such a bioeconomic agent a ‘growth unit’, which is ‘…an integral robust entity’.9 At the simplest 1-cell 
level, a unit gains some advantage in coping with its habitat – accomplishing all of Kauffman’s tasks10 – if it grows. 
Growth is for some reason and in the bio- and econospheres the reason is usually coping with a demanding environment 
– resources, constraints, competitors. A bio-unit can do this by growing in size, i.e., doubling, and then doubling again, 
and so on. Furthermore, from Ashby’s (1956) Law of Requisite Variety we know that entities that increase internal 
variety to match external variety have improved adaptive capability. But, only multi-cell units can build up variety. 
These reasons are why many biota eventually grew from the initial 1-cell organisms to dinosaurs and mammals. 

While divisions increase by the square, however, their pair-wise connections, c, increase by the formula: n(n–1)/2, 
where n = # of units; thus if n = 2, 4, 8, 16, 32, 64 then c = 1, 6, 28, 120, 496, 4032. A unit has to accomplish two 
things: (1) Some of its energy must go toward coping with its environment – it has to move, find food, process what it 
ingests, accomplish Kauffman’s tasks, etc.; and (2) Some of its energy goes into maintaining and using the pair-wise 
communications with other units. Because of the n|c ratio, at some point the amount of energy going into 
communication significantly detracts from the unit’s ability to cope successfully with its environment. At this point the 
unit divides into two units (often) specializing in different tasks, bringing the over-communication problem back under 
control. The underlying cause of the power law is the basic n|c relationship and the need to keep dividing to better cope 
with the environment but keep communication costs under control. Carneiro (1987) focuses on the surface/volume ratio 
– a 2/3 power law called the Square-Cube Law – to explain why villages never exceed a relatively small size. 

                                                 
8 A classic form of this, known as the ‘Bose-Einstein condensate,’ explains the onset of superconductivity; at the tension limit – in this case because of 
extreme cold – particles shift from independence to interactivity, thereby allowing superconductivity. For more, see: 
http://en.wikipedia.org/wiki/Bose-Einstein_condensate 
9 Bykoski’s units are, of course, agents. But, here we will use the term unit when we refer to an agent with growth capabilities – since many agents do 
not grow. Units can grow by doubling or by attracting a new unit into the system and then connecting with the new unit. Cells grow by splitting; 
species grow when members attract mates that produce offspring. 
10 Kauffman (2000), a biologist, argues that a bioeconomic agent survives by ‘earning a living’ (e.g., a bacterium swimming in the blood to find food 
or a firm trying generate income). From this basis he says, ‘work is the constrained release of energy’ (p. 100). He then points out that to survive and 
grow, agents have to complete a number of tasks to actually self-organize – tasks ‘…involving work, constraint, constraint construction, propagating 
work, measurements, coupling, energy, records, matter, processes, events, information, and organization.’ (p. 104) 



Beyond Gaussian Averages 9 

Determinism. First, we have macro-deterministic theory in which the joint probability of equally probable higher-
level external constraints occurring at the same time sets up a power law.11 In Table 2 we show several ecological 
constraints regulating a species, each having some functional form. For each, there is some rate at which it could deviate 
to significantly undermine advantageous species adaptation, say once in several hundred years, because of underlying 
geological and climatic changes. This would set in motion a rank/size power law of species extinctions. Gould (1990), 
Raup (1993), and Bak (1996) offer additional discussions of randomly occurring ecological causes of mass extinctions 
(or explosions).12 

>>>Insert Table 2 about here<<< 
Second, we could have a micro-deterministic theory built from reductionist causes – also shown in Table 2. For a 

particular species, each of these has some advantageous configuration. There is some probability that each may not be 
advantageous, leading to adaptive insufficiency in a changing world. This sets up a power law effect (Raup, 1986; Bak, 
1996). 

Intra-Organizational Power Laws. Stanley et al. (1996) report out a study on the statistical properties of all publicly 
traded manufacturing firms listed in Compustat (US) for the period 1975–1991. They start with Gibrat’s model of 
company growth, which assumes that growth in sales is independent of firm size and uncorrelated in time (i.e., 
lognormal). They find that, in reality, variance in growth rate is Paretian not Gaussian, and follows a power law with 
exponent β: 

( )0 0s a S βσ −=  

where: σ (s0) is standard deviation of growth per year based on initial sales value, s0; growth rate = r = S1/S0 = change in yearly sales; s0 ≡ ln S0; a is a 
constant (~6.66); β = the slope of factors affecting growth – ranging from ½ to 0.  

The equation holds over seven orders of magnitude of firm size. The power law holds when growth is measured as cost 
of goods sold (β ~.16), assets (β ~.17), property, plant and equipment (β ~.18), and number of employees (β ~.16).  

Given their findings, Stanley et al. conclude that processes governing growth rates are scale-free. They give an 
example of a hierarchical ‘Fordist’ type organization where the CEO can order an increase in production, causing a 
Markov chain along the hierarchical levels – each subsequent action-step at time t is a replica of action at step t–1. If it 
is carried out exactly from top to bottom of the firm, then the organization is strongly interdependent (β = 0 for total 
top-down control). But lower level managers and employees rarely follow orders exactly. If they all ignore the CEO’s 
order, i.e., all parts of the firm operate independently, then β = ½. Usually the employees follow orders with some 
probability. Thus, for a β = ~.15 or so (given the findings by Stanley et al.), we expect a power law effect to obtain. 
Note that β ~.15 could be due to a CEO’s order implemented with some probability or it could be due to an emergent 
self-organizing process by the employees. Bottom line: Either top-down control or bottom-up self-organization can 
produce β ~.15 – and a power law event – as depicted in Figure 4.  

>>>Insert Figure 4 about here<<< 
Diatlov (2005) also applies power law dynamics to intra-organizational decision events. He sees an equivalent 

‘power law of power’. For years Mintzberg has been pushing the idea of strategies as weeds (Mintzberg and McHugh, 
1985). Diatlov quotes Mintzberg et al. as follows:  

Strategies could be traced back to a variety of little actions and decisions made by all sorts of different people sometimes accidentally or 
serendipitously, with no thought of their strategic consequences. Taken together over time, these small changes often produce major shifts in 
direction. (Mintzberg et al., 1998, 178).  

Diatlov also observes that Braybrooke and Lindblom’s (1963), ‘disjointed incrementalism’ fits Mintzberg’s process and 
quotes Lindblom (1968: 25–27) as saying: ‘Policy making is typically a never-ending process of successive steps in 
which continual nibbling is a substitute for a good bite’. Also building from Lindblom’s (1959) ‘science of muddling 
through’, Cohen, March, and Olsen (1972) develop their ‘organized anarchy’ approach – the ‘garbage-can model’. 
Organized anarchy reflects both top-down and bottom-up creation of β ~.15. These leading scholars, after intensive 
studies of emergent strategy, all describe the base-line conditions for β ~.15. Diatlov’s point is the idea that both Fordist 
and self-organizing forms produce power law effects inside organizations (see also Bak, 1996). 

                                                 
11 In general a multiplicative process can generate either a distribution called lognormal or a power law (West and Deering, 1995). In the former, the 
logarithm of the variable generates a bell-shaped symmetric distribution. It is often a matter of judgment to decide whether experimental data fit a 
Pareto or a lognormal distribution (West and Deering, 1995). The difference between the two resides in the amplificative character of the power law. 
As West and Deering (p. 126; 156, 157) point out: ‘The scale-free character of the underlying process is shown to provide an amplification process 
that induces the transition from lognormal to inverse power law…. As lognormal systems become ever more complex, their distributions become 
broader, and they take on more of the qualities associated with 1/f-behavior…. This means that increasingly complex lognormal phenomena take on 
more of the fractal, or scale-invariant, characteristics of systems governed by inverse power laws.’ 
12 For a recent review of the arguments about an asteroid hit vs. the joint probability of other changes in ecological elements such as climate, sea level, 
oxygen level, etc., see Wright (2005). 
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Diatlov’s research (2005) tracks the implementation of ‘information technology’ inside financial institutions, 
ranging from local, lower level, short-term, frequently changed decision events to longer-term, upper-level, and more 
pervasive managerial decisions covering longer time horizons. He is the first researcher we know of who shows a power 
law configuration of internal organizational decision events.  

So far, our separation of power law phenomena into spatio-structural and dynamic phenomena begs the question 
whether the different phenomena described by power laws share a common property. Mandelbrot (1963); quoted in 
2004, 170) writes:  

…The cotton story shows the strange liaison among different branches of the economy, and between economics and nature. That cotton 
prices should vary the way income does; that income variations should look like Swedish fire-insurance claims; that these, in turn, are in the 
same mathematical family as formulae describing the way we speak, or how earthquakes happen—this is, truly, the great mystery of all.  

Simon (195, 425) pointed to a common probability mechanism:  
[The power law’s] appearance is so frequent, and the phenomena in which it appears so diverse, that one is led to the conjecture that if these 
phenomena have any property in common, it can only be a similarity in the structure of the underlying probability mechanism.  

Others also argue that the appearance of power laws points to common underlying dynamic and coevolutionary 
mechanisms (Bak, 1996; Lee et al., 1998; Shin and Kim, 2004; West and Brown, 2004). Stanley, a founder of 
econophysics, writes: 

If the same empirical laws hold for the growth dynamics of both countries and firms, then a common mechanism might describe both 
processes. (Stanley et al., 1996, 3277)  

We believe the underlying mechanism has become apparent. Across all nine kinds of power law phenomena we see that 
the causal dynamic is interdependence among agents (data points) that – with some probability – leads to power law 
effects. Their positive-feedback-based volatility spikes and consequences may be most obvious among markets, 
earthquakes, and hurricanes, but evidence indicates they appear everywhere, even among social phenomena, even 
including organizations. For some natural scientists, power laws have reached the mathematical regularity of pervasive 
natural laws such as gravity or entropy production (Bak, 1997; Halloy, 1998). 

2 CONNECTIONISM VS. INDEPENDENCE IN ORGANIZATIONS 
2.1 Mohr’s Variance vs. Process Theories  

As noted earlier, Mandelbrot started arguing for the importance of fractal geometry and power law thinking in 
economics and finance in the 1960s. Perhaps the first person to go down this path in organization theory is Laurence 
Mohr, who argues for differentiating between ‘variance’ and ‘process’ theory. As it turns out, his argument also rests on 
the fundamental distinction between independence and interdependence. Mohr (1982) begins his book by reviewing 
some 984 findings about what leads to innovation. The results are consistently one/third negative with nothing 
unequivocally positive – i.e., no clear causal determinant. He concludes by asking, what is the point of doing yet 
another study, given these circumstances? He then describes all the foregoing studies as examples of ‘variance theory’ 
and proposes ‘process theory’ instead. He defines them as follows (our emphasis): 
• ‘Variance theory, roughly, is the common sort of hypothesis or model, such as a regression model, whose orientation is toward explaining the 

variance in some dependent variable’. 

• ‘Process theory presents a series of occurrences in a sequence over time so as to explain how some phenomenon comes about. Diffusion models 
are often good examples of the latter’.  

In discussing process theory, Mohr emphasizes the term, ‘interaction’, and introduces the term, ‘complexity’, drawing 
from Brunner and Brewer (1971, 14):  

…Complexity refers to the interdependence of influences in the world itself, whereas interaction refers to the same sort of phenomenon as it 
is formalized in one’s models of the world. 

What is important is ‘their role as amplifiers or contractors of the impact of other causes’. (p. 14)  
Process theory eschews efficient causality [Aristotle’s energy-based force] as explanation and depends instead on rearrangement – that is, on 
the joining or separation of two or more specified elements rather than on a change in the magnitude of some element. (p. 45) 

Mohr shifts from independence and variance analysis to interdependence, connectionism, mutual causal, and 
coevolutionary processes. In essence, he shifts from Gaussian to Paretian science. 

2.2 Pareto vs. Gauss 
Scientists tend to place too much focus on averages…[whereas] much of the real world is controlled as much by the ‘tails’ of distributions as 
means or averages: by the exceptional, not the commonplace; by the catastrophe, not the steady drip…. We need to free ourselves from 
‘average’ thinking. (Nobel Laureate P. W. Anderson, 1997, 566) 

Extremes vs. Averages. Linear thinking is normal. Scientific and mathematical models are based on the concepts of 
equilibrium and linearity. Linearity means two things: (1) proportionality between cause and effect, and (2) that the 
dynamic of a system can be reconstructed by summing up the effects of single causes acting on single components 
(Nicolis and Prigogine, 1989), which allows efficient causality to operate, equations to be solved, and predictive 
modeling. Economics, for instance, is almost theistic in its (scarcely verified) assumption that economic phenomena 
trend toward ‘general equilibrium’ (Mirowski, 1989, 1994; Ormerod, 1994). However, this assumption allows linear 



Beyond Gaussian Averages 11 

equations and analytical simplicity. Meyer et al. (2005) cite Abbott’s (2001, 7) discussion about how the ‘general linear 
model’ from Newtonian mechanics came to ‘subtly shape sociologists’ thinking’.  

By focusing on systems in equilibrium, researchers implicitly accept that the number of possible states a system may 
attain is limited (and computable) and that search time following the onset of instability is short compared to 
‘equilibrium’ time. For this to be true the many elements comprising a system must be assumed independent13 data 
points. If we take 100 companies approximately of the same size belonging to the same sector and assume 
independence, and plot a variable, say profit, we expect most events to pack around the mean, exhibiting the classic bell 
curve. The bell shaped distribution is by far the most studied statistical distribution; it is assumed to correctly 
characterize much of our discoveries about the natural and social worlds. In real life, however, the crux of the point is 
whether all events are independent. In real life, for example, these companies could: benchmark against each other, 
imitate those perceived as successful, exchange information, organize cartels, pursue mergers and acquisitions, compete 
for limited resources, etc. In a word, they are most likely interdependent, not independent!  

Gaussian and Paretian distributions differ radically. The Gaussian distribution is reliably characterized by its stable 
mean and finite variance (Greene, 2002). A Paretian distribution doesn’t show a well-behaved mean and variance. A 
power law, therefore, has no ‘average’ that can be assumed to represent the typical features of the distribution and no 
finite variance upon which to base confidence intervals (Moss, 2002). There are two major implications: 
1. The dream of social science, of building robust frameworks that allow prediction, is shattered by the absence of statistical regularities in 

phenomena dominated by persistent interconnectivity. Absent stable mean and finite variance, the probabilistic assessment of individual 
outcomes becomes much more difficult. This point reflects the more pervasive and structural issue of nonlinearity and emergence in complex 
systems (Sornette, 2003).  

2. Paretian tails decay more slowly than those of normal distributions. These fat tails affect systems’ behaviors in significant ways. Extreme events, 
that in a Gaussian world could be safely ignored, are not only more common than expected but also of vastly larger magnitude and consequence. 
For instance, ‘[standard] theory suggests the over that time [1916–2003] there should be fifty-eight days when the Dow moved more than 3.4 
percent; in fact, there were 1001. (Mandelbrot and Hudson, 2004, 13).  

Statistics: Obscuring Rather than Clarifying? A power law world is dominated by extreme events ignored in a 
Gaussian-world. In fact, the fat tails of power law distributions make large extreme events orders-of-magnitude more 
likely. In a ‘normal’ world, where distributions show finite variance, extreme events are so different from the typical 
and so rare that they don’t significantly influence either the mean or the variance. Hence, ignoring them is a safe 
strategy. However, insurance companies that use normal distributions to assess likelihood of extreme events often get 
their fingers burned. Hurricane Katrina of August 2005, the Christmas 2004 tsunami in Asia, the four hurricanes hitting 
Florida in 2004, the tremendous devastation following floods in Central Europe in 2003, earthquakes of scale 7 and 
higher, etc. indicate that we are not in a ‘normal’ world. On the contrary, the action and highest cost is in the tails 
(Kirchgaessner and Kelleher, 2005). In the movie industry, almost all the profit come from the blockbusters, that is the 
extreme events, with the majority of the movies contributing next to nothing to profitability. If this is true, normal 
distribution statistics obscure rather than clarify. The practices of (1) searching for the mean so as to conveniently 
summarize the nature of a phenomenon without attending to the full range of its nature; (2) relying on variance to build 
confidence intervals and therefore assess the likelihood of single events; and even more damaging (3) the habit of 
excluding outlying events, all become misleading or openly wrong in a power-law world. We need methods and 
statistics that include (if not actually celebrate) extremes rather than assume them away! 

Power Law Statistics. A non-Gaussian world demands methods accounting for path-dependency, nonlinearities, 
emergent properties of systems, and the dynamics of multiple punctuated equilibria. The assumption of independence of 
events, which underlies the Gaussian world and the classical reductionist ‘variance process’ approach (Mohr, 1982) and 
the linear approach that underlies large parts of classical and quantum sciences (West and Deering, 1995) could lead to 
the wrong analytical tools and conclusions when dealing with connectionist dynamics (Kauffman, 1993; Holland, 
1995). Nowhere is a case more compellingly made for a transition from Gaussian to Paretian statistics than by Meyer et 
al. (2005). Even though they start with ‘normal’ organization science research methods, in each of the four studies 
conducted they find interdependency effects dominating and as a result have to throw out the conventional methods they 
start with. They conclude with a focus on ‘hubs, connectors, and power laws’, scale-free theory, and the 
interdependency and positive feedback effects found in network formations. In their discussion of their 4th study, they 
note that ‘…observing outliers may be more informative than observing average or typical entities….’ They then 

                                                 
13 The issue of independence depends on the linearity (or nonlinearity) of the dynamics that generate the data points (West and Deering, 1995). If a 
system is linear, then its overall dynamic results from (a) the linear addition of the dynamics of its single components and (b) the principle of 
proportionality between cause and effect. Systems that are moderately nonlinear can be treated as the combination of a linear system plus a 
perturbation term. In practical terms, this means that the nonlinearity can be assumed away. In both cases, the system’s dynamic is additive, and 
respects the basic conditions for the application of the Gaussian statistics. In the presence of cooperative phenomena or of strong coupling between the 
system’s parts, however, no perturbation theory can be used to linearize the system. The parts and the measures obtained are strongly interdependent. 
Under these conditions, the basic conditions for the application of Gaussian statistics are not respected. Furthermore, the more tension imposing on a 
system the more likely interdependence and SOC prevails. 
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mention the Anderson quote we started this section with. 

Where extreme events dominate and variability is infinite, the most statistics can do is to indicate the shape of the 
distribution, that is, the general attractor14 toward and around which the events will tend to self-organize (Gleick, 1987; 
De Vany, 2004). The universality of the power law attractor – really the underlying interdependence-and-positive-
feedback effects – is confirmed by the fact that these effects exist at 27 magnitudes in the biological world, as shown 
across many sciences. In light of this vast generality, we detail the main features of a power law based statistical method 
in Table 3. 

>>>Insert Table 3 about here<<< 

2.3 Robustness Tests Bury The Most Important Variance 
All the world believes it firmly, because the mathematicians imagine that it is a fact of observation and the observers that it is a theorem of 
mathematics. (Henry Poincaré, 1913, about the Gaussian normal distribution)15 

Management researchers using statistics as their basis of making truth claims – usually translated as findings 
significant at p < .05 or .01 – mainly use statistical methods calling for Gaussian distributions. Gaussian science, so to 
speak, produces equations looking like this: 

Variance of a dependent variable =∫ variables  +  error term                          (1) 

In Paretian science the expression looks like this: 

Variance of a dependent variable  =∫ variables  + extremes  +  error term                (2) 

where ‘extremes’ includes power law events stemming from interacting, self-organizing, mutual causal agent behaviors 
rather than the ‘independent’ events underlying the variables’ variance (Sornette, 2003). Normal Science, which is 
really normal-distribution-based science, wants to assume away the presence of the ‘extremes’, turning instead to tests 
of robustness within the Gaussian framework of handling data to show this assumption is not damaging.  

Greene’s textbook, Econometric Analysis, (2002) is in its 5th edition and is the standard for many econometricians 
and other social science researchers. He begins his ~950 pages of analysis with linear multiple regression and its five 
endemic assumptions: (1) independence among data points; (2) linear relationships among variables; (3) exogenous 
independent variables; (4) homoscedasticity and nonautocorrelation; and (5) normal distribution. Mostly, the book 
focuses on how to make econometric methods work when one or more of these assumptions are untrue of the data. 
Given nonlinearity, for example, Greene says, ‘by using logarithms, exponentials, reciprocals, transcendental functions, 
polynomials, products, ratios, and so on, this “linear” model can be tailored to any number of situations’ (p. 122). As for 
the normal distribution assumption, he says:  

…large sample results suggest that although the usual t and F statistics are still usable…they are viewed as approximations whose quality 
improves as the sample size increases…. As n increases, the distribution…converges exactly to a normal distribution. (p. 105).  

Greene observes that, ‘heteroscedasticity poses potentially severe problems for inferences based on least squares 
[regression analysis]…. It is useful to be able to test for homoscedasticity and if necessary, modify our estimation 
procedures accordingly’ (p. 222). He then takes some 25 pages to discuss typically used methods to minimize the effect 
of varying variances: White test, Goldfeld-Quandt test, Breusch-Pagan/Godfrey LM Test, weighted least squares, two-
step estimation, maximum likelihood estimation, model-based tests (i.e., analysis of residuals, Wald test, likelihood 
ratio test, Lagrange multiplier test, multiplicative and groupwise heteroscedasticity models), the ARCH [autoregressive, 
conditionally heteroscedasticity (Engle, 1982)] model (three variants), with the generalized form, GARCH (Bollerslev, 
1986), being most preferred – and now most widely used by finance scholars and practitioners alike. GARCH ‘…allows 
the variance to evolve over time’ (p. 242). ARCH/GARCH assumes that model errors appear in clusters and that the 
‘…forecast error depends on the size of the previous disturbance’ (p. 238) – it treats variance as a ‘…moving average of 
squared returns’ (Engle, 1982). 

Econometrics always assumes that data points are additive independent. Conditions calling for GARCH occur, but 
adjustments are made in modeling without ever giving up on the independence assumption. A plot of the GARCH 
moving average shows that any power law driven peak – a volatility-extreme based on interdependence of some kind 
(Mandelbrot and Hudson, 2004) – is adjusted down to slightly above the average blip by the moving average process. 
This is clearly shown in Figure 5, where the heavy black line, representing variance according to GARCH in no way 
represents extreme events – the 1929 and 1987 spikes extend well beyond the top of the graph.16  

                                                 
14 We define attractor  as the dynamical state toward the system evolves after some passage of time. The simplest kind os a basin or equilibrium 

point. The torus and ‘strange attractors’ are more obscure (see Gleick, 1987). 
15 Quoted in West and Deering, 1995, 83 
16 The 1929 spike extends 4’ above the top of the graph; the 1987 spike extends 2’ above! If you download Ghysels, Santa-Clara, and Valkanov’s 
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Greene ignores the Pareto, Zipf, Cauchy, or Lévy distributions. Nor does he discuss interdependent, interacting, 
connectionist, interconnecting, coevolutionary, or mutual causal data points, events, or agents.17 Nor does he discuss 
when independence shifts to interdependence, or the reverse. These possibilities don’t seem to appear in 
econometricians’ assumptions about data. And yet, in our foregoing analysis, we see that most theories underlying every 
kind of power law discovery include a reference to interconnection of some form – power law phenomena 
overwhelmingly depend on interdependent agents that, with some probability, are set off in a cycle of positive feedback 
progression resulting in an extreme event. In fact, none of the robustness adjustments to failing linear multiple 
regression assumptions that Greene discusses deal with the real-world’s probable – not just possible – losses of 
independence. None! Needless to say, even GARCH ignores the power law extremes that Mandelbrot has been 
observing in financial markets for 50 years (Mandelbrot and Hudson, 2004). 

Ironically, GARCH actually falls into a statistical never-never land. It uses its moving average to try to include the 
effects of interdependence-caused extremes but it never lets go of its assumption of independent data points. It widens 
the confidence intervals for those trying to stay with independence assumptions fitting the ‘in between extremes’ 
phenomena but it doesn’t account for the extreme variance effects of fat tails. Hence it fits neither Gaussian nor Paretian 
worlds. 

>>>Insert Figures 5 and 6 about here<<< 
To conclude, the various robustness tests Greene discusses, even including the best and most widely used one, 

GARCH, give no assurance whatsoever that modern-day researchers account for the effects of extreme events in their 
statistical analyses. Let’s put this in California earthquake terms – where we average ~16,000 insignificant quakes every 
year and a ‘really big one’ (e.g., where the ground moves 30 feet north) once every 150–200 years, with 6- and 7-level 
quakes occurring within decades. In effect, it is as if Greene and virtually all modern regression modelers want 
Californians building and living in high-rise buildings to think that using a moving average (GARCH) of quake 
variance over the thousands of harmless (average) quakes will lead to building codes that protect against the 8- and 9-
level quakes. Anyone living through a significant quake in California will tell you this is nonsense. No amount of so-
called ‘robustness improvements’ to the standard linear multiple regression model allow it to model the effects of 
extreme quakes on buildings, bridges, lives, and damage costs – i.e., the effects of fat-tailed Pareto distributions. 
Needless to say, GARCH also doesn’t accommodate the power law extremes that Mandelbrot has been observing in 
financial markets over the past 50 years (Mandelbrot and Hudson, 2004). Robustness tests and ‘solutions’ do not, and 
cannot shift statistics from the Gaussian to Paretian worlds.  

Normal science keeps searching for the Holy Grail of prediction even though leptokurtosis and volatility clustering 
suggest this is an act of faith rather than well-considered strategy. Though it is hard enough to predict earthquakes 
occurring within an unchanging power law scale, worse for social scientists, it is frequently the case that in social 
systems, after an extreme event, some of the underlying causal dynamics (rules) are changed. Thus, while even 
governments can’t change subsurface geology and plate tectonics, politicians can and did introduce the Sarbanes-Oxley 
Act after the Enron debacle. The latter makes the problem more difficult, but does not undermine the basic issue 
management research faces, of needing redirection from Gaussian to Paretian science. 

2.4 Confronting Extreme Variance Head On 
What is the meaning of ‘robustness’ and how should we define an effective science of extremes? 

Paretian Rank/Frequency Effects. Table 4 defines four statistical possibilities:  

>>>Insert Table 4 about here<<< 
Type 1 is the statistician’s dream. Direct linear relation; variance is critical; mean is ignored. There is a perfect 

correlation, except for the anaerobic effect and a slight error in measuring calories. Type 2 is quite the opposite. The 
seat designer would prefer everyone to be ‘average’. The variance is ignored. In Type 3 we are worried about the linear 
relation of height/weight to sports performance, which happens to be obscured by the large bulge of more average 
people in the middle. Here the mean is irrelevant and the variance is what counts, as long as the meaningful variance is 
not overwhelmed by measurement error. The large bulge in the middle increases statistical significance but also 
obscures the linear covariance relationship. Finally, in Type 4, most of the people are irrelevant but the one extreme is 
truly deadly. In Type 1, the average is uninteresting. In Type 2, the average is critical and variance is a nuisance. In 
Type 3, we have a huge cluster around the mean but it is the extremes that tell the tale. In Type 4, the only thing 
interesting is the one extreme – neither mean nor variance is useful. 

                                                                                                                                                                  
paper you can see their chart in color: http://www.personal.anderson.ucla.edu/rossen.valkanov/risk_return_paper.pdf 
17 Even more broadly, microeconomics does likewise. Forni and Lippi (1997) discuss ‘heterogeneous agents’ [a concept central to complexity science 
(Holland, 1988)] but never consider the idea that they might interact! As ludicrous as it may seem, most of math and statistics in Economics is based 
on the assumption that people neither communicate with, learn from, nor influence each other! 
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One point in making these distinctions is to observe that management researchers tend to conduct research with the 
ideal of Type 1 in mind. ‘Robustness’ is aimed at trying to improve methods (or reshape distributions) to the point that 
researchers can make Type 1-based truth claims, even though they have Type 3 or 4 findings. A second point is that our 
current ‘journal-approved’ quantitative research methods systematically miss the most important things in most 
managers’ work lives – the extreme events – such as the Alfred Sloan (GM), Jack Welch (GE), Bill Gates (Microsoft), 
Andy Grove (Intel), Toyota and Honda, eBay, Google, Post-its and other dramatic successes as well as dramatic failures 
like LTCM, Enron, California energy crisis, Parmalat, NY blackout, Iraq intelligence failures, the Edsel, the 1987 Asian 
financial meltdown, and so on. For other managers, the positive and negative extremes affecting their lives don’t make 
the headlines, but are nevertheless important to the individual concerned. 

Implications of Unstable Means and Variance. As we noted at the outset of Section 2.3, most researchers are 
concerned with the relative proportion of causal and error variance (Equation 1). Misplaced faith in the robustness tests 
discussed by Greene (2002) deludes them into thinking they can ignore the effect of extremes – and associated infinite 
variance – on their analysis of covariance in their presumed Gaussian distribution. As we have noted, in Gaussian 
distributions some variance is essential, but variance in the tails is usually attributed to error or outlier effects; the latter 
are often deleted.  

As the influence of extremes in a function increases, the influence of the Paretian distribution gains over the 
Gaussian distribution. The meanings that can be sensibly attached to means and variances change fundamentally. In 
Pareto distributions the tails are fat and more extreme events have more powerful effects – Hurricane Katrina, strong 
earthquakes, or the Enron bankruptcy. Because of the fat tails, variance is very large and unstable; because of possible 
extreme events the mean of the distribution is unreliable. Research findings, in reality, risk becoming irrelevant when 
means are unstable and variance is infinite. Researchers keep assuming Equation 1 prevails even though the widespread 
findings of power law effects suggest that Equation 2 often dominates. As Meyer et al. tell their story they, trying all the 
time to be sound quantitative researchers, keep using methods fitting Equation 1 when, in fact, in each of their four 
studies Equation 2 was the valid representation – eventually causing them to abandon Equation 1 methods. 

3 REDIRECTING MANAGEMENT RESEARCH  
On January 9th, 1857 a #9 magnitude quake occurred, stretching 220 miles along the San Andreas Fault in 

California. At one point one may observe that the part of California west of the fault moved 30 feet north. Californians 
are still waiting for the next ‘big one’. The cost of the #6.7 Northridge quake in 1994 – local to the LA area with visible 
earth movement of a few inches – was $44 billion, 51 people killed, 9000 injured, 22,000 left homeless. A #9 quake is 
more than 100 times larger!! The really big ones in financial markets occurred in 1929 and 1987 – some 60 years apart 
(Figure 5). But just since 1987 we have had other extreme events: the Asian crisis of 1997, the Russian meltdown of 
1998, and the burst of the dotcom bubble and ensuing Parmalat and Enron et al. collapses in 2001–2003, with 
multibillions lost each time. These are the negative ones. We also have multibillion dollar positive events like 
Microsoft, GE, Intel, eBay, Google, etc., in the organizational/managerial world. 

3.1 What Basis for Truth Claims, If Not ‘Normal’ Science Statistics? 
Traditional Justification Logic and Normal Statistics. Instead of seeing extreme variance in management- and/or 

organization-based regression functions as something to use robustness techniques to eradicate, we suggest that a more 
sensible approach is to draw on the way that physicists and engineers handle Newtonian Mechanics vs. Relativity 
Theory. Their world changes depending on the speed at which phenomena are moving. On earth, almost everything 
humans experience moves at speeds orders of magnitude slower than the speed of light – hence theories and methods 
consistent with Newtonian mechanics remain valid. As objects in space get closer to the speed of light, theories and 
methods consistent with Relativity Theory become more binding. For earth-bound scientists and engineers, however, 
‘old’ Newtonian Mechanics is of much more use than relatively ‘new’ Relativity Theory. 

Our view is that for organizational research the ‘new’ is more relevant that the ‘old’. For us, old is Gaussian-based 
science; new is Paretian-based science. We argue that the new prevails much more than the old. But we agree, the old is 
still present in some proportion. A more sensible approach for management research is to begin each study with the 
following test: 
• Given Proof of Independence – Use Normal Statistics – the Old. 

• Absent Proof of Independence Assume Interdependence – Use Power-Law Thinking – the New. 

We think this test is broadly important in management research, and in other kinds of social research. Each of the 
nine broad categories of power law phenomena discussed earlier (Section 1) – and to some extent related underlying 
theory – includes the possibility of an extreme event stemming from interdependence among agents. More importantly, 
ALL of the various interdependency possibilities appear to apply in organizations. Not just one out of five some of the 
time, but ALL OF THEM! This doesn’t mean extreme events occur all the time everywhere. But it does mean that some 
probability of the benefit of positive or risk of negative extremes is present all the time and everywhere – and at a much 
higher rate of occurrence: #9-level quakes occur in a region roughly once every 200 years; #9-equivalent financial 
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disasters (Great Depression, 1997 Asian Crisis) occur at a rate of around two per century. Mandelbrot finds that large 
financial crises occur once every five years (see Figure 5). 

Finally, there is a figure/ground reversal. Current methodology takes the Null Hypothesis as: phenomena are 
independent until proven otherwise (and current practice mostly attempts to assume away the problem). Rather, for a 
redirected organization science the NULL assumption should be one of interdependence until proof of independence 
obtains. 

3.2 Lessons from Earthquake Science—A ‘New’ Underlying Discipline? 
Why Earthquake Science? Management scholars draw on a wide variety of underlying disciplines ranging from 

natural science to social sciences such as economics, sociology, and anthropology. Among the latter, economics is most 
rigid in placing its faith in the 19th century equilibrium-based mathematical methods of classical physics (Mirowski, 
1989, 1994; Ormerod, 1994; Colander, 2000), but we also see mathematical sociology (Abbott, 2001) and mathematical 
anthropology (Read, 1990).  

While many disciplines – from microbiology to astrophysics – now report out power law phenomena (see Table 1), 
we zero in on earthquake science for four reasons: (1) quakes are unquestioned power law phenomena; (2) earthquake 
science is a fully legitimate natural science; (3) everyone knows about quakes and some have experienced them; and (4) 
most importantly and most relevant to the presumed practitioner orientation of management research, states like Japan 
and California have taken the lead in learning how to investigate, live with, and protect against extreme phenomena – as 
opposed to, for example, Wall Street’s zeroing in on averages and ignoring the extremes.  

Research Activities. To give you some idea of what the components are for an ‘extreme-oriented’ science, we draw 
from the U.S. Geological Survey, which is located in San Francisco, which sits on top of the San Andreas Fault. We 
don’t give details on the geo-seismic origins of the headings (see their webpage). We just use them to suggest how an 
extreme-based management research might decompose into more specific research activities. These are defined in Table 
5. As you can see, earthquake science readily provides a model for an ‘extreme-based’ management research. 

>>>Insert Table 5 about here<<< 
In their ‘concluding thoughts’ Meyer et al. (2005) point to two disciplines, history and complexity science, as part of 

the frontier. Their paper seconds our assertion that complexity science is a discipline aimed at studying the outcome 
effects of interdependency. While they don’t mention earthquake science, their studies reflect it.  
• They argue the importance of studying the ‘history’ of extreme nonlinear events – #1 in Table 5; 

• Their 1st study focuses on ‘jolts’ (p. 6) – the target of earthquake science;  

• They focus on multiple levels of analyses fits #3 – deep structure analysis (plate tectonics in geology); 

• They emphasize real-time analysis (‘get into the field right away’, p. 6) – #5 in Table 5, and especially in their ongoing study of network 
formations; 

• In study 3 they abandon the general linear model in favor of ‘vector autoregressive technique’ – a special method new to organization science 
and applicable to ‘interdependent systems of variables’ (p. 13) – #4 in Table 5;  

• Their use of the Anderson quote (p. 18) mentioning ‘tails’ suggests their recognition of interdependencies and fat-tailed Pareto distributions – 
characteristic of earthquake dynamics; 

• They say, ‘narrow your scope of observation…select promising exemplars’ (p. 6) – this is like earthquake scientists studying samples of quakes 
of the same size (i.e., all #9s) or kinds (i.e., subduction or strike-slip);  

• Throughout their paper they emphasize focus on interdependencies, ending up mentioning power laws and scale-free theory (p. 17). All four of 
their studies sow the seeds of possible power law effects, and implicitly call for joint-probability-based deterministic kinds of studies, as we see 
in earthquake science.  

By now many studies have drawn from complexity science. Meyer et al. do this as well, but they especially, though 
implicitly, underline our call for adding earthquake science as an underlying discipline. 

4 DISCUSSION 
We won’t go through the entire list, but many management scholars have pointed to the growing disjunction 

between multiparadigmatic ‘science’ appearing in journals and practitioner-oriented writing (Beyer and Trice, 1982; 
Lawler et al., 1985; Brief and Dukerich, 1991; Pfeffer, 1993; Anderson et al., 2001; Beer, 2001; Rynes et al., 2001; 
Weick, 2001; McKelvey, 2003a; Bennis and O’Toole, 2005; Ghoshal, 2005; Van de Ven and Johnson, 2006; 
McKelvey, 2006). We suggest that the fundamental problem stems from favoring Gaussian over Paretian distributions. 
Virtually all of the statistics-based journal research rests on assumptions of independent events and Gaussian 
distributions. In obvious contrast, if one scans ‘business media’ books, such as Organization and Environment 
(Lawrence and Lorsch, 1967), In Search of Excellence (Peters and Waterman, 1982), Built to Last (Collins and Porras, 
1994), Rejuvenating the Mature Business (Baden Fuller and Stopford, 1994), Images of Organization (Morgan, 1986), 
Hidden Value (O'Reilly and Pfeffer, 2000), Good to Great (Collins, 2001), Knowledge Emergence (Nonaka and 
Nishiguchi, 2001), and on and on, one sees that most of the cases and stories are about extreme events – successes or 
failures – but seldom about ‘averages’. Add to this list many of the cases you use in the classroom. No wonder there is a 
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disjunction – managers live in the world of extremes; researchers use statistics to report findings about averages. There 
is reason to believe that most of these extremes are due to interdependency and positive feedback. 

It is easy for people with no personal experience with an extreme event to think studies of averages are acceptable 
substitutes. People who just experienced Hurricane Katrina, the South East Asian tsunami or who live through 
earthquakes in California or Japan, floods along the Danube, or survive an avalanche in the Alps think differently. 
Natural extremes seem mostly negative. Organizational extremes are both positive and negative. Early employees at 
Microsoft have one view of an extreme; those who were at Enron see theirs rather differently. The first thing we 
scholars have to do is get over the idea that studying averages is the only ‘good’ science, is the only thing relevant to 
good management research, and offers something useful to managers. Sometimes yes, but we think mostly no for 
management researchers. Needless to say, this is an empirical question – When and under what conditions do 
organizational data points shift from independent to multiplicative to interdependent causal dynamics?  

To bolster our argument, that organization science needs to attend to the consequences of interdependent as well as 
independent events, we start by listing eighty kinds of power law phenomena (in Table 1). In Nature, they range from 
atomic and microbiological to galactic fractals; half are social; some pertain to organizations. Nine of these – from 
physics, biology, social science, and management research – we describe in more detail. Power law research is an aspect 
of natural and even social science that has barely seeped into management research – though we do note that Mohr 
(1982) was the first to make the distinction between both kinds of management-related research (though he did not quite 
make the leap to fractals and power laws). We pay special attention to the standard practice of conducting robustness 
tests (Greene, 2002) so as to conveniently sweep Paretian phenomena under the rug, so to speak, and continue with 
Gaussian analyses and statistics – all to keep referees and journal editors happy and get published.  

Our review of power law phenomena significantly challenges the prevailing assumption about the independence of 
data points. Once independence collapses, and interdependence or interaction occurs, then the seeds of power law 
formations are planted. It is just a matter of time, just a matter of probability, for interdependent events to progress – 
because of positive feedback – into an extreme event. As long as researchers look at the real world through the ‘normal’ 
statistics lens – which means they have to make the independence assumption – the result will be Gaussian science and 
with it a denial of extreme events, a denial of infinite variance, a denial of unstable means – adding up to denial of 
Paretian distributions. All of these denials act to narrow confidence intervals and allow researchers falsely to claim 
statistical significance and, then, assert their truth claims. This has produced many irrelevant and erroneous results but 
fosters discipline-legitimacy. 

We propose the obvious solution of adding, and then stressing more heavily, disciplines where emergent extreme 
phenomena, rather than averages, are dominant features. We mention two of these, complexity and earthquake science. 
Lessons from complexity science are conjoined with econophysics and power laws, and thus embedded throughout our 
paper. From the seven sub-fields of earthquake science, we draw seven parallel application areas, each of which offers a 
different perspective and approach for studying extreme events, including prediction and protection. Each application 
area calls for a different kind of management research. A number of these already appear in the Meyer et al. (2005) 
article. Other examples are Perrow (1984) and Marcus and Nichols (1999) – nuclear reactors, and Haunschild and 
Sullivan (2002) – airline accidents, though these studies do not get into power law effects. 

One of the lessons from earthquake science is that instead of lumping all earthquakes together, they study separate 
samples of ‘#7s, #8s or #9s. In point of fact, we have a large collection of case studies that are studies of extremes – 
those mentioned in the business media books above and also in many of the MBA teaching cases. We even have 
multiple studies of single extremes – parallel to a sample of #9s – i.e., Xerox, the IBM PC, INTEL, ENRON and 
Parmalat, crony capitalism, etc. With narrowed samples of similar extremes, Gaussian statistics and nonparametric 
methods are highly appropriate. Starbuck (no date) presents 59 slides suggesting other ways of ‘Learning from Extreme 
Cases’, as he puts it. 

We note that 50% of the power law findings we list are from highly respected natural sciences. In no way do we 
want to suggest that effective science epistemology be replaced by one-off case studies or the anti-science leanings of 
postmodernists (Holton, 1993; Koertge, 1998; McKelvey, 2003b). Earthquake science is a fully legitimate ‘hard’ 
science. We can learn from it how to conduct an effective science about extreme phenomena. 

There are numerous conditions where natural data points do remain independent – atoms and most molecules don’t 
study, relate to, look at, or learn from, other atoms or molecules. In some cases, however, the imposition of energy past 
some critical point – e.g., Bénard’s (1901) 1st critical value and resulting phase transition or the Bose-Einstein 
condensate effect – turns even independent natural science data points into interdependent ones. In natural science, 
perhaps, scientists should still start with the NULL condition of independent data points. But in social science, where 
people do look at each other, do talk to each other, do learn from each other, do influence each other, etc., it seems to us 
that the NULL condition is one of interdependence. Researchers should start with this assumption. They should start 
with the idea in mind that extreme events are a natural part of the social world. No statistical findings, therefore, 
should be accepted into the business, organizational, or management received view if they gain significance via some 
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assumption-device by which extreme events and (nearly) infinite variance are ignored. 
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Figure 1:  Gaussian vs. Pareto Distributions 
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Figure 2:  Log Log Depiction of City Rank by Size as –1 Slope* 

 

Communities in the U.S. of 2500 or more inhabitants,  
               ranked in decreasing order of population size. 

     *  From G. K.Zipf (1949). 
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Figure 3:  Comparison of Cluster Power Law to the –β Slope Power Law (cumulative 
distribution) 
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Figure 4:  Self-Organization between Agent Autonomy and Hierarchical Systems 
 
 

 

 

   

 

 

Figure 5:  Stock Market Volatility and GARCH 

 
GARCH volatility (heavy–black) and realized volatility (lighter–red) 
By permission from Ghysels, Santa-Clara, and Valkanov (2005). 
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Table 1:  Some Examples of Natural and Social Power Law Phenomena 

Natural Science Social Science 1. Cities 1. Language word usage 
2. Traffic jams  2. Social networks 
3. Coastlines 3. Structure of WWW 
4. Brush-fire damage  4. Structure of the Internet hardware 
5. Water levels in the Nile 5. Number of hits received from website per day 
6. Hurricanes & floods 6. Blockbuster drugs 
7. Earthquakes 7. Sexual networks 
8. Asteroid sizeshits 8. “Fordist” power 
9. Sun spots 9. Distribution of Wealth 
10. Galactic structure 10. Publications and citations 
11. Sandpile avalanches 11. Co-authorships 
12. Brownian motion 12. Actor networks 
13. Music 13. Job vacancies 
14. Epidemics 14. Salaries 
15. Genetic circuitry 15. Firm size 
16. Metabolism of cells  16. Supply chains 
17. Functional networks in brain 17. Growth rates & internal structure of firms 
18. Tumor growth 18. Casualties in war 
19. Biodiversity 19. Growth rate of countries GDP 
20. Circulation in plants and animals 20. Price movements on exchanges 
21. Size distributions in ecosystems; predators 21. Delinquency rates 
22. Fractals 22. Movie profits 
23. Punctuated equilibrium 23. Consumer products 
24. Mass extinctions 24. Size of villages 
25. Brain functioning 25. Cotton prices 
26. Predicting premature births 26. Economic fluctuations 
27. Laser technology evolution 27. Alliance networks among biotech firms 
28. Fractures of materials 28. Entrepreneurship/innovation 
29. Magnitude estimation of sensorial stimuli 29. Distribution of family names 
30. Willis’ Law: number vs. size of plant genera 30. Copies of books sold 
31. Fetal lamb breathing 31. Number of telephone calls and emails  
32. Bronchial structure 32. Italian industrial districts 
33. Frequency of DNA base chemicals 33. Deaths of languages 
34. Protein–protein interaction networks 34. Director interlock structure 
35. Genomic properties (DNA words) 35. Aggressive behavior among boys during recess 
36. Heart beat rates 36. Number of inventions in cities 
37. Cellular substructures 37. Macroeconomic effects of zero-rational agents 
38. Phytoplankton 38. Global terrorism events 
39. Death from heart attack 39. News website visitation decay patterns 
40. Magma rising through earth’s crust 40. Intra-firm decision events 

Natural:   1-(Estoup, 1916; Zipf, 1949);  2-(Nagel & Paczuski, 1995);  3-(Casti, 1994);  4-(Bak, 1996);  5-(Casti, 1994);  6-(Bak, 1996);  
7-(Gutenberg & Richter, 1944);  8-(Hughes & Nathan, 1994; Marsili & Zhang, 1996);  9-(Hughes et al., 2003);  10-( Baryshev & 
Teerikorpi, 2002);  11-(Bak, 1996);  12-(West & Deering, 1995)Gardner, 1978);  13-( Gardner, 1978; Casti, 1994);  14-(Liljeros et al., 
2001);  15-(Barabási, 2002);  16-(West et al., 1997);  17-(Shin & Kim, 2004);  18-( Brú et al., 2003);  19-(Haskell et al. 2002);  20-(West 
et al., 1997);  21-(Camacho & Solé, no date);  23-(Bak & Sneppen, 1993);  24-(Bak, 1996);  25-(Stassinopoulos & Bak, 1995);   
26-(Sornette, 2002);  27-(Baum & Silverman, 2001);  28-(Sornette, 2002);  29-(Roberts, 1979);  30-(Willis, 1922);  31-(Szeto et al., 
1992);  32-(Goldberger et al., 1990);  33-(Selvam, 2002);  34-(Song et al., 2005; Wuchty & Almaas, in press, no date2005a,b);   
35-(Luscombe et al., 2002);  36-(Nahshoni et al., 1998);  37-(Wax et al., 2002);  38- Jenkinson, 2004);  39-(Bigger et al., 1996);   
40-(Weinberg & Podladchikov, 1994).  

Social:  1-(Zipf, 1949);  2-(Watts, 2003);  3-(Albert et al., 1999);  4-(Faloutsos et al., 1999);  4-(Buchanan, 2004);  5-(Adamic & 
Huberman, 2000);  6-(Buchanan, 2004);  7-(Liljeros et al., 2001);  8-(Diatlov, 2005);  9-(Pareto, 1897; Levy & Solomon, 1997);   
10-(Lotka, 1926; deSolla Price, 1965);  11-(Newman, 2001);  12-(Barabási & Bonabeau, 2003);  13-(Gunz et al., 2001);  14-(Buchanan, 
20002);  15-(Axtell, 2001);  16-(Scheinkman & Woodford, 1994);  17-(Stanley et al., 1996);  18-(Cederman, 2003);  19-(Lee et al., 
1998);  20-(Mandelbrot & Hudson, 2004);  21-(Cook et al., 2004);  22-(De Vany, 2004);  23-(Moss, 2002);  24-(Carneiro, 1987);   
25-(Mandelbrot, 1963);  26-(Scheinkman & Woodford, 1994);  27-( Barabási & Bonabeau, 2003, p. 207, building on Powell et al.);   
28-(Poole et al., 2000);  29-(Zanette & Manrubia, 2001);  30-(Hackett, 1967);  31-(Aiello et al., 2000; Ebel et al., 2002);  32-(Andriani, 
2003a);  33-(Abrams & Strogatz, 2003);  34-(Battiston & Catanzaro, 2003);  35-(Warren et al., 2005);  36-(Bettencourt et al., 2005);   
37-(Ormerod et al., 2005);  38-( Dumé, 2005);  39-( Dezsı et al., 2005);  40-(Diatlov, 2005). 
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Table 2:  Macro and Micro Jointly Probably Causes of Extreme Events 

Macro      Micro 

Land configuration – flat, hilly, mountainous, island 
protection, etc., lack of glaciers, floods, etc. 

Mutation rate 

Water availability – rain, streams, rivers, lakes, etc. Requisite variety 

Sunlight – sheltered/unsheltered, forested/unforested, 
brush, caves, etc. 

Fission 

Oxygen – in air, in water, in other sources Immune system 

Food – main sources, substitutes Coevolution 

Shelter – holes, nests, caves, trees, bushes, etc. 

Predation, parasitism, disease, etc. 

 

 

 

Table 3:  Key Elements of a Power Law-Based Statistics 

1. Paretian distributions: In Paretian distributions, the mode (most frequent event) is smaller than the median 
(central point), which is smaller than the mean, which is stable. Contrary to the Gaussian, what appears as the ‘mean’ in 
a power law distribution is strongly and idiosyncratically influenced by extreme events,. 
2. ‘Infinite’ variability:  In Gaussian statistics, the larger the sample, the closer the convergence of the sample’s mean 
and variance to the population’s mean and variance. In Paretian distributions, the sample’s mean doesn’t converge to 
any value, the variance is very large (approaching infinity), and the ‘independence assumption’ is misapplied. This 
means that the use of mean, variance and confidence intervals for prediction is unreliable – confidence intervals change 
with the occurrence of each new extreme. This point leads to the ‘Nobody knows anything’ principle (De Vany, 2004: 
220): predicting single events under Gaussian assumptions is questionable. ‘In this world nothing is ‘typical’ and every 
movie is unique’ (p. 258). 
3. Extremes: The important part of Paretian statistics is in the tails. Extreme events are more frequent and 
disproportionate in size than in a Gaussian dominated world. In fact, opposite to Gaussian statistics, the larger the 
sample the more likely an even greater extreme will occur. See the body of literature known as the ‘statistics of 
extremes’ (Gumbel, 1958/2004; Coles 2001), initiated by engineers in the early 20th century for the purpose of 
designing flood-control dams. Their tables show this clearly. And, furthermore, in the Paretian world, the larger the 
sample the less likely one can assume independence or normality. 
4. Scale-Free Fractal Structure: Like the jaggedness of the English coastline, power law phenomena show the same 
characteristics no matter what the measure. The dynamics and appearance of the phenomena appear the same at any 
scale. What this suggests is that similar (common) dynamical patterns are in action at different levels. Whether we take 
a whole series of events or sample a part of it, we find the same pattern of large discontinuous events irregularly 
appearing out of a background of finer perturbations. Given this, we need a fractal-based statistics. 
5. Amplification:  Fat tails result from the amplification of small events giving rise to positive feedback dynamics 
evolving to generate events of varying size. The major difference between a Gaussian and a Paretian distribution is that 
the former tends to compress the distribution of data points toward the mean (outliers are normally ignored and the 
assumption of independence restricts predictions to data within two or three standard deviations from the mean) 
whereas the latter (Paretian) captures the full extent of positive feedback effects. 
6. Cascade dynamics: Power laws result from generalized self-organized criticality dynamics. As events unfold from 
the propagation of an initial ‘tag’ or instigating stimulus (Holland, 1995), given mutual causal, positive feedback 
processes, the logic of preferential attachment (rich get richer) generates a reinforcing trend, which extends the 
distribution’s tails. For instance in the case of information-based cascades, success breeds success (see also note 7). 
7. Universality:  The dynamics of multiplicative and/or interdependent, connectionist phenomena lead to power law 
distributions forming the basis of a mathematical regularity having many of the earmarks of a universal ‘Law’ valid 
across much of time and space – as our Table 1 begins to suggest (see also Bak, 1997 and Halloy, 1998). The dynamics 
underlying this Law may, therefore, play the role of a universal ‘force’ toward which the dynamics of many kinds of 
emergent phenomena are attracted 
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Table 4: Four Different Configurations of Means and Variances 

Type 1. We test the relation between number of steps climbed and burning calories. We study 1000 people. There is a 
little variance because of different anaerobic capabilities and measurement error, but we see a clear uniform distribution 
and a direct linear correlation. A Gaussian distribution gives us the mean level of energy burned at each step for the N = 
1000 climbers – the covariance is critical and the mean ignored.  
Type 2. We want to design airplane seats and so we measure the needed seat widths of a sample of 1000 people. We 
get a true Gaussian distribution; most people are right at the average and we design accordingly. Here the extremes 
don’t matter – to the seat designers anyway. 
Type 3. We want to know what kinds of people are most successful in professional football and basketball. We take 
measures of height and weight of 1000 people and find that most people are at the average; small people are ineffective 
at both sports; big people fare best. We get a Gaussian distribution, but clearly people at one end are better suited for the 
sport. In fact, we have a linear relation except that we have most of the sample in the middle, which tends to obfuscate 
the results.  
Type 4. We do a study of who is involved in spreading the HIV virus and we find that, in a sample of 1000 people with 
HIV, one person has 3000 partners whereas most people have one or no partners (based on a power law finding about 
number of sexual partners from Sweden). This is a power law formation where people at one extreme do most of the 
damage – most people have no effect; the top few people can potentially infect thousands of partners. (Liljeros et al., 
2001)  

 
 
 
 
 
 
Table 5:  Defining an ‘Extreme-Based’ Organization Science 

1. Earthquake Geology—Historical Extreme Event Analysis. This finds out when, where, and how often past 
extreme events occurred and, in addition, what size they were. This is basic historical, descriptive analysis. This also 
includes finding out where extreme events don’t occur. For social science, it also includes both positive and negative 
events. It should also include reflexive analysis – people having experienced an extreme event can then alter some of 
the event-initiation or event-protection elements – whereas molecules can’t. 
2. Crustal Studies—Visible Organizational Deformation. This involves studies of visible consequences of extreme 
event dynamics on organizational employees, suppliers, customers, shareholders, communities, and even governments – 
all of which were deeply affected, say, by the Enron debacle. This is more about more specific consequences than 
causes, history, or broader description. This area would include Bill Starbuck’s (no date) slide show on extreme case 
analysis, for example.  
3. Borehole Geophysics—Deep Structure Analysis. This is the organizational equivalent of plate tectonics, that is, 
analysis of the very basic forces giving rise to the order-creation dynamics studied by complexity scientists. This could 
focus on the origins of dissipative structures and agent-rule-based positive feedback dynamics – see Lichtenstein and 
McKelvey (2004) for example. 
4. Seismology—Special Methods Development. At this time organization researchers don’t use what normal science 
scholars would call ‘robust methods’ on extreme events. We have case analyses – and by the way, most examples given 
in the business press and textbooks such as Morgan (1986) are extreme events – but nothing equivalent to seismology, 
which has essentially translated extreme event analysis into seismic wave analysis. We have Eisenhardt’s (1989) article 
arguing for multiple case analysis, but it is not analogous to seismology and some would question its claimed robustness 
standard. But, obviously, conventional statistical analyses are inadequate, as we argue above. The cell phone and text-
message based, structural equation, & neural net ‘socio/computational approach’ suggested by Boisot and McKelvey 
(2005) for pre-event counter-terrorism could be an example of such a new kind of approach. 
5. Strong Motion Seismology—Real-time Extreme Event Analysis. What happens to buildings and bridges during a 
quake is a key source of protecting against future damage by improving engineering and building codes. Instead of 
historical organizational analysis, this is more ‘live’ and on the spot reporting. For organizational extreme events that 
end up in court, we have the equivalent. Recent extremes – Enron, WorldCom, etc., have resulted in the Sarbanes-Oxley 
Act and the Enron case is slowly making its way through the court system. As this happens we will get more and more 
information about the actual course of events almost on a daily basis – very much like having instruments measuring 
shaking while it occurs. But not all extreme events end up in court. Very negative ones such as Enron do and very 
positive ones such as Microsoft (antitrust violation). But for most extreme events involving managers for good or bad, 
there is little record of the dynamics by which they unfold, except when someone writes up a detailed case analysis. 
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This is better than nothing, but again, we have the truth-claim and robustness problems. Earlier, however, we have noted 
that one could use samples of extreme cases. 
6. Hazards and Safety Codes—Protecting Against Extreme Events in Advance. The difference between Wall Street 
and California is striking. California has building codes that, to the best of their ability, allow only building designs that 
will withstand the most extreme events. What magnitude quake is possible from the fault near a building and what 
design will withstand the shaking? Cost is not an issue. Buildings are designed to withstand extreme events, not average 
quakes. The most worrisome aspects of financial investment organizational life are the extremes, not the averages, but 
the code set by the governing body – the Bank for International Settlements in Basel – is based on a Gaussian approach 
to extremes. This is wrong on two counts (Mandelbrot & Hudson, 2004: 272): it ignores (1) the true extent of volatility 
in financial markets; and (2) the long-term dependency which causes catastrophic events to cluster. Why is there little 
protection against financial extremes? Well, extremes don’t happen very often and protecting against unlikely events 
seems like a lot of wasted money. Yet, in the 20th century the U.S. lost far more billions in the many financial 
meltdowns than it did from major quakes. Employees, as the Enron employees found out, are especially vulnerable, 
though early Microsoft employees have done very well from their extreme event. The research question is what are the 
costs of negative extreme events, and not just the ones that make the headlines, but all the others? Sornette (2002) offers 
one answer. 
7. Code Violations and Punishment—If Courts Don’t Exist? Should managers pay some price? There is no blame 
for causing earthquakes. But after every quake, from the U.S. to Japan to Turkey we find that code violations occurred 
and people died. Can individuals in organizations be blamed if mutual causal volatility clusters occur? Can we even 
define an initiating event? McKelvey (2002) argues that positive feedback coevolution can be ‘managed.’ This is not yet 
a topic in any managerial training course. Can managers be held accountable for not starting or stopping mutual causal 
processes soon enough, or not steering them in the proper direction? Much research needs to be done before we have 
answers to questions like these.  

 


