
Optimal Hiring of Cloud Servers

Andrew Stephen McGough1 and Isi Mitrani2

1 School of Engineering and Computing Sciences, Durham University, DH1 3LE, U.K.
stephen.mcgough@durham.ac.uk

2 School of Computing Science, Newcastle University, NE1 7RU, U.K.
isi.mitrani@ncl.ac.uk

Abstract. A host uses servers hired from a Cloud in order to offer cer-
tain services to paying customers. It must decide dynamically when and
how many servers to hire, and when to release them, so as to minimize
both the job holding costs and the server costs. Under certain assump-
tions, the problem can be formulated in terms of a semi-Markov decision
process and the optimal hiring policy can be computed. Two situations
are considered: (a) jobs are submitted in random batches and servers can
be hired for arbitrary periods of time; (b) jobs arrive singly and servers
must be hired for fixed periods of time. In both cases, the optimal policies
are compared with some simple and easily implementable heuristics.

1 Introduction

This paper focuses on certain special, and important, dynamic scheduling prob-
lems that arise in the market for computer services. It presents a general op-
timization methodology and applies it in situations where detailed exact and
approximate solutions can be developed.

A host offers certain services which involve running user jobs. It does not own
servers, but hires them on a temporary basis from a Cloud provider. The host
must decide dynamically when, and how many, servers to hire. The objective is
to manage optimally the long-term trade-offs between the operating costs (which
depend on the number of servers hired), and the Quality-of-Service, or ‘holding’
costs (which are proportional to the number of jobs present).

Two distinct models are considered. In the first, jobs are submitted in batches
of random size and at random intervals. Servers may be hired and released
at arbitrary moments of time, hence the hiring decisions can be taken at the
instants when new batches arrive. In the second model, servers must be hired
for reasonably long fixed periods of time, e.g. by the hour. Hiring decisions are
therefore assumed to take place at discrete moments in time, while jobs arrive
and depart singly and in continuous time. The second model is perhaps closer
to current practice, but the first one may come into its own since some Cloud
providers are beginning to offer servers for very short-term hire, e.g. by the
minute.

We show how, under certain assumptions, these dynamic optimization prob-
lems can be solved by formulating them in terms of semi-Markov decision pro-
cesses and applying a policy improvement algorithm. The optimal hiring policy

A. Horváth and K. Wolter (Eds.): EPEW 2014, LNCS 8721, pp. 1–15, 2014.
c© Springer International Publishing Switzerland 2014



2 A.S. McGough and I. Mitrani

can then be computed in a finite number of iterations. Although that compu-
tation is efficient, it may sometimes be too expensive to be carried out on-line.
We therefore propose simple and easily implementable heuristic policies for both
models. In numerical experiments, the performance of the heuristics is compared
to that of the optimal policy.

An example of a company using Cloud servers is Cycle Computing1, which
acts as a broker offering virtual High-Throughput HTCondor [15] clusters in
the Cloud. Different service facilities are also provided by interfaces such as e-
Science Central [8], whereby access to Cloud computing resources is offered to
users in a transparent manner. However, at present these systems do not make
any attempt to optimize their operating policies.

The main distinguishing feature of the present study is that we carry out a
rigorous dynamic optimization of the systems considered. That is, we consider
operational decisions that depend not only on the system parameters, but also
on the changing system state. Moreover, the optimization takes into account
the transition probabilities between states, and hence covers a long-term system
trajectory. This does not appear to have been done before.

Being able to determine the optimal operating policy is valuable, even when
good heuristics exist. One may suspect that a simple heuristic policy will perform
well, but the only way to quantify such a statement is to compute the optimal
policy and carry out a proper comparison.

1.1 Related Work

The existing approaches to the server hiring problem are, on the whole, con-
cerned with static policies. That is, the hiring decisions are based on knowing or
estimating the characteristics of user demand. Those decisions change only when
the demand parameters change. On the other hand, a dynamic policy reacts to
random changes in the system state, even if the demand characteristics remain
the same. In general, dynamic policies are more efficient than static ones, as we
shall see when presenting our numerical results.

Mazzucco et al. [10] have used workload estimation in order to determine the
optimal number of servers to hire. By assuming that impatient users will abandon
job requests (common for HTTP) an Erlang-C problem is converted into an
Erlang-A problem and a solution is obtained by a binary search algorithm. This
work is extended in [12] to evaluate the number of Virtual Machines (VMs)
required by a Software-as-a-Service (SaaS) provider using an Infrastructure-as-
a-Service (IaaS) backend. Bod́ık et al. [2] use statistical machine learning to
estimate the workload in the next epoch. Like other approaches, this requires
additional servers to be provisioned in case the estimate is low.

Another static version of the server hiring problem was considered by Lampe
et al. [9], who examined the optimal placement of a fixed set of jobs, with given
run times and resource requirements, onto different Cloud servers. An exact for-
mulation based on Binary Integer Programming and an approximate algorithm

1 http://www.cyclecomputing.com

http://www.cyclecomputing.com


Optimal Hiring of Cloud Servers 3

using bin-packing techniques were proposed. A similar problem involving work-
flows was addressed by Byun et al. [3,4]. In this instance, the servers are not
different, but the jobs must satisfy a set of precedence constraints. Again, the
aim is to minimize the cost of executing a given workflow on the Cloud. An
approximate scheduling algorithm is proposed.

Chaisiri et al. [6] attempt to exploit the lower costs of future reservations in
order to minimize the overall cost of hiring Cloud resources. They use stochastic
and deterministic programming techniques, coupled with sample-average ap-
proximations or Benders decomposition. This study has some dynamic aspects.
However, the actual demand process is not modelled and therefore the costs of
waiting cannot be taken into account.

The server hiring problem is distantly related to other server allocation topics,
for which a large body of literature exists. These topics include the trade-offs
between performance and power consumption in a service center. In Mazzucco
et al. [11] and Mitrani [13], certain dynamic server allocation policies were anal-
ysed, but no attempt was made to find the optimal policy. The maximization of
throughput and the minimization of waiting or response time were considered
in Urgaonkar et al. [17], Chandra et al. [5] and Bennani and Menascé [1].

The general Semi-Markov decision process and the algorithm for computing
the optimal policy are described in section 2. The applications of the theory to
the models with batch arrivals and with fixed hiring periods are presented in
sections 3 and 4, respectively. Section 5 introduces the heuristic and shows the
results of some numerical experiments. Some directions for further research are
outlined in the conclusion – section 6.

2 Semi-Markov Decision Processes

Consider a finite-state system which is observed at random points in time, ti (i =
0, 1, . . .). These instants are called ‘decision epochs’ and the intervals between
them are ‘decision intervals’. If at time ti the system is in state j (j = 1, 2, . . . , J),
an action, or decision, aj , is taken. That action may influence the length of the
ensuing decision interval, ti+1 − ti, and also the system state at the next epoch.
However, neither the decision interval nor the next state depend on anything that
happened prior to ti. Such a process is called a ‘semi-Markov decision process’.
The actions taken in the various states constitute a ‘stationary policy’, if for
all states j, whenever the state j is observed, the same action, aj , is taken,
regardless of current time and past history.

The system incurs costs which depend on the states it passes through and on
the decisions taken in those states. Let ZA(t) be the total cost incurred up to
time t under a stationary policy A. Then the long-run average cost of policy A
per unit time is defined as the limit:

g(A) = lim
t→∞

1

t
E[ZA(t)] . (1)

That quantity, which does not depend on the initial state, is the optimization
criterion. The object is to find a policy A that minimizes g(A).



4 A.S. McGough and I. Mitrani

The evolution of the process under the control of a stationary policy A is
governed by the succession of states at decision epochs, the decisions made at
those epochs and the costs incurred during the decision intervals. Let pj,k(A) be
the transition probability that the system will be in state k at the next decision
epoch, given that the current state is j and the policy is A; j, k = 1, 2, . . . , J .
Also, denote by cj(A) the average cost incurred during a decision interval, given
the current state j and policy A. Finally, let τj(A) be the average length of the
decision interval, given the current state and policy.

The long-run average cost of policy A, g(A), can be computed by introducing
certain quantities called ‘relative values’, vj , j = 1, 2, . . . , J , (Tijms [16]). These
relative values, together with g(A), satisfy a set of simultaneous linear equations:

vj = cj(A)− τj(A)g(A) +

J∑

k=1

pj,k(A)vk ; j = 1, 2, . . . , J , (2)

with cj(A), pj,k(A) and τj(A) as defined above.
In this set, there are J equations with J + 1 unknowns. However, if the same

constant, c, is added to all relative values vj , the value of g(A) would not change
(since for each j, the sum of pj,k(A) with respect to k is 1). Therefore, the
solution of (2) can be made unique by choosing an arbitrary state, m, and
setting vm = 0. The optimal policy can be determined by the following ‘policy
improvement’ algorithm.

1. Choose some stationary policy A.
2. Compute g(A) and vj by solving (2).
3. For each j, find action a∗ that minimizes the right-hand side of equation (2):

min
a

[
cj(A)− τj(a)g(A) +

J∑

k=1

pj,k(a)vk

]
,

where g(A) and vk keep the values already computed.
4. If new actions a∗ are the same as the old ones for all states, i.e. new policy

A∗ is the same as A, stop. Otherwise repeat from step 2, replace A with A∗.

This algorithm terminates after a finite number of iterations, producing an op-
timal policy and the corresponding long-run average cost, g.

An efficient and stable method for solving the set of equations (2) is to use
Gauss-Seidel iterations, starting with vj = 0 for all j. Convergence is assured
because the coefficients in the right-hand sides of (2), being probabilities, do
not exceed 1. If that method is adopted, then the complexity of computing the
optimal policy is on the order of O(J2SI), where J is the size of the state space,
S is the number of iterations in the Gauss-Seidel solution and I is the number
of iterations in the policy-improvement algorithm.

3 Batch Arrivals

The first system we examine is one where user demands arrive at the host’s site
in a Poisson stream with rate λ. Consecutive demands consist of batches of jobs



Optimal Hiring of Cloud Servers 5

whose sizes are i.i.d. random variables with an arbitrary distribution. Let bj be
the probability that a batch contains j jobs (j = 1, 2, . . . , ...). The average batch
size is denoted by b:

b =
∞∑

j=1

jbj . (3)

A job’s runtime, on any available server, is distributed exponentially with mean
1/μ. Thus, the total offered load at the site is ρ = λb/μ. When all available
servers are busy, jobs wait in a common FIFO queue. Servers may be hired and
released at any moment.

In this model, the decision epochs are the instants just after the arrival of
a new batch. The system state at a decision epoch is the total number, j, of
jobs present. That number may include jobs from previous batches that are still
waiting or are in service. The decision taken at a decision epoch is the number
of servers, n, that are hired from a Cloud provider and will be available to serve
jobs. That number may include previously hired servers, plus any newly hired
ones, or minus any servers whose hire is terminated at this decision epoch.

Each job present incurs a holding cost of c1 per unit time spent in the system.
These costs reflect the importance attached to fast service. In addition, each hired
server incurs a cost of c2 per unit time. This is predicated on the assumption
that the host is dealing with a Cloud that allows hire and release at arbitrary
moments, with charges proportional to the duration of hire. A different hire
regime will be modeled in the next section.

Thus, the total cost incurred per unit of time during which there are j jobs
present and n servers hired is c1j + c2n.

Note that in this model the decision interval does not depend on the current
state or on the decision taken. The average length of that interval is the average
interarrival time between batches: τ = 1/λ.

Since the algorithms available for determining the optimal policy require that
the state space is finite, we assume that there is an upper bound, J , for the
number of jobs that may be present. If an incoming batch would cause that
bound to be exceeded, some or all of its jobs are rejected. That condition is
not too restrictive: under any policy that does not allow the queue to saturate,
one can choose J sufficiently large so that the probability of rejecting jobs is
negligible. However, the numerical complexity of the solution increases with J .

To write equations (2) for a given policy A in the present model, we need
expressions for cj(n) and pj,k(n), where n is the number of servers hired in state
j under policy A. We start with the costs. Let Tj(n) be the total average time
that the j jobs currently present spend in the system during the decision period,
given that n servers are available to serve them. There are two cases to consider:

1. If j ≤ n, all jobs present are being served. The contribution of each job to
Tj(n) is the average minimum of its remaining service time and the remaining
decision period. Hence, in this case,

Tj(n) =
j

λ+ μ
; j = 1, 2, . . . , n . (4)



6 A.S. McGough and I. Mitrani

2. If j > n, then n jobs are being served and j − n are waiting. The next event
to occur is either a service completion, with probability nμ/(λ+ nμ), or an
arrival of a new batch, with probability λ/(λ+nμ). The average interval until
that event is 1/(λ+ nμ), and there are j jobs present during it. If the next
event is a service completion, then the decision period continues with j − 1
jobs present; otherwise it terminates and there is no further contribution to
Tj(n). This provides a recurrence relation,

Tj(n) =
j

λ+ nμ
+

nμ

λ+ nμ
Tj−1(n) ;

j = n+ 1, n+ 2, . . . , J . (5)

Equation (4), together with the recurrences (5), allow the holding times Tj(n)
to be computed easily for all j and n. The average cost, cj(n), incurred during
a decision period is the sum of the holding cost and the server cost:

cj(n) = c1Tj(n) + c2n
1

λ
. (6)

Before addressing the transition probabilities pj,k(n), consider the probability,
qj,k(n), that there will be k jobs present just before the next decision epoch, given
that there are j jobs now and n servers are available. That is the probability that
j − k jobs are completed during the decision interval. There are three distinct
cases:

1. If j < n, more servers become idle with each departing job. In order that
k jobs are left at the end of the decision period, the latter must terminate
when there are k busy servers. Hence,

qj,k(n) =

[
j∏

i=k+1

iμ

λ+ iμ

]
λ

λ+ kμ
; k = 0, 1, . . . , j , (7)

where an empty product is equal to 1 by definition.
2. If j ≥ n and k ≥ n, then qj,k(n) is the probability that exactly j − k jobs

are completed by n busy servers before the decision period terminates:

qj,k(n) =

[
nμ

λ+ nμ

]j−k
λ

λ+ nμ
; k = n, n+ 1, . . . , j . (8)

3. If j ≥ n and k < n, then of the j−k completions that must take place before
the end of the observation period, j − n+ 1 occur while n servers are busy
and n− 1− k with gradually diminishing number of busy servers:

qj,k(n) =

[
nμ

λ+ nμ

]j−n+1
[

n−1∏

i=k+1

iμ

λ+ iμ

]
λ

λ+ kμ
;

k = 0, 1, . . . , n− 1 . (9)



Optimal Hiring of Cloud Servers 7

Now we can obtain the transition probabilities from state j to state k, pj,k(n),
by remarking that the number of jobs present after the arrival of the next batch
is the convolution of the number left over at the end of the decision interval and
the number contained in the new batch. Hence,

pj,k(n) =

m∑

i=0

qj,i(n)bk−i ; k = 1, 2, . . . , J − 1 , (10)

where m = min(j, k − 1). The exception to that pattern is destination state J ,
which may be reached after rejecting some new arrivals:

pj,J(n) =

j∑

i=0

qj,i(n)
∞∑

s=J−i

bs . (11)

All quantities necessary for setting up equations (2), and hence for applying
the policy improvement algorithm, are now available.

N.B. The reason for assuming that the batch interarrival intervals are dis-
tributed exponentially was the tractability of the expressions for cj(n) and
pj,k(n). It would be possible to relax that assumption, e.g. by replacing the
exponential with a phase-type distribution. However, the resulting expressions
would be considerably more complicated.

4 Fixed Hiring Periods

We now address a system where a server must be hired for a sizeable minimum
period of time, τ . Amazon, for example, hires servers by the hour. Although
in principle one could initiate a hire at any time, it is reasonable, and more
tractable, to use the instants 0, τ , 2τ , . . ., as decision epochs (i.e., the length
of the decision interval is τ). Assume that jobs arrive singly during a decision
interval, in a Poisson stream with rate λ. Their service times are again distributed
exponentially, with mean 1/μ.

Thus, if there are j jobs in the system at a decision epoch, and n servers
are hired, then during an interval of length τ the queue behaves as a transient
M/M/n/J queue (J is the bound on the number of jobs present), with initial
state j. To define our decision process, we need the transition probabilities,
pj,k(n), that there will be k jobs at time τ , given that there were j jobs at time
0 and n servers were hired.

Denote by P (t) = [pj,k(t)], j, k = 0, 1, . . . , J , the transient transition proba-
bility matrix for the M/M/n/J queue over the interval (0,t). Clearly, P (0) = I,
where I is the (J +1)× (J +1) identity matrix. We are interested in computing
the j’th row of P (τ).



8 A.S. McGough and I. Mitrani

Let G be the generator matrix for the M/M/n/J queue:

G =

⎡

⎢⎢⎢⎢⎢⎣

−λ λ
μ1 −(λ+ μ1) λ

. . .

−(λ+ μJ−1) λ
μJ −μJ

⎤

⎥⎥⎥⎥⎥⎦
, (12)

where μi = min(i, n)μ. The matrix P (t) is given by the matrix-exponential:

P (t) = eGt . (13)

If the solution algorithms are implemented in Matlab, this matrix exponentiation
can be performed by the built-in function expm(G ∗ t), which is stable and
fast. If that is not available, one could employ the ‘uniformization’ technique,
which involves replacing the continuous-time Markov process with an equivalent
discrete-time Markov chain using the parameter γ = λ+ nμ (e.g., see [14]). The
generator matrix G is replaced by the matrix:

Q = I +
G

γ
,

where I is the identity matrix. Then P (t) is given by the series:

P (t) =

∞∑

i=0

Qi (γt)
i

i!
e−γt . (14)

This expression provides an efficient way of computing P (t) because (a) Q is
a stochastic matrix, so the elements of Qi remain uniformly bounded for all
i (since the rows always sum up to 1), and (b) the Poisson probabilities that
appear in (14) converge rapidly to 0. Hence, the infinite series can be truncated
on the right, and possibly on the left, resulting in a finite sum:

P (t) =

r∑

i=�

Qi (γt)
i

i!
e−γt , (15)

where � and r are chosen so that the two omitted tails are negligible (see [7]).
It remains to determine the average cost, cj(n), incurred during a decision

interval. Let Lj be the average number of jobs in the system at time τ , given
that there were j jobs at time 0 and n servers were hired. That average is
obtained:

Lj =

J∑

k=1

kpj,k(τ) . (16)

The average number of jobs present during the decision interval can be approx-
imated by taking the mean of the queue sizes at the beginning and end of the
interval, i.e. (j + Lj)/2. Hence, the total cost incurred during the interval is
given by:



Optimal Hiring of Cloud Servers 9

cj(n) =

[
c1
j + Lj

2
+ c2n

]
τ . (17)

Using these expressions, the optimal policy can be computed as described in
section 2.

N.B. One might wish to relax the assumptions that jobs arrive in a Pois-
son stream during a decision interval, and their lengths are distributed expo-
nentially. Some generalizations using phase-type distributions could be treated
numerically, but replacing the M/M/n/J queue with a GI/G/n/J one would
require major approximations.

5 Heuristics and Experiments

When the computation of the optimal becomes expensive, it may be worth ex-
ploring policies that are sub-optimal, but offering good performance and ease of
implementation.

A promising heuristic policy for any given model is the one which, at every
decision epoch, minimizes the average cost incurred during the current decision
interval. In other words, when the current state is j, take the action n∗ such
that:

cj(n
∗) = min

n
cj(n) , (18)

where cj(n) is the cost appropriate to the model. This short-term policy that
looks only at the current state and does not care about the future. It will be
called the ‘greedy’ heuristic, as this type of policies are commonly referred to.

The implementation of the greedy heuristic does not require any iterations; it
is enough to evaluate the costs cj(n) for different values of n. Hence, the complex-
ity of implementing the greedy heuristic is O(JC), where C is the complexity
of evaluating an individual cost. In practice, the greedy heuristic is orders of
magnitude faster to find than the optimal policy.

The performance of the greedy heuristic will be compared with that of the
optimal policy, for each of our models. In addition, an even simpler policy will
be introduced to use as a benchmark. The latter abandons dynamic decision-
making altogether and hires a fixed number of servers, n∗, regardless of the
system state. This is, in fact, the policy often adopted in practice. To avoid
saturating the queue, n∗ should be chosen so that the average long-term server
occupancy is less than 100%. For example, one could aim for an occupancy
of 70%. In the case of batch arrivals, bearing in mind that the offered load is
ρ = λb/μ, where b is the average batch size, the above condition implies:

n∗ =

⌈
λb

0.7μ

⌉
. (19)

For the second model, the offered load is ρ = λ/μ, so the allocation becomes:

n∗ =

⌈
λ

0.7μ

⌉
. (20)

That policy will be referred to as the ‘fixed policy’.



10 A.S. McGough and I. Mitrani

Figure 1 illustrates and compares the behaviour of the three policies for the
batch arrivals model, in the case where batch sizes are distributed geometrically
with parameter α. That is, the probability that a batch contains j jobs is α(1−
α)j−1. The average batch size is b = 1/α. The offered load is increased by
decreasing α, and the long-term average cost, g, is plotted against the average
batch size. The average service time is 1/μ = 1, while the batch arrival rate is
λ = 0.1. In this experiment, it was assumed that the unit holding cost and the
unit server cost are equal: c1 = c2 = 1.

The bound on the number of jobs in the system was taken as J = 100. Under
all three policies, the probability of reaching that bound is small. For example,
when the average batch size is 50, the probability that a batch of size 100 will
be submitted is about 0.1.

A notable feature of the figure is that the greedy heuristic is almost optimal
over the entire range of offered loads. One would therefore be justified in us-
ing the heuristic in practice, knowing that its performance cannot be improved
significantly. By contrast, the costs of the fixed policy are considerably higher.
That remains the case if the 70% occupancy of the servers is replaced by 80%
occupancy. Of course, the more the fixed policy over-provides servers unneces-
sarily, the poorer its performance would be. The non-monotone character of the
graph for the fixed policy is due to the rounding-up operation in (19).

Next, we experiment with a batch size distribution that has been constructed
to have a large coefficient of variation. More precisely, batches consist of a single
job with probability 0.7, and B jobs with probability 0.3. The average batch size
is b = 0.7 + 0.3B. The coefficient of variation grows roughly linearly with B.
In figure 2, B is varied between 20 and 100, and the average achieved cost is
plotted against b.

5

10

15

20

25

30

10 15 20 25 30 35 40 45 50

g

b

Optimal policy

+

+

+

+

+

+
Greedy heuristic

×

×

×

×

×

×
Fixed policy

∗

∗ ∗

∗ ∗

∗

Fig. 1. Batch arivals: geometric batch sizes



Optimal Hiring of Cloud Servers 11

0

5

10

15

20

25

30

5 10 15 20 25 30 35

g

b

Optimal policy

+

+

+

+

+

+
Greedy heuristic×

×
×

×
×

×
Fixed policy

∗

∗
∗ ∗

∗

∗

Fig. 2. Batch arrivals: skewed batch size distribution

It seems that large coefficients of variation do not prevent the greedy heuristic
from performing well. Its costs are almost indistinguishable from those of the
optimal policy. On the other hand, the fixed policy is, if anything, worse than
before in comparison.

In the third experiment, the characteristics of the demand are held fixed, at
λ = 0.1, μ = 1, α = 0.04 (i.e., average batch size of 25). Also, the unit server
cost is fixed at c2 = 10. What is varied is the unit holding cost, from c1 = 5 to
c1 = 20. That is, the relative cost of keeping jobs in the system is varied from
half to double the cost of a server.

The results are shown in figure 3, where the average long-term costs g achieved
by the optimal policy, the greedy heuristic and the fixed policy are plotted
against c1.

Again, it is notable that the greedy heuristic achieves nearly optimal costs over
the entire range of c1 values. By contrast, the performance of the fixed policy is
rather poor. Moreover, whereas the cost of the fixed policy grows linearly with
c1 (as can be expected), those of the optimal and greedy policies grow slower
than linearly.

It is perhaps worth pointing out that, for all points in these three figures, the
policy improvement algorithm took no more than 3 iterations to find the optimal
policy.

The remaining experiments concern the model with fixed hire periods. In
figure 4, the offered load is increased from ρ = 10 to ρ = 18 by varying the job
arrival rate. The service rate is kept at μ = 1, and the unit holding cost is half
of the server cost: c1 = 0.5, c2 = 1. The bound on the number of jobs is J = 50.
The hire period length is τ = 4, meaning on average, between 40 and 72 jobs
arrive during a decision period. The fixed policy is based on equation (20).



12 A.S. McGough and I. Mitrani

50

100

150

200

250

300

350

400

450

500

4 6 8 10 12 14 16 18 20

g

c1

Optimal policy

+

+
+

+

+
Greedy heuristic

×
×

×
×

×
Fixed policy

∗

∗

∗

∗

∗

Fig. 3. Batch arrivals: varying unit holding cost

We observe that the difference between the worst policy (fixed) and the best
one (optimal) is now much narrower. This is due to the fact that jobs continue
to arrive throughout a decision period, and the rate of arrivals does not depend
on the action taken. This reduces the advantages derived from making dynamic
decisions. The costs achieved by the optimal policy are about 15% lower than
those of the fixed policy. The greedy heuristic still performs quite well, but its
costs are now about 10% higher than those of the optimal policy.

16

18

20

22

24

26

28

30

32

34

36

10 11 12 13 14 15 16 17 18

g

ρ

Optimal policy

+

+

+

+

+

+
Greedy heuristic

×

×

×

×

×
×

Fixed policy

∗

∗

∗

∗

∗

∗

Fig. 4. Fixed hiring periods: varying offered load



Optimal Hiring of Cloud Servers 13

In figure 5, the job arrival rate is kept fixed at λ = 12. The service rate, server
cost and decision period length have the same values as before, μ = 1, c2 = 1,
τ = 4, while the unit holding cost is varied from half to twice the server cost:
0.5 ≤ c1 ≤ 2.

The average costs achieved by the three policies are quite close over the en-
tire range of c1 values. Moreover, it is notable that the higher the value of c1
relative to c2, the closer those costs are, i.e. the lower the benefit of dynamic
decision-making. Indeed, one could have expected that when the dominant factor

20

25

30

35

40

45

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

g

c1

Optimal policy

+

+

+

+

+

+

+
Greedy heuristic

×

×

×

×

×

××
Fixed policy

∗

∗

∗

∗

∗

∗
∗

Fig. 5. Fixed hiring periods: varying unit holding cost

20

25

30

35

40

2 3 4 5 6 7 8 9 10

g

τ

Optimal policy

+
+ + + +

+
Greedy heuristic

×

× × × ×

×
Fixed policy

∗ ∗ ∗ ∗ ∗

∗

Fig. 6. Fixed hiring periods: varying hire period length



14 A.S. McGough and I. Mitrani

is customer performance, the most important part of the policy is to always
maintain enough servers to cope with the load.

In the final experiment, traffic characteristics and unit costs are kept fixed
(λ = 12, μ = 1, c1 = c2 = 1), while the length of the decision interval is varied
from τ = 2 to τ = 10. That is, the average number of arrivals during a decision
interval varies from 24 to 120.

The fixed policy is independent of τ , so its graph is a horizontal line. The
optimal and greedy policies also approach a horizontal asymptote. This is pre-
dictable, since the system tends to reach steady state during a large decision
interval, and the distribution at the next decision epoch becomes independent of
the current state. For the same reason, the greedy heuristic, whose performance
can be worse than that of the fixed policy for very short decision intervals, be-
comes not only ’nearly optimal’, but optimal, in the limit τ → ∞.

For all points in the last three figures, the policy improvement algorithm again
took no more that 3 iterations to find the optimal policy.

6 Conclusions

The problem of minimizing costs in a system where servers are hired dynamically
was considered in the context of two traffic and hiring regimes: batch arrivals
with arbitrary hiring intervals and Poisson arrivals with fixed hiring intervals.
In both cases, the optimal hiring policy can be computed by applying a policy
improvement algorithm. In addition, greedy heuristic policies are available which
are often almost indistinguishable from the optimal policy.

One can envisage extending the models in several directions. For example,
there may be jobs of different types, with different arrival and service charac-
teristics and different holding and server costs. The system state at a decision
epoch would then be a vector (j1, j2, . . . , jk), where ji is the number of jobs of
type i present. The action taken at a decision epoch would also be a vector of
server allocations, (n1, n2, . . . , nk), where ni is the number of servers hired to
serve jobs of type i. The methodology described here would still apply, but the
computation of the optimal policy would be considerably more complex. An-
other generalization would be to allow the traffic parameters λ and μ to change
between decision intervals. They may depend on the current state, and possi-
bly on the action taken, or may be controlled by a changing environment. Such
systems could also be handled by the methods proposed here.

References

1. Bennani, M.N., Menascé, D.: Resource allocation for autonomic data centers using
analytic performance methods. In: Procs. 2nd IEEE Conf. on Autonomic Comput-
ing, ICAC 2005), pp. 229–240 (2005)

2. Bod́ık, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., Patterson, D.: Statistical
machine learning makes automatic control practical for internet datacenters. In:
Conf. on Hot Topics in Cloud Computing, HotCloud 2009, Berkeley, CA, USA
(2009)



Optimal Hiring of Cloud Servers 15

3. Byun, E.-K., Kee, Y.-S., Kim, J.-S., Maeng, S.: Cost optimized provision-
ing of elastic resources for application workflows. Future Generation Com-
puter Systems 27(8), 1011–1026 (2011), http://dx.doi.org/10.1016/j.future.
2011.05.001

4. Byun, E.-K., Kee, Y.-S., Kim, J.-S., Deelman, E., Maeng, S.: BTS: Resource capac-
ity estimate for time-targeted science workflows. Journal of Parallel and Distributed
Computing 71(6), 848–862 (2011), doi:10.1016/j.jpdc.2011.01.008

5. Chandra, A., Gong, W., Shenoy, P.: Dynamic resourse allocation for shared data
centers using online measurements. In: Procs. 11th ACM/IEEE Int. Workshop on
Quality of Service (IWQoS), pp. 381–400 (2003)

6. Chaisiri, S., Lee, B.S., Niyato, D.: Optimization of resource provisioning cost in
cloud computing. IEEE Transactions on Services Computing 5(2), 164–177 (2012)

7. Fox, B.L., Glynn, P.W.: Computing Poisson Probabilities. Management Science
and Operations Research 31(4), 440–445 (1988)

8. Hiden, H., Woodman, S., Watson, P., Cala, J.: Developing cloud applications using
the e-science central platform. Royal Soc. of London, Phil. Trans. A. (Mathemati-
cal, Physical and Engineering Science), 371 (2013)

9. Lampe, U., Siebenhaar, M., Hans, R., Schuller, D., Steinmetz, R.: Let the
clouds compute: Cost-efficient workload distribution in infrastructure clouds. In:
Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON 2012. LNCS, vol. 7714,
pp. 91–101. Springer, Heidelberg (2012)

10. Mazzucco, M., Dyachuk, D., Dikaiakos, M.: Profit-aware server allocation for green
internet services. In: IEEE Int. Symp. on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), pp. 277–284 (2010)

11. Mazzucco, M., Mitrani, I., Fisher, M., McKee, P.: Allocation and Admission Poli-
cies for Service Streams. In: Procs. MASCOTS 2008, Baltimore, pp. 155–162 (2008)

12. Mazzucco, M., Vasar, M., Dumas, M.: Squeezing out the cloud via profit-
maximizing resource allocation policies. In: IEEE Int. Symp. on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS), pp.
19–28 (2012)

13. Mitrani, I.: Managing Performance and Power Consumption in a Server Farm.
Annals of Operations Research (2011), doi:10.1007/s10479-011-0932-1

14. Reibman, A., Trivedi, K.: Numerical transient analysis of Markov models. Com-
puting and Operations Research 15(1), 19–36 (1988)

15. D. Thain, T. Tannenbaum and Miron Livny, “Distributed computing in practice:
the Condor experience”, Concurrency and Computation: Practice and Experience,
17 (2-4),323-356, doi:http://dx.doi.org/10.1002/cpe.v17:2/4

16. Tijms, H.C.: Stochastic Models. John Wiley and sons (1994)
17. Urgaonkar, R., Kozat, U.C., Igarashi, K., Neely, M.J.: Dynamic Resource Alloca-

tion and Power Management in Virtualized Data Centers. In: IEEE/IFIP NOMS
2010, Osaka, Japan (2010)

http://dx.doi.org/10.1016/j.future.2011.05.001
http://dx.doi.org/10.1016/j.future.2011.05.001
http://dx.doi.org/10.1002/cpe.v17:2/4

	Optimal Hiring of Cloud Servers
	Introduction
	Related Work

	Semi-Markov Decision Processes
	Batch Arrivals
	Fixed Hiring Periods
	Heuristics and Experiments
	Conclusions


