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Abstract. The Cloud provides highly democratic access to computer
services on a pay-per-use basis. A fact that has encouraged many re-
searchers to adopt the Cloud for the processing of large computational
tasks and data storage. This has been used in the past for single research
endeavours or as mechanism for coping with excessive load on conven-
tional computational resources (clusters). In this paper we investigate,
through the use of simulation, the applicability of running an entire com-
puter cluster on the Cloud. We investigate a number of policy decisions
which can be made over such a virtual cluster to reduce the running cost
and the effect these policies have on the users of the cluster.

1 Introduction

Cloud Computing [4] provides a new model for computational processing and
data storage removing many of the access barriers to large-scale computing by
eliminating the need for capital expenditure on large private infrastructures.
Instead a user can ‘rent’ computational power or data space on a short-term basis
– more than they could afford to buy though enough to meet their immediate
needs – transferring expense to an operational cost. This approach tends to work
best in scenarios with significant temporal variation in requirements – alternating
between periods of little (or no) activity to periods of high activity.

This is in contrast to conventional resources available within organisations
such as Universities or Companies – often in the form of a cluster of computers.
Here capital expenditure is outlaid on a fixed number of computational resources
and data storage. The size is dominated by two factors: the available budget,
and the anticipated load on the cluster. The aim is to provision enough resources
to deal with all but the exceptional load scenarios placed on the resources.

Like many institutions Newcastle University provides a computational clus-
ter for researchers. This has the advantage of economy of scale – researchers
share resources allowing each access to more than they could individually af-
ford. Although researchers loose exclusive access to resources this is not seen
as a problem as few utilise the resources 24/7. The Newcastle cluster is formed
from the student access computers located around the campus. This has two
disadvantages for cluster users: computers can be lost from the cluster at any
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time due to students logging in, no choice on operating system – student access
mandates that computers run Windows, whilst most cluster users prefer Linux.

We have previously shown that ∼120MWh of energy was consumed in 2010 to
power the Newcastle Condor cluster [14]. Although additional capital expenses
for computer hardware and operational costs for computer maintenance exist
as these computers are primarily for other purposes we do not currently take
account of these. As the University is investigating the use of low powered thin
clients for student access and direct charging for the energy used in the cluster
this could lead to alternative approaches becoming more favourable in the future.

The advent of the Cloud, which removes capital cost and provides apparently
infinite resources, has given researchers with a new way to work – often in-spite
of local resource availability. Large collections of resources can be provisioned in
a short period of time, quicker than many institutions can offer, for a relatively
small operational outlay, a fraction of the capital cost. A second approach, Cloud
Bursting, has emerged where owners of clusters have exploited the Cloud to cope
with excessive demand which exceeds the resources available in-house.

Here we explore an alternative use case – moving the entire cluster onto the
Cloud. Investigating if the economy of scale benefits of a conventional cluster
map onto a virtual cluster and the effectiveness of policies, applied to the virtual
cluster, in terms of cost savings and impact on the cluster users. We evaluate the
cost of using the Cloud in terms of the hours consumed on the Cloud and the
impact on the cluster users as the effect on the average make-span for their jobs.
Defining make-span as the time between job submission and job completion.

We use a high level trace-driven simulation [7], using trace logs from the
Condor cluster [10] based at Newcastle University [13, 14], to evaluate the effec-
tiveness of our approach. Using just the submission times for jobs to the cluster
and their execution times allows us to submit jobs into the simulated Cloud clus-
ter where jobs will either receive service immediately, if virtual computational
instances (refereed to here as instances) are idle, or enter a queue awaiting exe-
cution otherwise. Policy can then be enacted to determine if (and when) a new
Cloud instance should be started or unused instances terminated. As the main
focus of this paper is to comparatively evaluate a number of policies we do not
concern ourselves with the appropriateness of these trace logs, using them only
for comparison – real deployment would almost certainly alter usage patterns.

We adopt the Cloud model used by many providers (e.g. Amazon’s EC2 [2])
allowing users to deploy virtual machine images onto servers owned by the
provider – referred to as Infrastructure as a Service (IaaS) [18]. Billing is typi-
cally by the hour with partly used hours incurring a full hour charge. The start
of a billing period varies between providers. Some charge from the start of the
wall-clock hour in which the instance was invoked – billing from 7pm for an
instance stated at 7:58pm – whilst others charge from the time the instance was
invoked [9]. For clarity we refer to the former case as wall-clock charging and the
latter as exact charging. It should be noted that although other billing intervals
exist our results are not invalidated by the use of shorter (or longer) periods,
they merely alter the severity of the impacts that we seek to mitigate.
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The rest of this paper is set out as follows. Section 2 discusses related research
to the work we propose. In section 3 we describe in more detail the cluster that
we are modelling. We present a number of policies for optimising the cost for
using the Cloud in Section 4 along with the perceived benefits of these policies.
The simulation environment is described in Section 5 with the simulation results
being presented in Section 6. Finally our conclusions are presented in Section 7.

2 Related Work

There is currently great interest in Cloud Computing [4]. This has lead to a
number of investigations into the applicability of the Cloud as a tool for aiding
researchers in their work. A number of simulation approaches to model the ben-
efits of Cloud computing have been performed. Deelman [8] evaluated the cost of
using Amazon’s Elastic Compute Cloud (EC2) [2] and Amazon’s Simple Storage
Service (S3) [3] to service the requirements of a single scientific application. Here
we seek to service the requirements of multiple users and multiple applications.

de Assuncao [5] proposed the use of Cloud computing to extend existing
clusters to deal with exceptional load. This work was further extended by Mat-
tess [12] by proposing the use of Amazon spot instances, supply-and-demand
driven pricing of instances, to further reduce the cost of Cloud Bursting. Our
approach differs to these in the sense that we seek to deploy our entire clus-
ter to the Cloud. The approach of using spot instances. however, could easily
be included in our approach and would allow for the same cost reduction as
proposed by Mattess. Van den Bossche [6] uses Binary Integer Programming to
select which workflows should be bursted to the Cloud. This approach is com-
putationally expensive to determine the optimal approach and does not address
the issue of when to terminate instances. It may be naively assumed that the
our approach here is no more than the degenerative case with no local resources.
However, these papers discuss when Cloud resources should be brought in, whilst
our work discusses how to optimally manage the invocation / termination of in-
stances. These two approaches can therefore be seen as complementary.

Marshall [11] proposes policies for how to extend the number of cloud in-
stances to use along with simulations of a small number of short running syn-
thetic jobs to evaluate overhead times. Here we use a full trace log containing
over half a million real jobs and evaluate for both overhead and Cloud cost.

Palankar [16] showed the criticality of data locality in the Cloud. We see that
moving our data to the Cloud will help to reduce the data locality problem.

Additional functionality such as Amazon CloudWatch [1] allow instances to
be brought up and down dependant on the characteristics of existing instances.
The approaches we propose can be built into such a system.

3 Cloud Cluster Model

We discuss the general Cloud Cluster architecture that we are modelling. Each
individual user is able to submit jobs to the Cluster at any time. A Job Manage-
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Fig. 1. The state diagram for Instances

ment Service is used to deploy these jobs to dynamic pool of instances within the
Cloud. This can be one of the many existing Cluster management tool such as
Condor [10], PBS [17] or (Sun) Grid Engine [15]. Additional software is required
to allow the cluster to add Cloud instances, when required, and terminate these
when no longer needed. Instances within the Cloud Cluster can be seen as being
in one of three states with interactions illustrated in Figure 1:

– Unallocated: those potential Cloud instances not currently under contract
of the cluster – (effectively) an infinite set. The Job Management Service
can ‘hire’ such an instance to run a job placing it in the Active state.

– Active: the instance is ‘hired’ by the cluster and is currently servicing a job
for a user. On job completion the instance will enter the idle state.

– Idle: the instance is ‘hired’ by the cluster but not currently servicing a job.
The instance will become active if the cluster allocates a job before the end
of it’s billing period otherwise it will be released into the unallocated state.

As an instance incurs the same charge irrespective of when it is terminated
within a billing period it is always kept ‘hired’ until the end of this period –
increasing the chance of there being an idle instance when a job arrives. Instances
can either be provisioned for all users within a cluster or only a specific user.

Jobs are first matched against idle instances capable of accepting jobs from
that user. Receiving continuous service from the active instance until completion
when the instance will become idle. Jobs arriving to find no ‘idle’ instances
capable of servicing them will cause a new instance to be provisioned, requiring
time for the operating system and middleware to start, before running the job.

4 Policy

In this section we discuss a number of policies which can be applied to a Cloud
based Cluster aimed at reducing the number of hours consumed by the Cluster
in order to successfully complete all jobs. In each case we indicate how the policy
could be realised and how we would expect the Cloud cluster to be affected.

P1: Limiting the number of Cloud instances: Although the Cloud offers
(apparently) infinite availability each provider has thresholds over which prior
approval is required for more resources – EC2 is restricted to 20 instances per
region, giving an overall limit of 200 instances. Limiting instances helps prevent
excessive instance consumption when users submit large numbers of short jobs.
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Jobs arriving to find no instances in the ‘idle’ state can either cause the
invocation of a new instance, provided that the instance limit has not been
reached, or be placed into a queue of pending jobs. Pending jobs are services in
a FCFS manner as instances become ‘idle’. This will reduce the number of hours
consumed by the cluster at the expense of increasing the average make-span.

P2: Merging of different user’s jobs: Allowing users to share Cloud
instances could help reduce costs as less instances will be required and reduce
make-span as jobs are more likely to discover usable idle instances. As the current
cluster shares resources we are not reducing the security available to the user.

This can be implemented by having one central pool of Cloud instances with
jobs being allocated to any ‘idle’ instance. This does, however, bring in the
complexity of how to sub-charge for these ‘shared’ hours of Cloud usage. This
can be done after an instance has been terminated using the following equation:

Costi = hours× price×
∑Ni

j=1 execution timei,j∑M
k=1(

∑Nk

j=1 execution timek,j)
(1)

Where hours is the number of hours the instance was active, price is the
unit price per hour, Ni is the number of jobs from source i, M is the number of
sources and execution timei,j is the execution time for the j’th job from source
i. Thus each source’s cost is based on the proportion of the overall time the
source was active on the instance relative to all sources on this instance.

P3: Instance keep-alive: Experimentation has shown the time for an in-
stance to initialise and start accepting jobs can range from 1 to 15 minutes, with
high values being detrimental to overheads. This policy allows idle instances at
the end of a billing period to remain ‘hired’ for the next period with probability
p. To prevent a half-life decay an instance which is ‘idle’ for a full hour will
always terminate. This policy many have a more impact on the make-span than
on the cost saving, as an arriving job is more likely to find an ‘idle’ instance.
The cost may go up due to instances running when no jobs are present.

P4: Delaying the start of Instances: This policy, like P1, aims to reduce
the impact of short running jobs. Arriving jobs which cannot be allocated to an
‘idle’ instance are queued. If the job fails to obtain an instance within t minutes
then a new instance will be created. This helps the overall cost for using the
Cloud by reducing the chance of instances being brought up for short-running
jobs. The average make-span will go up due to the extra waiting time.

P5: Removing the delay on starting an Instance: Policy P4 can be
slow to react when large numbers of jobs are submitted. This throttling can be
removed while the queue size exceeds a given proportion (r) of the maximum
instance count. Although this is expected to increase the cost of using the Cloud
it should reduce the average make-span.

P6: Waiting for the start of the next hour: Where a Cloud provider
adopts a wall-clock charging model it may not be economical to start an instance
just before the end of an hour. Jobs arriving within b minutes of the end of an
hour are delayed until the start of the next hour. Although this will increase the
make-span of the job it should decrease the cost to the Cloud.
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Fig. 2. Profile of job submissions

5 Simulation Environment

Our simulations are based on trace logs from the Condor high-throughput clus-
ter at Newcastle University [13, 14]. The 1359 student access desktops, running
Microsoft Windows XP, were replaced on a four year rolling cycle. As the main
focus of our work is the comparison of different polices for reducing the cost of
using the Cloud we ignore the differences between local and Cloud performance
and assume the Cloud execution time will match the original execution time.

Figure 2 depicts the profile for the 574,701 successful jobs made between 13th
October 2005 to 13th March 2011 by 21 unique users requiring 228,688 hours to
execute. Jobs which were terminated before completing by the submitting user
have not been used for this simulation due to their lack of execution time.

6 Simulations and Results

We evaluate our policies in order to assess an optimal set of policies for our
Cloud cluster. These evaluations could be performed on different cluster data
and we believe that the conclusions from this work will be applicable to other
similar clusters. As the cost per hour of different providers varies and even tem-
porally within a provider we quote all values here in hours consumed. A simple
multiplication of this value by the current hourly rate will yield the real cost.

Table 1 shows the results under the assumption of infinite instance avail-
ability. Exact charging gives a significant decrease in hours consumed over wall-

Table 1. Baseline results for an infinite size Cloud Cluster

Charge Type Hours Consumed Average make-span

Exact charging 401,981 24.65 minutes

Wall-clock charging 472,571 24.75 minutes
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clock charging. This equates to 97,000 hours or ∼23.3 minutes for each instance
started. The make-span is almost identical with the discrepancy attributable to
wall-clock instances (in general) powering down before exact charged instances,
thus arriving jobs are less likely to find idle instances. The rest of the results are
computed relative to the exact charge case to exemplify the relative benefits.

The following key letters are used to indicate the Cloud pricing model and
source merging policy (P2) in the following graphs: h - wall-clock charging, w -
exact charging, m - jobs can run on any instance, s - jobs can only be run on
instances allocated to its own source. If present the number is the amount of
time (in minutes) relative the experiment being performed.

Figures 3 and 4 exemplify policy P1. Increasing the maximum instances in-
creases the hours consumed but reduces the average make-span. Exact charging
remains much more optimal than wall-clock charging. The impact of merging
jobs by different users (P2) appears to have only a marginal effect (1.3% ∼5,000
hours) on hours consumed, and no perceivable impact on make-span – a conse-
quence of the cluster users working at different times, if more users were active at
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the same time this could lead to a significant reduction in hours. All subsequent
experiments have been performed with a maximum of 500 instances.

In figures 5 and 6 we investigate the effect of start-up time for instances and
whether it is beneficial to keep instances ‘idle’ in the absence of jobs (P3). As the
startup time of instances increases so too does the number of hours consumed
and the average make-span. Only for start-up times in excess of ten minutes
is there a perceivable benefit to the make-span in increasing the chance of an
instance remaining ‘hired’, though the hours consumed increase almost linearly
as we increase the chance of an instance remaining ‘hired’. Therefore using a
policy to keep instances ‘hired’ in the absence of jobs only makes sense for boot
times over ten minutes and with a probability of only around 10-15%.

Policy P4 is evaluated in figures 7 and 8 in which we vary the maximum
delay time, for starting a new Cloud instance, in an attempt to reduce the hours
consumed. As we increase the maximum delay the hours consumed decreases
but the average make-span increases. As these two characteristics are inversely
proportional it is necessary to balance maximum delay against increases in make-
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span. The reduction in hours consumed is slightly more pronounced for smaller
values of maximum delay whilst the make-span is almost linear which would
suggest that a small value for maximum job delay would be appropriate.

For figures 9 and 10 we investigate policy P5 in which we remove the delay
on starting new instances (P4) when there is a high influx of jobs to the Cloud
cluster. Here there is a clear distinction between the policies for merging or not
merging different users jobs. For the hours consumed if the policy is not to merge
sources then there is a benefit of having a 5% threshold on removing the delay
to starting resources. However, increasing this threshold has no further impact.
If merging sources then the improvement isn’t immediate though it does become
better than the non-merged approach at around 10-20% capping. For make-span
the non-merged policy reaches a maximum at 5% threshold whilst the merged
policy approaches this as the threshold increases to 50%. Thus if used a capping
of over 5% for the non-merged approach and around 5-15% for merged sources.

We explore the effect of delaying starting up new instances till the start of the
next wall-clock hour (P6) in figures 11 and 12. The number of hours consumed
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decreases as we increase the number of minutes before the start of an hour. This
is most significant for the cases of Cloud instances with wall-clock charging. The
exact charging model also shows this reduction as we are producing a variation
of policy P4 in which the maximum delay on instance creation is variable. When
we look at the average make-span the value does increase, but only slowly, rising
by only two minutes over the half hour range. Thus unless make-span is the
overriding concern then this policy should be used with a high value.

7 Conclusions

In this paper we have demonstrated through the use of simulation how a Cluster
can be deployed completely on the Cloud. We have demonstrated how policies
over provisioning of instances can effect the overall cost of using the Cloud
and the consequence this has on average make-span for users jobs. All of these
policies have the potential to decrease the cost of using the Cloud at the expense
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of increasing the make-span. It is therefore important to weigh up these two
considerations in order to select an optimal policy set for a given Cloud cluster.

The policies of delaying the start of instances (P4) and delaying the start
of instances to the next hour (P6) appear to have the biggest impact on cost
of using the Cloud with least impact on the job make-span. Especially in the
latter case for resources with wall-clock charging. All the presented policies have
the potential to be used together thus increasing the potential gain. As the
policies effect when to start up instances and how long to wait before doing so a
merging of the policies would require one policy to take precedence over another.
For example delaying jobs for at least ten minutes (P4) unless they are within
twenty minutes of the start of the next hour (P6).

Although the Newcastle cluster is currently free it does have drawbacks: non-
dedicated resources and imposed operating system. If electricity charges were
introduced – 120MWh would currently equate to 335,000 hours on Amazon –
although the cost of working in-house would still be cheeper the cumulative
benefits for working on the Cloud would make it appear a much better option.
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