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Abstract Time-dependent density functional theory (TDDFT) is currently the most
efficient approach allowing to describe electronic dynamics in complex systems,
from isolated molecules to the condensed-phase. TDDFT has been employed to in-
vestigate an extremely wide range of time-dependent phenomena, as spin dynamics
in solids, charge and energy transport in nanoscale devices, and photoinduced exci-
ton transfer in molecular aggregates. It is therefore nearly impossible to give a gen-
eral account of all developments and applications of TDDFT in material science, as
well as in physics and chemistry. A large variety of aspects are covered throughout
these volumes, see e.g. Chapters X, Y (to be indicated). In the present chapter, we
will limit our presentation to the description of TDDFT developments and applica-
tions in the field of quantum molecular dynamics simulations in combination with
trajectory-based approaches for the study of nonadiabatic excited-state phenomena.
We will present different quantum-classical strategies used to describe the coupled
dynamics of electrons and nuclei underlying nonadiabatic processes. In addition,
we will give an account of the most recent applications with the aim of illustrating
the nature of the problems that can be addressed with the help of these approaches.
The potential, as well as the limitations, of the presented methods are discussed,
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along with possible avenues for future developments in TDDFT and nonadiabatic
dynamics.

1 Introduction

Photoinduced isomerization processes, photosynthetic and photovoltaic energy con-
version phenomena, charge and energy transport through molecular junctions, are
all typical examples of, so-called, nonadiabatic processes. Nonadiabatic processes
are characterized by a strong coupling between electronic and nuclear motion; in
fact, nuclear motion is responsible for inducing electronic (nonadiabatic) transi-
tions, and in turn, the time evolution of the electronic states also affects the nuclear
dynamics at very short timescales (down to a few tens of fs). In this nonadiabatic
regime, thus when the Born-Oppenheimer approximation breaks down, performing
(quantum) molecular dynamics simulations is tremendously challenging. Accurate
electronic structure properties are required to describe electronic dynamics, and to
correctly drive the nuclear evolution. Identifying regions of nuclear configuration
space where the electronic states are coupled, as avoided crossings and conical inter-
sections, is essential to predict quantum yields. Efficient evolution techniques have
to be employed to describe nuclear motion in order, for instance, to determine final
molecular structures, or to account for possible quantum effects. Therefore, theoret-
ical and numerical developments need to address the problem from the perspective
of both electronic structure theory and nuclear quantum dynamics.

Perhaps the most celebrated method to investigate excited electronic states is
time-dependent density functional theory (TDDFT). TDDFT offers an in princi-
ple exact formalism for propagating the time-dependent electronic density and,
within linear response theory, for calculating excitation energies as well as criti-
cal excited-state properties. It is therefore without any surprise that TDDFT became
the electronic-structure method of choice to be coupled with nonadiabatic dynam-
ics. Particularly successful has been the combination of TDDFT, employed to solve
the electronic problem, with the description of nuclear motion in terms of trajec-
tories that evolve or hop between coupled (electronic) potential energy surfaces.
The most well-known method is Tully’s “fewest switches” trajectory surface hop-
ping (Tully (1990)), which has evolved into a widely used and successful technique.
The mean-field Ehrenfest dynamics is often employed to investigate explicitly the
electronic dynamics, combined for example with real-time TDDFT Tavernelli et al
(2005); Tavernelli (2006). Full multiple spawning (Martı́nez et al (1996); Martı́nez
and Levine (1997); Ben-Nun and Martı́nez (1998); Ben-Nun et al (2000); Hack
et al (2001); Ben-Nun and Martı́nez (2002); Virshup et al (2008)) propagates cou-
pled Gaussian functions along classical trajectories, whereas the coupled-trajectory
mixed quantum-classical (CT-MQC) scheme (Min et al (2015)) derived from the
Exact Factorization (Abedi et al (2010)) is based on the propagation of trajectories
along a time-dependent potential energy surface (Abedi et al (2013a)). Other tech-
niques like the quantum-classical Liouville equation (Kapral and Ciccotti (1999);
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Nielsen et al (2000); Kapral (2006)), Bohmian dynamics (Wyatt et al (2001); Lo-
preore and Wyatt (2002); Rassolov and Garashchuk (2005); Curchod and Taver-
nelli (2013a)), variational multiconfiguration Gaussians (Worth et al (2004); La-
sorne et al (2006, 2007); Worth et al (2008); Mendive-Tapia et al (2012); Richings
et al (2015)), multiconfigurational Ehrenfest (Shalashilin (2010); Saita and Sha-
lashilin (2012); Makhov et al (2017)) or linearization approaches to compute time-
correlations functions (Bonella and Coker (2005); Huo and Coker (2012); Dunkel
et al (2008)) have been also proposed for nonadiabatic dynamics. Despite their dif-
ferences, all the methods mentioned above are rooted in the Born-Huang repre-
sentation of the total molecular wavefunction, i.e., an expansion in an infinite sum
over the correlated Born-Oppenheimer electronic states. In contrast, the recently
introduced Exact Factorization of the time-dependent molecular wavefunction of-
fers a paradigm shift in our perception of nonadiabatic dynamics, away from the
Born-Huang picture, and blaze a trail for the development of nonadiabatic tech-
niques away from Born-Oppenheimer concepts. It is important to mention here
that ensembles of trajectories, when properly constructed via the method of char-
acteristics (Agostini et al (2018)), can represent, in principle arbitrarily closely, the
solution of the underlying partial differential equation. Practical implementations,
however, involve further-going approximations where, for instance, interference and
tunnelling effects are neglected or only approximately taken into account. The ad-
vantage of trajectory-based method is that they circumvent the enormous numerical
effort associated with quantum wavepackets propagation techniques, such as Multi
Configuration Time Dependent Hartree approach (MCTDH) (Meyer et al (1990);
Burghardt et al (1999); Wang and Thoss (2003); Meyer and Worth (2003)). By its
very nature, this approach requires the computation of the relevant potential energy
surfaces (PESs) and corresponding couplings before the actual propagation of nu-
clear wavepackets. This clearly implies an important computational effort that lim-
its the applicability of this method to a small number of degrees of freedom (up to
∼ 10). In addition, the determination of the relevant degrees of freedom to include
in the dynamics can also become a challenging problem, which requires some a
priori knowledge of the “active” vibrational modes involved in the dynamics. Such
wavefucntion-based nonadiabatic approaches are beyond the scope of this chapter
and will not be discussed further.

The goal of this chapter is to present in a self-contained manner the key theoreti-
cal concepts and equations of the most important methods cited above, starting from
the electronic structure problem and (LR-)TDDFT, up to nuclear dynamics methods
like Surface Hopping, Ehrenfest dynamics, and Ab Initio Multiple Spawning. To
contrast with these Born-Huang-based methods, we also present the formalism of
the Exact Factorization and introduce the reader to the first mixed-quantum classical
algorithm derived from this formalism, coined coupled-trajectory mixed quantum
classical (CT-MQC) dynamics.
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2 Coupled electron-nuclear dynamics in molecules

In molecules and condensed phase systems, the time evolution of interacting elec-
trons and nuclei is described by the time-dependent Schrödinger equation

ĤΨ(r,R, t) = ih̄∂tΨ(r,R, t) , (1)

where the electron-nuclear wavefunction Ψ(r,R, t) describes the state of the system
over time, and Ĥ is the molecular Hamiltonian, i.e.,

Ĥ(r,R) =
Nn

∑
ν=1

−h̄2

2Mν

∇
2
ν + T̂e(r)+Vee(r)+Vnn(R)+Ven(r,R)

=
Nn

∑
ν=1

−h̄2

2Mν

∇
2
ν + ĤBO(r,R) . (2)

Here, r = (r1, . . . ,rNel ), R = (R1, . . . ,RNn), Nel is the number of electrons and Nn
the number of nuclei. The first term on the right-hand side of Eq. (2) is the nu-
clear kinetic energy, with ∇ν indicating the spatial derivative with respect to the
position of the nucleus ν , and Mν its mass, whereas ĤBO is the so-called Born-
Oppenheimer (BO), or electronic, Hamiltonian. ĤBO is defined as the sum of the
electronic kinetic energy, T̂e, the electron-electron, V̂ee, the nucleus-nucleus Vnn, and
the electron-nucleus, Ven, interactions.

Usually, the problem is reformulated adopting the Born-Huang expansion of the
molecular wavefunction in the adiabatic basis. The adiabatic, or BO, states, ϕ

(k)
R (r),

are defined as the eigenfunctions of the BO Hamiltonian,

ĤBO(r,R)ϕ
(k)
R (r) = ε

(k)
BO(R)ϕ

(k)
R (r) , (3)

with eigenvalues ε
(k)
BO(R). The electronic time-independent problem is diagonalized

at each nuclear position R, thus the eigenfunctions and eigenvalues depend on R.
Nuclear positions are interpreted here as parameters, that label both the electronic
states and the electronic energies. If Eq. (3) is solved for all nuclear configurations,
ε
(k)
BO(R) identify the so-called BO potential energy surfaces (PESs). In the Born-

Huang expansion of the electron-nuclear wavefunction,

Ψ(r,R, t) = ∑
k

χk(R, t)ϕ(k)
R (r) , (4)

the coefficients χk(R, t) clearly depend on nuclear positions and on time. These co-
efficients can be interpreted as the nuclear contributions corresponding to the elec-
tronic states included in the sum, and can be also referred to as nuclear wavepackets.
In fact, it can be easily proven that the nuclear density, defined as the integral of
|Ψ(r,R, t)|2 over electronic coordinates,
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dr |Ψ(r,R, t)|2 = ∑

k
|χk(R, t)|2 , (5)

can be written as the sum of adiabatic contributions, |χk(R, t)|2. Here, the orthogo-
nality of the BO states∫

drϕ
(l)
R
∗
(r)ϕ(k)

R (r) =
〈

ϕ
(l)
R

∣∣∣ϕ(k)
R

〉
r
= δlk (6)

has been used.
The Born-Huang expansion (4) is inserted in Eq. (1), that is then projected on

ϕ
(k)
R
∗
(r) and integrated over r. A set of partial differential equations are derived for

the expansion coefficients[
Nn

∑
ν

−h̄2

2Mν

∇
2
ν + ε

(k)
BO(R)

]
χk(R, t)+∑

l
Fkl(R)χl(R, t) = ih̄∂t χk(R, t) . (7)

The last term on the right-hand side is responsible for coupling the evolution of the
k-th coefficient to all other coefficients, via the nonadiabatic couplings

Fkl(R) =
∫

dr ϕ
(k)
R
∗
(r)

[
Nn

∑
ν

−h̄2

2Mν

∇
2
ν

]
ϕ
(l)
R (r)

+
Nn

∑
ν

1
Mν

{∫
dr ϕ

(k)
R
∗
(r)
[
−ih̄∇ν ϕ

(l)
R (r)

]}
· [−ih̄∇ν ] , (8)

arising from the effect of the nuclear kinetic energy operator on the parametric de-
pendence of the BO states on R. In the most general case, the non-diagonal ele-
ments of Fkl(R) are non-zero and induce a coupling between different electronic
states due to the motion of the nuclei. The nonadiabatic coupling term is responsi-
ble for exchanging “nuclear contributions” between the electronic adiabatic states k
and l. The BO framework presented so far is widely adopted by a large community
of physicists and chemists to interpret the coupled electron-nuclear problem under
nonadiabatic conditions. However, such framework is not the only one, as we will
discuss below.

An alternative perspective on the coupled electron-nuclear problem has been re-
cently proposed, the Exact Factorization of the electron-nuclear wavefunction (Abedi
et al (2010, 2012)). In this framework, we make an Ansatz different from the Born-
Huang representation of the molecular wavefunction, namely

Ψ(r,R, t) = ΦR(r, t)χ(R, t) . (9)

Here χ(R, t) is the nuclear wavefunction and ΦR(r, t) is the electronic wavefunc-
tion which parametrically depends on the nuclear positions and satisfies the partial
normalization condition (PNC)
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dr |ΦR(r, t)|2 = 1 ∀ R, t . (10)

The theorems introduced in (Abedi et al (2010, 2012)) prove the existence and
uniqueness of Eq. (9), up to within a (R, t)-dependent gauge transformation. The
PNC guarantees the interpretation of |χ(R, t)|2 as the probability of finding the nu-
clear configuration R at time t, and of |ΦR(r, t)|2 itself as the conditional probability
of finding the electronic configuration r at time t given the nuclear configuration R.

The stationary variations (Frenkel (1934)) of the quantum mechanical action with
respect to ΦR(r, t) and χ(R, t) lead to the derivation of the following equations of
motion (

ĤBO(r,R)+Ûcoup
en [ΦR,χ]− ε(R, t)

)
ΦR(r, t) = ih̄∂tΦR(r, t) (11)[

Nn

∑
ν=1

[−ih̄∇ν +Aν(R, t)]2

2Mν

+ ε(R, t)

]
χ(R, t) = ih̄∂t χ(R, t), (12)

where the PNC is enforced by means of Lagrange multipliers (Alonso et al (2013);
Abedi et al (2013b)). The electron-nuclear coupling operator (Agostini et al (2015b)),

Ûcoup
en [ΦR,χ] =

Nn

∑
ν=1

1
Mν

[
[−ih̄∇ν −Aν(R, t)]2

2

+

(
−ih̄∇ν χ

χ
+Aν(R, t)

)(
− ih̄∇ν −Aν(R, t)

)]
, (13)

the time-dependent potential energy surface (TDPES) (Abedi et al (2013a); Agostini
et al (2013); Suzuki et al (2015); Agostini et al (2015a); Curchod et al (2016a);
Suzuki and Watanabe (2016)),

ε(R, t) = 〈ΦR(t)| ĤBO +Ûcoup
en − ih̄∂t |ΦR(t)〉r , (14)

and the time-dependent vector potential (Curchod and Agostini (2017)),

Aν (R, t) = 〈ΦR(t)|− ih̄∇ν ΦR(t)〉r (15)

are responsible for the coupling between electrons and nuclei in a formally exact
way. It is worth noting that the electron-nuclear coupling operator, Ûcoup

en [ΦR,χ], in
the electronic equation (11), depends on the nuclear wavefunction and acts on the
parametric dependence of ΦR(r, t) as a differential operator. This “pseudo-operator”
includes the coupling to the nuclear subsystem beyond the parametric dependence
in the BO Hamiltonian ĤBO(r,R). The symbol 〈 · 〉r indicates an integration over
electronic coordinates only. The nuclear equation (12) has the particularly appealing
form of a Schrödinger equation that contains a time-dependent vector potential (15)
and a time-dependent scalar potential (14) that govern the nuclear dynamics and
yield the nuclear wavefunction. χ(R, t) is interpreted as the nuclear wavefunction
since it leads to an N-body nuclear density, and an N-body current-density, which
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reproduce the true nuclear N-body density and current-density (Abedi et al (2012))
obtained from the full wavefunction Ψ(r,R, t).

In order to connect the Born-Huang representation to the Exact Factorization, the
electronic wavefunction ΦR(R, t) is expanded in terms of the BO states, similarly
to what is done for the molecular wavefunction of Eq. (4), namely

ΦR(r, t) = ∑
k

Ck(R, t)ϕ(k)
R (r). (16)

The expansion coefficients in Eqs. (4) and (16) are related,

χk(R, t) =Ck(R, t)χ(R, t), (17)

by virtue of the factorization (9). Additionally, the PNC can be rewritten as

∑
k
|Ck(R, t)|2 = 1 ∀ R, t. (18)

We point out that even in the case where the nuclear wavepacket splits into more
than one BO PESs the full wavefunction is still a single product: the nuclear wave-
function has contributions (projections) on different BO PESs while the electronic
wavefunction is a linear combination of the adiabatic states, but still we may write

Ψ(r,R, t) =

(
e

i
h̄ S(R,t)

√
∑

l
|χl(R, t)|2

)(
∑
k

Ck(R, t)ϕ(k)
R (r)

)
(19)

where the first term in parenthesis is χ(R, t), with a phase S(R, t) determined by
fixing the gauge freedom, and the second term in parenthesis is ΦR(r, t), using
Eq. (16).

In the absence of nonadiabatic couplings in Eq. (7), the evolution equations for
the coefficients χk(R, t) decouple, and each nuclear contribution now evolves adia-
batically according to the TDSE[

Nn

∑
ν

−h̄2

2Mν

∇
2
ν + ε

(k)
BO(R)

]
χk(R, t) = ih̄∂t χk(R, t) , (20)

under the effect of a potential produced only by the electrons in the adiabatic state k.
This is the essence of the BO approximation. Analogously, in the limit of infinite nu-
clear masses, Eqs. (11) and (12) (Scherrer et al (2015); Schild et al (2016); Eich and
Agostini (2016); Scherrer et al (2017)) reduce to the fundamental equations of the
BO approximation, namely the static electronic equation (3) and a nuclear evolution
equation identical to Eq. (20) with χk(R, t) replaced by the nuclear wavefunction
χ(R, t) of the Exact Factorization.

If the nonadiabatic couplings cannot be neglected, the fully coupled electron-
nuclear problem, summarized in Eq. (7) or Eqs. (11) and (12), has to be solved.
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Electronic dynamics is simulated at a quantum-mechanical level employing
quantum-chemistry approaches, either based on the electronic wavefunction or on
the electronic density. If either the adiabatic or the diabatic basis are used to char-
acterize the electronic subsystem, electronic dynamics is implied in the time evolu-
tion of the expansion coefficients (see for instance Eqs. (4) or (16)), since the basis
functions are time-independent. On the other hand, (real-time) TDDFT yields an
explicit evolution of the electronic subsystem, as the electrons are represented via
their time-dependent one-body density. As we will show below, real-time TDDFT
can be combined with a mean-field solution of the coupled electron-nuclear dynam-
ics. The LR formulation of TDDFT, instead, is able to provide information about the
time-independent electronic properties, such as adiabatic forces and nonadiabatic
couplings, needed for approaches based on the Born-Huang expansion. Possible ex-
tensions of TDDFT to solve the electronic equation of the Exact Factorization are
currently under investigation (Requist and Gross (2016)). Section 3 is devoted to a
thorough review of the basis of TDDFT and of LR-TDDFT

Nuclear dynamics can be treated exactly or approximated at different levels, de-
pending on the complexity of the system of interest. Simulation methods that retain
the quantum character of nuclear dynamics are indeed very expensive, as the numer-
ical cost for solving the quantum-mechanical problem scales exponentially with the
number of degrees of freedom. Therefore, different strategies have been proposed
over the years to make the problem numerically tractable. Quantum wavepacket
propagation techniques aim at solving Eq. (7) either on grids (Lauvergnat and Nauts
(2010, 2014); Sadri et al (2012)), or by expanding the nuclear wavepackets χk(R, t)
on a basis where calculations are computationally cheaper (Meyer et al (1990);
Burghardt et al (1999); Wang and Thoss (2003); Meyer and Worth (2003); Sadri
et al (2014)). The major bottleneck of these approaches is the “pre-calculation” of
the electronic properties, i.e., BO PESs and of the nonadiabatic couplings, needed
to solve the nuclear equations. Attempts at solving exactly the coupled equations
at the basis of the Exact Factorization are currently under investigations. On-the-fly
calculations of electronic properties are instead possible, if only local nuclear in-
formation is necessary to solve (in an approximate way) Eq. (7). Full and ab initio
multiple spawning methods (Martı́nez et al (1996); Martı́nez and Levine (1997);
Ben-Nun and Martı́nez (1998); Ben-Nun et al (2000); Hack et al (2001); Ben-
Nun and Martı́nez (2002); Virshup et al (2008)), similarly to direct-dynamics tech-
niques (Worth et al (2004); Lasorne et al (2006, 2007); Worth et al (2008); Mendive-
Tapia et al (2012); Richings et al (2015)), employ a representation of the nuclear
wavepackets in terms of moving Gaussian functions, that evolve along trajectories
determined either variationally or classically. Trajectory-based quantum-classical
schemes adopt a representation of nuclear dynamics in terms of purely classical tra-
jectories, as in the Ehrenfest and surface-hopping methods. They are indeed numer-
ically cheaper than the methods above, but the price to pay is sometimes the neglect
of important quantum-mechanical features both in the nuclear dynamics and in the
coupling between electronic and nuclear motion. Similarly to direct dynamics and
full multiple spawning, evolving the nuclei along trajectories enables us to exploit
the locality of classical dynamics for on-the-fly simulations, where electronic infor-
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mation is needed, and thus computed, only for the visited nuclear configurations.
Trajectory-based solutions of Eqs. (11) and (12) have been proposed (Agostini et al
(2014); Abedi et al (2014)), and the most recent developments (Min et al (2017))
will be reviewed in Section 4, along with Ehrenfest dynamics (Tully (1998)), tra-
jectory surface hopping (Tully (1990); Doltsinis and Marx (2002); Böckmann et al
(2010); Jasper et al (2004, 2006); Subotnik et al (2013); Curchod and Tavernelli
(2013b); Jaeger et al (2012); Fang and Hammes-Schiffer (1999); Tapavicza et al
(2007a); Craig et al (2005); Akimov and Prezhdo (2014)) and full/ab-initio mul-
tiple spawning (Martı́nez et al (1996); Martı́nez and Levine (1997); Ben-Nun and
Martı́nez (1998); Ben-Nun et al (2000); Hack et al (2001); Ben-Nun and Martı́nez
(2002); Virshup et al (2008)).

3 Electronic dynamics: Time-dependent density functional
theory

3.1 Time-dependent density functional theory

The Hohenberg-Kohn (HK) theorem (Hohenberg and Kohn (1964)) of ground-state
DFT states that knowledge of the ground-state density uniquely determines the ex-
ternal potential of the system (up to within a trivial constant) and thus the entire
electronic Hamiltonian and the associated total ground-state energy. It is important
to realize that ground-state DFT in nearly all applications is intimately tied to the
BO approximation: the electronic density one calculates is the one produced by
clamped nuclei. Then, by varying the positions of the clamped nuclei, ground-state
DFT provides an efficient approach to map out the lowest BO PES and to calcu-
late physical observables associated with the lowest BO PES, such as vibrational
spectra, cohesive energies, barrier heights, etc. Higher BO PESs and the time evolu-
tion of systems strongly driven by external fields are not accessible wit ground-state
DFT.

In their seminal paper, Runge and Gross (Runge and Gross (1984)) proved a
theorem that established a 1-1 correspondence between the time-dependent density
and the time-dependent external potential for systems evolving from a given initial
many-electron state, Φ0. The time evolution of the many-electron wavefunction is
governed by the time-dependent Schrödinger equation

Ĥel(t)Φ(r, t) = ih̄
∂

∂ t
Φ(r, t) (21)

Φ(r, t0) = Φ0(r)

with Hamiltonian

Ĥel(t) = T̂e(r)+Vee(r)+ vext(r, t) . (22)
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The general time-dependent external potential appearing in (22) covers different
scenarios: one important case is the (short-time) electron dynamics with clamped
nuclei, driven by an applied laser field

vext(r, t) =Vnn(R)+Ven(r,R)+δvapp(r, t). (23)

Another case is the time-dependent electric potential produced by classically prop-
agated point-like nuclei

vext(r, t) =Vnn(R(t))+Ven(r,R(t)). (24)

In complete detail, the Runge-Gross theorem ensures that the densities ρ(r, t) and
ρ ′(r, t) evolving from a common initial many-body state Φ0 = Φ(t0) under the in-
fluence of two potentials Vext(r, t) and V ′ext(r, t) will become different infinitesimally
later than t0 if the potentials are Taylor expandable around the initial time t0 and dif-
fer by more than a purely time-dependent constant Vext(r, t) 6=V ′ext(r, t)+C(t). This
implies that the potentials-to-densities map can be inverted:

ρ(r, t)→ vext [ρ](r, t). (25)

The Runge-Gross proof does not depend on the particular form of the particle-
particle interaction. The proof is valid for essentially any interaction, in particular
also for no interaction. This establishes the map for non-interacting particles

ρ(r, t)→ vs[ρ](r, t). (26)

implying that the potential vs(r, t), which reproduces the interacting density, ρ(r, t),
in a non-interacting system is uniquely defined. From now on, this unique potential
vs[ρ](r, t) will be called the time-dependent Kohn-Sham potential. The correspond-
ing system of single-particle time-dependent Schrödinger equations

ih̄
∂

∂ t
φk(r, t) =

(
−1

2
∇

2 + vs(r, t)
)

φk(r, t) , k = 1, . . . ,N , (27)

whose orbitals reproduce the interacting density via

ρ(r, t) =
N

∑
i=1
|φk(r, t)|2 (28)

are called time-dependent Kohn-Sham (TDKS) equations.
The Runge-Gross theorem guarantees uniqueness of the potentials vext [ρ,Φ0](r, t)

and vs[ρ,{φ (0)
k (r)}] for given initial many-body state Φ0 and given initial orbitals

{φ (0)
k (r)}, respectively (Gross and Kohn (1990)). Apart from uniqueness, whether

or not, for a given function ρ(r, t), the potential vext(r, t) and vs(r, t) actually exist,
is a separate question, known as (interacting and non-interacting) v-representability
problem. This problem has been solved – once and for all – by van Leeuwen(van
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Leeuwen (1999)), who demonstrated under mild conditions to be satisfied by the
densities ρ(r, t) that the potentials vext(r, t) and vs(r, t) can be constructed explicitly
as solutions of the Sturm-Liouville problem. Since this is a constructive proof, the
solution of the TDDFT v-representability problem is much more satisfactory than
the status of the v-representability problem in ground-state DFT where a complete
characterization of the domains of the vgs

ext(r, t) and vgs
s (r, t) is still lacking.

The TDKS potential in Eq. (27) is usually written in the following form

vs(r, t) = v0(r, t)+ vH [ρ](r, t)+ vxc[ρ](r, t) (29)

where v0(r, t) is the given external potential of the system at hand, vH [ρ](r, t) is the
time-dependent Hartree potential

vH [ρ](r, t) =
∫

dr′
ρ(r′, t)
|r− r′|

(30)

and vxc[ρ](r, t) is the universal exchange-correlation (xc) functional of TDDFT

vxc[ρ](r, t) := vs[ρ](r, t)− vext [ρ](r, t)− vH [ρ](r, t). (31)

The xc functional is well-defined through the right-hand side of Eq. (31): Unique-
ness of vs[ρ] and vext [ρ] is guaranteed by the Runge-Gross theorem and the existence
over a well-characterized domain is covered by the van Leeuwen theorem. Formally,
in addition to dependence on the density ρ(r, t), the xc potential also depends on the
initial many-body state Φ0 and on the initial orbitals {φ (0)

k (r)}. If the initial state

is a ground state, both Φ0 and {φ (0)
k (r)} are functionals of the initial ground-state

density ρ
gs
0 (r, t) via the HK theorem and then the time-dependent xc potential be-

comes a functional of the time-dependent density alone. The density dependence of
the exact time-dependent xc functional vxc[ρ(r′, t ′)](r, t) is non-local both in space
and in time, i.e., the potential vxc(r, t) at point r and time t depends on the density
values at all points r′ and at all previous times t ′ ≤ t.

An important aspect of the ground-state DFT is the HK variational principle
which ensures that the total energy as functional of the density is minimized by
the true ground-state density of the system at hand, and the value of the functional
at the minimum is the true ground-state energy. The HK variational principle is
important in two respects: first of all, the total energy is a quantity of prime interest
and the variational principle guarantees that the lowest possible value is achieved. Of
equal importance is the fact that the variational principle usually implies numerical
stability of the iterative algorithms, such as the Kohn-Sham (KS) self-consistency
cycle, because they ultimately go “downhill” in the total energy functional.

In the time-dependent case, variational principles play a less important role. First
of all, the usual Frenkel variational principle of quantum mechanics

δ

∫ t1

t0
dt 〈Φ(t)| ih̄ ∂

∂ t
− Ĥ |Φ(t)〉= 0 (32)
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normally does not have a minimum at the solution of the time-dependent Schrödinger
equation. There is only a stationary point and consequently there is not guarantee
of the stability of the associated time propagation algorithms. Moreover, unlike the
ground-state energy, the value of functional (32) in the stationary point is zero and
of no physical significance. Nevertheless, a TDDFT variational principle might still
be desirable for some purposes, e.g., for the optimization of constrained densities.

Straightforward combination of the Runge-Gross map with the Frenkel varia-
tional principle (32) leads to a variational formulation of TDDFT (Runge and Gross
(1984)) which was later found to give rise to serious inconsistencies (Gross et al
(1994)). In particular, a non-causal xc kernel is found. This so-called causality para-
dox arises from the fact that arbitrary density variations lead to variations of the
wavefunction at the upper boundary t1 of the Frenkel integral (32). If the variations
of the wavefunction are explicitly included, the causality paradox disappears (Vig-
nale (2008)). Another way of the getting rid of the upper boundary t1 of the Frenkel
integral (32) is to formulate the TDDFT variational principle on the Keldysh contour
which maps the final time back to the initial time. This formulation of the TDDFT
variational principle was achieved by van Leeuwen (van Leeuwen (1998)).

3.2 Linear-response TDDFT

Many applications of TDDFT deal with weak probes of the ground state of a
static potential v0(r), mediated by a small time-dependent perturbation δvapp(r, t).
The goal of linear-response TDDFT is to calculate the induced first-order change
δρ(r, t) in the density (Gross et al (1996)). To this end we look at the density
ρ[vext ](r, t) as functional of the external potential and perform a functional Taylor
expansion at the unperturbed ground-state potential v0(r, t)

ρ[vext ](r, t) = ρ [v0 +δvapp] (r, t) (33)

= ρ[v0](r)+
∫

dr′
∫

dt ′
δρ(r, t)

δvext(r′, t ′)

∣∣∣∣∣
v0

δvapp(r′, t ′)+ . . . . (34)

The functional derivative on the right-hand side of Eq. (34), which connects the
change in the density with the perturbation is of enormous physical significance. It
is known as density-density response function and will henceforth be denoted by
χ(r, t,r′, t ′):

χ(r, t,r′, t ′) =
δρ(r, t)

δvext(r′, t ′)

∣∣∣∣∣
v0

. (35)

The associated change in the density is known as linear density response
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δρ(r, t) =
∫

dr′
∫

dt ′ χ(r, t,r′, t ′)δvapp(r′, t ′). (36)

Since χ(r, t,r′, t ′) only depends on t− t ′, Eq. (36) is usually Fourier-transformed to
the frequency domain

δρ(r,ω) =
∫

dr′ χ(r,r′,ω)δvapp(r′,ω) (37)

where, for simplicity, we use the same symbol for a function and for its Fourier
transform. The poles of χ(r,r′,ω) provide the charge-neutral excitation energies of
the unperturbed many-body system.

One may also look at the density ρs[vs](r, t) of non-interacting particles and their
density-density response function

χs(r, t,r′, t ′) =
δρs(r, t)
δvs(r′, t ′)

∣∣∣∣∣
vs,0

. (38)

While the full interacting density-density response function (35) is very hard to
evaluate (in many-body language it is the reducible polarization propagator of the
interacting system), the non-interacting counterpart is relatively easy to calculate:
Its Fourier transform reads

χs(r,r′,ω) = ∑
i jσ ,klτ

φiσ (r)φ ∗jσ (r)φkτ(r′)φ ∗lτ(r
′)χs

i jσ ,klτ(ω) . (39)

with
χ

s
i jσ ,klτ(ω) = δσ ,τ δi,kδ j,l

f jσ − fiσ

ω− (εiσ − ε jσ )
, (40)

where εiσ are the ground-state KS orbital energies and fiσ their occupations in the
ground state. Multiplying this equation – in the operator sense – from the left with χs
and from the right with χ , and performing a Fourier transform to frequency space,
one obtains the following Dyson-like equation for the response function (Petersilka
et al (1996))

χ(ω) = χ
s(ω)+χ

s(ω)∗ fHxc(ω)∗χ(ω) . (41)

This equation constitutes the cornerstone of linear-response TDDFT.
Acting with the operator in equation (41) on an arbitrary perturbation δvapp(r,ω)

and using the definition (37) of the linear density response, one ends up with an
integral equation for the desired density response

δρ(ω) = χs(ω)∗ (δvapp(ω)+ fHxc(ω)∗δρ(ω)) . (42)

An iterative numerical solution of this equation yields the full linear density re-
sponse as function of ω and was first achieved by Zangwill and Soven (Zangwill
and Soven (1980)) for atoms in the frequency regime above the continuum thresh-
old. If one is interested in the discrete spectrum of the system, i.e., the discrete poles
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of the linear density response, a considerable simplification can be achieved (Gross
and Kohn (1985); Grabo et al (2000); Petersilka et al (1996); Jamorski et al (1996)),
leading to a generalized eigenvalue equation[

A B
B∗ A∗

][
Xn
Yn

]
= ωn

[
I 0
0 −I

][
Xn
Yn

]
. (43)

where the matrices A(ω) and B(ω) are given by

Aiaσ , jbτ(ω) = δσ ,τ δi, jδa,b(εaσ − εiσ )+Kiaσ , jbτ(ω) (44)
Biaσ , jbτ(ω) = Kiaσ ,b jτ(ω) . (45)

The matrices A and B are frequency-independent within the adiabatic approxi-
mation, which approximate the exchange-correlation kernel fxc has a frequency-
independent term (Casida (2009)). (Note that memory-dependent functionals were
proposed (Dobson et al (1997); Ullrich and Tokatly (2006); Wijewardane and Ull-
rich (2008); Kurzweil and Baer (2004)), even if not commonly used.) Solving the
Casida equation provides excitation energies and oscillator strengths for a molecular
system.

A common approximation, the Tamm-Dancoff approximation (TDA), consists in
neglecting the hole-particle terms, Yn ≡ 0, leading to the simpler eigenvalue equa-
tion (Hirata and Head-Gordon (1999)):

AXn = ωnXn. (46)

While the TDA allows for the design of better-converging algorithms (Hirata and
Head-Gordon (1999); Hutter (2003)), it also sometimes leads to better results than
the full Casida equation (Casida et al (2000); Tapavicza et al (2008a); Casida and
Huix-Rotllant (2012)). This observation might find its source from the form of the
Casida equation for pure density functional theory. The Casida equation involves
the linear response of the one-body density matrix and therefore accommodate the
response treatment of hybrid functions in a natural way. However, when functionals
with no Hartree-Fock contribution are considered, the matrix (A−B) becomes di-
agonal (see footnote 1 below). Then, the exact secular equation takes a similar form
as within the TDA, with A corrected by a contribution from B (Casida (2009)) and
relates to the exact equation derived from pure density functional response theory
(Grabo et al (2000)). It is, however, important to note that within TDA the Thomas-
Reiche-Kuhn sum rule is not fulfilled (Furche (2001); Hutter (2003)).

3.2.1 Pitfalls of the approximation of practical LR-TDDFT

LR-TDDFT has been successfully applied to compute excitation energies and prop-
erties for a large number of molecular systems (Stratmann et al (1998); Hirata and
Head-Gordon (1999); Maitra et al (2003); Dreuw and Head-Gordon (2005); Ull-
rich (2012); Casida (2009); Elliott et al (2009); Casida and Huix-Rotllant (2012);
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Adamo and Jacquemin (2013); Laurent and Jacquemin (2013)) However, while the
LR-TDDFT formalism is in principle exact, its practical application to compute
excitation energies for molecules require the use of a series of approximations of
the xc-functional and its functional derivatives (like the adiabatic approximation),
which can lead to dramatic failures (Ullrich (2012); Marques et al (2012); Casida
(2009); Casida and Huix-Rotllant (2012)). As a result of the adiabatic approxima-
tion, LR-TDDFT is for example not able to properly describe electronic states with
a dominant (>50%, see Ref. (Tozer and Handy (2000); Ullrich (2012))) double ex-
citation character (Hsu et al (2001); Maitra et al (2004); Cave et al (2004); Levine
et al (2006); Elliott et al (2011)). Also, the combination of an inaccurate descrip-
tion of derivative discontinuities, the problem of self-interaction error, the incorrect
long-range properties of currently used xc-potentials, and the adiabatic approxima-
tion are all at the heart of the most critical issue of LR-TDDFT: the charge transfer
failure (Dreuw et al (2003); Tozer (2003); Gritsenko and Baerends (2004); Dreuw
and Head-Gordon (2004); Maitra (2005); Wiggins et al (2009); Hellgren and Gross
(2012)). LR-TDDFT, within the adiabatic approximation and using standard func-
tionals, suffers to describe charge transfer excitations, i.e., excitations between a
donor and an acceptor that are spatially separated. Long-range corrected function-
als Leininger et al (1997); Iikura et al (2001); Yanai et al (2004) can, however,
strongly improve the situation. The adiabatic approximation also leads to diffi-
culties in describing conical intersections between the ground and first electronic
state (Levine et al (2006)), even if, at least in some cases, the use of the TDA im-
proves the description of these critical points (Tapavicza et al (2008a); Marques et al
(2012)).

3.3 Nonadiabatic coupling vectors and nuclear forces within
LR-TDDFT

The Casida equation introduced above gives a direct access to excitation energies
and oscillator strength. Nonadiabatic dynamics will require additional quantities like
nonadiabatic coupling vectors (last electronic term in Eq. (8)) or excited-state nu-
clear forces. In the following, we will describe a strategy to compute matrix el-
ements of one-body operator within a LR-TDDFT framework, using the concept
of auxiliary many-electron wavefunctions that will give us access to nonadiabatic
coupling vectors as well as other quantities.

3.3.1 Matrix elements in LR-TDDFT

Our goal is to find a general strategy for evaluating matrix elements of the form

〈ϕ(0)
R |Ô|ϕ

(n)
R 〉 (47)
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within LR-TDDFT, where the states |ϕ(0)
R 〉 and |ϕ(n)

R 〉 describe the ground state and
nth electronic excited state wavefunctions, respectively. To achieve this goal, we
will proceed by a direct comparison with the same quantity derived using many-
body perturbation theory (MBPT). Therefore, we start with a short outline of the
main linear-response equations in MBPT.

From the definition of the retarded density-density response function

χ(r, t,r′, t ′) = Π
R(r, t,r′, t ′) =−iθ(t− t ′)

〈ϕ(0)
R |[ρ̂(r, t), ρ̂(r′, t ′)]|ϕ

(0)
R 〉

〈ϕ(0)
R |ϕ

(0)
R 〉

, (48)

the change of an observable O , under the influence of a perturbation vext(r′, t ′) in
the linear-response regime is given by

δO(t) =
∫

∞

0
dt ′
∫

dr
∫

dr′ o(r)vext(r′, t ′)χ(r, t,r′, t ′) (49)

(here we consider an interaction of the form δvext(r′, t ′) = v′(r′)E(t ′)). If χ depends
only on the difference (t− t ′), the Fourier transform in time gives

δO(ω) =
∫

dr
∫

dr′ o(r)v′(r′)E(ω)χ(r,r′,ω) . (50)

This expression can be rewritten, after a bit of algebra (Curchod et al (2013)), as a
sum-over-states (SOS) formula

δO(ω) =−2∑
n

ωn〈ϕ(0)
R |Ô|ϕ

(n)
R 〉〈ϕ

(n)
R |v̂′E(ω)|ϕ(0)

R 〉
ω2

n −ω2 , (51)

where |ϕ(n)
R 〉 and ωn are the true excitation energies and wavefunctions.

Meanwhile, if we use the KS representation of LR-TDDFT as above, the change
of observable is in matrix representation

δO(ω) = ∑
i jσ ,klτ

oi jσ χi jσ ,klτ(ω)v′klτ E(ω) , (52)

where oi jσ = 〈φiσ |O(ω)|φ jσ 〉 and v′klτ = 〈φlτ |v′(r)|φkτ〉. Similarly, a SOS formula
can also be derived for LR-TDDFT (see Refs. (Curchod et al (2013)) for a deriva-
tion), and reads

δO(ω) =−2∑
n

o† (A−B)1/2ZnZ†
n(A−B)1/2

ω2
n −ω2 v′E(ω) . (53)

with Zn is related to the eigenvectors of Eq. (43) according to (Casida (2009)) Zn =
(A−B)−1/2(Xn +Yn).

Comparing the residues of LR-TDDFT response function Eq. (53) with the
residues of the MBPT response function Eq. (51) at equal energy ωn, we obtain
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the following identity 1

〈ϕ(0)
R |Ô|ϕ

(n)
R 〉=

( fiσ− f jσ )>0

∑
i jσ

1
√

ωn
oi jσ

(
(A−B)1/2Zn

)
i jσ

. (54)

This equation was derived by Casida (Casida (1995)) and then applied by Taver-
nelli et al. and Hu et al. for the calculation of the nonadiabatic coupling vectors
between the ground state and an excited state. A similar equation was also given in
Ref. (Chernyak and Mukamel (1996)).

3.3.2 The concept of auxiliary many-electron wavefunction

It may be useful at this point to investigate the possibility to further simplify the def-
inition and the calculation of matrix elements within LR-TDDFT by means of the
definition of a set of ”auxiliary” multideterminantal many-electron wavefunctions
based on KS orbitals. This route was first explored by Casida (Casida (1995)) to
solve the assignment problem of the LR-TDDFT excited state transitions and then
further developed by Tavernelli et. al (Tapavicza et al (2007b)) in relation to the cal-
culation of matrix elements in the linear and second-order response regimes (Taver-
nelli et al (2009b,a, 2010)).

In Ref. (Tavernelli et al (2009a)), we showed that defining the ground state many-
electron wavefunction 〈r1,r2,r3, . . . ,rNel |ϕ̃

(0)
R 〉 as a Slater determinant of all occu-

pied KS orbitals {φi}Nel
i=1 and the excited state wavefunction corresponding to the

excitation energy ωn as

〈r1,r2,r3, . . . ,rNel |ϕ̃
(n)
R 〉= ∑

iaσ

√
εa− εi

ωn
(Zn)iaσ â†

aσ âiσ 〈r1,r2,r3, . . . ,rNel |ϕ̃
(0)
R 〉

= ∑
iaσ

C n
iaσ 〈r1,r2,r3, . . . ,rNel |ϕ̃

aσ
R,iσ 〉, (55)

we obtain for any one-body operator of the form Ô = ∑pqσ opqσ â†
pσ âqσ (where p,q

are general indices) the correct linear-response expression for the matrix element
〈ϕ(0)

R |Ô|ϕ
(n)
R 〉. Eq. (55) is derived from Eq. (54) where now the index i runs over

all occupied and a over the unoccupied (virtual) KS orbitals and |ϕ̃aσ
R,iσ 〉 denotes

a singly-excited Slater determinant defined by the transition iσ → aσ . This theory
was then successfully extended to the case of the calculation of matrix elements
between two excited state wavefunctions, 〈ϕ(n)

R |Ô|ϕ
(m)
R 〉 as will be briefly discussed

in the next section on the calculation of nonadiabatic coupling vectors.

1 As stated before, with no Hartree-Fock exchange contribution in the functional, (A−B) is diag-
onal and becomes (Casida (2009)):

(A−B)iaσ , jbτ = δi, jδa,bδσ ,τ (εaτ − εiτ ) .
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It is important to further stress the fact that both auxiliary functions introduced
above have a physical meaning only when used within LR-TDDFT for the calcula-
tion of matrix elements of the type 〈ϕ̃(0)

R |Ô|ϕ̃
(n)
R 〉 and eventually 〈ϕ̃(n)

R |Ô|ϕ̃
(m)
R 〉. The

use of this representations of the ground state and excited state KS many-electron
wavefunctions in other contexts is not justified.

3.3.3 Nonadiabatic coupling vectors within LR-TDDFT

Using the concept of the auxiliary many-electron wavefunction approach described
above, we can now propose an approach for the calculation of nonadiabatic vectors
within LR-TDDFT.

Couplings between ground and excited states

We start from an alternative definition of the NACV (Epstein (1954)) (see also Ch. 5
of Ref. (Baer (2006)) for a complete discussion) between the ground (0) state and
the nth excited state for a molecular system characterized by nuclear coordinates R
in the configuration space (R3Nn )

dγ

0n =
〈ϕ(0)

R |∂γ ĤBO|ϕ(n)
R 〉

ε
(n)
BO(R)− ε

(0)
BO(R)

(56)

where γ is an atomic label, ĤBO is the electronic Hamiltonian, and ∂γ ĤBO =
∂ ĤBO/∂Rγ .

Applying the results of the above sections on the evaluation of matrix elements
of the form 〈ϕ(0)

R |Ô|ϕ
(n)
R 〉 in LR-TDDFT to the NACV gives directly the desired

expression

dγ

0n =
( fiσ− f jσ )>0

∑
i jσ

1
(ωn)3/2 hγ

i jσ

(
(A−B)1/2Zn

)
i jσ

(57)

where hγ

i jσ =
∫

dr∂γ ĤBO φ ∗iσ (r)φ jσ (r).
This formula for the NACVs within LR-TDDFT was derived several times in

the literature using slightly different formalisms. The first derivation was given by
Chernyak and Mukamel (Chernyak and Mukamel (2000)) using a classical Liouville
dynamics for the single-electron density matrix, followed by Baer (Baer (2002)).
Later, Tavernelli et al. (Tapavicza et al (2007b); Tavernelli et al (2009b)) and Hu
et al. (Hu et al (2007, 2008)) arrived to the same result (Eq. (57)) using the most
widely used formulation based on Casida’s LR-TDDFT equations (Casida (1995)).

Concerning the numerical implementation of Eq. (56) several approaches have
also been proposed that differ mainly in the choice of the basis set and in the way
the implicit dependence of the pseudopotentials on the nuclear positions is treated.
Due to the technical nature of this subject, we will not go through the numerical
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details but better refer to the literature, which is very rich on this subject (Tavernelli
et al (2009b); Hu et al (2007); Send and Furche (2010); Hu et al (2010, 2012)).

Couplings between excited states

LR-TDDFT only gives access strictly speaking to the couplings between ground
and excited state. However, the concept of LR-TDDFT auxiliary many-electron
wavefunctions can also be used as a good approximation, exact within the Tamm-
Dancoff approximation, to compute couplings between excited states (Tavernelli
et al (2010)), dkn. An exact derivation of these coupling terms beyond the linear re-
sponse formalism of TDDFT was also proposed in the literature (Li and Liu (2014);
Li et al (2014); Ou et al (2015)). However, this formalism implies the calculation
of an exchange-correlation hyperkernel and leads to the critical appearance of di-
vergences in the couplings as a result of the adiabatic approximations (Parker et al
(2016)).

3.4 Nuclear forces within LR-TDDFT

Excited-state dynamics using LR-TDDFT will also require the calculation of nu-
clear forces. Among the different approaches developed for the calculation of an-
alytic derivatives, the Lagrangian method (Helgaker and Jørgensen (1989)) is of
particular interest because of its numerical efficiency. However, the derivation of
LR-TDDFT forces is technically involved and goes beyond the scope of this Chap-
ter. We refer the interested reader to the abundant literature on the subject (Pulay
(1987); Hutter (2003); Deglmann et al (2002); Rappoport and Furche (2005); Marx
and Hutter (2009)).

4 Nuclear dynamics: Trajectory-based quantum-classical
dynamics

In this section, different approaches to nonadiabatic electron-nuclear dynamics will
be presented, namely the Ehrenfest scheme (Tully (1998)), surface hopping (Tully
(1990)), the coupled-trajectory mixed quantum-classical (CT-MQC) method de-
rived from the Exact Factorization (Min et al (2015)), and full multiple spawn-
ing (Martı́nez et al (1996)). Their common feature is the use of trajectories to ex-
plore the nuclear configuration space, which are subject to the time-dependent effect
of the electrons in the ground state as well as in the excited states. The electronic
properties needed in the calculations can be determined on-the-fly based on ab ini-
tio electronic structure methods. For the purpose of this work, TDDFT and its LR
formulation will be employed. Other approaches based on Bohmian trajectories are



20 E. K. U. Gross et al.

also possible (Curchod et al (2011); Curchod and Tavernelli (2013a); Tavernelli
(2013)) but they will not be discussed in this book chapter.

Ehrenfest, surface hopping and CT-MQC are based on a purely classical de-
scription of nuclear motion, that is coupled to the quantum-mechanical evolution
of the electrons. In the three approaches, a hypothesis is made to decompose the full
TDSE into two coupled equations, one describing the evolution of the electronic
subsystem, and the other describing the evolution of the nuclear subsystem. The
main difference among them lies in the procedure followed for such decomposition.
In particular, only the Exact Factorization starts from an Ansatz for the molecular
wavefunction, which translates into exact coupled electronic and nuclear equations.
Only in a second step, the nuclear evolution is modelled using classical trajectories.
The full multiple spawning scheme, on the other hand, introduces an expansion in
terms of Gaussian wavepackets to represent each nuclear coefficients χk(R, t) of the
Born-Huang expansion (4). The parameters of the Gaussians are evolved classically,
under the assumption that classical dynamics samples correctly the nuclear config-
uration space. Indeed, in the limit of an infinite number of Gaussians, full multiple
spawning converges to an exact description of the electron-nuclear problem.

4.1 Ehrenfest dynamics

To derive Ehrenfest decomposition, one makes the assumption that the full wave-
function can be written as a single product of a purely electronic Φ(r, t) and a purely
nuclear χ(R, t) wavefunction,

Ψ(r,R, t) = e
i
h̄
∫ t

0 dt ′EBO(t ′)Φ(r, t)χ(R, t) . (58)

Here, the time-dependent phase on the right-hand side is inserted to simplify the
following equations derived from such an Ansatz, thus the energy EBO(t) is chosen
as

EBO(t) =
∫

drΦ
∗(r, t)ih̄∂tΦ(r, t) . (59)

The product form of the molecular wavefunction in Eq. (58) is clearly uncorre-
lated, and in this initial Ansatz lies the fundamental approximation of the Ehrenfest
scheme. When Eq. (58) in inserted into the molecular TDSE (1), the coupled equa-
tions
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T̂e(r)+V̂ee(r)+

∫
dR χ

∗(R, t)
[
V̂nn(R)+V̂en(r,R)

]
χ(R, t)

]
Φ(r, t) = ih̄∂tΦ(r, t)

(60)[
∑
ν

−h̄2

2Mν

∇
2
ν +

∫
drΦ

∗(r, t)ĤBO(r,R)Φ(r, t)
]

χ(R, t) = ih̄∂t χ(R, t)

(61)

are derived, by averaging over the instantaneous nuclear, in Eq. (60), and electronic,
in Eq. (61), state. In both equations, the wavefunctions Φ(r, t) and χ(R, t) are sup-
posed to be normalized. Therefore, Eq. (60) describes the evolution of the elec-
trons in the mean field created by the nuclei, whereas the nuclei move according to
Eq. (61) in the mean field of the electrons.

A quantum-classical algorithm can be derived from Eqs. (60) and (61) by ap-
proximating classically the nuclear equation, that is by determining the force to
propagate the nuclei as trajectories. A standard procedure can be followed, by in-
troducing a complex-phase representation of χ(R, t), and by only considering terms
O(h̄0) in the asymptotic expansion of the complex phase in powers of h̄ (Van Vleck
(1928)). The equation for the zeroth order term S(R, t) of this expansion is thus
obtained, namely

∂tS(R, t) =−
[
∑
ν

[∇ν S(R, t)]2

2Mν

+
∫

drΦ
∗(r, t)ĤBO(r,R)Φ(r, t)

]
. (62)

This Hamilton-Jacobi-like equation can be solved via characteristics, thus yielding
the expression of the classical (Ehrenfest) force as

Fν(t) =−∇ν

∫
drΦ

∗(r, t)ĤBO(r,R)Φ(r, t) . (63)

The classical approximation is also introduced in the electronic evolution equa-
tion (60). Here, the nuclear density |χ(R, t)|2 is approximated as a product of δ -
functions centered at each time at the position of the classical nuclei, that is at the
position of the classical trajectory R(I)(t). Therefore, the TDSE describing the evo-
lution of Φ(r, t) becomes

ĤBO

(
r,R(I)(t)

)
Φ

(
r,R(I)(t), t

)
= ih̄∂tΦ

(
r,R(I)(t), t

)
. (64)

The electronic wavefunction acquires an implicit dependence on the nuclear posi-
tions, expressed as the classical trajectory, via the dependence of the BO Hamilto-
nian on R(I)(t). The trajectory I of the nucleus ν is determined by solving Newton’s
equation with force

F(I)
ν (t) =

∫
drΦ

∗(r,R(I)(t), t)
[
−∇ν ĤBO(r,R(I)(t))

]
Φ(r,R(I)(t), t) , (65)
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where now a label (I) has been introduced to show that along a trajectory, Eqs. (64)
and (65) have to be evolved consistently. Multiple trajectories can also be employed,
to “wash out” some of the details of the coherent evolution along a single trajectory.
Nuclear and electronic observables can thus be determined as averages over this
ensemble of trajectories.

As it provides the true time-dependent electronic density, TDDFT can be used
within an Ehrenfest dynamics scheme to perform nonadiabatic molecular dynamics.
The mapping of the nuclear equation (Eq. (65)) into the DFT formalism is straight-
forward and only requires the description of the forces 〈−∇ν ĤBO(r,R(I)(t))〉 as a
functional of the time-dependent density ρ(r, t). If we replace the expectation value
of the electronic Hamiltonian with the DFT energy evaluated with the exchange-
correlation potential vxc[ρ]|ρ(r)←ρ(r,t), the gradient with respect to the nuclear co-
ordinates can be performed analytically as in the case of the adiabatic BO dy-
namics and the Car-Parrinello (Car and Parrinello (1985)) molecular dynamics
schemes (Marx and Hutter (2009)).

4.1.1 Application of Ehrenfest dynamics combined with TDDFT

As Ehrenfest dynamics gives a direct access to electronic dynamics, it is a method
of choice to investigate the dynamics of the electronic density and subsequent nu-
clear dynamics after a strong perturbation. Such perturbation can be induced by
the action of an external light pulse or through the collision with a highly-charged
particle, generating either an electronic excitation or, in the some other cases, elec-
tron abstraction (Tavernelli et al (2005); Tavernelli (2006); Castro et al (2004); Li
et al (2005); Yagi and Takatsuka (2005); Andrade et al (2009); Moss et al (2009);
Liang et al (2010); Gaigeot et al (2010); Lopez-Tarifa et al (2011); Elliott and Maitra
(2012); Tavernelli (2015)). The latter takes place when an XUV attosecond pulse in-
teracts with a molecule and leads to a core ionization. In a Born-Huang picture, such
an ultrafast ionization leads to the generation of an electronic wavepacket, i.e., the
generation of a coherent superposition of different nuclear contributions on a large
number of electronic states (the number of electronic states being considered de-
pends on the bandwidth of the ionizing pulse). Ehrenfest dynamics combined with
TDDFT offers an alternative to the Born-Huang picture by only requiring the gen-
eration of an initial electronic density to represent the initial ionized state. Martı́n et
al. employed this strategy to study the role of nuclear motion in the electronic dy-
namics upon XUV ultrafast ionization of a small amino acid, glycine (Lara-Astiaso
et al (2017)). The one-electron ionization generated by the sub-300-as XUV pulse
generates an electronic wavepacket that can be described by a coherent superposi-
tion of more than ten one-hole states, in an energy domain ranging from 17 to 35
eV (the pulse bandwidth). The electronic density corresponding to this electronic
wavepacket, ρ(r, t0), is used as initial condition for two simulations: (i) real-time
TDDFT with frozen nuclei and (ii) real-time TDDFT combined with Ehrenfest dy-
namics. As a result of the nature of the electronic wavepacket, the time-evolution
of the unpaired electron (with respect to the initial density) shows that the electron
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migrates over the entire molecular scaffold with a dynamics that is characterized
by only few, system dependent, frequencies (Fig. 1). This is the behavior that one
would expect in the case the ionized electron is removed from one given localized
orbital. Comparing the two panels of Fig. 1, we observe that nuclear motion starts
altering the electronic dynamics already after the first 10 fs of dynamics, empha-
sizing the importance of including nuclear dynamics in such simulations. However,
it is important to note that the mean-field character of Ehrenfest dynamics might
hamper a more detailed study of the electronic wavepacket dynamics, in particu-
lar due to the underestimation of decoherence and dephasing effects at longer time
scales (Vacher et al (2017)). The ease of the Ehrenfest formalism combined with the
efficiency of TDDFT offer nevertheless a valid tool for the study of the short-time
electronic wavepacket dynamics in molecular systems.

Fig. 1: Spin density differences at different times after interaction of a XUV at-
tosecond pulse with the glycine molecule. The initial conditions correspond to a
geometry obtained after thermalization at 100 K. Adapted from Chemical Physics
Letters, 683, M. Lara-Astiaso, A. Palacios, P. Decleva, I. Tavernelli, F. Martı́n, Role
of electron-nuclear coupled dynamics on charge migration induced by attosecond
pulses in glycine, 357, Copyright (2017), with permission from Elsevier.

4.2 Surface hopping

Surface-hopping decomposition is derived under the preliminary assumption that
the nuclei evolve along classical trajectories. Therefore, the BO Hamiltonian ac-
quires an implicit time dependence via its dependence on the nuclear coordinates.
A TDSE is proposed in this way, namely

ĤBO(R(I)(t))ΦR(I)(t)(r, t) = ih̄∂tΦR(I)(t)(r, t), (66)

for the electronic wavefunction, which is, itself, dependent on the classical trajecto-
ries. As done above, a classical trajectory is labeled by the index (I). An expansion
in the adiabatic basis is introduced for ΦR(I)(t)(r, t),
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ΦR(I)(t)(r, t) = ∑
k

Ck(t)ϕ
(k)
R(I)(t)

(r), (67)

and Eq. (66) yields

Ċ(I)
k (t) =

−i
h̄

ε
(k)
BO

(
R(I)(t)

)
C(I)

l (t)−∑
l

C(I)
l (t)

Nn

∑
ν=1

P(I)
ν (t)
Mν

·dν ,kl

(
R(I)(t)

)
(68)

Here, the BO PES ε
(k)
BO (R) and the nonadiabatic coupling vectors, i.e.,

dν ,kl(R) =
∫

drϕ
(k)
R
∗
(r)∇ν ϕ

(l)
R (r) =

〈
ϕ
(k)
R

∣∣∣ ∇ν ϕ
(l)
R

〉
r
, (69)

which are functions of the nuclear coordinates, are evaluated at the instantaneous
positions along the trajectories, they thus become functions of the trajectory itself.
Henceforth, a superscript (I) will be introduced to indicate this dependence on the
trajectory.

The surface-hopping scheme takes its name from the idea suggested for the evo-
lution of the classical nuclear trajectories, namely that a trajectory evolves according
to one adiabatic BO force, determined as (minus) the gradient of the BO potential
energy surface (PES), until a stochastic hop occurs onto another BO PES. The clas-
sical (surface-hopping) force can then be written as

F(I)
ν (t) =−∇ν ε

∗
BO, (70)

with the symbol ∗ indicating that the force-state is selected stochastically at each
time step. The discontinuity in the force, and thus in the potential energy, for a
given trajectory, is compensated by a discontinuity in the velocity, and thus in the
kinetic energy, that guarantees energy conservation. The hopping scheme fewest-
switches (Tully (1990)) prescribes that the trajectory I hops from surface k to surface
l according to the probability

Pk→l = max

0,
−2dt∣∣∣C(I)
k (t)

∣∣∣2 ℜ

[
C(I)

k

∗
(t)C(I)

l (t)
]
∑
ν

P(I)
ν (t)
Mν

·d(I)
lk,ν

 , (71)

with dt the integration time step.
The major drawback of the surface-hopping scheme is the (over)coherent evolu-

tion of the electronic coefficients coupled to the classical (independent) trajectories.
The issue has been well-documented in the literature (Subotnik et al (2013); Bit-
tner and Rossky (1995); Curchod and Tavernelli (2013b); Gao and Thiel (2017)),
and several schemes have been proposed (Shenvi et al (2011b,a); Shenvi and Yang
(2012); Subotnik and Shenvi (2011b,a); Jaeger et al (2012); Jasper and Truhlar
(2007); Granucci and Persico (2007)) to cure or alleviate this shortcoming.
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4.2.1 Application of Surface Hopping combined with LR-TDDFT

Surface hopping has been used to study a large number of excited-state mecha-
nisms, and we refer the interested reader to specialized reviews Barbatti (2011);
Curchod et al (2013); Persico and Granucci (2014) for a list of applications. The
application presented here highlights the combination of surface hopping with LR-
TDDFT (using the concepts developed in Sec. 3.2), including implicitly and explic-
itly the role of spin-orbit coupling as well as explicit solvent effects. Ruthenium (II)
trisbipyridine, [Ru(bpy)3]2+, is an inorganic molecule recognized for its extremely
efficient intersystem crossing process, i.e., when the molecule changes, in this par-
ticular case, from a singlet electronic state to a triplet electronic state (Cannizzo
et al (2006); Gawelda et al (2006)). [Ru(bpy)3]2+ is initially photoexcited in a sin-
glet metal-to-ligand-charge-transfer (1MLCT) state before it rapidly relaxes among
other 1MLCT or 3MLCT, as a result of the high density of states; the overall dy-
namics to the triplet states has been observed experimentally in water within a ∼50
fs timescale (Fig. 2).

In the first theoretical study (Tavernelli et al (2011)), the excited-state dynamics
of the [Ru(bpy)3]2+ in water was studied by employing surface hopping with LR-
TDDFT, in a QM/MM formalism where water molecules were treated classically.
Intersystem-crossing events were analyzed a posteriori, monitoring the crossings
between singlet and triplet states and evaluating spin-orbit coupling from quali-
tative rules. Owing to the cost of the overall dynamics, this study was limited to
only two trajectories. Nevertheless, both trajectories indicated an ultrafast decay of
the molecule towards triplet states in less than 50 fs, in good correlation with ex-
perimental evidences. The MLCT character of the different excited states implies
that an electron moves from the central metal to one (or two, depending on the
state) solvent-exposed bipyridine ligands. Hence, the simulation showed that water
molecules in the first solvation shell can rapidly rearrange in a non-diffusive rotation
around the hydrogen bond axis to stabilize an extra charge located on a close ligand.
An explicit treatment of solvent molecules is central to capture such effects as well
as a proper ordering of the different electronic states.

In a more recent study (Atkins and González (2017)), surface hopping combined
within LR-TDDFT was used to simulate the excited-state dynamics of [Ru(bpy)3]2+

in gas phase, but with the explicit treatment of spin-orbit coupling in a perturbative
ZORA formalism Wang and Ziegler (2005) and a larger number (101) of trajec-
tories. This study confirmed the ultrafast decay of the original 1MLCT population
towards triplet states, already at the early time of the dynamics. Horizontal intersys-
tem crossing processes were observed, followed by ultrafast nonadiabatic dynamics
among the triplet states (Fig. 3). Thanks to normal-mode and principal component
analysis, the authors could identify that the motion of both the ruthenium and the
coordinated nitrogens is activated, even within such short timescale, leading poten-
tially to the intersystem crossing events.
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Fig. 2: Two surface hopping trajectories for [Ru(bpy)3]2+ in water. The driving state
is highlighted with blue circles, while the 7 singlet excited states considered in the
surface hopping dynamics are represented by gray dashed lines, and the 7 triplet
states by red continuous lines. Filled circles indicate the analyzed crossings be-
tween singlet and triplet states, using the following color coding: white = weak,
gray = medium, and black = optimal SOC strength. The inset provides a ball-and-
stick representation of the [Ru(bpy)3]2+ molecule with part of its first water sol-
vation shell of water molecules for two selected frames (black arrows), highlight-
ing the fast rotation of a classical water molecule (in yellow) occurring during the
dynamics. Adapted from Chemical Physics, 391, I. Tavernelli, B. F. E. Curchod,
U. Rothlisberger, Nonadiabatic molecular dynamics with solvent effects: A LR-
TDDFT QM/MM study of ruthenium (II) tris (bipyridine) in water, 101, Copyright
(2011), with permission from Elsevier.

4.3 Coupled-trajectory mixed quantum-classical scheme

Within the Exact Factorization formalism, a trajectory-based solution of the elec-
tronic (11) and nuclear (12) equations is constructed by (i) determining the classical
limit of the nuclear equation, thus deriving the corresponding Newton’s equation
with forces computed from the time-dependent vector Aν(R, t) and scalar ε(R, t)
potentials, (ii) introducing the Born-Huang-like expansion of Eq. (16) of the elec-
tronic wavefunction, (iii) approximating the explicit dependence on the nuclear
wavefunction, i.e., the term −ih̄∇ν χ(R, t)/χ(R, t) in the definition of the coupling
operator Ûcoup

en [ΦR,χ] (13) employing information obtained from the trajectories. A
thorough account of the steps adopted for the derivation of the algorithm is given
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Fig. 3: Population trace of singlet (bluish) and triplet (brownish) states over 30 fs
of surface hopping (population of the three sublevels of each triplet are summed
together). Adapted with permission from Atkins AJ, González L (2017) Trajec-
tory surface-hopping dynamics including intersystem crossing in [Ru(bpy)3]2+. The
Journal of Physical Chemistry Letters 8(16):3840-3845. Copyright (2017) Ameri-
can Chemical Society.

in (Agostini et al (2016)). Following this procedure, the electronic and nuclear equa-
tions of the Exact Factorization can be rewritten as

Ċ(I)
l (t) = Ċ(I)

Eh. l(t)+Ċ(I)
qm l(t) (72)

F(I)
ν (t) = F(I)

Eh.ν(t)+F(I)
qmν(t) . (73)

The electronic equation yields a set of ordinary differential equations Ċ(I)
l (t) for the

expansion coefficients in the Born-Huang expansion, each labeled by a superscript
(I) indicating that they are calculated along the I−th classical trajectory. The nuclear
equation allows one to identify the classical force F(I)

ν (t) acting on the ν−th nucleus
that evolves along the I−th trajectory. Both equations can be decomposed as the sum
of two terms: the first, indicated by Eh., comprises Ehrenfest-like terms, while the
second, qm, originates from the Exact Factorization. These last terms depend on the
so-called “quantum momentum”, whose expression is given below. The Ehrenfest-
like terms are
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Ċ(I)
Eh. l(t) =

−i
h̄

ε
(l)(I)
BO C(I)

l (t)−∑
k

C(I)
k (t)

Nn

∑
ν=1

P(I)
ν (t)
Mν

·d(I)
ν ,lk (74)

F(I)
Eh.,ν(t) =−∑

k

∣∣∣C(I)
l (t)

∣∣∣2 ∇ν ε
(k),(I)
BO −∑

k,l
C(I)

l

∗
(t)C(I)

k (t)
(

ε
(k),(I)
BO − ε

(l),(I)
BO

)
d(I)

ν ,lk,

(75)

where we introduced the symbols ε
(l)(I)
BO for the electronic adiabatic potential energy

surface corresponding to state l and evaluated at the position of the I−th trajectory,
d(I)

ν ,lk for the nonadiabatic coupling vectors defined as 〈ϕ(l)(I)|∇ν ϕ(k)(I)〉r, as well

evaluated at the position of the trajectory I, and P(I)
ν (t) for the classical momentum

of the ν−th nucleus evolving along the I−th trajectory. The additional terms in
Eqs. (72) and (73), namely

Ċ(I)
qm l(t) =−

Nn

∑
ν=1

Q
(I)
ν (t)

h̄Mν

·

[
∑
k

∣∣∣C(I)
k (t)

∣∣∣2 f(I)k,ν(t)− f(I)l,ν(t)

]
C(I)

l (t), (76)

F(I)
qmν(t) =−∑

l

∣∣∣C(I)
l (t)

∣∣∣2( Nn

∑
ν ′=1

2
h̄Mν ′

Q
(I)
ν ′ (t) · f

(I)
l,ν ′(t)

)[
∑
k

∣∣∣C(I)
k (t)

∣∣∣2 f(I)k,ν(t)− f(I)l,ν(t)

]
,

(77)

can be derived only in the context of the Exact Factorization, as they both de-
pend on the quantum momentum (Garashchuk and Rassolov (2003)) Q

(I)
ν (t) =

−h̄(∇ν |χ(I)(t)|2)/(2|χ(I)(t)|2). Here, |χ(I)(t)|2 stands for the value of the nuclear
density evaluated at the position of the I−th trajectory. The quantum momentum ap-
pears in the expression of Ûcoup

en [ΦR,χ] as a purely imaginary correction to the (real-
valued) classical momentum. As exhaustively described in (Agostini et al (2016)),
the evaluation of the quantum momentum along the I−th trajectory at a given time
requires knowledge of the positions of all other trajectories at the same time. This
peculiar feature couples the trajectories in a non-trivial manner, thus allowing for
the correct description of quantum decoherence effects. The additional new quanti-
ties appearing in Eqs. (76) and (77) are the adiabatic forces accumulated over time
f(I)l,ν(t) =−

∫ t dt ′∇ν ε
(l),(I)
BO .

The electronic structure input required in the propagation of the CT-MQC equa-
tions of motion are the Born-Oppenheimer energies and the nonadiabatic coupling
vectors. Any electronic structure methods providing these quantities can therefore
be used in combination with CT-MQC. In the following, we make the choice of
employing LR-TDDFT.

4.3.1 Applications

As an application of the CT-MQC approach, we report the analysis presented
in (Min et al (2017)) where the photoinduced ring-opening process in Oxirane (Cor-
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dova et al (2007); Tapavicza et al (2008b)) triggered by the excitation from S0
to S2 has been investigated. Electronic-structure calculations are performed with
the CPMD code using the GGA functional PBE (Perdew et al (1996)) for ground
state and excited states. Linear-response TDDFT calculations are based on the
Tamm-Dancoff approximation (Tamm (1945); Dancoff (1950)). The Kleinman-
Bylander (Kleinman and Bylander (1982)) pseudo-potential has been used for all
atom species together with a plane-wave cutoff of 70 Ry. Initial conditions, i.e.,
positions and momenta, have been sampled from an ab initio ground-state 2 ps tra-
jectory at 300 K. Ntr = 100 trajectories are propagated with a time step of 0.12 fs
(5 a.u.).
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Fig. 4: Upper panel: electronic populations of S0 (dark-green line), S1 (red line) and
S2 (blue line) as functions of time. Lower panel: (normalized) indicator of decoher-
ence for the element S1/S2 (black line), and its decomposition contributions arising
from three sets of trajectories. The sets trajectories labeled by C1O (dashed orange
line) and C2O (dashed green line) lead to a final configuration where the Oxirane
ring opens via the breaking of one of the two equivalent CO bonds; the set of trajec-
tories labeled C1C2 (dashed purple line) yields final configurations where the ring
opens via elongation of the CC bond.

Fig. 4 shows the electronic populations (upper panel) and an indicator of deco-
herence (lower panel), both quantities averaged over the 100 coupled trajectories.
As indicated in Eq. (72) the coefficients in the expansion of the electronic wave-
function are labeled by the trajectory index (I), therefore the average population
can be determined as

ρk(t) =
1

Ntr

Ntr

∑
I=1

∣∣∣C(I)
k (t)

∣∣∣2 for k = 1,2 . (78)
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Between 7 and 15 fs the trajectories cross the coupling region S1/S2, thus population
is transferred from the initially occupied electronic state S2 to S1. After about 20 fs
the nonadiabatic event is almost complete, and some trajectories evolving in S1 will
encounter a second coupling region S0/S1, as it is clearly shown by the increase of
population of S0 (and consequent decrease of population of S1) at about 25 fs.

Similarly to Eq. (78), the indicator of decoherence introduced in (Agostini et al
(2016); Min et al (2015, 2017)) is computed between the states S1 and S2 as an
average over the trajectories,

η12(t) =
1

Ntr

Ntr

∑
I=1

∣∣∣C(I)
1
∗
(t)C(I)

2 (t)
∣∣∣2 . (79)

The quantity C(I)
1
∗
(t)C(I)

2 (t) stands for the off-diagonal element of the electronic den-
sity matrix in the adiabatic representation between the first two excited states, and
depend on nuclear positions through the dependence on the trajectory index (I). The
decoherence indicator depends on the choice of the representation used to describe
the electronic states. Our particular choice has fallen on the adiabatic representation,
which is a natural choice since the dynamics is simulated in the adiabatic basis. Fur-
thermore, this indicator of decoherence contains information simultaneously about
electronic coherences and nuclear dynamics, via the parametric dependence of the
adiabatic basis on the nuclear coordinates. Decoherence can thus be related to the
spatial separation in configuration space of different bundles of trajectories (and
thus of different wavepackets), which “loose memory” of each other while evolving
along diverging paths after funnelling through the conical intersection. As abun-
dantly discussed in the literature (Jasper et al (2006); Granucci and Persico (2007);
Jaeger et al (2012); Subotnik et al (2013); Gao and Thiel (2017); Schwartz et al
(1996); Fang and Hammes-Schiffer (1999); Granucci and Persico (2007); Shenvi
et al (2011b,a); Shenvi and Yang (2012); Subotnik and Shenvi (2011b,a); Agos-
tini et al (2016); Min et al (2015, 2017)), Ehrenfest dynamics and surface hopping
(in their standard formulations) are not able to capture the decay of such quantity,
observed here between 15 and 25 fs.

Additional information on the dynamics can be extracted from the analysis of
the indicator of decoherence of Fig. 4. In fact, the pronounced double-peak struc-
ture suggests that two groups of trajectories funnel through the S1/S2 conical in-
tersection at subsequent times. In order to interpret this observation, the indicator
of decoherence has been decomposed in different contributions (represented by the
colored curves in the lower panel of Fig. 4) arising from the different paths fol-
lowed by the trajectoires after crossing the conical intersection S1/S2. The structures
identified at the end of the simulated trajectories are (i) a right-open ring structure
(observed with probability 36%), (ii) a left-open ring structure (observed with prob-
ability 47%), (iii) a CC-extended bond structure (observed with probability 10%),
and (iv) a closed-ring structure (observed with probability 7%). Structures (i) and (ii)
are indeed equivalent, thus the difference in the probabilities can be probably cured
by improving the statistics. These structures yield the ring-opening of Oxirane via
breaking of one of the two CO bonds. In structure (iii), the Oxirane ring opens via
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the elongation of the CC bond. A few trajectories, identified as structure (iv), are
not reactive, since the molecule more or less stays in its original configuration. If
the indicator of decoherence is decomposed in contributions arising from trajecto-
ries ending in structures (i), (ii), or (ii), we observe that the first peak between 6
and 12 fs is produced by a first bundle of trajectories that leads to the breakage of
the equivalent CO bonds. However, the η12(t) curves do not decay monotonically.
Instead, the curves corresponding to the C1O and C2O groups both contribute to the
second peak (between 12 fs and 17.5 fs). This feature indicates that the first group of
trajectories is reached by a second group while funnelling through the conical inter-
section. The main contribution to the second peak between 12 and 16 fs is given by
trajectories yielding a final CC-extended bond structure. These trajectories clearly
encounter the nonadiabatic region with some delay if compared to the sets of trajec-
tories analyzed before. Here, the indicator of decoherence is clearly single-peaked,
suggesting that the corresponding trajectory bundle undergoes a transition through
the S1/S2 conical intersection in a single step.

Fig. 5: Upper panels: populations of the electronic states S0, S1, and S2 as functions
of time for two selected trajectories of type (i) (left) and of type (iii) (right). The
color code is the same used in Fig. 4. Lower panels: energy profiles (in eV) along
the selected trajectories, as in the upper panels. The zero is set to be the value of
the energy of S0 at time t = 0 fs. In the upper panels, a ball-stick representation of
Oxirane at the final time is shown, whereas in the lower panels, the configurations
at the time of electronic population exchange in shown.

Observation of different final structures is related to the different paths undergone
by the trajectories after crossing the S1/S2 region of nonadiabatic coupling. Two
representative trajectories have been selected among the 100, one yielding a right-
open ring structure (i) and one yielding a CC-extended bond configuration (iii).
Clearly, the analysis presented for the right-open ring structure can be applied also



32 E. K. U. Gross et al.

to the equivalent left-open ring structure (ii). In Fig. 5 (upper panels) we show the
electronic populations |C(I)

k (t)|2 as functions of time and for the selected trajectories,
along with the energy profiles (lower panels) of the three adiabatic states considered
here and the gauge-invariant (GI) part of the TDPES (the first two terms on the
right-hand side of Eq. (14)). The TDPES provides information about the “active”
electronic state: if one wants to connect the interpretation of the dynamics based on
the Exact Factorization to the standard perspective in terms of wavepackets evolving
“on” different adiabatic surfaces, it is instructive to compare the TDPES with the BO
PES, as done in Fig. 5 (lower panels).

The upper panels of Fig. 5 confirm that the coupling region is encountered by
trajectories of type (iii) (right panels) at later times if compared to trajectories of
type (i) or (ii) (left panels). Additionally, the S2/S1 population exchange is very
sharp for type (i), and smooth for (iii). Observing the TDPES, we can argue that after
about 5 fs, trajectories (i) encounter a steep S2 potential, that directs them towards
the conical intersection. Trajectories (iii) are trapped in a region of flat potential, that
prevents them from a fast de-excitation to S1. Subsequently, very different paths are
undertaken, and thus different region of the S1 PES are explored. Towards the end
of the simulated dynamics, only trajectories of type (i) are expected to relax to the
ground state S0, as confirmed by the closing of the energy gap between S0 and S1 at
25 fs (lower left panel of Fig. 5). At this time, the trajectory of type (iii) is evolving
on a portion of the BO PES S1 that is located at about 4 eV from the ground state.

4.4 Full and Ab Initio Multiple Spawning

4.4.1 Full Multiple Spawning

Full multiple spawning (FMS) (Martı́nez et al (1996); Martı́nez and Levine (1997);
Ben-Nun and Martı́nez (1998); Ben-Nun et al (2000); Hack et al (2001); Ben-Nun
and Martı́nez (2002); Virshup et al (2008)) proposes to expand the nuclear ampli-
tudes in the Born-Huang expansion in a linear combination of frozen multidimen-
sional Gaussian functions. (Heller (1981)) But these Gaussians functions do not
form a static grid; on the contrary, they are evolving over time in both position
and momentum space to better adapt to the evolution of the nuclear wavefunctions,
forming a set of Trajectory Basis Functions (TBFs).

Ψ(r,R, t) = ∑
k

NT BFs,k

∑
I

C(k)
I (t)χ̃(k)

I

(
R;R(k)

I (t),P(k)
I (t),γ(k)I (t),α

)
ϕ
(k)
R (r) , (80)

where C(k)
I (t) is the complex coefficient for the TBF I evolving on electronic state

(k) (used here as a label) and χ̃
(k)
I

(
R;R(k)

I (t),P(k)
I (t),γ(k)I (t),α

)
is the travelling

multidimensional Gaussian I on state (k) with mean position R(k)
I (t), momenta
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P(k)
I (t), phase γ

(k)
I (t), and frozen width α . In FMS, the TBFs follow classical trajec-

tories, i.e., R(t) and P(t) are propagated according to Hamilton’s equation of motion
(and the phase is integrated semi-classically). We note that this classical propaga-
tion of the TBFs does not imply that the method is semiclassical in itself, as the
TBFs are only a support for the propagation of the nuclear wavefunctions. Indeed,
in the limit of a large number of TBFs (NT BFs), the FMS expansion would be ex-
act. In fact, in the limit of an infinite number of Gaussian functions, their dynamics
is redundant and we have a (infinitely fine) grid. We note that other methods were
proposed where the TBFs follow Ehrenfest trajectories (Shalashilin (2009, 2010);
Saita and Shalashilin (2012); Makhov et al (2017)) (multiconfiguration Ehrenfest,
MCE) or quantum trajectories (Worth et al (2004); Lasorne et al (2006, 2007); Worth
et al (2008); Mendive-Tapia et al (2012); Richings et al (2015)) (variational Multi-
configuration Gaussian, vMCG), as well as mixed strategies (Makhov et al (2014);
Meek and Levine (2016); Izmaylov and Joubert-Doriol (2017); Joubert-Doriol et al
(2017)).

One can express the time-dependent Schrdinger equation (1) in the basis of TBFs
by inserting Eq. (80) in the former, left multiplying by[

χ̃
(k)
J

(
R;R(l)

J (t),P(l)
J (t),γ(l)J (t),α

)
ϕ
(l)
R (r)

]∗
and integrating over both nuclear and electronic coordinates, leading, in atomic
units, to (Ben-Nun and Martı́nez (2002)):

d
dt

Cl(t) =−i(S−1
ll )

[[
Hll− iṠll

]
Cl +∑

k 6=l
HlkCk

]
. (81)

for each electronic state l considered. The nonorthonormality of the Gaussian
basis result in overlap matrices Sll and Ṡll , with elements (Sll)JI = 〈χ̃

(l)
J |χ̃

(l)
I 〉R and(

Ṡll
)

JI = 〈χ̃
(l)
J |

∂

∂ t |χ̃
(l)
I 〉R. We note that in Eq. (81) Slk = Ṡlk = 0, ∀l 6= k, due to the

orthonormality of the electronic basis.
As mentioned earlier, the trajectories in FSSH are uncoupled. This is not the case

in FMS and TBFs are coupled thanks to the Hamiltonian matrix H in Eq. (81). Let
us consider the Hamitonian matrix element between two TBFs J and I evolving in
adiabatic electronic states:

HIJ
kl =〈χ̃(k)

I |T̂nuc|χ̃(l)
J 〉Rδkl + 〈χ̃

(k)
I |ε

(k)
BO|χ̃

(l)
J 〉Rδkl

−〈χ̃(k)
I |

3N

∑
ρ=1

1
Mρ

〈ϕ(k)
R |

∂

∂Rρ

|ϕ(l)
R 〉r

∂

∂Rρ

|χ̃(l)
J 〉R

−〈χ̃(k)
I |

3N

∑
ρ=1

1
2Mρ

〈ϕ(k)
R |

∂ 2

∂R2
ρ

|ϕ(l)
R 〉r|χ̃

(l)
J 〉R (82)
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If the two TBFs are in the same electronic state k, they will be coupled via the
first two terms on the r.h.s of Eq. (82): the nuclear kinetic energy operator and the
(adiabatic) electronic energy. If the two TBFs belong to different electronic states
k and l, then a term containing the nonadiabatic coupling vectors (third term on
the r.h.s) and the second-order nonadiabatic couplings (fourth term on the r.h.s of
Eq. (82)) will ensure their coupling. We note that the diagonal second-order nona-
diabatic couplings (also known as “Diagonal Born-Oppenheimer Correction”) will
contribute an additional intrastate coupling. FMS can easily incorporate additional
source of couplings between TBFs like spin-orbit coupling (Curchod et al (2016b)),
tunneling effects (Ben-Nun and Martı́nez (2000)), or an external electromagnetic
field (Mignolet et al (2016)), for example.

4.4.2 Spawning algorithm

Up to this point, we have discussed the formal equations of FMS when a large
number of TBFs is considered. However, FMS, as its name indicates, proposes to
replace the large number of trajectory basis functions by an algorithm, coined the
spawning algorithm, that will adapt the size of the basis set dynamically during the
simulation. In other words, the spawning algorithm proposes the following alter-
ation: NT BFs→ NT BFs(t). In short, a TBF is evolving on a given PES and, as soon
as a sizable coupling with a different electronic state is recorded, a spawning mode
is triggered and will determine if, where, and when a new TBF should be created
(“spawned”) on the coupled state to maximize the coupling with the existing TBF
and, therefore, the description of nonadiabatic transitions. Different versions of the
spawning algorithm have been proposed and the interested reader is encouraged to
read Refs. (Ben-Nun and Martı́nez (2002); Yang et al (2009)) for more information.
It is perhaps important to note at this stage that the time-dependence of the number
of TBFs, NT BFs(t), implies that the size of matrices and vectors in Eq. (81) will vary
during the dynamics.

4.4.3 Ab Initio Multiple Spawning

FMS is in principle exact. However, the coupling between TBFs given in Eq. (82)
implies integration, and therefore knowledge, of electronic structure properties like
PESs or nonadiabatic couplings over the full nuclear configuration space. Approxi-
mations are, therefore, needed to treat molecular systems in their full dimensionality.
Let us start by performing a Taylor expansion of the electronic quantity of interest
(here the electronic energy for example) around the centroid position of two TBFs

J and I evolving in electronic state k: R(kk)
JI =

R(k)
J +R(k)

I
2 :
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ε
(k)
BO(R) = ε

(k)
BO(R

(kk)
JI )+

3N

∑
ρ

(Rρ −R(kk)
ρ,JI)

∂ε
(k)
BO(R)

∂Rρ

∣∣∣
Rρ=R(kk)

ρ,JI

+
1
2

3N

∑
ρρ ′

(Rρ −R(kk)
ρ,JI)

∂ 2ε
(k)
BO(R)

∂Rρ ∂Rρ ′

∣∣∣
Rρ=R(kk)

ρ,JI ,Rρ ′=R(kk)
ρ ′,JI

(Rρ ′ −R(kk)
ρ ′,JI)+ ...

Owing to the locality of Gaussian functions, one will consider that, to a good
approximation, only the term of order zero can be retained; in other words ε

(k)
BO(R)≈

ε
(k)
BO(R

(kk)
JI ). (Ben-Nun and Martı́nez (2002)) This approximation, called the saddle-

point approximation of order zero (SPA0), strongly simplifies the coupling between
TBFs as the Hamiltonian matrix elements becomes

HIJ
kl =〈χ̃(k)

I |T̂nuc|χ̃(l)
J 〉Rδkl + ε

(k)
BO(R

(kk)
IJ )〈χ̃(k)

I |χ̃
(l)
J 〉Rδkl

−
3N

∑
ρ=1

1
Mρ

〈ϕ(k)
R |

∂

∂Rρ

|ϕ(l)
R 〉r|Rρ=R(kl)

ρ,IJ
〈χ̃(k)

I |
∂

∂Rρ

|χ̃(l)
J 〉R (83)

(note that we also dropped the terms depending on second-order couplings). Hence,
calculating the coupling between TBF J and I only require the extra calculation
of electronic structure quantities at their mutual centroid position, which can eas-
ily be achieved in an on-the-fly dynamics scheme. The SPA0 allows to port the
in principle exact framework of FMS to the nonadiabatic dynamics of molecules.
The resulting nonadiabatic method within the SPA0 is often called Ab Initio Mul-
tiple Spawning (AIMS)2. AIMS has been coupled with different level of electronic
structure like SA-CASSCF (Levine et al (2008)), MS-CASPT2 (Tao et al (2009)),
FOMO-CASCI (Pijeau et al (2017)), or LR-TDDFT (Curchod et al (2017)).

4.4.4 Applications

AIMS has recently (Curchod et al (2017)) been interfaced with an implementation of
LR-TDDFT accelerated by graphical processing units (GPUs) (Isborn et al (2011)),
offering an important speed-up for the calculation of electronic energies, analytical
gradients, and nonadiabatic coupling terms. The combination of AIMS and GPU-
accelerated LR-TDDFT was employed to shed light on the excited-state dynamics
of 4-N,N’-dimethylaminobenzonitrile (DMABN). DMABN is a molecule known to
exhibit dual fluorescence depending on its environment, and it was proposed that
the nature of the two emitting states is correlated with a twist of the dimethylamino
(DMA) group Grabowski et al (2003) (see molecular structure in the inset of Fig. 6).
However, DMABN is photoexcited into its second excited state, S2, and relaxes to
the first excited state S1 where emission will occur at a later time. One question is

2 We note that an additional approximation is commonly employed within AIMS – the independent
first generation approximation – that approximates the initial nuclear wavepacket at time t = 0 by
a set of independent parent TBFs, i.e., coupling between parent TBFs is neglected. Couplings
between all the TBFs spawned by each parent TBF are preserved.(Ben-Nun and Martı́nez (2002))
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Fig. 6: Left panel: Population traces (with standard errors) of the different elec-
tronic states considered in the AIMS/LR-TDDFT dynamics. The grey dashed line
indicates the number of TBFs during the dynamics. Right panel: Twist angle of the
DMA group for the entire swarm of TBFs. The line width is proportional to the TBF
population. Inset: representation of the DMABN molecule, with the DMA group
highlighted in red. Adapted with permission from Curchod BFE , Sisto A, Martı́nez
TJ (2016) Ab initio multiple spawning photochemical dynamics of DMABN us-
ing GPUs. The Journal of Physical Chemistry A 121(1):265-276. Copyright (2016)
American Chemical Society.

then: does the S2/S1 nonadiabatic dynamics imply a twist of the DMA group, which
could potentially have an influence on the fate of the molecule at later time in the
S1 state. Early static calculations have predicted that the S2/S1 transfer should be
fast, and that a twist of the DMA was not required for the nonadiabatic transition
to occur (Gómez et al (2005)). AIMS combined with GPU-accelerated LR-TDDFT
confirmed that the S2 population decays to S1 in less than < 50 fs (blue line, left
panel of Fig. 6). Also, the transfer of the nuclear wavepacket to S1 is not correlated
with the torsion of the DMA group, as showed by the projection of the TBFs on
the twist coordinate (right panel of Fig. 6). The DMA group in fact starts its rota-
tion only after the molecule reached S1 (t > 50 fs, see right panel of Fig. 6), and
such a transfer implies a change in the electronic character of the wavepacket from
charge transfer in S2 around the Franck-Condon region to locally excited after the
nonadiabatic transfer to S1. On a more technical note, the grey dashed line on the
left panel of Fig. 6 indicates the number of TBFs during the AIMS dynamics. Start-
ing from 21 parent TBFs, the spawning algorithm rapidly creates a large amount of
child TBFs to ensure a good basis for the propagation in the different nonadiabatic
regions encountered.
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5 Conclusions

The aim of this chapter has been to provide a broad overview of quantum molecular
dynamics methods to simulate nonadiabatic phenomena in isolated and condensed-
phase systems, adopting a quantum-classical perspective. The combination of clas-
sical and quantum-mechanical approaches is, in fact, capable to describe, accurately
and efficiently, dynamical processes involving electronic excited states. The as-
sumption that a good description of the nuclear dynamics can be achieved based
on classical mechanics is based on the fact that at the molecular scale atoms (usu-
ally heavier than a proton) are associated to a relatively short de Broglie wave-
length, e.g., shorter than the typical scale of variation of the potential. Electrons, on
the other hand, require a purely quantum-mechanically description, which in this
work has been achieved using the framework of time-dependent density functional
theory. The challenges faced in the development of theoretical and numerical ap-
proaches for nonadiabatic dynamics are copious, justifying the rise over the years
of a multitude of strategies to tackle these type of problems, some of which have
been described in this review chapter.

TDDFT has emerged as a very powerful method to describe electronic excited-
state dynamics, both for molecular systems and in condensed phase. TDDFT de-
scribes the evolution of the electronic density in a time-dependent external potential
and within the linear response regime, LR-TDDFT allows the calculation of excited-
state properties, e.g., energies, forces and nonadiabatic couplings at a modest com-
putational cost. The straightforward combination of the fundamental TDDFT theo-
rem (leading to the time-dependent Kohn-Sham equations) with the classical motion
of the nuclei gives rise to the conceptually simple Ehrenfest dynamics scheme. We
described some of its applications to molecular processes involving explicit time-
dependent electronic wavepacket dynamics, pointing out its limitations related to
the mean-field character of the underlying approximations.

The strong interplay of electronic and nuclear motion is, however, highly non-
trivial, and effects beyond the mean-field approximations are difficult to capture
with trajectory-based approaches. In particular, the accurate description of the elec-
tronic “nonadiabatic effects” on the nuclear dynamics requires the derivation of a
suitable theoretical framework that enables the separation of electronic and nuclear
motions. Building on the TDDFT or LR-TDDFT description of the electronic dy-
namics within either the Born-Huang or the Exact-Factorization framework we have
then reviewed three quantum-classical nonadiabatic simulation techniques that ex-
tend beyond the mean-field Ehrenfest approach, namely surface hopping, coupled-
trajectory mixed quantum-classical dynamics and multiple spawning, along with
some of their recent applications. The common denominator of all these techniques
is that they combine “on-the-fly” trajectory-based dynamics with the computational
advantages of TDDFT.

In the past years, large progresses have thus been accomplished in mixed quantum-
classical nonadiabatic dynamics and we hope that this chapter will help newcomers
to engage in this exciting field of research. We believe that TDDFT-based nona-
diabatic dynamics can become the method of choice for treating photochemical
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and photophysical processes of complex molecular systems in the gas and con-
densed phases. While it is hard to predict the outcome of current and future de-
velopments, the improvement of the exchange-correlation functionals, for instance
going beyond the adiabatic approximation, is one of the key issues that should
be addressed, aiming to get more reliable excited-state energies, nonadiabatic cou-
plings, nuclear forces and electronic dissipation effects.Finally, the development of
coupling schemes to describe the interaction with electromagnetic fields described
quantum mechanically are underway (Flick et al (2017b); Dimitrov et al (2017);
Flick et al (2017a)) and will open new research areas in the field of cavity quantum
electrodynamics.
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