
In-Materio Extreme Learning Machines

Benedict. A. H. Jones1[0000−0002−1924−0560], Noura Al
Moubayed2[0000−0001−8942−355X], Dagou A. Zeze1[0000−0002−6596−5490], and

Chris Groves1[0000−0003−2402−1618]

1 Department of Engineering, Durham University, Durham, DH1 3LE, UK
chris.groves@durham.ac.uk, benedict.jones@durham.ac.uk

2 Department of Computer Science, Durham University, Durham, DH1 3LE, UK

Abstract. Nanomaterial networks have been presented as a building
block for unconventional in-Materio processors. Evolution in-Materio
(EiM) has previously presented a way to configure and exploit phys-
ical materials for computation, but their ability to scale as datasets
get larger and more complex remains unclear. Extreme Learning Ma-
chines (ELMs) seek to exploit a randomly initialised single layer feed
forward neural network by training the output layer only. An analogy
for a physical ELM is produced by exploiting nanomaterial networks as
material neurons within the hidden layer. Circuit simulations are used
to efficiently investigate diode-resistor networks which act as our mate-
rial neurons. These in-Materio ELMs (iM-ELMs) outperform common
classification methods and traditional artificial ELMs of a similar hidden
layer size. For iM-ELMs using the same number of hidden layer neurons,
leveraging larger more complex material neuron topologies (with more
nodes/electrodes) leads to better performance, showing that these larger
materials have a better capability to process data. Finally, iM-ELMs us-
ing virtual material neurons, where a single material is re-used as several
virtual neurons, were found to achieve comparable results to iM-ELMs
which exploited several different materials. However, while these Virtual
iM-ELMs provide significant flexibility, they sacrifice the highly paral-
lelised nature of physically implemented iM-ELMs.

Keywords: Evolution in-Materio · Evolvable Processors · Extreme Learn-
ing Machines · Material Neurons · Virtual Neurons · Classification.

1 Introduction

The inevitable slowdown in traditional CMOS technology improvement [6] has
led to a growing interest in alternative and unconventional computing techniques.
Evolution in-Materio (EiM) is one such paradigm which attempts to leverage a
material’s inherent properties and exploit them for computation, these materials
were initially referred to as Configurable Analogue Processors [29]. EiM uses an
Evolutionary Algorithm (EA) to optimise external stimuli and other parame-
ters such that the material can perform a target application. Materials which
might have limited uses in conventional electronic devices, may in fact provide

2 B. A. H. Jones et al.

sufficiently complex and interesting characteristics to be exploited as an EiM
device. EiM processors have been used to achieve a range of applications such
as logic gates [23,27,4,2] and for classification [5,28,40]. Notably, EiM attempts
to exploit a system’s intrinsic physics with only a few configurable parameters,
which is important for the complexity engineering approach [15] and helps pre-
vent an over parametrised system. If this relative computational simplicity is
paired with low power materials, then in-Materio processors present a possible
candidate for edge case computing [30]. Recent analysis of EiM systems has es-
tablished fundamental good practices [21] and enhancements [20] to the EiM
paradigm. However, even with these improvements, methods to scale in-Materio
processing systems to larger and more complex datasets remains lacking. With-
out this, any real-world adoption remains unlikely.

Generally, within a ‘material’ or ‘in-Materio’ processor, some nanomaterial is
placed on a microelectrode such that stimuli and data can be applied as a voltage.
Some form of hardware interface is necessary to apply and read voltages to the
material, often controlled from a PC (which in the case of EiM hosts the EA that
optimises the system). Devices operating in such a manner include liquid crystals
[17,18], metallic nanoparticles [2,16], single walled carbon nanotubes [27,28], and
dopant networks [4,35]. However, in-Materio processors could be configured using
any external stimuli such as light [39] or radio waves [25]. In fact, any medium
with complex intrinsic characteristics which can be interfaced with and leveraged
could be used as an in-Materio processor. Networks of common electronic devices
(resistors, diodes, etc.) can provide interesting tunable dynamics [22] and can
be realised physically or investigated using reliable and fast SPICE (Simulation
Program with Integrated Circuit Emphasis) simulations [21,20].

Extreme Learning Machines (ELM) and Reservoir Computing (RC) present
a good analogy for in-Materio processors since both involve the exploitation of
random networks. These systems depend on the underlying assumption that the
randomised network/reservoir will produce useful and often higher dimensional
output states that are used to process the data more successfully. Notably, within
these fields of research it is generally assumed that the network/reservoir remains
fixed after its inception. However, previous work has shown that a small amount
of stochastic optimisation can improve a systems performance [7,43,13]. RC was
developed from recurrent neural networks and is generally employed to process
temporal data. Physical RCs [38] could lead to low power, efficient and fast
systems which can operate at ‘the edge’. Examples include the use of circuit
(anti-parallel diode) based non-linear neuron [22], memristive network [1,12] and
magnetic spintronic [8] based reservoirs. ELMs were developed from single layer
feed forward neural networks (SLFN) and are generally employed to process
non-temporal data [19]. Examples of physical implementations of ELM remain
sparse but include memristor based networks [1] and photonic systems [32,26].
Their remains significant opportunity to develop both classical and quantum
substrates [31] for both RC and ELM.

Here we present a method of exploiting nanomaterial networks as ‘material
neurons’, grouping them into a SLFN’s hidden layer and training them as an

In-Materio Extreme Learning Machines 3

ELM. To enable efficient analysis, random diode-resistor networks are used as
a proxy for physical nanomaterials, which are solved using fast, reliable SPICE
simulations. The performance of these ‘in-Materio ELMs’ on several common
machine learning datasets is examined for various hidden layer sizes and phys-
ical material network topologies. They are found to outperform other common
classification techniques and traditional (artificial) ELMs of a similar size. Fi-
nally, drawing from the work showing EiM processors can be configured via
external voltage stimuli and other parameters, we implement a material ‘re-use’
system, whereby a single material neuron is used to create several virtual mate-
rial neurons. These physical neuron based ELMs provide a scalable in-Materio
unconventional computing method whereby the intrinsic properties of a material
(or medium) can be exploited in a highly parallelisable way.

2 Background

2.1 Evolution in-Materio Processors

EiM exploits nanomaterials using an optimisation algorithm such that they can
perform useful tasks. Since in-Materio processors are analogue and generally
lack an analytical model to describe their electrical characteristics, derivative-
free optimisation algorithms are used, rather than gradient based algorithms [28].
EAs are a subset of evolutionary computing [36], consisting of population-based
metaheuristic search algorithms, making them ideal for EiM. Many types of EAs
have been used for EiM such as Evolutionary Strategies [9], Genetic Algorithms
[2], Differential Evolution [40,28]. In particular, Differential Evolution (DE) is
an easily implemented and effective optimisation algorithm [37,36] which only
requires a few robust control variables [33] and is attractive for real parameter
optimisation [10].

Such a DE algorithm can be combined with a material simulation (developed
in [21]) to allow for significantly faster testing and analysis of EiM processors
than physical manufacturing and experimentations would allow. Full details are
available elsewhere [37,10], but briefly, the DE algorithm uses the greedy criterion
that involves evaluating the fitness of each member of a generation’s population,
with those members of the population with better fitness being more likely to
proceed to the next generation. The characteristics of the population therefore
change gradually over time due to the random mutation of characteristics and
cross-over with other population members. Every member of the population is
represented by a vector of decision variables X. This decision vector contains
configuration parameters which the EA optimises each generation. A basic EiM
processor might commonly have a decision vector defined as:

X = [Vc1, Vc2, ..., VcP , l1, l2, ..., lR]T , (1)

where T is the vector transpose. Here, the included configuration parameters
are as follows: Input “configuration” voltage stimuli Vcp ∈ [−5, 5]V applied to a
node p, where the total number of configuration nodes is P . These configuration

4 B. A. H. Jones et al.

Fig. 1. Illustration of a typical monolithic EiM processor’s structure. Input data is
applied to the material as voltages. The output voltages (i.e., material processor output
states) are regressed to produce an output layer which predicts the class (ŷ) of the
processed data instances. Input weights (lr) can be used to scale the input data voltages,
and configurable voltage stimuli (Vc) can manipulate the processor’s behaviour [21].

voltages have been shown to both introduce a bias but also alter the decision
boundary of an EiM classifier [21]; therefore, these effect how the materials IV
characteristic is exploited which could be analogous to altering the material’s
‘activation function’. Input weights lr ∈ [−1, 1], are used to scale the input
voltages V in

r applied at the data driven input electrodes r due to a corresponding
input attribute ar, such that:

V in
r (k) = lr × ar(k), (2)

where k is a given data instance and the total number of data driven input
electrodes is R. The structure of this type of typical EiM processor is shown
in Figure 1, and illustrates how the configurable parameters effect the material
processor’s operation.

While an evolved output layer and threshold can be used to interpret the
materials output voltages and assign a label to a particular data instance which
has been processed [21], it has been found that a regressed output layer is more
successful at evaluating and exploiting a material’s output voltage states [20].
This regressed layer is generated when evaluating a population member on the
training dataset and must be maintained and updated in tandem with the EA’s
population.

Generally, for classification, a datasetD, containingR attributes a1, a2, . . . , aR,
is split into two subsets: a training set Dtrain and a test set Dtest. During each
generation, every member of the population is evaluated using the training data
and an associated fitness is calculated using the EA’s objective function. The
objective function Φ has commonly been the classification error, but other types
of fitnesses may be desirable, such as binary cross entropy [20]. The best popula-
tion member pbest is tracked during training and the test set is used to evaluate
the final best population member.

In-Materio Extreme Learning Machines 5

Fig. 2. Basic structure of an artificial single-hidden layer feed forward network used as
an Extreme Learning Machine.

2.2 Extreme Learning Machines

ELMs generally consist of a SLFN, as seen in Figure 2. They operate by assigning
random weights and biases to the input and hidden layers respectively [19].
These parameters are fixed and remain unchanged during training. Here, the
hidden layer neurons use the sigmoid activation function. Whilst many activation
functions exist [34], the sigmoid function is widely used [42] and can achieve good
performance in most cases [3]. The only parameters learned are the weights (and
sometimes biases) associated with the output layer, done during the training
phase. Therefore, ELMs converge significantly faster than traditional artificial
neural network algorithms, such as back propagation. ELMs have been shown
to perform well and are more likely to reach a global optimum than systems
with networks which have all parameters trained [42]. Specifically, ELM systems
achieve fast training speeds with good generalisation capability.

Keeping our nomenclature consistent with §2.1, consider K data instances,
where a particular data instance k is defined by its inputs ak and its target
outputs yk. Here, we define a particular instances’ input containing R attributes
as ak = [ak1, ak2, ..., akR]T , and its corresponding target containing S outputs as
yk = [yk1, yk2, ..., ykS]T . The predicted outputs ŷ from an ELM with N hidden
neurons can be expressed as:

ŷk =

N∑
n=1

βng(wn · ak + bn) =

N∑
n=1

βnhkn . k = 1, ...,K (3)

where wn = [wn1, wn2, ..., wnR]T is the weight vector connecting the nth hidden
neuron and the input neurons, βn = [βn1, βn2, ..., βnS]T is the weight vector
connecting the nth hidden neuron and the output neurons, bn is the bias of the
nth hidden neuron, g(x) is the activation function of the hidden layer neurons,
and hkn is a hidden layer neurons’ output. A SLFN with enough hidden neurons
can approximate these K samples such that

∑N
n=1 ‖ŷn − yk‖ = 0 (universal

6 B. A. H. Jones et al.

approximation capability), hence a set of βn, wn and bn must exist so that [19]:

Hβ = Y , (4)

where H = {hkn} (k = 1, ...,K and n = 1, ..., N) is the hidden layer out-
put matrix, Y = [y1,y2, ...,yK]T is the matrix of target outputs, and β =
[β1,β2, ...,βN]T is the matrix of output weights. Having randomised and fixed
the input layer, the output layer is then learnt during training using the train-
ing data subset Dtrain. The output weights β are traditionally obtained by the
Moore-Penrose inverse. Therefore, the smallest norm least-squares solution is:

β̂ = H†Y , (5)

where H† is the Moore-Penrose inverse of matrix H. The final solution is then
tested on the test set Dtest to provide a uniform evaluation of the system.

Often, many randomly initialised networks are considered and the network
size is incrementally increased. Various methods of calculating the output layer,
adjusting network structure, and increasing convergence speed have been pro-
posed [42]. Specifically, we highlight work producing an RR-ELM algorithm [24]
which optimises the output layer using ridge regression rather than the Moore-
Penrose method described above. The RR-ELM algorithm is shown to have good
generalisation and stability, while also reducing adverse effects caused by per-
turbation or multicollinearity - properties likely to be useful in physical systems.

3 In-Materio Extreme Learning Machines

Traditionally, as described in §2.1, EiM processors have used one-to-one map-
ping. Here, we refer to this as a typical monolithic EiM processor, where each
attribute is applied as a voltage to a corresponding input node. However, as a
dataset becomes more complex, with more attributes, the size of the material
network would need to physically grow. We postulate that in real microelectrode-
based nanomaterial processors, larger networks might lead to fewer ‘interactions’
between distance electrodes, leading to poorer performance i.e., material proces-
sors may struggle to scale as the data does.

In order to overcome this problem we can take inspiration from SLFNs, as
shown in Figure 2. Specifically, the Configurable Analogue Processors or ‘mate-
rial processors’ used in previous EiM work can instead be viewed as a complex
physical neuron. These ‘material neurons’ can then be grouped into a Hidden
Layer (HL) to produce a typical SLFN like structure. The output voltages from
these material neurons are the HL’s output states; we note that a material gen-
erally projects the applied input data voltages to a higher dimensional number
of output voltages. The remaining question then becomes how to translate the
input data into usable voltage which can be fed into the material neurons’ input
data electrodes/nodes i.e., an input layer.

We propose a directly connected input layer network structure as shown in
Figure 3. Consider a network with M material neurons, each of which contains

In-Materio Extreme Learning Machines 7

Fig. 3. Diagram of a structured network of material processors which are exploited
as hidden layer neurons for an ELM using a directly connected input layer, where M
material neurons make up the hidden layer.

J input data electrodes/nodes. Each data voltage input V in is the product of
a weight and a selected attribute. Therefore, the voltage applied to a particular
material m and node j is defined as:

V in
mj = lmj × aCm

j
, (6)

where Cm
j ∈ {1, 2, ..., R} defines which attribute ar is being passed to a particu-

lar material’s data input node, and lmj ∈ [−1, 1] is that connection’s associated
weight. This is a relatively simple input layer scheme, not requiring the introduc-
tion of an activation function, ensuring that the computation within the system
is carried out by the material neuron only and that the hardware voltage limits
are note exceeded. The relatively few number of parameters helps the system
comply with the complexity engineering approach [15] and potentially benefit
from concepts such as weight agnostic and minimal neural network topologies
which have been found to be beneficial in ANNs [14].

The system can be defined using a vector of decision variables X as discussed
in Equation 1. Expanding this to include all the discussed adjustable parameters,
the new structured network’s decision vector can be defined as:

X = [V 1
c1, ..., V

1
cP , l

1
1, ..., l

1
J , C

1
1 , ..., C

1
J ,, V

M
c1 , ..., V

M
cP , l

M
1 , ..., lMJ , CM

1 , ..., CM
J]T .

(7)
Now, any single material neuron based SLFN or population p of material neuron
based SLFNs (i.e., multiple initialisations of X) can be randomly generated and
trained as an ELM network using Algorithm 1. We refer to this method of
combining a physical neuron based SLFN and ELM training as an in-Materio
ELM (iM-ELM). In this paper, the output layer of an iM-ELM is trained using
ridged regression rather then the Moore-Penrose inverse detailed in §2.2.

Finally, we highlight the possibility of re-using a single nanomaterial network
as several ‘virtual’ neurons. The basis of this method stems from EiM processors

8 B. A. H. Jones et al.

Algorithm 1: Method for in-Materio ELM.

Initialise random population of solutions p;

Train population p on Dtrain;
Evaluate population using the test data Dtest;

whereby a wide variety of operations can be discovered by configuring the exter-
nal stimuli of a single nanomaterial network. Therefore, by randomly initialising
the different configurable parameters, but using only a single material, several
virtual material neurons can be produced. Each of these will manifest their own
unique internal IV characteristics which the ELM system will attempt to exploit.
Here, we refer to such a network as a Virtual iM-ELM.

4 Problem Formulation

4.1 Simulated Material Networks

A circuit SPICE model is used to generate Diode Random Networks (DRNs)
which behaves as a complex and exploitable network, and acts as a proxy for
a non-linear nanomaterial. These networks contain: voltage driven input data
nodes (in-nodes), voltage driven configuration stimuli (c-nodes), and measured
output voltage nodes (out-nodes) calculated using a DC analysis. The DRN con-
sists of randomly orientated diodes and series resistors between every node pair.
The rapid changes in conductivity when a diode turns on allows for complex
non-linear IV characteristics which can be exploited for classification. The DRN
is physically realisable using discrete circuit components and its properties are
common in nanomaterials. An example of a five node (i.e., electrode) material is
given in Figure 4. We note that other IV characteristics or circuit components
could be used to create a variety of ‘material networks’ for different types of anal-
ysis. 1N4148PH Signal Diodes are used, and the resistance of the interconnecting
resistors are uniformly randomly selected between ∈ [10, 100] kΩ.

4.2 Classification Tasks

The performance of the iM-ELM systems are compared against several common
machine learning datasets which can be found on the UCI repository [11]. These
include: the Pima Indians Diabetes Database (diabetes) dataset containing 8
attributes, 768 data instances and 2 classes. The wine (wine) dataset containing
13 attributes, 178 instances and 3 classes. The Australian Credit Approval (aca)
dataset containing 14 attributes, 690 instances and 2 classes. The Wisconsin
Diagnostic Breast Cancer (wdbc) dataset containing 30 attributes, 569 instances
and 2 classes. These datasets are more complex (i.e., contain more attributes)
than have been previously used, specifically within Evolution in-Materio based
literature [20,41,27], but remain small enough (i.e., relatively few data instances)
to ensure comprehensive analysis without excessive simulation times.

In-Materio Extreme Learning Machines 9

Fig. 4. An example five node DRN material, where each node is connected to every
other node via a resistor and diode. In this example, two nodes are behaving as outputs
(o1, o2) and three nodes as inputs (x1, x2, x3) which could be allocated as either data
driven or configuration stimuli voltages.

The datasets are randomly split into a training (Dtrain) and test (Dtest)
subset using a 70%− 30% split respectively. The datasets are normalised (using
Dtrain) and then scaled to the max/min allowed hardware voltages ∈ [−5, 5]V .
The performance of these datasets was considered using some simple (default)
python sklearn classification methods and the results are shown in Table 1.

5 Results and Discussion

Considering the model developed in §3, iM-ELMs of incremental sizes were anal-
ysed. Specifically, the number of material neurons in the HL was increased from
one to fifteen (beyond which the results plateau). For each HL size, thirty dif-
ferent random seeds were used to generate the material neurons within thirty
iM-ELMs. The same thirty seeds are used for each network size incrementation,
meaning that each system continues to include the same material neurons that
were used in its corresponding previous smaller networks. Therefore, we can con-
sider the change in performance of the iM-ELM networks as they are enlarged.
For each iM-ELM, a ‘population’ of 100 randomly generated decision vectors are
considered (i.e., randomly initialised input layer and configuration parameters),

Table 1. Test accuracy results for the datasets when using several common classifica-
tion methods. The best accuracy achieved for each dataset is highlighted in bold.

Classification Method
Dataset Ridge

Regression
Logistic

Regression
Random
Forest

SVM
(linear)

SVM
(poly)

diabetes 0.7576 0.7619 0.7403 0.7662 0.6970
wine 0.9815 0.9815 1.000 0.9630 0.9815
aca 0.8357 0.8502 0.8599 0.8213 0.8261
wdbc 0.9357 0.9591 0.9298 0.9532 0.9591

10 B. A. H. Jones et al.

Fig. 5. Mean test accuracy of all the (30 systems, each with 100 parameter initial-
isations) in-Materio ELMs for each hidden layer size increment used to classify the
(a) diabetes, (b) wine, (c) aca and (d) wdbc datasets. Three different material neuron
topologies are considered ([No. in-nodes, No. c-nodes, No. out-nodes]), and these are
compared to the mean accuracy of 3000 traditional artificial ELMs and RR-ELMs.

which was observed to provide a good insight into performance and maintain
reasonable simulation times. The mean test accuracy from these thirty systems
each with 100 parameter initialisation is shown for each HL size in Figure 5.
Recall from §4.1 that these material neurons’ consist of a fully interconnected
network containing three main classes of nodes: input voltage nodes for data
(in-nodes), input voltage nodes for configuration/stimuli altering the material
neurons behaviour (c-nodes), and output voltage nodes (out-nodes). Notably,
the directly connected input layer connects each data input node to only a single
data attribute; so, if too few neurons are in use, then not all data attributes
may be ‘connected’. The experiment is performed with three increasingly larger
material neuron network topologies: (i) materials containing two in-nodes, two
c-nodes and four out-nodes denoted by [2,2,4], (ii) materials containing three
in-nodes, three c-nodes and five out-nodes denoted by [3,3,5], (iii) materials con-
taining four in-nodes, four c-nodes and six out-nodes denoted by [4,4,6]. This
will provide some initial insight on the effect of scaling the size of (well con-
nected) materials. The performance of these iM-ELMs is plotted against the
mean accuracy of 3000 artificial (Moore-Penrose) ELMs and (Ridge Regression)
RR-ELMs, selected because it matches the total ‘computational expense’ (i.e.,
total number of data instances) used over the 30 iM-ELMs systems.

On average, the iM-ELMs considered outperformed the artificial ELM and
RR-ELM systems of equivalent network sizes. The simulated ‘material’ neurons
are successfully generating useful, higher dimensional output states which the
ELM algorithm can exploit, and these are out-performing their artificial neu-
ron counterparts. As more material neurons are operated in parallel, the mean
classification accuracy improves. Notably, the larger and more complex mate-
rial neuron topologies (i.e., when using more input, configuration, and output
nodes/electrodes) achieve higher mean accuracies for iM-ELMs with the same
size of HL. This in turn means that fewer neurons are required within the SLFN
HL to achieve comparable results with networks leveraging less capable neurons.

In-Materio Extreme Learning Machines 11

Fig. 6. Mean test accuracy of all the (30 systems, each with 100 parameter initialisa-
tions) Virtual in-Materio ELMs for each hidden layer size increment used to classify the
(a) diabetes, (b) wine, (c) aca and (d) wdbc datasets. Three different material neuron
topologies are considered ([No. in-nodes, No. c-nodes, No. out-nodes]), and these are
compared to the mean accuracy of 3000 traditional artificial ELMs and RR-ELMs.

The best accuracy achieved, across all HL sizes, for the different material
neuron topologies and datasets, is shown in Table 2. The iM-ELMs discussed can
significantly outperform some of the common classification methods presented in
Table 1. Indeed, the best iM-ELMs also compare favourably with the traditional
artificial ELM networks, and in the case of the wdbc dataset the iM-ELMs can
achieve a 1.76% increase in the best obtained accuracy.

As discussed in §3 any single material could be re-used as a virtual material
neuron. Ideally, the different randomised parameters (input weights, connections
and configuration voltages) enable the different virtual neurons to behave in a
sufficiently independent manner. To investigate this, the previous analysis is
repeated i.e., generating thirty SLFN for each HL size, each with 100 random
initialisations. However, now each HL contains several virtual neurons which are
generated from only a single material. The mean accuracy of these Virtual iM-
ELMs is plotted against the size of the SLFN in Figure 6, and the best ever
achieved accuracies are shown in Table 2. The Virtual iM-ELMs have a near
identical average performance to the previously discussed iM-ELMs systems that
exploited several different materials. This suggests that the type of material
neuron used here (i.e., the simulated circuit based DRN non-linear network)
can successfully produce several virtual instances, achieved by exploiting the

Table 2. Best accuracy achieved from the different systems, from across the different
hidden layer sizes. The best accuracy for each dataset is highlighted in bold.

iM-ELM Virtual iM-ELM
Dataset [2,2,4] [3,3,5] [4,4,6] [2,2,4] [3,3,5] [4,4,6] ELM RR-ELM

diabetes 0.7922 0.7922 0.7965 0.7879 0.7922 0.7965 0.7965 0.7922
wine 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
aca 0.8792 0.8792 0.8889 0.8841 0.8841 0.8792 0.8889 0.8744
wdbc 0.9708 0.9708 0.9708 0.9708 0.9708 0.9649 0.9532 0.9532

12 B. A. H. Jones et al.

wide range of current-voltage characteristics which can be tuned and selected
by the voltage stimuli and input layer respectively. These Virtual iM-ELMs are
significantly more flexible, only requiring one material substrate to create an
SLFN. However, by ‘re-using’ a single material, the systems loses its ability to
benefit from the highly parallelisable structure.

These results provide guidance on how to operate in-Materio processors in
parallel to process much more complex datasets then would have previously
been possible with only a single monolithic material. However, further work is
needed to consider how well these systems can scale to the much larger datasets
commonly found in state of the art machine learning problems.

6 Conclusion

In this paper, material networks are exploited as physical material neurons to im-
plement a single hidden layer feed forward network (SLFN) which was trained as
an Extreme Learning Machine (ELM). The input data was passed to the physical
neurons using a directly connected input layer which ensured physical hardware
limits were obeyed and that ‘computation’ within the system was carried out by
the materials only. Complex diode-resistor networks were simulated to provide a
convenient, fast and reliable proxy to nanomaterial based Configurable Analogue
Processors, used as the physical neurons. This enabled the efficient investigation
of these in-Materio ELMs (iM-ELMs) when classifying several datasets of vary-
ing complexity. It was found that these iM-ELMs could significantly outperform
other common classification methods, as well as traditional (artificial) ELMs.
The complex current-voltage characteristics of the materials are successfully be-
ing exploited to leverage them as physical neurons, which outperform traditional
artificial neurons. As the size of the material topology increases (i.e., the number
of nodes/electrodes used in the material network), the performance of iM-ELMs
with similar hidden layer sizes improves; showing the capability of the material
neurons to process data is increasing. As more material neurons are used in par-
allel, the average classification performance improves rapidly before plateauing.

Drawing from previous work with Evolution in-Materio processors, which
show that a single nanomaterial network can be tuned for a range of operations,
we present a method to re-use a single material as several ‘virtual’ physical
neurons. These Virtual iM-ELMs which leveraged only a single physical material
performed comparably to the iM-ELMs which used several different physical
material neurons. This suggests that our circuit based ‘materials’ can achieve
a wide range of physical properties which are successfully exploited as different
virtual neurons. While this forgoes the benefits of parallelised operation, it grants
more flexibility when creating larger SLFN and when designing the required
physical hardware interface.

These physical analogue neurons have the potential to produce efficient in-
Materio ELMs which can exploit the non-differentiable, complex characteristics
presented by a nanomaterial. We anticipate that, when implemented using phys-
ical substrates, highly parallelisable and fast ELMs will be produced.

In-Materio Extreme Learning Machines 13

Acknowledgements This work was supported by the Engineering and Physical
Sciences Research Council [EP/R513039/1].

References

1. Bennett, C., Querlioz, D., Klein, J.O.: Spatio-Temporal learning with arrays
of analog nanosynapses. In: Proceedings of the IEEE/ACM International Sym-
posium on Nanoscale Architectures, NANOARCH 2017. pp. 125–130 (2017).
https://doi.org/10.1109/NANOARCH.2017.8053708

2. Bose, S.K., Lawrence, C.P., Liu, Z., Makarenko, K.S., van Damme, R.M.J.,
Broersma, H.J., van der Wiel, W.G.: Evolution of a designless nanoparticle net-
work into reconfigurable Boolean logic. Nature Nanotechnology 10(12), 1048–1052
(Dec 2015). https://doi.org/10.1038/nnano.2015.207

3. Cao, W., Gao, J., Ming, Z., Cai, S.: Some Tricks in Parameter Selection for Extreme
Learning Machine. IOP Conference Series: Materials Science and Engineering 261,
012002 (Oct 2017). https://doi.org/10.1088/1757-899X/261/1/012002

4. Chen, T., van Gelder, J., van de Ven, B., Amitonov, S.V., de Wilde, B., Euler,
H.C.R., Broersma, H., Bobbert, P.A., Zwanenburg, F.A., van der Wiel, W.G.:
Classification with a disordered dopant-atom network in silicon. Nature 577(7790),
341–345 (Jan 2020). https://doi.org/10.1038/s41586-019-1901-0

5. Clegg, K.D., Miller, J.F., Massey, M.K., Petty, M.C.: Practical issues for
configuring carbon nanotube composite materials for computation. In: 2014
IEEE International Conference on Evolvable Systems. pp. 61–68 (Dec 2014).
https://doi.org/10.1109/ICES.2014.7008723

6. Conte, T.M., DeBenedictis, E.P., Gargini, P.A., Track, E.: Reboot-
ing Computing: The Road Ahead. Computer 50(1), 20–29 (Jan 2017).
https://doi.org/10.1109/MC.2017.8

7. Dale, M., Stepney, S., Miller, J., Trefzer, M.: Reservoir computing
in materio: An evaluation of configuration through evolution. 2016
IEEE Symposium Series on Computational Intelligence (SSCI) (2016).
https://doi.org/10.1109/SSCI.2016.7850170

8. Dale, M., Evans, R.F.L., Jenkins, S., O’Keefe, S., Sebald, A., Stepney, S., Torre,
F., Trefzer, M.: Reservoir Computing with Thin-film Ferromagnetic Devices.
arXiv:2101.12700 [cond-mat] (Jan 2021)

9. Dale, M., Stepney, S., Miller, J.F., Trefzer, M.: Reservoir computing in mate-
rio: A computational framework for in materio computing. In: 2017 Interna-
tional Joint Conference on Neural Networks (IJCNN). pp. 2178–2185 (May 2017).
https://doi.org/10.1109/IJCNN.2017.7966119

10. Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-
Art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (Feb 2011).
https://doi.org/10.1109/TEVC.2010.2059031

11. Dheeru Dua, E.K.T.: UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml (2017)

12. Du, C., Cai, F., Zidan, M., Ma, W., Lee, S., Lu, W.: Reservoir computing using
dynamic memristors for temporal information processing. Nature Communications
8(1) (2017). https://doi.org/10.1038/s41467-017-02337-y

13. Eshtay, M., Faris, H., Obeid, N.: Metaheuristic-based extreme learning ma-
chines: A review of design formulations and applications. International Jour-
nal of Machine Learning and Cybernetics 10(6), 1543–1561 (Jun 2019).
https://doi.org/10.1007/s13042-018-0833-6

https://doi.org/10.1109/NANOARCH.2017.8053708
https://doi.org/10.1038/nnano.2015.207
https://doi.org/10.1088/1757-899X/261/1/012002
https://doi.org/10.1038/s41586-019-1901-0
https://doi.org/10.1109/ICES.2014.7008723
https://doi.org/10.1109/MC.2017.8
https://doi.org/10.1109/SSCI.2016.7850170
https://doi.org/10.1109/IJCNN.2017.7966119
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1038/s41467-017-02337-y
https://doi.org/10.1007/s13042-018-0833-6

14 B. A. H. Jones et al.

14. Gaier, A., Ha, D.: Weight Agnostic Neural Networks. arXiv:1906.04358 [cs, stat]
(Sep 2019)

15. Ganesh, N.: Rebooting Neuromorphic Hardware Design – A Complexity Engineer-
ing Approach. arXiv:2005.00522 [cs] (Sep 2020)

16. Greff, K., van Damme, R.M.J., Koutnik, J., Broersma, H.J., Mikhal, J.O.,
Lawrence, C.P., van der Wiel, W.G., Schmidhuber, J.: Using neural networks to
predict the functionality of reconfigurable nano-material networks. In: Interna-
tional Journal on Advances in Intelligent Systems. vol. 9, pp. 339–351. IARIA
(Jan 2017)

17. Harding, S., Miller, J.: Evolution in materio: A tone discriminator in liq-
uid crystal. In: Proceedings of the 2004 Congress on Evolutionary Compu-
tation (IEEE Cat. No.04TH8753). vol. 2, pp. 1800–1807 Vol.2 (Jun 2004).
https://doi.org/10.1109/CEC.2004.1331114

18. Harding, S., Miller, J.F.: Evolution In Materio: Evolving Logic Gates in Liquid
Crystal. International Journal of Unconventional Computing 3, 243–257 (2007)

19. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: The-
ory and applications. Neurocomputing 70(1), 489–501 (Dec 2006).
https://doi.org/10.1016/j.neucom.2005.12.126

20. Jones, B.A.H., Al Moubayed, N., Zeze, D.A., Groves, C.: Enhanced meth-
ods for Evolution in-Materio Processors. In: 2021 International Con-
ference on Rebooting Computing (ICRC). pp. 109–118 (Nov 2021).
https://doi.org/10.1109/ICRC53822.2021.00026

21. Jones, B.A.H., Chouard, J.L.P., Branco, B.C.C., Vissol-Gaudin, E.G.B., Pearson,
C., Petty, M.C., Al Moubayed, N., Zeze, D.A., Groves, C.: Towards Intelligently
Designed Evolvable Processors. Evolutionary Computation pp. 1–23 (Mar 2022).
https://doi.org/10.1162/evco a 00309

22. Kan, S., Nakajima, K., Takeshima, Y., Asai, T., Kuwahara, Y., Akai-Kasaya, M.:
Simple Reservoir Computing Capitalizing on the Nonlinear Response of Materials:
Theory and Physical Implementations. Physical Review Applied 15(2), 024030
(Feb 2021). https://doi.org/10.1103/PhysRevApplied.15.024030

23. Kotsialos, A., Massey, M.K., Qaiser, F., Zeze, D.A., Pearson, C., Petty, M.C.: Logic
gate and circuit training on randomly dispersed carbon nanotubes. International
journal of unconventional computing. 10(5-6), 473–497 (Sep 2014)

24. Li, G., Niu, P.: An enhanced extreme learning machine based on ridge regression
for regression. Neural Computing and Applications 22(3), 803–810 (Mar 2013).
https://doi.org/10.1007/s00521-011-0771-7

25. Linden, D.: A system for evolving antennas in-situ. In: Proceedings Third
NASA/DoD Workshop on Evolvable Hardware. EH-2001. pp. 249–255 (Jul 2001).
https://doi.org/10.1109/EH.2001.937968

26. Lupo, A., Butschek, L., Massar, S.: Photonic Extreme Learning Machine
based on frequency multiplexing. Optics Express 29(18), 28257 (Aug 2021).
https://doi.org/10.1364/OE.433535

27. Massey, M.K., Kotsialos, A., Qaiser, F., Zeze, D.A., Pearson, C., Volpati, D.,
Bowen, L., Petty, M.C.: Computing with carbon nanotubes: Optimization of
threshold logic gates using disordered nanotube/polymer composites. Journal of
Applied Physics 117(13), 134903 (Apr 2015). https://doi.org/10.1063/1.4915343

28. Massey, M.K., Kotsialos, A., Volpati, D., Vissol-Gaudin, E., Pearson, C., Bowen,
L., Obara, B., Zeze, D.A., Groves, C., Petty, M.C.: Evolution of Electronic Circuits
using Carbon Nanotube Composites. Scientific Reports 6(1), 32197 (Oct 2016).
https://doi.org/10.1038/srep32197

https://doi.org/10.1109/CEC.2004.1331114
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1109/ICRC53822.2021.00026
https://doi.org/10.1162/evco_a_00309
https://doi.org/10.1103/PhysRevApplied.15.024030
https://doi.org/10.1007/s00521-011-0771-7
https://doi.org/10.1109/EH.2001.937968
https://doi.org/10.1364/OE.433535
https://doi.org/10.1063/1.4915343
https://doi.org/10.1038/srep32197

In-Materio Extreme Learning Machines 15

29. Miller, J., Downing, K.: Evolution in materio: Looking beyond the sili-
con box. In: Proceedings 2002 NASA/DoD Conference on Evolvable Hard-
ware. pp. 167–176. IEEE Comput. Soc, Alexandria, VA, USA (2002).
https://doi.org/10.1109/EH.2002.1029882

30. Morán, A., Canals, V., Galan-Prado, F., Frasser, C.F., Radhakrishnan, D.,
Safavi, S., Rosselló, J.L.: Hardware-Optimized Reservoir Computing Sys-
tem for Edge Intelligence Applications. Cognitive Computation (Feb 2021).
https://doi.org/10.1007/s12559-020-09798-2

31. Mujal, P., Mart́ınez-Peña, R., Nokkala, J., Garćıa-Beni, J., Giorgi, G.L., Soriano,
M.C., Zambrini, R.: Opportunities in Quantum Reservoir Computing and Ex-
treme Learning Machines. Advanced Quantum Technologies 4(8), 2100027 (2021).
https://doi.org/10.1002/qute.202100027

32. Ort́ın, S., Soriano, M.C., Pesquera, L., Brunner, D., San-Mart́ın, D., Fischer, I.,
Mirasso, C.R., Gutiérrez, J.M.: A Unified Framework for Reservoir Computing
and Extreme Learning Machines based on a Single Time-delayed Neuron. Scientific
Reports 5(1), 14945 (Oct 2015). https://doi.org/10.1038/srep14945

33. Pedersen, M.E.H.: Good Parameters for Differential Evolution (2010)

34. Ratnawati, D.E., Marjono, Widodo, Anam, S.: Comparison of activation func-
tion on extreme learning machine (ELM) performance for classifying the ac-
tive compound. AIP Conference Proceedings 2264(1), 140001 (Sep 2020).
https://doi.org/10.1063/5.0023872

35. Ruiz-Euler, H.C., Alegre-Ibarra, U., van de Ven, B., Broersma, H., Bobbert, P.A.,
van der Wiel, W.G.: Dopant Network Processing Units: Towards Efficient Neural-
network Emulators with High-capacity Nanoelectronic Nodes. arXiv:2007.12371
[cs, stat] (Jul 2020)

36. Sloss, A.N., Gustafson, S.: 2019 Evolutionary Algorithms Review.
arXiv:1906.08870 [cs] (Jun 2019)

37. Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic
for global Optimization over Continuous Spaces. Journal of Global Optimization
11(4), 341–359 (Dec 1997). https://doi.org/10.1023/A:1008202821328

38. Tanaka, G., Yamane, T., Héroux, J.B., Nakane, R., Kanazawa, N., Takeda,
S., Numata, H., Nakano, D., Hirose, A.: Recent advances in physical
reservoir computing: A review. Neural Networks 115, 100–123 (Jul 2019).
https://doi.org/10.1016/j.neunet.2019.03.005

39. Viero, Y., Guérin, D., Vladyka, A., Alibart, F., Lenfant, S., Calame, M., Vuillaume,
D.: Light-Stimulatable Molecules/Nanoparticles Networks for Switchable Logi-
cal Functions and Reservoir Computing. Advanced Functional Materials 28(39),
1801506 (2018). https://doi.org/10.1002/adfm.201801506

40. Vissol-Gaudin, E., Kotsialos, A., Groves, C., Pearson, C., Zeze, D., Petty, M.: Com-
puting Based on Material Training: Application to Binary Classification Problems.
In: 2017 IEEE International Conference on Rebooting Computing (ICRC). pp. 1–8.
IEEE, Washington, DC (Nov 2017). https://doi.org/10.1109/ICRC.2017.8123677

41. Vissol-Gaudin, E., Kotsialos, A., Groves, C., Pearson, C., Zeze, D., Petty, M.,
Al Moubayed, N.: Confidence Measures for Carbon-Nanotube / Liquid Crystals
Classifiers. In: 2018 IEEE Congress on Evolutionary Computation (CEC). pp. 1–8
(Jul 2018). https://doi.org/10.1109/CEC.2018.8477779

42. Wang, J., Lu, S., Wang, S.H., Zhang, Y.D.: A review on extreme learning machine.
Multimedia Tools and Applications (May 2021). https://doi.org/10.1007/s11042-
021-11007-7

https://doi.org/10.1109/EH.2002.1029882
https://doi.org/10.1007/s12559-020-09798-2
https://doi.org/10.1002/qute.202100027
https://doi.org/10.1038/srep14945
https://doi.org/10.1063/5.0023872
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1002/adfm.201801506
https://doi.org/10.1109/ICRC.2017.8123677
https://doi.org/10.1109/CEC.2018.8477779
https://doi.org/10.1007/s11042-021-11007-7
https://doi.org/10.1007/s11042-021-11007-7

16 B. A. H. Jones et al.

43. Zhu, Q.Y., Qin, A.K., Suganthan, P.N., Huang, G.B.: Evolutionary ex-
treme learning machine. Pattern Recognition 38(10), 1759–1763 (Oct 2005).
https://doi.org/10.1016/j.patcog.2005.03.028

https://doi.org/10.1016/j.patcog.2005.03.028

	In-Materio Extreme Learning Machines

