
Balancing Fined-tuned Machine Learning
Models between Continuous and Discrete

Variables - A Comprehensive Analysis using
Educational Data

Efthyvoulos Drousiotis1, Panagiotis Pentaliotis1, Lei Shi2, and Alexandra I.
Cristea2

1 Department of Electrical Engineering Electronics, University of Liverpool,
Liverpool, UK {e.drousiotis, p.pentaliotis}@liverpool.ac.uk

2 Department of Computer Science, Durham University, Durham, UK
{lei.shi, alexandra.i.cristea}@durham.ac.uk

Abstract. Along with the exponential increase of students enrolling in
MOOCs [26] arises the problem of a high student dropout rate. Re-
searchers worldwide are interested in predicting whether students will
drop out of MOOCs to prevent it. This study explores and improves
ways of handling notoriously challenging continuous variables datasets,
to predict dropout. Importantly, we propose a fair comparison methodol-
ogy: unlike prior studies and, for the first time, when comparing various
models, we use algorithms with the dataset they are intended for, thus
‘like for like.’ We use a time-series dataset with algorithms suited for
time-series, and a converted discrete-variables dataset, through feature
engineering, with algorithms known to handle discrete variables well.
Moreover, in terms of predictive ability, we examine the importance of
finding the optimal hyperparameters for our algorithms, in combina-
tion with the most effective pre-processing techniques for the data. We
show that these much lighter discrete models outperform the time-series
models, enabling faster training and testing. This result also holds over
fine-tuning of pre-processing and hyperparameter optimisation.

Keywords: Neural Networks · Tree-based Algorithms · Educational
Data Mining · Feature Engineering · MOOCs

1 Introduction
With the rapid development of the Internet and in combination with the growing
training demands, the education industry has changed the way it operates. Mas-
sive Open Online Course (MOOC) platforms were introduced to the world, which
has attracted millions of users [26]. This led to a revolution of big data in learning,
with more resources and anonymised datasets for exploration. Over the years,
an undeniable challenge in online learning became to find ways to reduce and
predict students’ dropout rates, which fall roughly at 77%-87% . Many studies
have been conducted to explore learning behavioural patterns, through statistical
modelling and machine learning, towards predicting students’ dropout [11, 19].

2 E.Drousiotis et al.

Nonetheless, the majority of the studies, such as [30, 31], used the same dataset
and variables to implement predictive models, without taking into considera-
tion the type of variables each model uses for maximising its performance. For
example, [30] trained a time-series, Long Short-Term Memory (LSTM) model,
using the same dataset that was used to train other non-time series machine
learning models, including Logistic Regression, Random Forest, and Gradient
Boosting Decision Tree (GBDT). The results showed that time-series models,
such as LSTM, outperformed other machine learning models (i.e., Linear Re-
gression and Decision Tree), and achieved higher accuracy, precision and recall
when compared using data from their ’natural’ environment (continuous/time-
series variables). However, we argue that previous methods did not consider the
functionality of the algorithms and how they could perform best, according to
their nature. Some very preliminary previous research [10] has hinted that it
may be a good practice to use sequential time-series ‘as is’, or first convert the
dataset into discrete-variables, for obtaining enhanced metrics (precision, recall,
f1-score, accuracy) on predicting students’ dropout, when the models would be
tuned, and the datasets would be pre-processed. The current paper aims to de-
termine if traditional fine-tuning and optimisation methods can change this, or
if the conversion into discrete variables is as robust as we assumed. We use the
same application of predicting ’completers’ and ’non-completers’ with the same
dataset to analyse this. We examine thus the following research question:

Can pre-processing, fine-tuning and hyperparameter optimisation change the
balance between using time-series ‘as is’, or converting them into discrete vari-
ables?

The main contributions of this study are thus to perform, for the first time,
a wide-scale analysis, showing, firstly, that discrete-feature methods outperform
sequential time-series methods, on both discrete and sequential datasets. Sec-
ondly, we show that this result is further consistent, when performing model
hyperparameter optimisations and optimal feature engineering. Our results, fur-
thermore, outperform all other studies using the same dataset [24, 15, 21, 20, 17]
in predicting dropouts. Moreover, as we compare several approaches, our work
also shows that methods of capturing uncertainty outperform the others. This
supports the more generic approach to converting the dataset, whenever possible,
into the appropriate formats (in our case, time-series into discrete), which helps
a different kind of predictive model than the default applied in previous studies,
achieving faster training, testing, and predicting, as well as higher predictive ac-
curacy and in general better performance compared to using multi-layer neural
networks.

2 Related Work
Learning Analytics (LA) is the process of analysing and reporting multiple learn-
ers’ data to understand and optimise their performance and the learning envi-
ronment. Many recent studies focused on classifying students into ’completers’
(i.e. students who completed the course) and ’non-completers’. Some of them
[19, 2] used traditional machine learning algorithms (e.g. Decision Tree, Logistic

Title Suppressed Due to Excessive Length 3

Regression, Random Forest), while others, such as [12, 14], used more advanced
algorithms (e.g. Neural Networks).

A few recent studies also [30, 31] utilised both traditional machine learn-
ing algorithms and more advanced ones (Neural Networks). These studies [30,
31] used the same dataset to train both Neural Networks and machine learn-
ing models (time-series), which showed that Neural Networks outperformed the
other machine learning techniques.

However, Tensorflow3suggested that to train an LSTM, it is best to use a
time-series dataset, while [13] suggested using discrete variables to train a tree-
based algorithm (either categorical or continuous variables).

Moreover, some works [16, 32] suggested that artificial Recurrent Neural Net-
works (RNN) with memory, such as Long-Short-Term-Memory (LSTM), are gen-
erally considered as superior models for time-series tasks, due to their nature –
the way they operate and handle data. On the other hand, [28] suggested that
traditional machine learning algorithms, such as Logistic Regression, Random
Forest and GBDT, produce better results with discrete-variable data. The only
study we could find that compared four benchmark models with their intended
datasets [10], lacked, however, a thorough examination of possible outcomes after
pre-processing and hyperparameter optimisation.

In our case, we convert the time-series data, through feature engineering, into
discrete variables, and train each model on the type of data it can process best.

Furthermore, some current works used a combination of different types of
data, when those were available, in order to obtain higher accuracy with the
LSTM model. For example, [22, 23] examined a combination of time-series data
and other discrete data, which included features such as first quiz results, the
number of playbacks of a video. The primary key aspect of our methodology
is that we do not use any other data than video interactions, to fairly analyse
different formats of this data for different algorithms.

Several studies, such as [24, 15, 17], conducted student dropout prediction
(from MOOCs) on the same dataset that we use in this paper. Some of them
[21, 24, 20] did not perform any hyperparameter optimisation on their predictive
models, but they pre-processed their data; whilst others, such as [15], performed
a basic feature engineering and hyperparameters tuning. Specifically, [24] used
AME, a meta-embedding technique, through which they derived the optimal
embedding for each sequence of object embedding vectors, and a temporal clas-
sification, which modelled the temporal nature of the data over multiple days.
[20] filtered the logs, which contained unrelated events from users, rows with
missing values, and columns with no helpful information. [17] highlighted the
unbalanced nature of the dataset, and to achieve better classifier performance,
they applied the synthetic minority oversampling technique known as SMOTE on
the training set. However, generating synthetic examples may increase the over-
lapping of classes and introduce additional noise, while the initial distribution
of the dataset is compromised, such that it no longer corresponds to real-world
data. Finally, [15] performed thorough hyperparameter tuning, while the data

3 https://www.tensorflow.org/tutorials/structureddata/timeseries

4 E.Drousiotis et al.

pre-processing techniques used were not to explore or enhance the data, but
just to make the data compatible with their predictive model. As mentioned in
Section 1, we explore further the results of [10] with optimised hyperparameters,
and optimal pre-processing techniques.

Unlike prior work, this study shows, in a comprehensive way, that it is bene-
ficial to convert time-series data into discrete variables, when testing several ma-
chine learning algorithms. Moreover, to ensure a fair comparison, we are using
the same data for several testing cases, and we explore in depth the algorithmic
performance, by hyperparameter optimising all the machine learning algorithms
used.

3 Method
3.1 Dataset and Data Preparation

The dataset used in this study is comprised of 300,000 interactions performed
by 2,000 unique students that were registered on XuetangX4 (launched in Oc-
tober 2013, one of the largest MOOC platforms in the world). The dataset
contains two modules delivered in 2014 in a Self-Paced Mode (SPM), where a
student can have a more flexible schedule and study during the hours that suit
them the best. In order to make a fair, controlled comparison and strengthen
our claims, we trained all the models (with and without tuned hyperparam-
eters, with and without pre-processed data) with the time-series dataset and
discrete variable dataset. In particular, we converted the time-series dataset into
a discrete-variables dataset. In the time-series dataset, the input variables in-
clude the type of actions and the time each action was performed for all the
300,000 interaction entries. For constructing the discrete-variables dataset, we
used the time-series dataset and counted the number of unique actions for each
student. The table is populated by the ID, the Truth (pass or dropout) and the
14 unique types of actions the students performed, namely, click courseware,
click forum, click info, click progress, click about, close courseware, create com-
ment, load video, create thread, pause video, play video, problem get, seek video,
and stop video. In total, there are 14 unique types of actions, so we engineered 14
features for 14 input variables for our predictive models. Considering the LSTM
model’s pre-processing in preparation of the dataset, the actions performed by
each student were sequentially grouped, according to the time they were per-
formed. Thus, the essence of the time-series was preserved while still considering
the unique actions performed. Afterwards, the actions were transformed into a
sequence of binary numbers (see Table 1), to retain the categorical (nominal, i.e.
no intrinsic ordering to the categories) nature of the actions.

3.2 Data Pre-Processing / Features Engineering

Our feature engineering techniques aimed not to change the data distribution,
but only to feed the data into the models in the most efficient way.

4 http://moocdata.cn/data/user-activity

Title Suppressed Due to Excessive Length 5

Table 1. Time-Series Dataset

ID Action Time Truth 5

.
561867 pause video 2015-10-25T10:52:06 0
561867 play video 2015-10-25T10:52:09 0
561867 pause video 2015-10-25T10:58:42 0
1368125 click about 2015-10-05T15:43:55 1
1368125 click info 2015-10-05T15:45:53 1
708122 pause video 2015-10-04T21:41:30 1
708122 play video 2015-10-04T21:24:40 1
.

Table 2. Sample distribution per classification category

Dropout Continuing Study

Sample Number 76470 20059
Percentage of Sample 79.22% 20.78%

For the tree-based algorithms, we adopted the Term Frequency-Inverted Doc-
ument Frequency (TF-IDF) technique to feed the data into our models. TF-IDF
is a statistical measure that estimates how important and relevant a word is
to a document. Here, we examined the importance of each action compared to
the total number of actions. Generally, an action’s importance increases with
the number of times an action appears in the current input, which, at the same
time, is counterbalanced by the frequency of that action in general.

LSTMs use sequences of numerical values, so we transformed the sequences of
actions performed by each student, which are identified by words, into numbers.
Specifically, we gathered all the student’s actions and ordered them according to
their timestamps. By doing so, we retained the time-series nature of the action
sequence. We then created a dictionary of the unique words from the actions and
encoded them using One-Hot Encoding. One-Hot Encoding morphs the unique
numbers into sequences of 0s and 1s, which maintain the sequences’ categorical
nature for the LSTM.

3.3 Building the Models

We implemented an LSTM model and several tree-based machine learning mod-
els, including Decision Tree, Random Forest, and BART. In this section, we
introduce how these models were built.

LSTMs can process long sequences of data (in our case, sequences of ac-
tions). In the current study, we used LSTMs to train on the temporal sequence
of actions performed by the students. For the discrete variables dataset training,
we considered that all the inputs were from a single timestamp, meaning that
all the actions had been executed at once (i.e., no temporal order) compared

6 E.Drousiotis et al.

to the continuous variables dataset training, where each action had a different
timestamp, adding a subtle continuous/temporal feature to the data.

A single standard LSTM unit is composed of a cell vector (ct) eq. (3), a
hidden vector (ht) eq. (5), an input gate (it) eq. (1), an output gate (ot) eq. (4)
and a forget gate (ft) eq. (2). A cell remembers values over time intervals (t− 1,
t); and the three gates regulate the flow of information, by computing a series
of functions for the cell vector and the hidden vector [18].

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (1)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf) (2)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc (3)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo) (4)

ht = ottanh(ct) (5)

Decision Tree is a non-parametric, supervised machine learning model,
which learns simple decision rules inferred from the data variables. It can be
used for both classification and regression tasks. Specifically, we used the CART
model [6], which traverses the binary tree given a new input record, where the
tree is trained by a greedy algorithm on the training data, to pick splits in the
tree. The main reason of using CART is the algorithmic transparency provided,
as it being proven to be a trustworthy baseline in prior researches[29].

Random Forest(RF) [5] is a supervised machine learning method formed
on ensemble learning (the combination of different types of algorithms, or the
same algorithms applied many times, to create a more precise predictive model).
An RF receives the prediction from each sub-tree and chooses the solution that
is in majority, by voting. Forests and specifically RF according to [9], tend to
outperform the rest of the classification algorithms (based on a large-scale com-
parison of 179 classification algorithms emerging from 17 learning families over
121 datasets).

BART is a Bayesian version of a tree ensemble model, where the estimation
is given by a sum of Bayesian CART trees. More information can be found in
[7]. Bayesian methods are known to be better at modelling uncertainty[8], which
addresses part of our aim in comparing these methods.

For the tree-based models we performed hyperparameter optimisation through
Grid Search and Random Search techniques, as they are widely used in the state
of the art research [3]. Moreover, we tested the model with 10-Fold Cross Val-
idation, which is a widely used technique to ensure full usage of all available
data.

The hyperparameter optimisation for the LSTM was performed with the
help of an online open source application ’Weights & Biases’6 [4]. The sweep
method used to tune the model was ’Bayes’ [27]. The ’Bayes’ method uses a
Gaussian Process (GP) Expected Improvement Markov Chain Monte Carlo (GP
EI MCMC) technique to calculate the posterior distribution from a prior, and

6 https://wandb.ai/site

Title Suppressed Due to Excessive Length 7

the ’expected improvement’ of a parameter. A Gaussian Process distribution on
prior functions, is chosen to express assumptions about the function being opti-
mised [25][27]. The ’expected improvement’ is the acquisition function (eq. (6)),
used to construct a utility function from the model posterior for our Bayesian
optimisation, i.e. the main deciding factor for the MCMC [27]. If that parameter
improves the F1-score of training, as we have requested from the MCMC search
to monitor, the parameters are tuned, respectively.

aEI(x; {xn, yn} , θ) = σ(x; {xn, yn} , θ)(γ(x)Φ(γ(x)) +N(γ(x); 0, 1)) (6)

where:
aEI(x; {xn, yn} , θ) is the acquisition function that depends on the previous

observations, and the GP hyperparameters;
Φ(·) is the cumulative distribution function of the standard normal;
N(γ(x); 0, 1) is the prior distribution with noise (0, 1);
σ(x; {xn, yn} , θ) is the predictive variance function, and:

γ(x) =
f(xbest)− µ(x; {xn, yn} , θ)

σ(x; {xn, yn} , θ)
(7)

where:
µ(x; {xn, yn} , θ) is the predictive mean function;
xbest = argminxnf(xn) is the best current value.

Each training, with continuous or discrete variables, was performed 100 times.
We used uniform distributions, as we had no prior belief information for the
hyperparameters. The priors were either uniform or integer uniform, depending
on the parameter checked. After monitoring tuning, the parameters providing
the highest F1-score was chosen from 100 iterations. Then, to obtain the optimal
hyperparameters, we run the resulting optimal algorithm 10-fold, to obtain the
median ROC curve and the median testing results.

The Random Forest and Decision Tree models were implemented using the
scikit-learn version 1.0.1 in Python7. The BART model was implemented us-
ing the BART package in R8. The LSTM model was implemented using Keras
version 2.2.59.

The overall purpose of our methodological setting was to:

– Compare the two datasets in their primitive forms, without any data pre-
processing or hyperparameter optimisation (sequential time-series and dis-
crete).

– Train and test the models using the two datasets applying hyperparameters
optimisation and feature engineering techniques (sequential time-series and
discrete).

7 https://pypi.org/project/scikit-learn/
8 https://cran.r-project.org/web/packages/BART/BART.pdf
9 https://keras.io/api/layers/recurrentlayers/lstm/

8 E.Drousiotis et al.

– Compare and contrast all the above to find out if and when we should opti-
mise model parameters and apply data pre-processing methods.

To evaluate our predictive models’ performance, we utilised standard, com-
prehensive metrics: Precision, Recall, F-1 score and Accuracy. Moreover, we
produced a ROC curve (receiver operating characteristic curve) for each model,
i.e. the graph showing the performance of the classification models at all clas-
sification thresholds. This curve plots two parameters, the True Positive Rate
and the False Positive Rate. This allowed us to also explore the Area under the
ROC Curve (i.e., AUC) measure.

This way, we ensured a thorough, fair comparison of the algorithms under
study.

4 Results and Discussions
We present the results of our study in Table 3, comprising of three tree-based
models (Decision Tree, Random Forest, BART) and an LSTM model, for 4 test
cases (Q1: Discrete dataset without hyperparameter optimisation and feature
engineering, Q2: Discrete dataset with hyperparameter optimisation and feature
engineering, Q3: Continuous dataset without hyperparameter optimisation and
feature engineering, Q4: Continuous dataset with hyperparameter optimisation
and feature engineering).

Firstly, we observed that BART is the most robust model - it maintains
its high predictive accuracy for all 4 test cases (Table 3). Specifically, BART
outperforms all the other models - and did not overfit in any of the test cases,
achieving accuracies from 80% to 92% (see Table 3).

Secondly, for the LSTM for the 4 test cases, we observed overfitting (Table
3), which was caused by training on a (relatively) moderate amount of data.
Decision Tree overfitted on the 3 out of 4 test cases (see Table 3), while hy-
perparameters optimisation and feature engineering did not enhance the model
performance as expected. Random Forest overfitted as well on 2 out of 4 test
cases, which indicates that it did not benefit from either feature engineering or
data transformation. For all 4 test cases, BART showed an impressive ability
to determine whether a student would pass or drop out, while hyperparameter
optimisations and feature engineering improved its performance.

Thirdly, we used the Area Under the Curve (AUC) (see Figs. 1-4) as a crite-
rion to measure the models’ ability to discriminate the test cases. The closer the
ROC curve to the upper left corner, the more efficient the test was. By taking
into consideration the results (see Table 3) and comparing them with the ROC
curves, we validated the fact that BART is the most consistent model, as it was
not affected by neither the imbalanced nature of the data nor the low level of
hyperparameters optimisation and it has an improved ability to discriminate the
test values in comparison with the other four models (Decision Tree, Random
Forest, BART and LSTM).

Fourthly, we observed the improved performance of Decision Tree and Ran-
dom Forest models when they were trained on the dataset (discrete data) they

Title Suppressed Due to Excessive Length 9

Table 3. Results: Comparison of Decision Tree, Random Forest, BART on discrete
and continuous data, with/out hyperparameter optimisation (4 test cases)

DT RF BART LSTM

Precision

Q1 0.64 0.77 0.87 0.40
Q2 0.74 0.80 0.88 0.81
Q3 0.60 0.67 0.81 0.41
Q4 0.74 0.72 0.87 0.52

Recall

Q1 0.66 0.69 0.96 0.34
Q2 0.63 0.71 0.97 0.66
Q3 0.59 0.58 0.98 0.34
Q4 0.65 0.66 0.98 0.51

F1

Q1 0.65 0.71 0.91 0.29
Q2 0.66 0.75 0.92 0.68
Q3 0.59 0.60 0.89 0.29
Q4 0.68 0.68 0.92 0.50

Accuracy

Q1 0.77 0.85 0.90 0.32
Q2 0.83 0.88 0.92 0.82
Q3 0.82 0.86 0.88 0.32
Q4 0.88 0.89 0.89 0.80

are suited for, as they overfitted when trained on the ’unsuitable’ dataset (se-
quential data). The LSTM model did not perform as well as the tree-based
models, and especially not as expected for the continuous variables. That is pos-
sibly because LSTMs are known to require a large amount of data in order to
be efficiently trained [1].

Our results suggest that, whenever possible, it would be beneficial
to convert the time-series dataset into a discrete variables dataset
and apply Bayesian methods, such as BART, as it is highly likely to
produce better performance, especially when the time-series datasets
are not populated enough.

Moreover, our results highlight the necessity of always finding the best hyper-
parameters for the models based on the data they are trained on, and the most
efficient and effective data pre-processing techniques, as they can dramatically
improve the models’ performances and prevent overfitting. However, converting
time-series datasets into discrete datasets can often be time-consuming.

5 Conclusions, Limitations and Future work
In summary, this paper presents the results of a comparison study with 4 test
cases, swapping continuous and discrete datasets, as well as training with/without
hyperparameter optimisation, on four different state-of-the-art algorithms (De-
cision Tree, LSTM, BART, Random Forest).

Our results conclude that researchers should transform data into suitable
forms when feasible, and they should always try to identify the optimal data
pre-processing techniques, as this can improve model performance. We have

10 E.Drousiotis et al.

Fig. 1. Discrete data: No Pre-Processing,
No Hyperparameter Optimisation

Fig. 2. Discrete data: Hyperparameter Op-
timisation, Feature Engineering

Fig. 3. Continuous data: No Pre-
Processing, No Hyperpar. Optimisation

Fig. 4. Continuous data: Hyperparameter
Optimisation, Features Engineering

(For all ROC Curves above: Upper left - Decision Tree, Upper right - LSTM,
Bottom Left - BART, Bottom Right - Random Forest)

shown that this process assists different types of predictive models to obtain
higher performance and enhanced learning ability. Different from other studies,
we propose, for the first time, a fair comparison; for this, we trained our predic-
tive models not only based on the data type they are indicated for (time-series
data for LSTMs and discrete data for tree-based models) but also with all the
test cases, for obtaining unbiased results. It is also worth mentioning that we
have noted that BART is the only model which did not overfit in any of the 4
test cases, rendering it the ideal model for producing not only benchmarks but
also high quality results. The other 3 models (Decision Tree, Random Forest and
LSTM) were overfitted in some of the cases, indicating that we should be very
cautious when trying to improve the performance of our predictive models.

The main limitations of this study are those related to the data. We used
only one dataset, as being the largest available currently. However, more and
larger datasets would be useful for further comparisons, as LSTM models espe-
cially tend to perform better when being trained on more data. Moreover, de-

Title Suppressed Due to Excessive Length 11

mographic or personal information of each student (unavailable in the dataset)
might provide the models with more meaningful connections to variables for the
classifications and thus allow better performance. It is also important to note
that, as some students might prefer to download videos and watch them locally,
not all the actions (i.e. interacting with a video player such as ‘play’ and ‘pause’)
could be fully captured through the online learning platforms.

For future work, we plan to add more predictive models for comparison,
including Bayesian and non-Bayesian models, to validate and strengthen our
conclusion on the Bayesian models being less overfit-prone. Moreover, to explore
further the capabilities of the LSTM we could consider the time intervals of the
actions.

References

1. Adadi, A.: A survey on data-efficient algorithms in big data era. In: Journal of Big
Data (2021), https://link.springer.com/article/10.1186/s40537-021-00419-9citeas

2. Alamri, A., Alshehri, M., Cristea, A., Pereira, F.D., Oliveira, E., Shi, L.,
Stewart, C.: Predicting MOOCs Dropout Using Only Two Easily Obtain-
able Features from the First Week’s Activities. In: Intelligent Tutoring Sys-
tems, vol. 11528, pp. 163–173. Springer International Publishing, Cham (2019),
http://link.springer.com/10.1007/978-3-030-22244-4 20

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal
of machine learning research 13(2) (2012)

4. Biewald, L.: Experiment tracking with weights and biases (2020), software available
from wandb.com

5. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2004)
6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regres-

sion trees (1983)
7. Chipman, H.A., George, E.I., McCulloch, R.E.: BART: Bayesian additive regres-

sion trees (Oct 2010). https://doi.org/10.1214/09-AOAS285
8. Clyde, M., George, E.I.: Model uncertainty. Statistical science 19(1), 81–94 (2004)
9. Delgado, M.F., Cernadas, E., Barro, S., Amorim, D.G.: Do we need hundreds of

classifiers to solve real world classification problems? J. Mach. Learn. Res. 15,
3133–3181 (2014)

10. Drousiotis, E., Pentaliotis, P., Shi, L., Cristea, A.I.: Capturing fairness and uncer-
tainty in student dropout prediction–a comparison study. In: International Con-
ference on Artificial Intelligence in Education. pp. 139–144. Springer (2021)

11. Drousiotis, E., Shi, L., Maskell, S.: Early predictor for student success based on be-
havioural and demographical indicators. In: International Conference on Intelligent
Tutoring Systems. pp. 161–172. Springer (2021)

12. Fei, M., Yeung, D.: Temporal Models for Predicting Student Dropout in Massive
Open Online Courses. In: 2015 IEEE International Conference on Data Mining
Workshop (ICDMW). pp. 256–263 (Nov 2015), iSSN: 2375-9259

13. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In:
Proceedings of the Sixteenth International Conference on Machine Learning. p.
124–133. ICML ’99, Morgan Kaufmann Publishers Inc., San Francisco (1999)

14. Gardner, J., Yang, Y.: Modeling and Experimental Design for MOOC Dropout
Prediction: A Replication Perspective. Proceedings of The 12th International Con-
ference on Educational Data Mining (EDM 2019) p. 10 (2019)

12 E.Drousiotis et al.

15. Goel, Y., Goyal, R.: On the effectiveness of self-training in mooc dropout predic-
tion. In: Open Computer Science. vol. 10, pp. 246–258 (2020)

16. Hochreiter, S., Yoshua, Informatik, F.F., Bengio, Y., Frasconi, P., Schmidhuber,
J.: Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Depen-
dencies (2001)

17. Hong, B., Wei, Z., Yang, Y.: Discovering learning behavior patterns to predict
dropout in mooc. In: 2017 12th International Conference on Computer Science
and Education (ICCSE). pp. 700–704 (2017)

18. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
CoRR abs/1508.01991 (2015), http://arxiv.org/abs/1508.01991

19. Jin, C.: MOOC student dropout prediction model based on learning behavior fea-
tures and parameter optimization. Interactive Learning Environments pp. 1–19
(Aug 2020). https://doi.org/10.1080/10494820.2020.1802300

20. Liang, J., Li, C., Zheng, L.: Machine learning application in moocs: Dropout pre-
diction. In: 2016 11th International Conference on Computer Science Education
(ICCSE). pp. 52–57 (2016). https://doi.org/10.1109/ICCSE.2016.7581554

21. Liang, J., Yang, J., Wu, Y., Li, C., Zheng, L.: Big data application in education:
Dropout prediction in edx moocs. In: 2016 IEEE Second International Conference
on Multimedia Big Data (BigMM). pp. 440–443 (2016)

22. Liu, Z., Xiong, F., Zou, K., Wang, H.: Predicting Learning Status in MOOCs using
LSTM (Aug 2018)

23. Mubarak, A.A., Cao, H., Ahmed, S.A.: Predictive learning analytics using deep
learning model in MOOCs’ courses videos (2021)

24. Pulikottil, S.C., Gupta, M.: Onet – a temporal meta embedding network for mooc
dropout prediction. In: 2020 IEEE International Conference on Big Data (Big
Data). pp. 5209–5217 (2020). https://doi.org/10.1109/BigData50022.2020.9378001

25. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press (2005)

26. Rehfeldt, R.A., Jung, H.L., Aguirre, A., Nichols, J.L., Root, W.B.: Beginning the
Dialogue on the e-Transformation: Behavior Analysis’ First Massive Open Online
Course (MOOC). Behavior Analysis in Practice 9(1), 3–13 (Jan 2016)

27. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 2. p. 2951–2959. NIPS’12 (2012)

28. SONG, Y.y., LU, Y.: Decision tree methods: applications for classification and
prediction. Shanghai Archives of Psychiatry 27(2), 130–135 (Apr 2015)

29. Strecht, P., Cruz, L., Soares, C., Mendes-Moreira, J., et al.: A comparative study
of classification and regression algorithms for modelling students’ academic perfor-
mance. International Educational Data Mining Society (2015)

30. Tang, C., Ouyang, Y., Rong, W., Zhang, J., Xiong, Z.: Time Series Model for
Predicting Dropout in Massive Open Online Courses. In: Artificial Intelligence in
Education. pp. 353–357. Cham (2018)

31. Wang, L., Wang, H.: Learning Behavior Analysis and Dropout Rate Prediction
Based on MOOCs Data. In: 2019 10th International Conference on Information
Technology in Medicine and Education (ITME). pp. 419–423 (Aug 2019)

32. Zhang, X., Liang, X., Zhiyuli, A., Zhang, S., Xu, R., Wu, B.: AT-LSTM: An
Attention-based LSTM Model for Financial Time Series Prediction. IOP 569,
052037 (Aug 2019), publisher: IOP Publishing

