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Abstract. We introduce a new cryptographic scheme, Witness Key
Agreement (WKA), that allows a party to securely agree on a secret
key with a counter party holding publicly committed information only
if the counter party also owns a secret witness in a desired (arithmetic)
relation with the committed information.
Our motivating applications are over-the-counter (OTC) markets and
dark pools, popular trading mechanisms. In such pools investors wish
to communicate only to trading partners whose transaction conditions
and asset holdings satisfy some constraints. The investor must establish
a secure, authenticated channel with eligible traders where the latter
committed information matches a desired relation. At the same time
traders should be able to show eligibility while keeping their financial
information secret.
We construct a WKA scheme for languages of statements proven in the
designated-verifier Succinct Zero-Knowledge Non-Interactive Argument
of Knowledge Proof System (zk-SNARK). We illustrate the practical
feasibility of our construction with some arithmetic circuits of practical
interest by using data from US Dollar denominated corporate securities
traded on Bloomberg Tradebook.

Keywords: Blockchain-based dark pool; witness-key-agreement; zk-SNARK;
quadratic arithmetic program; designated-verifier.

1 Introduction

Existing Blockchain-based Financial Systems Financial intermediation is
traditionally based on trusted third party solutions, such as exchanges (e.g.
NASDAQ or CME) or clearing mechanisms (e.g. EU’s TARGET2-Securities and
US’s Depository Trust & Clearing Corporation).

New technologies have been recently proposed to replace these intermediaries
with distributed protocols on blockchain. See for example ZeroCash [44], a cryp-
tocurrency, or FuturesMEX [39], a crypto-based distributed futures exchange, or
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the dark pool exchange with three parties [14]. In those systems, the users com-
mit financial information (e.g. accounts, bids and quotes) to a blockchain and
use zero-knowledge proofs to show that their committed information satisfy a
certain relation to preserve the integrity of the market and the solvency of the
users. Noticeably, anonymity in those systems is as critical as confidentiality, e.g.
the linkage of one’s transactions can lead to strategic attacks against them [38].
New Dark Pools Requirements Private markets, i.e. dark pools, further
reduce public information to protect large investors. The investor in a dark pool,
who wants to sell at least v shares at price p, wants to disclose v and p only to
traders who committed to have cash c ≥ pv. Alternatively she might be willing
to buy from somebody who has at least v′ shares (an iceberg quote) or accept a
price pegged within an interval, etc. For the very same reasons, the trader might
not want to make his information fully public, but just to reassure the investor
that he meets the constraints.

To make distributed dark pools possible, we propose Witness Key Agreement
(WKA). In presence of a public blockchain holding parties’ publicly committed
information, WKA allows a party (the Verifier) to post a problem relation (e.g.
a desired arithmetic or boolean combination of secret information) and securely
agree on a secret key with another party (the Prover) holding a secret witness
that both corresponds to the publicly committed information and satisfies the
desired relation (i.e. the implicitly defined problem instance of the relation be-
tween the commits and the secret witness).
Witness Key Agreement Given n parties each having committed their private
information ω and published the respective commitments φ anonymously on a
public bulletin board, we consider the problem that a party wants to securely
and anonymously agree on a secret key k with each counterparty based on their
committed information ω. The initiating party wants to make sure that (and the
key agreement is only successful if) the counterparty’s committed information
ω satisfies a public relation R (given by the initiating party), i.e. R(φ,ω) = 1,
while each counterparty does not want to disclose their ω.

With our problem we push further the envelope of Non-Interactive Zero
Knowledge (NIZK) [25]. In both cases, given an instance and an NP-relation
R, a party (the Prover) can convince another party (the Verifier) that there
exists a witness ω of the instance φ such that R(φ, ω) = 1, without leaking in-
formation about it. The successful outcome of NIZK is the binary verification
result 1 while our desired outcome is a shared secret key.
Anonymity-Preserving Communication Model In our problem, we con-
sider the anonymity of each party as critical as other WKA security properties.
Therefore, our communication model assumes an anonymous network to hide the
parties’ identities (e.g., IP address) and all WKA communication must utilize
the public bulletin board (e.g. a blockchain), i.e. to publish a message, a party
sends it through the anonymous network to the public bulletin board which is
readable by all parties.5

5 WKA does not intend to hide whether the Prover/Verifier established communica-
tion as they are completely anonymous.
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Table 1. Dark Pool Example Relations

In each relation we denote JxK = SHA256(x; rx) the public SHA256 commit-
ment of the secret business variable x using randomness rx. For a dark pool
transaction we denote by c the cash capacity of a trader, c′ the threshold given
by the investor. For a bid we denote (p, v) as the bid price and the bid volume.

Sufficient Capacity (SC)

Public φ= (JcK, c′) Secret ω= (c, rc)
Conditions: JcK = SHA256(c; rc) ∧ c ≥ c′

Price Range (PR)

Public φ= (JpK, p′+, p′−) Secret ω= (p, rp)
Conditions: JpK = SHA256(p; rp) ∧ p′− ≤ p ≤ p′+

Matchable Bid (MB)

Public φ= (JpK, JvK, p′+, p′−, c′) Secret ω= (p, v, rp, rv)
Conditions: JpK = SHA256(p; rp), p

′
− ≤ p ≤ p′+ ∧ JvK = SHA256(v; rv), c′ ≥ pv

Practical WKA Construction We base our WKA construction on the con-
crete efficient construction of zk-SNARK from Non-Interactive Linear Proof
(NILP) [27] for Quadratic Arithmetic Programs (QAP) [22] given by Groth [27]
and we utilize Linear-Only Encryption (LE) [8] to compile such NILP to a WKA
scheme. We provide the first practical Witness Key Agreement under designated-
verifier zk-SNARK proof for QAP.In our WKA scheme construction a designated
verifier can first broadcast a common reference string as a challenge for the re-
lation R of interest. A prover can then publish a partial zk-SNARK proof as a
response for the committed instance that satisfies R. Using the partial proof,
the verifier can derive a shared secret key with the prover.
Non-goals The focus of our protocol design is to protect against digital at-
tacks on integrity, anonymity and confidentiality. Physical, economic and social
attacks are, and always will be, possible similarly to centralized systems (e.g.
insider trading, cartels manipulating the underlying assets or the availability
glitches such as the NASDAQ ones [46]) and they are typically dealt with by
ex-post law enforcement [37].

2 Dark Pools as A Motivating Application For WKA

From a security perspective the constraints from the investor are easily captured
by an NP-relation R as in Table 1 where the instance φ is the public information
(i.e. the trader’s commitment and the investor’s constraints) and the witness
ω is the private information (the trader’s committed information). An investor
may look for traders with enough capacity and use the Sufficient Capacity (SC)
relation in Table 1. A trader may ask the investor to show interest in some price
ranges, e.g. from p′− to p′+ using the Price Range (PR) relation and in addition
check the consistency of the challenged threshold using Matchable Bid (MB),
if the investor has previously committed to desired bid price p and volume v
,where c′ ≥ pv. Thus, the investor can simply post the relation R and use WKA
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Table 2. Comparison of Solutions

n is the number of parties. The comparison criteria include: (i) A: is anonymous com-
munication supported? (ii) PB: does the solution satisfies proportional burdern, i.e.
only the involved parties perform the computation? (iii) DL: does the solution con-
siders the information bound on a distributed ledger? (iv) AC: are arithmetic circuits
supported? (v) BR: blockchain-round complexity, i.e. the number of rounds happen
on the blockchain; (vi) BC: blockchain-communication complexity, i.e. the size of the
data communicated through the blockchain; and (vii) C: computational complexity.

Solution A PB DL AC BR BC C

Full MPC [30] y y y 13 O(n2) O(n2)
2-3 Servers MPC [14] y y N/A N/A O(1)
Paired 2PC [30] y y y 2 O(n) O(n)
Practical WE [21] y y y 1 O(1) O(1)
Practical AKE [29] y y y 2 O(1) O(1)
WKA y y y y 2 O(1) O(1)

to securely agree on a secret key with each interested and eligible trader hold-
ing a secret witness ω (to their committed instance φ) that satisfies the desired
relation, i.e. R(φ, ω) = 1. Each agreed key can then be used for the negotia-
tion (usually a conversation, not just a single message) of the offer between the
investor and each eligible trader.

Our WKA construction also aims for succinct communication which is impor-
tant when using a distributed ledger. The committed information (the instance)
is also frequently updated, while the relation R of interest may be persistent.
WKA is advantageous in this case as it works efficiently with different instances
of the same relation. Additionally, WKA allows the trader to send a message
encrypted using the key along with the public response (that will be used by
the verifier to reconstruct the key and decrypt the message). This may save one
round and is key when executing over a blockchain.6

3 Related Work and Alternative Candidate Schemes

We summarize a comparison of WKA in terms of usability and efficiency against
applicable alternative candidate schemes in Table. 2 (see §A for more details).

6 One can argue that there could be DDOS attacks where an attacker can post either
malformed offers, or correctly formed ones but they have no intention of filling, to
the blockchain. In the first case, as the Verifier only needs to forge the last proof
element F (1) while the Prover has to compute the full proof (4(m-l+3n)) as shown
in Table 3, such an attack will require tremendous effort from the Prover but not
so much from the Verifier. In the second case, unfortunately we cannot solve this
as it exists even in the centralized system. A trader/investor can post an offer, and
cancel it before it is filled or immediately in the next round. However, at the point
the offer was posted, the exchange cannot know whether the offer will be canceled
or not.
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A trivial (but wrong) solution is to ask each prover to couple a public key
pk with a zk-SNARK proof π for the satisfaction of the arithmetic relation
R. The verifier can then encrypt the private offer with pk after verifying the
proof π. Only the prover with the corresponding private key sk can decrypt.
Since the decryption condition above says nothing about the validity of π, one
cannot guarantee that pk is actually from the prover that produced π. Signature
of Knowledge [28] (SoK), can be used to sign the public key pk. However, SoK
delivers only pk of the prover thus allows only a one-way communication from the
verifier to the prover. Further, the prover cannot make sure that the upcoming
message encrypted with pk is from the verifier: as pk is public, anyone can see it
and send a message to the prover using pk. Other similar generic constructions
are generally based on the modification of R to include a transformation of
kr. Our WKA scheme uses directly R which yields a lower bound of circuit
complexity. Besides, those approaches usually require full proof verification (that
involves pairings, e.g. 5 as in [27]), which is more costly than our construction,
where the Verifier directly forges the last proof element (only computation in
the field F) and it even stops 1 step early.

Secure Multiparty Computation (MPC) [15] can be a general solution but is
with either usability and efficiency issues. Firstly, setting up an MPC using ex-
isting distributed ledgers is not trivial as every party must be known in advanced
or a PKI must be available in the setup phase for securing the communication
over the ledger, e.g. as in [11]. Additionally, general Full MPC (where n parties
join the computation, e.g. [30]) yields an unacceptable 13 rounds of blockchain
communication; while the 2-3 Servers MPC (where n parties secret share their
private inputs to the servers and let them perform the computation, e.g. [14])
and Paired 2PC (where the verifier contacts and perform a 2PC with each other
party, e.g. [30]) fail to guarantee anonymity which can be critical [38].

Authenticated key exchanges (AKE) [7,12] only support relations on creden-
tials. Here we have other relations among values not related to credentials as they
can change dynamically. Language-AKE [29] is more flexible but it does not sup-
port non-algebraic relations such as SHA-256 employed by ZeroCash [44]. One
can also use Witness Encryption [21] (WE) with the desired arithmetic relation
R, and only the provers who possess the witness ω for that instance φ such that
R(φ, ω) = 1 could decrypt. However, general WE constructions [19,23,20,3] are
impractical while practical WE under a GS proof [16] cannot support arithmetic
relation of depth greater than 1, e.g. SHA-256 as employed by ZeroCash [44]).

4 Witness Key Agreement

Notations A multivariate polynomial t : Fm → F over a finite field F has a
degree d if the degree of each monomial in t is at most d and a monomial has
degree d. A multivalued multivariate polynomial t : Fm → Fµ is a vector of
polynomials (t1, . . . , tµ) where each ti : Fm → F is a multivariate polynomial.
We denote a scalar by x and a vector by x. We write x ← X when picking an
element x uniformly from a finite set X. We write y ← A(x) when picking the
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randomness r and returning y = A(x; r). Pr[ε|Ω] denotes the probability of an
event ε over the probability space Ω. We denote the security parameter by 1λ

in the unary form and the negligible function as negl(·). Given two probability
functions f, g : N→ [0, 1] we write f(λ) ≈ g(λ) when |f(λ)− g(λ)| = O(λ−c) for
every constant c > 0. We say that f is negligible when f(λ) ≈ 0.

Remark 1 (Generation of the relation R). We follow the notation of Groth [27]
so that a relation generator R receives a security parameter 1λ and returns a
polynomial-time decidable binary relation R, i.e. R ← R(1λ). Hence for nota-
tional simplicity we can assume 1λ can be deduced from R.

Definition 1 (Witness Key Agreement). Let L be an NP-language with the
witness relation R(φ, ω). We call φ an instance of L and ω a witness for φ. A
Witness Key Agreement (WKA) scheme Ω for L is a tuple of polynomial-time
algorithms (KChallenge, KResponse, KDerive):

(pc, sc)← KChallenge(R) is run by the verifier and takes as input the relation R
(from which the security parameter 1λ can be deduced), outputs a public and a
secret challenge parameter (pc, sc).

(pr, kr)← KResponse(R, pc, φ, ω) is run by the prover with inputs the relation
R, the public challenge parameter pc, the instance φ, and the corresponding
witness ω, outputs a public response parameter pr and a secret key kr.
{kc,⊥} ← KDerive(R, sc, φ, pr) is run by the verifier and takes as input the rela-

tion R, the secret challenge parameter sc, the instance φand the public response
parameter pr, outputs a key kc or ⊥.

Security Properties WKA is closely related to Non-Interactive Zero-Knowledge
(NIZK) Proof System. The key difference is the outcome of NIZK is only a bi-
nary verification result while WKA’s outcome is a key upon success. Hence the
security properties of WKA are also very similar to those of NIZK. Furthermore,
we require WKA to be secure against MITM attack. (See §B for a trivial WKA
generic construction that is insecure under MITM attack.)
WKA Construction Roadmap We base our WKA construction on the effi-
cient construction of zk-SNARK from Non-Interactive Linear Proof (NILP) [27]
for Quadratic Arithmetic Programs (QAP) [22] given by Groth [27] and we uti-
lize Linear-Only Encryption (LE) [8] to compile such NILP to a WKA scheme.

Linear Interactive Proofs (LIP) [8] is an extension of interactive proofs [26]
in which each prover’s message is an affine combination of the previous messages
sent by the verifier. Groth renamed the input-oblivious two-message LIPs into
NILP [27] to clarify the connection between LIP and NIZK. NILP considers only
adversaries using affine prover strategies, i.e. a strategy which can be described
by a tuple (Π,π0) where Π ∈ Fk×y represents a linear function and π0 ∈ Fk
represents an affine shift. Then, on input a query vector σ ∈ Fy, the response
vector π ∈ Fk is constructed by evaluating the affine relation π = Πσ + π0.

Key Observation. The proof π obtained with NILP consists of k elements (by
evaluating k linear functions 7 corresponding to the proof matrix Π), in which

7 In the concrete construction by Groth [27] (see also Fig. 3), k = 3 and the proof
matrix Π is represented as the coefficients of the linear functions.
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Perfect Correctness Given a true instance, the key agreement is successful, i.e.

Pr

kc = kr

∣∣∣∣∣∣R←R(1λ)
R(φ, ω) = 1

,
(pc, sc) ← KChallenge(R)
(pr, kr) ← KResponse(R, pc, φ, ω)

kc ← KDerive(R, sc, φ, pr)

 = 1 (1)

Computational Adaptive Knowledge Soundness The key agreement is
successful only with negligible probability if the prover knows no witness
for the instance, i.e. for any PPT Â, there exists a poly-time extractor εÂ

Pr

R(φ, ω) 6= 1
kc = kr

∣∣∣∣∣∣∣∣∣∣
R ←R(1λ)

(pc, sc) ← KChallenge(R)

(φ, pr, kr) ← Â(R, pc)
kc ← KDerive(R, sc, φ, pr)
ω ← εÂ(R,φ, pr, kc)

 < negl(λ) (2)

Perfect Honest Verifier Zero-knowledge The response leaks nothing about
the witness in the honest setup, i.e. there is a simulator SZK that outputs a
simulated response (pr, kr) and key kc. Formally, for all λ ∈ N, R ← R(1λ),
R(φ, ω) = 1 and any PPT Â:

Pr

Â(R, pc, sc, φ, pr, kc) = 1

∣∣∣∣∣∣
(pc, sc) ← KChallenge(R)
(pr, kr) ← KResponse(R, pc, φ, ω)

kc ← KDerive(R, sc, φ, pr)


= Pr

[
Â(R, pc, sc, φ, pr, kc) = 1

∣∣∣∣ (pc, sc) ← KChallenge(R)
(pr, kr, kc) ← SZK(R, pc, sc, φ)

] (3)

Perfect Response and Key Indistinguishability The public response and
the agreed key can be simulated without knowledge of a witness, i.e. for
all λ ∈ N, R ← R(1λ), R(φ, ω) = 1 there is a simulator SRKI s.t. for any
PPT Â:

Pr

[
Â(R, pc, φ, pr, kr) = 1

∣∣∣∣ (pc, sc) ← KChallenge(R)
(pr, kr) ← KResponse(R, pc, φ, ω)

]
= Pr

[
Â(R, pc, φ, pr, kr) = 1

∣∣∣∣ (pc, sc) ← KChallenge(R)
(pr, kr) ← SRKI(R, pc, φ)

] (4)

Security against Man-In-The-Middle Attack The key agreement is suc-
cessful only with negligible probability under Man-In-The-Middle Attack, i.e.
for any PPT Â:

Pr

kc = k′r

∣∣∣∣∣∣∣∣∣∣
R←R(1λ)
R(φ, ω) = 1

,

(pc, sc) ← KChallenge(R)
(p′c, s

′
c) ← KChallenge(R)

(pr, kr) ← KResponse(R, p′c, φ, ω)

(p′r, k
′
r) ← Â(R, pc, p

′
c, s
′
c, pr, φ)

kc ← KDerive(R, sc, φ, p
′
r)

 < negl(λ) (5)

Fig. 1. Security of Witness Key Agreement Scheme
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the k-th element can be obtained in two ways given the first k− 1 elements [27]:
(1) On the prover’s side, if π is valid then the first k−1 elements fully determine
the last one; (2) On the verifier’s side, the first k − 1 elements can be used in
a proof forging formula to obtain the last one. By the prover computing π and
publishing the first k−1 elements of π, both parties can agree on the last element
to use as a shared secret key for secure communication.8 With this observation
we construct WKA from a new NILP notion: split designated verifier NILP. (§5).

Succinct zero-knowledge non-interactive argument of knowledge (zk-SNARK)
follows the relaxation from Perfect Soundness to Computational Soundness [24].
Bitansky et al. [8] also showed that NILP can be compiled into both publicly
verifiable (verifier degree 2, using bilinear maps) and designated-verifier (using
linear-only encryption scheme) zk-SNARK. Intuitively the prover computes the
proof π as linear combinations of the CRS σ and the verifier checks the argument
by checking the quadratic equations corresponding to the relation R.

Linear-Only Encryption (LE) scheme Σ (Bitansky et al. [8]), e.g. a two-
ciphertexts variant of Paillier [41], is a tuple of polynomial-time algorithms
(KeyGen, Enc, ImgVer, Dec, Add) where the ImgVer (image verification) prevents
oblivious ciphertext samplings in the image of Enc using pk, i.e. this property pre-
vents the adversary from encrypting plaintexts from scratch (see §E for further
details), and Add is for evaluating linear combinations of valid ciphertexts. An LE
scheme satisfies correctness, additive homomorphism, indistinguishability under
chosen plaintext attack (IND-CPA) and in addition linear-only homomorphism
which essentially says that it is infeasible to generate a new valid ciphertext
except by evaluating an affine combination of valid ciphertexts (via Add)9. Such
LE scheme can be instantiated using existing encryption schemes. The security
of an LE scheme relies on the assumptions of q-power Diffie-Hellman, q-power
Knowledge of Exponent and q-power Knowledge of Equality [8].

For relation functionality and efficiency in WKA we leverage on Quadratic
Arithmetic Programs (QAP) by Gennaro et. al. [22]: an arithmetic circuit can
be transformed into a system of equations that check the consistency of a set
of instance variables φ and witness variables ω in a relation R. The consistency
checker is compiled into zk-SNARK. Thus zk-SNARK for QAP covers applica-
tions that employ arithmetic relations of multiplicative depth larger than one
such as SHA256. In our WKA construction the partial proof size is also suc-
cinct, as it has at most 3 elements regardless of R. Response computation and
key derivation are efficient, i.e. only linear in QAP size.
Limitations of our WKA construction Our WKA scheme, as any scheme,
inherits the limitations of its components:, i.e. the designated-verifier zk-SNARK

8 The concrete example of this observation can be seen in Fig. 3 in section §6. The
first two elements A and B (Eq. (7) and (8)) uniquely define C (Eq. (9)) and they
can be fed into the proof forging formula (Eq. (11)) to get the 3rd element C which
should be the same for either party.

9 This property formally guarantees that given a valid ciphertext π by an adversary,
it is possible to efficiently extract the corresponding affine function (Π,π0) that
explains π. Such property is important for Knowledge Soundness of WKA.
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that is compiled from an NILP for QAP by Groth [27]. Firstly zk-SNARKs are
not known to satisfy composability and therefore cannot be run out of the box in
parallel in the design of larger protocols [34].10 In a basic dark pool scenario we
only consider sequential composition where each execution of WKA concludes
before the next execution begins [13]. For extended scenario one might need to
use other instruments to identify parallel runs as described in Principle 10 of
security protocol design by Abadi and Needham [1]. However, note that we still
consider security against MITM attack, which is important for key agreement
protocols. Secondly our WKA scheme makes use of QAP [22] hence it is only
as efficient as the circuit expressing the constraints. Finally, we opted for sim-
plicity rather than making the WKA scheme subversion-resistant as this which
would require the zero-knowledge property be maintained even when the CRS is
maliciously generated (see Bellare et al. [5]). Abdolmaleki et al. [2] and Fuchs-
bauer [18] constructed subversion-resistant NIZK based on Groth’s zk-SNARK
construction [27]. However, both works consider only the publicly verifable zk-
SNARK construction based on bilinear groups. Our WKA construction requires
designated-verifier zk-SNARK, and therefore those constructions are not appli-
cable to our scheme. Hence, we consider only honest setups.11

5 WKA From NILP

We first define our split designated verifier NILP based on Groth’s definition [27].
The CRS is first split into two parts (σP ,σV ) where σV is only available to the
verifier. Subsequently, in proof computation we split the proof matrix Π ∈ Fk×y
into two parts: Π1 ∈ Fk−1×y and Π2 ∈ F1×y. The proof π is also split into
π1 = Π1σP that consists of k− 1 elements and π2 = Π2σP consists of the last
element. This split of Π and π is not necessary in a zk-SNARK proof system
but it is essential in our WKA scheme as we need to split the proof into two
parts (See our key observation in §4).

Definition 2 (Split designated-verifier NILP). Let L be an NP-language
with the witness relation R(φ, ω). We call φ an instance of L and ω a witness
for φ. A split designated-verifier (split DV) NILP for L consists of the tuple of
polynomial-time algorithms (Setup, Prove, Verify, Simulate):

(σP ,σV )← Setup(R): output σP ∈ Fy and σV ∈ Fx .

10 Users are advised to run the shared secret through a hash function modelled as a
random oracle before using it as a key for any other cryptosystem.

11 Such an assumption can be relaxed by asking a TTP to generate the CRS (such
as Bloomberg itself). Using a TTP for bootstrapping security protocols have been
considered in literature, see for example HAWK [33]. This is a much weaker trust
assumption than managing orders themselves because the generation of the CRS
requires only the relation R and the public key for the encryption. Therefore such a
TTP is only trusted to do the computation correctly. Without the private key, the
TTP cannot learn additional information.
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Following Groth [27] we assume 1λ can be deduced from R.

(pc, sc)← KChallenge(R) runs as follows.
1. Fix a linear-only encryption scheme Σ;
2. Run (pk, sk)← Σ.KeyGen(1λ) where 1λ is the security parameter deduced from

R (see Remark 1); and (σP ,σV )← Setup(R);
3. Encrypt [σP,i, rP,i]← Σ.Enc(pk, σP,i) for each σP,i ∈ σP ;
4. Encrypt [rP,i]← Σ.Enc(pk, rP,i) for each rP,i above;
5. Return pc = (pk, {[σP,i, rP,i]}yi=1, {[rP,i]}

y
i=1) and sc = (sk,σV ).

(pr, kr)← KResponse(R, pc, φ, ω): Upon receiving the challenge pc,
1. Run (Π1,Π2)← ProofMatrix(φ, ω|R);
2. Compute {[π1,j , r1,j ]}k−1

j=1 = Π1({[σP,i, rP,i]}yi=1) (with Σ.Add);
3. Compute [π2, r2] = Π2({[σP,i, rP,i]}yi=1) (with Σ.Add);
4. Compute [r2] = Π2({[rP,i]}yi=1) (with Σ.Add);
5. Return pr = ({[π1,j , r1,j ]}kj=1, [r2]) and kr = [π2, r2].
{kc,⊥} ← KDerive(R, sc, φ, pr) Output ⊥ if any verification fails:
1. Verify ImgVer(sk, [π1,j , r1,j ]) = 1 for 1 ≤ j ≤ k − 1; and ImgVer(sk, [r2]) = 1;
2. Decrypt π1,j = Σ.Dec(sk, [π1,j , r1,j ]) for 1 ≤ j ≤ k − 1;
3. Obtain t← Test(R,φ); use {π1,j}k−1

j=1 to solve t(σV , {π1,j}kj=1, π2) = 0 for π2;
4. Decrypt r2 = Σ.Dec(sk, [r2])
5. Return kr = Σ.Enc(pk, π2, r2) (r2 as randomness).

Fig. 2. Construction of Witness Key Agreement

(π1,π2)← Prove(R,σ, φ, ω): obtain (Π1,Π2)← ProofMatrix(R,φ, ω) where Π1 ∈
Fk−1×y and Π2 ∈ F1×y and output π1 = Π1σP and π2 = Π2σP

{0, 1} ← Verify(R,σV , φ,π1,π2): obtain t← Test(R,φ) where t : Fy+k → Fη is
an arithmetic circuit corresponding to the evaluation of multivariate polyno-
mials such that t(σV ,π1,π2) = 0 if π is valid..

(π1,π2)← Simulate(R,σV , φ): obtain t← Test(R,φ) and solve t(σV ,π1,π2) =
0 for the output (π1,π2).

where y, x, k, η and d are constants or polynomials in 1λ (deduced from R [27]).

A tuple of PPT algorithms (Setup, Prove, Verify, Simulate) is a split DV NILP
if it has perfect completeness, perfect zero-knowledge and statistical soundness
against affine prover strategies.
Construction of Witness Key Agreement We construct WKA from Split
DV NILP as shown in Fig. 2. Below we describe the construction at a high level.

We first modify the LE scheme’s encryption algorithm interface for explicit
used randomness. We omit the randomness r and write only [m]← Enc(pk,m) in
case r is not necessary in subsequent computation. We write [m] = Enc(pk,m, r)
to incorporate the randomness directly into the encryption algorithm. Secondly
we require that the additive homomorphism of LE applies to both the message
and the randomness used, i.e. Add(pk, 〈[mi, ri]〉, 〈αi〉) evaluates [

∑
αimi,

∑
αiri].

The challenge phase. In KChallenge, the verifier generates a CRS (σP ,
σV ) from R (using a split DV NILP). The verifier then encrypts each elements
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{σP,i}yi=1 of the σP with an LE scheme (with key pair pk, sk). Additionally,
we require the verifier to encrypt the randomnesses {rP,i}yi=1 that are used for
the encryption of the CRS {σP,i}yi=1 in KChallenge into {[rP,i]}yi=1. Finally s/he
publishes a challenge that consists of pk and the encrypted elements. The verifier
keeps private sk of the LE scheme and the plain CRS σV .

The response phase. Upon seeing the challenge, in KResponse, the prover
computes a response by generating a valid proof π for the desired tuple (φ, ω)
(using the proof matrix of the split DV NILP and the additive homomorphic
operation Add of the LE scheme). When the prover evaluates the last encrypted
element [π2, r2] using the proof matrix Π2 and the encrypted CRS {[σP,i]}yi=1,
by the additively homomorphic property of the LE scheme, s/he can also eval-
uate the ciphertext [r2] of the randomness r2 of the encrypted [π2, r2] using the
same Π2 and {[rP,i]}. The prover publishes the first encrypted k − 1 elements
{[π1,j , r1,j ]}k−1j=1 and the encrypted randomness [r2] as a public response and
keeps secret the last encrypted element [π2, r2].

The key derive phase. When the verifier sees the instance φ and the
corresponding response, in KDerive, s/he can decrypt the encrypted elements
using sk to get {π1,j}k−1j=1 and forge the last element π2 using the plain CRS σV .
The verifier then uses the evaluated [r2] to reconstruct the correct ciphertext
[π2, r2] of the last element, i.e. the verifier decrypts [r2] to get r2 to use as the
randomness in the final encryption of π2 to get [π2]. After that, both parties
agree on the same [π2, r2].

We refer the reader to §C for the proof sketch of our main theorem as follows.

Theorem 1 (Security of WKA). If Σ satisfies correctness, additive homo-
morphism, IND-CPA and linear-only homomorphism, and the underlying split
DV NILP satisfies perfect completeness, perfect zero-knowledge and statistical
knowledge soundness against affine prover strategies, then Ω satisfies correctness,
adaptive knowledge soundness, honest verifier zero-knowledge, response and key
indistinguishability, and security against man-in-the-middle attack.

6 WKA from NILP based on QAP

We recall the formal definition of Quadratic Arithmetic Programs (QAP) [22]
and how to construct a NILP for QAP [27].

Definition 3 (QAP). A quadratic arithmetic program Q over a field F for a
relation R(φ, ω) consists of three sets of polynomial {ui(X), vi(X), wi(X)}mi=0

and a target polynomial t(X) = Πn
q=1(X−rq) such that with a0 = 1, φ = {ai}li=1,

and ω = {ai}mi=l+1, the following Eq. (12) holds.

m∑
i=0

aiui(X)

m∑
i=0

aivi(X) =

m∑
i=0

aiwi(X) + h(X)t(X) (12)

where ui(X), vi(X), wi(X) are of degee n− 1 and h(X) is of degree n− 2.
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We consider the QAP that defines a binary relation R as described in Remark 2.
NILP for such QAP is defined as a tuple of polynomial-time algorithms (Setup,
Prove, Verify, Simulate):

(σ, τ )← Setup(R): Pick α, β, γ, δ, x← F∗. Set τ = (α, β, γ, δ, x) and σ:

σ = α, β, γ, δ, {xi}n−1
i=0 ,

{
βui(x) + αvi(x) + wi(x)

γ

}l
i=0

,{
βui(x) + αvi(x) + wi(x)

δ

}m
i=l+1

,

{
xit(x)

δ

}n−2

i=0

(6)

π ← Prove(R,σ, a1, . . . , am): Pick r, s← F and compute

A = α+

m∑
i=0

aiui(x) + rδ (7)

B = β +

m∑
i=0

aivi(x) + sδ (8)

C =

m∑
i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+
h(x)t(x)

δ
+ sA+ rB − rsδ (9)

In NILP [27], π = (A,B,C). In Split DV NILP, π1 = (A,B) and π2 = (C).
{0, 1} ← Verify(R,σ, a1, . . . , al, π): Output 1 iff:

AB = αβ +

l∑
i=0

ai
βui(x) + αvi(x) + wi(x)

γ
γ + Cδ (10)

π ← Simulate(τ |R, a1, . . . , al): Pick A,B ← F, and output π = (A,B,C) where:

C =
AB

δ
− αβ

δ
−
∑l
i=0 ai(βui(x) + αvi(x) + wi(x))

δ
(11)

Fig. 3. Split NILP for QAP based on Groth [27])

Remark 2 (QAP description). For convenience we follow the QAP description
of Groth [27], we consider the QAP R, i.e.

(F, aux, l, {ui(X), vi(X), wi(X)}mi=0, t(X))

where F is a finite field; aux is some auxiliary information; 1 ≤ l ≤ m; ui(X),vi(X),wi(X),
t(X) ∈ F[X], ui(X),vi(X),wi(X) are of at most degree n− 1. Such QAP defines
a binary relation

R =

(φ, ω)

∣∣∣∣∣∣
a0 = 1, φ = {ai}li=1, ω = {ai}mi=l+1∑m

i=0 aiui(X)
∑m
i=0 aivi(X)

=
∑m
i=0 aiwi(X) + h(X)t(X)
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We assume 1λ can be deduced from R. Comparing to the original NILP in Fig. 3,
our NILP does not make use of γ. As we only need Eq (7), (8), (9) and (11) that
do not contains γ (γ is only needed in the verification equation Eq. (10)).

(pc, sc)← KChallenge(R): Fix an LE scheme Σ (with key pair (pk, sk) ←
Σ.KeyGen(1λ)), run (σP ,σV ) ← Setup(R) to obtain σV = (α, β, δ, x) and
generate {[σP,i, rP,i] ← Σ.Enc(pk, σP,i)} and [rP,i]← Σ.Enc(pk, rP,i) for each
σP,i ∈ σP where

σP =α, β, δ, {xi}n−1
i=0 ,

{
βui(x) + αvi(x) + wi(x)

δ

}m
i=l+1

,

{
xit(x)

δ

}n−2

i=0

; (13)

Return pc = (pk, {[σP,i, rP,i]yi=1}, {[rP,i]}
y
i=1) and sc = (sk,σV ) .

(pr, kr)← KResponse(φ = {ai}li=0, ω = {ai}mi=l+1, R, pc): Upon receiving the
challenge pc,
1. Pick r, s← F;
2. Compute [A], [B], and [C] (as well as [r2]) using the affine functions in Fig. 3

(Eq. (7), (8) and (9)) on {[σP,i, rP,i]yi=1} (and {[rP,i]}yi=1) with Σ.Add;
3. Set [π1,1] = [A], [π1,2] = [B] and [π2, r2] = [C];
4. Return pr = ([π1,1], [π1,2], [r2]) and kr = [π2, r2].

{kc,⊥} ← KDerive(R, sc, φ, pr) outputs ⊥ if any verification fails:
1. Verify ImgVer(pk, [π1,j ]) = 1 for j = {1, 2};
2. Verify ImgVer(pk, [r2]) = 1;
3. Decrypt A = Σ.Dec(sk, [π1,1]); and B = Σ.Dec(sk, [π1,2]);
4. Decrypt r2 = Σ.Dec(sk, [r2]);
5. Compute C as in Eq. (11) with A and B;
6. Return kr = Σ.Enc(pk, C, r2) (using r2 as randomness).

Fig. 4. Witness key agreement for QAP

A split DV NILP for QAP can be directly reformulated as in Fig. 3 by
modifying the Prove algorithm. We simply split the proof matrices into two
matrices Π1 and Π2 where Π1 ∈ F2×y corresponds to the matrix used in Eq. (7)
and (8) while Π2 ∈ F1×y corresponds to the matrix used in Eq. (9). Since the
NILP in Fig. 3 is secure (see Groth’s security proof [27, Theorem 1]), our split
DV NILP is also secure (see §D). We show in Fig. 4 how to construct Ω using a
split DV NILP obtained from the NILP in Fig. 3.

Theorem 2. If the LE scheme Σ satisfies correctness, additive homomorphism,
IND-CPA and linear-only homomorphism, then the construction in Fig. 4 yields
a WKA scheme Ω that satisfies correctness, adaptive knowledge soundness, hon-
est verifier zero-knowledge, response and key indistinguishability, and security
against man-in-the-middle attack.
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Table 3. Theoretical Performance Evaluation

m is the number of variables in a
QAP, l is the number of instance
variables, and n − 1 is the degree
of polynomials in the QAP. The
number of decryption k is con-
struction dependent. In our case
we have k = 3.

Alg. #Enc #Dec #Mult

KChallenge 4(m− l + 2n) - -
KResponse - - 4(m− l + 3n)
KDerive 1 k -

7 Instantiation And Performance Evaluation

Instantiation We choose to instantiate the linear-only encryption scheme Σ
with a variant of the Paillier cryptosystem [41] similarly to Gennaro et al. [22]
and Bitansky et al. [8] (see Fig. 8 in §E).
Theoretical WKA Performance Evaluation We can then estimate the the-
oretical performance of our WKA scheme Ω based on the number of encryp-
tions, decryptions, and scalar multiplications for computing Π1({[σP,i]}) and
Π2({[σP,i]}) (Table. 3). Let m b the number of variables of a QAP, l be the
number of instance variables, and n−1 be the degree of polynomials of the QAP.
The KChallenge algorithm requires the generation of {[σP,i]} hence m− l+2n en-
cryptions on the investor’s side. The KResponse algorithm requires only the proof
computation on the trader’s side which yields m− l+ 3n scalar multiplications.
The above numbers are doubled to fix the malleability of the scheme (see Fig. 8).
It is then doubled again for computing the ciphertexts of the randomnesses. Fi-
nally the KDerive algorithm only requires k decryptions and one encryption on
the investor’s side. The proof size is also only 6 Paillier ciphertexts.
Baseline Performance Paillier [41] is the main ingredient in our construction
and its performance is well-studied in literature. Several optimization techniques
were already present in the original paper [41], and Jost et al. [31] took a step
further to improve the performance by orders of magnitude faster compared to
a näıve implementation. For the timing of the Paillier encryption scheme we use
the data from Table 4 by Jost et al. [31] as an upper bound12 for the encryption
time. The numbers were obtained on an Intel i7-4600U CPU at 2.10GHz with
4 cores running Ubuntu 64-bit v14.04. In particular, the reported result shows
that, at 2048-bit key length, the encryption rate for 32-bit messages can reach
56K/s at the cost of 5.7s pre-computation time.
Circuit Evaluation We implement the relations SC, PR,MB and a new relation
PR’ which is the same as PR but with added check, e.g. (p1 < p < p2) ∨ (p3 <
p < p4), in Table 1 as arithmetic circuits with the libsnark library [45] and
measure the number of required variables m and the corresponding degree of
the polynomials (n− 1). Finally the runtime of KChallenge and KResponse, the
most costly for 138-bit security for guessing r [31], 2048-bit key length, using
the 32-bit messages and the encryption rate as in Scheme 3 from Jost et al. [31].

12 Benchmarked in 2015. As such, it provides a lower bound to our WKA performance
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Table 4. Specific circuit evaluation

We support 2048-bit key length and pro-
vide 112-bit security. Recall m is the
number of variables and n − 1 is the de-
gree of polynomials of the QAP. SC and
PR are used for our dark pool simulation.

Relation R m n− 1 TC (s) TR (s)

SC 25821 28312 5.8 7.8
PR 26080 28572 5.8 7.9
PR’ 26598 29094 6 8
MB 51382 56361 11.6 15.6

The evaluation of the new PR’ relation and the MB relation illustrates the
scalability of WKA. PR’ consists of 1 consistency check for 1 commitment (1
private variable) and 4 arithmetic conditions with public variables, while MB
consists of 2 consistency checks for 2 commitments (2 private variables). MB is in
fact a building block for more general relation: c′ > p1·v1+p2·v2+p3·p3+. . . ph·vh.
This is usable for both Multi-bids Auction and Biometrics Sharing (Hamming
distance between two extracted features). This will require 2h commitments as
it scales linearly with the number of private variables.

As shown in Table 4, the performances of SC, PR and PR’ are close as their
circuit complexity are similar to each other, as SC, PR and PR’ require only
one commitment consistency check while MB requires two of them. Hence, the
runtime of MB is approximately double that of the others. KChallenge (TC)
requires only 5.8s for the SC while PI takes only 5.9s. After the KChallenge, the
key-agreement with KResponse (TR) takes only 7.8s for SC and 7.9s for PR. Even
if we add 1s of one-way network latency into each message as we are employing
an anonymous network (e.g. Tor) [17, Fig. 2]. The overhead of each WKA
operation is lower than any known permission-less blockchain’s block generation
time (with Ethereum being the fastest at around 15s).13 Hence each step can be
fit within a single block generation time.14

Dark Pools Simulation For our simulation we make use of the Bloomberg
Tradebook [9] for the period 13/03-1/5/2019 (35 trading days).

The Tradebook only contains the number of messages and the number of
trades per day (see Fig. 5). Using WKA, an investor can setup a secure conver-
sation including multiple messages which eventually lead to a trade. This means
that the number of conversations (i.e. the truly necessary WKA executions) can
be much smaller than the number of messages in Fig. 5. These conversations can
also happen in parallel if they belong to different trades (or traders). From the
available data we cannot know exactly which messages belong to the same con-
versation, or how many conversations there are and the point of time at which

13 https://ethstats.net/.
14 In our protocol, the blockchain is the actual bottleneck. Looking at Table 4, the

runtime of each step (including setups) is less than the block time of the fastest
permissionless blockchain (Ethereum roughly generates a block every 15s). Hence
evaluating the interfaces of our scheme with the blockchain is equivalent to evaluating
the blockchain itself. We should add that the current blockchain technologies is not
adequate yet for high speed dark pools. Our major concern and main evaluation
focus therefore is our scheme’s crypto overhead.
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For an actual trade it requires
multiple messages. For a high day,
the number of messages can reach
14103 (with 55 trades). For a low
day, the number of messages is
only 4514 (with 53 trades).

14:00 15:00 16:00 17:00 18:00 19:00
100

101

102

103

Time

#messages

Fig. 5. Example of Tradebook messages and trades (May 1st, 2019)

they happened as this is the whole point of a Dark Pool. We therefore considered
the worst possible case where each message is a conversation by itself (almost
always ending nowhere) and they are executed sequentially one after another
by a single trader. We also considered a more plausible scenario one trade-one
trader where each trade is done by a different trader and all messages of the day
eventually belong to some trade.

We can combine the number of messages and trades from the extracted mar-
ket data (examples shown in Fig. 5) and Table 4 to estimate the corresponding
execution overhead throughout a day of trading. The final results are reported
in Fig. 6. Performance is evaluated in terms of execution overhead to the ex-
pected processing time (1 day) as in a realistic setting using actual trading data
is at least comparable on a day by day basis: if we were to run a day of trading
messages, we would expect it to not take more than a day to actually exchange
those messages. We combine the relations SC with PR and we consider the
execution time of a message as the running time of SC’s KChallenge (5.8s). For
trades execution time we consider the sequential execution of KResponse from
SC and the whole challenge and response time of PR (21.6s), adding the one-way
delay of Tor (1s) per message. As shown in Fig. 6, even under worst possible
assumption, only 7 days out of 35 days require more than 1 day of execution in
our simulation. With a less extreme approach (solid line) the overhead is smaller
than 10%.

8 Conclusion

We introduced the notion of witness-key-agreement. Specifically we defined split
designated-verifier non-interactive linear proof following Groth’s definition of
NILP [27]. We then compiled the obtained split DV NILP into a Witness Key
Agreement scheme using Linear-Only Encryption. Our obtained construction is
efficient. After a one-time setup that yields a common challenge for a relation R
of interest, a party can agree on a secret key with another party given that the
latter knows a witness of a committed instance.

Finally, our concrete WKA scheme for quadratic arithmetic programs yields
both succinct communication complexity, i.e. the response to the common chal-
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Assuming all computation done
sequentially by 1 trader and mes-
sages are sent through Tor, only 7
out of 35 days of trading exhibits

overheads greater than 1x in our
simulation. With a more plausible
scenario (each trade is done by a
different trader) the overhead is at
most 2%.
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Fig. 6. WKA Evaluation on Bloomberg Tradebook

lenge consists of only 3 encrypted elements (6 Paillier ciphertexts), and efficient
response computation and key derivation, i.e. only linear to the QAP size.

Our scheme is particularly suitable for private auctions in financial interme-
diation in which one party wants to privately communicate with another party
about committed financial information which satisfies a relation R of interest.
It is also usable in other applications such as biometric-data sharing.

Our new notions, i.e. Witness-Key-Agreement and Split Designated Verifier
NILP may be of independent research interest as well as interesting application
of NILP.
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A Reviews of Alternate Candidate Schemes

A.1 Secure Multiparty Computation (MPC)

Any functionality can be securely realized by a distributed protocol assuming
honest minority (in the computational setting) [15] and honest majority (in
the information-theoretic setting) [42]. Recent advances in the implementations
of generic MPC protocols [4] allow efficient MPC applications, e.g. to privacy-
preserving data mining [35], and exchanges [39,14]. See also Orlandi [40] for an
overview.

Secure Multiparty Computation (MPC) [15] could be a general solution. In
particular there are three possible setups as follows.

Full MPC In the simplest setup, all parties in the systems run MPCs for
all transactions. Firstly, setting up an MPC using existing distributed ledgers
is not trivial as every party must be known in advanced or a PKI must be
available in the setup phase for securing the communication over the ledger, e.g.
as in [11]. Secondly, general MPC, even constant round protocols [30], often yield
high round complexity which is unacceptable for protocols involving blockchain
communication.15

Most importantly, this approach is not viable in practice as it requires all
parties to participate into the processing of all transactions but it is unlikely that
all of them are interested or have the capacity16. As an example, this solution
would place an unacceptable burden on retail and institutional investors [39] (in
most markets 90% of quotes come from 10% of the traders and investors [36]).
Finally it is unclear whether general MPC will scale to the actual number of
traders and investors ( thus it fails Proportional Burden, see Fig. 7 in [39]). A
small OTC market might have tens or even a hundred investors.

2-3 Servers MPC An alternative setup is to replace the single trusted server
by two or three servers running an MPC to intermediate all transactions. Parties
only provide their secret inputs to the server. Cartlidge et al. [14] is an example
of this approach. This setup clearly does not provide anonymity (which can be
critical [38]) as, in the authors own words, it only focuses on “securing what
and how much is being traded” rather than “on enabling anonymity of who is
executing a trade”. Secondly, to leverage on existing distributed financial sys-
tems we want to support communication over a distributed ledger where trader
information is bound, e.g. its cash margin. The presence of a distributed ledger
was not considered by Cartlidge et al. [14]. Further, the very idea of using 2-3
trusted servers is economically questionable: servers must be paid to offer such

15 The state of the art MPC by Hazay et al. [30] yields 13 rounds.
16 For example OTC and dark pools typically focus on large and specialized trades

that few people can do but that may affect the market if known.
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services and, once you need to pay and trust a server, you might as well use the
existing ones and avoid crypto altogether.17

Paired 2PC As a last possible setup each pair of verifier and eligible-prover run
a 2PC for each conversation (that may eventually lead to a transaction). This
is more open than the previous two. However, to be anonymous until the deal
is closed, the verifier may be unwilling to reveal herself by directly contacting
all other parties, either randomly or round robin (thus it fails Proportional Bur-
den). This implies that the setup and the execution of each 2PC must happen
through the distributed ledger and this may significantly amplify the communi-
cation complexity of this approach as the verifier have to communicate a different
garbled circuit for each other trader.

A.2 Witness Encryption

(WE) was introduced by Garg et al. [21] and refined by Bellare and Hoang [6].
In a WE scheme defined for a NP language L with witness relation R(φ, ω), i.e.
L = {φ | ∃ ω : R(φ, ω) = 1}, the encryption algorithm takes as input a message
M , an instance φ and produces a ciphertext C. Only a party with a witness ω
such that R(φ, ω) = 1 can decrypt C (correctness) and if φ /∈ L, the message M
is computationally hidden (soundness). Existing WE for arbitrary NP languages
are currently considered impractical as they require multilinear maps [19,23] or
Indistinguishability Obfuscation [20]. The improvement proposed by Abusalah
et al. [3] moved the the computational hard part to an offline setup phase so
that online encryption and decryption can be efficiently done but still relies on
Indistinguishability Obfuscation. For some particular NP languages, WE is effi-
cient18. For example Derler et al. [16] proposed an offline WE construction under
a Groth-Sahai (GS) proof for algebraic languages defined over bilinear groups
which can be employed for group encryption [32] and language-authenticated
key exchange [29].

A verifier can use WE with the desired constraints on the committed in-
formation represented as a relation R, and only the provers who possess the
witness ω for that instance φ such that R(φ, ω) = 1 can decrypt. Unfortunately,
such constraints are usually in the form of an arithmetic relation, e.g. between
the secret information of the provers and the public values from the verifier.
This means we cannot use WE because general WE constructions [19,23,20,3]
are impractical while practical WE under a Groth-Sahai (GS) proof [16] can-
not support arithmetic relation of depth greater than 1 therefore even our very
simple Matchable Bid constraint (c ≥ pv, Table 1) would not be supported.

17 Anonymity is compromised even with a single corrupted server. As the traders must
communicate their (encrypted) inputs to each server, the servers always learn the
sender of the messages (See [10]).

18 An example is public key encryption: φ is the public key pk and ω is the private key
sk. Similarly for identity- and attribute-based encryption [43].
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The Public Key Cryptosystem supports a tuple of standard key generation, en-
cryption, and decryption PPT algorithms (KeyGen, Enc, Dec) while the Zero-
Knowledge Proof System supports a tuple of standard setup, proving, and verifi-
cation PPT algorithms (Setup, Prove, Verify).

(pc, sc)← KChallenge(R) The verifier:
1. Generates the CRS for the Zero-Knowledge Proof for the relation R of

interest, i,e. σ ← Setup(R);
2. Generates a public/private key pair, i.e. (pk, sk)← KeyGen(1λ);
3. Broadcasts pc = (σ, pk) and keeps secret sc = (sk).

(pr, kr)← KResponse(R, pc, φ, ω) The prover parses pc = (σ, pk) and:
1. Generates the proof, i.e. π ← Prove(R,σ, φ, ω);
2. Samples a random key, i.e. kr ← {0, 1}λ;
3. Encrypts the proof and the random key together, i.e. pr =

Enc(pk, (π, kr));
4. Broadcasts pr and keep secret kr.

{kc,⊥} ← KDerive(R, sc, φ, pr) The verifier:
1. Decrypts and parses (π, kr) = Dec(sk, pr);
2. Verifies {0, 1} = Verify(R,σ, φ, π);
3. Set kc = kr if the verification is successful;
4. Otherwise outputs ⊥.

Fig. 7. Generic (but insecure) WKA Construction

A.3 Authenticated Key Exchange (AKE)

AKE allows two parties to share a secret key over an insecure network using var-
ious authentication means. For example Password-Authenticated Key Exchange
(PAKE) [7] allows two parties to agree on strong keys (in different sessions) if
they both know a weak shared password. Credential-Authenticated Key Exchange
(CAKE) [12] allows two parties to generate a common secret key if a specific re-
lation is satisfied between credentials held by the two players. CAKE indeed can
also be used to instantiate PAKE. However concrete instantiation of CAKE only
supports limited relations such as vectored unions of product relations, equality
testing or product relations [12, Section 6, 7 and 8]. Language-Authenticated Key
Exchange (LAKE) is closely related to CAKE. It allows two parties to share a se-
cret key if they hold credentials that belong to a specific algebraic language [29].
However our relations are not between credentials but between other objects
unrelated to credentials (volumes, prices, etc.).

B Generic (but Insecure) WKA Construction

One can think to have a trivial (and generic) construction of WKA utilizing
Public Key Cryptosystem [41] and Zero-Knowledge Proof [27] as in Fig. 7.

The above construction satisfies all the security properties of WKA: Correct-
ness follows the construction; Knowledge Soundness and Zero-KNowledgeness all
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follow the security properties of the used Zero-Knowledge Proof System; while
Response Indistinguishability follows the indistinguishability under chosen plain-
text attack (IND-CPA) of the Public Key Cryptosystem.

Proof (Knowledge Soundness). In the Soundness game, the assumption kc = kr
implies that 1 = Verify(R,σ, φ, π); which implies π is a valid proof of φ; which
implies that there must exists an extractor for ω such that R(φ, ω) = 1; which
gives a contradiction to the assumption R(φ, ω) 6= 1.

Proof (Zero-Knowledge). We construct SZK as follows:

1. Generate (pk, sk)← KeyGen(1λ);
2. Generate σ ← Setup(R);
3. Set pc = (σ, pk) and sc = (sk);
4. Samples a random key, i.e. kr ← {0, 1}λ;
5. Set kr = kc;
6. Samples a valid proof using the Zero-Knowledge Simulator of the Zero-

Knowledge Proof System, i.e. π ← S(R,σ, φ);
7. Encrypts pr = Enc(pk, (π, kr));

Proof (Response and Key Indistinguishability). We construct SRI as follows:

1. Generate (pk, sk)← KeyGen(1λ);
2. Generate σ ← Setup(R);
3. Set pc = (σ, pk) and sc = (sk);
4. Samples a random key, i.e. kr ← {0, 1}λ;
5. Set kr = kc;
6. Samples a random proof, i.e. π ← {0, 1}λ;
7. Encrypts pr = Enc(pk, (π, kr));

Yet, such a generic construction is susceptible to the Man In The Middle
Attack (MITM). The MITM can simply intercept the pc from the verifier, replace
pk with the MITM’s own pk′ (with his own corresponding sk′), then send p′c =
(σ, pk′) to the prover19 The prover will run KResponse but with p′c instead of
pc which results in p′r = Enc(pk′, (π, k′r)). Therefore the MITM, upon receiving
p′r can decrypt and see (π, k′r) = Dec(sk′, p′r). The MITM then can successfully
relay the valid proof π and agree on kr by sending pr = Enc(pk, (π, kr)) to the
verifier who will then set kc = kr upon a successful verification.20

19 Signing pc will not help, since the MITM can always re-sign the new public challenge:
no one knows who is the verifier due to the anonymity requirement.One can also
argue that the prover can observe the blockchain to detect that there are two pc and
p′c and abort the protocol. Yet, such a solution leads to a 100% successful DoS.

20 It is possible that kr = k′r but this is not important as the MITM has access to both.
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C Proof Sketch of Theorem 1

Correctness follows the algorithms’ description. We focus on adaptive knowledge
soundness, honest verifier zero-knowledge, response and key indistinguishability,
and security against MITM attack.

For simplicity we only sketch the proofs as follows.

Proof (Adaptive Knowledge Soundness). In the soundness game adversary Â
comes up with some proof ({[π1,j ]}k−1j=1 , [π2]) = (pr, kr) for the instance φ. Given
kc ← KDerive(R, sc, φ, pr), the assumption kc = kr implies that the sampled
proof ({[π1,j ]}k−1j=1 , [π2]) have passed the image verifications. If ({[π1,j ]}k−1j=1 , [π2])

are not affine combinations of {[σP,i]}yi=1, it means that Â has broken IND-CPA
or linear-only homomorphism of Σ. Otherwise if ({[π1,j ]}k−1j=1 , [π2]) are affine
combinations of {[σP,i]}yi=1, there must exists an extractor for some matrices
Π1 and Π2 from ({[π1,j ]}k−1j=1 , [π2]) and {[σP,i]}yi=1 such that {[π1,j , r1,j ]}k−1j=1 =

Π1({[σP,i, rP,i]}yi=1) and [π2, r2] = Π2({[σP,i, rP,i]}yi=1) unless Â has broken
IND-CPA or linear-only homomorphism of Σ. Consequently, from the extractable
matrices Π1 and Π2, as kc = kr implies that ({π1,j}k−1j=1 , π2) is a valid proof for

R (as ({π1,j}k−1j=1 , π2) has passed the test t(σV , {π1,j}kj=1, π2) = 0, see Fig. ??),

there must exists an extractor for the witness ω s.t. R(φ, ω) = 1, otherwise Â
has broken the statistical soundness property of the underlying split DV NILP
(see Eq. ??). Thus we conclude that Ω is adaptively knowledge sound.

Proof (Honest Verifier Zero-knowledge). To prove the honest verifier zero-knowledge
property of Ω, we show how to construct SZK from the underlying split DV NILP
(Setup,Prove,Verify,Simulate):

1. Fix an LE scheme Σ;
2. Run (pk, sk)← Σ.KeyGen(1λ); and (σP ,σV )← Setup(R);
3. Encrypt [σP,i, rP,i] = Σ.Enc(pk, σP,i) for each σP,i ∈ σP ;
4. Encrypt [rP,i] = Σ.Enc(pk, rP,i) for each rP,i used above;
5. Set pc = (pk, {[σP,i, rP,i]}yi=1, {[rP,i]}

y
i=1) and sc = (sk,σV ).

6. Run (π1,π2)← Simulate(R,σV , φ) where π1 = {π1,j}k−1j=1 and π2 = {π2};
7. Encrypt [π1,j ]← Σ.Enc(pk, πj1) for each π1,j ∈ π1;
8. Encrypt [π2, r2]← Σ.Enc(pk, π2) and [r2]← Σ.Enc(pk, r2);
9. Set pr = ({[π1,j ]}kj=1, [r2]) and kr = [π2].

10. Return (sc, pc, pr, kr = [π2], kc = [π2]).

The simulation and the real protocol only differs in Step 6 where the simulated
proof (π1,π2) is obtained. Due to the zero-knowledge property of the underlying
split DV NILP, the simulated and the real proof are statistically indistinguish-
able. Hence the views of the adversary Â in the simulation and the real protocol
are statistically indistinguishable. Hence Ω is honest verifier zero-knowledge.

Proof (Response and Key Indistinguishability). To prove response and key in-
distinguishability of Ω, we show how to construct SRKI :
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1. Randomly pick (Π1,Π2)← (Fk−1×y,F1×y);
2. Compute {[π1,j , r1,j ]}k−1j=1 = Π1({[σP,i, rP,i]}yi=1) (with Σ.Add);
3. Compute [π2, r2] = Π2({[σP,i, rP,i]}yi=1) (with Σ.Add);
4. Compute [r2] = Π2({[rP,i]}yi=1) (with Σ.Add);
5. Return pr = ({[π1,j , r1,j ]}kj=1, [r2]) and kr = ([π2, r2]).

The simulation and the real protocol is only different in Step 1 where in the
simulation, instead of the valid proof matrices (as in the real protocol), S obtains
the completely random matrices (Π1,Π2). Since the adversary Â can only see
the IND-CPA secure ciphertexts (pc), the views of the adversary Â (without
sc) in the simulation and the real protocol are computationally indistiguishable
unless Â has broken the IND-CPA property of Σ. Thus we conclude that Ω
satisfies Response Indistinguishability.

Proof (Security against MITM). In the MITM game adversary Â generates some
proof ({[π1,j ]}k−1j=1 , [π2]) = (pr, kr) for the instance φ. Let us assume that kc = k′r.

We distinguish 2 cases: (pr, kr) 6= (p′r, k
′
r) and (pr, kr) = (p′r, k

′
r).

In the first case, (p′r, k
′
r) 6= (pr, kr), following the same strategy of the Knowl-

edge Soundness proof above, from (p′r, k
′
r) there must exist an extractor for the

witness ω′ s.t. R(φ, ω′) = 1. If ω′ 6= ω, it contradicts with the assumption that
ω is the witness of φ (R(φ, ω) = 1). Otherwise if ω′ = ω, Â has broken the zero-
knowledge property of the underlying split DV NILP (as Â is able to distinguish
the simulated and the real proof).

In the second case, (p′r, k
′
r) = (pr, kr). First note that (pr, kr)← KResponse(R,

p′c, φ, ω) is run honestly, which implies (pr, kr) are affine combinations of p′c.
Given kc ← KDerive(R, sc, φ, p

′
r = pr), the assumption kc = k′r = kr implies

that (pr, kr) have passed the image verifications; which implies (pr, kr) are affine
combinations of {[σP,i]}yi=1; otherwise it means that Â has broken IND-CPA
or linear-only homomorphism of Σ. Thus (pr, kr) are affine combinations of p′c
implies that (p′c, s

′
c) = (pc, sc); which implies that Â has broken IND-CPA of Σ.

Thus we conclude that Ω is secure against MITM.

D Proof Sketch of Theorem 2

Proof. Since our NILP is reformulated from Groth’s NILP in Fig. 3, it satisfies
perfect completeness (straight forward to verify from the construction), perfect
zero-knowledge (real proof computed in Prove and simulated proof computed in
Simulate have uniformly random field elements (A,B,C)) and statistical knowl-
edge soundness against affine prover strategies (for any affine prover strategy we
can extract a witness with non-negligible probability). We refer the reader to
Groth [27, Theorem 1] for additional details.

The correctness, additive homomorphism, IND-CPA and linear-only homo-
morphism of Σ and the perfect completeness, perfect zero-knowledge and sta-
tistical knowledge soundness against affine prover strategies of the underlying
split DV NILP implies that Ω satisfies correctness, adaptive knowledge sound-
ness, honest verifier zero-knowledge, response and key indistinguishability, and
security against man-in-the-middle attack. (Theorem 1).
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E The Two-Ciphertext Variant of Paillier

We summarize in Fig. 8 the two-ciphertext variant of Paillier similarly to Gen-
naro et al. [22] and Bitansky et al. [8].

The original Scheme 3 of Paillier requires a multiplicative group Z∗N2 , for N = pq
where p and q are two prime numbers:

(pk, sk)← KeyGen(1λ): runs as follows.

1. Select random primes p and q (|p|, |q| ≤ λ
2

),
2. Compute N = pq and γ = lcm(p− 1, q − 1),
3. Randomly select g where g ∈ Z∗N2 and the order of g is γN .

Output public pk = (N, g) and keep secret sk = (p, q, γ).
c← Enc(pk,m): Sample r ∈ ZN ; output c = gm+rN mod N2.

Note 1: Additional ciphertexts are required to adapt Paillier into linear-only
encryption: the encryption of a message m will output a pair of ciphertexts
c = Enc(pk,m) and c′ = Enc(pk, θm) (for some pre-defined secret parameter θ).
Note 2: As the order of g is γN , there could be bias in the output distribution
of Enc if r ∈ ZN (this bias was present in the original Paillier’s paper). To avoid
this bias one could pick r ∈ Zγ . However this bias should be negligible as the
attacker cannot distinguish between sampling in N or φ(N). Furthermore, even
though γ, the secret key, is not usually available to the party that runs Enc, in
our case, the investor knows γ and is the only party supposed to run Enc she
can pick r ∈ Zγ and avoid the bias.
{0, 1} ← ImgVer(sk, pk, c): Output 1 iff c ∈ Z∗N2 ∧ gcd(c,N) = 1. Note: ImgVer

must also check the additional linear relation (ImgVer needs to decrypt c, c′ and
check that they are consistent with regarding to θ, i.e. c′ = θc).

m = Dec(sk, c): Output m = L(cγ mod N2)

L(gγ mod N2)
mod N .

Note: The decryption of a ciphertext [m] also means decrypting two ciphertexts
c = [m] and c′ = [θm].
ĉ = Add(〈αi〉ni=0|pk, 〈ci〉ni=0): Output ĉ =

∏n
i=0 c

αi
i mod N2.

The additive homomorphism is straight forward to verify as:

n∏
i=0

(cin)αi = g
∑n
i=0 αimi+(

∑n
i=0 αiri)N mod N2

Fig. 8. Scheme 3 of Paillier [41] and notes on its Two-Ciphertexts Variant [22,8]
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