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Abstract The structure function describes the functioning of a system dependent
on the states of its components, and is central to theory of system reliability. The
survival signature is a summary of the structure function which is sufficient to
derive the system’s reliability function. Since its introduction in 2012, the survival
signature has received much attention in the literature, with developments on theory,
computation and generalizations. This paper presents an introductory overview of
the survival signature, including some recent developments. We discuss challenges
for practical use of survival signatures for large systems.

1 Introduction

Reliability of systems is very important in every day life and quantification of system
reliability has been a topic of research over many decades. It has led to a huge
literature, a large part of it with at best spurious links to real world systems and
challenges. Methods for analysis are often presented for very small systems with
quite straightforward structures, and important practical considerations, e.g. the
conditions under which the system has to function, the actual tasks it has to perform
and the required level to which it performs these, tend to be avoided in many research
papers.

In 2012, we introduced the concept of survival signature [7], which is a summary
of the system structure function that is sufficient to derive the system survival
function, and hence several important reliability metrics. While this can easily be
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seen as another mathematical concept with little practical relevance, the opposite
has always been the intention. This paper presents an introductory overview of
the survival signature, with emphasis on practical use and the required additional
research to enable this. There are many research challenges to bring the survival
signature methodology to fruition for application to large scale real-world systems,
this paper aims to discuss recent contributions in this direction and further challenges.

Section 2 of this paper provides a brief introduction to the survival signature.
Section 3 discusses the assumption of exchangeability of component failure times,
which sits at the heart of the survival signature method. Section 4 discusses some
computational issues related to implementing the survival signature, and also aspects
of simulation and statistical inference. Section 5 briefly presents recent developments,
including resilience through the possibility of swapping components in a system, and
new survival signatures for multi-phase systems, for multiple systems which share
components, and for multi-state systems. Section 6 concludes the paper with further
considerations, including an explanation of the practical need for generalizing the
system structure function to be probabilistic and the challenges this brings.

2 Survival Signature

The survival signature was introduced by Coolen and Coolen-Maturi [7]. It is a
summary of a system structure function which, together with the probability model
for the components’ failure times, is sufficient for computing the survival function
(also known as reliability function) of the system failure time.

Consider a system with K ≥ 1 types of components, with nk components of type
k ∈ {1,2, . . . ,K} and

∑K
k=1 nk = n. It is crucial to understand what is meant by ‘types

of components’, we discuss this in detail in Section 3, the essential assumption is that
the random failure times of components of the same type are exchangeable [16]. The
state vector x ∈ {0,1}n of the system describes the states of its components, with 1
representing functioning of a component and 0 that it does not function. The system
structure function φ(x) ∈ {0,1} describes the functioning of the system given the
component states x, where 1 represents that the system functions and 0 that it does
not function. Due to the arbitrary ordering of the components in the state vector,
components of the same type can be grouped together, leading to a state vector that
can be written as x = (x1, x2, . . . , xK ), with xk = (xk1 , x

k
2 , . . . , x

k
nk
) the sub-vector

representing the states of the components of type k.
The survival signature, denoted by Φ(l1, l2, . . . , lK ), with lk = 0,1, . . . ,nk for

k = 1, . . . ,K , is defined as the probability that the system functions given that
precisely lk of its nk components of type k function, for each k ∈ {1,2, . . . ,K}.

There are
(nk
lk

)
state vectors xk with

∑nk
i=1 xki = lk ; let Sk

l
denote the set of these

state vectors for components of type k and let Sl1 ,...,lK denote the set of all state
vectors for the whole system for which

∑nk
i=1 xki = lk , k = 1,2, . . . ,K . Due to the

exchangeability assumption for the failure times of the nk components of type k, all
the state vectors xk ∈ Sk

l
are equally likely to occur, hence
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Φ(l1, . . . , lK ) =

[
K∏
k=1

(
nk
lk

)−1
]
×

∑
x∈Sl1 , . . . ,lK

φ(x) (1)

The survival signature requires specification at
∏K

k=1(nk + 1) inputs while the
structure function must be specified at 2n different inputs; in particular for large
values of n and relatively small values of K , so large systems with few component
types, the difference is enormous. We will comment on computational aspects in
Section 4, but note that storage of the structure function may also be a problem for
large systems, and this could be substantially easier for the survival signature if there
are not many component types. If all components are of different type, so K = n,
then the survival signature does not provide any advantages, in the sense of reduced
representation, over the structure function. If all components are of the same type, so
K = 1, then the survival function is closely related to Samaniego’s system signature
[30, 31]. That signature has led to a substantial literature, for example considering
properties like stochastic dominance relations between different system lay-outs, but
its practical value was limited as most real-world systems consist of multiple types of
components. Generalizing Samaniego’s system signature to systems with multiple
types of components was an open problem which was solved by the introduction
of the survival signature [7], which was an important break-through with particular
relevance to reliability quantification for real-world systems [32].

Before we present a basic example of the survival signature and discuss further
important aspects, we explain why it is a convenient tool for quantification of system
reliability. Let Ck(t) ∈ {0,1, . . . ,nk} denote the number of components of type k in
the system which function at time t > 0. The probability for the event that the system
functions at time t > 0, so for TS > t where TS is the random system failure time,
can be derived by application of the theorem of total probability,

P(TS > t) =
n1∑
l1=0
· · ·

nK∑
lK=0

P(TS > t |
K⋂
k=1
{Ck(t) = lk})P(

K⋂
k=1
{Ck(t) = lk})

=

n1∑
l1=0
· · ·

nK∑
lK=0
Φ(l1, . . . , lK )P(

K⋂
k=1
{Ck(t) = lk}) (2)

Equation (2) is the essential result at the centre of the survival signature theory. It
shows that the system survival function can be computed with the required inputs,
namely the information about the system structure and about the component failure
times, being completely separated. Hence, the effect of changing a system’s structure
on its survival function can easily be investigated. One can also compare different
system structures in general, without assumptions for the random failure times, by
comparing the systems’ survival signatures [32]. The system survival function is
sufficient for important metrics such as the expected failure time of the system, or its
remaining time till failure once it has been functioning for some time. It is important
to emphasize that Equation (2) only required the assumption that failure times of
components of the same type are exchangeable. This allows dependencies between
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components’ failure times to be taken into account, which is discussed further in
Section 3.

If one assumes that the failure times of components of different types are inde-
pendent, then Equation (2) becomes

P(TS > t) =
n1∑
l1=0
· · ·

nK∑
lK=0

{
Φ(l1, . . . , lK )

K∏
k=1

P(Ck(t) = lk)

}
(3)

If, in addition, one assumes that the failure times of components of the same type
are independent and identically distributed (iid), with known cumulative distribution
function (CDF) Fk(t) for type k, then this leads to

P(TS > t) =
n1∑
l1=0
· · ·

nK∑
lK=0

{
Φ(l1, . . . , lK )

K∏
k=1

(
nk
lk

)
[Fk(t)]nk−lk [1 − Fk(t)]lk

}
(4)

In many reliability scenarios one may have a good idea about suitable parametric
probability distributions for components’ failure times, and one may wish to use
statistical inference methods for the unknown parameter. Using general notation
Fk(t |θk) for the CDF with parameter θk (which can be multi-dimensional) for the
failure times of components of type k, and the assumption that the component failure
times are conditionally independent and identically distributed (ciid), where the
conditioning is with respect to the parameter value, the previous equation becomes

P(TS > t |θ1, . . . , θK ) =
n1∑
l1=0
· · ·

nK∑
lK=0

{
Φ(l1, . . . , lK )

K∏
k=1

(
nk
lk

)
[Fk(t |θk)]nk−lk [1 − Fk(t |θk)]lk

}
(5)

This equation can be used in a Bayesian statistical approach to system reliability,
where prior distributions for the θk are required, as illustrated by Aslett et al. [4].

The survival signature can be applied for any system if the components and the
system itself all have two states, functioning or not. If the system is coherent, which
means that φ(x) is not decreasing in any of the components of x, then the survival
signature is an increasing function, which has substantial advantages as will be dis-
cussed in Section 4. While there has been quite some attention in the reliability
theory literature to non-coherent systems, most practical systems are coherent. Typ-
ical examples of non-coherent systems in the literature are such that two component
failures cancel each other out, but in practice such situations are likely to lead to
a different overall state of the system compared to its state when the two compo-
nents involved function properly, and this may require a more detailed system state
description than simply functioning or not.

As a basic example of the survival signature, consider the system in Figure 1,
for which the survival signature is given in Table 1. Verification of the survival
signature is straightforward as the structure function can be easily derived for this
small system.
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Fig. 1 System with 2 types of components

l1 l2 Φ(l1, l2) l1 l2 Φ(l1, l2)

0 0 0 2 0 0
0 1 0 2 1 0
0 2 0 2 2 4/9
0 3 0 2 3 6/9
1 0 0 3 0 1
1 1 0 3 1 1
1 2 1/9 3 2 1
1 3 3/9 3 3 1

Table 1 Survival signature of the system in Figure 1

3 Exchangeability of components’ failure times

As explained in Section 2, the key assumption underlying the survival signature is
that the random failure times of components of the same type are exchangeable, so
this defines what it means that components are of the same type. What does this
mean?

In De Finetti’s theory of probability [16], two random quantities, X and Y , are
exchangeable if P(X = x,Y = y) = P(Y = x,X = y) for all possible x and y, and
similarly generalized to more than two random quantities. So, X andY have the same
marginal distributions, but it is important to emphasize that they do not need to be
independent. Exchangeability is an important concept in Bayesian statistics when
one wishes to learn about one random quantity by observing another one [16]. In a
system reliability setting, exchangeability of the failure times of the nk components
of type k is perhaps easiest understood as follows: If you learn that one component
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of type k in the system has failed, you do not know which component it is, and
you consider each of these nk components to have probability 1/nk to be the failed
component. This should hold at any moment in time, and generalizes logically to
any subset of these components having failed, which must have the same probability
independent of which specific components of type k are in the subset. A crucial
consideration here is that this is likely to depend not only on the physical nature of
the components, e.g. if they are all produced by the same manufacturer, but it also
depends on the specific functioning in the system. For example, if one knows that
of all components of type k in the system, one has a larger load and hence is more
prone to failure, then one would doubt that the assumption of exchangeability of
their failure times is appropriate.

The assumption of exchangeability of components’ failure times raises a crucial
issue for practical quantification of system reliability and related decision support,
namely at which level of detail one should model the system. Despite the huge
literature on system reliability, this topic has received very little attention. For a large
practical systemwithmany components, onemaywish to consider the failure times of
a group of components to be exchangeable, and hence judge these components to be
of the same type, even though one could describe the components’ requirements and
functioning in so much detail that one could distinguish between their probabilities
of failing at specific times. In such a case, the exchangeability assumption would
be motivated by a decision not to include more details of the components in the
model, and it is important to realize that a model is not identical to the system in its
real world functioning, but a reduced representation which should be of sufficient
quality for its task, which is often support of a specific decision or trust in failure-free
functioning of the system over a period of time. For example, if we wish to consider
reliability of a large rail network, we may judge different stretches of rails, of the
same length, to have exchangeable failure times even though environmental aspects
could enable us to distinguish between them, and could make a failure more likely
to occur at one stretch than another.

So, the decision to consider different components to be of the same type, and
therefore to have exchangeable failure times, is directly related to the choice of the
level of detail in the reliability model. How to decide the appropriate level of detail?
This is particularly important for large real world systems, and the answer depends
on the task, so the reason of creating the reliability model in the first place, and
the available information. But it also depends on time and budget available for the
modelling, and the expected benefits which perhaps can also be expressed in terms
of money, reduced risk or benefits which may be harder to measure and quantify.
Research on this important topic is best done in direct relation to a real reliability
study for a large system, as it requiresmeaningful inputs frommanagement and details
of the system. While we have not engaged in such research, a study with similarities
was part of a long term collaboration the first author had with an industrial partner
about two decades ago, where to support software testers in their complicated tasks
a statistical approach based on Bayesian graphical models was developed [12, 35].
These models also required assumptions of exchangeability, which in that setting
meant that possible software failures were deemed to be exchangeable, and a project
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viability approach was developed that would enable managers to decide, before start
of such a study, the level of detail of the model in order to support testers whilst
staying within budget and time constraints [11, 36]. Similar guidance on decisions
about the level of modelling for large scale system reliability studies is much needed,
the fact that the survival signature methodology explicitly requires exchangeability
of components’ failure times to be considered ensures that it fits with the natural
questions one needs to answer when choosing a suitable level of model detail. A
further challenging research topic is the practical need to zoom in on problem areas,
once these become apparent during the system’s functioning. Indeed, there are many
great research challenges in this topic area, several more are discussed later in this
paper.

A further modelling decision is neededwith regard to dependence of components’
failure times. As emphasized, components of the same type must have exchange-
able failure times for the survival signature approach, and these can be dependent.
Furthermore, failure times of components of different types can also be dependent.
As explained in Section 2, the general formula for the system survival function is
Equation (2), different assumptions on the components’ failure times can lead to
simplifications of this equation. In practice, there can be many reasons for modelling
components’ failure times as dependent, for example there may be common-cause
failure modes, a risk of cascading failures, load sharing between components and so
on. Initial studies into several of such possibilities have been published [8, 17, 18],
but there are many related research topics left. The main conclusion is that the sepa-
ration of the system structure and the random components’ failure times, in Equation
(2), enables all required dependencies between failure times to be included in the
investigation, but the detailed modelling requires of course an extra effort compared
to the simpler situation of independent failure times.

4 Computation, simulation and inference

An immediate question for application of the survival signature is how to compute
it. For very small systems, like the one in the example in Section 2, one can simply
derive the system structure function and use Equation (1). This approach can be
applied to somewhat larger systems as well, supported by standard computational
methods for the structure function, based on cut sets and path sets. This approach
has been implemented in R [2], and can be used without problems for systems of
about 20 components with relatively little computational effort, and for somewhat
larger systems as well although the computational effort increases enormously. Reed
[27] presented a substantial improvement on the required computation time by using
binary decision diagrams, which however still requires the availability of the full
structure function. While the survival signature provides advantages over the full
structure function, mainly in terms of storage requirements but also when one wishes
to simulate system failure times, as will be discussed later in this section, the main
idea of introducing the survival signaturewas to enable inference on system reliability
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for large real world systems, for which one normally would not have the full structure
function available.

There are already some opportunities to make the computational demands some-
what less daunting than one may fear. Of course, brute computational force can be
applied to compute the structure function, and from this the survival signature, for
larger systems, as computational powers are ever increasing and, crucially, a sys-
tem’s survival signature only needs to be computed once. Coolen et al. [10] provide
a simple combinatorial expression to compute the survival signature of a system
consisting of two subsystems in either series or parallel configuration, if the survival
signatures of those subsystems are available. By repeated application this implies
that computation of large series-parallel systems can quite easily be implemented.
They also addressed the issue of re-computing a survival signature if a component
is replaced and the new component is to be considered as being of a new type. For
very large systems, it may be sufficient to use either an approximation to the survival
signature, or bounds for it. This is particularly feasible for coherent systems because
their survival signatures are increasing functions. It will also be of interest to explore
the use of modern simulation and emulation methods to find the part of the entire
input space where the function actually increases from 0 to 1. It should be noted
that many modern engineering systems, or systems in other application fields such
as social-economic systems or computer networks, tend to have some but not very
much redundancy, such knowledge can of course also help in computing the survival
signature or suitable approximations or bounds for it. This is a substantial area for
research with huge possible impact.

The survival signature enables very efficient simulation to learn the system sur-
vival function, as presented by Patelli et al. [26] and extended by George-Williams
et al. [20] for inclusion of dependent failures. The key idea is as follows: for a sys-
tem with nk components of type k, for k = 1, . . . ,K , one simulates nk component
failure times for each type k. Instead of investigating which of these component
failure times would actually be the system failure time, and using only that as the
output of one simulation run, one orders all these observation times and builds up a
full simulated stepwise survival function, which at each of these failure times takes
on the value of the survival signature with the corresponding values of the lk , the
number of still functioning components of each type k. This procedure turns out
to be very efficient, with all simulated component failure times being used instead
of the perhaps more intuitive method where each simulation run only leads to one
simulated system failure time [26]. Therefore, this enables fast inference about the
system reliability based on only the survival signature and components’ failure time
distributions, where further details about the exact structure of the system is not
needed.

This points to another advantage of the survival signature approach that may prove
very valuable in practice, namely that statistical analysis of the system reliability is
possible without the need to know the full structure of the system, as long as the
survival signature is available, or a good approximation to it. It should be emphasized
that the full system structure cannot be deduced from the survival signature if there
are many components but relatively few types, except of course in special cases such
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as systems without redundancy. Aslett [3] has taken this aspect further and developed
a system which enables evaluation of a system’s reliability if information held by
different parties, namely the manufacturer of the system and the manufacturers
of different types of components, is not shared, and cannot even be deduced by the
different parties. This work is an important first step towards practical inference about
system reliability without the need for major commercial interests to be revealed, and
it is only possible through the use of the survival signature as a sufficient summary
of the structure function.

Statistical inference for system reliability is a topic of major interest, as learning
from data, possibly in combination with the use of expert judgements, is crucial
in many applications. If one has data available on the individual component types,
then inference on the system’s failure time is quite straightforward. Nonparametric
predictive inference [6], a frequentist approach using few modelling assumptions
made possible by the use of imprecise probabilities [5], can be used to derive bounds
for the system survival function [10]. The application of Bayesian methods has been
presented as well [4], this is particularly useful if one has relatively little data on
component failures and therefore wishes to include expert judgements. Walter et
al. [34] generalized the Bayesian approach combined with the survival signature by
using sets of priors, as typically done in theory of robust Bayesian methods. They
showed that, by choosing the sets of priors in a specific way, one can enable detection
of conflict between prior judgements and data, when data become available and are
used to update the prior distributions. This can be of great practical importance, as it
can point to prior judgements being too optimistic, hence the system reliability may
be substantially lower than was originally thought.

A major challenge is development of suitable statistical methodology to learn the
survival signature from observations of the system, so from information which can
consist of system failure times, component failure times, outcomes of inspections
or condition monitoring and so on. Due to the inverse nature of such inferences,
Bayesian methods are well placed to enable such learning, and it is likely that one
can learn the survival signature far easier than the full structure function. Aslett
[1] presented such inverse inference for systems with only a single type of compo-
nent, using Samaniego’s system signature. While conceptually such inference does
not pose many problems, it is extremely computationally expensive, so there are
substantial research opportunities for useful contributions to the methodology.

5 Recent developments

In recent years, the use of the survival signature has been presented for a range
topics in reliability. Component important measures have become popular manage-
ment tools for guidance on aspects of system reliability, and the survival signature
can be used both to assess importance of specific components and importance of
components of a specific type [19]. The former requires a bit more information
than just the survival signature for the full system, namely two such signatures with
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conditioning on the specific component of interest functioning or not. The latter
is an interesting difference to the usual idea of component importance measures,
where the importance only relates to a specific type of component. For a number of
practical decision problems this may be the most relevant information, for example
if one needs to decide on immediate availability of spare components in case the
system fails, then it may not be crucial to know which specific component is likely
to fail next but the type of component to fail next could be most important. Eryil-
maz et al. [17] considered marginal and joint component importance for dependent
components, while linking survival signatures to logic differential calculus has also
been shown to provide useful tools to identify important components in system reli-
ability analysis [28], and the survival signature also enables useful new approaches
to sensitivity analysis for system reliability [22]. A challenging problem in system
design is reliability-redundancy allocation, where under budget or other constraints
a system designer must choose between increasing the quality of components or
the level of redundancy in the system. Since it is natural to assume that any quality
improvement will equally affect all components of a particular type, it is clear that
the survival signature can be used to support such decisions. This was considered
by Huang et al. [23], who present a fast heuristic algorithm that provides excellent
solutions to the problem and that can be implemented for systems of substantial size,
as long as the survival signature, or a good approximation of it, is available. All these
developments are initial results, with many related research opportunities including
computional challenges to enable upscaling to large real world systems.

A further recent contribution resulted from the practical need to make systems
resilient in case things go wrong. The idea was simple: if a system fails due to one or
more failing components, itmay be possible to swap a failing componentwith another
component in the system which still functions. This approach brought an interesting
question with regard to the definition of a component: namely is a component defined
as the specific location (or better ‘role’) in the system, or the part that could actually
be moved to another location. It turned out that the latter interpretation is by far
easier, as it means that the component does not change its random remaining failure
time when moved to another location. The survival signature approach enables quite
straightforward investigation of the improvement of the system reliability if specific
component swaps are possible [25]. This may be important in practice when such a
component swap might provide sufficient time to prepare a substantial maintenance
activity on the system.

It is worth to emphasize that, although emphasis and terminology in this paper
is mainly on engineering systems, the survival signature methodology can also be
applied to systems in other fields, including socio-economic and health systems.
Swapping of components could, for example, be relevant in an organisation where
staff members can be regarded as components. It may be beneficial if some staff
members can take over other roles in case colleagues become ill, and one may want
to consider training people to enable such swaps of their roles. There are many
related research questions, including the option to swap components of different
types or even to swap components which have not yet failed, the latter could make
sense if loads vary during different periods of system functioning. As with all topics
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discussed here, it will be ideal if practical issues for real world systems can be
analysed to guide the further development of theory and methods.

All the contributions to system reliability methodology discussed above use the
survival signature in the basic form as given in Equation (2). However, several
important practical scenarios require different survival signatures, which can be
seen as generalizations of the basic form, due to the increased complexity of the
system or its use. We briefly describe three such generalizations, while referring to
the respective papers for more details. These new survival signatures are all starting
points for substantial further research with regard to similar issues as discussed
before in this paper, to ensure wide applicability to real-world systems.

The first scenario for which a generalized survival signature has recently been
presented is phased mission systems, which are common in practice as many systems
have to perform different tasks sequentially. Huang et al. [21] present a new survival
signature for this scenario. The main issue here is that not all components need
to function in each phase, so one needs to keep a clear record of any component
failures, where it is assumed that a failed component does not function anymore for
all remaining phases. While the system’s functioning in each phase can be presented
by a basic survival signature, the definition of ‘components of the same type’ needs
care, because components that do not need to function in one phase are likely to
have different failure behaviour after that phase, compared to similar components
which did have to function in that phase. In the earlier literature on phased mission
systems, this important aspect seems to have been overlooked, mostly components
with exponential failure time distributions seem to have been considered for systems
such that all components need to function in each phase. In practice these common
assumptions are often unrealistic, the survival signature approach by Huang et al.
[21] enables more realistic scenarios to be modelled. Building on that work, Coolen
et al. [13] considered the opportunity to swap components within the system, either at
the time of system failure or at phase transitions. Huang et al. [24] studied component
importance for such phased mission systems using the new survival signature.

A second scenario for which a generalized survival signature has recently been
presented, is when multiple systems share some components, which can be of dif-
ferent types. One can think, for example, about multiple computers linked to a
single server, or multiple academic departments at one university during an exams
period with strict marking deadlines, which all depend on one central information
technology support group which can be regarded as a component shared by the
different departments. This scenario applies also to the important situation of one
system which has to perform multiple functions, and can be further generalized
to multiple systems performing multiple functions. Coolen-Maturi et al. [15] have
recently presented the survival signature for such situations, which is a major step
in the development of the survival signature methodology for large scale practical
applications. Crucial in this work is that one may wish to consider the functioning
of different systems at different moments in time, where the status of the shared
components must be considered at the different time points. This enables inferences
on, for example, the probability that one system still functions at a specific time,
given that another system with which it shares some components functioned at an
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earlier time, or that it had failed at an earlier time, without further information about
the status of the shared components.

The third scenario for which a generalized survival signature has recently been
presented, is multi-state systems with multi-state components. While the reliability
literature has traditionally mainly considered binary state systems and components,
many real world scenarios require modelling of multiple states, e.g. including an
intermediate state between perfect and not functioning, during which maintenance
or replacement of components may be possible. Qin and Coolen [29] present the
survival signature methodology for such systems, where the probability distribution
of the system over its possible states is considered as function of the numbers of
components of all types in the possible states. The computation of the survival
signature for this scenario becomes rather complicated, but Qin and Coolen [29]
present an efficient algorithm to combine the survival signatures of two subsystems
if the state of the system depends only on the states of these subsystems. As is the
case for the basic survival signature for binary states [10], repeated application of
this algorithm may enable fast computation of the multi-state survival signature for
some large systems.

6 Further considerations

There remains a large discrepancy between system reliability as presented in text-
books and many journal papers, and methods needed to assist analysts and managers
in real world problems concerning reliability of large systems. These differences are
not only the size of the systems typically presented, but also the actual problems
studied, where in real life the system survival function is usually only the input to a
more complicated decision problem which determines the required level of detail of
the systemmodel and accuracy of approximations to the survival function if it cannot
be computed exactly. Perhaps the most important difference, however, is that several
important aspects of applications of large real world systems tend not to be reflected
in typical reliability models and methods, and they lead to additional uncertainties.
It is often not clear what is meant by functioning of the system because the specific
tasks, or number of tasks, may not be known, or the environment in which the system
has to function may not be fully known or indeed be variable. The level of modelling
of the system is also difficult in the real world, and it must be possible to study a
system’s reliability as function of a subset of its components or subsystems. For ex-
ample, one may want to model reliability of a car as function of its main components
like engine, breaks and tyres, but not take into account every minor component that
could by itself, or in combination with some other minor components, prevent the
car from being used.

We have advocated that, to enhance theory of system reliability and to make it
far more flexible for real world use, the system structure function should not be
deterministic but probabilistic, so φ(x) ∈ [0,1] instead of φ(x) ∈ {0,1}, which can
also be generalized to imprecise probabilities [9], which have proven to be useful in
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many reliability problems [14, 33]. This will provide a tool to deal with the additional
uncertainties mentioned above. For example, if one only models system reliability
as function of some main components, and one wishes to apply statistical inference
about the reliability from failure observations, it is quite possible that for the same
states of the components included in the model, one has both observed the system
to fail and not to fail. In the example of the car mentioned above, one may not have
included the car’s heating system as a component in the system reliability model,
but if the task at hand is to drive a long distance on a very cold winter day, its failure
may prevent the car from being used even though all main components function.
This example also illustrates the problem of defining the system’s functioning and
possible uncertainty about the tasks and environment in which it needs to operate.

Moving from deterministic to probabilistic structure function seems mathemat-
ically quite straightforward, and the good news from the perspective of this paper
is that it would not provide any difficulties for the survival signature approach, as
Equation (1) can still be used if the structure function is a probability, and if impre-
cise probabilities are used then the generalization is also straightforward. The main
challenges, however, are with probabilistic structure functions themselves. Clearly,
the probabilities would need to be assessed, which may require creating models
to do so, and computations to derive a structure function will require new theory
to be developed because concepts like path sets and cut sets do not carry over to
probabilistic structure functions.

There are great opportunities for application of the survival signature methodol-
ogy to networks, an initial example was presented by Aslett et al. [4]. These can be
regarded as systems, and typically have at least two types of components, namely
nodes and links between nodes. However, networks typically require many different
routes through the network to be available, but there may be possibilities to use
some alternative routes that would still be satisfactory. Due to the huge importance
of reliability networks in modern life and the fact that they tend to be large but often
have a limited number of component types, this promises to be an application area
where the survival signature can make very substantial contributions, and which in
turn can guide future research to extend the survival signature methodologically in
meaningful directions.
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