
Title: Some remarks on functional analysis

Name: J.F. Blowey, B. Straughan

Affil./Addr.: Department of Mathematical Sciences

Durham University

Science Laboratories

South Rd

Durham DH1 3LE

United Kingdom

Phone: +44+(0)191 334-3050

Fax: +44+(0)191 334-3051

E-mail: {J.F.Blowey, Brian.Straughan}@durham.ac.uk

Some remarks on functional analysis

Overview

Functional analysis is a key tool in the study of partial differential equations which

helps to answer key questions such as existence, well-posedness and the class in which

a solution should belong. We begin these remarks by introducing normed spaces and

Banach spaces and then bounded linear operators in normed spaces. Next, we define

Hilbert spaces and consider aspects relating to linear operators on Hilbert spaces. With

this structure we are able to consider well-posed of problems and describe the notions

of Hölder and Lyapunov stability and Hadamard well-posedness. Finally, we describe

how some thermal stress problems can be formulated using abstract operator notation.
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Introduction

Many of the theories involving thermal stresses, whether this be in thermoelasticity, in

heat conducting fluids, in viscoelastic materials, or more exotic substances like auxetic

foams, are based on partial differential equations (PDEs). To develop a model for a real

life situation one needs to know the physical domain of the body under consideration,

the PDE or the system of PDEs governing the behaviour of the body, the boundary

conditions, the initial conditions, and then one needs to understand what class of

function is acceptable as a solution to the boundary value problem, or boundary initial

value problem which arises.

Henceforth, when we speak of a “problem” we shall mean a PDE or system of

PDEs together with associated boundary conditions and (if needed) initial conditions.

To give an example, let us consider the evolution of temperature, θ, in a rigid

body Ω ⊂ R3. The balance of energy equation is

ρ0U̇ = −qi,i (1)

where ρ0, U and qi are density, internal energy, and heat flux, a superposed dot denotes

partial differentiation with respect to time, a subscript ,i denotes ∂/∂xi and the Einstein

summation convention is employed. If we adopt Fourier’s law then

qi = −kθ,i (2)

where k is the thermal conductivity, which we take as constant. Then, since U = U(θ),

equations (1) and (2) reduce to

θ̇ = κ∆θ (3)

where κ = k/ρ0c, c = ∂U/∂θ being the specific heat. Equation (3) is defined on

Ω× (0, T ) for some positive time, T , and we assume we are given boundary and initial

conditions as
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θ(x, t) = θΓ (x, t), x ∈ Γ, t ∈ (0, T ) (4)

θ(x, 0) = θ0, x ∈ Ω. (5)

Here Γ is the boundary of Ω.

We now require to find the solution to the problem (3)–(5). However, one may

ask what we mean by a solution? How smooth is this solution, can the solution have

a discontinuity in θ,i? Is it possible for a shock wave to form, i.e. can θ itself become

discontinuous? Shock waves are highly important in thermal stresses, cf. Dafermos [6].

Perhaps the solution may not exist for all time? Given the functions θΓ and θ0, how

do they influence the class of solutions which might arise? The last topic is one of

regularity of the solution. To answer questions such as those of regularity, or even the

question of does a particular solution exist, one needs a mathematical definition of the

classes of solution one may expect, or the space of functions in which a solution may

lie. To develop these ideas requires the use of functional analysis. The remainder of

this article looks at some of the elementary ideas of functional analysis appropriate to

thermal stresses.1

It is impossible in a short article to include anything like the vast amount of

material on functional analysis which is necessary for one to undertake a complete

study of analytical properties of PDEs. For instance, Smirnov’s book alone covers 631

pages. However, the interested reader can find much more relevant material in the

books by Dafermos [6]; Evans [7]; Smirnov [14]; Naimark [13]; Gilbarg and Trudinger

[8]; Grisvard [9]; Brown and Page [4]; Bennett and Sharpley [3].

1 Within the context of linear thermoelasticity questions of existence, regularity and decay were first

addressed in the fundamental work of Dafermos [5], and many developments followed, both in

classical thermoelasticity and in thermoelastic theories allowing for heat waves. This development

is detailed in pages 163–165 of the book by Straughan [15].
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Normed spaces and Banach spaces

Suppose V is a vector space over the complex field C. A norm on V is defined to be a

real-valued function ‖x‖, defined for x ∈ V , with properties:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

2. ‖αx‖ = |α|‖x‖,

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

for any x, y ∈ V , and any α ∈ C.

The space V with the associated norm ‖ · ‖ is called a normed space.

The norm defines a metric on V and thus allows us to define distances so we

may discuss convergence of sequences, convergence of series, Cauchy sequences, com-

pleteness.

Let {xn} be a sequence in V . Then {xn} is a Cauchy sequence if and only if,

given ε(> 0), there exists N(ε) ∈ N, such that ‖xm − xn‖ < ε whenever m,n ≥ N .

A space is complete if every Cauchy sequence in the space converges to some

limit in the space.

A complete normed space is called a Banach space.

Examples

1. For a, b ∈ R, a < b, the set C(a, b) of all complex-valued continuous functions on

[a, b] is a complex vector space, with a norm defined by

‖f‖ = sup
a≤t≤b

|f(t)|, f ∈ C(a, b).

2. Define l1 to be the space of all complex sequences (x1, x2, · · · ) such that
∑∞

n=1 |xn| <

∞. Then l1 is a complex vector space with norm

‖x‖ =
∞∑
n=1

|xn|,

x = (x1, x2, · · · ).
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3. Define l∞ to be the set of all bounded sequences (x1, x2, · · · ) of complex numbers.

Then l∞ is a complex vector space with norm

‖x‖ = sup
n≥1
|xn|.

4. Let L1(R) denote the set of all complex-valued Lebesgue integrable functions on R.

Then L1(R) is a complex vector space with norm2

‖f‖ =

∫
R
|f(t)| dt.

Once can show that the normed spaces C(a, b), l1, l∞ and L1(R) as defined above are

Banach spaces.

Linear operators in normed spaces

Let V and W be normed spaces. A linear operator from V into W is a mapping

T : V −→ W such that T (αv + βw) = αT (v) + βT (w) whenever v, w ∈ V and

α, β ∈ C. Often one writes Tv rather than T (v). One says that T is a bounded linear

operator if there is a constant c ∈ R such that

‖Tv‖ ≤ c‖v‖, ∀ v ∈ V.

Examples

1. Suppose V = W = C(0, 1) and let f ∈ C(0, 1). Define T as a mapping from V to

W by

(Tf)(t) =

∫ t

0

f(η) dη.

Then T : V −→ W is a linear operator, and

2 Strictly, one should define an equivalence relation on L1(R) by writing f ≡ g if f(t) = g(t) almost

everywhere. Then one denotes by [f ] the equivalence class for f ∈ L1(R). The correct vector space

is then L1(R) = {[f ]|f ∈ L1(R)}.
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|TF (t)| =
∣∣∣∣∫ t

0

f(η) dη

∣∣∣∣
≤
∫ t

0

|f(η)| dη

≤
∫ t

0

‖f‖ dη

= t ‖f‖

≤ ‖f‖ .

Whence ‖Tf‖ ≤ ‖f‖, and so in this case T is bounded and ‖T‖ ≤ 1.

T as defined above is an integral operator, cf. Talenti [16].

2. Let V = W = C(0, 1) and let k be a continuous complex-valued function on [0, 1]×

[0, 1], i.e. on the set {(s, t) | 0 ≤ s ≤ 1, 0 ≤ t ≤ 1}. For f ∈ C(0, 1) one defines Tf

on [0, 1] by

(Tf)(η) =

∫ 1

0

k(η, t)f(t) dt.

Then T is a linear operator, in fact, a bounded linear operator.

Let V be a normed vector space. A linear operator from V into C is said to be a

linear functional .

With the aid of the Hahn-Banach theorem, one may show that if V is a normed

space, v is a non-zero element in V , then there exists a bounded linear functional

h on V such that ‖h‖ = 1 and h(v) = ‖v‖.

Hilbert spaces

Let V be a complex vector space. An inner product on V is a complex valued function

(x, y), defined for all x, y ∈ V , which satisfies

1. (αx+ βy, z) = α(x, z) + β(y, z),

2. (y, x) = (x, y),

3. (x, x) ≥ 0 with (x, x) = 0 if and only if x = 0,
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for all x, y ∈ V and for all α, β ∈ C, where the overbar denotes complex conjugate.

The space V with the inner product (·, ·) is called an inner product space. In fact the

equation

‖x‖ = (x, x)1/2 (6)

defines a norm on V .

The inner product of x, y satisfies the Cauchy-Schwarz inequality

|(x, y)| ≤ ‖x‖ ‖y‖.

The inner product space V is a Hilbert space if it is complete with respect to the norm

defined by equation (6).

Examples

1. Define l2 to be the set of complex sequences of the form (s1, s2, · · · ) with
∞∑
n=1

|sn|2 <

∞. Then with the inner product given by

(s, t) =
∞∑
n=1

sntn

l2 is a Hilbert space.

2. Denote by L2(R) the set of all complex-valued Lebesgue square measurable functions

on R, i.e. |f |2 is Lebesgue measurable. Then with the inner product

(f, g) =

∫
R
f(s)g(s) ds

L2(R) is a Hilbert space.3

Linear operators on Hilbert spaces

Suppose H is a Hilbert space and let B(H) denote the set of all bounded linear oper-

ators taking H into H. Then, for a given T ∈ B(H) one may show there is a unique

linear operator T ∗ in B(H) such that

3 Again, one should work with the space L2(R) of equivalence classes of f .
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(Tx, y) = (x, T ∗y), ∀ x, y ∈ H.

Furthermore, (T ∗)∗ = T and ‖T ∗‖ = ‖T‖.

The operator T ∗ is called the adjoint of T . When T = T ∗ the operator is said

to be self-adjoint .

Linear operators play a very important role in the theory of thermal stresses.

In particular, the adjoint operator and self-adjoint operators have a key role.

If a linear operator is not bounded then we say it is unbounded . The theory of un-

bounded linear operators is more difficult than the bounded case, cf. Lions [12]; Smirnov

[14]. However, one may still proceed. The key is to have Hilbert spaces V and H with

V dense in H and the (unbounded) linear operator T mapping V into H. This require-

ment is necessary in order to define the adjoint operator uniquely, cf. Naimark [13],

and the argument may also be found in Ames and Straughan [2], p. 8.

Additional references for functional analysis and function spaces are Adams

[1]; Kufner et al [11]; Zenisek [17] and the references cited therein.

Well-posed problems

To define the notion of a well-posed problem, we need the concept of continuous de-

pendence on the data. We follow the notation of John [10].

Consider a problem with a set, U , of solutions and a set, F , of data. Let A be

the mapping from the set of data to the set of solutions. In order that the difference of

two data terms or solutions is meaningful, we assume that the solutions to the problem

are defined on a subset of U , say R, and the data is defined on a subset of F , say G,

such that R and G are normed linear spaces with ‖ · ‖R and ‖ · ‖G as the norms on R

and G respectively.
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For any subset S, of R, with norm ‖ · ‖S, if u1, u2 ∈ U , and f1, f2 ∈ F , such

that u1 = Af1, u2 = Af2, we make the following definition. The mapping A is Hölder

continuous at f1, if and only if

sup
u2∈S
‖u1 − u2‖S < Mεα whenever ‖f1 − f2‖G < ε

where M,α are positive constants depending on U and S.

In a thermal stress problem, we let R = {u(t) ∈ U | t ∈ [0, T )}, where [0, T )

refers to an interval of time, S = {u(t) ∈ U | t ∈ [0, T1), T1 ≤ T}, and G =
{
f ∈ F |

such that there exists u ∈ U with u(0) = f
}

.

The definition of Hölder continuity now leads to a way to discuss continuous

dependence of the solution on the initial data of the problem. We shall refer to the

phenomenon of continuous dependence of the solution on the initial data with respect

to time as stability .

The solution u1(·, t) is Hölder stable on the interval 0 ≤ t ≤ T , if and only if,

given ε(> 0), then

sup
0≤t≤t1<T

‖u1(·, t)− u2(·, t)‖t < Cεα whenever ‖u1(·, 0)− u2(·, 0)‖0 < ε

for all u2(·, 0) ∈ F , where α ∈ (0, 1], ‖ · ‖t and ‖ · ‖0 are norms defined on the solutions

at the time t and initially, respectively, and C is a positive constant independent of ε.

This is a weaker definition of stability than that of Lyapunov. For completeness

we include a definition of Lyapunov stability.

The solution u1(·, t) is stable in the sense of Lyapunov , if and only if, given

ε(> 0), there exists δ(ε), such that

sup
t∈[0,∞)

‖u1(·, t)− u2(·, t)‖t < ε whenever ‖u1(·, 0)− u2(·, 0)‖0 < δ

for all u2(·, 0) ∈ F .
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The initial value problem for the backward heat equation

To illustrate the concepts of Hölder and Lyapunov stability, we consider the equation

for temperature in a rigid body as discussed in the Introduction, but now in one space

dimension, and for the backward in time problem. It is sufficient to transform t to −t

in (3) and then consider the problem

∂θ

∂t
+
∂2θ

∂x2
= 0, x ∈ [0, l], t ∈ [0, T ],

u(0, t) = u(l, t) = 0,

u(x, 0) =
C

m
sin
(mπx

l

)
.

One may show the unique solution to this problem is

u(x, t) =
C

m
exp

(
m2π2t

l2

)
sin
(mπx

l

)
.

Observe that as m −→ ∞, |u(x, 0)| −→ 0, but |u(x, t)| −→ ∞. Hence, the solution

does not depend continuously on the data in the sense of Lyapunov. However, one may

demonstrate that the solution does depend Hölder continuously on the initial data on

compact subintervals of [0, T ).

Well-posed problems in the sense of Hadamard

This definition was introduced by the French mathematician J.A. Hadamard in the

early part of the twentieth century.

A problem is said to be well-posed in the sense of Hadamard if there exists a

set F of data and a set U of solutions such that for every f ∈ F ,

1. There exists a corresponding u ∈ U ,

2. u is the unique member of U corresponding to f ,

3. u depends continuously on f .4

4 This could be Lyapunov or Hölder continuous dependence, depending on what one wants to achieve.
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The requirement of a well-posed problem is a very important one in the theory of

thermal stresses.

Abstract operator equations

It is sometimes desirable in some thermal stress problems to treat an abstract operator

equation. In this way, one may be able to assess questions of well-posedness directly

from an abstract equation which encompasses many particular problems in thermal

stresses.

Smirnov [14], p. 549, shows that the linear operator −∆ =
∑3

i=1 ∂
2/∂x2

i is an

unbounded operator on the Hilbert space L2(Ω). The domain of this operator will be

densely defined in L2(Ω), where here Ω is a bounded domain in R3.

We now let V be a densely defined subset of a Hilbert space H and consider the

equation

Autt = Lu+ f (7)

where A and L are, in general, unbounded linear operators taking V into H, and

f : H −→ H is a source term.

As a specific example of equation (7) in the theory of thermal stresses we might

consider the equations for a linear thermoelastic body of type II in the sense of Green

and Naghdi. The equations for such a thermoelastic body in the isotropic case are given

by, e.g. Straughan [15], p. 54, as

ρ0üi = ρ0bi − E1θ,i + µ∆ui + (λ+ µ)uj,ij

ρ0cθ̈ = ρ0ṙ + κ∆θ − θ0E1üi,i

 (8)

Here standard indicial notation is employed, ui denotes displacement, θ the temper-

ature, ρ0 the density, c the specific heat, bi and r are the externally supplied body

force and temperature, ∆ is the Laplacian, θ0 and E1 are constants, λ and µ are the
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Lamé constants and κ is the thermal conductivity. A superposed dot denotes ∂/∂t and

equations (8) are defined on the domain Ω × [0, T ), Ω being a bounded domain in

R3, with T a number. Equation (8) must be supplemented with boundary and initial

conditions and we take these as

ui(x, t) = uΓi (x, t),

θ(x, t) = θΓ (x, t),

 x ∈ Γ, t > 0, (9)

and

ui(x, 0) = u0
i (x),

θ(x, 0) = θ0,

 x ∈ Ω (10)

where Γ is the boundary of Ω, and uΓi , θΓ , u0
i , θ

0 are prescribed functions.

To identify (8)–(10) as a special case of (7) we put u = (u1, u2, u3, θ)
T and

f = (ρ0b1, ρ0b2, ρ0b3, ρ0ṙ)
T . We then define the space H to be (L2(Ω))4 and the domain

V to be the set

{
(u, θ) ∈ C2(Ω) | u = uΓ on Γ, θ = θΓ on Γ

}
.

The linear operators A and L are then matrix operators

A =



ρ0 0 0 0

0 ρ0 0 0

0 0 ρ0 0

θ0E1
∂
∂x

θ0E1
∂
∂y

θ0E1
∂
∂z

ρ0c


and

L =



µ∆+ (λ+ µ) ∂2

∂x2 (λ+ µ) ∂2

∂x∂y
(λ+ µ) ∂2

∂x∂z
−E1

∂
∂x

(λ+ µ) ∂2

∂x∂y
µ∆+ (λ+ µ) ∂2

∂y2
(λ+ µ) ∂2

∂y∂z
−E1

∂
∂y

(λ+ µ) ∂2

∂x∂z
(λ+ µ) ∂2

∂y∂z
µ∆+ (λ+ µ) ∂2

∂z2
−E1

∂
∂z

0 0 0 κ∆


Another useful example taken from thermal stresses is to consider a thermoe-

lastic body of type III, as given by Green and Naghdi, see e.g. Straughan [15], p. 57.
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For this class of material the linearized isotropic equations are similar to those of (8)

but have an extra dissipation term in θ present.5 For thermoelasticity of type III, the

vector equation (8), still holds. However, (82) is replaced by

ρ0cθ̈ = ρ0ṙ + κ∆θ + κ∗∆θ̇ − θ0E1üi,i. (11)

Here κ∗ is a positive constant. The boundary-initial value problem comprised of (81),

(11) together with (9) and (10) may be regarded as an example of the abstract operator

equation

Autt +But = Lu+ f.

To see this V and H are as before, as are u, A, L and f . The linear operator B is

B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −κ∗∆


.
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