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Abstract. If individuals are exposed to ionising radiation, due to some
radiation accident, for medical reasons, or during spaceflight, there is
often a need to estimate the contracted radiation dose. The field of bio-
dosimetry is concerned with estimating the dose retrospectively, based on
certain biomarkers, which are typically based on counts of some cytoge-
netic or biomolecular features of the cell arising after radiation-induced
double-strand-breaks. Such techniques face particular challenges when
the exposure is only partial rather than whole-body, which, when unac-
counted for, may lead to grossly inaccurate dose estimates. For biomark-
ers which are overdispersed, there are currently no procedures available
for the detection of partial-body exposures. We consider the question of
estimating the exposure fraction as well as quantifying its uncertainty,
using Bayesian and frequentist methods, by means of simulation scenar-
ios which are motivated by foci count data as arising for the γ−H2AX
protein biomarker.
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1 Introduction

The major goal of space missions is to allow human exploration without exceed-
ing a certain risk level from exposure to space radiation. Clearly, the understand-
ing of human exposure to this ionising radiation in the aircraft environment is
of great importance in the field of aerospace. Since human response to ionising
radiation is both individual and variable, one approach is to explore radiation
effects on a cellular level. Individual radiation sensitivity can provide the basis
for personalised countermeasures against key environmental factors in long-term
missions. Radiation biomarkers, which try to quantify the radiation dose through
the damage that has been caused on a cellular level, are necessary in order to
determine the radiation sensitivity in a blood sample.

Most radiation biomarkers come in the form of count data, including cyto-
genetic biomarkers (dicentric chromosomes, micronuclei [2]), or protein-based
biomarkers such as the γ-H2AX assay [1]. The latter biomarker considers counts
of foci which appear after phosphorylation of the H2AX histone following double-
strand breaks. While this biomarker motivates our work, the principles are appli-
cable to other biomarkers and also beyond the field of biodosimetry. The Poisson
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model is a natural choice for the analysis of count data, and has been success-
fully applied for the dicentric assay under full-body exposure. Laboratory data
(with known doses) are used to fit a linear or quadratic model to the measured
yields (counts per cell), resulting in a ‘calibration curve’. Following exposure of
an individual, the observed yield of a blood sample is equated to the calibration
curve, and dose estimated via inverse regression [2].

However, the Poisson assumption of equidispersion (variance = mean) may
be violated. Firstly, unobserved heterogeneity in the cell population or aspects
of the scoring procedure may cause deviation from this property. While early
evidence suggests that the distribution of γ-H2AX foci among the scored blood
cells adheres well to the Poisson assumption and hence can be analysed by em-
ploying methods used for the dicentric assay [1], practical γ-H2AX data sets
almost always exhibit overdispersion. Secondly, individuals are often only par-
tially exposed, in which case their blood will contain a mixture of cells showing
no radiation impact at all (structural zeros), and cells featuring a distribution
of counts according to dose of exposure. It is important to detect partial-body
exposure, and to quantify the fraction of exposure, as otherwise the resulting
dose estimates will be incorrect, with potentially severe consequences.

For the dicentric assay, where whole-body counts are usually equidispersed,
any significant overdispersion serves as evidence for the presence of partial
exposure. It is well established how to adjust for partial-body exposure for
this biomarker through the ‘contaminated Poisson method’ [3, 4]. However, for
biomarkers such as micronuclei or the γ-H2AX, which become overdispersed even
in the case of whole body exposure, no such mechanism is yet known. In this
paper we focus on the problem of estimating the exposure fraction and quantify-
ing its uncertainty, for such scenarios. Bayesian and frequentist techniques will
be employed and compared.

2 Methodology

To represent partial-body exposure in the case of an overdispersed distribution
of foci counts, we require models which can handle both overdispersion and
excess zero counts in data. To account for the extra zero counts, zero-inflated
models describe the data as a combination of two distributions: a distribution
which takes a single value at zero and a count distribution such as the Poisson or
NB1. For a sample consisting of n cells, we define Yj to be the response variable
representing the observed number of foci for cell j (j = 1, .., n). The probability
mass function for the zero-inflated Poisson (ZIP) model is:

P (Yj = yj |λ, p) =

{
p+ (1− p)e−λ, for yj = 0

(1− p) e
−λλyj

yj !
, for yj > 0

(1)

where 0 ≤ p ≤ 1 and λ > 0, possibly depending on covariates such as dose. Here,
λ refers to the mean of the underlying Poisson distribution and p is the zero-
inflation parameter. The ZIP model has the properties: E(Yj) = (1 − p)λ = µ
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Fig. 1. A comparison of the individual number of foci per cell produced in an equidis-
persed and overdispersed whole-body sample.

and Var(Yj) = (1 − p)λ(1 + pλ) and reduces to a Poisson when p = 0. Since
Var(Yj) ≥ µ, zero-inflation can be seen as a special form of overdispersion.

In our context, for data which stem from full- or partial-body exposure, it is
sensible to consider overdispersion and zero–inflation as two separately identifi-
able model properties. A suitable model for this purpose is the ZINB-1 model,
which shares same the mean as the ZIP, but has variance Var(Yj)=(1− p)λ(1 +
α + pλ), where α is a dispersion parameter. This variance suggests that the
ZINB-1 exhibits overdispersion when α > 0 and p > 0. For α = 0, the ZINB-1
reduces to the ZIP. We estimate the model parameters α and p in two ways:

– Maximum Likelihood estimation. This will implicitly produce standard errors
of α̂ and p̂ through the Fisher information matrix.

– Bayesian estimation. Using priors p ∼ U [0, 1], α ∼ Γ (0.01, 0.01−1), and a
prior for λ which is determined by linear transformation of a dose prior
according to the known calibration curve, the posterior distribution is com-
puted via a MCMC Gibbs sampling algorithm. Uncertainty Quantification
is based on this posterior distribution.

[subsection] The exposure fraction, F = 1 − p, and dispersion, φ = 1 + α, can

be estimated via F̂ = 1− p̂ and φ̂ = 1 + α̂, respectively, where clearly SE(F̂ ) =

SE(p̂), and SE(φ̂) = SE(α̂). We note that F = 1−p is a simplifying assumption
as it ignores certain effects (such as cell death) which prevent irradiated cells
being observable at the time of scoring. However, this effect is considered minor
for the γ-H2AX biomarker where cells are typically scored after a few hours, in
contrast to the dicentric biomarker where at least 48 hours need to pass until
mitosis [3].
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Table 1. MLE and posterior mean estimates for the zero-inflation and dispersion
parameter based on an average of the 100 Poisson simulation runs. For reference, the
posterior median and mode are given in brackets (median, mode).

Frequentist Bayesian
ZIP ZINB-1 ZIP ZINB-1

p̂ 0.4998 ± 0.0113 0.4997 ± 0.0113 0.4998 ± 0.0113 0.4993 ± 0.0113
(0.4998, 0.4999) (0.4993, 0.4992)

α̂ 0.0148 ± 0.3266 0.0549 ± 0.0223
(0.0486, 0.0334)

3 Simulation

To generate H2AX-type foci count samples, we make use of a whole-body cali-
bration curve reported previously in the literature [5]:

µ = 0.35 + 1.48D. (2)

Assuming a fixed and known dose of D ≡ 3Gy for this simulation, n = 1000
observations were taken separately from two scenarios:

A. Poi(λ = µ = 4.79)
B. NB1(λ = µ = 4.79; φ = 2)

(with ‘base’ dispersion φ = 1+α), providing an equidispersed (A) and an overdis-
persed (B) whole-body sample (see Figure 1). In order to mimic a 50% partial
exposure scenario, 1000 zeros were manually added to the above samples. The
whole process was repeated 100 times. Hereafter, information regarding dose
level and fraction used to generate this data is assumed to be unknown.

Scenario A. One finds from Table 1 that, for the ZIP model, the Bayesian
and frequentist estimates (and their standard errors) of p are identical. It follows
that an estimate for the exposed fraction, F , is found through F̂ = 1 − p̂ =
0.5002±0.0113. Estimates of exposure fraction under ZINB-1 are very similar to
those under ZIP. While the frequentist ZINB-1 estimate obtained for α suggests
equidispersion, the Bayesian confidence interval for α does not cover the true
value α = 0. From Figure 2, we see that the Bayesian versions tend to skew the
estimates away from the true values, which is related to the choice of priors.

Scenario B. From fitting ZIP and ZINB-1 models, it is clear from the MLE
estimates presented in Table 2 (ZIP: F̂ = 0.4851±0.0113, ZINB-1: F̂ = 0.4995±
0.0118) and the boxplots in Figure 3 that the ZINB-1 was able to account for
overdispersion due to zero-inflation and sampling and was therefore the preferred
model in estimating the exposed fraction. The corresponding fraction estimates
from the Bayesian methods appear to show that the ZIP deviates the most from
the true value (ZIP: F̂ = 0.4852 ± 0.0112, ZINB-1: F̂ = 0.4996 ± 0.0118). The
true value of α was found to be within 1 standard error in both the frequentist
and Bayesian ZINB-1, with the latter producing a slightly closer estimate. It
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Fig. 2. A comparison of the frequentist (F-ZIP/F-ZINB1) and Bayesian (B-ZIP/B-
ZINB1) distributions of the model parameters resulting from 100 Poisson simulations.
The red lines at p = 0.5 and α = 0 indicate the true parameter values.

appears that there is no strong preference for estimating the exposed fraction
and its uncertainty utilising a Bayesian approach over the standard maximum
likelihood method.

Table 2. MLE and posterior mean estimates for the zero-inflation and dispersion
parameter based on an average of the 100 NB1 simulation runs.

Frequentist Bayesian
ZIP ZINB-1 ZIP ZINB-1

p̂ 0.5149 ± 0.0113 0.5005 ± 0.0118 0.5148 ± 0.0112 0.5004 ± 0.0118
(0.5148, 0.5148) (0.5004, 0.5007)

α̂ 0.9849 ± 0.1096 0.9898 ± 0.1096
(0.9853, 0.9781)
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Fig. 3. A comparison of the frequentist (F-ZIP/F-ZINB1) and Bayesian (B-ZIP/B-
ZINB1) distributions of the model parameters resulting from 100 NB1 simulations.The
red lines at p = 0.5 and α = 1 indicate the true parameter values.
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