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Abstract. 2D images often contain irregular salient features and inter-
est points with non-integer coordinates. Our skeletonization problem for
such a noisy sparse cloud is to summarize the topology of a given 2D
cloud across all scales in the form of a graph, which can be used for
combining local features into a more powerful object-wide descriptor.

We extend a classical Minimum Spanning Tree of a cloud to a Homo-
logically Persistent Skeleton, which is scale-and-rotation invariant and
depends only on the cloud without extra parameters. This graph

(1) is computable in time O(n logn) for any n points in the plane;

(2) has the minimum total length among all graphs that span a 2D cloud
at any scale and also have most persistent 1-dimensional cycles;

(3) is geometrically stable for noisy samples around planar graphs.
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1 Introduction: problem and overview

Pixel-based 2D images often contain salient features represented as points with
non-integer coordinates. The resulting unstructured set is an example of a point
cloud C, formally a finite metric space with pairwise distances between points.

The important problem in low level vision is to extract a meaningful structure
from a given irregular cloud C. The traditional approach is to select a scale
parameter, say a radius or the number of neighbors, and build a neighborhood
graph. However, a real image may not have a single suitable scale parameter
and we need to combine features found at multiple scales. This paper solves the
skeletonization problem in its hardest form without any input parameters.

Parameterless skeletonization for sparse clouds. Given only an un-
structured cloud C ⊂ R2 of points with any real coordinates, find a quickly
computable structure that provably represents the topology of C at all scales.

Our solution is a ‘homological’ extension of a classical Minimum Spanning
Tree MST(C) of a cloud C to a Homologically Persistent Skeleton HoPeS(C)
that describes 1-dimensional cycles hidden in C over all possible scales α.



In section 2 we explain motivations for building HoPeS(C) and give a high
level description of our contributions. In section 3 we compare our method with
related work. In sections 4–5 we prove that HoPeS(C) or its subgraphs are

• computable in time O(n log n) for a cloud C ⊂ R2 of n points (Lemma 3)

• invariant up to rotations and uniform scale transformations (Lemma 4)

• optimal among all graphs capturing cycles of C at any scale (Theorem 5)

• stable under perturbations of samples C of graphs G ⊂ R2 (Corollary 8).

Fig. 1. Top: a cloud C of feature points. Bottom: HoPeS′(C) and its simplification.

Fig. 1 shows the cloud C of n = 7830 feature points obtained by thresholding
a real image in the top row, see details in section 6. The cloud C is the only input
for producing the derived skeleton HoPeS′(C) in the bottom row, where we kept
only the most persistent cycle. The last picture of Fig. 1 is a simplified version
of HoPeS′(C) after removing short branches, see Definition 6. So HoPeS′(C)
provides a best ‘guess’ about the global topology of C in time O(n log n).

2 Our contributions and motivations of HoPeS(C)

Our parameterless skeletonization is based on persistent homology, which is the
flagship method of Topological Data Analysis [10]. The key idea is to summarize
topological features of data over all possible scales. A topological invariant that
persists over a long interval of the scale is a true feature of the data, while
noisy features have a short life span (a low persistence). The resulting persistent
invariants are provably stable under noise, see [14, Appendix A]

Fig. 2 shows a cloud C on the integer lattice for simplicity, though our con-
structions work for any real coordinates. For any set C ⊂ R2 and α > 0, the
α-offset Cα consists of all points in R2 that are at most α away from C. Here α
is the scale parameter (radius or width) of the α-offset Cα ⊂ R2 around C.

We may gradually shrink a disk within itself to its center by making the
radius smaller. We can not deform a circle to its center, because a smaller circle
would be outside the original circle. So a circle is topologically non-trivial, while
any closed loop in a disk is contractible. Spaces connected by such continuous
deformations have the same homotopy type. We now formalize our problem.
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Fig. 2. A cloud C, α-offsets Cα and Homologically Persistent Skeleton HoPeS(C)

Multi-scale topological skeletonization: given a cloud C ⊂ R2, find a
graph whose vertices are all points of C and whose suitable subgraphs have the
homotopy type of the α-offset Cα for any α. A Homologically Persistent Skeleton
HoPeS(C) is an optimal and stable skeleton satisfying the above requirements.

A cloud C is an ε-sample of (ε-close to) a graph G ⊂ R2 if G ⊂ Cε and
C ⊂ Gε. So any point of C is at most ε away from a point of G and any point of
G is at most ε away from a point of C. The maximum possible value of ε is the
upper bound of noise (the Hausdorff distance between G and its sample C).

Here is a high-level description of our contributions to skeletonization.

• Definition 2 introduces a Homologically Persistent Skeleton HoPeS(C) of a
cloud C ⊂ R2 summarizing the persistence of 1-dimensional cycles in all Cα.

• Lemma 3 proves that, for a cloud C ⊂ R2 of any n points, HoPeS(C) has the
size O(n) and is computed in time O(n log n) without any extra parameters.

• Lemma 4 shows that HoPeS(C) is a scale-and-rotation invariant of C ⊂ R2.

• Theorem 5 proves that the reduced graph HoPeS(C;α) at any scale α > 0 has
the minimum length among all graphs that have the homotopy type of Cα.

• Theorem 7 guarantees that for any ε-sample of a simple enough graph G ⊂ R2,
HoPeS′(C) is a correct topological reconstruction of G in the 2ε-offset G2ε.

• Corollary 8 implies that the derived subgraph HoPeS′(C) is stable for any
δ-perturbation of a cloud C that was ε-sampled around a planar graph G.

The novelty of this paper is not the fast algorithm for 1-dimensional per-
sistence, but the new fundamental concept of a Homologically Persistent Skele-
ton HoPeS(C) that depends only a cloud C ⊂ R2 and solves the skeletonization
problem without extra parameters and with guarantees in Theorems 5 and 7.

A graph without cycles is a forest. A connected forest is a tree. For a cloud
C ⊂ R2, a Minimum Spanning Tree MST(C) is a tree that has the vertex set C
and the minimum total length of edges, see Fig. 3. The reduced forest MST(C;α)
is obtained from MST(C) by removing all open edges longer than 2α.

A connected graph G spans a cloud C if C is the vertex set of G. A graph G
spans a possibly disconnected α-offset Cα if G has vertices at all points of the
cloud C and any vertices of G are in the same connected component of G if and
only if these vertices are in the same connected component of the α-offset Cα.
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Fig. 3. Cloud C, minimum spanning tree MST(C) and α-offsets C2.5, C
√
34/2, C3.

Points p, q ∈ C are in the same single-edge cluster of C if d(p, q) ≤ 2α.
Lemma 1 says that MST(C) is a universal optimal object that describes the
0-dimensional topology (all single-edge clusters) of C across all scales α.

Lemma 1 For a cloud C and any scale α ≥ 0, the reduced forest MST(C;α)
has the minimum total length of edges among all graphs that span Cα at the
same scale α. Hence all connected components of the reduced forest MST(C;α)
are in a 1-1 correspondence with all single-edge clusters of the cloud C.

Lemma 1 and all later results are proved in [14, Appendix B]. Theorem 5
extends the optimality of MST(C) in Lemma 1 for clusters (dimension 0 approx-
imation of C) to HoPeS(C) for cycles (dimension 1 approximation of C).

3 Comparison with related past skeletonization work

Our approach may look similar to the well-known scale-space theory [17] that
suggests how to find a suitable scale. However, we do not choose any scale, we
find topological features with longest life spans, which may not overlap. For
instance, if one feature lives over the scale interval 1 ≤ α ≤ 2 and another over
3 ≤ α ≤ 4, then both features can not be captured at any fixed scale α. We can
capture both features only by analyzing their life spans among all features.

The classical scale selection relies on analyzing data at discrete scales, usually
proportional to powers of 2. The persistent homology works over the continuous
scale so that all critical scales are found only from a given cloud, not by manually
selecting a step size for incrementing the scale. Though we wouldn’t say that
persistent homology is ‘perpendicular’ to scale-space theory, our method is at
least ‘diagonal’ to a scale selection, see diagonal gaps in Definiton 6.

To the best of our knowledge, all known skeletonization algorithms for clouds
need extra parameters such as a scale α or a noise bound ε, e.g. [4]. Hence all
these algorithms can not run on our minimal input, which is only a cloud C. Since
a manual choice of parameters can be unfair, the experimental comparison with
the past work seems impossible and we can compare only theoretical aspects.

N. Cornea et al. [6] stated the following requirements for skeletonization.
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• Topology : a skeleton found from a noisy sample C is homeomorphic to (or has
the homotopy type of) the original shape as in Theorem 7 from section 5.

• Centering : if a shape is well-sampled, a skeleton geometrically approximates
the original shape in a small offset, see the 2ε-offset guarantee in Theorem 7.

• Efficiency : a near linear time in the number n of points as in our Lemma 3.

Our skeleton HoPeS(C) satisfies the extra conditions: independence of extra
parameters, rotation-and-scale invariance and stability under bounded noise.

R. Singh et al. [18] approximated a skeleton of a shape by a subgraph of a
Delaunay triangulation based on 2nd order Voronoi regions. The algorithm has
3 threshold parameters: K for the minimum number of edges in a cycle and
δmin, δmax for inserting and merging Voronoi regions. M. Aanjaneya et al. [1]
solved a related problem approximating a metric on a large input graph by a
metric on a small output graph. So the input is a graph, not a cloud of points.

Starting from a noisy sample of an unknown graph G with a scale parameter,
X. Ge et al. [11] produced the Reeb graph with the same number of loops as the
graph G. This output is an abstract graph of a simplicial complex on a cloud C
and is not intrinsically embedded into any space even if C ⊂ R2. [11, section 3.3]
reported ‘spurious branches or loops in the Reeb graph constructed no matter
how we choose a radius or a number of neighbours to decide the scale’.

F. Chazal et al. [3] introduced a new α-Reeb graph for a graph reconstruction
in different settings. The distance between points in a noisy sample C is measured
geodesically within a given neighborhood graph on C, while we consider offsets
of C with respect to the ambient distance in R2. Their algorithm has the same
fast time O(n log n) and they also gave conditions when the reconstructed graph
has a required homotopy type.

T. Dey et al. [8] built a complex depending on a user-defined graph that
spans a cloud C of n points. This Graph Induced Complex GIC has the same
homology H1 as the Rips complex of a cloud C at a suitable scale α. The 2D
skeleton of GIC needed for computing H1 has the size O(n3) in a worst case.

For image segmentation, α-offsets were similarly used in [16] (with 2 extra pa-
rameters) and in [13] (without parameters). A Homologically Persistent Skeleton
can be defined for arbitrary filtrations on a cloud in any metric space [15].

Papers [11], 2011 [1], 2012 [8], 2013 [3], 2014 this paper

Extra input radius r radius r, noise ε graph spanning C scale α no parameters
Complexity O(n logn) O(n2) at least O(n3) O(n logn) O(n logn)

Table 1. Comparison of similar skeletonization methods for unstructured clouds.

The discussion in [2, section 13] proposed to select features by persistence [10]
and led us to the new concept of HoPeS(C) in Definition 2. The key advantage of
our approach over the past work is the absence of any user-defined parameters.
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• HoPeS(C) of a cloud C has no extra input parameters (such as ε or α) that
are needed in all past skeletonization algorithms for an unstructured cloud C.

• For a cloud C ⊂ R2 of any n points, the skeleton HoPeS(C) with O(n) edges
can be found in time O(n log n), which is comparable only with [3], [11], [18].

• HoPeS(C) is the first universal structure on a cloud C that summarizes all
cycles of Cα and has a subgraph HoPeS′(C) stable under perturbations of C.

• HoPeS′(C) for an ε-sample C of G approximates G in the thin offset G2ε ⊂ R2.
[3] has guarantees for the abstract Gromov-Hausdorff distance, not in R2.

• Theorem 5 gives guarantees only in simple terms of a graph G ⊂ R2 and
its noisy ε-sample C ⊂ R2, while [11, Theorem 3.1] needs a complex K with a
homotopy equivalence h : K → G that ε-approximates the metrics of K and G.

4 A Homologically Persistent Skeleton and its optimality

Here we give a rather intuitive introduction into homology theory using only
α-offsets Cα as typical spaces, see rigorous definitions in [14, Appendix A].

The 0-dimensional homology H0 counts connected components. Formally,
H0(Cα) is the group (or vector space of linear combinations with coeffiecients in
Z2 = {0, 1}) generated by the components of Cα. For instance, the offset C2.5

in Fig. 3 has 2 components. Hence H0(C2.5) = Z2⊕Z2 has rank (dimension) 2.

The 1-dimensional homology H1 of Cα ⊂ R2 similarly counts holes in Cα

(bounded regions in the complement R2 − Cα). For example, the offset C
√
34/2

in Fig. 3 has 1 red hole, so H1(C
√
34/2) = Z2. This hole splits into 2 holes at

α = 3, hence H1(C3) = Z2 ⊕ Z2. The smaller of the 2 holes disappears when
α = 25

8 is the circumradius of the triangle on vertices (±3, 0) and (0,−4), so

H1(C25/8) = Z2. The remaining hole dies when α = 17
5 is the circumradius of

the triangle on vertices (±3, 0) and (0, 5), hence H1(C17/5) = 0 is trivial.

All α-offsets form an ascending filtration (a nested sequence of spaces) C =
C0 ⊂ . . . ⊂ Cα ⊂ . . . ⊂ C+∞ = R2. These inclusions induce linear maps in H1:

C2.5 ⊂ C
√
34/2 ⊂ C3 ⊂ C25/8 ⊂ C17/5 induce 0→ Z2 → Z2 ⊕ Z2 → Z2 → 0.

The sequence of the linear maps in H1 above splits into 2 simpler sequences:

hole 1 lives over the interval
√
34
2 ≤ α <

17
5 , namely 0→ Z2 → Z2 → Z2 → 0,

hole 2 lives over the short interval 3 ≤ α < 25
8 , namely 0→ 0→ Z2 → 0→ 0.

At α = 3 when the initial hole splits into 2 smaller holes, we assume that
one of the holes ‘inherits’ (continues the life of) the previous hole, while another
hole is ‘newborn’ at the splitting moment. The standard convention is to give
preference to a longer living hole. So the life spans (the barcode) of the filtration

{Cα} are [
√
34
2 , 175 ) and [3, 258 ). We plot the endpoints of these bars as red dots

with coordinates (birth,death) in the persistence diagram PD{Cα}, see Fig. 4.
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This diagram is a summary of life spans of holes (1-dimensional homology
classes) of Cα across all scales α. The key result of persistent homology is the
Stability Theorem [5] roughly saying that any small perturbation of the cloud C
gives rise to a similar small perturbation of the diagram PD{Cα} in the plane.

If a hole of Cα is born, then this hole becomes enclosed by a cycle through
points of C. The last longest edge in this enclosing cycle is added at the birth

time α of the hole and is critical for the hole in question. Hole 1 born at α =
√
34
2

has the critical edge e1, see Fig. 4. Hole 2 born at α = 3 has the critical edge e5.

Fig. 4. Diagram PD{Cα} for the cloud C in Fig. 3 and skeletons from Definitions 2, 6.

For any filtration {Cα}, each red dot in PD{Cα} has a corresponding critical
edge e (between points of C) with the label (birth(e),death(e)). Our Definition 2
transforms the diagram PD{Cα} of disconnected points into a universal structure
on the data cloud C summarizing the persistence of holes in {Cα} for all α.

Definition 2 For a cloud C, a Homologically Persistent Skeleton HoPeS(C)
is the union of MST(C) and all critical edges with their labels (birth,death),
see Fig. 4. The reduced skeleton HoPeS(C;α) is obtained from HoPeS(C) by
removing all edges longer than 2α and all critical edges e with death(e) ≤ α.

If α = 0, then HoPeS(C; 0) = C is the given cloud. By Definition 2 a critical
edge e belongs to the reduced skeleton HoPeS(C;α) if and only if birth(e) ≤
α < death(e). So a critical edge e is added to HoPeS(C;α) at α = birth(e) and
is later removed at the larger scale α = death(e). The cloud C in Fig. 3 has

HoPeS(C;
√
34
2 ) = MST(C) ∪ e1, but HoPeS(C; 3) coincides with HoPeS(C).

The filtration {HoPeS(C;α)} may not be monotone with respect to the scale
α. But if HoPeS(C;α) has become connected, it will stay connected for all larger
α. Indeed, removing a critical edge destroys only a cycle, not connectivity.

Similarly to MST(C), a Homologically Persistent Skeleton HoPeS(C) is unique
in a general position when the distances between all points of C are different.

Lemma 3 For any cloud C ⊂ R2 of n points, a Homologically Persistent Skele-
ton HoPeS(C) has the size O(n) and is computable in time O(n log n).
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Lemma 4 below help visualize the 1-dimensional persistence diagram PD{Cα}
directly on the cloud C. Lemma 4 justifies that HoPeS(C) is suitable for Com-
puter Vision applications where a scale-and-rotation invariance is important.

Lemma 4 For a cloud C ⊂ R2, the 1-dimensional persistence diagram PD{Cα}
of the filtration of α-offsets Cα can be reconstructed from a Homologically Per-
sistent Skeleton HoPeS(C). The topological structure of HoPeS(C) is invariant
under any affine transformation whose 2× 2 matrix has equal eigenvalues.

Our first main Theorem 5 says that HoPeS(C) is an optimal graph that
extends MST(C) and captures the persistence of all holes in the filtration {Cα}.

Theorem 5 For any cloud C ⊂ R2 and any α > 0, the graph HoPeS(C;α) has
the minimum total length of edges over all graphs G ⊂ Cα that span the α-offset
Cα and induce an isomorphism in 1-dimensional homology H1(G)→ H1(Cα).

A graph G spans Cα if G ⊂ Cα induces an isomorphism H0(G) ∼= H0(Cα).
An isomorphism H1(G) ∼= H1(Cα) means that the graph G has the homotopy
type of the α-offset Cα ⊂ R2. Hence our Homologically Persistent Skeleton G =
HoPeS(C) solves the multi-scale skeletonization problem stated in sections 1–2.

5 The reconstruction theorem and stability of HoPeS(C)

A Homologically Persistent Skeleton HoPeS(C) contains all 1-dimensional cycles
in the offsets Cα across the full range of α. It is natural to select cycles with
highest persistence to get a smaller subgraph HoPeS′(C) ⊂ HoPeS(C). So we
select not a scale as in scale-space theory, but a widest diagonal gap in the
persistence diagram PD{Cα}. This widest gap makes sense for finite sets C and
for any compact set S ⊂ R2 that is a finite union of closed topological disks.

Definition 6 For a compact set S ⊂ R2 and the ascending filtration of offsets
Sα, a diagonal gap in the persistence diagram PD{Sα} is a largest (by inclusion)
strip {0 ≤ a < y − x < b} that has no points from the diagram, see Fig. 3.

The widest diagonal gap dgap(S) has the largest width |dgap(S)| = b−a. Let
the subdiagram PD′{Sα} ⊂ PD{Sα} have only the points above dgap(S). The
critical scale α(S) is the maximum birth over all (birth,death) ∈ PD′{Sα}.

For a cloud C = S, the derived skeleton HoPeS′(C) is obtained from HoPeS(C)
by removing (1) all edges longer than 2α(C), and (2) all critical edges either with
death ≤ α(C) or with (birth,death) below the widest diagonal gap dgap(C).

In Definition 6 if there are different gaps with the same width, we say that
the gap with largest values along the vertical death axis has the largest width.

The cloud C in Fig. 3 has the widest gap dgap(C) between the points (
√
34
2 , 175 )

and (3, 258 ) in PD{C(α)}, so the critical scale is α(C) =
√
34
2 , see Fig. 4.
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Condition (1) above guarantees that HoPeS′(C) ⊂ HoPeS(C;α(C)), be-
cause all long critical edges e with birth(e) > α(C) are removed, see [14, Ap-
pendix B]. Condition (2) filters out cycles with early deaths and low persistence,
but HoPeS′(C) 6= HoPeS(C;α(C)). Instead of selecting a fixed scale as in scale-
space theory, we select cycles by their persistence across all scales α.

We define concepts needed for Theorem 7. A non-self-intersecting cycle L in
a graph G ⊂ R2 is basic if L encloses a bounded region of R2 − G. When α
is increasing, the hole enclosed by the α-offset Lα is born at α = 0 and dies
at the scale α = ρ(L) that is called the radius of the cycle L. So the initial
hole enclosed by L has the life span [0, ρ(L)). The heart-shaped hole in the first
picture of Fig. 5 completely dies at α = ρ(L), which holds for any convex hole.

In general, when α is increasing new holes can be born in Gα, let they be
enclosed by L1, . . . , Lk at their birth times. The thickness θ(G) = max

j=1,...,k
ρ(Lj)

is the maximum persistence of these smaller holes born during the evolution of
offsets Gα. If no such holes appear, then θ = 0, otherwise θ > 0, see Fig. 5.

Fig. 5. The ‘heart’ graph has thickness θ = 0. The ‘figure-eight’ graph has θ > 0.

Theorem 7 says that HoPeS′(C) is a close approximation to a graph G from
any its ε-sample C. The homotopy type of a connected graph G is determined
by its H1(G). Namely, G continuously deforms to a wedge of dimH1(G) loops.

Theorem 7 Let C be any ε-sample of a connected graph G ⊂ R2 with a thick-
ness θ(G) ≥ 0 and m ≥ 1 basic cycles having ordered radii ρ1 ≤ . . . ≤ ρm. If
ρ1 > 7ε+ θ(G) + max

i=1,...,m−1
{ρi+1− ρi}, then the critical scale α(C) ≤ ε, and the

derived skeleton HoPeS′(C) is 2ε-close to G and has the homotopy type of G.

The inequality above means that the cycles of the graph G have ‘comparable’
sizes, i.e. the smallest radius ρ1 is larger by a good margin than any gap ρi+1−ρi
between the ordered radii. Hence the diagonal gap {θ(G) < death−birth < ρ1} in
the diagram PD{Gα} of the graphG will remain wide enough to be automatically
recognized in the perturbed diagram PD{Cα} for any ε-sample C of G.

Theorem 7 is stronger than any estimate of homology from noisy samples. In
addition we build on a sample C an actual skeleton HoPeS′(C) that is 2ε-close
to an unknown graph G. Theorem 7 extends simpler [13, Theorem 32], which
works only for a much smaller class of graphs G ⊂ R2 with thickness θ = 0.
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Corollary 8 In the conditions of Theorem 7 if another cloud C̃ is δ-close to C,
then the perturbed derived skeleton HoPeS′(C̃) is (2δ + 4ε)-close to HoPeS′(C).

We can’t expect that HoPeS′(C) is locally stable for any cloud C, because
a minimum spanning tree MST(C) is sensitive to perturbations of C. However,
Corollary 8 guarantees the overall stability of the derived skeleton (within a
small offset) in the most practical case for noisy sample of graphs.

6 Algorithm, experiments and practical applications

[14, Appendix A] justifies that complicated α-offsets Cα can be replaced by sim-
pler α-complexes C(α), which filter a Delaunay triangulation Del(C). Starting
from a cloud C ⊂ R2 of n points, we build Del(C) in time O(n log n) with O(n)
space. Regions in the complement R2 −C(α) are dual to their boundaries. This
duality [10] reduces 1-dimensional persistence of cycles in the filtration {C(α)}
to 0-dimensional persistence of connected components in R2 − C(α).

Fig. 6. A sample C of O45, diagram PD{C(α)}, HoPeS′(C) and its simplification.

The 0-dimensional persistence is computed in time O(nA−1(n)) using a
union-find structure [10], where A−1(n) is the slow growing inverse Ackermann
function. We extend this algorithm by recording a critical edge along which
regions of R2 − C(α) merge when α is decreasing, see [14, Appendix C].

Fig. 7. A sample C of D33, diagram PD{C(α)}, HoPeS′(C) and its simplification.
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Fig. 6 shows 121 random points sampled from a real image of hieroglyph O45.
The second picture of Fig. 6 is the diagram PD{C(α)} with a widest diagonal gap
clearly separating the noise near the diagonal from 2 red points corresponding
to 2 cycles in the derived graph HoPeS′(C). Theorem 7 gives the lower bound
α(C) for the unknown noise level ε. We use this intrinsic critical scale α(C) for
pruning short branches and collapsing short edges to get a simplified version of
HoPeS′(C) in the last picture of Fig. 6, see details in [14, Appendix C]. Fig. 7
has similar results for 321 points sampled from another hieroglyph D33.

Fig. 8. Image BSD176035, cloud C of 3603 points, HoPeS′(C) and its simplification.

In Fig. 8 we selected feature points from a challenging image by simply
comparing the color of each pixel with the average in 5 × 5 neighborhood. The
threshold for the normal deviation in the 3-dimensional RGB space was 65 as in
Fig. 1. Fig. 9 shows similar results for the normal deviation 100 of the color.

Fig. 9. Image BSD42049, cloud C of 1763 points, HoPeS′(C) and its simplification.

Table 2 has the running time in milliseconds for the database BSD500, where
all images have 481 × 321 pixels and we used 2 thresholds in each image, see
details in [14, Appendix D]. We used a small laptop with 1.33GHz RAM 2GB
to show that the algorithm is fast for embedded systems. The C++ code is on
author’s page http://kurlin.org/projects/persistent-skeletons.php.

Images from BSD500 42049 42049 176035 176035 175083 175083 134049 134049

Time for a cloud C, ms 1022 1336 1017 1038 1066 1015 1051 1165

Points in the cloud C 2664 3604 3603 4249 3928 4950 4396 6767

Time for HoPeS′(C), ms 969 1789 1898 2629 2143 3602 3780 6259

Table 2. Time for extracting C from images in BSD500 and computing HoPeS′(C).
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We have demonstrated the following practical applications of HoPeS(C).

• Robust recognition of low quality scans in Fig. 6, 7, see more results in [14].
Such visual markers [7] can replace shop barcodes not readable by humans.

• A fast topological summary of images, see Fig. 1, 8 and more details in [14].

Fig. 10. Pipeline for building an object-wide descriptor from noisy local features
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