
Rapid mixing of subset Glauber dynamics on
graphs of bounded tree-width?

Magnus Bordewich and Ross J. Kang

Durham University, Durham, UK
m.j.r.bordewich@durham.ac.uk, ross.kang@gmail.com

Abstract. Motivated by the ‘subgraphs world’ view of the ferromag-
netic Ising model, we develop a general approach to studying mixing
times of Glauber dynamics based on subset expansion expressions for a
class of graph polynomials. With a canonical paths argument, we demon-
strate that the chains defined within this framework mix rapidly upon
graphs of bounded tree-width. This extends known results on rapid mix-
ing for the Tutte polynomial, the adjacency-rank (R2-)polynomial and
the interlace polynomial.
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1 Introduction

We analyse a subset-sampling Markov chain on simple graphs that is derived
from certain graph functions — usually, in fact, graph polynomials. We show
that this chain mixes rapidly on graphs of constant tree-width.

The graph functions P we consider are formulated using subset expansion.
An edge subset expansion formula for P is written as follows: for any simple
graph G = (V,E),

P(G) =
∑
S⊆E

w((V, S)) (1)

for some graph function w, where (V, S) denotes the graph with vertex set V and
edge set S. If the function w is non-negative, that is, w(G) ≥ 0 for all graphs G,
we refer to (1) as an edge subset weighting for P and to w as its weight function.
In fact, we shall need the weight function to be positive on all subgraphs — from
a statistical physics viewpoint, this results in a so-called ‘soft-core model’.

Before moving on, let us anchor the general formula (1) with an example that
is prominent in statistical physics, theoretical computer science, and discrete
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probability. The partition function of the random cluster model can be defined
for any G = (V,E) and parameters q, µ as

ZRC(G; q, µ) :=
∑
S⊆E

qκ(S)µ|S|, (2)

where κ(S) is the number of components in (V, S). For more on the random clus-
ter model, see an extensive treatise by Grimmett [21]. Notice that, if q, µ ≥ 0,
then w((V, S)) := qκ(S)µ|S| provides an edge subset weighting for ZRC(G; q, µ).
Under a suitable transformation, ZRC(G; q, µ) is equivalent to the Tutte poly-
nomial [43], defined for any G = (V,E) and parameters x, y as

T (G;x, y) :=
∑
S⊆E

(x− 1)r(E)−r(S)(y − 1)|S|−r(S), (3)

where r(S) is the F2-rank of the incidence matrix for (V, S). A wealth of com-
binatorial and structural information can be obtained from evaluations of this
function. The Tutte polynomial specialises to several key univariate graph poly-
nomials, including the chromatic polynomial of Birkhoff [5]. It specialises to the
Jones polynomial in knot theory [28]. By its connection with the random cluster
model, it also generalises the partition functions of the Ising [24] and Potts [38]
models1. Consult the monograph of Welsh [44] for more on these crucial con-
nections. In addition to ZRC(G; q, µ) and T (G;x, y), we shall highlight a few
other specific polynomials from the literature, but for a broad account of the
development of graph polynomials, consult the recent surveys by Makowsky [31]
and Ellis-Monaghan and Merino [13, 14].

It was shown in 1990 by Jaeger, Vertigan and Welsh [25] that, in general, for
fixed (rational) values of x and y, the evaluation of T (G;x, y) is #P-hard, except
on a few special points and curves in the (x, y)-plane. As a result, there have
been substantial efforts since then to pin down the approximation complexity
of computing T (G;x, y). For large swaths of the (x, y)-plane, it is now known
that the computation of T (G;x, y) either does not admit a fully polynomial-time
randomised approximation scheme (FPRAS) unless RP = NP, or is at least as
hard as #BIS (the problem of counting independent sets in bipartite graphs) un-
der approximation-preserving reductions, cf. Goldberg and Jerrum [19]. The sole
positive approximation result applicable to general graphs is the breakthrough
FPRAS by Jerrum and Sinclair [27] for the partition function of the ferromag-
netic Ising model — this corresponds to computation of T (G;x, y) along the
portion of the parabola (x − 1)(y − 1) = 2 with y > 1. Various approaches
have given efficient approximations in some regions of the Tutte plane for spe-
cific classes of graphs — cf. e.g. [1, 9, 29]. To obtain their seminal result, Jerrum
and Sinclair used a Markov chain Monte Carlo (MCMC) method, a principal
tool in the design of efficient approximation schemes for counting problems.
MCMC methods are widespread in computational physics, computational biol-
ogy, machine learning, and statistics. There have been steady advances in our

1 If x, y ≥ 1 or q, µ ≥ 0, then, respectively, T (G;x, y) or ZRC(G; q, µ) generalise the
partition functions of the ferromagnetic Ising and Potts models.



understanding of such random processes and in showing how quickly they pro-
duce good approximations of useful probability distributions in huge, complex
data sets. See the lecture notes of Jerrum [26] or a survey by Randall [39] for an
overview of the application of these techniques in theoretical computer science.

We postpone the precise statement of our main result, Theorem 1, as it
requires a host of definitions, but here we give a cursory description. In this
paper, we are interested in the rate of convergence to stationarity of a natural
Markov chain closely associated to a subset weighting of P (of form (1)), when
some mild restriction is placed upon the weight function w. That restriction —
which we have dubbed λ-multiplicative — is described in Subsection 2.1: for now,
we remark that some important graph polynomials and partition functions from
statistical physics (e.g. ZRC(G; q, µ) and T (G;x, y)) obey it. The state space of
our chain is the set of all edge subsets, upon which we have set up a MCMC
method using Glauber dynamics [17]. Each possible transition in the chain is
either the addition or deletion of exactly one edge to/from the subset and the
transition probabilities are defined according to the weights w((V, S)), subject
to a Metropolis-Hastings filter [22, 34]2. Our main finding is that on graphs of
bounded tree-width this Markov chain converges to the stationary distribution
in time that is polynomial in the number of vertices of the graph.

Our approach is inspired in part by the ‘subgraphs world’ in which Jerrum
and Sinclair designed their FPRAS for the partition function of the ferromagnetic
Ising model. It is also motivated by recent work of Ge and Štefankovič [16], who
introduced the R2-polynomial in an attempt to devise a FPRAS for #BIS. Their
adjacency-rank polynomial is defined for any G = (V,E) and parameters q, µ as

R2(G; q, µ) :=
∑
S⊆E

qrk2(S)µ|S|, (4)

where rk2(S) is the F2-rank of the adjacency matrix for (V, S). Using a combina-
torial interpretation of rk2 applicable only to bipartite graphs, they showed that
the edge subset Glauber dynamics (using the weighting in (4)) mixes rapidly
on trees. They conjectured that the chain mixes rapidly on all bipartite graphs,
cf. Conjecture 1 in [16]. In addition, Ge and Štefankovič showed that the Markov
chain for the (soft-core) random cluster model — i.e. weighted according to (2)
— mixes rapidly upon graphs of bounded tree-width. We have extended both
of these results under a unified framework. In particular, we show that the R2-
polynomial fits in our framework without recourse to the combinatorial inter-
pretation for bipartite graphs, and hence that the Markov chain for the R2-
polynomial mixes rapidly upon all graphs of bounded tree-width. We also remark
here that the conjectured rapid mixing of this chain on all bipartite graphs was
disproved by Goldberg and Jerrum [18].

The polynomials and Markov chains that we capture in our framework are
defined for any graph; however, we obtain rapid mixing results only on graphs of

2 A Metropolis-Hastings filter is applied in order to ensure that the resulting process
is a reversible Markov chain and thus guaranteed to converge to a unique stationary
distribution with state probabilities proportional to the weight.



constant tree-width. For brevity, we will not define tree-width here, but merely
say that it is an essential concept in structural graph theory and parameterised
complexity — see modern surveys on the topic by Bodlaender [8] and Hliněný
et al. [23]. The restriction of tree-width is commonly used in graph algorithms
to reduce the complexity of a computationally difficult problem, usually by way
of dynamic programming. For example, it is already known that many of the
polynomials covered here can be evaluated efficiently for graphs of bounded tree-
width. Independently, Andrzejak [2] and Noble [35] exhibited polynomial-time
algorithms to compute the Tutte polynomial of graphs with bounded tree-width.
Works of Makowsky and Mariño [32] and Noble [36] have significantly generalised
this, in the former case, to a wide array of polynomials under the framework of
monadic second order logic (MSOL), and, in the latter case, to the so-called
U -polynomial [37], a polynomial that includes not only the Tutte polynomial
but also a powerful type of knot invariant as a special case.

Even though many of the polynomials we refer to can be computed exactly
in polynomial time for graphs of bounded tree-width, it remains of interest to
show that the associated Glauber dynamics is rapidly mixing. One hope is that
for some polynomials the chain mixes rapidly for a wider class of graphs. There
have been significant and concerted endeavours by researchers spanning physics,
computer science and probability to determine the mixing properties of Glauber
dynamics on many related Markov chains. Spin systems have been of particular
interest; indeed, the main thrust of the work of Jerrum and Sinclair was to tackle
the partition function for the ‘spins world’ of the ferromagnetic Ising model (us-
ing a translation to the rapidly mixing ‘subgraphs world’). Many recent projects
on spin systems have been restricted to trees or tree-like graphs, cf. e.g. [4, 11,
12, 20, 33, 41].

Our primary focus in this paper is to establish results for polynomials defined
according to edge subset expansion, but we can also extend our methodology to
polynomials defined according to vertex subset expansion, which may be viewed
as the ‘induced subgraphs world’. To our knowledge, this form of Markov chain
has not been greatly examined, but it handles one important graph polynomial
that was recently introduced by Arratia, Bollobás and Sorkin [3]: the bivariate
interlace polynomial is defined for any graph G = (V,E) and parameters x, y as

q(G;x, y) :=
∑
S⊆V

(x− 1)rk2(S)(y − 1)|V |−rk2(S), (5)

where rk2(S) is the F2-rank of the adjacency matrix for G[S]. This polynomial
specialises to the independence polynomial and is intimately related to Mar-
tin polynomials. Just as for the Tutte polynomial, computation of the bivariate
interlace polynomial is #P-hard in almost the entire plane [7]. The multivari-
ate interlace polynomial, a generalisation of the interlace polynomial, can be
evaluated efficiently for graphs of bounded tree-width [10], cf. [6]. Subject to
a condition on the weightings, which we call vertex λ-multiplicativity, we es-
tablish rapid mixing for vertex subset Glauber dynamics on graphs of constant
tree-width.



For all of our results, we need that the weight function is strictly positive
for all (induced) subgraphs. Many of the classical enumeration polynomials such
as the matching, independence, clique and chromatic polynomials are captured
by the general polynomials that we mention as examples throughout this work.
However, these are ‘hard-core models’, in which some (induced) subgraphs have
a zero weighting, and hence are not included in our approach. Many of these
are evaluations that fall at the boundary of the regions that we can handle. For
example, the Tutte polynomial evaluated at the point (2, 1) counts the number
of forests of the graph. We have shown rapid mixing at all fixed points (2, 1+ δ),
for δ > 0, with a mixing time that depends on δ. It would be interesting to
consider whether the chains associated with these boundary points mix rapidly
for graphs of bounded tree-width.

The structure of this paper is as follows. In the next section, we give the
definitions that are necessary for a detailed description of the main theorem. We
give the main theorem in Section 3 and then indicate some of its consequences.
We present an outline of the proof in Section 4. In Section 5, we state how our
results extend to Glauber dynamics on vertex subsets.

2 Definitions

2.1 λ-multiplicative weight functions

In this subsection, we describe the condition we require on our graph functions P.
This condition prescribes that the weight function is multiplicative with respect
to the operation of disjoint graph union as well as “nearly multiplicative” with
respect to the operation of composition via small vertex cuts.

We use the notation λ̂ := max{λ, 1/λ}. For a graph G = (V,E), a vertex cut
K is said to separate sets V1 and V2 if (V1,K, V2) is a partition of V and there
is no edge of E that is incident to both a vertex of V1 and a vertex of V2. A
partition (E1, E2) of E is appropriate (for K) if E1 has no edge adjacent to a
vertex in V2 and E2 has no edge adjacent to a vertex in V1.

For fixed λ > 0, we say that the weight function w is λ-multiplicative, if
for any G = (V,E), any vertex cut K that separates sets V1 and V2, and any
appropriate partition (E1, E2), we have

λ̂−|K| ≤ w((V1 ∪K,E1))w((V2 ∪K,E2))

w(G)
≤ λ̂|K|. (6)

As mentioned above, if w is λ-multiplicative, then w is multiplicative with respect
to disjoint union (by taking K = ∅); furthermore, taking V2 = ∅ implies that the
addition or deletion of a few edges in the graph does not change w wildly.

2.2 Examples of valid polynomials

In this subsection, we emphasise specific examples with weight functions that
are λ-multiplicative. Let G = (V,E) be any graph, K be any vertex cut that



separates vertex subsets V1 and V2, and (E1, E2) be any appropriate partition.
We define G′ to be the disjoint union of graphs (V1∪K,E1) and (V2∪K,E2). We
could imagine forming G′ from G by splitting each vertex in K, taking incident
edges in E1 with one copy of the vertex and those in E2 with the other. It is trivial
to verify multiplicativity with respect to disjoint union for each of the weight
functions considered below. Therefore, to establish λ-multiplicativity for these
weight functions w, it will suffice to verify that λ̂−|K| ≤ w(G′)/w(G) ≤ λ̂|K|.

First, we observe that the partition function of the random cluster model for
q, µ > 0 satisfies the condition. Recalling (2), the relevant weight function is
w((V, S)) := qκ(S)µ|S|. To handle the µ|S| factor, note that the graphs G and G′

have the same number of edges. For the qκ(S) factor, the number of components
in G′ can be at most κ(G)+|K| since G′ can be obtained by splitting |K| vertices
of G. Thus, w is λ-multiplicative if we take λ := q.

This can also be seen in the context of the Tutte polynomial when x, y > 1.
Recalling (3), the relevant weight function is w((V, S)) := (x − 1)r(E)−r(S)(y −
1)|S|−r(S). As before, it is easy to take care of the (x − 1)r(E)(y − 1)|S| factor.
For the remaining ((x − 1)(y − 1))−r(S) factor, it is enough to observe that
the incidence matrix of G may be obtained from the incidence matrix of G′ as
follows. The matrix for G′ has two rows for each of the vertices in K, one from
(V1 ∪ K,E1) and one from (V2 ∪ K,E2). If we replace one of these two rows
with the sum of the two rows, we do not alter the rank; if we then delete the
other of the two rows, we change the rank by at most 1. Doing this for each
vertex in K, we obtain the incidence matrix for G, at a total change in the rank
r of the incidence matrix of at most |K|. Thus, w is λ-multiplicative if we take
λ := (x− 1)(y − 1).

Next, we see that the adjacency-rank polynomial of Ge and Štefankovič sat-
isfies the condition if q, µ > 0. Recalling (4), the relevant weight function is
w((V, S)) := qrk2(S)µ|S|. As before, it is simple to handle the µ|S| factor. For the
qrk2(S) factor, we note that the adjacency matrix of G may be formed from the
adjacency matrix of G′ by |K| row additions, followed by |K| column additions
and finally the deletion of |K| rows and |K| columns. Since we must delete both
rows and columns, the rank rk2 of the adjacency matrix may change by up to
2|K|. Thus, in this case, w is λ-multiplicative when taking λ := q2.

Now, consider the multivariate Tutte polynomial as formulated by Sokal [40],
defined for any graph G = (V,E) and parameters q,v = {ve}e∈E by

ZTutte(G; q,v) :=
∑
S⊆E

qκ(S)
∏
e∈S

ve. (7)

Under this expansion, w := qκ(S)
∏
e∈S ve is an edge subset weight function if

q > 0 and ve > 0 for any e ∈ E are fixed. We can handle the qκ(S) factor as
we did for the random cluster model partition function. For the

∏
e∈S ve factor,

observe that G and G′ have the same set of edges. Thus, w is λ-multiplicative
when taking λ := q.



Last, we discuss the U -polynomial of Noble and Welsh [37], defined for any

graph G = (V,E) and parameters y,x = {xi}|V |i=1 by

U(G;x, y) :=
∑
S⊆E

(y − 1)|S|−r(S)
|V |∏
i=1

xi
κ(i,S), (8)

where κ(i, S) denotes the number of components of order i in (V, S). If y > 1

and xi > 0 for all i, then w((V, S)) := (y − 1)|S|−r(S)
∏|V |
i=1 xi

κ(i,S) gives an
edge subset weighting. The (y − 1)|S|−r(S) factor can be handled as above. For

the
∏|V |
i=1 xi

κ(i,S) factor, observe that
∑
i |κ(i, G) − κ(i, G′)| is at most 3|K|,

since, if we obtain G′ by splitting the vertices in K, each time we split a vertex
we either change the size of a single component or split a single component
into two smaller components. Thus, taking x′ := maxi max{xi, x−1i } and y′ :=

max{y− 1, (y− 1)−1}, we see that w is λ-multiplicative when taking λ := y′x′
3
.

2.3 Glauber dynamics for edge subsets

In this subsection, we define the Markov chain associated with the edge subset
expansion formula for P. From the formulation in (1), the single bond flip chain
M on a given graph G = (V,E) is defined as follows. We start with an arbitrary
subset X0 ⊆ E and repeatedly generate Xt+1 from Xt by running the following
experiment.

1. Pick an edge e ∈ E uniformly at random and let S = Xt ⊕ {e}.
2. Set Xt+1 = S with probability 1

2 min {1, w((V, S))/w((V,Xt))} and Xt+1 =
Xt with the remaining probability.

By convention, we denote the state space of M by Ω (i.e. Ω = 2E) and its
transition probability matrix by P.

The term rapidly mixing applies to a Markov chain that quickly converges
to its stationary distribution. We make this precise here. The total variation
distance ‖ν−ν′‖TV between two probability distributions ν and ν′ is defined by
‖ν − ν′‖TV = 1

2

∑
H∈Ω |ν(H)− ν′(H)|. For ε > 0, the mixing time of a Markov

chain M (with state space Ω, transition matrix P and stationary distribution
π) is defined as

τ(ε) := max
H∈Ω
{min{t | ‖P t(H, ·)− π(·)‖TV ≤ ε}}.

In this paper, we shall say that a chainM mixes rapidly if, for any fixed ε, τ(ε)
is (upper) bounded by a polynomial in the number of vertices of the input graph.

3 Results

We are now prepared for a precise statement of the main theorem.



Theorem 1. Let G = (V,E) where |V | = n. If w is λ-multiplicative for some
λ > 0, then the mixing time of M on G satisfies

τ(ε) = O
(
n4+4(tw(G)+1)| log λ| log(1/ε)

)
(where tw(G) denotes the tree-width of G).

In Subsection 2.2, we noted some examples of polynomials with λ-multiplicative
weight functions; thus, Theorem 1 implies the following.

Corollary 1. Let G = (V,E) where |V | = n. In the following list, we state
conditions on the parameters which guarantee rapid mixing of the single bond
flip chain on G associated with the stated polynomial and weighting. We also
state the mixing time bound.

1. For fixed q, µ > 0 and the weighting (2) of ZRC(G; q, µ), the mixing time
satisfies

τ(ε) = O
(
n4+4(tw(G)+1)| log q| log(1/ε)

)
.

Equivalently, for fixed x, y > 1 and the weighting (3) of T (G;x, y), the mixing
time satisfies

τ(ε) = O
(
n4+4(tw(G)+1)| log((x−1)(y−1))| log(1/ε)

)
.

2. For fixed q, µ > 0 and the weighting (4) of R2(G; q, µ), the mixing time
satisfies

τ(ε) = O
(
n4+8(tw(G)+1)| log q| log(1/ε)

)
.

3. For fixed q > 0 and ve > 0 for all e and the weighting (7) of Z(G; q,v), the
mixing time satisfies

τ(ε) = O
(
n4+4(tw(G)+1)| log q| log(1/ε)

)
.

4. For fixed y > 1 and xi > 0 for all i and the weighting (8) of U(G;x, µ), the
mixing time satisfies

τ(ε) = O
(
n4+4(tw(G)+1)|log(y′x′3)| log(1/ε)

)
where x′ = maxi max{xi, x−1i } and y′ = max{y − 1, (y − 1)−1}.

Here, we remark that Ge and Štefankovič obtained part 1 above and showed
part 2 above in the special case of trees. Parts 2–4 directly extend these findings,
and our main theorem considerably broadens the scope of mixing time bounds
for subset Glauber dynamics on graphs of bounded tree-width.



4 Proof outline

Due to page restrictions, the detailed proof of Theorem 1 has been postponed
to a full journal version and can be found on arXiv, but we give a brief outline.

Although our main result is stated in terms of tree-width, we do not treat
tree-width directly but instead use linear-width, a more restrictive width param-
eter introduced by Thomas [42], which is nearly equal to path-width pw [15].
This strategy was also employed by Ge and Štefankovič in the two specific cases
mentioned above. For any graph G = (V,E), an ordering (e1, . . . , em) of E has
linear-width at most `, if, for each i ∈ {1, . . . ,m}, there are at most ` vertices
that are incident to both an edge in {e1, . . . , ei−1} and an edge in {ei, . . . , em}.
The linear-width lw(G) of G = (V,E) is the smallest integer ` such that there is
an ordering of E with linear-width at most `. The motive for using linear-width is
that it implies an ordering of the edges which we can then use to define canonical
paths between pairs of edge subsets. Then we show that λ-multiplicativity is the
general condition under which we can bound the congestion of these canonical
paths. The use of canonical paths is a standard technique for obtaining a bound
on the mixing time of MCMC methods — see the lecture notes of Jerrum [26]
for an expository account of this approach.

5 Vertex subset mixing for bounded tree-width

Until now, we had been considering edge subsets (subgraphs) and Glauber tran-
sitions which change one edge at a time. In this section, we consider vertex
subsets (induced subgraphs) and transitions that involve one vertex at a time
— each such transition can affect many edges, up to the maximum degree of G.

A vertex subset expansion formula for P is written as follows: for any simple
graph G = (V,E),

P(G) =
∑
S⊆V

w(G[S]) (9)

for some graph function w, where G[S] denotes the subgraph of G induced by
S. If the function w is non-negative, we refer to (9) as an vertex subset weighting
for P and to w as its weight function. From such a weighting, we define the
single site flip chain M′ on a given graph G = (V,E) as follows. We start with
an arbitrary subset X0 ⊆ V and repeatedly generate Xt+1 from Xt by running
the following experiment.

1. Pick a vertex v ∈ V uniformly at random and let S = Xt ⊕ {v}.
2. Set Xt+1 = S with probability 1

2 min {1, w(G[S])/w(G[Xt])} and Xt+1 = Xt

with the remaining probability.

For fixed λ > 0, we say that the weight function w in (9) is vertex λ-
multiplicative, if for any G = (V,E) and K a vertex cut that separates sets



V1 and V2 with respect to G, we have

λ̂−|K| ≤ w(G[V1])w(G[V2 ∪K])

w(G)
≤ λ̂|K|. (10)

The main result of this section is the following.

Theorem 2. Let G = (V,E) where |V | = n. If w is vertex λ-multiplicative for
some λ > 0, then the mixing time of M′ on G satisfies

τ(ε) = O
(
n2+4(tw(G)+1)| log λ| log(1/ε)

)
.

Again, due to space limitations, we have omitted the proof, but note that it
follows a pattern similar to what is described in Section 4, with the exception
that instead of linear-width it is convenient to work with vertex-separation (a
closely related width parameter, shown by Kinnersley [30] to be equal to path-
width).

Recalling (5), for fixed x, y > 1, w(G[S]) := (x − 1)rk2(S)(y − 1)|V |−rk2(S)

gives a vertex subset weighting for q(G;x, y). With arguments similar to those
given in Subsection 2.2, it can be verified that this weight function is vertex
λ-multiplicative. By Theorem 2, it follows that a natural Markov chain derived
from the bivariate interlace polynomial — a chain that has not been studied ex-
tensively, as far as we are aware — mixes rapidly on tree-width-bounded graphs.

Corollary 2. Let G = (V,E) where |V | = n. If x, y > 1 are fixed, then for the
single site flip chain on G associated with the weighting (5) of q(G; q, µ), the
mixing time satisfies

τ(ε) = O
(
n2+8(tw(G)+1)| log((x−1)/(y−1))| log(1/ε)

)
.

6 Conclusion

In this work, we have developed a new general framework of graph polynomials
and Markov chains defined via subset expansion formulae for these polynomials,
and demonstrated that their dynamics mix rapidly for graphs of bounded tree-
width. On a graph G with n vertices, we have shown a mixing time of order
nO(1)eO(pw(G)) = nO(tw(G)). Our results apply to many of the most prominent
and well-known polynomials in the field. The mixing times of our processes
have, respectively, exponential and super-exponential dependencies upon path-
width and tree-width. We ask if this could be improved, in particular, to achieve
something akin to fixed-parameter tractability in terms of tree-width.
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