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Abstract A first integral approach, derived in an analogous fashion to Maxwell’s
use of potential fields, is employed to investigate the flow characteristics, with a
view to minimising friction, of shear-driven fluid motion between rigid surfaces in
parallel alignment as a model for a lubricated joint, whether naturally occurring or
engineered replacement. For a viscous bilayer arrangement comprised of immiscible
liquids, it is shown how the flow and the shear stress along the separating interface
is influenced by the mean thickness of the layers and the ratio of their respective
viscosities. Considered in addition, is how themethod can be extended for application
to the more challenging problem of when one, or both, of the layers is a viscoelastic
material.

Keywords Lubrication theory · Finite elements · Complex variable analysis ·
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1 Introduction and Model Assumptions

Hydrodynamic lubrication [1, 2] is one of the classic topics contributing to the field
of fluid mechanics that is of considerable relevance; for example, in technological
terms in connection with the design of lubricated contacts such as plain bearings or
ball joints [3] and more specifically, in bio-engineering terms, in the context of joint
replacement [4]. In the present work, amodel, based on a potential field description is
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presented for the case of a lubricated contact consisting of two contiguous immiscible
layers, locatedoneon topof the other. In a general sense, both layers canbe considered
as purely viscous liquids and/or viscoelastic layers, depending on the application of
interest.

Different aspects of film flows involving two or more immiscible liquid layers
have been investigated in [5–7] with a focus on both confined shear-driven flows, the
topic of interest here, and free-surface flows due to their relevance in the production
and deposition of functional coatings [8]. Current studies addressing the material
modelling of articular cartilage, see for example [9], reveal an appreciable complexity
of material behaviour, which among other things includes chemo-elastic effects and
anisotropy; here standard simplified viscoelasticmodels are considered as a first step.

The model problem considered is that of an idealised system of two-dimensional
steady Couette flow, as illustrated in Fig. 1: the lower, flat surface translates with
speed v0 while the upper, corrugated, one remains stationary. The region separating
the surfaces, which are in parallel alignment, is taken to be filled with contigu-
ously contacting, immiscible liquids or viscoelastic layers, having different dynamic
viscosityη andYoung’smodulus E ; the case shown is for a bilayer system,mimicking
the more general case of a joint in which the synovia meets a protective layer
exhibiting viscoelastic properties. While at outset the general case is formulated,
the focus of the results presented and discussed subsequently is restricted to the
simpler case of two Newtonian liquid layers.

The two-phase system is defined in terms of a number of non-dimensional param-
eters, the most relevant of these being the ratios of the two layer thicknesses, H1/H2,
and of their fluid properties, namely the viscosities η1/η2 and the densities ρ1/ρ2.
The shape of the periodic profile defining the upper corrugated surface is given by
the function:

b(x) = −2a
ln(2 − 2s cos x) − ln

(
1 + √

1 − s2
)

ln(1 + s) − ln(1 − s)
. (1)

Fig. 1 Model of a periodic two-phase system (a), consisting of a layer of viscous liquid lying on
top of a viscoelastic one, both confined between non-compliant rigid surfaces; the lower one is flat
and translating while the upper one is profiled/contoured and stationary. The model is based on the
natural form of biological joints (b), [10] and is a key feature of the planned investigation
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Fig. 2 Surface profile shapes obtained for different values of the shape parameters. The red curve,
with s = 0.9, results in peak asperities while the blue one, with s = −0.9, (phase shift π ) leads to
smoother ones. The cosine function (green curve) is shown as a reference for the limit s → 0

It depends on two parameters: the dimensionless amplitude a = 2π A/λ and
s ∈ (−1, 1) determining the shape. Figure 2 illustrates three potential shapes, demon-
strating the role of the shape parameter s. In the limiting case s → 0 the surface shape
becomes a cosine function, b(x) = −a cos x , for positive values of s the corrugations
form pronounced peak asperities while for negative values they result in a smoother
levelling.

If the upper layer is assumed to be viscoelastic, the Deborah number De =
η1v0/Eλ enters the problem as an additional parameter, while the Reynolds number
is so small that it can be taken to be zero.

The focus here, from a bio-engineering viewpoint, is the determination of the
normal and shear stresses along the interface separating the two layers: normal
stresses, especially when periodically varying with time, have a positive influence on
the nutrient supply to the articular cartilage by promoting the exchange of substances
between the nutrient-containing synovial fluid and the partially porous articular carti-
lage; shear stresses, on the other hand, cause wear and thus have a detrimental effect
[4].

2 Mathematical Formulation

The field equations for the different layer types, together with the boundary and
interface conditions, are formulated below, making use of the first integral approach
[11–13]. The benefits of the latter are: (i) an elegant implementation for arbitrary
rheological models; (ii) a beneficial form for the dynamic condition at the interface
separating the two layers.

2.1 Field Equations for Newtonian Layer Types

When one, or both layers, is assumed to be an incompressible viscous Newtonian
liquid, resolving the associated flow requires a solution of the governing Navier-
Stokes equations and accompanying continuity equation:



362 M. Scholle et al.

ρ(�v · ∇)�v = −∇ p + η∇2�v, (2)

∇ · �v = 0, (3)

respectively, to obtain the velocity �v = vx (x, y)�ex + vy(x, y)�ey and scalar pressure
p = p(x, y) fields. Defining a complex coordinate and complex velocity as:

ξ = x + iy, (4)

v = vx + ivy, (5)

and introducing the scalar potential� as an auxiliary unknown, facilitates integration
of Eq. (2), leading finally to the following two complex field equations [14]:

ρ

2
v2 = 2η

∂v

∂ξ̄
− 4

∂2�

∂ξ̄ 2
, (6)

ρ

2
v̄v = −p + 4

∂2�

∂ξ̄∂ξ
. (7)

The continuity equation is fulfilled identically on introduction of the streamfunc-
tion Ψ , according to v = −2i∂Ψ/∂ξ̄ .

Note that the above approach originates from two-dimensional elasticity theory
[15, 16], where the scalar potential � plays the role of Airy’s stress function. This
prominent complex variable approach was adopted subsequently by several authors,
e.g. [17], for the solution of Stokes flow problems, before being generalised for the
case of inertial flows in [11].

2.2 Field Equations for Viscoelastic Layer Types

A complex variable formulation of the governing evolution equations, as in the case
of Newtonian liquids and Hookean materials, is also available for any generalised
material [18] with an elegant embodiment of the respective rheological model equa-
tions in the first integral approach. By applying the complex transformations (4)
and (5) to the general momentum balance in place of the Navier-Stokes equations
and following the procedure described in [14], one obtains the following complex
equations:

ρ

2
v2 = σ− − 4

∂2�

∂ξ̄ 2
, (8)
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Table 1 Substitution rules for the implementation of generalised rheological models

Rheological models σ σ̇ E ε̇

w.r.t. Eq. (8) σ− v
∂σ−
∂ξ

+ v̄
∂σ−
∂ξ̄

2 ∂u
∂ξ

2 ∂
∂ξ

w.r.t. Eq. (9) σ0 v ∂σ0
∂ξ

+ v̄ ∂σ0
∂ξ̄

∂u
∂ξ

+ ∂ ū
∂ξ̄

∂v
∂ξ

+ ∂v̄

∂ξ̄

ρ

2
v̄v = σ0 + 4

∂2�

∂ξ̄∂ξ
, (9)

where σ0 = σx+σy

2 is the isotropic part of the stress tensor of the respective material,
while the complex quantity σ− = σx−σy

2 + iτxy is its traceless part. The adoption of

a corresponding rheological model, given as a relationship between the stress σ , the
deformation ε, together with their time derivatives, can be implemented by formal
substitutions according to the rules listed in Table 1.

Here u = ux + iuy denotes the complex displacement field. Note also, the
kinematic constraint v = v ∂u

∂ξ
+ v̄ ∂u

∂ξ̄
between the velocity and displacement fields.

Implementation of the above methodology is demonstrated for a Kelvin-Voight
model σ = Eε + ηε̇ with Young’s modulus E and viscosity η [19]. Following
substitution, according to Table 1, Eqs. (8) and (9) become:

ρ

2
v2 = 2E

∂u

∂ξ̄
+ 2η

∂v

∂ξ̄
− 4

∂2�

∂ξ̄ 2
, (10)

ρ

2
v̄v = E

(
∂u

∂ξ
+ ∂ ū

∂ξ̄

)
+ η

(
∂v

∂ξ
+ ∂v̄

∂ξ̄

)
+ 4

∂2�

∂ξ̄∂ξ
, (11)

which are generalised forms of Eqs. (6) and (7), respectively; the latter equations
result in the limit case of a viscous liquid when E = 0.

Note that the above procedure can be applied to any arbitrary rheological model,
using the formal substitution rules in Table 1 with respect to the general complex
momentum Eqs. (8) and (9).

2.3 Boundary and Interface Conditions

Along both the stationary profiled surface, given by the function b(x), and themoving
flat surface no-slip/no-penetration conditions have to be fulfilled:

u(x, b(x)) = 0, (12)

v(x, H1 + H2) = v0. (13)
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Periodic boundary conditions at inflow and outflow, to the left and right, are
enforced. At the interface separating the layers, y = f (x), the shape of which is
unknown a priori, the velocity field has to be continuous:

[[v]] = 0, (14)

with the double square brackets denoting the discontinuity of the associated term.
Moreover, the kinematic boundary condition there:

vy − f ′(x)vx = 0, (15)

can be used to determine the shape of the interface. Finally, the dynamic interface
condition:

[
T

2
− T

1

]
· �n = σSκ �n, (16)

accounts for the equality in stress at the interface; σ S is the interfacial tension, κ the
curvature, �n the vector normal to the interface and T

1,2
the stress tensor associated

with thematerials forming the respective layers.Using a conventional description, the
treatment of the dynamic interface condition is a challenging task, since the viscous or
viscoelastic stresses present lead to combinations of different derivatives of different
components of the displacement and velocity field and therefore to a mathematically
unfavourable form.Using the first integral approach, the unfavourable terms involved
in the interface condition (16) can be replaced by secondorder derivatives of the scalar
potential � and the interface condition integrated [14], leading finally to the simple
jump condition:

[[
∂�

∂ξ̄

]]
= σSn

4
, (17)

where n = nx + iny is the complex equivalent of the normal vector. It is shown in
[14] that, after re-transformation to a real-valued representation, the two conditions
resulting from (17) can be formulated in standard Dirichlet/Neumann form. Among
various other benefits, the reduction of the complicated dynamic interface condition
(16) to the significantly simpler jump condition (17) for the potential � justifies its
introduction as an additional auxiliary field and demonstrates its use.

3 Methods of Solution

The problem is formulated in three different ways: via a Lubrication approxima-
tion allowing for an analytical solution; a numerical finite-element FE approach; a
semi-analytical one benefitting from the use of complex variables. The FE approach
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enables Reynolds number effects to be investigated and, more generally, the validity
of the two simpler models to be assessed. In terms of the adopted first integral
approach, the standard mathematical form of the jump conditions (17) is advanta-
geous, since the resulting friction coefficient can be calculated conveniently from the
auxiliary potential field � based on the first integral formulation without the need to
approximate velocity derivatives in a post-processing step as would be the case if a
primitive variable formulation had been adopted.

3.1 Lubrication Approximation

The first integral Eq. (6) can be simplified based on a Lubrication approximation,
noting that the same applies to the Navier-Stokes equations, [20–23], leading to
a single equation for the local film thickness; the velocity field to leading order
being locally parabolic. The requirement underpinning its applicability in the case
of surface contours exhibiting rapid changes is that the commensurate interface
disturbance is slowly varying.

Applying the Lubrication approximation to the real-valued decomposed Eq. (6)
leads to:

ρ

2

(
v2
x − v2

y

) + ∂

∂x

[
∂�

∂x
− ηvx

]
− ∂

∂y

[
∂�

∂y
− ηvy

]
= 0,

ρvxvy + ∂

∂y

[
∂�

∂x
− ηvx

]
+ ∂

∂x

[
∂�

∂y
− ηvy

]
= 0. (18)

Next, by neglecting ∂vy/∂x compared to ∂vx/∂y and omitting inertial terms, the
set of PDEs is reduced to one that can be solved by successive integration, as shown
in detail in [24], leading to the following general solution:

vx = 1

2
F ′′
1 (x)y2 + F ′

2(x)y + F3(x), , (19)

ψ = F ′′
1 (x)

y3

6
+ F ′

2(x)
y2

2
+ F3(x)y + F4(x), (20)

for the velocity vx and the streamfunction ψ , involving four integration functions
F1(x), F2(x), F3(x) and F4(x); while the gradient of the potential results in:

2

η

∂�

∂x
= 1

2
F ′′
1 (x)y2 + F ′

2(x)y + F3(x) + F1(x),

2

η

∂�

∂y
≈ F ′

1(x)y + F2(x). (21)
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Note that four integration functions occur with respect to each layer m, thus for
a bilayer system eight functions Fmi (x) with m = 1, 2 and i = 1, . . . , 4 have to be
considered. Together with the shape of the interface, f (x), nine unknown functions
have to be determined from the boundary and interface conditions (12)–(15) and (17),
considering that each of the complex conditions delivers two real-valued conditions
after decomposition into real and imaginary parts.

By successive elimination of unknown functions, the resulting set of nine ODEs
can be reduced to three nonlinear ODEs for the functions F11(x), F21(x) and f (x).
In non-dimensional form, taking L = λ/2π as the characteristic length with λ the
wavelength and v0 as a characteristic velocity, the resulting equations read:

2Q2

h − f (x)
− 2Q1

f (x) − b(x)
− [ f (x) − b(x)]2

6
F ′′
11(x) + [h − f (x)]2

6
F ′′
21(x) = 1

(22)

(1 − n)

[
2Q1

f (x) − b(x)
+ [ f (x) − b(x)]2

6
F ′′
11(x)

]
+ F21(x) − nF11(x) = 0 (23)

Q2

[h − f (x)]2
+ nQ1

[ f (x) − b(x)]2
+ n

f (x) − b(x)

3
F ′′
11(x)

+ h − f (x)

3
F ′′
21(x) = 1

h − f (x)
(24)

where Q1 = ψ(x, f (x)) and Q2 = ψ(x, h)−Q1 are the constant partial flow rates of
the two different layers and n = η1/η2 is the viscosity ratio. In contrast to the conven-
tional Lubrication model derived starting from the original Navier-Stokes equations
leading to the well-known Reynold’s equation [3], the first integral approach yields
the equation set (22)–(24) comprising three equations for the interface shape f (x)
and the two functions F11(x), F21(x) which are connected with the curvatures of
the respective velocity profiles within the two layers. Having once determined these
three functions by solving (22), (23) and (24), the streamfunction results for the two
layers, as:

ψ(1) = [y − b(x)]2

2

[
y − f (x)

3
F ′′
11(x) + 2Q2

[ f (x) − b(x)]2

]
,

ψ(2) = Q1 +
[
1 − (h − y)2

[h − f (x)]2

]
[Q2 − h + f (x)]

+ (h − y)2

6
[y − f (x)]F ′′

21(x) , (25)

where the numbers 1, 2 in the brackets denote the respective layer.
The above set of nonlinear equations, (22), (23) and (24), can be solved numeri-

cally in their given form or asymptotically after linearization, as shown below. The
latter approach is briefly demonstrated in the following. By introducing:
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ϕ(x) := f (x) − h1, (26)

as the deviation of the interface from its mean value and assuming that the functions
b(x), ϕ(x), F ′′

11(x) and F ′′
21(x) depend linearly on the amplitude a of the profiled

upper surface, an asymptotic expansion of Eqs. (22) and (24) with respect to powers
of a leads, to zeroth order, to:

Q1 = h1
h1 + nh2

h1
2

,

Q2 = 2h1 + nh2
h1 + nh2

h2
2

, (27)

as solutions for the flow rates in the case of bilayer flow between two parallel planar
walls. The first order contribution of the same equations resulting from linearization
with respect to a:

h1
3

(h1 + nh2)F
′′
11(x) = 2h1 + nh2

h1(h1 + nh2)
[ϕ(x) − b(x)] + 3h1 + 2nh2

h2(h1 + nh2)
ϕ(x),

h2
3

(h1 + nh2)F
′′
21(x) = −n[ϕ(x) − b(x)]

h1 + nh2
− h21 + 4nh1h2 + 2n2h22

h22(h1 + nh2)
ϕ(x), (28)

allow the two functions F ′′
11(x) and F ′′

21(x) to be expressed in terms of ϕ(x) and b(x).
By computing the linear part of (23), taking the second order derivative with respect
to x and eliminating F ′′

11(x) and F ′′
21(x) by means of (28), one ends up with a second

order ODE of the form:

A1ϕ
′′(x) + A2ϕ(x) = A3b

′′(x) + A4b(x), (29)

with the four coefficients given by:

A1 = −(1 − n)
(
3h21 + 2nh1h2 − nh22

)

A2 = 6

(
h1
h2

+ nh2
h1

)2

+ 12n

[
2
h1
h2

+ (1 + n)

(
1 + h2

h1

)]

A3 = n(1 − n)h22

A4 = 6n

[
1 + 2

h2
h1

+ n
h22
h21

]
(30)

Since the above ODE (29) is linear and of second order, it allows for a closed form
analytic solution for any prescribed profile shape b(x). Note that the latter need not
to be periodic at this stage; apart from the examples considered in the results section,
any profile shape can be considered, including step and trench geometries as in [24].
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3.2 Finite Elements Approach

For validation purposes numerical calculations are obtained, in the case of two
viscous layers, by using existing and established practices based on classical FE
formulations for the original Eqs. (2) and (3) in terms of “primitive variables”, namely
velocity and pressure, see e.g. [25, 26] or [27]; an alternative approach would have
been to use a streamfunction and vorticity formulation as adopted by [28, 29] or [30].

A challenging task is the a priori unknown shape f (x) of the interface sepa-
rating the two layers, requiring an iterative approach in which the calculation
for the two system components, no matter whether they are fluid or viscoelastic,
is carried out separately, assuming a starting value for f (x) and calculating
the velocity/displacement field for both layers without considering the kinematic
boundary condition (15). Following this, a new interface shape f (x) is calculated
separately as the limiting streamline. The iteration process is repeated until either
the change in the interface shape from one iteration step to the next falls below
a prescribed tolerance or if the ratio of the normal velocity to the tangential one
along the current interface shape is smaller than a tolerable value, typically 0.25%
[31]. Implementation of the methodology was performed using standard libraries
for efficient FE Galerkin solvers, making use of the packages ‘numpy’, ‘scipy’ and
‘matplotlib’, accessed via Python and the ‘Triangle’ mesh generator [32].

3.3 Complex-Variable Approach with Spectral Solution
Method

For completeness and different to the above aforementioned approaches, direct use
can be made of the complex formulation (10) and (11) of the field equations. On
neglecting the nonlinear inertial terms, Eq. (10) becomes integrable with respect to
ξ̄ , implying:

Eu + ηv = 2
∂�

∂ξ̄
− 4g0(ξ), (31)

containing the integration function g0(ξ). After inserting this into Eq. (11), the
identity:

g′
0(ξ) + g′

0(ξ) = ∂2�

∂ξ̄∂ξ
, (32)

is obtained,which is again integrable. Further integration and noting that the potential
� is real-valued, finally leads to:

� = 2	[
ξ̄g0(ξ) + g1(ξ)

]
, (33)
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yielding a second integration function g1(ξ). Thus, the entire problem has been
reduced to one of determining the two holomorphic functions g0(ξ) and g1(ξ),
frequently referred to as Goursat functions.

For the incompressible flow of a Newtonian liquid v = −2i∂ψ/∂ξ̄ and E = 0, in
which case Eq. (31) can be integrated a second time leading, together with expression
(33), to the advantageous form:

� + iηψ = ξ̄g0(ξ) + g1(ξ), (34)

of the solution for both the streamfunction and the scalar potential [12].
Since the Goursat functions are functions of only one complex variable, the math-

ematical problem is elegantly reduced from a two- to a one-dimensional problem.
While in the classical literature a purely analytical approach via conformal mappings
is preferred, which is limited to finding approximate solutions for simple geome-
tries, a spectral method based on a Fourier expansion of either the Goursat functions
directly or their boundary values enables fulfillment of the boundary conditions for
arbitrary profile shapes with arbitrary accuracy, depending of the truncation order of
the Fourier series. Although not considered in the context of the result presented and
discussed below, further details of the use of this elegant semi-analytical method and
its application to free surface flows and Couette flows for Newtonian liquids can be
found in [31, 33, 34].

4 Results

In the present work bilayer flow is explored, for a stationary upper surface having
a particular contoured shape, utilising the Lubrication approach with the results
validated via corresponding FE-calculations.

4.1 Sinusoidal Upper Surface Shapes

Assuming a sinusoidally shaped profile for the upper stationary surface, b(x) =
−a cos x , resulting as the limit case s → 0 of the more general shape (1), the
solution of the ODE (29) is obtained straightforwardly by assuming a corresponding
harmonic form for the interface shape, i.e.: ϕ(x) = −ϕ̂a cos x , with the amplitude
factor ϕ̂ resulting in:

ϕ̂ = A4 − A3

A2 − A1
, (35)
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andwith the coefficients A1, . . . , A4 given according to (30). From the above solution
the interface function f (x) and the two functions F11(x), F21(x) are obtained from
(26) and (28) and finally the streamfunction from (25).

This closed form analytic solution for a viscous bilayer flow is visualised via
streamlines in the left column of Fig. 3 for a fixed thickness ratio of h1/h2 = 2/3
and a fixed amplitude a = 1/2 for varying viscosity ratio n. Corresponding FE
solutions are provided in the right column.

The calculations reveal a clear dependence of the interface shape on the viscosity
ratio n: if the viscosity η1 of the layer adjacent to the profiled surface is much larger
than the viscosity η2 of the layer adjacent to the planar translating one, the interface
shape mimics the upper surface profile. Comparing the resulting flow for n = 2 with
the corresponding one for n = 500, a minimal change only is apparent, indicating
that for a very large ratio a limit case exists. If, vice versa, the viscosity of the lower
layer is larger than the viscosity of the upper one, the interface becomes smoother.
For n with a very small value, the second layer acts effectively as a continuation of
the translating planar surface and the interface approaches a straight line. For the

Fig. 3 Streamline plots of bilayer flow for the case of a sinusoidally profiled upper surface, with
fixed geometry and varying viscosity ratio. The analytical results stem from the linearized Lubri-
cation approximation (left column) and are compared to their corresponding FE solutions (right
column)
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Fig. 4 Resulting shear stress along the interface of a bilayer flow over one wavelength; the layer
thicknesses are h1 = 1.2, h2 = 1.8 and n = 1/3, for two different amplitudes, a = 0.1 (left) and a =
0.3 (right), calculated via the Lubrication and FE approaches

present geometry this induces the onset of a small eddy in the troughs of the profiled
surface, which is a well-known observation in monolayer Couette flow, see e.g. [35],
or [36].

The above results show that the solution obtained via an asymptotic analysis,
although slightly overestimating the slope of the interface shape, leads to a good
approximation for bilayer flow in the presence of a sinusoidally profiled surface; its
limitations are due primarily to the prerequisite of a small corrugation amplitude a.

Additionally, one has to keep inmind that the lubrication analysis is effectively a long-
wave approximation [21] requiring the film thickness not to exceed the wavelength
of the upper surface profile.

As mentioned in the introduction, the shear stress τ f along the interface y = f (x)
is of particular interest and can, in general, be calculated as:

τ f = 2η

[
∂v

∂y
− ∂u

∂x

]
f ′(x)

1 + f ′(x)2
+ η

[
∂u

∂y
+ ∂v

∂x

]
1 − f ′(x)2

1 + f ′(x)2
. (36)

Two examples of the resulting distribution of the shear stress along the interface
over one wavelength of the bilayer flow are presented in Fig. 4, for the same layer
thicknesses h1 = 1.2 and h2 = 1.8 considered when generating the streamline
patterns for the flows in Fig. 3 but with a viscosity ratio n = 1/3 and for two
different profile amplitudes.

As expected, the maximum shear stress coincides with the peak value of the
upper surface profile where the local film thickness is a minimum. Furthermore, for
the smaller of the two amplitudes, a = 0.1, the agreement between the analytically
calculated shear stress and the comparative FE solution is excellent; while for the
larger amplitude, a = 0.3, the shear stress is underestimated by the Lubrication
approach.

4.2 Inharmonic Periodic Upper Surface Profiles

Due to the linearity of the ODE (29), the result obtained for sinusoidally profiled
upper surfaces can be adapted to generally periodic profiles by utilizing a spectral
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decomposition:

b(x) = a
∞∑
k=1

βk cos(kx), (37)

of the respective profile shape function. For the shape given by Eq. (1), the Fourier
coefficients read [37]:

βk =
4
(
1 − √

1 − s2
)k

k[ln(1 + s) − ln(1 − s)]sk
. (38)

This allows the ODE (29) to be solved separately for each spectral component and
the writing of the solution for the interface shape as the superposition:

ϕ(x) = a
∞∑
k=1

ϕkβk cos(kx), (39)

where:

ϕk = A4 − k2A3

A2 − k2A1
. (40)

FE solutions were generated in the same manner as above. Figure 5 shows the
streamline patterns obtained for a bilayer flow in the presence of an upper surface
profile given by the analytic form (1), with a = 0.5 and a shape parameter s = 0.9
and as before layer thickness of h1 = 1.2 and h2 = 1.8, for three different values
of n. The corresponding interface shape given by the Lubrication approximation is
shown as a dashed line in each case.

As can be seen the results obtained are qualitatively similar to those of Fig. 3 for
the case of a sinusoidally shaped upper surface profile: for the larger of the three n
values the interface disturbance is greater, while for the smaller of the two n values
the interface tends to a straight line when n = 0.05, and for which case distinct
eddies are observed to exist in the troughs of the profiled surface. As for the case of a
sinusoidally profiled upper surface, it can be seen that the curvature of the interface
is overestimated by the Lubrication approach.

5 Conclusions and Perspectives

Three different approaches are presented as solutions to the problem of bilayer flow
for the case of two immiscible Newtonian liquids confined between an upper profiled
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Fig. 5 Streamline plots for bilayer flow, obtained using the FE approach, in the presence of an inhar-
monic upper surface profile, with fixed geometry and three different viscosity ratios. The interface
shape in each case, obtained analytically via the Lubrication approximation with linearization, is
shown for comparison purposes as a dashed line

surface at rest and a lower translating planar surface. The FE approach enables suffi-
ciently accurate solutions of the Navier-Stokes equations to be obtained, that provide
a reliable means of validating the predictions of the other two methods. The latter
originate from a potential-based first integral formulation of Navier-Stokes equation.
In the present work only the Lubrication approach in combination with linearization
of the resulting ODEs is considered. This allows for closed form analytic solutions,
which are compared in detail with corresponding FE solutions. Although overes-
timating the curvature of the interface between the two fluid layers and underesti-
mating the shear stress along the latter, the Lubrication approach provides results
of quantitatively acceptable accuracy if the amplitude of the profiled upper surface
is sufficiently small. A potential improvement of the method could be realised by
solving the nonlinear Eqs. (22), (23) and (24) without linearization.
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For both biomedical and advanced technological applications, the consideration
of non-Newtonian materials is an essential next step. In this context the complex
variable approach outlined above provides an interesting perspective towards the
implementation of viscoelastic models within a first integral framework; further
details of which will appear in forthcoming articles.
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