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Abstract 

Many plants experience freezing temperatures that can be damaging and even lethal. Current climate 

projections suggest that freezing events are likely to increase in early autumn and late spring, at times 

when plants are unprepared to deal with them. Previous literature has highlighted specific mechanical 

properties of the plant cell wall that may impact upon freezing tolerance. For example, the limiting 

pore size of the cell wall can influence ice nucleation and growth, whilst cell-wall stiffness can alleviate 

damage from freeze-induce dehydration. More recently, there is increasing evidence that the wall 

undergoes major modifications in order to prepare for freezing stress, with the observation that cell-

wall thickness increases and differential regulation of genes encoding cell-wall modifying enzymes 

occurs after exposure to cold temperatures. These findings suggest that cell-wall structure or 

composition are necessary and contribute to plant freezing tolerance. With the advent of molecular 

genetic techniques, we can now explore in further detail what aspects of the cell wall are important to 

prevent freezing damage, and identify targets to develop plants with enhanced freezing tolerance in 

the future.  
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1 Introduction 

Changing environmental conditions can have major impacts on plant survival and crop productivity. 

As sessile organisms, plants are unable to avoid the variety of biotic and abiotic stresses experienced 

throughout their lifecycle and thus must protect themselves against damage. Unlike animal cells, plant 

cells are characterised by the presence of a cell wall (CW); a three-dimensional matrix surrounding 

plant protoplasts (McNeil et al., 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993) that provides 

strength and integrity to the cell as well as facilitating growth, cell differentiation, intercellular 

communication and water movement (Cosgrove, 2005). The CW defines cell shape (Sapala et al., 

2018) and contributes to a range of mechanical properties of specialised cell types, providing, for 

example, guard cells with the ability to open and close stomatal pores (Woolfenden et al., 2018). The 

wall is also a first line of defence against biotic stress, acting as a barrier to infecting microbes 

(Hamann, 2012). CW composition is highly varied between plant species as well as between different 

tissues (Burke et al., 1974; Knox, 2008; Rancour, Marita and Hatfield, 2012), but is generally 

comprised of three distinct sections identified via their polysaccharide content. The middle lamella 

(ML) and the primary cell wall (PCW) are secreted from the cell first; the ML is a shared layer rich in 

pectin that facilitates cell-cell adhesion, amongst other functions (Brett and Waldron, 1996; Zamil and 

Geitmann, 2017), whilst the PCW is formed of a fibrous network of cellulose microfibrils embedded in 

a matrix of pectic and hemicellulosic polysaccharides and protein (O’Neill and York, 2003). The 

secondary cell wall (SCW) is not synthesised in all cells but restricted to those no longer expanding 

and requiring supplementary strength such as sclerenchyma, tracheids and xylem vessels (Meents, 

Watanabe and Samuels, 2018). Cellulose makes up approximately 60% of the SCW and is 

structurally different from PCW cellulose due to a higher degree of crystallinity and polymerisation, 

resulting in microfibrils that are stronger and more rigid (McNeil et al., 1984). Approximately 30% of 

the SCW is lignin (Campbell and Sederoff, 1996) and the final major component is hemicelluloses, 

which can form up to 40% of the wall dependent on species and cell type (Scheller and Ulvskov, 

2010). 

The CW is a dynamic structure that undergoes constant remodelling in response to growth signals 

and to a variety of external stimuli that include biotic and abiotic stresses (Hamann, 2012; Malinovsky, 

Fangel and Willats, 2014; Le Gall et al., 2015; Ezquer et al., 2020). This would suggest that its 

structure and composition need to be customised to protect the cell effectively from whatever 
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condition is facing the plant at any one time. Many of these changes to CWs that occur in response to 

external stress are brought about by transcriptional regulation of CW genes (Tenhaken, 2015; 

Houston et al., 2016). Several studies have highlighted an extensive role for the CW in abiotic stress 

responses including heat, salt, drought, cold and freezing stresses (Wu et al., 2010; Zhao et al., 2011; 

Chen et al., 2018; Liu et al., 2019). There is also increasing evidence that sensing changes in CW 

integrity elicits repair and maintenance of the wall in response to both biotic and abiotic stress 

damage. CW integrity mechanisms have been reviewed comprehensively elsewhere and will not be 

discussed here (Hamann, 2012; Voxeur and Höfte, 2016; Novakovic et al., 2018; Rui and Dinneny, 

2020). 

In this review, we focus on the contribution of the CW to freezing tolerance (FT) and on how plants 

may remodel their CW in preparation for later freezing conditions. Recently, there has been growing 

interest in how CW composition is altered in response to the cool temperatures that precede winter 

and how this may protect against subsequent freezing damage. The identification of specific chemical 

constituents or structures within the CW that can reduce damage to the plant from freezing could 

provide targets for crop improvement in the future. 

2 Cell-wall structure and composition 

2.1 Cellulose and hemicelluloses 

Cellulose represents approximately 20-30% of PCWs (McNeil et al., 1984) and is formed of an 

unbranched chain of β-(1,4)-glucose residues (Gardner and Blackwell, 1974). Between 30 and 100 

cellulose chains come together to form a microfibril, which can wind around the circumference of the 

cell many times. The crystalline structure formed by cellulose chains contributes considerably to CW 

strength and this network is strengthened further by the hemicellulosic cross-links formed between 

microfibrils (Park et al., 2015). Hemicelluloses vary greatly in structure between species and even cell 

types, and can consist of xyloglucans, xylans, mannans, mixed-link glucans and arabinogalactans 

among others (Brett and Waldron, 1996). Xylan and arabinoxylan are the major hemicelluloses 

present in monocot CWs (Burke et al., 1974), whereas xyloglucan (XyG) is the main hemicellulosic 

constituent of dicots, comprising 20-25% of the PCWs of sycamore cell cultures (McNeil et al., 1984). 

XyG consists of a backbone of β-(1,4)-linked glucose residues to which various amounts of D-xylose, 

D-galactose and L-fucose are attached (Hayashi, 1989). XyG chains bridge cellulose microfibrils via 
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hydrogen bonds to form a strongly tethered network, which can be controlled by the substitution of 

different sugars to the XyG backbone (Levy, Maclachlan and Staehelin, 1997). 

2.2 Pectins 

Pectins are the most complex polysaccharides of the CW and are rich in galacturonic acid (GalA), 

rhamnose (Rha), arabinose (Ara) and galactose (Gal) sugar residues. They are found in the PCW of 

dicots where they also make up a large proportion of the ML, though make a lesser contribution to 

CWs of monocots (Burke et al., 1974). CW pectins comprise the pectic domains homogalacturonan 

(HG), rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), each characterised by their 

sugar side-chains, as well as arabinans, galactans and arabinogalactans. Pectins form covalent links 

with each other, resulting in the formation of the complex structure of the CW (Jarvis, 1984; Caffall 

and Mohnen, 2009). Like hemicelluloses, pectins may also form interactions with cellulose, although 

this can depend on growth status of the CW (Wang, Zabotina and Hong, 2012; Phyo et al., 2017). HG 

polymers of α-(1,4)-linked D-GalA residues are the most abundant CW pectin (Caffall and Mohnen, 

2009). HG chains can be modified by the addition or removal of O-methyl and O-acetyl esters via the 

activity of pectin methyl-esterase and pectin acetyl-esterase enzymes respectively (Pelloux, 

Rustérucci and Mellerowicz, 2007; Philippe, Pelloux and Rayon, 2017). When pectin is secreted into 

the apoplast HG domains exist in a highly methyl-esterified state; subsequently pectin methyl-

esterases (PMEs) can remove methyl-esters from pectins, rendering them more amenable to forming 

Ca2+ cross-links (“Ca2+ bridges”) with other HG chains, creating so-called ‘egg-box’ structures (Jarvis, 

1984; Willats, Orfila, et al., 2001). RG-I is made up of the disaccharide repeat [-α-D-GalA-(1,2)-α-l-

Rha-(1,4)-] with side chains of linear or branched α-L-arabinofuranosyl (Araf) or β-D-galactopyranosyl 

(Galp) as well as other glycosyl residues, on 20-80% of Rha residues dependent on species and cell 

type (Lau et al., 1985; Ridley, O’Neill and Mohnen, 2001). RG-II is structurally very different to RG-I. 

The α-(1,4)-linked D-GalA backbone is believed to be continuous with HG chains, with each unit of 

RG-II formed of 7-11 GalA residues and six side chains (A-F) made up of 13 different 

monosaccharides (Darvill, McNeil and Albersheim, 1978; Stevenson, Darvill and Albersheim, 1988; 

Ndeh et al., 2017). The majority of RG-II exists as a dimer, with two monomeric units joined via a 

borate ester cross-link between the D-apiosyl (Api) residues present in side chain A (Kobayashi, 

Matoh and Azuma, 1996; O’Neill et al., 1996).  
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2.3 Cell-wall proteins 

Proteins are an important component of the CW and can be structural or enzymatic. The major 

structural proteins found in the CW are the extensins; hydroxyproline-rich glycoproteins (HRGPs) that 

bind to cellulose and facilitate the ‘locking’ of microfibrils (Carpita and Gibeaut, 1993; Showalter, 

1993). An increased amount of extensin in the CW is generally correlated with cessation of growth 

(Sadava, Walker and Chrispeels, 1973). Arabino-galactan proteins (AGPs) are another type of HRGP 

that contain arabinogalactan chains (Sommer-Knudsen, Bacic and Clarke, 1998). The CW is only 

able to grow after stress relaxation, which requires the activity of wall loosening enzymes such as 

expansins, endoglucanases, endotransglycoylases and PMEs (Cosgrove, 2005, 2016a, 2016b). The 

most common enzymes for wall loosening are expansins which have been shown to loosen the CW 

without impacting wall strength, suggesting they do not cut linkages (Yuan, 2001). Xyloglucan 

endotransglycosylase/hydrolase (XTH) enzymes cut xyloglucan chains and join the end onto that of 

another xyloglucan or to water (Cosgrove, 2016b). PMEs and their inhibitors (PMEIs) are encoded by 

large multigene families, which is likely to reflect the diversity of their roles in CW modification, 

suggesting de-methylation is a tightly controlled process (Pelloux, Rustérucci and Mellerowicz, 2007). 

Other enzymes such as polygalacturonase (PG) and pectin acetyl-esterase (PAE) degrade and 

modify pectins respectively within the CW (Cosgrove, 2016b). 

3 Ice in plants 

Plant species respond differently to temperatures below the freezing point of water. Tropical plants 

are unlikely ever to experience such temperatures and indeed often exhibit chilling injury at 

temperatures as high as 10-12°C (Lyons, 1973). Plants that grow in temperate regions are generally 

chilling-resistant but can vary in their FT.  

Most of the damage that occurs to plants during and after exposure to sub-zero temperatures is due 

to extracellular ice formation. Ice forms initially in the larger vessels where the dilute sap has a higher 

freezing point than that of the more concentrated cytoplasmic contents (Asahina, 1956). Ice can then 

spread throughout the plant from nucleation points, at the expense of water vapour and surface film 

on the CW. Ice crystals can form as a result of homogeneous nucleation (where a collection water 

molecules form a nucleus, but are much more likely formed through heterogeneous nucleation, 

catalysed by ice-nucleating particles such as inorganic molecules or ice-nucleating bacteria (Lindow, 
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Arny and Upper, 1982; Sakai and Larcher, 1987). Ice may also enter the plant from external sources 

via crystals nucleated on the outer surface of leaves through stomata, hydathodes, or cracks in the 

cuticle surface (Wisniewski and Fuller, 1999). Ice will form mainly in the gaps between cells 

(intercellular spaces) as shown in Figure 1a, where there is space for crystals to grow but generally 

cannot propagate across the lipid plasma membrane into the symplasm. However, it has been 

suggested that if cooling is rapid enough, at very low temperatures, ice crystals could form that are 

small enough to penetrate the CW and/or plasma membrane, inducing intracellular freezing and cell 

death, although this is likely to require rates of cooling that are higher than any experienced in nature 

(Levitt, 1980). This rapid de novo intracellular ice formation has been observed experimentally, 

however, it can also occur in response to moderate cooling rates if very low temperatures are reached 

and always results in cell death (Weiser, 1970; George and Burke, 1976; Levitt, 1980). Larger ice 

crystals may damage membranes by shearing or laceration as highlighted in Figure 1b (Mazur, 1963; 

Levitt, 1980). <Figure 1 near here> 

The formation of extracellular ice within the plant apoplast results in a secondary freeze-induced 

dehydration stress, with ice formation lowering the water potential of the apoplast and causing water 

to diffuse out of the cell down the water potential gradient (Levitt, 1980; Pearce, 2001). The majority of 

damage to plant tissues that has been ascribed to freezing conditions can be attributed to this 

dehydration event (although at very low temperatures, protein denaturation adds to the problems 

plants experience (Thomashow, 1999)). If the temperature continues to decrease, water will continue 

to diffuse to points of extracellular ice due to vapour pressure differences inside and outside of the 

cell, thus increasing dehydration (Gusta, Burke and Kapoor, 1975). Such dehydration results in 

constriction of the plasma membrane (plasmolysis, Figure 1c) or even collapse of both the plasma 

membrane and the cell wall (cytorrhysis), which are intimately connected (Levitt, 1980). The plasma 

membrane, tonoplast and thylakoid membrane become damaged when dehydration exceeds the 

tolerance of the cell (Steponkus et al., 1977; Steponkus, 1984; Murai and Yoshida, 1998b). In 

addition, dehydration stress leads to a phase separation of the membrane from a bilayer to a non-

bilayer structure thus disrupting compartmentalisation (Stout, Majak and Reaney, 1980; Pearce and 

Willison, 1985). In response to freeze-induced dehydration, parts of the plasma membrane are 

removed as endocytotic vesicles, allowing a reduction in membrane surface area to accommodate the 

reduced volume of protoplasm (Dowgert and Steponkus, 1984). Upon thawing, osmotic expansion 
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upon re-entry of water to the protoplasm causes plasma membrane rupture as these vesicles cannot 

be quickly reincorporated. This results in a form of injury known as ‘expansion-induced lysis’ (EIL) 

(Uemura et al., 2006).  

4 Plant freezing tolerance  

4.1 Supercooling and freezing point depression 

Plants that can survive freezing temperatures either do so by tolerating ice formation in their tissues 

or by freeze avoidance mechanisms, which comprise the use of antifreeze proteins, ice barriers and 

supercooling of water (Gusta and Wisniewski, 2013; Baxter, 2014). Supercooling refers to the 

“depression of the freezing temperature of a liquid below its equilibrium freezing point” and constitutes 

the main survival mechanism in some species facing sub-zero conditions (Reyes-Diaz et al., 2006). 

Some woody plants are able to ‘deep supercool’ to as low as -40°C in the winter, avoiding the 

formation of ice in some tissues even at the most severe temperatures (Burke et al., 1976).  

Supercooling is distinct from freezing point depression; freezing point depression occurs due to the 

presence of solutes within cellular and extracellular fluids, reducing the freezing point relative to the 

pure solvent (0°C for water). For dilute solutions, there is a well-known relationship between the 

freezing point depression and the concentration of a solute known as colligative freezing point 

depression (see for example (Atkins and De Paula, 2010)). In measurements in Canola leaves that 

had acclimated to freezing conditions, the total aqueous concentration of sugars was less than 0.4 

mol Kg-1. The colligative freezing point depression can be computed to be approximately 0.7°C. For 

temperatures below -0.7°C, the liquid state can only be preserved by supercooling. Freezing of the 

cell sap in these experiments was only observed to occur at temperatures less than -10°C, indicating 

that the solutions were indeed able to substantially supercool (Gusta et al., 2004). 

Supercooling is also associated with plant structure; for example, small cell size and a lack of 

intercellular spaces, which may partly be a consequence of CW properties (Asahina, 1956; Pearce, 

2001). Supercooling is less favoured in wide-diameter spaces like the xylem and cannot occur in the 

presence of nucleating materials (Tyree and Dixon, 1986; Zhang et al., 2016). Ice barriers are 

physical structures in plants that prevent ice crystals from contacting water molecules in adjacent 

tissues and initiating their freezing. Such physical barriers play an important part in allowing some 

tissues to supercool preferentially, ensuring their survival. Some organs are thus prevented from 
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freezing, such as hardy overwintering vegetative buds (Kuprian et al., 2014; Wisniewski, Gusta and 

Neuner, 2014; Neuner et al., 2019).  

4.2 Cold acclimation 

Many temperate plants can increase their FT through a process known as cold acclimation (CA). 

Levels of FT increase after exposure to low non-freezing temperatures in the range 0°C to 5°C, as 

typically experienced during autumn by temperate plants before winter frosts occur (Thomashow, 

1999). This process, also known as “cold-hardening” has been studied for many decades (Levitt, 

1980) and involves a vast array of transcriptional, biochemical and physiological changes that 

together make the plant more resilient to freezing (Hannah, Heyer and Hincha, 2005; Kaplan et al., 

2007). A large body of research into the molecular basis of CA has been carried out using the genetic 

model plant Arabidopsis thaliana (Warren et al., 1996; Thomashow, 2010). The current knowledge on 

the process of CA has been fully reviewed in a number of articles (Xin and Browse, 2000; 

Chinnusamy, Zhu and Zhu, 2007; Knight and Knight, 2012). 

A key part of CA is to stabilise membranes and membrane proteins through alterations to lipid 

composition (Yoshida and Uemura, 1990; Uemura, Joseph and Steponkus, 1995; Kawamura and 

Uemura, 2003; Uemura et al., 2006). CA reduces the occurrence of EIL by avoiding the largely 

irreversible loss of plasma membrane surface area associated with the production of endocytotic 

vesicles (see section above) and instead conserving membrane surface area through formation of 

exocytotic extrusions, believed to be associated with a higher proportion of phosphatidylcholine 

(Gordon-Kamm and Steponkus, 1984b, 1984a). The accumulation of sucrose and other compatible 

solutes not only acts to retain water in the protoplasm, thus reducing dehydration but can also protect 

membranes during freezing stress, possibly by binding to the membrane or affecting adjacent water 

structure, ultimately preventing membrane fusion and subsequent injury (Rudolph and Crowe, 1985; 

Strauss and Hauser, 1986). Molecular chaperones have been shown to interact with proteins in order 

to prevent denaturation (Guy, Haskell and Li, 1998).  

Specific proteins within the plant can inhibit ice nucleation or growth. Ice-binding proteins (IBPs, also 

known as anti-freeze proteins (AFPs)), adsorb to ice crystals and prevent growth of ice-nuclei, as well 

as preventing ice nucleation by bacteria (Kaku, 1973; Griffith et al., 2005; Bredow and Walker, 2017). 
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Plants such as Arabidopsis limit ice nucleation to prevent damage from freezing by producing IBPs 

that decrease nucleation temperature in the apoplast (Bar Dolev, Braslavsky and Davies, 2016).  

Transcriptional reprogramming during CA is extensive, the number of genes differentially expressed 

under cold exposure estimated to be in the region of 9-10,000 and including both up- and down-

regulated genes (Hannah, Heyer and Hincha, 2005; Calixto et al., 2018). The best studied part of the 

transcriptional response to CA is that brought about by the action of the CBF (C-repeat binding factor) 

transcription factors (Shi, Ding and Yang, 2018). In Arabidopsis, three closely related family members, 

CBF1, 2 and 3, also known as DREB1B, 1C and 1A respectively regulate the expression of many 

COR (cold-regulated) genes that encode proteins with roles in CA (Gilmour et al., 1998; Liu et al., 

1998; Shinwari et al., 1998). The CBFs are conserved across freezing tolerant monocot and dicot 

species (Jaglo et al., 2001). Whilst the CBF transcription factors control many of the most cold-

responsive genes, they regulate only approximately 480 gene targets (Zhao et al., 2016), meaning 

that CBF-independent transcriptional events must also contribute to CA (Vogel et al., 2005).  

5 Freezing tolerance and the cell wall 

Several decades ago, a number of studies aimed to prove whether the CW plays a positive role in FT; 

however, some initial results were confusing, particularly those from studies using protoplasts. 

Several studies reported no difference between the FT of intact tissues and isolated protoplasts 

(Siminovitch, 1979; Singh, 1979). Furthermore, suggestions that the CW was detrimental during 

freezing events arose from studies in which protoplasts were observed to have greater FT than intact 

cells (Tao, Li and Carter, 1983; Murai and Yoshida, 1998a). Despite these findings, early studies 

suggested the CW acts as a barrier to ice nucleation (Ashworth and Abeles, 1984) and growth of ice 

(Yamada et al., 2002), allowing supercooling of water and thus was likely to contribute positively to 

FT. CW differences observed between hardy and non-hardy varieties of crop species suggest certain 

CW properties can confer advantages during freezing events. Ultrastructural differences were 

observed between the CWs of different Solanum species with a frost-resistant cultivar having a 

thicker wall than the frost-susceptible one (Chen, Li and Cunningham, 1977). In Arabidopsis, 

comparison of different accessions showed that plants that accumulated more CW material during CA 

were more freezing tolerant than those that accumulated less (Takahashi et al., 2019).  
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5.1 Cell-wall tension in dehydration stress and cavitation 

During freezing conditions and the formation of extracellular ice, the reduced vapour pressure of ice 

relative to the aqueous cell contents establishes a water potential gradient, resulting in cell 

dehydration and ultimately collapse, illustrated in Figure 1c. However, it has been hypothesised that 

CWs of increased stiffness allow plants to reduce the severity of freeze-induced dehydration 

(Rajashekar and Lafta, 1996), cell collapse (Pearce, 1988) and CW deformation (Fujikawa, Jitsuyama 

and Kuroda, 1999). As water osmoses out of the cell, a stiff CW will resist the volume change, placing 

the CW and liquid contents under tensile stress (i.e. the liquid inside the cell is at a lower pressure 

compared to outside the cell, often refered to as ‘negative pressure’) (Hansen and Beck, 1988; Zhu, 

Steudle and Beck, 1989; Zhu and Beck, 1991; Vincent et al., 2014). There are thus two competing 

potentials; the presence of extracellular ice favours water movement out of the cell, but the lower 

pressure inside the cell favours water movement into the cell. A dynamic equilibrium is therefore 

established between a concentrated (yet still liquid) cell interior, and extracellular ice. A CW of low 

stiffness would have little resistance to deformation upon water moving out of the cell, so could only 

establish modest tensile stresses and negative pressures. This means there would be little resistance 

to water moving out of the cell to form extracellular ice, resulting in severe cellular dehydration. Thus, 

in cells with stiffer CWs, extreme dehydration and desiccation can be negated. In freezing events, the 

reported negative pressures generated inside cells lie between appromimately -1 MPa and -10 MPa 

(Rajashekar and Lafta, 1996; Cochard, 2006), depending on plant species, tissue type, and CW 

structure. Such large negative pressures mean that vapour bubbles can form, or dissolved gasses 

come out of solution, leading to cavitation or embolism (Tyree and Dixon, 1986; Tyree and Sperry, 

1989). A large body of literature is devoted to the specific study of cavitation and embolism in xylem 

vascular tissue (with associated severe conequeces for disruption of the transpiration stream (Tyree 

and Dixon, 1986; Tyree and Sperry, 1989)), which has been reviewed previously (Cochard et al., 

2013). In non-xylem tissue however, cavitation is suggested to be lethal because the cavitation event 

nucleates intracellular ice (Rajashekar and Burke, 1996; Barrow et al., 2012). 

Interestingly, evidence suggests that CW-mediated negative pressures cannot be formed in 

suspension-cultured cells. Rajashekar and Lafta (1996) noted that both unhardened (non-cold-

acclimated) and cold-acclimated cultured cells had similar freezing properties and little resistance to 

collapse, in contrast to intact tissues where cold-acclimated leaves resisted intracellular freezing down 
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to lower temperatures than unhardened leaves. It was therefore suggested that tissue organisation is 

responsible for the ability of cells to resist deformation (a key feature of cellular tissue mechanics 

(Gibson, 2005)), enabling negative pressure formation and the consequent dehydration resistance. 

From the perspectives of preventing dehydration and cavitation, we may expect a trade-off in CW 

stiffness: too low a stiffness results in severe dehydration stress or cell collapse, whereas too high a 

stiffness results in the formation of large negative pressures and cell death through cavitation. This 

however remains to be investigated, and a recent study suggests that the trade-off may impact the 

plant not just on a cellular level, but on a whole-organ level, whereby the xylem preferentially 

undergoes cavitation to prevent ice propagation throughout the leaf (Arias et al., 2017). 

5.2 Cell-wall structure in the prevention of ice propagation 

Through computing the free energy change of ice entering a narrow pore, it has been shown that the 

freezing point of water in confined geometries should be lower than that of bulk water; see for 

example (Mazur, 1965; Homshaw, 1980). Experiments using glass particles of well-defined pore size 

validate this theory, showing that for example, ice formation in pores of diameter of 4 nm can occur 

only at temperatures between -15°C and -25°C (Ashworth and Abeles, 1984). In plants, the nm-scale 

pore size of the CW is therefore recognised as playing a key role in preventing ice propagation from 

extracellular sources into the cell (Wisniewski, Ashworth and Schaffer, 1987; Rajashekar and Lafta, 

1996), illustrated in Figure 1b. 

Pectin plays a key role in determining wall porosity and thus has the potential to influence the fate of 

water in plants at low temperatures. Treating CWs of Glycine max roots with a pectinase increased 

pore size, whereas treatment with protease or cellulysin had no effect (Baron-Epel, Gharyal and 

Schindler, 1988). Treatment of stem sections of Prunus persica and Cornus florida with pectinase to 

cause near complete digestion of the pit membrane resulted in a reduced ability of the xylem to deep 

supercool (Wisniewski, Davis and Schaffer, 1991). The CW in the pit membrane of xylem ray 

parenchyma, cells that neighbour xylem tissue, was shown to determine the propensity for deep 

supercooling, which relies on the porosity and permeability of the pit membrane (Wisniewski, 

Ashworth and Schaffer, 1987). It was later shown that this porosity is related to pectin structure within 

the xylem tissues which form a barrier resistant to water loss and growth of ice (Wisniewski and 

Davis, 1995).  
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It is important to note, however, that reducing CW porosity may have a dual function in both 

preventing ice entering the cell, and improving the mechanical strength required to maintain negative 

pressures and supercooled cell contents. It was shown that when C. album cells were cultured in 

boron-deficient medium to reduce the formation of borate diester linkages between RG-II pectin 

chains, CW rupture occurred more easily than those supplemented with boric acid, suggesting that 

smaller pores result in a stronger CW (Fleischer, Titel and Ehwald, 1998). Further research will be 

required to distinguish between the direct effect of CW porosity and strength on FT. Although CW 

tensile strength (the maximum tension the CW can withstand before breaking) has been postulated to 

enable cells to resist mechanical strain imposed by the presence of large extracellular ice masses 

(Smallwood and Bowles, 2002), further studies are necessary to evaluate the magnitude and severity 

of the consequences of this effect. 

6 Cell-wall modifications during cold acclimation  

As well as observing CW differences between hardy and non-hardy plant species under normal 

growth conditions, research has shown that the CW is actively remodelled during CA. Many of these 

modifications impart mechanics that have been described as important for FT. Table 1 highlights the 

modifications that have been observed in the CWs of varying plant species after a period of CA. At a 

gross level, CW thickness has been found to increase in cells of several different species during CA 

(Huner et al., 1981; Griffith and Brown, 1982; Griffith et al., 1985; Stefanowska et al., 1999; Tanino et 

al., 2013), as has overall CW content (Weiser, Wallner and Waddell, 1990; Kubacka-Zebalska and 

Kacperska, 1999; Solecka, Zebrowski and Kacperska, 2008; Takahashi et al., 2019), both of which 

may contribute to CW strength and thus decrease injury during freezing. It has been suggested that a 

thicker CW may also facilitate supercooling (Sakai and Larcher, 1987), perhaps due to the 

relationship with CW pore size, as increased cross-linking (thus decreased pore size) in the CW was 

shown to correlate with increased thickness (Ishii, Matsunaga and Hayashi, 2001). Changes in the 

mechanical properties of the cell have also been reported, with elastic modulus, i.e. the stiffness of 

the CW, shown to increase after CA (Rajashekar and Lafta, 1996; Solecka, Zebrowski and 

Kacperska, 2008; Scholz et al., 2012; Arias et al., 2015). Scholz et al. (2012) showed that cold desert 

shrub species with a higher elastic modulus experienced less injury when exposed to -20°C. These 

studies have led to the idea that CW stiffness and/or CW strength may be associated with resilience 

to freezing conditions. In future studies where CW strength (maximum tensile stress before breaking) 
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and CW stiffness (elastic modulus) contributions to FT are measured, these two properties must be 

properly distinguished. <Table 1.1 near here> 

6.1 Cell-wall transcriptome 

Analysis of the cold-induced transcriptome has highlighted the differential regulation of CW related 

genes during CA and sub-zero acclimation (SZA) in several plant species (Kreps et al., 2002; Seki et 

al., 2002; Hannah, Heyer and Hincha, 2005; Herman et al., 2006; Lucau-Danila et al., 2012; Zhao et 

al., 2012; Le, Pagter and Hincha, 2015; Tenhaken, 2015; Takahashi et al., 2019) suggesting the CW 

is highly modified during CA. The overrepresentation of the CW group in down-regulated genes 

observed by Hannah et al. (2005) likely reflects the retardation of plant growth observed with cold 

exposure. However, further studies have shown that differential gene expression is not solely for the 

purpose of ceasing CW growth. In Triticum aestivum for example, hemicellulose and pectin synthesis 

were found to decrease with initial cold exposure, but recovered or even increased after 24 hours of 

cold (Zabotin et al., 1998).  

In Arabidopsis, some of the differentially expressed CW-related genes are part of the CBF-controlled 

regulon with 15 CW-modifying genes found to be induced by cold and down-regulated in cbf triple 

mutants (Zhao et al., 2016). Members of the EXPANSIN and XTH gene families were differentially 

expressed after a 24 h cold exposure, with genes being both up- and down-regulated (Kilian et al., 

2007; Tenhaken, 2015). As well as gene-specific differences in regulation on response to cold 

treatment, a difference was observed between root and shoot samples, highlighting different 

transcriptional responses and perhaps different FT mechanisms involving the CW in these tissues 

(Kilian et al., 2007; Tenhaken, 2015). A study in Pisum sativum showed that plants differing in their 

frost-tolerance had varying responses to cold exposure; certain CW-remodelling enzymes were found 

to be up-regulated only in the frost-tolerant cultivar, suggesting that modifications of the CW are 

required to tolerate freezing (Lucau-Danila et al., 2012). The expression of EXTENSIN was also 

shown to increase after CA in P. sativum (Weiser, Wallner and Waddell, 1990).  

Differences were observed when comparing CA at low positive temperatures and further acclimation 

at sub-zero temperatures (SZA). Studies revealed that changes in the levels of CW-related gene 

transcripts and their encoded proteins differed between the two treatments (Herman et al., 2006; 

Takahashi et al., 2019). Takahashi et al. (2019) observed an increase in total CW content after CA as 
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well as differences in CW composition compared to non-acclimated samples. Although the SZA 

samples showed the same result for these CW properties, analysis of the extracellular proteome 

highlighted differences in CW proteins such as enzymes with CW-modification activity between CA 

and SZA samples (Takahashi et al., 2019). Le et al. (2015) also showed that CW-biosynthesis genes 

were up-regulated during SZA in Arabidopsis. These findings suggest that the plant may continually 

regulate CW modification and consequently CW properties, even when temperatures fall below the 

normal freezing point of water in order to prevent freezing injury. 

6.2 Wall-membrane attachments 

In Brassica napus transcript levels of a putative transmembrane proline-rich protein with a predicted 

role in wall-membrane attachments was found to increase after 6 h at low temperature (Goodwin, 

Pallas and Jenkins, 1996). In Arabidopsis, levels of glycosylphosphatidylinositol (GPI)-anchored 

proteins varied in response to cold exposure but were generally found to increase (Takahashi, 

Kawamura and Uemura, 2016). GPI-anchored proteins have several roles within the cell; for example 

two of the proteins identified as cold-inducible have roles in cellulose deposition and pectin matrix 

formation (Hayashi et al., 2008). GPI-anchored proteins are also regarded as promising candidates 

for providing wall-membrane attachments with possible roles in CWI mechanisms (Liu, Persson and 

Sánchez-Rodríguez, 2015). Interaction between the plasma membrane and the CW has previously 

been suggested to be important for mediating plant FT. It has been suggested that a mechanical 

stress imposed by the CW on the plasma membrane may result in membrane injury during freezing 

events (Murai and Yoshida, 1998a), which may explain the observed increased damage from freezing 

in whole cells compared to plant protoplasts (Tao, Li and Carter, 1983). It may be that wall-membrane 

attachments are regulated during CA to prevent possible damage that may occur from tight 

attachments. 

6.3 Pectins 

Many of the studies that have reported CW modifications during CA have shown that pectic 

polysaccharides in particular are subject to alterations. The pectin content of the CW was shown to 

increase after CA in Brassica napus (Kubacka-Zebalska and Kacperska, 1999; Solecka, Zebrowski 

and Kacperska, 2008). The activity of pectin-modifying enzymes such as PAE and PG was altered 

after CA in P. sativum. Several studies have also shown differential transcription of PME genes and 

the activity of PMEs and PMEIs (Thonar, Liners and Van Cutsem, 2006; Solecka, Zebrowski and 
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Kacperska, 2008; Qu et al., 2011; Baldwin et al., 2014). In most studies, PME activity or transcript 

expression was shown to increase; during sub-zero acclimation (SZA), the abundance of PMEs 

generally tended to increase, with a concomitant decrease in PMEIs in the CWs of A. thaliana 

(Takahashi et al., 2019), and transcript expression of PME41 increased in both roots and leaves of A. 

thaliana after a 24 h cold treatment (Qu et al., 2011). PME activity also increased in B. napus 

(Solecka, Zebrowski and Kacperska, 2008) as well as in P. sativum (Baldwin et al., 2014). PMEs 

regulate the degree of methyl-esterification, which is correlated with the extent of pectin cross-linking; 

a lower level of methyl-esterification allows pectin chains to form Ca2+-bridges (Willats, Orfila, et al., 

2001). Indeed, a decrease in methyl-esterification was observed in B. napus concomitant with the 

increase in PME activity (Solecka, Zebrowski and Kacperska, 2008). Using antibodies that distinguish 

between pectins with varying levels of methyl-esterification, a lower level of methyl-esterified pectin 

was observed in the pit membrane of xylem parenchyma of Prunus persica sampled in December 

compared to those sampled in summer months (Wisniewski and Davis, 1995).  However, several 

studies report opposite effects, with a decrease in PME activity observed in Cichorium intybus roots 

with decreased temperature (Thonar, Liners and Van Cutsem, 2006). Similarly, in A. thaliana, cold 

treatment resulted in increased expression of the PME inhibitor gene PMEI13, thus reducing PME 

activity (Chen et al., 2018) and in P. sativum, the degree of methyl-esterification had increased after 

20 days of cold exposure (Baldwin et al., 2014). These findings suggest that the degree of pectin 

methyl-esterification is an important structural property for FT, but that the response to cold may be 

varied in different plant species and tissues. This suggestion is supported by a study that has 

addressed this issue directly. In wheat crowns, levels of many different CW modifying enzymes 

responded differentially to cold exposure in the shoot apical meristem and the vascular transition 

zone. It was shown that these differences in enzyme abundance resulted in the enhanced methyl-

esterification status of pectins in the vascular transition zone, but not the shoot apical meristem 

(Willick et al., 2018). This could suggest the use of different survival mechanisms utilising the CW in 

different tissues within one plant. This is especially likely given the different CW composition and 

structures observed between cell types, and could be linked to differences of CW function between 

tissues and organs. 

The degree of pectin cross-linking has been linked to the structural characteristic of CW pore size, 

which as previously described has been linked to the reduction of ice nucleation and growth in the 



16 
 

CW. A direct measurement of limiting CW pore size showed that exposure to 4°C for 3 to 5 weeks 

decreased the CW pore size in cultured cells of grape stems from 3.5 to 2.2 nm, with similar reduction 

seen in cultured apple fruit cells. Interestingly, the proportion of acclimated cells in which intracellular 

ice could be detected after a freezing event was shown to be 4.3%, compared to 37.6% for non-

acclimated cells (Rajashekar and Lafta, 1996). Although intracellular ice is fairly uncommon in vivo, 

this shift highlights the potential for CW structure to influence ice propagation into the cell. In these 

experiments, a reduction in intracellular ice was correlated with an increase in CW strength, resulting 

in an increase in the pressure required to rupture cells (Rajashekar and Lafta, 1996). An increase in 

pectin content has also been linked with an increase in CW stiffness observed in B. napus leaves 

after CA (Solecka, Zebrowski and Kacperska, 2008). There are several lines of evidence for the 

correlation between pectin content/structure and CW stiffness (Jones et al., 2003; Moore, Farrant and 

Driouich, 2008; Amsbury et al., 2016). For the reasons discussed earlier, these may influence FT but 

further direct testing of this relationship is required. 

6.4 Secondary cell wall 

Analysis has also shown that transcripts of genes associated with lignin biosynthesis increase in leaf 

tissues of Hordeum vulgare, A. thaliana and Rhododendron catawbiense after CA (Wei et al., 2006; 

Janská et al., 2011; Ji et al., 2015), however, no change was observed in crown tissue of H. vulgare 

(Janská et al., 2011). These findings correlate with the increase in activity of lignin biosynthesis 

enzymes phenylalanine ammonia-lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) observed 

in G. max and frost-tolerant Miscanthus spp. (Janas et al., 2000; Domon et al., 2013), as well as an 

increase in phenolic compounds such as ferulic and p-coumaric acids (Janas et al., 2000; 

Olenichenko and Zagoskina, 2005; Domon et al., 2013). Interestingly, although increases in PAL and 

CAD activity were also observed in a frost-sensitive species, they were not as high as the frost-

tolerant species (Domon et al., 2013). In studies where lignin content of leaves was measured after 

CA, no change was observed (Olenichenko and Zagoskina, 2005; Ji et al., 2015), although an 

increase was observed within crown tissues of T. aestivum (Olenichenko and Zagoskina, 2005). 

Glucoronoarabinoxylans (GAX) were also found to increase in the vascular transition zone of T. 

aestivum but not the shoot apical meristem, and in a frost-tolerant variety of Miscanthus sp. (Domon 

et al., 2013; Willick et al., 2018). GAX are major wall polymers that link cellulose microfibrils in 
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monocots, but can also cross-link to lignin by compounds such as ferulic acid to enhance wall rigidity 

(Carpita and Gibeaut, 1993; Hatfield, Rancour and Marita, 2017). 

7 Using Arabidopsis genetic resources to demonstrate cell-wall contributions to 

freezing tolerance 

We have described above how a number of CW modifications and characteristics have been 

implicated in FT either because they are associated with CA or as their presence correlates with more 

freezing-tolerant varieties/species of plant. Although the mechanisms via which wall components may 

prevent freezing damage have been hypothesised, there is still no clear answer as to how the CW 

protects the plant against freezing stress. It is highly likely that different species and even different 

tissues employ specific mechanisms to prevent freezing injury, which would explain the variety of CW 

modifications during cold exposure. With the advent of molecular genetic tools, it is possible to get 

closer to understanding the functional significance of some of these features. 

7.1 Pectin cross-linking 

In addition to Ca2+ bridges that form between HG chains, pectic cross-linking also occurs through the 

dimerisation of RG-II domains via borate-diester linkages (Kobayashi, Matoh and Azuma, 1996; 

O’Neill et al., 1996). In a similar manner, this form of pectic cross-linking can contribute to the 

determination of CW pore size. Cultured cells of Chenopodium album grown in a boron-deficient 

medium had larger pores than those supplemented with boric acid, the mean size limit decreasing 

from 5.62 to 3.41 nm in growing cells with 100 μM boric acid (Fleischer, Titel and Ehwald, 1998). Cells 

with larger pore sizes were shown to contain only monomeric RG-II domains, whilst supplementing 

with boric acid resulted in an increase in the presence of dimerised RG-II associated with the 

decreased CW pore size (Fleischer, O’Neill and Ehwald, 1999). 

Alterations to CW strength also appear to be linked to RG-II dimerisation; tensile strength and tensile 

modulus were decreased in hypocotyls of Arabidopsis mur1 mutants, which exhibit reduced RG-II 

dimerization (Ryden et al., 2003). The MUR1 gene encodes an enzyme necessary for the synthesis of 

fucose, an important component of RG-II domains. In mur1 mutants, which have severely reduced 

levels of CW fucose, RG-II dimerization in the CW was reduced to 50%, compared to 95% 

dimerization in WT (O’Neill et al., 2001). One of the first descriptions of mur1-1 tissues was an 

increase in brittleness (Reiter, Chapple and Somerville, 1993), referring to the break point occurring 
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after only small plastic deformations. Boron deficiency in roots of squash and bean was shown to 

reduce the CW elastic modulus (Findeklee and Goldbach, 1996; Findeklee, Wimmer and Goldbach, 

1997), and hypocotyls of boron-deficient squash were shown to have more brittle and rigid tissues 

(Hu and Brown, 1994).  

Recently, the mur1 mutant was shown to be freezing sensitive (Panter et al., 2019). A forward genetic 

screen for Arabidopsis mutants identified a number of sensitive-to-freezing (sfr) mutants (Warren et 

al., 1996). The sfr8 mutation was mapped to the MUR1 gene suggesting a relationship between the 

decrease in RG-II dimerization and the increased freezing sensitivity of sfr8/mur1 mutants. Further 

evidence for this is highlighted in the finding that supplementing sfr8 plants with boric acid during 

growth, which has been shown to restore RG-dimerisation in plants (O’Neill et al., 2001) was able to 

restore almost wild-type tolerance to freezing (Panter et al., 2019). A decrease in FT was also 

observed in Arabidopsis bor mutants, which are unable to transport boron and also display a 

decrease in CW RG-II cross-linking (Panter et al., 2019). These findings suggest that RG-II cross-

linking, and possibly pectin cross-linking in general in the CW is beneficial for FT. 

In support of this hypothesis, overexpression of PMEI13 in Arabidopsis led to decreased PME activity 

and an increase in the degree of pectin methyl-esterification, resulting in plants that were more 

sensitive to freezing (Chen et al., 2018). This provides evidence that the degree of methyl-

esterification controlled by the action of PMEs and PMEIs is an important property for defining 

tolerance to freezing. Indeed, the observed increased PME activity, and a decrease in the degree of 

methyl-esterification after CA in several plant species would agree with this. A lower degree of methyl-

esterification is linked to a higher degree of Ca2+ cross-linking, which like RG-II cross-linking, results in 

an increased stiffness and decreased CW pore size (Fleischer, O’Neill and Ehwald, 1999; Willats, 

Orfila, et al., 2001; Ryden et al., 2003), either or both of which might enhance FT. However, some of 

the CW related pectin modifications observed during CA do not fit this hypothesis as was discussed in 

section 1.6.3. Interestingly, Willats et al. (2001) also reported that it is the pattern of methyl-

esterification as well as the degree of methyl-esterification on pectin chains that may influence other 

CW qualities such as porosity and stiffness, which may explain the differences observed. Again it is 

also likely that different species and tissues employ different mechanisms for withstanding freezing, 

supported by the finding that PMEs and PMEIs have highly specific expression patterns in different 

tissues (Pelloux, Rustérucci and Mellerowicz, 2007). It is possible that there is close regulation of 
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pectin structure during CA through the action of specific pectin modifying enzymes that create a 

structure with the properties necessary to withstand freezing events. 

7.2 Hemicelluloses 

A XTH gene, the transcript levels of which increase during exposure to cold, was also shown to 

impact upon FT. Arabidopsis xth21 mutants had increased freezing sensitivity, whilst lines 

overexpressing the XTH21 gene had increased FT compared to wild-type plants (Shi et al., 2014), 

suggesting that hemicellulose structure is important for FT. Interestingly, XTH21 expression was 

shown to peak after 12 h of cold exposure and return to almost control levels after 24 h (Shi et al., 

2014). This correlates with transcriptomic analysis of the XTH gene family, which showed no change 

in XTH21 expression after 24 h cold exposure (Kilian et al., 2007; Tenhaken, 2015). These results 

highlight the need for direct structural measurements of the CW after CA in order to analyse what 

components may impact upon FT. 

7.3 Lignin and the secondary cell wall 

Modifications to the SCW during CA also occur through regulation of lignin biosynthesis. However, 

although expression levels of many lignin biosynthesis genes were found to increase with CA, there is 

very little evidence that lignin content increases. Analysis of a cold-induced nuclear protein TCF1 

(Tolerant to Chilling and Freezing 1) led to the discovery of a role in regulating lignin biosynthesis in 

Arabidopsis. Loss of TCF1 function resulted in a decrease in lignin content, but an increase in FT. 

Further data to support an inverse relationship between lignin content and FT came from the 

observation that a pal1pal2 double mutant, (PALs act downstream of TCF1 in lignin biosynthesis) 

exhibited a 30% decrease in lignin content and an increase in FT (Ji et al., 2015). Another CW 

Arabidopis mutant, esk1, was found to be constitutively FT (Xin and Browse, 1998). ESK1 is an O-

acetyl-transferase that acetylates xylan, which contributes to SCW architecture (Urbanowicz et al., 

2014). Indeed esk1 mutants were shown to have altered SCW composition and subsequent xylem 

malformation (Lefebvre et al., 2011). This further implicates the secondary CW as having a possible 

detrimental role in FT. Lignin is a major determinant of CW stiffness (Özparpucu et al., 2017), and as 

stated earlier, CW stiffness is related to the ability of the cell to withstand freeze-induced dehydration, 

but that this can result in the creation of negative pressures. Perhaps CW stiffness, particularly that 

related to the SCW and lignin formation, is tightly regulated to ensure the appropriate level of stiffness 

required for the freezing event experienced. Interestingly, a decrease in expression of a PMEI was 
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reported in the esk1 mutant (Bouchabke-Coussa et al., 2008), which correlated with a reduction in 

esterified pectins observed by Lefebvre et al. (2011) which may link the constitutive FT of esk1 to 

increased pectin cross-linking. 

8 Future prospects 

A potential link between the plant CW and FT has been well-established. CW stiffness and pore size 

have been well-documented as providing the ability to withstand freeze-induced dehydration and 

allow cells to supercool. However, there are still unanswered questions: is CW stiffness of particular 

benefit or is strength more important?; is the mechanical weight burden of ice on the CW an issue?; is 

there an optimal degree of CW stiffness, beyond which tensions increase too much and the wall 

collapses?; are wall-membrane attachments beneficial or detrimental to the cell during freezing? As 

well as these general questions, it is also unclear specifically which CW polysaccharides contribute to 

FT. Analysing CW modifications during CA has led to the suggestion that pectins are an essential CW 

component during freezing. Pectin cross-linking in particular has been linked to CW thickness (Ishii, 

Matsunaga and Hayashi, 2001), strength, stiffness (Ryden et al., 2003) and pore size (Fleischer, 

O’Neill and Ehwald, 1999), all of which have been associated with FT and CA. Indeed recent work 

has shown that cross-linking via RG-II dimerization and formation of Ca2+ bridges after pectin de-

esterification appear to be beneficial for FT (Chen et al., 2018; Panter et al., 2019). However, mur1 

mutants also display alterations to lignification of xylem tissues, which may impact on FT (Voxeur et 

al., 2017). The role of lignin in the contribution of the CW to FT is yet to be fully understood in light of 

the conflicting results obtained thus far. Determining whether lignin is beneficial or detrimental to the 

plant during freezing events would inform on the necessity of CW stiffness.  

The degree of pectin methyl-esterification within the CW may also influence more than just Ca2+ 

cross-linking, as the pattern of methyl-esterification also appears to affect wall porosity and stiffness, 

as well as water holding capacity of pectins, a trait whose contribution to FT has not  been fully 

explored (Willats, Orfila, et al., 2001; Levesque-Tremblay et al., 2015). Considering the observation of 

transcriptional modification of PMEs and PMEIs during cold acclimation, it is possible that these large 

gene families, encoding enzymes that likely have very specific functions, are differentially regulated to 

modify the CW in a distinct way to increase FT. This would be an interesting line of enquiry, as 

pectins appear to be important for FT even in monocots where pectins constitute only a very small 
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percentage of the CW (Willick et al., 2018). A consideration that must be maintained is the influence 

of CW integrity sensing mechanisms; CW mutations that result in alterations to structure may well 

trigger modifications in completely separate areas of the CW. Thus, it will be necessary to ensure CW 

structure is completely understood before inferring specific CW components have a role in FT.  

We now have the opportunity to return to a wealth of information generated by excellent plant 

physiologists, and advance this knowledge with the molecular genetic resources currently available to 

us. The contribution of specific CW polysaccharides can be assessed using plant CW mutants, and 

CW structure and composition can be measured using techniques such as antibody labelling (Willats, 

McCartney, et al., 2001), radiolabelling of CW sugars (Thompson and Fry, 2001) and size exclusion 

chromatography (O’Neill et al., 1996). It is now possible to assess these traits at a cell-specific level in 

a variety of different species, pertinent, given the fact that CW composition and modifications during 

CA are highly species- and tissue-specific. Further research into this area could provide us with a 

wealth of data to inform target identification for increasing FT in many different crop species. 
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Figure 1 

Illustration of two major functions of the cell wall (CW) in freezing tolerance. (a) Plant cell tissue 

showing the formation of extracellular ice crystals (blue) in the intercellular spaces. The CW is shown 

in brown, and the cell contents in yellow. (b) Magnifications of the CW showing ice interacting with the 

apoplast. For large pore sizes, ice can propagate through the CW (direction of propagation indicated 
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with a red arrow) and nucleate intracellular ice. This is prevented in CWs with small pore sizes. (c) In 

the presence of extracellular ice, water is able to diffuse out of the cell. Flexible CWs offer minimal 

resistance to this process, indicated by red arrows, resulting in severe dehydration and even 

plasmolysis. Stiff CWs enable a viable equilibrium to be established between a concentrated 

cytoplasm under tension and extracellular ice, indicated by the black arrow. 

 

Table 1 Cell-wall modifications after cold acclimation 

Species Tissue Acclimation  Target Modification Reference 

Secale cereale  Leaves 4/2°C D/N, 90 d CW thickness Increased  Huner et al. 

(1981) 

Secale cereale Leaves 5/2°C D/N, 49 d CW thickness Increased Griffith and Brown 

(1982) 

Secale cereale Leaves 5°C, 41, 56 and 

76 d 

CW thickness Increased  Griffith et al. 

(1985) 

Pisum sativum  Epicotyl  2°C up to 

approx. 30 d 

Extensin transcript 

expression 

Increased Weiser, Wallner 

and Waddell 

(1990) 
   

Arabinose and 

hydroxyproline 

Increased 

   
CW content (mg g-1 

fresh weight) 

Increased after 

20 d 

Prunus persica Xylem in natura Degree of methyl-

esterification 

Decreased Wisniewski and 

Davis (1995) 

Brassica napus Leaves 4°C, 8 h Proline-rich CW 

protein transcript 

expression 

Increased Goodwin, Pallas 

and Jenkins 

(1996) 

Vitis spp. and 

Malus 

domestica 

Cell 

cultures 

4°C, 21-35 d  CW breaking 

pressure (MPa) 

Increased Rajashekar and 

Lafta (1996)   
Limiting CW pore 

size  

Decreased 

Broadleaf 

evergreen 

species 

Leaves 3°C, 42 d Cell tensions Increased Rajashekar and 

Lafta (1996) 

Triticum 

aestivum 

Roots 2°C, 1, 3, 6, 12 

and 24 h 

Hemicellulose 

synthesis 

Initial 

decrease, 

increased after 

24 h 

Zabotin et al. 

(1998) 
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Species Tissue Acclimation  Target Modification Reference 
   

Pectin synthesis Initial 

decrease, 

recovery after 

24 h 

 

Brassica napus Leaves 2°C, 21 d CW thickness Increased Stefanowska et al. 

(1999) 

Brassica napus Leaves 2°C, 21 d CW content (mg g-1 

dry weight) 

Increased Kubacka-

Zebalska and 

Kacperska (1999) 
   

CW Pectin (mg 

100mg-1 CW 

extract) 

Increased 

Glycine max Roots 10°C, 24 h PAL activity Increased Janas et al. 

(2000) 
   

Phenolic acids; p-

hydroxybenzoic, 

vanillic, syringic, 

anisic, p-coumaric 

and ferulic 

Increased 

   
Phenolic glycosides Decreased 

 

Triticum 

aestivum 

Leaves, 

crown 

tissue 

Low positive 

temperatures 

Soluble phenolic 

compounds (mg g-1 

fresh weight) 

Increased Olenichenko and 

Zagoskina (2005) 

   
PAL activity Decreased 

 

   
L-phenylalanine 

content 

Increased 
 

   
Lignin content (mg 

g-1 fresh weight) 

Leaves; no 

change, crown; 

increased 

 

Rhododendron 

catawbiense 

Leaves in natura 

(Summer vs 

Winter samples) 

C3H transcript 

expression 

Increased Wei (2006) 

Cichorium 

intybus 

Roots in natura PME activity Decreased Thonar, Liners 

and Van Cutsem 

(2006) 

  
PAE activity No change 

Triticum 

aestivum 

Crown 

tissue 

3°C, 21 d then -

3°C, 6 h, 1 and 3 

d 

CW-related gene 

transcript 

expression 

Differential 

regulation 

Herman et al. 

(2006) 

Brassica napus Leaves 2°C, 21 d CW content (mg g-1 

dry weight) 

Increased Solecka, 

Zebrowski and 

Kacperska (2008) 
   

CW pectin (mg g-1 

dry weight) 

Increased 

   
PME activity Increased 

   
Degree of metyl-

esterifcation 

Decreased 

   
Tensile stiffness 

(MPa) 

Increased 

Hordeum 

vulgare 

Leaves, 

crown 

tissue 

3/2°C D/N, 1, 3, 

7, and 21 d 

Lignin synthesis-

related gene 

transcript 

expression e.g. 

PALs, CAD 

Leaves; 

increased, 

crown; 

decreased/no 

change 

Janská et al. 

(2011) 

Arabidopsis 

thaliana 

Leaves, 

roots 

0°C, 6 h PME activity Increased Qu et al. (2011) 
 

PME41 transcript 

expression 

Increased 
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Species Tissue Acclimation  Target Modification Reference 

Cold desert 

shrub species 

Shoots in natura 

(Summer vs 

Winter samples) 

Elastic modulus 

(MPa) 

Increased Scholz et al. 

(2012) 

Pisum sativum Leaves, 

roots 

10/2°C D/N, 20 d CW-related gene 

transcript 

expression 

Differential 

regulation 

Lucau-Danila et 

al. (2012) 

Miscanthus spp. 

(FT) 

Leaves 12°C, 4 and 8 d β-D-glucan content Increased Domon et al. 

(2013) 
  

Uronic acid Decreased 
  

GAX content Increased 
  

CAD activity Increased 
  

PAL activity Increased 

Allium 

fistulosum 

Leaves 12/4°C D/N, 7 

and 14 d 

CW thickness Increased Tanino et al. 

(2013) 

Arabidopsis 

thaliana 

Leaves 4°C, 3, 6, 12 and 

24 h 

XTH21 transcript 

expression 

Increased; 

peak at 12 h 

Shi et al. (2014) 

Pisum sativum 

(FT cultivar) 

Stipules 10/2°C D/N, 5, 

10 and 20 d 

Degree of methyl-

esterification 

Decreased 

after 5 d, 

increased after 

10 and 20 d 

Baldwin et al. 

(2014) 

   
PAE activity Increased 

 

   
PME activity Decreased 

after 5 d, 

increased after 

10 and 20 d 

 

   
PG activity Increased after 

10 d, 

decreased after 

20 d 

 

Arabidopsis 

thaliana 

Leaves, 

roots 

24 h XTH-gene family 

transcript 

expression 

Differential 

regulation 

Tenhaken (2015), 

Kilian et al. (2007) 

   
Expansin-gene 

family transcript 

expression 

Differential 

regulation 

 

Arabidopsis 

thaliana 

Leaves 4°C, 14 days, 

then -3°C, 1, 2, 3 

and 8 h 

CW-related gene 

transcript 

expression 

Differential 

regulation 

Le et al. (2015) 

Olea euroapea Leaves in natura 

(Summer vs 

Winter samples) 

Elastic modulus 

(MPa) 

Increased Arias et al. (2015) 

Arabidopsis 

thaliana 

Leaves 4°C, 7 d BCB, PAL2 and 

PAL4 transcript 

expression 

Increased Ji et al. (2015) 

   
Lignin content (mg 

mg-1 dry weight) 

No change 
 

Arabidopsis 

thaliana 

Leaves 2°C, 7 d GPI-anchored 

proteins 

Increased and 

decreased 

Takahashi, 

Kawamura and 

Uemura (2016) 

Arabidopsis 

thaliana 

Leaves 4°C, 1, 3, 6 and 

24 h 

PMEI13 transcript 

expression 

Increased 

(peak at 6 h) 

Chen et al. (2018) 

Chorispora 

bungeana 

Leaves 4°C, 1, 3, 6 and 

24 h 

PMEI1 transcript 

expression 

Increased Chen et al. (2018) 

Triticum 

aestivum 

SAM, 

VTZ 

4°C, 21 and 42 d Apoplastic CW 

modifying enzymes 

Mostly 

increased 

Willick et al. 

(2018) 
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Species Tissue Acclimation  Target Modification Reference 
   

Degree of methyl-

esterification 

VTZ; 

increased, 

SAM; no 

change 

 

   
GAX VTZ; 

increased, 

SAM; no 

change 

 

Arabidopsis 

thaliana 

Leaves 4°C, 7 d Extracellular 

proteome 

Differential 

abundance 

Takahashi et al. 

(2019)    
CW content (mg g-1 

dry weight) 

Increased 
 

  
4°C, 7 d then  

-3°C, 3 d 

Extracellular 

proteome 

Differential 

abundance 

 

   
CW content (mg g-1 

dry weight) 

Increased 
 

BCB - blue-copper-binding protein; C3H - coumorate-3-hydroxylase; CAD - cinnamyl alcohol dehydrogenase; 

CW - cell wall; D/N - day/night; FT - frost-tolerant; GAX - glucuronoarabinoxylan; GPI - 

glycosylphosphatidylinositol; MPa – megapascals; PAE – pectin acetyl-esterase; PAL - phenylalanine 

ammonia-lyase; PME - pectin methyl-esterase; PMEI - pectin methyl-esterase inhibitor; PG - 

polygalacturonase; SAM - shoot apical meristem; TD - tillering nodes; VTZ - vascular transition zone; XTH - 

xyloglucan endotransglucosylases/hydrolases  

 


