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Chapter 12

A machine learning driven solution to the
problem of perceptual video quality metrics

Stamos Katsigiannis1, Hassan Rabah2 and Naeem Ramzan1

The advent of high-speed internet connections, advanced video coding algorithms,
and consumer-grade computers with high computational capabilities has led video-
streaming-over-the-internet to make up the majority of network traffic. This effect
has led to a continuously expanding video streaming industry that seeks to offer en-
hanced quality-of-experience (QoE) to its users at the lowest cost possible. Video
streaming services are now able to adapt to the hardware and network restrictions
that each user faces and thus provide the best experience possible under those re-
strictions. The most common way to adapt to network bandwidth restrictions is to
offer a video stream at the highest possible visual quality, for the maximum achiev-
able bitrate under the network connection in use. This is achieved by storing various
pre-encoded versions of the video content with different bitrate and visual quality
settings. Visual quality is measured by means of objective quality metrics, such
as the Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM), Visual Information Fidelity (VIF), and others, which can be
easily computed analytically. Nevertheless, it is widely accepted that although these
metrics provide an accurate estimate of the statistical quality degradation, they do
not reflect the viewer’s perception of visual quality accurately. As a result, the acqui-
sition of user ratings in the form of Mean Opinion Scores (MOS) remains the most
accurate depiction of human-perceived video quality, albeit very costly and time con-
suming, and thus cannot be practically employed by video streaming providers that
have hundreds or thousands of videos in their catalogues. A recent very promising
approach for addressing this limitation is the use of machine learning techniques in
order to train models that represent human video quality perception more accurately.
To this end, regression techniques are used in order to map objective quality met-
rics to human video quality ratings, acquired for a large number of diverse video
sequences. Results have been very promising, with approaches like the Video Mul-
timethod Assessment Fusion (VMAF) metric achieving higher correlations to user-
acquired MOS ratings compared to traditional widely used objective quality metrics.
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In this chapter, we examine the performance of VMAF and its potential as a replace-
ment for common objective video quality metrics.

12.1 Introduction

The last decade saw an explosion in the use of video streaming platforms, with pre-
dictions estimating that video streaming will account to 82% of global IP traffic by
2022, up from 75% in 2017 [1]. Available network capacity keeps increasing both
for the traditional wired land-based networks and for the wireless mobile networks.
Optic fibre-based networks can offer bandwidths in the range of Gbps, while next
generation 5G mobile networks promise speeds up to 10 Gbps and latency of less
than 1 ms. Despite the phenomenal increase in network capacity, demand for band-
width continues to increase as video content of higher resolutions becomes available.
Streaming raw video is unpractical due to extremely high bandwidth requirements.
For example, streaming 1 second of a 1920×1080 video sequence at 30 fps with 24
bit colour depth would require the transmission of approximately 178 MB of data,
without including protocol overheads. Furthermore, network capacity and latency
have large variations depending on the user, the location, the time within the day,
and overall network congestion, while the capability of end-user devices to play the
transmitted videos depends on their hardware specifications. Sophisticated video
compression and transmission algorithms are used in order to address these issues
and facilitate the streaming of high quality video in practice.

The most common approach for achieving flexible and uninterrupted video stream-
ing under variable network conditions is to offer to the users the highest quality
video stream possible under the specific conditions and constraints of each user. To
achieve this, video sequences are compressed using various bit rates and/or spatial
resolutions and each version is divided in smaller segments that are typically a few
seconds long. Then, these video segments are made available via a web server and
are accessed by video player software using standard HyperText Transfer Protocol
(HTTP) GET requests. A manifest file containing information about all the available
versions of the video is created and used by the client in order to request the segments
that fit its requirements. Requirements depend on bandwidth, latency, hardware ca-
pabilities, etc. and can vary during playback. As a result, adaptation to different
versions is achieved by requesting different segments of a video, thus increasing or
decreasing the received quality as seen fit. While various video streaming protocols
exist, the most dominant are Apple HTTP Live Streaming (HLS) [2] and MPEG
Dynamic Adaptive Streaming over HTTP (DASH) [3].

Although video compression allows the transmission or storage of video content
in a practical and cost-effective manner, it suffers from an important side effect. The
reduction in bit rate or in spatial resolution used for the compressed sequences leads
to a reduction in visual quality. The compressed video sequences can suffer from loss
of fidelity, compression artefacts, colour fading and blur among others. Considering
that video streaming systems aim to stream to the users the highest quality video
possible, the accurate evaluation of the visual quality of each compressed version of
the video becomes crucial, especially the perceptual quality as experienced by the
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human visual system (HVS) [4]. Video Quality Assessment (VQA) techniques can
be divided into two categories, depending on how the quality evaluation is achieved:
(a) Objective VQA approaches, and (b) Subjective VQA approaches.

Objective video quality models consist of mathematical models that measure the
differences between the original and the distorted video sequences and determinis-
tically output the same quality score when the same video sequences are compared
under the same parameters. Objective VQA approaches are further divided into three
categories, depending on the amount of information they require regarding the orig-
inal video sequence:

1. Full Reference (FR). FR approaches require full access to the reference video
sequence in order to estimate the quality of the examined version.

2. Reduced Reference (RR). RR approaches require only a set of features ex-
tracted from the reference video sequence in order to estimate the quality of the
examined version.

3. No Reference (NR). NR approaches require no information regarding the ref-
erence video sequence.

Subjective VQA approaches measure video quality as perceived by humans.
Video quality scores are computed by conducting experiments where users are asked
to watch and rate the quality of various video sequences. The acquired ratings are
then averaged in order to compute the final video quality rating, as perceived by
the human viewers, in the form of a Mean Opinion Score (MOS). Subjective VQA
approaches can be divided in two categories, depending on how the quality rating
experiments are conducted:

1. Single-Stimulus. In Single-Stimulus experiments, viewers are requested to rate
the quality of single video sequences, without having access to the reference
video sequences.

2. Double/Multiple-Stimulus. In Double/Multiple-Stimulus experiments, view-
ers watch both the reference and distorted versions of the video sequences and
provide ratings in relation to the reference.

It is well accepted in the literature that objective quality metrics fail to accurately
model video quality as perceived by human viewers. To this end, subjective video
quality ratings provide the most accurate measurement of video quality. However,
conducting subjective video quality rating experiments to acquire MOS ratings is a
time-consuming, expensive, and arduous task, thus it cannot be practically employed
by video streaming providers that have hundreds or thousands of videos in their cat-
alogues. Researchers have tried to bridge the gap between objective and subjective
VQA by training machine learning models in order to map objective quality metrics
to subjective quality ratings (MOS), effectively using the easy to compute determin-
istic objective metrics to predict ratings subjectively decided by human viewers. This
chapter examines the performance of one of the most promising machine learning-
based VQA metrics, the Video Multimethod Assessment Fusion (VMAF) [5].
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12.2 Objective Video Quality Assessment Methods

Various FR, RR, and NR VQA methods that do not rely on machine learning have
been proposed in the literature across the years, with some, like the PSNR and the
SSIM, being extensively used by the industry and the research community in produc-
tion systems and as benchmarks. An overview of some of these traditional metrics
is provided in this section.

12.2.1 Full-Reference metrics
Some of the most commonly used FR VQA methods were originally used for the
quality assessment of images and were extended for use in video by being applied to
each frame of the videos. Methods like that include the Mean Squared Error (MSE)-
based Peak Signal-to-Noise Ratio (PSNR), the Visual Information Fidelity (VIF) [6],
the Structural Similarity (SSIM) index in its various forms, [7] and the Visual Signal-
to-Noise Ratio (VSNR) [8]. However, it is well established that such metrics fail
sometimes in characterising the perceptual quality of the video sequences depending
on the types of the distortion and the content of the video [9, 10, 11]. Various other
FR metrics have been proposed in the literature [12]. Aabed et al. [13] proposed
a perceptual quality metric that utilises low complexity power spectral features in
the frequency domain, while Manasa and Channappayya [14] proposed the use of
optical flow statistics, such as the minimum eigenvalue of the local flow patches,
the mean, the standard deviation, and the coefficient of variation in order to esti-
mate temporal quality and the use of SSIM for spatial quality estimation, combining
both for computing the final quality score. Seshadrinathan and Bovik [15] proposed
the MOVIE index that examines temporal, spatial, and spatiotemporal characteris-
tics of distortion in order to estimate video quality. Various works also examined
video quality in relation to motion [15], in relation to the frame rate and quantisation
[16], and in relation to network QoS and application QoS within the context of web
streaming [17].

12.2.2 Reduced-Reference metrics
The biggest difficulty in designing RR metrics is the extraction of suitable and de-
scriptive features from the reference video sequence in order to have sufficient data
for an accurate video quality prediction [18]. Tao et al. [19] proposed a relative
video quality metric, rPSNR, that can be computed without parsing or decoding the
transmitted video, and without any knowledge of video characteristics. Piamrat et
al. [20] proposed the Pseudo Subjective Quality Assessment (PSQA) metric, a hy-
brid metric that makes use of objective and subjective features to evaluate QoE for
video streaming in wireless networks. Entropic differences and wavelet-based natu-
ral video statistics were utilised by Soundararajan and Bovik [21] for their RR video
quality metric, while Baik et al. [22] used a machine learning model to estimate
the effect of spatial distortions, types of buffering and resolution changes in quality
degradation.
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12.2.3 No-Reference metrics
Various NR metrics have been proposed in the literature following different ap-
proaches [9, 23]. The NORM algorithm by Naccari et al. [24] uses macroblock infor-
mation at the decoder level in order to evaluate distortions on H.264/AVC streamed
videos. Wu et al. [25] used local texture and global intensity features extracted
from the decoded video to evaluate the quality of stalled streaming video. Pixel-
based features and bitstream information was used by Winkler and Mohandas [12]
for real-time video quality estimation, while a combination of a spatio-temporal nat-
ural scene statistics (NSS) model for videos and a motion model that quantifies mo-
tion coherency in video scenes was proposed by Saad et al. [26]. Mittal et al. [27]
exploited the intrinsic statistical regularities observed in natural videos to achieve
NR quality assessment, while features based on a 3D shearlet transform were used
by Li et al. [28].

12.3 The Video Multimethod Assessment Fusion (VMAF)
Metric

Expanding on previous work by Liu et al. [29] and Lin et al. [30], researchers de-
veloped the Video Multimethod Assessment Fusion (VMAF) [5] FR VQA metric
that employs a machine learning approach in order to map multiple elementary ob-
jective quality metrics to subjective quality ratings (MOS). The rationale behind this
approach is that although each individual objective metric cannot fully capture the
perceptual quality of the video, as it has its respective drawbacks and advantages,
“fusing” multiple metrics together by assigning weights to each through a machine
learning algorithm could potentially preserve the advantages of each metric and de-
liver a more accurate final video quality score. Furthermore, since these weights
would be trained for optimising the accuracy of predicting subjective ratings pro-
vided by actual viewers, it is expected that such a metric would be more accurate in
predicting perceptual video quality. The VMAF metric was originally trained on the
NFLX Video Dataset [5], while a newer subjective dataset with a broadened scope
was used for recent releases [31] that included more diverse content and source arte-
facts such as film grain and camera noise, and a larger range of encoding resolutions
and compression parameters.

VMAF uses Support Vector Machine (SVM) regression [32] to map the com-
bination of the following three elementary metrics to subjective video quality rat-
ings [5]:

• Visual Information Fidelity (VIF) [6], which is a widely used image quality
metric. The original VIF metric measures quality by determining the loss of
fidelity in four scales. VMAF used a modified version of VIF where the loss of
fidelity at each of the four scales is considered as an elementary metric instead
of the combined VIF score.

• Detail Loss Measure (DLM) [33], which is an image quality metric that mea-
sures the loss of details that affect content visibility. Although originally pro-
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posed to be used in combination with the Additive Impairment Measure (AIM),
VMAF uses only DLM as an elementary metric.

• Motion [5], which is a simple temporal feature that measures the average low-
pass filtered differences between consecutive frames.

VMAF scores are computed for each frame of a video sequence and the final VMAF
score for a video sequence is computed through simple temporal pooling by com-
puting the arithmetic mean of the VMAF scores across all frames, as experiments
showed that the arithmetic mean yields the highest correlation with subjective scores.

Experiments on various subjective video quality datasets showed that VMAF
scores were better correlated to MOS ratings compared to traditional quality met-
rics [5] and the VMAF metric has now been adopted widely by industry and re-
searchers [31]. VMAF scores have a range from 0 to 100, with 0 being the lowest
and 100 the highest quality. The current default VMAF model (v0.6.1) has been
trained using subjective ratings acquired using a 1080p display with a viewing dis-
tance of 3H, H being the height of the screen, and following an Absolute Category
Rating (ACR) methodology were viewers rated the quality of the video sequences on
the scale of “bad”, “poor”, “fair”, “good”, and “excellent”. Under the specific view-
ing conditions that the subjective quality tests were conducted, a VMAF score of 20
maps the “bad” quality, a score of 100 the “excellent” quality, and a score of 70 would
be between “good” and “fair” [31]. As a result, when applying the default VMAF
model to video sequences of different spatial resolution than 1080p, then the VMAF
scores refer to ratings at different viewing conditions. Considering that the default
model measures quality at the critical angular frequency of 1/60 degree/pixel, this
geometry applies to 1080p at 3H, to 720p at 4.5H, to 480p at 6.75H, etc. As a result,
the application of the default model to a 480p video sequence would yield a quality
rating referring to a viewing distance of 6.75H [31]. When computing VMAF on
down-sampled video sequences, VMAF developers suggest the up-sampling of the
sequence to the resolution of the reference sequence before VMAF application as
otherwise the obtained VMAF score will fail to capture scaling artefacts [31].

12.4 Experimental evaluation

To evaluate the performance of VMAF under various settings, VMAF (v0.6.1), Y-
PSNR, SSIM, and MS-SSIM quality scores were computed for the video sequences
of three publicly available video datasets and their Pearson’s Correlation Coefficient
(ρ) with the available MOS ratings, as well as the R2 for the linear fit were computed.

12.4.1 Datasets
12.4.1.1 MPEG-JVET2018 video sequences dataset
The MPEG-JVET2018 test video sequences contained five test sequences at a reso-
lution of 1080p (1920× 1080), progressively scanned using 4:2:0 colour sampling,
with a duration of 10 seconds. Two sequences had a frame rate of 50 fps and 8 bits
per sample, one sequence 60 fps and 8 bits per sample, and two sequences 60 fps
and 10 bits per sample. Details of the test sequences are provided in Table 12.1.
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Table 12.1 Details of the MPEG-JVET2018 dataset’s video sequences. The
resolution for all sequences is 1920×1080.

Name Frame Bit Source Target bit rate (kbit/s)
rate depth Rate 1 Rate 2 Rate 3 Rate 4

BQTerrace 60 8 NTT DOCOMO Inc. 400 600 1000 1500
RitualDance 60 10 Netflix 900 1500 2300 3800
MarketPlace 60 10 Netflix 500 800 1200 2000
BasketballDrive 50 8 NTT DOCOMO Inc. 800 1200 2000 3500
Cactus 50 8 EBU/RAI 500 800 1200 2000

The video sequences were encoded using two software packages, the HM 16.16 and
the Joint Exploration Test Model (JEM) 7.0 software package [34]. The Joint Video
Exploration Team (JVET) maintains the JEM software package in order to study
coding tools in a coordinated test model [35]. The purpose of this datasets was to
facilitate testing in accordance with BT.500 [36] in order to examine the proposals
from 24 proponents. As a result, the MPEG-JVET2018 dataset contained (4 rates
x 2 encoders x 24 proponents ) x 5 sequences + 5 reference sequences = 965 video
sequences in total. The MOS ratings were acquired using a degradation category
rating (DCR) [37] method, leading to a quality rating scale with values in the range
between 0 (lowest quality) and 10 (highest quality). Since all the video sequences
in the MPEG-JVET2018 dataset are 1080p, they adhere to the specifications of the
default VMAF model.

12.4.1.2 HEVC verification dataset (Tan et al. [38])
Twenty video sequences that have been used in [38] for the evaluation of video qual-
ity and compression performance of the H.265/HEVC [39] standard were used for
the evaluation of the VMAF metric. Four categories of spatial resolutions were in-
cluded in the experimental evaluation, namely UHD (3840× 2160 except for one
sequence that was 4096×2048), 1080p (1920×1080), 720p (1280×720), and 480p
(832×480), with five video sequences per resolution. These sequences were selected
from different sources so as to have different spatio-temporal characteristics, leading
to differences in the behaviour of the compression algorithms utilised. Furthermore,
the frame rate of the sequences spans from 30 to 60 frames per second, while all the
sequences are in the Y ′CBCR colour space (as defined by ITU-R Rec. BT.709 [40]),
with 8 bits per sample of each component. The video sequences were compressed
using the AVC (JM-18.5, High profile [41]) and HEVC (HM-12.1, Main profile [42])
compression standards. For each sequence and each compression standard, four dif-
ferent fixed quantisation parameters (QP) settings were selected for compression so
that the resulting bit rates for the respective HEVC-encoded sequences would be ap-
proximately half the bit rate of the AVC-encoded sequences, as well as so that their
subjective quality would span a wide range of MOS values. Following this proce-
dure, eight test sequences were created from each of the fifteen initial sequences
resulting to a total of 160 test sequences. Furthermore, the quality of the created
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video sequences in terms of average MOS was subjectively evaluated in [38] at two
test sites, under a controlled laboratory environment. The MOS scores were recorded
using a degradation category rating (DCR) [37] method, leading to a quality rating
scale with values in the range between 0 (lowest quality) and 10 (highest quality).
Only the 1080p sequences of the Tan et al. dataset adhere to the specifications of
the default VMAF model. Nevertheless, it is interesting to examine VMAF’s default
model’s performance against other metrics that are not constrained by resolution for
video sequences of various resolutions.

12.4.1.3 ITS4S dataset
The ITS4S dataset [43] was primarily designed for the evaluation of NR video qual-
ity metrics and adheres to the following two factors: (a) the metric performance
must degrade gracefully in response to new content (i.e. subject matter, camera,
editing), and (b) the metric must accurately predict the quality of original videos
(e.g., broadcast quality, contribution quality, professional cameras, prosumer cam-
eras). It contains 813 video sequences from which 35% contain no compression
artefacts, while the rest 65% contain simple impairments, in order to minimise the
confounding factor of coding impairments on the original videos quality as the cod-
ing bitrate is reduced. The video content was selected out of a pool of HDTV and
4K videos [44] that were recorded using various resolutions and frame rates. The
video sequences included in the ITS4S have been converted to 720p (1280× 720)
at 24 fps and were coded using H.264 High Profile VBR 2-pass coding at bitrates
spanning from 0.512 Mbps to 2.340 Mbps, while 20 Mbps were used for the ref-
erence sequences. MOS ratings were acquired using the absolute category rating
(ACR) method, leading to a quality rating scale with values in the range between 1
(lowest quality) and 5 (highest quality). Since VMAF is designed with coding and
down-sampling related distortions in mind, its performance on the ITS4S dataset is
expected to suffer since ITS4S contains numerous sequences with impairments that
are unrelated to coding. Furthermore, although the resolution of the video sequences
is not 1080p, both the reference and the impaired sequences have the same resolution
(720p) thus no up-scaling is required. Nevertheless, as explained in section 12.3, the
acquired VMAF scores will refer to a viewing condition of 4.5H distance from the
screen.

12.4.2 Video quality scores
It must be noted that although MOS ratings were available for the reference se-
quences of the three datasets, the reference sequences were not included in the ex-
perimental comparison of the VMAF (v0.6.1), Y-PSNR, SSIM, and MS-SSIM met-
rics, since the Y-PSNR value for reference sequences is infinite, thus the correlation
could not be established properly.

The performance of VMAF (v0.6.1), Y-PSNR, SSIM, and MS-SSIM in terms of
the Pearson’s Correlation Coefficient (ρ) and the R2 in relation to the available MOS
ratings for each dataset are provided in Table 12.2. Furthermore, Figures 12.1, 12.2,
and 12.3 provide scatter plots showing the observers’ MOS on the x-axis and the
predicted score from the examined quality metrics on the y-axis. From Table 12.2,
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Table 12.2 Pearson’s Correlation Coefficient (ρ) and R2 between the VMAF
(v0.6.1), Y-PSNR, SSIM, and MS-SSIM scores and the available MOS
for each dataset.

Dataset VMAF Y-PSNR SSIM MS-SSIM
ρ R2 ρ R2 ρ R2 ρ R2

MPEG-JVET2018 0.90 0.816 0.70 0.492 0.89 0.792 0.90 0.807
Tan et al. 0.66 0.435 0.48 0.234 0.42 0.179 0.57 0.327
Tan et al. (1080p) 0.72 0.519 0.67 0.445 0.68 0.457 0.71 0.509
ITS4S 0.34 0.112 0.31 0.099 0.26 0.067 0.26 0.066

it is evident that VMAF achieved the best correlation with viewers’ quality ratings
for all the examined datasets. The performance of MS-SSIM was similar to VMAF
for the MPEG-JVET2018 dataset (ρ = 0.90) and marginally worse for the 1080p
sequences of the Tan et al. dataset (ρV MAF = 0.72 vs ρMS−SSIM = 0.71).

Regarding the MPEG-JVET2018 dataset, the correlation between VMAF scores
and MOS was the highest among the three examined datasets (0.90). The video se-
quences in the dataset fully complied with the VMAF guidelines and model used
(1080p with video coding-related distortions) and the accompanying MOS were rel-
ative to the reference video sequences. As expected, VMAF performed very well.
Regarding the Tan et al. dataset, the correlation between VMAF and MOS was
significantly lower (0.66) than the one achieved for the MPEG-JVET2018 dataset.
Although the distortions in the video sequences were related to H264/AVC and
H265/HEVC coding and the accompanying MOS were relative to the reference video
sequences, the resolutions of the video sequences varied (UHD, 1080p, 720p, 480p).
VMAF guidelines state that the default VMAF model is trained and optimised for
1080p video. When only the 1080p sequences of the Tan et al. dataset were exam-
ined, VMAFs correlation to MOS improved, albeit only slightly (0.72), with MS-
SSIM achieving a marginally worse correlation of 0.71. Regarding the ITS4S datset,
as expected due to the type of distortions included, the correlation between VMAF
and MOS was the lowest among the examined datasets at 0.34, slightly better than
the correlation with Y-PSNR which was 0.31. It seems that when MOS is not relative
to the reference sequence and the scores do not scale similarly across different se-
quences, VMAF is not working well and Y-PSNR provides comparable performance
as a quality metric. Interestingly, SSIM and MS-SSIM performed the worst for this
dataset, achieving a correlation of 0.26. A larger and even more diverse dataset could
help establish this argument more definitely, but still the evidence points towards that
direction.

12.5 Conclusion

Examining the quality ratings achieved by VMAF, it is evident that VMAF scores
are more aligned to viewer quality ratings compared to Y-PSNR, SSIM, and MS-
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Figure 12.1: Acquired quality scores for the MPEG-JVET2018 dataset in relation to
MOS, using (a) VMAF, (b) Y-PSNR, (c) SSIM, and (d) MS-SSIM.

0 2 4 6 8 10
20

40

60

80

100

MOS

V
M

A
F

(a)

0 2 4 6 8 10
25

30

35

40

45

MOS

Y
-P

SN
R

(d
B

)

(b)

0 2 4 6 8 10

0.8

0.9

1

MOS

SS
IM

(c)

0 2 4 6 8 10

0.8

0.9

1

MOS

M
S-

SS
IM

(d)

Figure 12.2: Acquired quality scores for the Tan et al. [38] dataset in relation to
MOS, using (a) VMAF, (b) Y-PSNR, (c) SSIM, and (d) MS-SSIM.
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Figure 12.3: Acquired quality scores for the ITS4S dataset in relation to MOS, using
(a) VMAF, (b) Y-PSNR, (c) SSIM, and (d) MS-SSIM.

SSIM, with MS-SSIM achieving the second best results. The very strong correlation
of 0.90 achieved for the MPEG-JVET dataset shows that VMAF performs very well
when the examined video sequences follow the default VMAF model’s guidelines
in terms of resolution, and when the impairments are related to coding impairments
that VMAF was originally designed for. Similarly good results were achieved for
the 1080p sequences of the Tan et al. dataset, which included video-coding-related
impairments only, considering that the nominal correlation values for all metrics
were lower than the ones achieved for the MPEG-JVET. While correlations to MOS
ratings were significantly low for the ITS4S dataset, VMAF still achieved the high-
est correlation to viewer perceived quality. However, it is evident that the design
constraints of VMAF, as well as of the other metrics, lead to significant differences
between viewer-perceived quality scores and the computed scores. Our experimen-
tal evaluation showed that machine learning approaches for mapping objective video
quality metrics to human-perceived video quality scores have great potential for pro-
viding perceptually accurate objective video quality metrics. However, more work
is needed in order to provide metrics that would be suitable for a wide range of
impairment types and would not be limited to specific usage scenarios.
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