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Abstract. A bipartite graph G = (A, B, E) is H-convex, for some fam-
ily of graphs H, if there exists a graph H € H with V(H) = A such that
the set of neighbours in A of each b € B induces a connected subgraph
of H. Many NP-complete problems become polynomial-time solvable for
H-convex graphs when H is the set of paths. In this case, the class of
‘H-convex graphs is known as the class of convex graphs. The underlying
reason is that this class has bounded mim-width. We extend the latter
result to families of H-convex graphs where (i) H is the set of cycles, or
(ii) H is the set of trees with bounded maximum degree and a bounded
number of vertices of degree at least 3. As a consequence, we can re-
prove and strengthen a large number of results on generalized convex
graphs known in the literature. To complement result (ii), we show that
the mim-width of H-convex graphs is unbounded if H is the set of trees
with arbitrarily large maximum degree or an arbitrarily large number of
vertices of degree at least 3. In this way we are able to determine com-
plexity dichotomies for the aforementioned graph problems. Afterwards
we perform a more refined width-parameter analysis, which shows even
more clearly which width parameters are bounded for classes of H-convex
graphs.

1 Introduction

Many computationally hard graph problems can be solved efficiently if we place
constraints on the input. Instead of solving individual problems in an ad hoc
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way we may try to decompose the vertex set of the input graph into large sets of
“similarly behaving” vertices and to exploit this decomposition for an algorithmic
speed up that works for many problems simultaneously. This requires some no-
tion of an “optimal” vertex decomposition, which depends on the type of vertex
decomposition used and which may relate to the minimum number of sets or the
maximum size of a set in a vertex decomposition. An optimal vertex decomposi-
tion gives us the “width” of the graph. A graph class has bounded width if every
graph in the class has width at most some constant c¢. Boundedness of width is
often the underlying reason why a graph-class-specific algorithm runs efficiently:
in such a case, the proof that the algorithm is efficient for some special graph
class reduces to a proof showing that the width of the class is bounded by some
constant. We will give examples, but also refer to the surveys [I6/19/2226//42)
for further details and examples.

Width parameters differ in strength. A width parameter p dominates a width
parameter ¢ if there is a function f such that p(G) is at most f(¢(G)) for every
graph G. If p dominates ¢ but ¢ does not dominate p, then we say that p is more
powerful than g. If both p and ¢ dominate each other, then p and ¢ are equivalent.
If neither p is more powerful than ¢ nor ¢ is more powerful than p, then p and
q are incomparable. If p is more powerful than ¢, then the class of graphs for
which p is bounded is larger than the class of graphs for which ¢ is bounded and
so efficient algorithms for bounded p have greater applicability with respect to
the graphs under consideration. The trade-off is that fewer problems exhibit an
efficient algorithm for the parameter p, compared to the parameter q.

The notion of powerfulness leads to a large hierarchy of width parameters, in
which new width parameters continue to be defined. The well-known parameters
boolean-width, clique-width, module-width and rank-width are equivalent to
each other [TI0J34)38]. They are more powerful than the equivalent parameters
branch-width and treewidth [14U39/42] but less powerful than mim-width [42],
which is less powerful than sim-width [27]. To give another example, thinness
is more powerful than path-width [33], but less powerful than mim-width and
incomparable to clique-width or treewidth [4].

For each group of equivalent width parameters, a growing set of NP-complete
problems is known to be tractable on graph classes of bounded width. However,
there are still large families of graph classes for which boundedness of width is
not known for many width parameters.

Our Focus. We consider the relatively new width parameter mim-width, which
we define below. Recently, we showed in [7J§] that boundedness of mim-width
is the underlying reason why some specific hereditary graph classes, character-
ized by two forbidden induced subgraphs, admit polynomial-time algorithms
for a range of problems including k-COLOURING and its generalization LIST k-
COLOURING (the algorithms are given in [I3/I5/20]). Here we prove that the
same holds for certain superclasses of convex graphs known in the literature. Es-
sentially all the known polynomial-time algorithms for such classes are obtained
by reducing to the class of convex graphs. We show that our new approach via
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mim-width simplifies the analysis, unifies the sporadic approaches and explains
the reductions to convex graphs.

Mim-width. A set of edges M in a graph G is a matching if no two edges of
M share an endpoint. A matching M is induced if there is no edge in G between
vertices of different edges of M. Let (A, A) be a partition of the vertex set of a
graph G. Then G[A, A] denotes the bipartite subgraph of G induced by the edges
with one endpoint in A and the other in A. Vatshelle [42] introduced the notion of
mazimum induced matching width, also called mim-width. Mim-width measures
the extent to which it is possible to decompose a graph G along certain vertex
partitions (A, A) such that the size of a maximum induced matching in G[A, A]
is small. The kind of vertex partitions permitted stem from classical branch
decompositions. A branch decomposition for a graph G is a pair (T,6), where T
is a subcubic tree and § is a bijection from V(G) to the leaves of T. Every edge
e € E(T) partitions the leaves of 7" into two classes, L. and L., depending on
which component of T'— e they belong to. Hence, e induces a partition (4., A.)
of V(G), where 6(A.) = L. and §(A.) = L.. Let cutmimg (A, A.) be the size of
a maximum induced matching in G[A., A.]. Then the mim-width mimwg (T, )
of (T, d) is the maximum value of cutmimg (A, A.) over all edges e € E(T). The
mim-width mimw(G) of G is the minimum value of mimwg (7', §) over all branch
decompositions (T, 6) for G. We refer to Figure |1/ for an example.

Computing the mim-width is NP-hard [40], and approximating the mim-
width in polynomial time within a constant factor of the optimal is not possible
unless NP = ZPP [40]. Tt is not known how to compute in polynomial time
a branch decomposition for a graph G whose mim-width is bounded by some
function in the mim-width of G. However, for graph classes of bounded mim-
width this might be possible. In that case, the mim-width of G is said to be
quickly computable. One can then try to develop a polynomial-time algorithm
for the graph problem under consideration via dynamic programming over the
computed branch decomposition. We give examples of such problems later.

Convex Graphs and Generalizations. A bipartite graph G = (A, B, E) is
conver if there exists a path P with V(P) = A such that the neighbours in A of
each b € B induce a connected subpath of P. Convex graphs generalize bipartite
permutation graphs (see, e.g., [0]) and form a well-studied graph class.

Belmonte and Vatshelle [I] proved that the mim-width of convex graphs is
bounded and quickly computable. We consider superclasses of convex graphs and
research to what extent mim-width can play a role in obtaining polynomial-time
algorithms for problems on these classes.

Let H be a family of graphs. A bipartite graph G = (A, B, E) is H-convez if
there exists a graph H € H with V(H) = A such that the set of neighbours in
A of each b € B induces a connected subgraph of H. If H consists of all paths,
we obtain the class of convex graphs. A caterpillar is a tree T that contains a
path P, the backbone of T, such that every vertex not on P has a neighbour
on P. A caterpillar with a backbone consisting of one vertex is a star. A comb is
a caterpillar such that every backbone vertex has exactly one neighbour outside
the backbone. The subdivision of an edge uv replaces uv by a new vertex w and
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edges uw and wu. A triadis a tree that can be obtained from a 4-vertex star after
a sequence of subdivisions. For ¢, A > 0, a (¢, A)-tree is a tree with maximum
degree at most A and containing at most ¢ vertices of degree at least 3; note that,
for example, a triad is a (1, 3)-tree. If H consists of all cycles, all trees, all stars,
all triads, all combs or all (¢, A)-trees, then we obtain the class of circular convex
graphs, tree convex graphs, star conver graphs, triad convex graphs, comb convex
graphs or (t, A)-tree convex graphs, respectively. See Figure [1| for an example.
To show the relationships between the above graph classes we need some extra
terminology. Let C; 4 be the class of (¢, A)-tree convex graphs. For fixed ¢ or A,
we have increasing sequences C; 90 € Cy;1 € -+ and Cgp CCa € ---. Fort €N,
the class of (t, 00)-tree convex graphs is |J ooy Ct,a, denoted by C . Similarly, for
A € N, the class of (0o, A)-tree conver graphs is | J,cy Ct,a, denoted by Coo .
Hence, C; oo and Coo,a are the set-theoretic limits of the increasing sequences
{Ci,a}ren and {Ci a}ien, respectively. The class of (oo, 00)-tree convex graphs
is Ut7 aen Ct,a, which coincides with the class of tree convex graphs. Notice that
the class of convex graphs coincides with Cy 2, for any ¢ € NU {co}, and with
Co,a, for any A € NU{oco}. The class of star convex graphs coincides with C .
Moreover, each triad convex graph belongs to C; 3 and each comb convex graph
belongs to C 3. A bipartite graph is chordal bipartite if every induced cycle in
it has exactly four vertices. Every convex graph is chordal bipartite (see, e.g.,
[5]) and every chordal bipartite graph is tree convex (see [24129]). In Figure 2] we
display these and other relationships, which directly follow from the definitions.
Brault-Baron et al. [6] proved that chordal bipartite graphs have unbounded
mim-width. Hence, the result of [I] for convex graphs cannot be generalized to

(a)

Fig. 1: @) A circular convex graph G = (4, B, F) with a circular ordering on A.
(]ED A branch decomposition (7', 0) for G, where T is a caterpillar with a specified
edge e, together with the graph G[A., A.]. The bold edges in G[A., A.] form an
induced matching and it is easy to see that cutmimg(A., Ae) = 2.
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chordal bipartite graphs. We determine the mim-width of the other classes in
Figure [2] but first discuss known algorithmic results for these classes.

unbounded mim-width

ltroo convex = (00, 00)-tree convex

(o0, 3)-tree convex chordal bipartite

star convex = (1, 00)-tree convcxl

comb convex

circular convex

bounded mim-width

l (t, A)-tree convex, t > 1, A > 3]

triad convex

Fig.2: The inclusion relations between the classes we consider. A line from a
lower-level class to a higher one means the first class is contained in the second.

Known Results. Belmonte and Vatshelle [I] and Bui-Xuan et al. [II] proved
that so-called Locally Checkable Vertex Subset and Vertex Partitioning (LC-
VSVP) problems are polynomial-time solvable on graph classes whose mim-
width is bounded and quickly computable. This result was extended by Bergoug-
noux and Kanté [2] to variants of such problems with additional constraints on
connectivity or acyclicity. Each of the problems mentioned below is a special
case of a Locally Checkable Vertex Subset (LCVS) problem possibly with one of
the two extra constraints. Panda et al. [36] proved that INDUCED MATCHING is
polynomial-time solvable for circular convex and triad convex graphs, but NP-
complete for star convex and comb convex graphs. Pandey and Panda [37] proved
that DOMINATING SET is polynomial-time solvable for circular convex, triad con-
vex and (1, A)-tree convex graphs for every A > 1. Liu et al. [3T] proved that
CONNECTED DOMINATING SET is polynomial-time solvable for circular convex
and triad convex graphs. Chen et al. [I2] showed that (CONNECTED) DoMI-
NATING SET and TOTAL DOMINATING SET are NP-complete for star convex
and comb convex graphs. Lu et al. [32] proved that INDEPENDENT DOMINATING
SET is polynomial-time solvable for circular convex and triad convex graphs. The
latter result was shown already in [41] using a dynamic programming approach
instead of a reduction to convex graphs [32]. Song et al. [4I] showed in fact a
stronger result, namely that INDEPENDENT DOMINATING SET is polynomial-
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time solvable for (¢, A)-tree convex graphs for every ¢ > 1 and A > 3. They
also showed in [4I] that INDEPENDENT DOMINATING SET is NP-complete for
star convex and comb convex graphs. Hence, they obtained a dichotomy: INDE-
PENDENT DOMINATING SET is polynomial-time solvable for (¢, A)-tree convex
graphs for every ¢t > 1 and A > 3 but NP-complete for (oo, 3)-tree convex graphs
and (1, 00)-tree convex graphs.

The same dichotomy (explicitly formulated in [44]) holds for FEEDBACK
VERTEX SET and is obtained similarly. Namely, Jiang et al. [25] proved that
this problem is polynomial-time solvable for triad convex graphs and mentioned
that their algorithm can be generalized to (¢, A)-tree convex graphs for every
t >1and A > 3. Jiang et al. [24] proved that FEEDBACK VERTEX SET is NP-
complete for star convex and comb convex graphs. In addition, Liu et al. [30]
proved that FEEDBACK VERTEX SET is polynomial-time solvable for circular
convex graphs, whereas Jiang et al. [24] proved that the WEIGHTED FEEDBACK
VERTEX SET problem is polynomial-time solvable for triad convex graphs.

It turns out that the above problems are polynomial-time solvable on circu-
lar convex graphs and subclasses of (¢, A)-tree convex graphs, but NP-complete
for star convex graphs and comb convex graphs. In contrast, Panda and Chaud-
hary [35] proved that DOMINATING INDUCED MATCHING is not only polynomial-
time solvable on circular convex and triad convex graphs, but also on star convex
graphs. Nevertheless, we notice a common pattern: many dominating set, induced
matching and graph transversal type of problems are polynomial-time solvable
for (t, A)-tree convex graphs, for every t > 1 and A > 3, and NP-complete for
comb convex graphs, and thus for (co,3)-tree convex graphs, and star convex
graphs, or equivalently, (1, 00)-tree convex graphs. Moreover, essentially all the
polynomial-time algorithms reduce the input to a convex graph.

Our Results. We simplify the analysis, unify the above approaches and ex-
plain the reductions to convex graphs, using mim-width. We prove three results
that, together with the fact that chordal bipartite graphs have unbounded mim-
width [6], explain the dotted line in Figure[2| The first two results generalize the
result of [I] for convex graphs. The third result gives two new reasons why tree
convex graphs (that is, (oo, 00)-tree convex graphs) have unbounded mim-width.

Theorem 1. Let G be a circular convezx graph. Then mimw(G) < 2. Moreover,
we can construct in polynomial time a branch decomposition (T,9) for G with
mimwg(T,0) < 2.

Theorem 2. Let G be a (t, A)-tree conver graph with t,A € N and t > 1 and

A > 3. Let
A 2
f(t, A) —maX{Q KQ> J J2A — 1} +t2A.

Then mimw(G) < f(t,A). Moreover, we can construct in polynomial time a
branch decomposition (T,6) for G with mimwg(T,d) < f(t, A).

Theorem 3. The class of star convexr graphs and the class of comb convex
graphs each has unbounded mim-width.
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Hence, we obtain a structural dichotomy (recall that star convex graphs are the
(1, 00)-tree convex graphs and that comb convex graphs are (oo, 3)-tree convex):

Corollary 1. Lett, A € NU{oco} witht > 1 and A > 3. The class of (t, A)-tree
convex graphs has bounded mim-width if and only if {t, A} N {0} = @.

Algorithmic Consequences. As discussed, the following six problems were
shown to be NP-complete for star convex and comb convex graphs, and thus for
(1, 00)-tree convex graphs and (oo, 3)-tree convex graphs: FEEDBACK VERTEX
SET [2/24]; DOMINATING SET, CONNECTED DOMINATING SET, TOTAL DoOM-
INATING SET [I2]; INDEPENDENT DOMINATING SET [41]; INDUCED MATCH-
ING [36]. These problems are examples of LCVS problems, possibly with con-
nectivity or acyclicity constraints. Hence, they are polynomial-time solvable for
every graph class whose mim-width is bounded and quickly computable [TJ2J1T].
Recall that the same holds for WEIGHTED FEEDBACK VERTEX SET [23] and
(WEIGHTED) SUBSET FEEDBACK VERTEX SET [3]; these three problems gener-
alize FEEDBACK VERTEX SET and are thus NP-complete for star convex graphs
and comb convex graphs. Combining these results with Corollary [1] yields the
following complexity dichotomy.

Corollary 2. Lett,A € NU{oco} witht > 1, A>3 and II be one of the nine
problems mentioned above, restricted to (t, A)-tree convex graphs. If {t, A} N
{0} = @, then II is polynomial-time solvable; otherwise, II is NP-complete.

It is worth noting that this complexity dichotomy does not hold for all LCVS
problems; recall that DOMINATING INDUCED MATCHING is polynomial-time
solvable on star convex graphs [35]. Theorems [1] and [2| combined with the re-
sult of [11], imply that this problem is also polynomial-time solvable on circular
convex graphs and (¢, A)-tree convex graphs for every ¢t > 1 and A > 3.

Further Algorithmic Consequences. Theorems [If and [2, combined with the
result of [28], also generalize a result of Diaz et al. [I7] for L1ST k-COLOURING on
convex graphs to circular convex and (¢, A)-tree convex graphs (t > 1, A > 3).

Additional Structural Results. We prove Theorems in Sections [2H4]
respectively. In Section [f] we perform a more refined analysis. We consider a
hierarchy of width parameters and determine exactly which of the generalized
convex classes considered in the previous sections have bounded width for each
of these parameters. This does not yet yield any new algorithmic results. In the
same section we also give some other research directions.

Preliminaries. Let G = (V, E) be a graph. For v € V, the neighbourhood
N¢g(v) is the set of vertices adjacent to v. The degree d(v) of a vertex v € V is
the size |Ng(v)|. A vertex of degree k is a k-vertex. A graph is subcubic if every
vertex has degree at most 3. We let A(G) = max{d(v) : v € V}. For disjoint
S, T C V, we say that S is complete to T if every vertex of S is adjacent to every
vertex of T. For S CV, G[S] = (S,{wv : w,v € S,uv € E}) is the subgraph
of G induced by S. The disjoint union G + H of graphs G and H has vertex
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set V(G) UV (H) and edge set E(G) U E(H). A graph is r-partite, for r > 2,
if its vertex set admits a partition into r classes such that every edge has its
endpoints in different classes. A 2-partite graph is also called bipartite. A graph
G is a support for a hypergraph H = (V,S8) if the vertices of G correspond to the
vertices of H and, for each hyperedge S € S, the subgraph of G induced by S
is connected. When a bipartite graph G = (4, B, E) is viewed as a hypergraph
H = (A, {N(b) : b € B}), then a support T for H with T € H is a witness that
G is H-convex.

2 The Proof of Theorem [1l

We need the following known lemma on recognizing circular convex graphs.

Lemma 1 (see, e.g., Buchin et al. [9]). Circular convex graphs can be rec-
ognized and a cycle support computed, if it exists, in polynomial time.

For an integer ¢ > 1, an {-caterpillar is a subcubic tree 1" on 2/ vertices with
V(T)={s1,...,80,t1,...,te}, such that E(T) = {s;t; : 1 <i<L}U{s;841 :
1 <4 < ¢—1}. Note that we label the leaves of an {-caterpillar ¢1,ts, ..., %, in
this order. Given a total ordering < of length ¢, we say that (T,0) is obtained
from < if T is an f-caterpillar and d is the natural bijection from the ¢ ordered
elements to the leaves of 7. We are now ready to prove Theorem

Theorem (1| (restated). Let G be a circular convex graph. Then mimw(G) < 2.
Moreover, we can construct in polynomial time a branch decomposition (T, 0) for
G with mimwg(T,0) < 2.

Proof. Let G = (A, B, E) be a circular convex graph with a circular ordering on
A. By Lemma [I] we construct in polynomial time such an ordering a, ..., an,
where n = |A| (see Figure[I). Let By = N(a,) and B, = B\ B;. We obtain a
total ordering < on V(G) by extending the ordering a4, ...,a, as follows. Each
b € Bj is inserted after a,, breaking ties arbitrarily. Each b € B is inserted
immediately after the largest element of A it is adjacent to (hence immediately
after some a; with 1 < i < n), breaking ties arbitrarily.

Let T be the |V(G)l|-caterpillar obtained from <. Below we will prove that
mimwg(T,0) < 2. Let e € E(T). We may assume without loss of generality
that e is not incident to a leaf of T'. Let M be a maximum induced matching of
G[A., A.]. As e is not incident to a leaf, we may assume without loss of generality
that each vertex in A, is larger than any vertex in A, in the ordering <.

We first observe that at most one edge of M has one endpoint in Bs. Indeed,
suppose there exist two edges zy, 'y’ € M, each with one endpoint in Bs, say
without loss of generality {y,y’} C Bs. Since each vertex in Bs is adjacent only
to smaller vertices, {y,y'} C A, and {x,2'} C A.. Without loss of generality,
y < y'. However, N(y) and N(y') are intervals of the ordering and so either
xz € N(y') or 2’ € N(y), contradicting the fact that M is induced.

We now show that at most two edges in M have an endpoint in B; and,
if exactly two such edges are in M, then no edge with an endpoint in Bs is.
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First suppose that three edges of M have one endpoint in By and let uq,uo, us
be these endpoints. Since N(u1), N(uz) and N(ug) are intervals of the circular
ordering on A all containing a,,, one of these neighbourhoods is contained in the
union of the other two, contradicting the fact that M is induced.

Finally suppose exactly two edges uiv; and usve € M have one endpoint in
Bj and thus their other endpoint in A. Let {uj,us} C A, and {v1,v2} C A..
Then, as each vertex in A, is larger than any vertex in A, in <, we find that u;
and us belong to By and thus {v1,v2} C A. Now if there is some edge uzvs € M
such that uz € Bs, then uz € A.. Recall that N(u1) and N(uy) are intervals
of the circular ordering on A both containing a,. Since M is induced, for each
i,j € {1,2}, we have that v; € N(u;), if ¢ = j, and v; ¢ N(u;), if ¢ # j. This
implies that one of v; and vy is larger than vs in < and so it is contained in
N (u3), contradicting the fact that M is induced. This concludes the proof. O

3 The Proof of Theorem [2

We need the following lemma on recognizing (¢, A)-tree convex graphsﬂ

Lemma 2. For t,A € N, (¢, A)-tree convex graphs can be recognized and a
(t, A)-tree support computed, if it exists, in O(n'T3) time.

Proof. Given a hypergraph H = (V| S) together with degrees d; for each i € V,
Buchin et al. [9] provided an O(|V|? + |S||V|?) time algorithm that solves the
following decision problem: Is there a tree support for H such that each vertex i
of the tree has degree at most d;? If it exists, the algorithm computes a tree
support satisfying this property. Given as input a bipartite graph G = (A, B, E),
we consider the hypergraph H = (A, S), where S = {N(b) : b € B}. For each of
the (l‘?l) = O(]A]") subsets A’ C A of size t we proceed as follows: we assign a
degree A to each of its elements and a degree 2 to each element in A\ A’. We
then apply the algorithm in [9] to the O(JA|") instances thus constructed. If G
is (t, A)-tree convex, then the algorithm returns a (¢, A)-tree support for H. O

The proof of Theorem [2 heavily relies on the following result for mim-width.

Lemma 3 (Brettell et al. [8]). Let G be a graph and (X1,...,X,) be a par-
tition of V(G) such that cutmimeg(X;, X;) < ¢ for all distinct 1,5 € {1,...,p},

and p > 2. Let h = max {c {(%)QJ ,max;eqy,.. pyimimw(G[X5]) } + c(p — 1)}
Then mimw(G) < h. Moreover, given a branch decomposition (T;,6;) for G[X;]

for each i, we can construct in O(p) time a branch decomposition (T,9) for G
with mimwg (T, 9) < h.

® Jiang et al. [24] proved that WEIGHTED FEEDBACK VERTEX SET is polynomial-time
solvable for triad convex graphs if a triad support is given as input. They observed
that an associated tree support can be constructed in linear time, but this does not
imply that a triad support can be obtained. Lemma [2] shows that indeed a triad
support can be obtained in polynomial time and need not be provided on input.
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We also need the following lemma (proof omitted).

Lemma 4. Let G be a (1, A)-tree convex graph, for some A > 3. Let f(A) =
max{Q L(%)w ,2A — 1}. Then mimw(G) < f(4Q), and we can construct in
polynomial time a branch decomposition (T,0) for G with mimwg (T, 0) < f(A).

We are now ready to prove Theorem

Theorem 2| (restated). Let G be a (t, A)-tree convex graph with t, A € N and
t>1and A > 3. Let

f(t, A) = max {2 K?)W 24 — 1} + 12 A.

Then mimw(G) < f(t,A). Moreover, we can construct in polynomial time a
branch decomposition (T, 8) for G with mimwg(T,0) < f(¢, A).

Proof. We use induction on ¢. If ¢ = 1, the result follows from Lemma [4] Let
t>1andlet G =(A,B,E) bea (t, A)-tree convex graph. By Lemma [2] we can
compute in polynomial time a (¢, A)-tree T with V(T) = A and such that, for
each v € B, N¢(v) forms a subtree of T. Consider an edge uv € E(T') such that
T —uw is the disjoint union of a (¢;, A)-tree T} containing u and a (to, A)-tree T
containing v, where max{ty,t2} < t and t;,to > 1. Clearly such an edge can be
found in linear time. For ¢ € {1,2}, let V(T;) = A;. Clearly, A = A; U A;. We
now partition B into two classes as follows. The set By contains all vertices in
B with at least one neighbour in Ay, and By = B\ B;. In view of Lemma |3 we
then consider the partition (A4; UB1, A2 UBs) of V(G). For i € {1,2}, G[A; UB;]
is a (¢;, A)-tree convex graph with ¢; < t and so, by the induction hypothesis,
mimw(G[A; U B;]) < max {2 {(%)QJ ,2A — 1} + (t—1)2A.

We now claim that cutmimg(A; U By, Ay U By) < A(t — 1). Let M be a
maximum induced matching in G[A; U By, Aa U Bs]. Since no vertex in By has
a neighbour in Aq, all edges in M have one endpoint in By and the other in As,.
We now consider the (t2, A)-tree Ty as a tree rooted at v, so that the nodes of
T5 inherit a corresponding ancestor/descendant relation. Since 75 has maximum
degree at most A and contains at most to vertices of degree at least 3, it has at
most Aty < A(t — 1) leaves. Suppose, to the contrary, that |M| > A(t — 1). We
first claim that there exist xy,z'y’ € M with {y,y'} C Ay and such that 3’ is a
descendant of y. Indeed, for each leaf z of T5, consider the unique z, v-path in T5.
There are at most A(t—1) such paths and each vertex of T5 is contained in one of
them. By the pigeonhole principle, there exist two matching edges xy, z'y’ € M,
with {y,y'} C A, such that y and 3’ belong to the same path; without loss
of generality, 3’ is then a descendant of y, as claimed. Since Ng(z') induces a
subtree of T, the definition of (41 U By, Ay U By) implies that Ng(2') NV (T3)
contains v and induces a subtree of 75. But then this subtree contains y and so
z' is adjacent to y as well, contradicting the fact that M is induced.
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Combining the previous paragraphs and Lemma [3| we then obtain that

mimw(G) < max{A(t 1),max{2 {<§>2J ,2A — 1} +(t—1)2A+ At — 1)}
max{Q {(?)T ,2A — 1} +(t—1)2A+At-1)
< maX{Z K?)ZJ 24 — 1} +t2A.

Finally, we compute a branch decomposition of G. We do this recursively by
using Lemmas [3] and [4 O

4 The Proof of Theorem [3

For proving Theorem [3] we need the following lemma.

Lemma 5 (see Wang et al. [43]). Let G = (A, B, E) be a bipartite graph and
G’ be the bipartite graph obtained from G by making k new vertices complete to
B. If k=1, then G’ is star convex. If k = |A|, then G’ is comb convex.

Theorem (3| (restated). The class of star convex graphs and the class of comb
convez graphs each has unbounded mim-width.

Proof. We show that, for every integer ¢, there exist star convex graphs and comb
convex graphs with mim-width larger than ¢. Therefore, let £ € N. There exists a
bipartite graph G = (A, B, E) such that mimw(G) > ¢ (see, e.g., [7]). Let G’ be
the star convex graph obtained as in Lemma[p] Adding a vertex does not decrease
the mim-width [42]. Then mimw(G’) > mimw(G) > £. Let now G” be the comb
convex graph obtained as in Lemma | Then mimw(G"”) > mimw(G) > ¢. O

5 A Refined Parameter Analysis and Final Remarks

We perform a more refined analysis on width parameters for the graph classes
listed in Figure[2] We will consider the graph width parameters listed in Figure 3]
Our results are summarized in Figure d] We omit the proofs but note that we
provide a complete picture with respect to the width parameters and graph
classes considered.

We are not aware of any new algorithmic implications. In particular, it would
be interesting to research if there are natural problems that are NP-complete
for graphs of bounded mim-width but polynomial-time solvable for graphs of
bounded thinness or bounded linear mim-width. In addition, it would also be
interesting to obtain dichotomies for more graph problems solvable in polynomial
time for graph classes whose mim-width is bounded and quickly computable. For
example, what is the complexity of LiST k-COLOURING (k > 3) for star convex
and comb convex graphs? We leave this for future research.
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sim-width
J [27)

mim-width

J [2]

linear mim-width clique-width
l 4] J 4]
thinness treewidth

J

proper thinness

T

path-width

Fig.3: The relationships between the different width parameters that we con-
sider in Section [5} Parameter p is more powerful than parameter ¢ if and only if
there exists a directed path from p to g. To explain the incomparabilities, proper
interval graphs have proper thinness 1 [33] and unbounded clique-width [I§],
whereas trees have tree-width 1 and unbounded linear mim-width [2I]. Unrefer-
enced arrows follow from the definitions of the width parameters involved except
for the arrow from proper thinness to path-width whose proof we omitted.

bipartite

unbounded sim-width

ltrcc convex = (00, 00)-tree convex

(00, 3)-tree convex chordal bipartite

star convex = (1, 00)-tree Convex‘

comb convex

circular convex

l (t, A)-tree convex, t > 1, A > 3‘

bounded thinness,

unbounded proper thinness, triad convex

unbounded clique-width

Fig.4: The inclusion relations between the classes we consider. A line from a
lower-level class to a higher one means the first class is contained in the second.
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