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Abstract

We illustrate a method for improving Renormalisation Group improved pertur-

bation theory by calculating the infra-red central charge of a perturbed conformal

field theory. The additional input is a dispersion relation that exploits analyticity

of the energy-momentum tensor correlator.

1 Introduction

The purpose of this letter is to describe a method for improving a Renormalisation
Group improved perturbative calculation. We will study a two dimensional quantum
field theory off criticality. In the two scaling limits, the infrared (IR) and the ultra-
violet (UV), it becomes a conformal field theory characterised by the Virasoro central
charge. The field theory we look at has the minimal models M(m) as scaling limits.
Our approximation method obtains a value for the infrared central charge cIR using
perturbative information around the ultraviolet limit of the theory. In [1, 2, 3] cIR was
calculated in perturbation theory in the limit when m → ∞. This is valid because
then the UV and IR fixed-points are arbitrarily close in the coupling constant space.
The renormalisation group (RG) eigenvalue y = 4

m+1
of the perturbation vanishes as

m → ∞ and the perturbation thus becomes marginal, and hence the field theory does
not move away from the UV fixed-point. As well as for large values of m our ap-
proximation also applies for small values, (m > 10), and we can test it against the
exact result cIR = cM(m−1) when cUV = cM(m). In the limit m → ∞ we obtain the
perturbative result reported in [1, 2, 3]. To improve upon standard perturbative tech-
niques requires some additional input. For this we will exploit the analyticity of the
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energy-momentum correlator 〈TT 〉 in a complex scale parameter using it to construct
a dispersion relation. In section 2 we describe this dispersion relation. Section 3 gives
the results from perturbative CFT and the RG improvements, and in section 4 we
illustrate our approximation with numerical results.

2 The dispersion relation

We will now construct a dispersion relation that relates the infra-red and ultra-violet
behaviour of the energy-momentum tensor two-point function. The correlator of two
energy-momentum tensors can be written using the Källen-Lehman spectral represen-
tation [4] as

〈Tzz(z, z̄)Tzz(0, 0)〉 =
π

48

∫ ∞

0

dµ c̃(µ)

∫

d2p

(2π)2

e
i
2
(pz̄+p̄z)

pp̄ + µ2
p̄4 ≡ F (|z|2)

2 z4

where we use the usual complex variables z, z̄, and c̃(µ)dµ is the spectral density of
the QFT which represents the density in degrees of freedom at the mass µ. Integrating
over p gives

F (s) =
1

48

∫ ∞

0

dµ c̃(µ)µ
√

s
(

(µ3s3/2+24µ
√

s)K0(µ
√

s)+(8µ2s+48)K1(µ
√

s)
)

(1)

where s ∈ R+ and K0, K1 are the modified Bessel functions. In [4] it was shown using
the spectral representation that cUV =

∫ ∞
0

dµc̃(µ) and cIR = limǫ→0

∫ ǫ

0
dµc̃(µ). From

the properties of the modified Bessel functions it then follows from (1) that F (s) has
the limits

F (s) →
{

cUV for s → 0+,
cIR for s → ∞.

(2)

In [5] we prove in detail that the expression (1) provides an analytic continuation from
real positive values of s to the complex plane cut along the negative real axis, as might
be expected from the analyticity of the Bessel functions themselves. From now on
we take s to be in the complex plane with a thin wedge about the negative real axis
removed (so −π + ǫ < arg(s) < π− ǫ). From (1) it also follows that F (s) has the limits
(2) for all s → 0 and |s| → ∞ from the cut complex plane, so lim|s|→∞ F (s) = cIR and
F (0) = cUV .

The following contour integral in the cut complex plane therefore vanishes by ana-
lyticity of F (s)

1

2πi

∫

C

ds
eρ/s

s
F (s) =

1

2πi

(
∫

C0

ds +

∫

C1

ds +

∫

C2

ds

)

eρ/s

s
F (s) = 0, (3)

where the contour C is given in figure 1. The contribution from the large circle C2,
where s = rIReiθ for θ ∈ [π − ǫ,−π + ǫ], picks out the value (−1 + ǫ

π
) lim|s|→∞ F (s) =

(−1 + ǫ
π
)cIR in the limit rIR → ∞. This is seen by writing the integral as an angular

integral over θ, the limit rIR → ∞ can then be taken before the integral as it follows
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Figure 1: Integration contour C in the cut complex plane.

from (1) that the integrand is bounded by a constant in the cut plane. For ǫ small the
infrared central charge can thus be calculated from an integral over the small circle C0

and an integral over the contour C1 which we denote Cut(ρ)

cIR =
1

2πi

∫

C0

ds
eρ/s

s
F (s) + Cut(ρ) = I(ρ) + Cut(ρ). (4)

The exponential factor in the integrand suppresses the contribution of the cut for large
positive values of ρ and limρ→∞ Cut(ρ) = 0 so that cIR = limρ→∞ I(ρ). To show this we
divide the |s| interval into [rUV , 1] and [1, rIR] and note that F (s) is finite in the unit
disk hence the contribution in the lower region is bounded by the function k e−ρ

ρ
for some

k ∈ R+. In the other region, using the properties of the Bessel functions, the integral
is seen to be bounded by the expression k

∫

dµc̃(µ)µ7/2
∫ rIR

1
dre−ρ cos(ǫ)/rr3/4e−µ

√
r sin ǫ/2

which is uniformly convergent in ρ, the details are shown in [5].
For small s, F (s) and hence I(ρ) are determined by the ultra-violet behaviour.

Close to the UV fixed-point we may describe this by perturbation theory with running
coupling constant ḡ(s), vanishing as s → 0. We denote the perturbative approximation
to the integral in (4) by In(ρ) where F (s) is approximated to n-th order by the pertur-
bative expression Fn(s). If analyticity is not spoilt by the perturbative expansion (as
may be seen by inspection of the results in the next section) then simply substituting
In for I in this limit would yield cIR ≈ limρ→∞ In(ρ) = lims→∞ Fn(s), which is just
the perturbative estimate of the central charge, c∗IR. Since the scale dependence of the
theory can be absorbed in the scaling of the running coupling constant ḡ(s) we can
write Fn(s) = Φn(ḡ(s)), so that if g∗

IR is the first non trivial zero of the perturbative
β-function i.e. ḡ(s) → g∗

IR for s → ∞, then limρ→∞ In(ρ) = Φn(g∗
IR). However, we

wish to improve on this result. Both In(0) and I(0) equal cUV . For small enough ρ,
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In(ρ) provides a good approximation to I(ρ), since the power series expansion of I(ρ)
is controlled by the small s expansion of F (s) for which perturbation theory is good.
For larger values of ρ, I(ρ) and In(ρ) part company, tending to cIR and c∗IR respec-
tively. If cIR < c∗IR and if the region where In(ρ) is a good approximation to I(ρ) is
large enough, then In(0) − In(ρ) will have a maximum before approaching its limiting
value of cUV − c∗IR. It is this maximum that we will use to provide a better estimate
of cUV − cIR, since this occurs at the largest value of ρ for which In(ρ) is a reasonable
approximation to I(ρ) and the true value of cUV − cIR is given by I(0)− I(∞). As we
will see this is the case for the minimal models considered in the next section.

3 The perturbative calculation

In the CFT M(m) the primary field φ(1,3) is a relevant field which RG trajectory is a
geodesic in the coupling constant space [3]. The QFT

S = SM(m) − λ0

∫

d2x φ(1,3)(x). (5)

therefore interpolates between the UV fixed-point (λ0 = 0) given by M(m) and the IR
fixed-point which is given by the CFT M(m− 1). This can be seen from perturbative
arguments in the m → ∞ limit [1, 2, 6] and the general case is argued for in [7] using
thermo-dynamical Bethe ansatz methods.

When λ0 is small we can use perturbation theory to calculate quantities in the
theory (5). Calling the bare field φ(1,3) = φ one gets [6] to order λ0

〈φ(x)φ(0)〉 =
〈φ(x)φ(0)eλ0

∫

d2x′φ(x′)〉M(m)

〈eλ0

∫

d2x′φ(x′)〉M(m)

=
1

|x|2(2−y)

(

1 + λ0
4πb(y)A(y)

y
|x|y + O(λ2

0)

)

,

where A(y) = Γ(1−y)Γ(1+y/2)2

Γ(1−y/2)2Γ(1+y)
= 1 + O(y3) and b(y) is the operator product expansion

coefficient Cφ
φφ which can be calculated in the Coulomb gas representation of minimal

models using the formulas in [8]. b(y) is given by

b(y)2 = 16
3

(1−y)4

(1−y/2)2(1−3y/4)2

(

Γ(1+y/2)
Γ(1−y/2)

)4 (

Γ(1−y/4)
Γ(1+y/4)

)3 (

Γ(1−y)
Γ(1+y)

)2 (

Γ(1+3y/4)
Γ(1−3y/4)

)

= 16
3

+ O(y).

y = 4
m+1

is the RG eigenvalue for the perturbation φ(1,3). With the renormalisation
conditions 〈φ(x, g)φ(0, g)〉||x|=µ−1 ≡ µ4, the renormalised correlator and β-function,

β(g) ≡ µdg(µ)
dµ

, becomes to the same order [6]

〈φ(x, g)φ(0, g)〉 =
µ4

|µx|2(2−y)

(

1 +
4πA(y)b(y)g

y
(|µx|y − 1)

)

,

β(g) = −yg − πb(y)g2A(y) + O(g3).
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Here g and φ(x, g) are the renormalised coupling and field. The RG fixed-points, the
zeros of the β−function, are thus gUV = 0, g∗

IR = −y
πA(y)b(y)

and therefore g ∈ ( −y
πA(y)b(y)

, 0)

as the theory (5) lies between the two scaling limits. The trace of the energy-momentum
operator Θ is the infinitesimal generator for scale transformations and it is given by [1]
Θ(x) = 2πβφ(x). Then it follows from the Ward identities that

∂z̄1
∂z̄2

〈T (z1, z̄1)T (z2, z̄2)〉 =
1

42
∂z1

∂z2
〈Θ(z1, z̄1)Θ(z2, z̄2)〉

=
π2

4
β(g)2∂z1

∂z2
〈φ(z1, z̄1)φ(z2, z̄2)〉.

(6)

Writing F̃ (R̃) = 2z4〈T (z, z̄)T (0, 0)〉 in terms of the dimensionless variable R̃ = µ2zz̄,
then (6) becomes

∂2

∂R̃2
F̃ (R̃) =

π2β2

4µ4
R̃2 ∂2

∂R̃2
〈φ(R̃)φ(0)〉. (7)

The limiting values of F̃ (R̃) are given by (2), using these the solution to (7) becomes

F̃ (R̃) = cUV +
π2g2R̃y

2

(

y(2 − y)(3 − y)

y − 1
+ 2πA(y)b(y)g

(

(2 − y)(3 − y)

1 − y

+R̃
y
2

(3y − 4)(3y − 6)

3(3
2
y − 1)

))

.

The function F (s) is determined as F (s) = F̃ (R̃)|R̃=1,g=ḡ(s). The theory is thus fixed at
the renormalisation point and all scale dependence is moved into the running coupling
constant [6]

ḡ(s) =
gs

y
2

1 − πA(y)b(y)g
y

(s
y
2 − 1)

. (8)

We thereby get our 1 loop RG improved approximation of F (s)

F1(s) = cUV +
π2

2
ḡ2(s)

(

y(2 − y)(3 − y)

y − 1

+2πA(y)b(y)ḡ(s)

(

(2 − y)(3 − y)

1 − y
+

(3y − 4)(3y − 6)

3(3
2
y − 1)

))

.

(9)

To apply our approximation based on the dispersion relation of the previous section to
calculate ∆c = cUV − cIR we now have to find the maximum of

I1(0) − I1(ρ) = cUV − 1

2πi

∫

C0

ds
eρ/s

s
F1(s). (10)
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4 Results

We first note that F1(s) has the correct value in the perturbative limit y → 0. From
(9) it follows that ∆cpert = cUV − c∗IR = lims→0(cUV − F1(s)) is given by

∆cpert = − π2

2
(g∗

IR)2

(

y(2 − y)(3− y)

y − 1

+2πA(y)b(y)g∗
IR

(

(2 − y)(3 − y)

1 − y
+

(3y − 4)(3y − 6)

3(3
2
y − 1)

))

=
3y3

16
+ O(y4),

(11)

and the exact value is

∆cexact = c(m) − c(m − 1) =
12

m(m2 − 1)
=

3y3

2(2 − y)(4 − y)
=

3y3

16
+ O(y4). (12)

To calculate ∆c for finite m we have to calculate I1(ρ). The running coupling (8) can
be rewritten as

ḡ(s) =
gs

y
2

1 − πA(y)b(y)g
y

(s
y
2 − 1)

=
g∗

IR|g̃|sy/2

1 + |g̃|sy/2
, g̃ =

g

g − g∗
IR

∈ (−∞, 0). (13)

A variable change s′ = s|g̃|2/y in I1(ρ) then leads to

I1(ρ, g) =
1

2πi

∫

C0

ds
eρ/s

s
F1(s) =

1

2πi

∫

C′

0

ds′
eρ′/s′

s′
F1(s

′) = Ĩ1(ρ
′) (14)

where now all dependence of the renormalised coupling g is moved into ρ′ = ρ|g̃|2/y and
the radius of C ′

0: r′UV = rUV |g̃|2/y as now ḡ(s′) = gIR∗

1+s′y/2
. The integral Ĩ1(0) − Ĩ1(ρ

′)

can be calculated numerically and in figure 2 we have plotted it against log ρ′ for the
case of m = 14. For large ρ′ it tends to the perturbative value 0.0025, but has a
maximum value of 0.00367 which provides a better approximation to the true value of
0.00440. The dashed line indicates how we expect Ĩ(0) − Ĩ(ρ′) to behave. We have
approximated ∆c for different values of m by the maximum of Ĩ1(0) − Ĩ1(ρ

′) and we
denote this approximation as ∆capprox. The numbers ∆capprox have been obtained by
a numerical integration using a NAG mark 18 Fortran Library quadrature routine. In
figure 3 the error in ∆capprox and ∆cpert compared with ∆cexact is plotted against m.
The errors are scaled with m(m2−1) so that all points are distinguishable on the same
plot. The figure shows that the error in the approximation ∆capprox is more than a
factor 2 smaller than the error in the perturbative value ∆cpert in the region plotted.

For values of m smaller than 11 perturbation theory begins to breakdown indicated
by the RG improved result turning negative (violating unitarity). Our approximation
whilst still positive for m close to 10 also becomes poorer since it is based on the RG
expression. Also, note that both ∆capprox and ∆cpert approaches ∆cexact faster than
the asymptotic value 3y3/16 in the limit m → ∞.
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Figure 2: The numerical-result Ĩ1(0) − Ĩ1(ρ
′) against log ρ′, also plotted is the exact

value ∆cexact and the RG improved perturbative result ∆cpert all for m = 14. The
dashed line is the expected behaviour of Ĩ(0) − Ĩ(ρ′).
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Figure 3: (∆cexact − ∆capprox)m(m2 − 1) and (∆cexact − ∆cpert)m(m2 − 1) against m.
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5 Conclusion

We have described an approximation method to obtain the IR central charge of the
minimal models valid for m > 10. The method improves upon the RG improved
calculation by exploiting the analyticity of the correlator of the energy-momentum
tensor. This analyticity is a property both of the exact correlator and the RG improved
perturbative estimate of it, [5], which we have used in our calculation.

Our approximation is correct in the perturbative limit m → ∞. For smaller m
we obtained the values shown in figure 3 together with the RG improved perturbative
result. This figure demonstrates that the approximation is significantly better than the
RG improved perturbative result, e.g. for m = 18 it has a 7.8% relative deviation from
the exact result whereas the RG perturbative result deviates by 18.0%. The analyticity
in the complex scale parameter s of the energy-momentum tensor two-point function is
in fact an ubiquitous property of correlation functions in quantum field theory, having
its origin in the hermiticity of the Hamiltonian. Consequently we expect our approach
to be applicable beyond the specific calculation we have used to illustrate it here, to
other RG improved perturbative calculations of Green’s functions.
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