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We consider “bubbles of nothing” constructed by analytically continuing black hole solutions in anti—de
Sitter space. These provide interesting examples of smooth time-dependent backgrounds which can be studied
through the AdS/CFT correspondence. Our examples include bubbles constructed from Schwarzschild-AdS,
Kerr-AdS and Reissner-NordstroAdS. The Schwarzschild bubble is dual to Yang-Mills theory on three-
dimensional de Sitter space times a circle. We construct the boundary stress tensor of the bubble spacetime and
relate it to the properties of field theory on de Sitter space.
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[. INTRODUCTION in AdS. These bubbles of nothing should then be related to
some state in the field theory dual to string theory on AdS
There are many open questions in string theory, such ax S*. As we will see, this construction gives rise only to
understanding cosmological evolution or the informationasymptotically locally AdS spacetimes and it would be inter-
flow in a black hole formation, for which the key element is esting to find an example asymptotic to global AdS.
a better understanding of dynamical spacetimes. There has We will focus on the Ad$X S case, as this corresponds
recently been a surge of interest in studying string theory irio the most well-understood field theory dual. For most of
time-dependent backgrounds. Several authors have discussedr results, there will be an obvious extension to the AdS
orbifold constructions giving solutions with tractable string XS’ and AdSx S* cases. It might seem that the AgSS®
theory description$2]. These spacetimes contain singulari- case was equally interesting, but the double analytic continu-
ties; this provides an opportunity to learn about novelation of the locally Ad$ black hole solutions is just global
singularity-resolution mechanisms in string theory, but it alsoAdS;.*
makes these rather challenging examples. In another ap- We begin by studying the analytic continuation of time
proach Sen has considered dynamical solutions of opeand an anglet(iy, 6—ir) of Schwarzschild-AdSin Sec.
string field theory with cosmological interpretatiof8, but  11.2 As in the flat space casg,is periodically identified, and
the corresponding spacetime solutions have not yet been uthe resulting geometry is only asymptotically locally AdS
derstood. Against this context, it is useful to consider simpleeven though the proper length of tlyecircle grows at large
spacetimes which exhibit interesting time dependencgl]in  distancé. We find that the natural conformal boundary of
Aharony, Fabinger, Horowitz and Silverstein pointed out thatthis spacetime is three-dimensional de Sitter space times a
the double analytic continuation of Schwarzschild or Kerrcircle (d$xSt). By the AdS/CFT correspondence, the
spacetimes, dubbed “bubbles of nothing,” provide interest-Schwarzschild bubble should therefore be dualNe-4
ing examples of smooth time-dependent solutions. Sinc&U(N) Yang-Mills theory on d$x St. The characteristic ex-
these are vacuum solutions, they are consistent backgroungenential expansion of the bulk spacetime is therefore seen
for string theory at least to leading order. directly in the background for the field theory dual. We pro-
It would also be interesting to find time-dependent asympwvide evidence for the duality by computing the boundary
totically AdS solutions, as we could then use the AdS constress tensor of the bubble spacetime and relating it to the
formal field theory(CFT) correspondence to relate the time expectation value of the stress tensor of Yang-Mills theory in
dependence to the behavior of the non-perturbative fieldS,x S*.
theory dual. By relating this dynamical background to the In Sec. Ill, we consider the extension to rotating black
dual field theory, it may be possible to sidestep, and geholes. Analytically continuing time, an angle and a rotation
another perspective on, some of the difficult issues assocparameter {(—iy, 6—ir,a—ia), we find that the presence
ated with studying string theory on these backgrounds, sucbf the negative cosmological constant introduces a qualita-
as the possible appearance of non-local boundary interagively new feature compared to flat space: the metric has a
tions[1]. coordinate singularity at a finite value of It would be
In this paper we will extend the work ¢fl] by consider- interesting to understand this breakdown of the metric in
ing the double analytic continuation of black hole solutions

This is related to the observation fid] that the AdS soliton for
*Email address: vijay@endive.hep.upenn.edu d=3 is just global AdSg.
"Email address: S.F.Ross@durham.ac.uk %Related solutions were previously discussediih
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more detail. However, the extension to include rotation does 2 2
. S . . ; , | 4rg
not introduce any simplification: since the proper distance in r2>r+=§ —1+1\/1+ ek 4

all directions grows liker, the spacetime is still locally as-
ymptotically AdS(unlike in flat space, where it was asymp- . f. | h i< the circle i
totically flat), and the spacetime the dual field theory lives inAtany timer, at fixed arge the space Is thg circle times
still has an & factor a 2-sphere. As—r , the y circle collapses, but the 2-sphere
Finally, we consider the extension to charged black hole@PProaches a finite size, CO,SHT-_ This 2-sphere is the
in AdS in Sec. IV. We think of this charge as arising from boundary of a bubble of nothing in AdS space which con-
angular momentum on the®Sso we consider the analytic tracts from infinite size at=—< to a minimum size at
continuation of time, an angle and the charge-{y,? =0 :_:md then expands back out to infinite Sizeras>. The
—ir,q—ip), paralleling the discussion of Kerr-AdS. These Metric on the bubble boundary is that of 3d de Sitter space.
charged cases are interesting because they have the samet larger, this metric will approach AdS locally. _Th's IS
dS;x St conformal boundary, but there is now an additional "0t OPvious from the form of the asymptotic metric:
parameter in the solution.

In Sec. V, we speculate about the interpretation of these ds2~| 1+ f dv2+ | 1+ f ldr2+r2(_d72
results from the dual field theory point of view, and outline a 12) %X 12
program for future work. It is particularly appealing that the 2
time dependence of the spacetime in these examples can be +costfrdQy). ®)

seen directly in the background for the dual field theory. . ) )
However, we can relate this to the usual embedding coordi-

natesXi+ X5+ X3+ X5-Ti-To=—1%b
Il. AdS-SCHWARZSCHILD BUBBLES R e y

In this section we consider the bubbles obtained by ana- X,=r coshrcosf sing,
lytic continuation of the AdS-Schwarzschild black hole. We
will argue that these are related to U(super YM(SYM) X3=r coshr cosf cosg,

theory on a background which includes a de Sitter factor, and
calculate the field theory stress tensor from the asymptotics

_ s X4=r coshrsing,
of spacetime by the counterterm subtraction procedure. The 4

5D AdS-Schwarzschild black hole has a metric . 6)
T,=r sinhr,
r2 r3 r2 2\t
d52:— l+|—2—r—2 dt2+ 1+ |—2—r—2> dl’2 X1=(r2+lz)1/25inh)(/|,
+r2(d6?+cog0dQ3), 1) T,=(r?+12)Y2coshy/I.

wheredQ? is the metric of the unit 2-sphere. We can ana-BY contrast, the usual global AdS metric is
lytically continuet— i y and #—i 7 to obtain another vacuum

solution to gravity with a negative cosmological constant: ds’= —coslfpdt*+1%dp?
2 2 22 +1%sintPp(dy?+ cogy dO3), 7
dSZZ l+—2——2 dX2+ l+—2——2) dl’2 o )
1= r 1= r where — 7/2< < /2. This is related to the embedding co-
+13(~d72+ cosrd03). (p ~Ordinates by

. . . . . X,=1 sinhp cosy cosa sin ¢,
To get a smooth spacetime, we requjréo be identified with

period X3=1 sinhp cosy cosh cosg,
27%r,

R X,4=1sinhp cosy sin g,
X 27 3) 4 p COSy

®)
X1=I sinhp sin,
wherer . is the minimum value of, ! psing
T,=1 coshp sint/I,

%In the string theory context, the solution of interest is the black
hole X S°, with a constant Ramond-RamorBR) 5-form flux in T1=1 coshp cost/I.
both black hole an&® components. Since we analytically continue
two coordinates in the black hole, the RR 5-form flux in this new Thus, the time-dependent met(l) is related to the standard
spacetime will still be real. global AdS coordinate&7) by
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r2/12=sinttp cogy— costtp sirft/l, (9)

inhr coshp sint/I 10
sinhr= :
[sint?p coS ¢ — costp sirft/1 Y2

sinhp siny
[sint?p cofy—cosp sirft/I +1]¥2

sinhy/l =
(11)

To understand the asymptotic metric, consid®r as a
coordinatization of AdS, which we will call the time-
dependent AdS coordinates. We see that these time-
dependent coordinates do not even cover the entirety of a FIG. 1. Periodic identification of in global coordinates in the
single period in global AdS: the coordinate patch has &=0 slice. The figure shows the radial coordinate in AdS gnd
boundary ar =0, corresponding to Over every point in the figure there is a 2-sphere. The locus of

points of fixedy is shown.

tanhp cosy= £ sint/I. (12
the two surfaces of fixeg, but in the true bubble geometry

In particular, on the asymptotic boundary of the spacetime if2), the distance between surfaces of fiyegjoes smoothly
global coordinategy— o, the boundary of the patch covered t0 zero. _
by the time-dependent coordinates is given by the null lines In the time-dependent AdS coordinaté®, the natural
y=+1/l+m/2. We also see that in the time-dependent Adsconformal compactification is a rescaling Byr?, giving a
coordinates, we should use the full rangec<y <. As in boundary metric
the usual flat space capg], the main effects of considering
the exact metri¢2) on the coordinates are twofold; the range ds =dx*+1%(—d7*+costtrdQ3). (14)
of r is restricted tor >r_ (which restricts us to a region of
AdS covered by the time-dependent coordingtesd the
spacetime is identified undegr~ x+ A y.

At large distances in AdS, i.e., @as—~«, the restriction to
r>r, coincides withy=*=t/l = /2, the boundary of the
time-dependent coordinate pat@hp to exponential correc-
tions inp). The action of the periodic identification gf on
the asymptotic metric is, however, slightly complicated. We
will express it in terms of the global AdS coordinates. From
Eqg. (1), we can see that a surfage= xo in Eq. (5) corre-

This is a (2+1)-dimensional de Sitter space time's $hus,

if we assume the AdS/CFT correspondence can be extended
to such asymptotically locally AdS cases, we should think of
the dual description of this spacetime as given by some state
of the SYM theory on d§x St. This can be related to the
usual theory on $< R obtained from global AdS by consid-
ering the boundary limit of the coordinate transformations
(10, (11):

sponds to sinhr= sint/ ,
[coSy— sirft/1]1Y2
_ tanhyo/! (19
siny= —————cost/I. (13 .
tanh sin
anhp sinhy/| = id

[cogy—sirtt/I ]2

In, for example, the=0 slice, this surface will extend to the

boundary along)= i, where sinjy=tanhx/l. It reaches a These transformations take the meiile) to
minimum valuepin=xo/l at ¢=m/2. Away from the re-

gion near the bubble, we can approximate the bubble solu- 1

tion (2) by the time-dependent AdS spa&, with these two d5§:m

restrictions. From the point of view of the usual AdS coor-

dinates, the periodic identification jpwill identify two sur- X[ —dt?+1%(dy?+ coSydQ3)]. (16)

faces of the form(13), as depicted in Fig. 1. This looks

pictorially rather like the construction of Bados- Hence, from the boundary point of view, the coordinate
Teitelboim-Zanelli(BTZ) from AdS;, but identifying hyper-  transformation between time-dependent and global AdS co-
surfaces rather than geodesics. Note, however, that this pierdinates involves a conformal rescaling by apssirét/l.

ture only takes into account the effects on the coordinatesThis conformal factor vanishes at the boundary of the time-
and not the fact that the bubble geome®y differs from the  dependent AdS coordinate patch @t =t/1+ 7/2, as ex-
time-dependent AdS metri(5) in the interior. If we just pected. If we also consider the effect of the periodic identi-
made these identifications on the time-dependent AdS metriication in y, by restricting to the fundamental region
(5), it would not be smooth at smal—in particular, in Fig. —Ax/2<y<Ax/2, we find that this conformal factor is

1, it looks like there is a finite minimum distance betweennon-zero except at'l = = 7/2.
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From the field theory point of view, there is a single di- will present evidence for this duality by comparing the CFT
mensionless parameter: the ratio of the size of théoShe  stress tensor to the boundary stress tensor calculated from the
radius of curvature of the de Sitter factor. This is jasg/I, bulk spacetime using the counterterm subtraction procedure
and to understand the physics from the field theory point obf [8,9].
view, we should express all quantities in terms of this param- Calculating the boundary stress tensor for the bubble
eter. In fact, if we solve Eq(3) for r in terms of Ay, we  spacetimg?) is a straightforward adaptation of the standard
find there are two roots: calculation of the boundary stress tensor for the

Schwarzschild-AdS black hole. We must rescale the bound-

2 2A x?\ 1?2 ary stress tensor to express it in terms of the field theory in
f+=m 1i( - W) (17)  the boundary metri¢14). The result for the bubble is

. o 3 3N2 (r32 1
In terms of the black hole solutions, this is just the usual TX=— ————= (r3+1%14)=— ﬁ(—ﬁ —1,
statement that there is a minimum temperature for the black 167Gl 817 4
hole solutions, and there are two black holes for each tem-
perature above that value—a smaller, unstable one and a , 1 2 o 2 (1§
larger stable one. T=Terap ot MM =g—2a|\ 1z 7/ (18)

In the discussion of the flat space analogu¢lifj it was

argued that the bubble spacetime would be classically stable, 2 (12 1
but quantum mechanically unstable. Our expectations here TI=Tl=—— = (r2+1%4)= ﬁ<_§+ _),
are slightly different. For the larger root in EGL7), we ¢ 167Gl 8m™\ 1= 4

would expect that the bubble will be both classically and
quantum mechanically stable. The argument for classical stavhere in the second equality we have used the standard re-
bility is in the same spirit agl]: the black hole solution is lation 13/G=2N?/= to rewrite the stress tensor in terms of
classically stable, so when one performs the analytic continufield theory quantities. It is interesting to compare this to the
ation, one expects to find no modes of the foeffit with ~ corresponding result for the ordinary Schwarzschild-AdS
negative mass squared on the de Sitter fagtowould be  case:
useful, however, to check this expliciily

The quantum instability ifhl] was to the production of a . 2
widely separated bubble. First of all, we should note thatthe Tt~ ~ 1g-gp3(fot 174 =—g =
global AdS space7) with two surfaces of the form{13)
identified is not smooth. It is therefore not clear that we 2 (42 1

3

2
7"

2

should give the bubble of nothing the same interpretation as  tv_ I(r2+1%/4)= o
S - : b 31l

a non-perturbative instability that the flat-space case had in 167Gl

[6]. Also, the presence of a negative cosmological constant

implies widely separated objects cannot be treated indepen- N2 r?, 1

dently. Finally, far from the original bubble, the direction TZ=T$=WU§+I2/4)= i Z)'

has a large proper radius. As a result any identificatioy of

required to make a second bubble in the background of the . ) . i o

first one will involve identifications over a very large proper  1he Positive sign of thd’ component in Eq(18) implies

length. This also suggests that there should be no instabilitffiat this solution has a negative mass, while the negdtjve
to creating further bubbles. component is interpreted as a negative pres§iuge a ten-

For the smaller root in Eq17), on the other hand, there sion) along this direction. The stress tensor is traceless, as in
are signs of both classical and quantum instability. The corSchwarzschild-AdS. This is as expected, since the boundary
responding black holes are thermodynamically unstable; ifnetric is the product of a circle and a three-dimensional Ein-
has been arguefi7] that this corresponds to a dynamical Stein space, so the trace anomaly vanishes. Notice that the
instability. This may well lead to a classical instability of the Stress tensor has one piece that depends on the parameter
bubble solution. Also, the solution with the larger root in Eq. and another that only depends on the cosmological constant.
(17) has lower energy, so we would expect the one with th@E|OW we will argue that the latter can be understood in the

smaller root to decay quantum mechanically into this largedual field theory as an anomaly contribution, while the
bubble. former depends on the state.

Now, the dual description is in terms gf=4 SYM on
the dSx S' spacetime(14). This spacetime is conformally
flat. We have already seen that the coordinate transformation

We have shown that the asymptotic boundary of the(15) takes it to the form(16), which is conformal to the
bubble spacetime is ¢&S'. Therefore, by the AJS/CFT Einstein static universe; since flat space can be conformally
correspondence, we expect thaf=4 SUN) Yang-Mills  embedded in the Einstein static universe, this implies that the
theory on d§x St should be dual to the bubble. The time boundary metri¢14) is conformally flat. Since the spacetime
dependence of the bubble spacetime is reflected directly iis conformally flat, there is a standard result for the stress
the fact that the CFT lives on an expanding space. Here wiensor[10]

|2

874

The dual field theory: Stress-energy tensor
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1 ) 5 - two contributions to the partition function for a giveny/I.
(T =- W(A( HE+BOHY +TY, (200 We expect that the larger root will dominate for the field

theory state obtained from the Euclidean vacuum.
where WH* and ®)H* are conserved quantities constructed

from the curvaturdsee[10] for their definitions, andfl"; is IIl. KERR-AdS BUBBLES
a traceless state-dependent part. For thexdS space, the The Schwarzschild-AdS bubble discussed above is as-
geometrical quantities are ymptotically locally AdS; it would be interesting to identify
6 asymptotically AdS solutions. IfiL], the same issue for the
(1)H‘;=|—4diaq—3,1,1,1) (21)  Schwarzschild bubble was explored by adding rotation.

Bubbles of nothing obtained by analytic continuation of Kerr
spacetimes were also considered previouslylEi. We will
now examine the effects of including a rotation parameter in
1 the AdS case. We will find that, unlike the flat space case,
(3)H’j=— —diag —3,1,1,1. (22 this fails to remove the identification in the asymptotic re-
' gion. There is also a new subtlety which arises from the
presence of a negative cosmological constant.
To simplify comparison to the flat space treatmentlf
consider first the casd=4. Then the metric obtained by
1 takingt—iy, a—ia and §—ir in the Kerr-AdS black hole
(Th)=— 167T2[—6AD R—B(RWR“”—1/3R2)] (23) [13]is

and

To fix the coefficientsA andB, we compute the trace of Eq.
(20),

2
and compare this to the conformal anomaly fd=4 SYM dszzﬁ dy— cosi+d
[9111] p2 X (1+(12|_2) ¢
(N?—-1) p? p? A,
M\ — nv__ 2 i 2_ —
(T4 v (2R, ,R*"—2[3R?), (24) + Ardr Ard72+cost?rp2
which fixesA=0 andB=(N2—1)/2. As a result, the field (r’—a?) ?
theory stress tensor is x| ady+ (1+a%?) do (26)
(N2-1) ~
By — _ u where
(T%) 3272 diag —3,1,1,)+T%. (25
) _ p?=r2+ a’sinifr, (27
Thus the geometrical part of the stress tensor precisely re-
produces the second term in E48) that is independent of a2
the parameter,. This suggests that the state-dependent part A=1- l—zsinhzr (28
of the field theory stress tensor should match the other term
in Eq. (18), and should not produce ag-independent con- and
stant. It would be interesting to clearly identify the field
theory states corresponding to thg>0 bubbles and show r2
that this is the case. Ar=(r2—a2)(l+ 77| 2Mr. (29

Since we obtained the bubble spacetime by analytic con-
tinuation from a Euclidean solution, there is a natural : .
vacuum state on the bulk spacetime defined by analytic conA Tr:gere E a bl_"bblle a=rp, Wgerelig IS thefIaLgest roc_)t of
tinuation from the vacuum on the Euclidean spacetime. Simj<r - But there is also now a breakdown of the metricrat

_ . 71 . . .
larly, there is a natural vacuum state in the field theory de— SiNf11l/al, whereA vanishes. The curvature remains fi-

fined by analytic continuation from3& S. It is presumably nite at this_ point, so itzmay be ju_st a coordinate singularity. If
this Euclidean vacuum state we should be considéting. er r\:vrlte sinhr=I/a— ", the |eading-orde-dependent part
We will defer detailed consideration of the field theory ©f the Metric is

state to future work. Here, we will simply note that to com-

2 2 2 2
pare to the field theory, we should rewrite the stress tensor in (17417 | 5, 2017+ a")

terms of the dimensionless parametey/|. The form of the (I7+a%) la(1?+1?)

stress tensor rewritten in terms &f/1 is lengthy, so we will 2 2

not give it explicitly; it can be easily obtained using EG$. x| ady+ wd(ﬁ _ (30)
and (17). Note that there are two roots in E€L7), giving (1+a?l7?)

For any given fixed value af, this looks like the Rindler-like
“We are grateful to Djordje Minic for discussions on this subject. metric in the future light cone of a point. It therefore seems

086002-5



V. BALASUBRAMANIAN AND S. F. ROSS PHYSICAL REVIEW D66, 086002 (2002

very likely that the singularity aB=0 corresponds to a ho- transformation that takes us through the horizon.

rizon. However, a different combination afy andd¢ is Similar difficulties arise in the cased=5. The
playing the role of the hyperbolic angle in the Rindler-like analytically-continued Kerr-AdSsolution gives the bubble
coordinates for each, so it is difficult to find a coordinate metric

2 2
A a B ) p? p? A (r2—a?)
ds?=— dy— —————cosRrdp+ —————sinirdy| + —dr2— ~—d 2+ cosr—| ady+ ————
02| X (g2 008 Tt T gy sinT Y et T T X 1y
A (r2— B2 2 (141272 B(r2—a?)cosfr  a(r?—g?)sintr |
—sin? dy+ ——————dy| —————| aBdy+ - d 31
77{'8 X (1+ 82172 r2p? Bax (1+a?l7?) (14 B217?) v @D
where
p?=r?+ a’sintfr— B2costtr, (32
2 2
A=1- T—zsinherr %COSHT, (33
and
1 3,
A,zr—z(rz—az)(rz—ﬂz) 1+ 7] = To. (34)

Here, the coordinateg andy are angles with period2. If «> B, there will be a breakdown of the metric wheXe vanishes,
as before. If8>a, A,>0, but we now encounter problems where 0.

There is still one case left, however= 3. This leads to a considerable simplification of the metric, which becomes

A, 2 p? p? p?
ds’=—| dy— —————(cosHfrd¢—sintfrd + —dr?— dr?— costtrsintPr(d¢—dy)?
7| N Ty ¢ N8 ra Y drad?) (de—dy)
1 2 2
+ —| ady+ ——————(costfrd¢— sint? rd , 3
2| et o ¢ ¥) (35
|
where a(1l+a??)
Q=——F———. (40
p>=r?—a’ (36) (ri—a?
and _ _ )
The surface of the bubble isetr . . The induced metric
1 r2 is
A= (r?=a)? 1+ l—z)—rg. 37
(rfi—a?
In this metric, we must restriatto r=r, , wherer , is the dt=— — % "~ 7 42
largest root of (1+a%7?)
2 2\2(02 112\ — 2122 r2—a2) - o~
(ri—a”)(ri+19)=rglers. (39 ——(g. i zliz)cosf‘?rsinﬁT(dQﬁ—dlﬁ)z
+
(Note that this equation has roots for all real non-zero a2
a,rq,l.) The periodic identifications are 1 (ri—a?? - ~
0 ) P r—z—ﬁ(COSﬁTd¢—Sinhszlﬁ)2,
(X, &)~ (x+Axn1, ¢+ AxQn;+27n,, 4 + 1+
+A)(Qn1+277n3), (39) (41)

where where
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~ a(l+a°2) a(1+ a2~ 2) IV. REISSNER-NORDSTROM AdS BUBBLES

p=¢+ (r2 —a?) Xo =it (r2 —a?) X: Since we are interested in considering bubbles in the con-
(42)  text of the AdS/CFT correspondence, and hence in space-
times which are asymptotically Ag$ S°, there is another
It is also useful to consider a coordinate possibility to consider: we can add angular momentum on
the S. From the five-dimensional point of view, this corre-
— -~ o~ sponds to considering charged black holes: a particularly
== (43 simple example is to add three equal commuting angular
momenta, which will give electrically charged Reissner-
In terms of (r,¢,7) coordinates, the metric on the bubble is Nordstran AdS black hole$14]. This leads to new examples
with the same asymptotic structure as in the Schwarzschild-

(ri—a?) 5 AdS case.
- (1+az|72)d7 Performing the analytic continuations—iy, 6—ir, q
—ip on the solution of14] gives us the bubble soluti®n
2 2
r<—a®) —
- (+—cosﬁrsinhzrd¢2 s 2
(1+a?l72) re o

ds’=

r
1+I_2_r_g_r_4>dX2
1 (ri—atz)2 - -
(costfrdgp+di)2.  (44)

B 2 13 e\t
r 2]-2y2 r r
+ (1t et + 1+|7—r—;’—f—4) dr2
We see that the constantslices of the bubble are tori. Un- +r2(—d7-2+cosr?rdQ§) 47)

like the non-rotating case, these tori are not all of finite size.

The cycle parametrized by at fixed ¢ goes to zero size at ) _
=0, as we can see from the first form of the metric. MoreWith the gauge field
worrisome, theg,, component in Eq(44) is

V3o V3¢

2_ 2 2_ 2 ST (48)
cosifr(ri—a?) [(ri—a p o 2r2  2r2

il 7y 2 costtr—(1+ a?l ~?)sinktr|,

@ +

(45  Asin the Schwarzschild case, we need to periodically iden-
tify x with period
so the cycle parametrized hz_yat fixedy will go to zero size

2.5
when 7 satisfies Ay 27l 7r3 49
X 2r 1 ri124 2022
(rf—a?
tanffr= —————, 46 .

T r2(1+a?l~?) 49 wherer . is the largest root of
and becomes timelike for larger values of We will leave ré -
the resolution of these difficulties for future wotk. 1z +ri— rors—e?=0. (50

As a general comment, we note that even if we had better
examples, adding rotation would not remove the asymptotic
identification. In the flat space case, proper lengths imthe Note that this equation has a solution far for all ry andg;
direction are asymptotically constant, while proper lengths iras in flat space examples, the analytic continuationg of
the ¢, ¢ directions grow linearly im at large distances. Thus, eliminates the possibility that there is no root.
the circle in they direction formed by the identificatio{89) The effects ofp in the metric are negligible at large so
would have divergent size at largefor non-zero(). In the  the asymptotic structure of this spacetime is the same as the
anti—de Sitter case, however, proper lengths in thand  uncharged case, and we get the samg<d$ metric (14) on
sphere directions all grow linearly in but this growth is  the conformal boundary. Here, we can think&f/l and o
removed by the conformal rescaling to obtain a boundarywhich is an R charge in the CF&s the appropriate param-
metric. Hence, replacing the identificati¢®) by (39) will eters.
not eliminate identifications in the conformal boundary; the We can determine the branch structure by considering the

Kerr-AdS bubble spacetimes are still only asymptotically lo-behavior ofA y as a function of . . For small and large, ,
cally AdS.

%We must analytically continue the charge so that the resulting
5See, howevel5] for a construction in higher dimensions. ten-dimensional metric is real.
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Ax—0. There will be a maximum wherdy' =0, which  given radius of the circle, there are two bubble solutions,
gives with different values for the minimum radius of the bubble.
We expect that the smaller bubble solution should be un-
2r8 —r412—10p22=0. (51) stable. A careful' analysis of the_ classical perturbations of
both these solutions, along the lines of the analysis of the
) ) ) AdS solitons in[4], would be very useful.
Since this equation has only one real rod(r.) has a We extended the construction to include angular momen-
single maximum. Below this maximum value, there are twoy,m poth in the AdS factor and on thé.SFor angular mo-
solutions forr, for given Ay, as in the uncharged case. mentum on the AdS factor, there are new coordinate singu-
(Note that this branch structure is quite different from thalarities which appear after analytic continuation for generic
obtained for realy.) It would be interesting to explore the 51es of the parameters. These seem to be associated with a
stability of these solutions as well. horizon in the bulk spacetime, but we did not attempt to
Since the boundary stress tensor is independent of subagq|ye this issue in detail. Angular momentum on tfesS
leading terms in the metric, it will have the same form as inyqre tractable, and leads to a structure which is very similar
the uncharged cas@8). However, because E(R9) gives Us 4 the Schwarzschild-AdS case, but with an additional pa-

a sixth-order polynomial to solve far, , we cannot write 5 meter. Varying this parameter provides additional opportu-

the stress tensor explicitly in terms afy ande. nities to study the behavior of the dual field theory. We note
that unlike in[1], adding either kind of angular momentum
V. CONCLUSIONS does not simplify the asymptotic structure of the spacetime

We have begun an investigation of time-dependent bull®" _?_Iﬁer thg Iaég-tm;e b](caha]:n?r of thekb.ubtble.t dv th
spacetimes in the context of the AdS/CFT correspondence. . € main direction for future V\{OI‘ IS to study the prop-
Inspired by the work of1], we have considered the smooth tehrnes of the ft'etld theotrﬁ/ ?E QES ' ag? iﬁergpﬁljo relatte_
bubble solutions obtained from analytic continuation of bulk € vacuum states on that background 1o the bulk spacetimes

- o ; discussed here. It would be very interesting if particle pro-
black hole solutions. This gives asymptotically locally AdS SO
spacetimes which are dual to field theory on simple timeduction in the bulk and on the boundary could be related.

dependent backgrounds. The fact that the time dependence%f“y[her open area is to attempt to f|nq constructions that
the bulk spacetime shows up as time dependence in the backl/® tractable ime-dependent _asymptotlcally AdS solutions,
ground for the dual field theory is very encouraging. It sug-WhICh could be reIaFed to the field thegry &
gests that there may be interesting connections between, for It would aI;o be mterest.lng.to consider thg anglogues of
example, the notions of particle creation on the two sides of€ construction in2], quotienting A_dS by a timelike or a
the duality. null isometry. However, since these isometries al_so acton the
We focused on asymptotically AdS S° spacetimes, dual conformal boundgry, this W|I_I _Iead to |dent|f|cat|ons in t_he
to /=4 SYM theory. The extension to other cases of interesegual as well, gnd it may be difficult to deal with the resulting
should be straightforward. For the simplest example, th ackgrounds in th.e f|e[d theory. . .
Schwarzschild-AdS bubble, the dual field theory lives on __\ote addedwhile this paper was in preparation, RES]
three-dimensional de Sitter space cross a circle. We calcd’i-ppeamd’ which discusses some of the same solutions.
lated the boundary stress tensor of the bubble spacetime and
showed that that it had two pieces, one which depended on ACKNOWLEDGMENTS
the parameters of the bubble, and the other which was uni-
versal. We showed that this universal part is reproduced by We thank Jan de Boer, Djordje Minic and Asad Naqvi for
the universal anomaly contribution to the stress tensor ofliscussions. V.B. was supported by DOE grant DE-FGO02-
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