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The dual of nothing
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We consider ‘‘bubbles of nothing’’ constructed by analytically continuing black hole solutions in anti–de
Sitter space. These provide interesting examples of smooth time-dependent backgrounds which can be studied
through the AdS/CFT correspondence. Our examples include bubbles constructed from Schwarzschild-AdS,
Kerr-AdS and Reissner-Nordstro¨m AdS. The Schwarzschild bubble is dual to Yang-Mills theory on three-
dimensional de Sitter space times a circle. We construct the boundary stress tensor of the bubble spacetime and
relate it to the properties of field theory on de Sitter space.
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I. INTRODUCTION

There are many open questions in string theory, such
understanding cosmological evolution or the informati
flow in a black hole formation, for which the key element
a better understanding of dynamical spacetimes. There
recently been a surge of interest in studying string theory
time-dependent backgrounds. Several authors have discu
orbifold constructions giving solutions with tractable strin
theory descriptions@2#. These spacetimes contain singula
ties; this provides an opportunity to learn about no
singularity-resolution mechanisms in string theory, but it a
makes these rather challenging examples. In another
proach Sen has considered dynamical solutions of o
string field theory with cosmological interpretations@3#, but
the corresponding spacetime solutions have not yet been
derstood. Against this context, it is useful to consider simp
spacetimes which exhibit interesting time dependence. In@1#,
Aharony, Fabinger, Horowitz and Silverstein pointed out t
the double analytic continuation of Schwarzschild or K
spacetimes, dubbed ‘‘bubbles of nothing,’’ provide intere
ing examples of smooth time-dependent solutions. Si
these are vacuum solutions, they are consistent backgro
for string theory at least to leading order.

It would also be interesting to find time-dependent asym
totically AdS solutions, as we could then use the AdS c
formal field theory~CFT! correspondence to relate the tim
dependence to the behavior of the non-perturbative fi
theory dual. By relating this dynamical background to t
dual field theory, it may be possible to sidestep, and
another perspective on, some of the difficult issues ass
ated with studying string theory on these backgrounds, s
as the possible appearance of non-local boundary inte
tions @1#.

In this paper we will extend the work of@1# by consider-
ing the double analytic continuation of black hole solutio
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in AdS. These bubbles of nothing should then be related
some state in the field theory dual to string theory on Adp
3Sq. As we will see, this construction gives rise only
asymptotically locally AdS spacetimes and it would be int
esting to find an example asymptotic to global AdS.

We will focus on the AdS53S5 case, as this correspond
to the most well-understood field theory dual. For most
our results, there will be an obvious extension to the Ad4

3S7 and AdS73S4 cases. It might seem that the AdS33S3

case was equally interesting, but the double analytic cont
ation of the locally AdS3 black hole solutions is just globa
AdS3.1

We begin by studying the analytic continuation of tim
and an angle (t→ ix,u→ i t) of Schwarzschild-AdS5 in Sec.
II.2 As in the flat space case,x is periodically identified, and
the resulting geometry is only asymptotically locally Ad
~even though the proper length of thex circle grows at large
distance!. We find that the natural conformal boundary
this spacetime is three-dimensional de Sitter space time
circle (dS33S1). By the AdS/CFT correspondence, th
Schwarzschild bubble should therefore be dual toN54
SU~N! Yang-Mills theory on dS33S1. The characteristic ex-
ponential expansion of the bulk spacetime is therefore s
directly in the background for the field theory dual. We pr
vide evidence for the duality by computing the bounda
stress tensor of the bubble spacetime and relating it to
expectation value of the stress tensor of Yang-Mills theory
dS33S1.

In Sec. III, we consider the extension to rotating bla
holes. Analytically continuing time, an angle and a rotati
parameter (t→ ix,u→ i t,a→ ia), we find that the presenc
of the negative cosmological constant introduces a qua
tively new feature compared to flat space: the metric ha
coordinate singularity at a finite value oft. It would be
interesting to understand this breakdown of the metric

1This is related to the observation in@4# that the AdS soliton for
d53 is just global AdS3.

2Related solutions were previously discussed in@4#.
©2002 The American Physical Society02-1
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more detail. However, the extension to include rotation d
not introduce any simplification: since the proper distance
all directions grows liker, the spacetime is still locally as
ymptotically AdS~unlike in flat space, where it was asym
totically flat!, and the spacetime the dual field theory lives
still has an S1 factor.

Finally, we consider the extension to charged black ho
in AdS in Sec. IV. We think of this charge as arising fro
angular momentum on the S5, so we consider the analyti
continuation of time, an angle and the charge (t→ ix,u
→ i t,q→ i%), parallelling the discussion of Kerr-AdS. Thes
charged cases are interesting because they have the
dS33S1 conformal boundary, but there is now an addition
parameter in the solution.

In Sec. V, we speculate about the interpretation of th
results from the dual field theory point of view, and outline
program for future work. It is particularly appealing that th
time dependence of the spacetime in these examples ca
seen directly in the background for the dual field theory.

II. AdS-SCHWARZSCHILD BUBBLES

In this section we consider the bubbles obtained by a
lytic continuation of the AdS-Schwarzschild black hole. W
will argue that these are related to SU(N) super YM~SYM!
theory on a background which includes a de Sitter factor,
calculate the field theory stress tensor from the asympto
of spacetime by the counterterm subtraction procedure.
5D AdS-Schwarzschild black hole has a metric

ds252S 11
r 2

l 2 2
r 0

2

r 2Ddt21S 11
r 2

l 2 2
r 0

2

r 2D 21

dr2

1r 2~du21cos2u dV2
2!, ~1!

wheredV2
2 is the metric of the unit 2-sphere. We can an

lytically continuet→ ix andu→ i t to obtain another vacuum
solution to gravity with a negative cosmological constant3

ds25S 11
r 2

l 2 2
r 0

2

r 2Ddx21S 11
r 2

l 2 2
r 0

2

r 2D 21

dr2

1r 2~2dt21cosh2t dV2
2!. ~2!

To get a smooth spacetime, we requirex to be identified with
period

Dx5
2p l 2r 1

2r 1
2 1 l 2 , ~3!

wherer 1 is the minimum value ofr,

3In the string theory context, the solution of interest is the bla
hole 3S5, with a constant Ramond-Ramond~RR! 5-form flux in
both black hole andS5 components. Since we analytically continu
two coordinates in the black hole, the RR 5-form flux in this ne
spacetime will still be real.
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l 2

2 F211A11
4r 0

2

l 2 G . ~4!

At any timet, at fixed larger the space is thex circle times
a 2-sphere. Asr→r 1 thex circle collapses, but the 2-spher
approaches a finite sizer 1

2 cosh2t. This 2-sphere is the
boundary of a bubble of nothing in AdS space which co
tracts from infinite size att52` to a minimum size att
50 and then expands back out to infinite size ast→`. The
metric on the bubble boundary is that of 3d de Sitter spa

At large r, this metric will approach AdS locally. This is
not obvious from the form of the asymptotic metric:

ds2'S 11
r 2

l 2 Ddx21S 11
r 2

l 2 D 21

dr21r 2~2dt2

1cosh2t dV2
2!. ~5!

However, we can relate this to the usual embedding coo
natesX1

21X2
21X3

31X4
22T1

22T2
252 l 2 by

X25r cosht cosu sinf,

X35r cosht cosu cosf,

X45r cosht sinu,
~6!

T25r sinht,

X15~r 21 l 2!1/2sinhx/ l ,

T15~r 21 l 2!1/2coshx/ l .

By contrast, the usual global AdS metric is

ds252cosh2rdt21 l 2dr2

1 l 2sinh2r~dc21cos2c dV2
2!, ~7!

where2p/2,c,p/2. This is related to the embedding co
ordinates by

X25 l sinhr cosc cosu sinf,

X35 l sinhr cosc cosu cosf,

X45 l sinhr cosc sinu,
~8!

X15 l sinhr sinc,

T25 l coshr sint/ l ,

T15 l coshr cost/ l .

Thus, the time-dependent metric~5! is related to the standar
global AdS coordinates~7! by

k

2-2
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THE DUAL OF NOTHING PHYSICAL REVIEW D66, 086002 ~2002!
r 2/ l 25sinh2r cos2c2cosh2r sin2t/ l , ~9!

sinht5
coshr sint/ l

@sinh2r cos2c2cosh2r sin2t/ l #1/2
, ~10!

sinhx/ l 5
sinhr sinc

@sinh2r cos2c2cosh2r sin2t/ l 11#1/2
.

~11!

To understand the asymptotic metric, consider~5! as a
coordinatization of AdS, which we will call the time
dependent AdS coordinates. We see that these ti
dependent coordinates do not even cover the entirety
single period in global AdS: the coordinate patch has
boundary atr 50, corresponding to

tanhr cosc56sint/ l . ~12!

In particular, on the asymptotic boundary of the spacetime
global coordinates,r→`, the boundary of the patch covere
by the time-dependent coordinates is given by the null li
c56t/ l 6p/2. We also see that in the time-dependent A
coordinates, we should use the full range2`,x,`. As in
the usual flat space case@6#, the main effects of considerin
the exact metric~2! on the coordinates are twofold; the ran
of r is restricted tor .r 1 ~which restricts us to a region o
AdS covered by the time-dependent coordinates!, and the
spacetime is identified underx;x1Dx.

At large distances in AdS, i.e., asr→`, the restriction to
r .r 1 coincides withc56t/ l 6p/2, the boundary of the
time-dependent coordinate patch~up to exponential correc
tions in r). The action of the periodic identification ofx on
the asymptotic metric is, however, slightly complicated. W
will express it in terms of the global AdS coordinates. Fro
Eq. ~11!, we can see that a surfacex5x0 in Eq. ~5! corre-
sponds to

sinc5
tanhx0 / l

tanhr
cost/ l . ~13!

In, for example, thet50 slice, this surface will extend to th
boundary alongc5c0 where sinc05tanhx0 /l. It reaches a
minimum valuermin5x0 / l at c5p/2. Away from the re-
gion near the bubble, we can approximate the bubble s
tion ~2! by the time-dependent AdS space~5!, with these two
restrictions. From the point of view of the usual AdS coo
dinates, the periodic identification inx will identify two sur-
faces of the form~13!, as depicted in Fig. 1. This look
pictorially rather like the construction of Ban˜ados-
Teitelboim-Zanelli~BTZ! from AdS3, but identifying hyper-
surfaces rather than geodesics. Note, however, that this
ture only takes into account the effects on the coordina
and not the fact that the bubble geometry~2! differs from the
time-dependent AdS metric~5! in the interior. If we just
made these identifications on the time-dependent AdS m
~5!, it would not be smooth at smallr—in particular, in Fig.
1, it looks like there is a finite minimum distance betwe
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the two surfaces of fixedx, but in the true bubble geometr
~2!, the distance between surfaces of fixedx goes smoothly
to zero.

In the time-dependent AdS coordinates~5!, the natural
conformal compactification is a rescaling byl 2/r 2, giving a
boundary metric

dsS
2 5dx21 l 2~2dt21cosh2tdV2

2!. ~14!

This is a (211)-dimensional de Sitter space times S1. Thus,
if we assume the AdS/CFT correspondence can be exten
to such asymptotically locally AdS cases, we should think
the dual description of this spacetime as given by some s
of the SYM theory on dS33S1. This can be related to the
usual theory on S33R obtained from global AdS by consid
ering the boundary limit of the coordinate transformatio
~10!, ~11!:

sinht5
sint/ l

@cos2c2sin2t/ l #1/2
,

~15!

sinhx/ l 5
sinc

@cos2c2sin2t/ l #1/2
.

These transformations take the metric~14! to

dsS
2 5

1

~cos2c2sin2t/ l !

3@2dt21 l 2~dc21cos2cdV2
2!#. ~16!

Hence, from the boundary point of view, the coordina
transformation between time-dependent and global AdS
ordinates involves a conformal rescaling by cos2c2sin2t/l.
This conformal factor vanishes at the boundary of the tim
dependent AdS coordinate patch atc56t/ l 6p/2, as ex-
pected. If we also consider the effect of the periodic iden
fication in x, by restricting to the fundamental regio
2Dx/2<x<Dx/2, we find that this conformal factor is
non-zero except att/ l 56p/2.

FIG. 1. Periodic identification ofx in global coordinates in the
t50 slice. The figure shows the radial coordinate in AdS andc.
Over every point in the figure there is a 2-sphere. The locus
points of fixedx is shown.
2-3
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V. BALASUBRAMANIAN AND S. F. ROSS PHYSICAL REVIEW D66, 086002 ~2002!
From the field theory point of view, there is a single d
mensionless parameter: the ratio of the size of the S1 to the
radius of curvature of the de Sitter factor. This is justDx/ l ,
and to understand the physics from the field theory poin
view, we should express all quantities in terms of this para
eter. In fact, if we solve Eq.~3! for r 1 in terms ofDx, we
find there are two roots:

r 15
p l 2

2Dx F16S 12
2Dx2

p2l 2 D 1/2G . ~17!

In terms of the black hole solutions, this is just the us
statement that there is a minimum temperature for the b
hole solutions, and there are two black holes for each t
perature above that value—a smaller, unstable one an
larger stable one.

In the discussion of the flat space analogue in@1#, it was
argued that the bubble spacetime would be classically sta
but quantum mechanically unstable. Our expectations h
are slightly different. For the larger root in Eq.~17!, we
would expect that the bubble will be both classically a
quantum mechanically stable. The argument for classical
bility is in the same spirit as@1#: the black hole solution is
classically stable, so when one performs the analytic cont
ation, one expects to find no modes of the formeikx with
negative mass squared on the de Sitter factor~it would be
useful, however, to check this explicitly!.

The quantum instability in@1# was to the production of a
widely separated bubble. First of all, we should note that
global AdS space~7! with two surfaces of the form~13!
identified is not smooth. It is therefore not clear that w
should give the bubble of nothing the same interpretation
a non-perturbative instability that the flat-space case ha
@6#. Also, the presence of a negative cosmological cons
implies widely separated objects cannot be treated inde
dently. Finally, far from the original bubble, thex direction
has a large proper radius. As a result any identification ox
required to make a second bubble in the background of
first one will involve identifications over a very large prop
length. This also suggests that there should be no instab
to creating further bubbles.

For the smaller root in Eq.~17!, on the other hand, ther
are signs of both classical and quantum instability. The c
responding black holes are thermodynamically unstable
has been argued@7# that this corresponds to a dynamic
instability. This may well lead to a classical instability of th
bubble solution. Also, the solution with the larger root in E
~17! has lower energy, so we would expect the one with
smaller root to decay quantum mechanically into this lar
bubble.

The dual field theory: Stress-energy tensor

We have shown that the asymptotic boundary of
bubble spacetime is dS33S1. Therefore, by the AdS/CFT
correspondence, we expect thatN54 SU~N! Yang-Mills
theory on dS33S1 should be dual to the bubble. The tim
dependence of the bubble spacetime is reflected directl
the fact that the CFT lives on an expanding space. Here
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will present evidence for this duality by comparing the CF
stress tensor to the boundary stress tensor calculated from
bulk spacetime using the counterterm subtraction proced
of @8,9#.

Calculating the boundary stress tensor for the bub
spacetime~2! is a straightforward adaptation of the standa
calculation of the boundary stress tensor for t
Schwarzschild-AdS black hole. We must rescale the bou
ary stress tensor to express it in terms of the field theory
the boundary metric~14!. The result for the bubble is

Tx
x52

3

16pGl3
~r 0

21 l 2/4!52
3N2

8p2l 4 S r 0
2

l 21
1

4D ,

Tt
t5

1

16pGl3
~r 0

21 l 2/4!5
N2

8p2l 4 S r 0
2

l 2 1
1

4D , ~18!

Tu
u5Tf

f5
1

16pGl3
~r 0

21 l 2/4!5
N2

8p2l 4S r 0
2

l 2 1
1

4D ,

where in the second equality we have used the standard
lation l 3/G52N2/p to rewrite the stress tensor in terms
field theory quantities. It is interesting to compare this to t
corresponding result for the ordinary Schwarzschild-A
case:

Tt
t52

3

16pGl3
~r 0

21 l 2/4!52
3N2

8p2l 4 S r 0
2

l 2 1
1

4D ,

Tc
c5

1

16pGl3
l ~r 0

21 l 2/4!5
N2

8p2l 4S r 0
2

l 2 1
1

4D , ~19!

Tu
u5Tf

f5
1

16pGl3
~r 0

21 l 2/4!5
N2

8p2l 4S r 0
2

l 2 1
1

4D .

The positive sign of theTt
t component in Eq.~18! implies

that this solution has a negative mass, while the negativeTx
x

component is interpreted as a negative pressure~i.e., a ten-
sion! along this direction. The stress tensor is traceless, a
Schwarzschild-AdS. This is as expected, since the bound
metric is the product of a circle and a three-dimensional E
stein space, so the trace anomaly vanishes. Notice tha
stress tensor has one piece that depends on the paramer 0
and another that only depends on the cosmological cons
Below we will argue that the latter can be understood in
dual field theory as an anomaly contribution, while t
former depends on the state.

Now, the dual description is in terms ofN54 SYM on
the dS33S1 spacetime~14!. This spacetime is conformally
flat. We have already seen that the coordinate transforma
~15! takes it to the form~16!, which is conformal to the
Einstein static universe; since flat space can be conform
embedded in the Einstein static universe, this implies that
boundary metric~14! is conformally flat. Since the spacetim
is conformally flat, there is a standard result for the str
tensor@10#
2-4
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THE DUAL OF NOTHING PHYSICAL REVIEW D66, 086002 ~2002!
^Tn
m&52

1

16p2 ~A(1)Hn
m1B(3)Hn

m!1T̃n
m , ~20!

where (1)Hn
m and (3)Hn

m are conserved quantities construct

from the curvature~see@10# for their definitions!, andT̃n
m is

a traceless state-dependent part. For the dS33S1 space, the
geometrical quantities are

(1)Hn
m5

6

l 4 diag~23,1,1,1! ~21!

and

(3)Hn
m52

1

l 4 diag~23,1,1,1!. ~22!

To fix the coefficientsA andB, we compute the trace of Eq
~20!,

^Tm
m&52

1

16p2 @26AhR2B~RmnRmn21/3R2!# ~23!

and compare this to the conformal anomaly forN54 SYM
@9,11#

^Tm
m&5

~N221!

64p2 ~2RmnRmn22/3R2!, ~24!

which fixesA50 andB5(N221)/2. As a result, the field
theory stress tensor is

^Tn
m&5

~N221!

32p2l 4 diag~23,1,1,1!1T̃n
m . ~25!

Thus the geometrical part of the stress tensor precisely
produces the second term in Eq.~18! that is independent o
the parameterr 0. This suggests that the state-dependent p
of the field theory stress tensor should match the other t
in Eq. ~18!, and should not produce anr 0-independent con-
stant. It would be interesting to clearly identify the fie
theory states corresponding to ther 0.0 bubbles and show
that this is the case.

Since we obtained the bubble spacetime by analytic c
tinuation from a Euclidean solution, there is a natu
vacuum state on the bulk spacetime defined by analytic c
tinuation from the vacuum on the Euclidean spacetime. Si
larly, there is a natural vacuum state in the field theory
fined by analytic continuation from S33S1. It is presumably
this Euclidean vacuum state we should be considering.4

We will defer detailed consideration of the field theo
state to future work. Here, we will simply note that to com
pare to the field theory, we should rewrite the stress tenso
terms of the dimensionless parameterDx/ l . The form of the
stress tensor rewritten in terms ofDx/ l is lengthy, so we will
not give it explicitly; it can be easily obtained using Eqs.~4!
and ~17!. Note that there are two roots in Eq.~17!, giving

4We are grateful to Djordje Minic for discussions on this subje
08600
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two contributions to the partition function for a givenDx/ l .
We expect that the larger root will dominate for the fie
theory state obtained from the Euclidean vacuum.

III. KERR-AdS BUBBLES

The Schwarzschild-AdS bubble discussed above is
ymptotically locally AdS; it would be interesting to identif
asymptotically AdS solutions. In@1#, the same issue for the
Schwarzschild bubble was explored by adding rotati
Bubbles of nothing obtained by analytic continuation of Ke
spacetimes were also considered previously in@12#. We will
now examine the effects of including a rotation paramete
the AdS case. We will find that, unlike the flat space ca
this fails to remove the identification in the asymptotic r
gion. There is also a new subtlety which arises from
presence of a negative cosmological constant.

To simplify comparison to the flat space treatment in@1#,
consider first the cased54. Then the metric obtained b
taking t→ ix, a→ ia andu→ i t in the Kerr-AdS black hole
@13# is

ds25
D r

r2 Fdx2
a

~11a2l 22!
cosh2tdfG 2

1
r2

D r
dr22

r2

Dt
dt21cosh2t

Dt

r2

3Fadx1
~r 22a2!

~11a2l 22!
dfG 2

~26!

where

r25r 21a2sinh2t, ~27!

Dt512
a2

l 2 sinh2t ~28!

and

D r5~r 22a2!S 11
r 2

l 2 D22Mr . ~29!

There is a bubble atr 5r b , wherer b is the largest root of
D r . But there is also now a breakdown of the metric at
5sinh21@l/a#, whereDt vanishes. The curvature remains
nite at this point, so it may be just a coordinate singularity
we write sinht5l/a2b2, the leading-orderb-dependent part
of the metric is

2
2la~ l 21r 2!

~ l 21a2!
db21b2

2~ l 21a2!

la~ l 21r 2!

3Fadx1
~r 22a2!

~11a2l 22!
dfG 2

. ~30!

For any given fixed value ofr, this looks like the Rindler-like
metric in the future light cone of a point. It therefore seem.
2-5
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very likely that the singularity atb50 corresponds to a ho
rizon. However, a different combination ofdx and df is
playing the role of the hyperbolic angle in the Rindler-lik
coordinates for eachr, so it is difficult to find a coordinate
r

08600
transformation that takes us through the horizon.
Similar difficulties arise in the cased55. The

analytically-continued Kerr-AdS5 solution gives the bubble
metric
ds25
D r

r2Fdx2
a

~11a2l 22!
cosh2tdf1

b

~11b2l 22!
sinh2tdcG 2

1
r2

D r
dr22

r2

Dt
dt21cosh2t

Dt

r2Fadx1
~r 22a2!

~11a2l 22!
dfG 2

2sinh2t
Dt

r2Fbdx1
~r 22b2!

~11b2l 22!
dcG 2

2
~11r 2l 22!

r 2r2 Fabdx1
b~r 22a2!cosh2t

~11a2l 22!
df2

a~r 22b2!sinh2t

~11b2l 22!
dcG 2

~31!

where

r25r 21a2sinh2t2b2cosh2t, ~32!

Dt512
a2

l 2 sinh2t1
b2

l 2 cosh2t, ~33!

and

D r5
1

r 2 ~r 22a2!~r 22b2!S 11
r 2

l 2 D2r 0
2 . ~34!

Here, the coordinatesf andc are angles with period 2p. If a.b, there will be a breakdown of the metric whereDt vanishes,
as before. Ifb.a, Dt.0, but we now encounter problems wherer50.

There is still one case left, however:a5b. This leads to a considerable simplification of the metric, which becomes

ds25
D r

r2 Fdx2
a

~11a2l 22!
~cosh2tdf2sinh2tdc!G 2

1
r2

D r
dr22

r2

~11a2l 22!
dt22

r2

~11a2l 22!
cosh2t sinh2t~df2dc!2

1
1

r 2 Fadx1
r2

~11a2l 22!
~cosh2tdf2sinh2tdc!G 2

, ~35!
where

r25r 22a2 ~36!

and

D r5
1

r 2 ~r 22a2!2S 11
r 2

l 2 D2r 0
2 . ~37!

In this metric, we must restrictr to r>r 1 , wherer 1 is the
largest root of

~r 1
2 2a2!2~r 1

2 1 l 2!5r 0
2l 2r 1

2 . ~38!

~Note that this equation has roots for all real non-ze
a,r 0 ,l .! The periodic identifications are

~x,f,c!;~x1Dxn1 ,f1DxVn112pn2 ,c

1DxVn112pn3!, ~39!

where
o

V52
a~11a2l 22!

~r 1
2 2a2!

. ~40!

The surface of the bubble is atr 5r 1 . The induced metric
is

ds252
~r 1

2 2a2!

~11a2l 22!
dt2

2
~r 1

2 2a2!

~11a2l 22!
cosh2t sinh2t~df̃2dc̃ !2

1
1

r 1
2

~r 1
2 2a2!2

~11a2l 22!2
~cosh2tdf̃2sinh2tdc̃ !2,

~41!

where
2-6
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f̃5f1
a~11a2l 22!

~r 1
2 2a2!

x, c̃5c1
a~11a2l 22!

~r 1
2 2a2!

x.

~42!

It is also useful to consider a coordinate

f̄5f̃2c̃. ~43!

In terms of (t,f̄,c̃) coordinates, the metric on the bubble

ds252
~r 1

2 2a2!

~11a2l 22!
dt2

2
~r 1

2 2a2!

~11a2l 22!
cosh2t sinh2tdf̄2

1
1

r 1
2

~r 1
2 2a2!2

~11a2l 22!2
~cosh2tdf̄1dc̃ !2. ~44!

We see that the constantt slices of the bubble are tori. Un
like the non-rotating case, these tori are not all of finite si
The cycle parametrized byc̃ at fixed f̃ goes to zero size a
t50, as we can see from the first form of the metric. Mo
worrisome, thegf̄f̄ component in Eq.~44! is

cosh2t~r 1
2 2a2!

~11a2l 22!2 S ~r 1
2 2a2!

r 1
2 cosh2t2~11a2l 22!sinh2t D ,

~45!

so the cycle parametrized byf̄ at fixedc̃ will go to zero size
whent satisfies

tanh2t5
~r 1

2 2a2!

r 2~11a2l 22!
, ~46!

and becomes timelike for larger values oft. We will leave
the resolution of these difficulties for future work.5

As a general comment, we note that even if we had be
examples, adding rotation would not remove the asympt
identification. In the flat space case, proper lengths in thx
direction are asymptotically constant, while proper lengths
thef,c directions grow linearly inr at large distances. Thus
the circle in thex direction formed by the identification~39!
would have divergent size at larger for non-zeroV. In the
anti–de Sitter case, however, proper lengths in thex and
sphere directions all grow linearly inr, but this growth is
removed by the conformal rescaling to obtain a bound
metric. Hence, replacing the identification~3! by ~39! will
not eliminate identifications in the conformal boundary; t
Kerr-AdS bubble spacetimes are still only asymptotically
cally AdS.

5See, however,@5# for a construction in higher dimensions.
08600
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IV. REISSNER-NORDSTRÖM AdS BUBBLES

Since we are interested in considering bubbles in the c
text of the AdS/CFT correspondence, and hence in spa
times which are asymptotically AdS53S5, there is another
possibility to consider: we can add angular momentum
the S5. From the five-dimensional point of view, this corre
sponds to considering charged black holes: a particul
simple example is to add three equal commuting angu
momenta, which will give electrically charged Reissne
Nordström AdS black holes@14#. This leads to new example
with the same asymptotic structure as in the Schwarzsch
AdS case.

Performing the analytic continuationst→ ix, u→ i t, q
→ i% on the solution of@14# gives us the bubble solution6

ds25S 11
r 2

l 2 2
r 0

2

r 2 2
%2

r 4 Ddx2

1S 11
r 2

l 2 2
r 0

2

r 2 2
%2

r 4 D 21

dr2

1r 2~2dt21cosh2tdV2
2! ~47!

with the gauge field

Ax5
A3%

2r 2
2

A3%

2r 1
2

. ~48!

As in the Schwarzschild case, we need to periodically id
tify x with period

Dx5
2p l 2r 1

5

2r 1
6 1r 1

4 l 212%2l 2 , ~49!

wherer 1 is the largest root of

r 1
6

l 2 1r 1
4 2r 0

2r 1
2 2%250. ~50!

Note that this equation has a solution forr 1 for all r 0 and%;
as in flat space examples, the analytic continuation oq
eliminates the possibility that there is no root.

The effects of% in the metric are negligible at larger, so
the asymptotic structure of this spacetime is the same as
uncharged case, and we get the same dS33S1 metric ~14! on
the conformal boundary. Here, we can think ofDx/ l and%
~which is an R charge in the CFT! as the appropriate param
eters.

We can determine the branch structure by considering
behavior ofDx as a function ofr 1 . For small and larger 1 ,

6We must analytically continue the charge so that the resul
ten-dimensional metric is real.
2-7



wo
e.
a

e

su
in

u
nc
th
lk
S
e

ce
a
g
,
o

l
es
th
n
lc
a

un
b
o

t p
o

ns,
e.
un-
of

the

en-

gu-
ric
ith a
to

ilar
pa-
rtu-
te

me

p-

imes
ro-
ed.
hat
ns,

of

the
e
g

or
02-
F.R.
ile

V. BALASUBRAMANIAN AND S. F. ROSS PHYSICAL REVIEW D66, 086002 ~2002!
Dx→0. There will be a maximum whereDx850, which
gives

2r 1
6 2r 1

4 l 2210%2l 250. ~51!

Since this equation has only one real root,Dx(r 1) has a
single maximum. Below this maximum value, there are t
solutions for r 1 for given Dx, as in the uncharged cas
~Note that this branch structure is quite different from th
obtained for realq.! It would be interesting to explore th
stability of these solutions as well.

Since the boundary stress tensor is independent of
leading terms in the metric, it will have the same form as
the uncharged case~18!. However, because Eq.~49! gives us
a sixth-order polynomial to solve forr 1 , we cannot write
the stress tensor explicitly in terms ofDx and%.

V. CONCLUSIONS

We have begun an investigation of time-dependent b
spacetimes in the context of the AdS/CFT corresponde
Inspired by the work of@1#, we have considered the smoo
bubble solutions obtained from analytic continuation of bu
black hole solutions. This gives asymptotically locally Ad
spacetimes which are dual to field theory on simple tim
dependent backgrounds. The fact that the time dependen
the bulk spacetime shows up as time dependence in the b
ground for the dual field theory is very encouraging. It su
gests that there may be interesting connections between
example, the notions of particle creation on the two sides
the duality.

We focused on asymptotically AdS53S5 spacetimes, dua
to N54 SYM theory. The extension to other cases of inter
should be straightforward. For the simplest example,
Schwarzschild-AdS5 bubble, the dual field theory lives o
three-dimensional de Sitter space cross a circle. We ca
lated the boundary stress tensor of the bubble spacetime
showed that that it had two pieces, one which depended
the parameters of the bubble, and the other which was
versal. We showed that this universal part is reproduced
the universal anomaly contribution to the stress tensor
Yang-Mills theory on dS33S1. It will be very interesting for
the future to understand the bubble parameter dependen
of the boundary stress tensor from the dual perspective. F
J
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S
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given radius of the circle, there are two bubble solutio
with different values for the minimum radius of the bubbl
We expect that the smaller bubble solution should be
stable. A careful analysis of the classical perturbations
both these solutions, along the lines of the analysis of
AdS solitons in@4#, would be very useful.

We extended the construction to include angular mom
tum both in the AdS factor and on the S5. For angular mo-
mentum on the AdS factor, there are new coordinate sin
larities which appear after analytic continuation for gene
values of the parameters. These seem to be associated w
horizon in the bulk spacetime, but we did not attempt
resolve this issue in detail. Angular momentum on the S5 is
more tractable, and leads to a structure which is very sim
to the Schwarzschild-AdS case, but with an additional
rameter. Varying this parameter provides additional oppo
nities to study the behavior of the dual field theory. We no
that unlike in@1#, adding either kind of angular momentum
does not simplify the asymptotic structure of the spaceti
or alter the late-time behavior of the bubble.

The main direction for future work is to study the pro
erties of the field theory on dS33S1, and attempt to relate
the vacuum states on that background to the bulk spacet
discussed here. It would be very interesting if particle p
duction in the bulk and on the boundary could be relat
Another open area is to attempt to find constructions t
give tractable time-dependent asymptotically AdS solutio
which could be related to the field theory onR4.

It would also be interesting to consider the analogues
the construction in@2#, quotienting AdS by a timelike or a
null isometry. However, since these isometries also act on
conformal boundary, this will lead to identifications in th
dual as well, and it may be difficult to deal with the resultin
backgrounds in the field theory.

Note added.While this paper was in preparation, Ref.@5#
appeared, which discusses some of the same solutions.
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