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Executive Summary

DSTL are interested in the uncertainty associated with the presymp-
tomatic diagnosis of sepsis. This diagnosis results from a complex pro-
cess involving collection of blood samples, microarray analysis, and sta-
tistical prediction via a neural network model.

The study group developed a Monte Carlo simulation method that would
allow the rapid generation of an empirical distribution for gene expres-
sions consistent with a given observation and given a specification for
the errors involved in the process. Further work extended this method to
consider multivariate simulation of multiple genes simultaneously. Sen-
sitivity analyses were performed to identify the most influential sources
of error. Additionally, investigations were made into the impact that
possible types of uncertainties could have on a classifier such as the one
used in this problem.
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1 Introduction

(1.1) DSTL are interested in the uncertainty associated with the presymptomatic
diagnosis of sepsis. This diagnosis results from a complex process involving
collection of blood samples, microarray analysis, and statistical prediction
via a neural network model. The study group had access to a description
of the errors in the process, their natures, sources, and likely distributions,
as well as a sample of gene expression data. Fine technical detail of the
underlying biological and scientific processes were not available, and so an
approach based on detailed mathematical or statistical modelling was not
feasible. Additionally, the neural network classifier was not available for
study.

(1.2) Therefore, the focus of the study group’s activity was in the accumulation
of errors involved in the extraction and processing of the blood samples that
result in the gene expressions which are input to the neural network. The
study group developed a Monte Carlo simulation method that would allow
the rapid generation of an empirical distribution for gene expressions consis-
tent with a given observation and given a specification for the errors involved
in the process. Further work extended this method to consider multivari-
ate simulation of multiple genes simultaneously. Sensitivity analyses were
performed to identify the most influential sources of error. Additionally, in-
vestigations were made into the impact that possible types of uncertainties
could have on a classifier such as the one used in this problem. The study
group also suggest additional work that will further understanding of this
phenomenon.

2 Problem description

2.1 Background

(2.1) Research is currently being undertaken to expand the window of efficiency
for medical treatment of sepsis through pre-symptomatic diagnosis. This is
achieved through an observational clinical study. Blood is taken from con-
senting elective surgery patients from pre-surgery to treatment end. Some
of these patients go on to develop sepsis (3.8%) and the majority recover
without developing sepsis. Blood is taken daily. The diagnosis of sepsis has
a level of variation between clinicians and hospitals and consensus is reached
via a clinical advisory panel where the level of disagreement is analysed. The
bloods are stored and then shipped to a laboratory where the RNA or tran-
scriptomic signature is measured by microarray and quantitative methods.
The data is retrieved, pre-processed, normalised and undergoes statistical
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modelling. This then predicts whether a patient is likely to go on to develop
sepsis or not.

(2.2) At every point of this process, from patient to statistical result, there is an
associated error or accuracy. There are different data types present and not
all of the error points can be considered independent. In order to give the
clinician confidence in using this process to assist at point of care, we need
to be able to propagate the errors through the complex process to provide
an overall uncertainty measurement.

2.2 Framing the problem

(2.3) Fundamentally, the question being asked is: will this patient develop sepsis?
Other questions (when will they develop sepsis? what is the cause?) are
of interest, but a study of these is predicated on being able to have some
confidence in our ability to predict sepsis for a given patient.

(2.4) This assessment can be made by two separate processes:
The clinical diagnosis: made by individual clinicians, but with subsequent
consensus opinion made by a clinical advisory panel. This is taken to be the
gold-standard for the diagnosis.
The statistical prediction: using a neural network classification model
based on the gene expression of a set of key genes obtained through microar-
ray analysis of a blood sample. While statistically accurate at mirroring the
clinical diagnosis on the data available, there is no quantification of uncer-
tainty or accuracy associated with the quantities used.

(2.5) The clinical diagnosis is authoritative, though expensive (in terms of time
and resource). The statistical prediction relatively cheap in terms of resource,
but requires a measure of error in order to quantify the level of confidence
that can be placed upon its results. Thus, in order to use the statistical
method reliably we require a statement of uncertainty to accompany the
statistical prediction. The neural network classifier is treated as a fixed
black-box model and modifications or alterations of the classifier were not
of interest, therefore the focus of the Study Group fell on the following two
areas:

(2.6) 1. Uncertainty propagation – what is the uncertainty on the gene ex-
pression data used as input to the statistical classifier? Given a single gene
expression observation, what uncertainty statements could be made about
the originating sample given knowledge of the process and its errors? What
range of possible gene expressions would be consistent with the observed gene
expression given knowledge of the process and its errors? How influential are
each of the error sources on the final uncertainty on the gene expression?
These questions are addressed in Section 4.

(2.7) 2. Impact of uncertainty on the classifier – given a generalised version
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Figure 1: Error model for RNA counts and gene expression.

of the process, what impact could such uncertainties have on predictions
made by the classifier? What effects can particular types of error cause?
These questions are discussed in Section 6.

3 Sources of uncertainty and error

(3.1) Based on our understanding of the diagnostic process, we considered five
main stages at which error may be introduced. These stages are summarised
briefly as follows:

1. Blood Sample - Blood is first drawn from the patient, before RNA preser-
vatives such as RNAlater are added. The sample is then pipetted so that a
sample of the required volume is obtained.

2. Storage and Shipping - The blood sample is stored and shipped to a lab-
oratory, while frozen.

3. RNA Extraction - The RNA must be isolated from the blood sample, and
this is done through pipetting and analyst input.

4. Microarray Analysis - This type of analysis uses the RNA counts to deter-
mine gene expression data.

5. Dimension Reduction Analysis - Statistical modelling is utilised to reduce
the data to information most relevant to sepsis diagnosis.

(3.2) These errors are depicted graphically in Figure (1), where each r represents
RNA counts and each g represents gene expression data. The ϵ values cor-
respond to the associated uncertainties. The box labelled NN is the neural
network classifier, and y is the prediction of sepsis. In order to consider how
these sources of uncertainty could impact the diagnosis, we need to quan-
tify each error with regards to its impact on RNA counts and resulting gene
expression data.

3.1 Blood Sample (r → r1)

(3.3) The blood sampling process, as described above, is composed of three main

3



Pre-symptomatic diagnosis of sepsis ESGI116

steps: drawing blood, adding RNA preservatives (such as RNAlater), and
pipetting the fluid into a required sample size. Based on provided information
about these processes, we were led to the assumption that errors in blood
drawing are distributed in a skew-normal manner, errors in pipetting are
normally distributed and centred around zero, and errors in RNAlater are
distributed bimodally.

(3.4) It seems that error resulting from the blood sample stage would directly result
in uncertainty in the sample volume. As long as a sufficiently large sample
volume was obtained, we assumed that this ambiguity would not affect the
gene expression results, and thus analysed the sample volume uncertainty
as a separate problem, the results of which are shown in Section 5.4. The
question of how uncertainty in the blood sample volume affects RNA counts
remains, however, and may require further consideration.

3.2 Storage and Shipping (r1 → r2)

(3.5) It is known that RNA degrades at a fixed rate, d, per day and as the sample
is frozen while it is stored and shipped, we make the assumption that errors
during this processing stage are due to RNA degradation only. We take the
number of days that RNA is in storage to be t ∼ Poi(λ), a Poisson distributed
random variable. Thus, the RNA counts after shipping and storage will be

r2 = (1− d)t+1r1, (1)

where r1 is the amount of RNA before shipping and storage, and we assume a
minimum storage and shipping time of one day. The decay rate was specified
to be d = 0.0005. The parameter of the Poisson was not specified, and so
was arbitrarily set to be λ = 2 though it is trivial to adjust this to a more
appropriate value.

(3.6) We note here that ϵstor is a multiplicative error, whereas the other processing
errors we consider are additive.

3.3 RNA Extraction (r2 → r3)

(3.7) The two errors associated with RNA extraction are due to pipetting error
(ϵpip), and uncertainty incurred by human analysis (ϵan). If we assume that
both pipetting and human analysis are equally likely to result in increased
or decreased RNA counts, then these errors can both be represented by nor-
mal distributions centred around zero. Initial specification for these errors
were that they were within ±1% and ±14% for pipetting and analyst error
respectively. These were equated with statements of ±2σ to derive appro-
priate parameter values.
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Figure 2: An asymmetric Laplace distribution with parameters µ = 0, σ = 0.01
and p = 0.85.

3.4 Microarray Analysis (r3 → g4)

(3.8) Here the RNA is measured by microarray analysis and converted into gene
expression data. It has been found [4] that the error distribution that oc-
curs in this process fits an asymmetric Laplace (ALD) distribution [5]. The
ALD distribution is formed by two back-to-back exponential distributions of
unequal scale. We say that a random variable Y is distributed as an ALD
with location parameter µ, scale parameter σ > 0 and skewness parameter
p in (0, 1), if its probability density function (pdf) is given by:

f(y|µ, σ, p) = p(1− p)

σ
exp

{
−ρp

(
y − µ

σ

)}
(2)

where ρp(.) is the so called check (or loss) function defined by

ρp(x) = x(p− I(x < 0)), (3)

with I(·) denoting the usual indicator function.

(3.9) The asymmetry parameter, p, of the distribution governs the inequality of
scale of the distribution, with more extreme values resulting in one side of
the distribution having a longer tail than the other. This distribution is
illustrated in Figure 2 for the default parameter values used in the analysis.

(3.10) The conversion from RNA count data to gene expression data is given by

h(r) = log2(r)−m, (4)

where m is some median value of the sample1.

1Without the sample information to calculate m, in our analysis we arbitrarily set m = 10 to
ensure the argument of the logarithm was always positive.
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3.5 Dimension Reduction Analysis (g4 → g5)

(3.11) In this final stage, the gene expression data is reduced to expression data
for the genes most relevant to sepsis diagnosis. Here, we assume that a
fixed error (Normal ±5%) is accrued due to the amount of information lost
through reducing the data set.

4 Uncertainty propagation

(4.1) In general, problems of uncertainty analysis and quantification in complex
systems are tackled using Bayesian approaches. This approach has been
popularised recently with recent work on the analysis of complex computer
models. Therefore, we initially considered approaching the problem from a
Bayesian viewpoint – in particular the use of a Bayesian belief network [1].
However, this approach proved unsuccessful due to the lack of sufficiently
detailed knowledge about the behaviour of the error processes, and the lack
of comprehensive prior information about the quantities involved.

(4.2) Given the error model in Figure 1, the observed gene expression, g, can be
expressed simply as a sequence of combinations of additive and multiplica-
tive errors and known transformations to an initial latent RNA count, r.
Expressing this formally,

y = h(r + ϵstor + ϵpip + ϵan) + ϵmicro + ϵred (5)

Each of the error terms has a specified distribution and parameters as de-
scribed in Section 3 and transformation function from RNA count to gene
expression, h(·), is as (4).

(4.3) This information is sufficient to apply Monte Carlo [2] sampling to simulate
the error and analysis process. Monte Carlo simulation for this problem
works by taking an initial value r, sampling an error from each of the error
distributions, and then combining as (4), which yields a value g which is
consistent with the initial value r and our specification of the error process.
In detail, given an initial RNA count, r, we first sample a value of t from
its specified Poisson distribution, which we use to produce a value of ϵstor.
Adding this to r yields a single sample from the distribution of r1, which
represents a possible RNA count after storage degradation. We continue
this process by sampling a value of ϵpip to produce r2, and sampling an ϵan
to produce an r3. Thus r3 is now one realisation of an ‘observed’ RNA count
that is consistent with the original ‘true’ count r and the error process as
specified. We can then apply the transformation (4) to map the RNA count
into a gene expression, and apply the further errors ϵmicro and ϵred, to obtain
a final realisation of a gene expression, g, that could have originated from
the original RNA count, r.
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(4.4) While this process only yields a single sample, the strength of Monte Carlo
simulation is the ability to repeat the sampling process. Each iteration will
yield a different value of g due to the inherent (psuedo-)randomness in sam-
pling from the error distributions. Thus, we can take a single initial r and
propagate it through this error process many times to obtain an ensemble
of possible realisations of g. From this collection we can then construct an
empirical distribution for the gene expression, g|r, which directly expresses
the uncertainty consistent with this error process and specification, and from
which we can infer relevant summary statistics.

(4.5) One complication with this setup is that, in practice, r is an unknown quan-
tity whereas g is observed and it is uncertainty on g that we seek. This
presents us with two possible approaches:

(4.6) Invert the sampling: If the transformation function, h(·), that maps RNA
counts to gene expressions is invertible, we could reverse the error process
and use a single observation g to sample from the distribution of r. We can
then simply invert (4) for r:

r = h−1(g − ϵmicro − ϵred)− ϵpip − ϵan − ϵstor, (6)

and apply Monte Carlo simulation to this quantity. Thus we now either know
or can sample from all the quantities on the right-hand side of the equation
and can use the observations directly to produce samples of r.

(4.7) Adopt a search strategy: If h is not invertible, then the above approach
is not viable. In this case we could adopt a simple search strategy to explore
the space of r to seek values which would be consistent with the observations
g. This is necessarily more computationally intensive, but could yield regions
of plausible values of r consistent with an observed g. (This shares similarity
with Bayesian history matching in the computer model literature.)

(4.8) In both cases, we arrive at an empirical distribution over values of r which
could have been the originating RNA count for the observed gene expres-
sion g. To translate these initial RNA counts into uncertainty on the gene
expression, we again have two possibilities.

(4.9) Direct transformation: Given the empirical distribution of r, we can di-
rectly map the RNA counts into a distribution of gene expression by applica-
tion of h. This quantifies the uncertainty in a latent ‘true’ gene expression,
g∗ say. This is not the same as the distribution for g, but its error-free state.

(4.10) Forward sampling: Each of the values r in the empirical distribution could
have originated the observed g. However, each r itself yields a distribution
of possible g values at the end of the error process. If we denote the observed
gene expression value as g0, then basic probability theory shows that

f(g|g0) =
∫

f(g|r, g0)f(r|g0)dr, (7)
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and from Monte Carlo simulation we have obtained the empirical distribution
f(r|g0). To fully capture the distribution over possible g, we must further
find f(g|r, y0) and then integrate. The former could be again achieved by
the same Monte Carlo sampling of (4), and (given the heavy reliance thus
far on Monte Carlo methods) so too could the marginalisation [3]. Note here
that this approach yields larger uncertainties than the method above as now
we are quantifying the uncertainty in the observed gene expression, g|g0, and
not the error-free latent gene expression, g∗|g0.

(4.11) Due to constraints on time and group size, we focus on the direct trans-
formation method using Monte Carlo on the inverted error process (3) –
this is described in Section 5.1. We also performed a similar investigation
to the sub-problem of uncertainty in sample volume, which is presented in
Section 5.4.

5 Results

5.1 Monte Carlo uncertainty analysis for gene expression

(5.1.1) We now discuss the results of the Monte Carlo uncertainty analysis dis-
cussed. Throughout we have used error specifications consistent with those
given in Section 3. For the microarray error, the asymmetric Laplace dis-
tribution was used. However, no information was available on the skewness
parameter for the error associated with this particular microarray. There-
fore a representative value has been used to provide moderate skewness;
this value can be replaced with a more appropriate value if practical in-
formation were available to suggest otherwise.

(5.1.2) Applying the Monte Carlo simulation method to (3) given a single observed
gene expression value of g0 = −0.4823 with a Monte Carlo sample size of
N = 5000 produces a sample of RNA counts with histogram given in Fig-
ure 3a. The red vertical line indicates the RNA count value, r0 that would
correspond to g0 if it were observed without any error or degradation. We
observe that as a consequence of the error process, the distribution of the
RNA counts has been skewed towards larger values. This is a result of
the correction for sample degradation and the strong asymmetry of the
Laplace distribution for the microarray error. Consequently, the bulk of
the distribution of possible RNA counts is larger than we would expect.
Transforming these RNA counts into gene expressions by direct applica-
tion of h(·) yields the histogram in Figure 3b, which is of similar shape.

(5.1.3) Applying the Monte Carlo simulation process to (4), we can generate an
empirical distribution for the gene expressions g given a value of the RNA
count r. Since the RNA count is unobservable, for illustration we take a
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(a) Distribution of RNA counts, r, given g0. The vertical line indicates the
error-free transformation of r0 = h−1(g0)
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(b) Distribution of latent gene expressions, g∗, corresponding to the above distri-
bution of RNA counts. The vertical line indicates the observed gene expression
value.

Figure 3: Monte Carlo simulation results from simulation of given observed gene
expression g0 = −0.4823.
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(a) Distribution of gene expressions, g, given r = r0. The vertical line indicates
the error-free transformation of the RNA count, g0 = h(r0).
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(b) Distribution of latent RNA counts, r∗, corresponding to the above distri-
bution of gene expressions. The vertical line indicates the initial RNA count
value.

Figure 4: Monte Carlo simulation results from simulation of given observed RNA
count r0 = 600.

value of r0 = 600, with results given in Figure 4. As we might expect,
the distribution now shifts in the opposite direction, with the RNA count
degrading over time and the asymmetry of the Laplace error reversed.
Thus we observed gene expressions that are more likely to be lower than
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we would expect.

5.2 Multivariate simulation

(5.2.1) In the analysis above, we have applied Monte Carlo simulation to prop-
agate the uncertainty associated with a single gene expression value. In
practice, this is not a univariate problem and for each blood sample multi-
ple gene expressions are measured. Consequently, a multivariate approach
to the uncertainty propagation is required.

(5.2.2) This is (mostly) straightforward, and is achieved by replacing the compo-
nents of (4) and (3) with vectors rather than scalars. Since the errors are
now vector-valued, their associated distributions must also be multivariate.
For the Normally distributed errors, a multivariate Normal distribution is
simple to sample from given some information on the correlation between
the error components. A multivariate version of the asymmetric Laplace
distribution exists for higher dimensions [6], though time constraints pre-
vented its implementation here and the microarray error was assumed to
be composed of independent univariate ALD errors for each gene. A mul-
tivariate approach would also allow for different decay rates for different
genes, though this was not considered here.

(5.2.3) By extending the Monte Carlo approach as described above, and using an
(arbitrary) correlation between the components of the Normal errors of
0.75 we repeated the analysis of Figure 3 using the vector of all 44 gene
expressions as g0. The result is a 44-dimensional empirical density, which
is shown in in the form of 2-dimensional projections between the first four
genes.

5.3 Sensitivity analysis

(5.3.1) Given a mechanism for propagating uncertainty through the system, we
can investigate how the overall uncertainty in the gene expression or RNA
count is affected by each of the sources of error. For this sensitivity analy-
sis, we adopt a one-at-at-time approach: varying each parameter individ-
ually over a range of values while keeping others at their specified original
values. For each value investigated, we perform the Monte Carlo uncer-
tainty analysis and investigate the effects on the empirical distribution
by calculation of summary statistics. Since we are most interested in the
spread in the values, we focus on the sample standard deviation. The
parameters varied and their ranges are summarised in Table 1.

(5.3.2) The results of the sensitivity analyses are shown in Figure 6 and Figure 7.
Each figure shows (leftmost) a plot of the change in the standard deviation
of the RNA count due to variation in the named parameter, and then three
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Figure 5: Density plots of empirical multivariate distributions obtained from Monte
Carlo sampling for gene expression.

Error source Min Default Max
Analyst error 0% 14% 28%
Pipette error 0% 1% 2%
1− Decay rate 0.9 0.995 0.9999
Storage time Poisson parameter 0 2 10
Microarray ALD σ parameter 0.0001 0.01 0.1
Microarray ALD skewness parameter 0.05 0.85 0.95

Table 1: Summary of model parameters and their ranges used in one-at-a-time
sensitivity analysis.
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histograms showing the empirical distribution of the RNA count at the
lower extreme, mid-point and upper extreme of the range of investigation.

(5.3.3) First, we consider the analyst error which was specified as Normal with
range of approximately ±14% of the value. Equating this interval with
2σ of the Normal distribution directly gives a distribution parameter to
investigate. The results of the sensitivity analysis clearly indicate that
analyst error is a highly influential component with a strong effect on
the final standard deviation. At its nominal value of 14% it contributes
approximately 40% of the overall variability when all other parameters
are held at default values. As the size of the analyst error increases, its
Normal distribution begins to dominate the overall distribution making it
progressively more symmetric.

(5.3.4) Conversely, pipetting error is ignorable. Specified as Normal and of the
order of ±1% its effects on the final variation are negligible.

(5.3.5) The RNA degradation rate is also a highly influential parameter. While
its impact is negligible for a degradation of up to 2% per unit time, beyond
this point it has a very strong impact on the spread of the distribution.
While this feature is quite striking, since the nominal specified value is well
within this range this may in fact be ignorable in practice. Increasing the
decay rate induces increased asymmetry as the sampling process attempts
to correct for this, induces a shift in the location and an elongation of the
upper tail.

(5.3.6) Storage time was modelled by a Poisson random variable with a rate pa-
rameter λ (1), with a default value of λ = 2. Investigation of the sensitivity
to λ displayed no obvious dependence with the overall uncertainty.

(5.3.7) The microarray error was given an asymmetric Laplace (ALD) distribu-
tion, with mean 0 and a standard deviation parameter σ and a further
skewness parameter p. The standard deviation parameter proved to have
exceptionally high sensitivity with relatively small changes in value result-
ing in huge increases in standard deviation. This is likely attributable to
the shape of this particular distribution, with one particularly long tail.
Increasing σ will cause this long tail to be reach out even farther making
more extreme observations more likely. This is corroborated by the his-
tograms which show the uncertainty distribution becoming dominated by
this exceptionally long tail. While this distribution is deemed appropriate
in the literature, given its sensitivity in this process some care will be re-
quired to ensure that the parameters are properly calibrated or else risk
substantial over-statements of uncertainty.

(5.3.8) Finally, the skewness parameter p of the microarray error distribution
also proved influential. While generally having only a small effect on the
standard deviation for values between 0.2 and 0.8, at the more extreme
values of skewness it could increase uncertainty by up to 50%. This is
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(b) Pipette error
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Figure 6: Sensitivity analysis of RNA count to changes in the parameters of the
data collection and analysis process.
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Figure 7: Sensitivity analysis of RNA count continued.

illustrated by the histograms where the extremes in skewness introduce a
long tail in either direction resulting in inflated uncertainty. Smaller values
of skewness are either ignorable or dominated by the Normal components
resulting in a more symmetric empirical distribution.

5.4 Volume

(5.4.1) During the first stage of the process from patient to sepsis diagnosis, a
blood sample is extracted. As explained in Section 3.1, it is most intu-
itive to describe errors incurred here as affecting the volume of the sample,
which may in turn affect the gene expression data, but the nature of this
relationship is yet to be understood. However, using the error propa-
gating method, we can perform Monte Carlo simulations to understand
the distribution of sample volumes that would be obtained during this
stage, assuming that the relevant errors are distributed as described in
Section 3.1.

(5.4.2) In Figure 8, we see that the distribution of blood sample volumes is in-
fluenced by the bimodal distribution of error from the addition of the
RNAlater preservative.
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Figure 8: A histogram of the distributed volumes for Monte Carlo simulations with
106 trials.

Bio sample
x ∈ X

Machine data
y ∈ Y

Probability
of sepsis

f g

Figure 9: The biological sample is processed into machine readable form, modelled
by f . The classifier is trained on data in Y with certain sepsis outcomes, then used
on new patient data to give a diagnosis.

6 Impact of uncertainty on classifier

(6.1) This section considers the impact that errors introduced in the process have
on the classification algorithm. We show that different types of errors can
have opposite effects. It is therefore important to have an understanding of
the nature of the uncertainty in the process to interpret the results from a
classifier.

(6.2) Let X denote the set in which the raw data of the patients is contained.
Patient data is processed into machine readable form contained in a set Y .
By going from X to Y , errors occur which we model as events in a sample
space Ω. This process is represented by a function f : (X ,Ω) → Y , where
f(x, ·) is a random variable on the sample space Ω that takes values in Y .
A diagnosis of sepsis is given by a classification function g : Y → [0, 1],
representing the probability of the patient developing sepsis. A diagram
of the process is shown in Figure 9. We assume that the uncertainty in the
process f has a blurring effect on the data: the differences between indicators
of sepsis and healthy patients should be less pronounced in Y than in X .

(6.3) The function g is designed using training data we have collected from pa-
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tients. Say we have some data x1, . . . , xN where we know the outcomes
zi ∈ {0, 1} =: Z of sepsis. The patient corresponding to xi developed sepsis
if zi = 1, otherwise zi = 0. Define a loss function ℓ : [0, 1]×Z that will com-
pare the prediction from a classifier g with the known outcomes of sepsis.
The loss function can be a quadratic penalty ℓ(a, b) = (a− b)2, or a weighted
penalty that penalises under-prediction of sepsis higher than over-prediction:

ℓ(a, b) =

{
2(a− b)2 if a < b,

(a− b)2 if a ≥ b.
(8)

From the data set (xi, zi) and the corresponding outcomes ωi ∈ Ω that
represent the process yi = f(xi, ωi), one can design a classifier function g
over some set of functions that map Y to [0, 1]:

g = argmin
ĝ

N∑
i=1

ℓ(ĝ(yi), zi). (9)

We wish to understand how the uncertainty that arises from f impacts the
classifier g. Say there is an error-free process f † : X → Y that generates data
y†i from the data points x1, . . . , xN . How will classifiers generated from an
error-prone process f differ from the “correct” classifier g† that arises from
(y†i , zi)?

6.1 Example

(6.1.1) Let us consider an example of N = 44 one-dimensional data points repre-
senting a combination of gene expressions. For simplicity, set X = Y and
let f † be the identity, i.e. f †(x) = x. The gene expression data y†i = f †(xi)
and their corresponding sepsis outcomes z1, . . . , zN are shown in Figure 10.
There is a visible separation between patients with sepsis (negative y†i ) and
those without (positive y†i ). This indicates that new patients with a large,
negative gene expression y is likely to develop sepsis. Near zero the data
is less conclusive, and therefore the true classifier g† cannot with certainty
predict the development of sepsis.

(6.1.2) We will consider two types of errors that blur the separation of data in-
dicating sepsis and healthy patients. The first type moves xi-values cor-
responding to sepsis towards the mean of the non-sepsis xi-values, and
vice versa. The second type moves each data point xi closer to the mean
x = 1

N

∑N
i=1 xi, which in this example is zero. Their effect on the trained g

are opposite of each other, as is shown in Figure 11. The first type errors
are modelled by

yi =

{
xi + λβi zi = 1
xi − λβi zi = 0

λ ≈ 9.5, i.i.d. βi ∼ Beta(2, 50). (10)
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Figure 10: The correct data (y†i , zi) indicates a particular separation between pa-
tients who develop sepsis y† < 0 and those who do not. The classifier based on the
true data determines a probability of a patient developing sepsis, based on the gene
expression y.
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The second type errors are given by

yi = xi(βi + λ) λ = 10−2, i.i.d. βi ∼ Beta(40, 5). (11)

7 Summary and further work

(7.1) In this report we have focussed on the use Monte Carlo simulation methods to
propagate uncertainty through a simplified version of the process involved in
the production of gene expression data used in the pre-symptomatic diagnosis
of sepsis. While a fairly straightforward method, Monte Carlo sampling
proved an effective tool for assessing uncertainty on the RNA count or the
true error-free gene expression value associated with a give observation. It
also presented an opportunity to study the sensitivity of this uncertainty
to changes in the parameters of the component errors. This highlighted
that the analyst error and the microarray error were most influential on
our uncertainty on gene expression. Extension to the methods used enabled
a multivariate uncertainty analysis which allowed for the introduction of
correlated errors across the expressions of different genes. Finally, the impact
that possible types of uncertainties could have on a classifier such as the one
used in this problem were also studied.

7.1 Extensions and further work

(7.1.1) While the methods developed provide a simple platform upon which to
base an uncertainty analysis for this problem, there are a number of pos-
sible extensions and developments that could improve the quality and ap-
plicability of the methods:

(7.1.2) 1. Incorporation of the classifier: The ultimate goal is to assess the
uncertainty of the prediction of sepsis . Without access to the classifier
used to make this prediction, the study group work focussed on the uncer-
tainty on the data that are input to that classifier. Given access to neural
network would allow for its incorporation into the Monte Carlo simulation
and would result in direct uncertainty assessments on predicted diagnosis.
This also would then link directly to the results of Section 6.

(7.1.3) 2. Quality control measurements: Throughout the process, quality
control measurements are made on the integrity of the sample. While
these do not contribute to our uncertainty on the gene expressions, they
can be considered as observations of the magnitudes of the accumulated
errors with poor quality scores associated with samples that have large
errors. These quantities could be added to the error model in Figure 1,
but this would require adopting a graphical modelling or Bayesian network
approach [1].
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(a) An additive error results in a classifier that is less pronounced, underestimating the
probability of sepsis for y < 0 and overestimating it for y > 0.
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(b) A multiplicative error has less impact on the classifier, but will nevertheless put more
weight to a sepsis diagnosis for y < 0.

Figure 11: Example of additive and multiplicative errors in f . The black curve
shows the error-free classifier g†. A Monte-Carlo approach is used to approximate
the distribution of g that arise from the two error processes. The blue is the mean
classifier of g, and the orange lines indicate the 2.5% and 97.5% quantiles.
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(7.1.4) 3. Calibration of the ALD parameters: The microarray error’s asym-
metric Laplace distribution was found to be both influential on the final
uncertainty and sensitive to its own parameters. A careful calibration of
these parameters to values appropriate to this problem and the type of
microarray methods used is recommended.

(7.1.5) 4. Refinement of the multivariate approach: The multivariate
Monte Carlo approach could be improved by incorporating a multivari-
ate ALD for the microarray error, and (similar to the previous point)
by ensuring appropriate values for correlations and error variances across
genes.

(7.1.6) 5. Connection to the volume process: In this work, we treated the
errors associated in the volume of the sample as an independent problem.
However if the sample volume were known to have a direct effect on the
RNA counts or gene expression, then the two error processes could be
connected.
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