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ABSTRACT
In this paper we present a clustering analysis of quasi-stellar objects (QSOs) using over 20 000
objects from the final catalogue of the 2dF QSO Redshift Survey (2QZ), measuring the redshift-
space two-point correlation function, ξ (s). When averaged over the redshift range 0.3 < z <

2.2 we find that ξ (s) is flat on small scales, steepening on scales above ∼25 h−1 Mpc. In a
WMAP/2dF cosmology (�m = 0.27, �� = 0.73) we find a best-fitting power law with s0 =
5.48+0.42

−0.48 h−1 Mpc and γ = 1.20 ± 0.10 on scales s = 1 to 25 h−1 Mpc. We demonstrate that
non-linear redshift-space distortions have a significant effect on the QSO ξ (s) at scales less than
∼10 h−1 Mpc. A cold dark matter model assuming WMAP/2dF cosmological parameters is a
good description of the QSO ξ (s) after accounting for non-linear clustering and redshift-space
distortions, and allowing for a linear bias at the mean redshift of bQ(z = 1.35) = 2.02 ± 0.07.

We subdivide the 2QZ into 10 redshift intervals with effective redshifts from z = 0.53 to
2.48. We find a significant increase in clustering amplitude at high redshift in the WMAP/2dF
cosmology. The QSO clustering amplitude increases with redshift such that the integrated
correlation function, ξ̄ (s), within 20 h−1 Mpc is ξ̄ (20, z = 0.53) = 0.26 ± 0.08 and ξ̄ (20, z =
2.48) = 0.70 ± 0.17. We derive the QSO bias and find it to be a strong function of redshift
with bQ(z = 0.53) = 1.13 ± 0.18 and bQ(z = 2.48) = 4.24 ± 0.53. We use these bias values
to derive the mean dark matter halo (DMH) mass occupied by the QSOs. At all redshifts 2QZ
QSOs inhabit approximately the same mass DMHs with M DH = (3.0 ± 1.6) × 1012 h−1 M�,
which is close to the characteristic mass in the Press–Schechter mass function, M∗, at z = 0.
These results imply that L∗

Q QSOs at z ∼ 0 should be largely unbiased. If the relation between
black hole (BH) mass and MDH or host velocity dispersion does not evolve, then we find that
the accretion efficiency (L/L Edd) for L∗

Q QSOs is approximately constant with redshift. Thus
the fading of the QSO population from z ∼ 2 to ∼0 appears to be due to less massive BHs
being active at low redshift. We apply different methods to estimate, tQ, the active lifetime of
QSOs and constrain tQ to be in the range 4 × 106–6 × 108 yr at z ∼ 2.

We test for any luminosity dependence of QSO clustering by measuring ξ (s) as a function of
apparent magnitude (equivalent to luminosity relative to L∗

Q). However, we find no significant
evidence of luminosity-dependent clustering from this data set.

Key words: galaxies: clusters: general – quasars: general – cosmology: observations – large-
scale structure of Universe.
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1 I N T RO D U C T I O N

The question of how activity is triggered in the nucleus of galaxies
is vital to answer if we wish to have a full understanding of the
galaxy formation process. It appears that a large fraction of galaxies
may have contained an active galactic nucleus (AGN) at some point
in their history. When local galaxies are surveyed (including our
own Milky Way) most show evidence of a supermassive black hole
(BH) (e.g. Kormendy & Richstone 1995). The BHs tend to be found
in dynamically hot systems (i.e. spheroids – elliptical galaxies or
bulges), and the mass of the BH is well correlated with the mass of
the spheroid. The tightest correlation is found between BH mass,
MBH, and spheroid velocity dispersion, σ c (Ferrarese & Merritt
2000; Gebhardt et al. 2000). At higher redshift it is not clear that this
correlation holds, or indeed in general, how high-redshift BHs relate
to their host galaxies. However Shields et al. (2003) do suggest that
the same M BH–σ c seems to be appropriate at high redshift.

It is the powerful evolution in luminosity of the AGN population
which allows them to be readily observed to high redshift. Under-
standing this evolution goes hand-in-hand with our understanding
of the relation between AGN and galaxies. Croom et al. (2004a)
(which we will henceforth call Paper XII) find that optically se-
lected quasi-stellar objects (QSOs) are well described by so-called
‘pure luminosity evolution’ (PLE) with an exponential increase in
the typical luminosity L∗

Q (e-folding time of ∼2 Gyr) up to z ∼ 2.
Work at higher redshift (e.g. Fan et al. 2001) finds that at z ∼ 4–6
the number density of QSOs is much lower than at z ∼ 2. The X-ray
luminosity function (LF) appears to give a more complex picture
(Ueda et al. 2003) but still shows the general trend of luminous
AGN being more active, peaking at z ∼ 2–3.

The question is, then, how do we gain further information about
the physical processes of QSO formation at high redshift? One ap-
proach is to attempt to image QSO host galaxies directly at high
resolution (Kukula et al. 2001; Croom et al. 2004b). These analyses
seem to show that high-redshift QSO hosts (at least for radio-quiet
sources) are no brighter than low-redshift hosts, after accounting
for only passive evolution of the stellar populations in the galaxies.
QSO clustering measurements gives us an important second angle to
study the hosts of QSOs, as the clustering amplitude can be consid-
ered as a surrogate for host mass or dark matter halo (DMH) mass,
MDH. With large samples such as the 2dF QSO Redshift Survey
(2QZ; Paper XII) it is possible to determine these host properties
over a wide range in redshift. With an estimate of the host mass of
these high-redshift QSOs we can hope to determine whether the host
mass versus BH mass correlation at low redshift continues to high
redshift. We can also attempt to predict the masses of the descen-
dants of high-redshift QSOs, and locate them in the local Universe.

A number of authors (e.g. Haiman & Hui 2001; Martini &
Weinberg 2001; Kauffmann & Haehnelt 2002) have constructed
models for QSO evolution including clustering, and these need to
be tested against accurate measurements. One parameter that can
be derived from these models is a mean QSO lifetime, although the
exact interpretation of this is rather model dependent.

As well as being used for the study of QSO formation/evolution,
QSOs are also powerful probes of large-scale structure in their own
right. The large volumes probed (∼6 × 109 h−3 Mpc3 for the 2QZ in
a universe with �m = 0.3 and �� = 0.7) and high redshift sampled
makes observations quite complementary with lower-redshift
galaxy observations and higher-redshift cosmic microwave back-
ground (CMB) observations. A number of authors have attempted
to detect high-redshift QSO clustering (Osmer 1981; Shaver 1984;
Shanks et al. 1987; Iovino & Shaver 1988; Andreani & Cristiani

1992; Mo & Fang 1993; Shanks & Boyle 1994; Croom & Shanks
1996; La Franca, Andreani & Cristiani 1998) and made some prelim-
inary measurements of clustering evolution, but these have all been
based on small samples of QSOs (typically a few hundred objects).
At low redshift, there have also been a number of recent analyses.
Grazian et al. (2004) find s 0 = 8.6 ± 2 h−1 Mpc for a sample of
bright, B < 15, low-redshift, z < 0.3, QSOs. Miller et al. (2004)
show that the AGN fraction in the SDSS galaxy survey is not depen-
dent on environment, while Croom et al. (2004c) and Wake et al.
(2004) show that low-redshift, low-luminosity AGN are clustered
identically to non-active galaxies. The 2QZ provided the first large,
deep sample with which to perform detailed clustering analysis at
high redshift. Outram et al. (2003), Outram et al. (2004), Miller et al.
(2004) and others have used the 2QZ to test cosmological models.
The two-point correlation function (the subject of this paper) has
been discussed by Croom et al. (2001a) for the preliminary, 10k,
data release of the 2QZ (Croom et al. 2001b). They found the clus-
tering of high-redshift (z̄ � 1.5) QSOs to be very similar to the
clustering of typical galaxies at low redshift. They also found that
the amplitude of clustering was approximately constant, or slightly
increasing, with redshift.

For comparison to the high-redshift QSO clustering results, there
are now some measurements of galaxy clustering over similar red-
shift intervals. These suggest moderately high clustering ampli-
tudes, generally not inconsistent with that measured for QSOs. For
example, deep wide-field (∼ few degrees) imaging surveys used to
measure the angular correlation function of galaxies also suggest
high clustering amplitudes (Postman et al. 1998). However, vari-
ous differences are found, depending on the magnitude limits and
photometric bands used to define the samples. This is not surpris-
ing given that there is clearly evidence that galaxy clustering is a
function of luminosity (Norberg et al. 2001). This may also be the
case for QSOs, although there has been no significant evidence for
this to date (Croom et al. 2002). At z ∼ 3, galaxy surveys using the
drop-out technique (e.g. Steidel et al. 1998) have found that L ∼ L∗

galaxies also cluster similarly to local galaxies on scales �10 h−1

Mpc, with r 0 � 4–6 h−1 Mpc for a cosmology with �m = 0.3 and
�� = 0.7 (Adelberger et al. 1998, 2003; Foucaud et al. 2003).

In this paper we use the final data release of the 2QZ (Paper XII) to
measure the QSO two-point correlation function over a wide range
in redshift. The 2QZ is currently the best sample on which to per-
form this analysis, being by far the largest QSO sample with a high
surface density (∼35 deg−2). We focus in this paper on the redshift-
space correlation function ξ (s) and attempt to account for the effects
of any z-space distortions. The real-space correlation function will
be addressed in a further paper (da Ângela et al. in preparation), and
the cross-correlation of QSOs in different luminosity intervals will
be discussed by Loaring et al. (in preparation). In Section 2 we in-
troduce the 2QZ sample and the techniques used in our analysis. In
Section 3 we use mock QSO catalogues (Hoyle 2000) constructed
from the large simulations to test the reliability of our corrections
for variations in completeness in the 2QZ. The redshift-averaged,
redshift-dependent and luminosity-dependent 2QZ ξ (s) measure-
ments are presented in Sections 4, 5 and 6, respectively. We finally
discuss our conclusions in Section 7.

2 DATA A N D T E C H N I QU E S

2.1 The 2dF QSO Redshift Survey

There is a full description of the 2QZ in Paper XII. Briefly, the
survey covers two 75◦ × 5◦ strips, one passing across the South
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Figure 1. The distribution of 2QZ QSOs from the final catalogue. The SGP strip is on the left, the equatorial strip on the right. The rectangular regions show
the distributions projected on to the sky. An EdS cosmology is assumed in calculating the comoving distances to each QSO.

Galactic Cap centred on δ = −30◦ [the South Galactic Pole (SGP)
strip] and the other across the North Galactic Cap centred on δ = 0◦

[the North Galactic Pole (NGP) or equatorial strip]. The SGP strip
extends from α = 21h40 to α = 3h15 and the equatorial strip from α

= 9h50 to α = 14h50 (B1950). The total survey area is 721.6 deg2,
when allowance is made for regions of sky excised around bright
stars.

2dF spectroscopic observations were carried out on colour-
selected targets in the magnitude range 18.25 < bJ < 20.85. This
resulted in the discovery of 23 338 QSOs at redshifts less than z ∼
3. In this paper we restrict our analysis to QSOs with quality 1 iden-
tifications (see Paper XII), that is 22 655 QSOs. The distribution of
QSOs in the final sample is shown in Fig. 1.

2.2 Correlation function estimates

As the QSO correlation function, ξ (s), probes high redshifts and
large scales, the measured values are highly dependent on the as-
sumed cosmology. In determining the comoving separation of pairs
of QSOs we choose to calculate ξ (s) for two representative cosmo-
logical models. The first uses the best-fitting cosmological param-
eters derived from WMAP, 2dFGRS and other data (Spergel et al.
2003; Percival et al. 2002, respectively) with (�m, ��) = (0.27,
0.73), which we will call the WMAP/2dF cosmology. The second
model assumed an Einstein–de Sitter cosmology with (�m, ��) =
(1.0, 0.0), which we denote as the EdS cosmology. We will quote
distances in terms of h−1 Mpc, where h is the dimensionless Hubble
constant such that H 0 = 100 h km s−1 Mpc−1.

We have used the minimum variance estimator suggested by
Landy & Szalay (1993) to calculate ξ (s), where s is the redshift-
space (or z-space) separation of two QSOs (as opposed to r, the
real-space separation). This estimator is

ξ (s) = Q Q(s) − 2Q R(s) + R R(s)

R R(s)
, (1)

where QQ, QR and RR are the number of QSO–QSO, QSO–
random and random–random pairs counted at separation s ±
	s/2. QR and RR are normalized to the total number of QSOs.
The density of random points used was 50 times the density of
QSOs.

We calculate the errors on ξ (s) using the Poisson estimate of

	ξ (s) = 1 + ξ (s)√
Q Q(s)

. (2)

At small scales, �50 h−1 Mpc, this estimate is accurate because each
QSO pair is independent (i.e. the QSOs are not generally part of an-
other pair at scales smaller than this). On larger scales the QSO
pairs become more correlated and we use the approximation that
	ξ (s) = [1 + ξ (s)]/

√
NQ, where N Q is the total number of QSOs

used in the analysis (Shanks & Boyle 1994; Croom & Shanks 1996).
We also derive field-to-field errors and compare these to the errors
found in simulations. On small scales, �2 h−1 Mpc, the number
of QSO–QSO pairs can be �10. In this case simple root-n errors
(equation 2) do not give the correct upper and lower confidence
limits for a Poisson distribution. We use the formulae of Gehrels
(1986) to estimate the Poisson confidence intervals for one-sided
84 per cent upper and lower bounds (corresponding to 1σ for Gaus-
sian statistics). These errors are applied to our data for QQ(s) < 20.
Above this number of pairs root-n errors adequately describe the
Poisson distribution.

In our analysis below we will also use the integrated correlation
function out to some pre-determined radius as a measure of cluster-
ing amplitude. This is commonly denoted by ξ̄ , where

ξ̄ (smax) = 3

s3
max

∫ smax

0

ξ (x)x2 dx . (3)

As in Croom et al. (2001a) we will generally take s max =
20 h−1 Mpc as this is on a large enough scale that linear theory
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Figure 2. The completeness map of the 2QZ catalogue for the equatorial (top) and SGP (bottom) regions. The grey-scale indicates the percentage of all 2QZ
targets that were both observed and positively identified (quality 1) over the two survey strips.

should apply. The effect of z-space distortions due to small-scale
peculiar velocities or redshift errors is also minimal on this scale.

2.3 Selection functions and incompleteness

The area of the survey is covered by a mosaic of 2dF pointings. These
pointings overlap in order to obtain near complete coverage in all
areas, including regions of high galaxy and QSO density. In order to
take into account the variable completeness between 2dF pointings,
due to variations in observational conditions, we use a mask that
specifies the completeness of each survey sector, where we define a
sector as the unique intersection of a number of circular 2dF fields.
These masks are fully discussed in Paper XII. The completeness
of each survey strip as a function of angular position on the sky
is shown in Fig. 2. The distribution of random points used in our
correlation analysis is constructed to have an identical distribution
on the sky. In order to minimize the influence of low completeness
fields, we restrict the analysis in this paper to sectors for which the
spectroscopic completeness is at least 70 per cent. This results in a
sample of 20 686 QSOs in the redshift range 0.3 < z < 2.9.

It is possible that on scales smaller than a 2dF field systematic
variations in completeness may exist (e.g. see Paper XII). In order to
test the consequence of these, detailed simulations have been carried
out (see below). On larger scales small residual calibration errors in
the relative magnitude zero-points of the United Kingdom Schmidt
Telescope (UKST) plates could add spurious structure. These are
also assessed using simulations.

After generating random points according to the angular distribu-
tion specified by the completeness masks, we then assign a random
redshift to each point. This random redshift is drawn from a distri-
bution defined by a polynomial fit to the observed n(z) distribution
(see Fig. 3a and Section 3.2.1 below).

As a direct test of the effectiveness of the above corrections, we
also use random distributions generated by taking right ascensions
(RAs) and declinations (Decs) from the QSO catalogue itself. We
then assign a redshift based on either the fitted n(z) (as above; this
we call the RA–Dec mixing method) or by assigning a random QSO
redshift taken from the catalogue (the RA–Dec–z mixing method).
These methods will mimic the 2QZ QSO angular distributions ex-
actly, but with the effect of reducing the amount of structure mea-
sured (particularly on larger scales). We examine the reduction in
large-scale power that these estimates cause below.

These two alternative methods also demonstrate that the QSO
correlation function is not affected by the deficit of close (<1 arcmin)
pairs in the 2QZ. The deficit is due to the fact that the 2dF instrument
cannot position two fibres closer than ∼30 arcsec. It has in large part

been alleviated by the overlapping field arrangement in the 2QZ
strips, and the fact that the vast majority of QSO pairs which are
close in angular position have very different redshifts. We therefore
make no further corrections for this effect in our analysis.

Extinction by galactic dust will also imprint a signal on the an-
gular distribution of the QSOs. Primarily this changes the effective
magnitude limit in bJ by AbJ = 4.035 × E(B − V ) where we use
the dust reddening E(B − V ) as a function of position calculated by
Schlegel, Finkbeiner & Davis (1998). We then weight the random
distribution according to the reduction in number density caused by
the extinction such that

Wext(α, δ) = 10−β AbJ (α,δ), (4)

where β is the slope of the QSO number counts at the magnitude
limit of the survey. At bJ = 20.85, the magnitude limit of the 2QZ, the
QSO number counts are flat, with β � 0.3. Applying this correction
we find that it only makes a significant difference to ξ (s) on scales
of ∼1000 h−1 Mpc.

2.4 Making model comparisons to ξ(s)

Below we make comparisons of the data to a number of models,
both simple functional forms (power laws) and more complex, phys-
ically motivated models (e.g. cold dark matter; CDM). We use the
maximum-likelihood method to determine the best-fitting parame-
ters. The likelihood estimator is based on the Poisson probability
distribution function, so that

L =
N∏

i=1

e−µµν

ν!
(5)

is the likelihood, where ν is the observed number of QSO–QSO
pairs, µ is the expectation value for a given model and N is the
number of bins fitted. We fit the data with bins 	log(s) = 0.1,
although we note that varying the bin size by a factor of 2 makes no
noticeable difference to the resultant fit. In practice we minimize the
function S =−2 ln(L), and determine the errors from the distribution
of 	S, where 	S is assumed to be distributed as χ2. This procedure
does not give us an absolute measurement of the goodness of fit for
a particular model. We therefore also derive a value of χ2 for each
model fit in order to confirm that it is a reasonable description of the
data. In particular this is appropriate when fitting on moderate-to-
large scales (� 5 h−1 Mpc), where the pair counts are large enough
that the Poisson errors are well described by Gaussian statistics.
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Figure 3. QSO and simulation n(z) distributions. (a) The n(z) distributions in the two 2QZ slices, SGP (solid line) and NGP (dotted line). The NGP has been
renormalized to the number of QSOs in the SGP to aid comparison. Also shown is the 12th-order polynomial fit to the combined n(z) (dashed line). (b) The
n(z) distribution of two Hubble Volume simulation slices each containing 12 500 particles.

3 C O R R E L AT I O N F U N C T I O N T E S T S U S I N G
M O C K Q S O C ATA L O G U E S

3.1 Mock QSO catalogues

To test both our correlation function estimation methods and the
effect of incompleteness we apply our analysis to mock QSO cata-
logues produced from the large Hubble Volume simulations of the
Virgo Consortium (Frenk et al. 2000; Evrard et al. 2002). In partic-
ular we make use of the �CDM Hubble Volume simulation where
data on each particle has been output along the observer’s past light
cone to mimic the 2QZ. The simulation contains 109 particles in
a cube that is 3000 h−1 Mpc on a side. The cosmological param-
eters of the simulation are �b = 0.04, �CDM = 0.26, �� = 0.7,
H 0 = 70 km s−1 Mpc−1 and σ 8 = 0.9 (at z = 0). The light cone
data were output in a 75◦ × 15◦ wedge oriented along the maximal
diagonal of the cube, allowing the light cone to extend to a scale
of ∼5000 h−1 Mpc (z ∼ 4). This volume is then split up into three
largely independent 75◦ × 5◦ slices, each one mimicking a single
2QZ strip. We note that there will be some correlation between the
largest structures in the different simulation strips; however, it was
not practical to generate simulations large enough to select many
completely independent volumes.

In order to create realistic mock QSO catalogues, the mass par-
ticles are then biased to give a similar clustering amplitude to that
observed in the 2QZ (based on the results of Croom et al. 2001a).
The biasing prescription is based on that of Cole et al. (1998) (their
model 2), but varying the parameters as a function of redshift to
match the Croom et al. (2001a) results and using a cell size of
20 h−1 Mpc to determine the local density (Hoyle 2000). In our
analysis below we consider mock catalogues with large numbers of
biased particles (∼100 000), almost a factor of 10 more than a single
real 2QZ strip. This allows us to test for possible weak systematic
effects. Full details of the Hubble Volume simulation are given by
Hoyle (2000).

3.2 The effect of different correlation function estimates

There are several issues involved with accurately determining the
two-point correlation function. We will investigate each of these in
turn.

3.2.1 Estimates of the QSO n(z)

The redshift distributions, n(z), of the two 2QZ slices are shown in
Fig. 3(a). In order to compare the two directly, we renormalize the
NGP n(z) to contain the same total number as the SGP. The two
strips have the same overall shape; however, we note that they ap-
pear to have more structure that the n(z) distributions of the Hubble
Volume simulations shown in Fig. 3(b) (note that the simulations
have a cut-off imposed at z = 2.2). By examining the spatial dis-
tribution of the QSOs it is possible to see that the extra structure
in the n(z) is due to a number of weak large-scale structures. For
example, the narrow peak in the NGP n(z) at z = 1.5 is due to a
wall-like feature (top right of Fig. 1). We must therefore be careful
not to remove any excess large-scale power by fitting the n(z) on too
fine a scale. A detailed discussion of structure on very large scales
is given by Miller et al. (2004). In Fig. 3(a) we plot the polynomial
fit (12th order) to the QSO n(z) distribution used to generate the ran-
dom distributions. Tests using higher- and lower-order polynomial
fits (8th–16th order) showed no significant differences between the
resultant ξ (s) estimates. We also found that different methods of fit-
ting the n(z) of the simulations (e.g. spline versus polynomial) only
caused differences at the ∼0.1 per cent level, much smaller than the
random errors in the measurements of ξ (s) from the 2QZ.

3.2.2 Masks versus randomizing

We next investigate differences between the methods described
above to produce the random distributions. In particular, although
the RA–Dec and RA–Dec–z mixing methods are effective at remov-
ing any variations in completeness, we also need to assess whether
they also remove significant amounts of large-scale structure. To
do this we determine the clustering in our simulations using these
different methods. In Fig. 4 we show a comparison of the masking
and RA–Dec mixing methods for a single Hubble Volume sim-
ulation slice. When the redshift range is broad (Fig. 4a) there is
no significant difference between the two methods and the ratio
of the two (bottom of Fig. 4a) is consistent with 1 at all scales.
However, if we take a narrower redshift interval, as in Fig. 4(b),
we do see significant depression of the clustering strength in the
RA–Dec mixing method. This is because in a narrow redshift in-
terval, the angular clustering of QSOs will be greater, due to the
reduced amount of projection. Therefore we conclude that while
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Figure 4. Comparison of masking (filled points) and RA–Dec mixing (open points) methods for the Hubble Volume simulations. Beneath each plot we show
the ratio of the two correlation function measures, ξ (s)mask/ξ (s)mixing. (a) ξ (s) measured over a broad redshift range, z = 0.3–2.2. There is no significant
difference between the two estimates. (b) ξ (s) measured over a narrow redshift range, z = 1.35–1.70. In this case the RA–Dec mixing method produces a
correlation function which is ∼10–20 per cent lower than the masking method.

the RA–Dec mixing method is a useful check of the clustering
amplitude averaged over the full survey, it is not an accurate es-
timate when measuring QSO clustering evolution in narrow red-
shift slices. The same results were found for the RA–Dec–z mixing
method.

3.3 The effect of the survey selection
function and incompleteness

We now assess the effect of errors in the survey selection function on
our estimates of ξ (s). All these tests are carried out using the masking
method. Errors in the zero-points of the UKST photographic plates
are a possible source of excess large-scale power. To mimic this
effect we divide the simulated survey strips into fifteen 5◦ × 5◦

regions and apply to each a Gaussian random zero-point error 	m,

Figure 5. Comparison of simulated correlation functions with (open points) and without (filled points) zero-point errors for (a) the full redshift range and (b)
a narrow redshift range with z = 1.35–1.70. The ratio of the points with and without zero-point errors, ξ (s, σ zp = 0.05)/ξ (s, σ zp = 0.000), is shown below
each plot.

with σ = 0.05 mag. We then modulate the density of sources in
that region by a factor of 10−0.3	m , as the faint-end slope of the
QSO number counts is ∼0.3. This equates to an error in the QSO
density of 7 per cent for a zero-point error of 0.1 mag. With σ =
0.05 the full range of zero-point errors used was �0.15 mag. We
do not expect there to be real zero-point errors in the survey larger
than this. A comparison of simulated correlation functions with and
without zero-point errors is shown in Fig. 5. We see no systematic
differences caused by the zero-point errors in either the full redshift
interval (Fig. 5a), or narrower redshift intervals (Fig. 5b). We note
that if the zero-point errors are increased (to values greater than the
likely photometric errors in the survey) then significant differences
can be seen. With σ = 0.1 mag there are systematic offsets in ξ (s) at
the level of ∼1 per cent which become significant on scales greater
than ∼40 h−1 Mpc.
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Another possible cause of systematic errors in ξ (s) is the vari-
ations in completeness within 2dF fields. These can be caused by
systematic errors in astrometry or field rotation which will be worse
at the edges of a field, or atmospheric refraction effects, if a field
was observed at a different hour angle from that which it was config-
ured for. Paper XII showed that although radially dependent com-
pleteness is noticeable when observations of many individual fields
are averaged together, if the overlap between fields and repeat ob-
servations are taken into account there is no systematic decline in
completeness towards the edge of 2dF fields. In order to confirm
that completeness variations within 2dF fields will not impact on
our clustering analysis we perform detailed tests. We first position
our 2dF field centres along the simulation strips, and then apply
spectroscopic completenesses selected randomly from the actual
field completenesses found in the survey. A mask is also generated
to correct for this variable incompleteness. We then modulate the
completeness within each simulated 2dF field such that it mimics
the radial decrease seen in Paper XII (filled points in their fig. 18).
We then calculated ξ (s) from these simulations, using a complete-
ness mask which corrects for all effects apart from the variation in
completeness within the 2dF fields. This is a worst case scenario,
as in the simulations we allocate an object to only one field, and
then derive the radial completeness variation from the centre of that
field. In the actual survey, objects without IDs could be observed in
overlapping fields. We compare the results to ξ (s) measured without
the radial completeness variations in Fig. 6. We find that the radial
completeness variations have no significant impact on ξ (s) for ei-
ther the whole redshift range or in narrower redshift intervals. We
also determine the effect of radial incompleteness on ξ̄ (s) in nar-
row redshift intervals (which is used extensively in Section 5). The
radial incompleteness typically only changes ξ̄ (s) by 2–5 per cent,
with the worst case being 10 per cent. Given that the radial selection
model is a worst case scenario, and that the measurement errors in
ξ̄ (s) are at least 20 per cent, any radial dependence of complete-
ness within 2dF fields will not impact on our conclusions presented
below.

Figure 6. Comparison of simulated correlation functions with (open points) and without (filled points) radially dependent incompleteness within 2dF fields
for (a) the full redshift range and (b) a narrow redshift range with z = 1.35–1.70. The ratio of the points with and without radial dependent incompleteness,
ξ (s)rad/ξ (s), is shown below each plot.

4 T H E R E D S H I F T- AV E R AG E D Q S O
C O R R E L AT I O N F U N C T I O N

The above simulations confirm that our methods of correlation anal-
ysis, and any residual systematic errors in the 2QZ, should not sig-
nificantly bias our estimates of ξ (s). We now present the results of
applying our correlation analysis to the final 2QZ sample, beginning
with ξ (s) averaged over the redshift range 0.3 < z < 2.2, for the
most part, assuming a WMAP/2dF cosmology. We note that here
we restrict the redshift range to regions of high completeness, and
do not include QSOs above z = 2.2. This is because the mean QSO
colours move progressively further into the stellar locus above this
redshift making the sample increasingly sensitive to small system-
atic errors in selection. This sample contains 18 066 QSOs and has
a mean redshift of z̄ = 1.35.

4.1 Results

We first plot a comparison between the masking method and the
RA–Dec mixing method for the redshift-averaged QSO ξ (s). This
is shown in Fig. 7. Note that we only plot ξ (s) on scales greater than
1 h−1 Mpc as we find no QSO–QSO pairs on scales smaller than
this (in a WMAP/2dF cosmology). Also, for any other bins without
QSO–QSO pairs we plot a point on the bottom x-axis without an
error bar. We see that on all scales the two estimates are consistent
within the Poisson measurement errors. There is some indication
that the RA–Dec mixing method is slightly systematically lower
than the mask method on scales >20 h−1 Mpc, which could be
an indication of a weak systematic error in the mask method, but
this is not a significant deviation. Given the consistency of the two
methods, unless we state so explicitly, we will use the mask method
for all of our ξ (s) estimates.

In a second check of the consistency of our results we plot a
comparison of the measured ξ (s) in each of the NGP and SGP
strips (Fig. 8). Although the ξ (s) measured from the two strips
is in broad agreement, the NGP strip shows slightly stronger
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422 S. M. Croom et al.

Figure 7. The QSO ξ (s) from the 2QZ using the masking method (filled
points) and RA–Dec mixing method (open points). A WMAP/2dF cosmol-
ogy is assumed. Below we show the ratio of the two, ξ (s)mixing/ξ (s)mask.

Figure 8. The QSO ξ (s) from the 2QZ, plotting the results from the SGP
(filled points) and NGP (open points) separately. A WMAP/2dF cosmology
is assumed. Below we show the ratio of the two, ξ (s)NGP/ξ (s)SGP. Note that
the scale of the ratio plot is broader than the previous similar plots.

clustering on scales >20 h−1 Mpc. Comparing the estimates of ξ̄ (s)
on different scales in the two strips we find that they are consistent
(0.9σ , 1.3σ and 0.6σ differences for s = 20, 30 and 50 h−1 Mpc,
respectively).

The large volume probed by the 2QZ allows ξ (s) to be probed
on very large scales, in excess of ∼1000 h−1 Mpc. Most models do
not predict any signal in ξ (s) at large scales, however, there have
been some claims of features in the QSO ξ (s) (including using data
from the 2QZ). For example, Roukema, Mamon & Bajtlik (2002)
claimed to see several features, including a positive feature at the
level of ∼4 per cent on a scale of ∼240 h−1 Mpc in the ξ (s) of ∼2300
QSOs from the initial release of the 2QZ catalogue (Croom et al.
2001b). To test these claims we make an estimate of the 2QZ ξ (s)
to the maximum scales probed by the sample. The results of this
are shown in Fig. 9 for the WMAP/2dF cosmology (Roukema et al.

assume �m = 0.3 and �� = 0.7, but our results are similar for both
cosmologies). As Fig. 9 probes very large scales, where QSO pairs
could be correlated, we determine errors by measuring the variance
between six subregions of the full data set (three 5◦ × 25◦ regions in
each 2QZ strip). The errors plotted are the measured rms between
the six subsamples divided by

√
6 to account for the greater volume

of the full sample. We note that on the largest scales even these
field-to-field errors will be somewhat inaccurate. By comparing the
QSO–QSO pair counts for the full region and the six subregions
we find that, at ∼200 h−1 Mpc, ∼ 10 per cent of pairs come from
correlations between different subregions. By ∼1000 h−1 Mpc this
number has risen so that approximately half of all QSO–QSO pairs
are from QSOs in different subregions. This means that on large
scales there will be significant correlation between the subregions,
but the reduction of pairs in each subregion will also increase the
Poisson noise.

There is little evidence of any strong deviation from zero on any
scale larger that ∼100 h−1 Mpc and the QSO ξ (s) is zero to within
0.5 per cent over a broad range of scales. One point (at 90 h−1

Mpc) deviates from zero by ∼1 per cent. There is no evidence for a
feature at ∼240 h−1 Mpc. At various different scales there are some
points that are greater than 1σ from zero. A χ 2 test comparing the
data to ξ (s) = 0 at s = 100–1000 h−1 Mpc gives χ2 = 76.1 with 45
degrees of freedom (dof), which implies significant deviations at the
99.7 per cent level. The rms scatter over this scale range is ±0.002.
The level of deviations away from zero at large scales is so small
that we cannot be confident that they are real features and not due to
low-level residual systematics. However, residual systematic effects
at this level will not affect any of our conclusions and we can have
confidence that the masks used to define the selection function are
removing structure not due to QSO clustering.

4.2 Fitting models to the QSO ξ(s)

We now attempt to fit a variety of models to the data. The simplest
model traditionally fitted to correlation function estimates is a power
law of the form

ξ (s) =
(

s

s0

)−γ

, (6)

where s0 is the comoving correlation length, in units of h−1 Mpc.
We first fit a power law over the full range of scales where significant
clustering is detected, from 1 to 100 h−1 Mpc, using the maximum-
likelihood technique. For the WMAP/2dF cosmology, this resulted
in best-fitting parameters (s 0, γ ) = (5.55 ± 0.29, 1.633 ± 0.054),
however this fit is unacceptable at the 99.5 per cent level (see
Table 1). This best-fitting power law (solid line) is compared to the
data in Fig. 10(a) and it can be seen that the data are flatter on small
scales and steeper on large scales than the model. We then vary the
maximum scale that we fit. Only by reducing this to ∼25 h−1 Mpc
is an acceptable power-law fit achieved. Over the range 1–25 h−1

Mpc we find best-fitting values (s 0, γ ) = (5.48+0.42
−0.48, 1.20+0.10

−0.10). The
power law slope is significantly flatter when the fit is performed on
these smaller scales, but the scalelength, s0, is largely unaffected.
This shows that the shape of the QSO ξ (s) changes with scale and
does not follow a single pure power law, but steepens at large scales.
We also fit similar power-law models to ξ (s) estimated assuming an
EdS cosmology. Over the range s = 1–100 h−1 Mpc we find (s 0, γ )
= (3.89 ± 0.18, 1.713 ± 0.052), but as for the WMAP/2dF cosmol-
ogy, this is clearly rejected (at the 99.9 per cent level) (see Fig. 10b).
As above, fitting on a more restricted range of scales allows
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Figure 9. The QSO ξ (s) from the 2QZ on scales 0–2000 h−1 Mpc, plotted on a linear scale. Error bars are derived from the field-to-field variance between
six subsamples of the data set.

Figure 10. The QSO ξ (s) from the 2QZ (filled points) compared to the best-fitting power laws over a range of scales: s = 1–100 h−1 Mpc (solid line) and (a)
s = 1–25 h−1 Mpc for a WMAP/2dF cosmology or (b) s = 1–10 h−1 Mpc for an EdS cosmology (dotted lines).

Table 1. The results of power-law fits to the 2QZ ξ (s) averaged over the redshift range 0.3 < z < 2.2. Model fits assuming a power
law in z-space [(s/s 0)−γ ] and a power law in real-space [(r/r 0)−γ ] are presented (the second for a WMAP/2dF cosmology only). The
real-space power law is corrected for the effects of linear and non-linear z-space distortion. We list the cosmology assumed, the scales
fitted over, the best-fitting parameters and associated errors, the measured χ2 values, number of dof, ν and probability of acceptance,
P(<χ2).

Model �m,�� smin,smax s0/r0 γ χ2 ν P(<χ2)

(s/s 0)−γ 0.27,0.73 1.0,100.0 5.55+0.29
−0.29 1.633+0.054

−0.054 37.7 18 4.6e−3

(s/s 0)−γ 0.27,0.73 1.0,25.0 5.48+0.42
−0.48 1.20+0.10

−0.10 8.1 12 7.8e−1

(s/s 0)−γ 1.00,0.00 1.0,100.0 3.89+0.18
−0.18 1.713+0.052

−0.052 42.6 18 9.2e−4

(s/s 0)−γ 1.00,0.00 1.0,10.0 3.88+0.43
−0.53 0.86+0.16

−0.17 5.6 8 7.0e−1

(r/r 0)−γ 0.27,0.73 1.0,100.0 5.81+0.29
−0.29 1.866+0.060

−0.060 20.4 18 3.1e−1

(r/r 0)−γ 0.27,0.73 1.0,25.0 5.84+0.33
−0.33 1.647+0.047

−0.047 7.2 12 8.4e−1

acceptable fits. We find an acceptable power-law fit on scales s
= 1–10 h−1 Mpc with (s 0, γ ) = (3.88+0.43

−0.53, 0.86+0.16
−0.17) (see Fig. 10b).

The apparent break in the QSO ξ (s) is unsurprising given that we
generally only expect power-law clustering in the regime where
clustering is non-linear. Similar breaks have been seen in the clus-
tering of low-redshift galaxies (e.g. Hawkins et al. 2003). On scales
�10 h−1 Mpc where ξ (s) < 1 clustering should be close to lin-
ear. Other effects, such as z-space distortions, could also distort the
measured ξ (s) away from a power law.

We assess the impact of z-space distortions on a power law. Small-
scale peculiar velocities will tend to reduce ξ (s) on small scales.
Both intrinsic peculiar velocities and redshift measurement errors
will generate a similar effect. If due to intrinsic peculiar velocities,
this should be best described by an exponential distribution (Rat-
cliffe et al. 1998; Hoyle et al. 2002; Hawkins et al. 2003) such that

fexp(wz) = 1√
2
〈
w2

z

〉1/2 exp

(
−

√
2

|wz|〈
w2

z

〉1/2

)
, (7)
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Figure 11. (a) The difference between redshift measurements for repeated
QSO observations in the 2QZ (using only quality 1 identifications and red-
shifts) as a function of mean redshift (points); also shown is the calculated
rms in 	z = 0.1 bins (solid lines). (b) The rms redshift difference divided
by 1 + z as a function of mean redshift. The mean σ z/(1 + z) is shown by
the dashed line.

where 〈w2
z〉1/2 is the rms pairwise line-of-sight velocity dispersion.

If it is the redshift measurement errors which dominate, then the
distribution may be better described by a Gaussian,

fnorm(wz) = 1〈
w2

z

〉1/2 √
2π

exp

(
− w2

z

2
〈
w2

z

〉
)

. (8)

The rms pairwise redshift error measured from repeat observations
of 2QZ QSOs is given as σ z = 0.0027z in Paper XII. We have re-
assessed this redshift error using the same data as Paper XII (Fig. 11)
and find that a better estimate of the pairwise redshift error is
σ z = 0.0014(1 + z) (the dashed line in Fig. 11b). Thus the pairwise
velocity error [δv = cδz/(1 + z)] corresponding to this redshift
error is δvz = 416 km s−1 largely independent of redshift. To this
we need to add the intrinsic velocity dispersion of the QSOs, δv i.
At low redshift the typical intrinsic galaxy pairwise velocity dis-
persion is �500 km s−1 (e.g. Hawkins et al. 2003) at z � 0.15. We
note that Hawkins et al. did not include the factor of 1 + z in equa-
tion (11) (see below). Correcting for this, the pairwise velocity is
actually �430 km s−1. It is uncertain whether this will decline with
redshift. While the dark matter velocity dispersion should decline,
as QSOs are biased tracers of large-scale structure, their pairwise
velocity may not decline. Zhao, Jing & Borner (2002) predict that
the pairwise velocity dispersion of Lyman-break galaxies at z ∼
3 could be ∼200–400 km s−1. Given the uncertainty in the evo-
lution of δv i we will assume a fixed value of �430 km s−1 at all
redshifts, noting that any evolution is likely to reduce this value. A
final issue that needs to be considered is the velocity error due to
intrinsic emission-line shifts in QSOs, δv l. The ultraviolet emission
lines in QSO spectra typically show blueshifts relative to their sys-
temic velocity; this is particular so of lines such as C IV. Richards
et al. (2002) demonstrated that the dispersion between the centroids
of C IV and Mg II lines was 511 km s−1, while the dispersion be-
tween Mg II and [O III] was a somewhat smaller 269 km s−1. This
dispersion will cause an extra dispersion in our redshift estimates
which is not taken into account by the repeat observations (as they
are repeats of the same QSO spectrum). Thus δv l should take val-

ues in the range 200–450 km s−1 allowing for measurement er-
rors (Richards et al. 2002). Combining the three components of
velocity dispersion together in quadrature results in 〈w2

z〉1/2 � 630–
750 km s−1. In our analysis below we will assume a value of
690 km s−1 which lies in the middle of this range. As a combination
of δv l and δvz dominates the total pairwise velocity dispersion, we
use equation (8) to model the effects of z-space distortions on small
scales. We note that other authors (e.g. Hoyle et al. 2002; Outram
et al. 2004) used a similar value of 〈w2

z〉1/2 � 800 km s−1 (however
they miss the factor of 1 + z in equation 11 below).

We should also take into account the effect of linear z-space dis-
tortions. Kaiser (1987) showed that

ξ (s) = ξ (r )

(
1 + 2

3
β + 1

5
β2

)
, (9)

where ξ (r ) is the real-space correlation function and β � �0.6
m /b.

More generally, ξ (σ , π ), the correlation function across (the σ di-
rection) and along (the π direction) the line of sight is distorted,
such that

ξ (σ, π ) =
[

1 + 2(1 − γµ2)

3 − γ
β

+ 3 − 6γµ2 + γ (2 + γ )µ4

(3 − γ )(5 − γ )
β2

]
ξ (r ), (10)

assuming that ξ (r ) is a power law (Matsubara & Suto 1996). µ is
the cosine of the angle between r and π (the distance along the line
of sight), and γ is the slope of the power law. Then including the
effects of non-linear z-space distortions, the full model for ξ (σ , π )
is given by

ξ (σ, π ) =
∫ ∞

−∞
ξ ′[σ, π − (1 + z)wz/H (z)] fnorm(wz) dwz, (11)

where ξ ′[σ , π − (1 + z)wz/H (z)] is given by equation (10),
f norm(wz) is given by equation (8) and H(z) is Hubble’s constant at
redshift z. Finally, we carry out a spherical integral over the model
ξ (σ , π ) to derive the model ξ (s) which we then fit to the data. We
note that there is an extra factor of 1 + z in equation (11) compared
to previous work (e.g. Hoyle et al. 2002; Hawkins et al. 2003). This
is because the velocity dispersions are generally given in proper
coordinates, rather than comoving coordinates. At low redshift this
has a minimal effect; however, at high redshift this extra term boosts
the effective scale corresponding to a given proper velocity by 1 +
z (in fact it approximately cancels out the increase of H(z) with red-
shift, so that the proper velocity dispersion corresponds to a similar
comoving scale at every redshift). It is therefore critical to incorpo-
rate this term. In this paper we are not specifically focusing on ξ (σ ,
π ) and z-space distortions, but only wish to determine their effect
in shaping the measured ξ (s). Detailed investigation of ξ (σ , π ) is
discussed by da Ângela et al. (in preparation).

Estimates of the strength of z-space distortions via the QSO power
spectrum have been made by Outram et al. (2004). They find that
at z = 1.4, the mean redshift of the sample used, β = 0.4 ± 0.1.
We assume this value for β and a small-scale velocity dispersion of
690 km s−1. We then produce a grid of model real-space correlation
functions which are adjusted for these z-space distortions and fitted
to our observed ξ (s) using the maximum-likelihood technique.

In Fig. 12(a) we show a comparison of models with and without
z-space distortions, assuming a real-space correlation function of
ξ (r ) = (r/5)−1.8 in a WMAP/2dF cosmology, and the above values
of β = 0.4 and 〈w2

z〉1/2 = 690 km s−1. The solid lines show the
real-space ξ (r ) and ξ̄ (r ) (see equation 3). The model ξ̄ (r ) is a factor
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Figure 12. (a) Model power-law correlation functions demonstrating the
effects of z-space distortions, assuming a real space ξ (r ) = (r/5)−1.8. In each
case ξ and ξ̄ are plotted with ξ̄ being the upper line. We show ξ (r ) (solid
line), ξ lin(s) (dotted line) and and ξ non−lin(s) (dashed line). For the redshift-
space distortion model we assume a WMAP/2dF cosmology, at a mean
redshift of 1.35 with β(z) = 0.4 and 〈w2

z〉1/2 = 690 km s−1. (b) The ratio
of different models comparing the ratios of ξ non−lin(s)/ξ (r ) (upper dashed
line) and ξ non−lin(s)/ξ lin(s) (upper dotted line). The other two dashed and
dotted lines are the ξ̄ equivalents. The two solid lines are set at 1.0 and at
(1 + 2β/3 + β2/5) = 1.30 for β = 0.4.

of 3/(3 − γ ) = 2.5 above ξ (r ). The dotted lines show the model
ξ (s) and ξ̄ (s) for linear z-space distortions only (ξ lin(s), i.e. β =
0.4 and 〈w2

z〉1/2 = 0.0), while the dashed lines show the full model
with linear and non-linear z-space distortions (ξ non−lin(s), i.e. β =
0.4 and 〈w2

z〉1/2 = 690 km s−1). On scales less than 10 h−1 Mpc
the non-linear z-space distortions cause a significant suppression
of ξ . In Fig. 12(b) we plot the ratio of these various models. The
dashed lines are ξ non−lin(s) (top) and ξ̄non-lin(s) (bottom) divided by
ξ (r ) and ξ̄ (r ), respectively. The dotted lines are ξ non−lin(s) (top)
and ξ̄non-lin(s) (bottom) divided by ξ lin(s) and ξ̄lin(s), respectively.
The solid lines are set at 1 and at (1 + 2β/3 + β2/5) = 1.30 (for
β = 0.4). From this it can be seen that on scales ∼20–30 h−1 Mpc
and larger the effect of non-linear z-space distortion is small, while
the linear term affects ξ on all scales. For the above power law, we
find that ξ̄non-lin(s)/ξ̄lin(s) = 0.93, 0.97 and 0.99 for s = 20, 30 and
50 h−1 Mpc, respectively.

To begin with we assume a power law model for ξ (r ) (equation 6).
We generate a grid of models with different power-law slopes (γ ),
and fit these models to the data using the maximum-likelihood tech-
nique over the range s = 1–100 h−1 Mpc. The resulting best-fitting
model with β = 0.4 and 〈w2

z〉1/2 = 690 km s−1 is shown by the
solid line in Fig. 13. We find a power-law slope of γ = 1.866 ±
0.060 and a real-space scalelength r 0 = 5.81 ± 0.29 h−1 Mpc. This
provides an acceptable fit to the data with χ 2 = 20.4 (18 dof) and
an acceptance probability of 31 per cent. If we fit over a more re-
stricted range of scales, noting that we expect deviations from a pure
power law in real space on large scales, then we find best-fitting
values of γ = 1.647 ± 0.047 and r 0 = 5.84 ± 0.33 h−1 Mpc for
s = 1–25 h−1 Mpc. Both fits are compared to the data in Fig. 13 (see
also Table 1). When fitting on smaller scales the power-law slope
is flatter, however, r0 is unchanged. It can be seen that the effect
of small-scale z-space distortions has a significant impact on scales
less than ∼10 h−1 Mpc.

Figure 13. The QSO ξ (s) from the 2QZ (filled points) compared to the best-
fitting power-law model incorporating the effects of linear and non-linear
redshift-space distortions. A WMAP/2dF cosmology is assumed. The fits
are carried out on scales s = 1–100 h−1 Mpc (solid line) and s = 1–25 h−1

Mpc (dotted line).

More generally we should fit a model where the shape of ξ (r )
is governed by the underlying physics of the dark matter distribu-
tion (e.g. CDM). In particular, Hamilton et al. (1991, 1995) pro-
vide an analytic description of the generic linear CDM ξ (r ). The
input parameters for the CDM model are taken from the now stan-
dard WMAP/2dF cosmological model (Spergel et al. 2003; Percival
et al. 2002, respectively) with �m = 0.27, �� = 0.73, �b = 0.04,
H 0 = 71 km s−1 Mpc−1 and σ 8 = 0.84 (at z = 0). We calculate
the model ξ (s) at the mean redshift of the 2QZ sample (z̄ = 1.35),
and correct for the effects of non-linear clustering (Hamilton et al.
1991; Jain, Mo & White 1995). Linear and non-linear z-space effects
are accounted for as above, but using the more general prescription
of Hamilton (1992) rather than equation (10) for the linear distor-
tions. For the z-space distortions we assume β = 0.4 and 〈w2

z〉1/2 =
690 km s−1. We then perform a maximum-likelihood fit for a single
parameter, a scale-independent QSO bias, over the scale range s =
1–100 h−1 Mpc. QSO bias is defined as

bQ(z) =
√

ξQ(r )

ξρ(r )
, (12)

where ξ Q(r ) and ξ ρ(r ) are the real-space QSO and mass correlation
functions, respectively. We note that our assumed value of β includes
an implicit assumption of QSO bias. If we substitute the ξ Q(r ) in
equation (12) with that from equation (9) and solve the resultant
quadratic in bQ(z) we find that

bQ(z) =
√

ξQ(s)

ξρ(r )
− 4�1.2

m (z)

45
− �0.6

m (z)

3
. (13)

This relation thus directly gives us the QSO bias at a redshift z, but
is only strictly true if non-linear z-space distortions, which affect the
shape of ξ (s), are not present. The linear distortions do not affect the
shape of ξ (s) (this is exactly the case when there are no non-linear ef-
fects, and correct to first order in the presence of non-linear effects),
so we fit a model ξ ρ(s) divided by (1 + 2β/3 + β2/5) (using the
same β = 0.4 value used above) to obtain the ratio ξ Q(s)/ξ ρ(r )
seen in equation (13). Assuming �m(z = 0) = 0.27 [implying
�m(z = 1.35) = 0.83] we find a best-fitting QSO bias of
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426 S. M. Croom et al.

Figure 14. The QSO ξ (s) from the 2QZ (filled points) compared to a
WMAP/2dF CDM model. The models shown are the linear real-space mass
correlation function, ξ ρ (r ) (short dashed line), and the non-linear ξ ρ (r )
(dotted line). The non-linear ξ ρ (r ) is scaled by the best-fitting bias value
(long dashed line) and the non-linear mass correlation function corrected for
z-space distortions, ξ ρ (s), is scaled by the best-fitting bias (solid line).

bQ(z = 1.35) = 2.02 ± 0.07. This model is fully consistent with
the data, with a χ2 = 14.3 from 19 dof (acceptable at the 76 per
cent level, see the solid line in Fig. 14). The implied values of β

for this best-fitting bias is β = 0.44 ± 0.02. This is close to our
assumed value of β = 0.4 and within the errors estimated by Out-
ram et al. (2004) of ±0.1. To test the impact of making the z-space
corrections to our model, we also fit the non-linear real-space model
to the data. This results in a best-fitting bias of 2.12 ± 0.09 (long
dashed line in Fig. 14); however, this is a slightly worse fit with a
χ 2 = 25.2 (19 dof) acceptable at the 15 per cent level. From Fig. 14
we see that the real-space model does not have a strong enough
break at ∼10–20 h−1 Mpc to match the data. We conclude that the
2QZ QSO ξ (s) averaged over redshift is fully consistent with the
WMAP/2dF cosmology once allowance is made for the effects of
z-space distortions.

4.3 Comparisons to other results

The redshift-averaged QSO ξ (s) from the 2QZ is consistent with the
current best-fitting cosmological model, after allowing for a linear
bias bQ(z = 1.35) = 2.02 ± 0.07. We now compare our results
to those from other estimates of ξ (s). We find that there is very
good agreement between the 2QZ ξ (s) and 2dF Galaxy Redshift
Survey (2dFGRS; Hawkins et al. 2003) ξ (s) both in the shape and
amplitude (see Fig. 15). We note that the 2QZ ξ (s) may be slightly
flatter than that of the 2dFGRS on small scales, as would be expected
given the smaller influence of non-linear clustering at high redshift
together with the larger impact of non-linear z-space distortions.
However this is not significant. While the agreement in shape is not
particularly surprising, the impressive match in amplitude is more
surprising. This was also found in the preliminary 2QZ data release
(Croom et al. 2001a). Considering the evolution of clustering seen
(see Section 5 below), this must be considered as something of a
coincidence.

A number of authors have measured the spatial clustering of radio
galaxies over a range of redshifts. Overzier et al. (2003) finds a real-
space clustering scalelength r 0 = 14 ± 3 h−1 Mpc at z ∼ 1 for

Figure 15. The QSO ξ (s) from the 2QZ (filled points) compared to the
2dFGRS ξ (s) of Hawkins et al. (2003) (solid line, with ±1σ errors shown
by the dotted lines).

Figure 16. The QSO ξ (s) from the 2QZ (filled points) compared to that
for NVSS detected 2QZ QSOs (open points). The radio-detected ξ (s) uses
broader bins of 	log(s) = 0.2.

powerful radio galaxies, while weaker radio sources appear less
clustered, with r 0 ∼ 4–6 h−1 Mpc. The clustering of 2QZ QSOs
(which are largely radio quiet) is more similar to the radio-weak
sources. The 2QZ contains a small fraction of sources detected in the
radio. There are 428 2QZ QSOs in the redshift range 0.3 < z < 2.2
that are detected by the NRAO VLA Radio Survey (NVSS; Condon
et al. 1998). The ξ (s) we measure for this radio-detected population
is shown in Fig. 16 (open circles). The small number of sources and
their low surface density means that there is barely a detection of
clustering, with only two QSO pairs detected versus 1.15 expected
at s < 20 h−1 Mpc. The clustering of radio-detected QSOs in the
2QZ does not therefore impact on the clustering measurements of
the full sample. There is a clear difference between the clustering
of radio-quiet QSOs, as sampled by the 2QZ, and powerful radio
galaxies, implying that radio galaxies must exist in more massive
dark matter haloes that radio-quiet QSOs.
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The low-redshift galaxy cluster correlation function has a much
higher amplitude with s0 typically 12–25 h−1 Mpc depending on the
richness of the clusters (Bahcall et al. 2003). There are few measure-
ments of the cluster correlation length at high redshift. Gonzalez,
Zaritsky & Wechsler (2002) find that approximately velocity dis-
persion limited samples of clusters at z = 0.35–0.575 have similar
clustering scalelengths to local clusters. For a WMAP/2dF cosmol-
ogy, linear theory predicts that the amplitude of mass clustering
between z = 1.35 and z = 0 will increase by a factor of �3.4,
which is equivalent to an increase in s0 by a factor of 2.0 (assuming
γ = −1.8). Hence, even if QSO clustering at a mean redshift of z =
1.35 evolved as strongly as linear theory evolution allows (making
no allowance for evolution of bias), the descendants of objects that
contained QSOs at z ∼ 1.4 could not be clustered any more strongly
than poor clusters at low redshift. Below we make a more detailed
analysis of the evolution of QSO clustering.

5 T H E E VO L U T I O N O F Q S O C L U S T E R I N G

Above we have calculated ξ (s) averaged over a broad redshift range.
Under the assumption that QSO bias is largely scale independent (at
least compared to the uncertainties in the clustering measurements)
this should preserve the correct underlying shape of ξ (s), partic-
ularly on large scales. However, according to the standard picture
of gravitational growth of structure, the mass distribution should
evolve with redshift. Croom et al. (2001a) showed that QSO clus-
tering was constant or slightly increasing with redshift, with s 0 �
5 h−1 Mpc up to z ∼ 2.5. This demonstrated that QSOs must be
biased tracers of the matter distribution, and that the amount of bias
must evolve with redshift. Below we repeat this analysis with the
final 2QZ data set, and discuss in detail the implications for QSO
formation models. We will assume a WMAP/2dF cosmology unless
stated otherwise.

5.1 Measurements of ξ(s, z)

We split the QSOs up into 10 redshift intervals, such that there are ap-
proximately equal numbers of QSOs (∼2000) in each bin. Here we
sample the redshift range 0.3 < z < 2.9 and note that the final redshift
interval z = 2.25–2.90 could be affected by systematic variations in
completeness on large scales. We perform the correlation analysis
as described above on each of these subsamples. In particular we
use the mask method to correct for incompleteness, as the RA–Dec
mixing method was shown to significantly suppress clustering mea-
surements in narrow redshift intervals (see Section 3.2.2). We do,
however, perform tests with the RA–Dec and RA–Dec–z mixing
methods to confirm that there are no obvious unaccounted for sys-
tematic errors in our analysis. The resulting correlation functions
are plotted in Fig. 17.

In order to make a quantitative measure of the clustering prop-
erties we calculate ξ̄ (20) (equation 3) for each redshift interval. To
test for any evidence of a change in shape of ξ (s) we also calculate
ξ̄ using radii of 30 and 50 h−1 Mpc. The evolution of ξ̄ is plot-
ted in Fig. 18(a) using all three scales (the values are also listed in
Table 2). In each case there is a general trend for ξ̄ to increase with
redshift. To assess the significance of the evolution we perform a
Spearman rank correlation test on the ξ̄ values. We find Spearman
rank-order correlation coefficients, ρ = 0.721, 0.648 and 0.552 for
ξ̄ determined at a radius of 20, 30 and 50 h−1 Mpc, respectively.
These correspond to correlation significances of 98.1, 95.7 and 90.2
per cent. We note, of course, that as these are integral measures they
are not independent of each other. The above test implies a signif-
icant correlation with redshift; however, the data are still found to

be consistent (via a χ2 test) with a single-parameter model which
is constant with redshift (only rejected at the 81, 77 and 75 per cent
levels for ξ̄ (20), ξ̄ (30) and ξ̄ (50), respectively).

In Fig. 18(b) we show the ratio of ξ̄ (20)/ξ̄ (30) and ξ̄ (50)/ξ̄ (30) to
provide a simple test for any evidence of a change in the shape of ξ (s)
with redshift. These ratios are consistent with being constant over
the full redshift range of the data set, suggesting that the shape of ξ (s)
does not change significantly with redshift. We also compare the ξ̄

ratios to those assuming a CDM power spectrum in a WMAP/2dF
cosmology (dotted lines in Fig. 18b). These are fully consistent with
the observed ratios. In Fig. 19 we show the evolution of ξ̄ (s) for an
EdS cosmology. In this cosmology clustering is completely constant
as a function of redshift, a Spearman rank correlation test shows no
significant correlation.

We next fit a simple power-law model (equation 6). In Section 4.2
we find that a power law is an acceptable fit to the redshift-averaged
QSO ξ (s) on scales s = 1–25 h−1 Mpc. We therefore fit the data
subdivided into redshift intervals over the same range of scales.
The best-fitting s0 and γ values are shown in Fig. 20 (and listed in
Table 2). We carry out a Spearman rank test on both s0 and γ versus
redshift. For s0 we find ρ = 0.770 (99 per cent significant), while
for γ we find ρ = −0.030 (7 per cent significant). The measured
values of s0 are inconsistent with a constant value at 98 per cent
significance. Given the lack of evolution in γ we now fix its value
and reperform the fitting. For this we use the best-fitting power-law
slope of γ = 1.20. The s0 values derived are plotted in Fig. 20
(open points). These are similar to those found when allowing γ

to vary freely. A Spearman rank correlation test confirms that the
correlation is still present with ρ = 0.842 significant at the 99.8 per
cent level.

Examining the highest-redshift bin in Fig. 17 we see that there
is significant signal at scales ∼70–100 h−1 Mpc. This redshift in-
terval at 2.25 < z < 2.90 has a large variation in completeness
with redshift, as the absorption due to the Lyman-α forest quickly
moves the mean QSO colours into the stellar locus (see Paper XII).
We do not need to calculate the absolute completeness in each red-
shift interval, as we rely on fitting to the observed shape of the
QSO n(z) relation. However, if this fit is not accurate enough over a
given redshift interval, or there are systematic differences in the n(z)
covering different regions of the 2QZ survey, extra spurious large-
scale structure could be added. We test for the presence of any such
systematic effect by first calculating the ξ (s, z) using RA–Dec–z
mixing. This produces estimates of ξ (s) which are systematically
biased low (see Section 3.2.2), however any broad trends should still
be present. We find that the highest-redshift bin still has the largest
best-fitting value of s0 using these mixing methods. As a second
test we calculate ξ (s) for the 2.25 < z < 2.90 interval by normal-
izing the total number and the redshift distribution of the random
points within each UKST field. This would remove the effects of
any UKST photometric zero-point errors or the differential effects
of variability on completeness in different fields. The results of this
analysis are indistinguishable from those using masking and the full
2QZ strips. While it is possible that this excess large-scale structure
is still caused by systematic error, its size does not influence any
of our main results below. In fact, the final redshift bin could be
completely ignored without changing our basic conclusions.

5.2 Comparison to simple models

Following Paper II we test a number of simple models against the
observed data. To be conservative we use the ξ̄ (20) measurements,
rather than the best-fitting s0 values which are dependent on the
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428 S. M. Croom et al.

Figure 17. The QSO ξ (s) from the 2QZ (filled points) as a function of redshift in 10 redshift bins containing approximately 2000 QSOs each. The best-fitting
power law is shown in each case (solid line), as well as the best-fit fixing γ to be 1.20 (dashed lines). We also show the best-fitting power law for the full redshift
range (0.3 < z < 2.2) for comparison (dotted line). A WMAP/2dF cosmology is assumed.

range of scales fitted and assumptions concerning the slope, γ . We
note that removing the highest-redshift point does not remove the
detected correlation between ξ̄ (20) and redshift, although it does
reduce its significance (ρ = 0.617, significant at the 92 per cent
level). The significance of the correlations of ξ̄ (30) and ξ̄ (50) with
redshift are also reduced when the highest redshift point is removed
(to 85 and 69 per cent, respectively).

We compare our results to the expected growth in density pertur-
bations from linear theory, which should be applicable on the scales
we are probing. For an EdS universe, the linear growth rate, D(z),
is given by D(z) = 1/(1 + z), and for other cosmologies we use
the accurate fitting formula of Carroll, Press & Turner (1992). In
Fig. 21(a) we plot the measured ξ̄ (20) for QSOs versus linear theory

models (dotted lines). We assume a CDM model with WMAP/2dF
parameters. In this model the values of ξ̄ (r , z = 0) for the mass dis-
tribution are 0.254, 0.123 and 0.042 for r = 20, 30 and 50 h−1 Mpc,
respectively. We plot two linear theory lines, the first (lower dotted
line) assumes the above normalization given by WMAP/2dF, which
is significantly below the points at all redshifts. The second (upper
dotted line) is the linear theory model renormalized by a constant
bias to a ‘best-fitting’ value for the data points. As in Croom et al.
(2001a) we find linear theory evolution with a fixed bias to be in
clear disagreement with the data (the probability of acceptance is
formally 3.6 × 10−9). Assuming an EdS cosmology, we also get
a rejection of QSOs following linear theory evolution (rejected at
the 99.98 per cent level). We next fit the long-lived QSO model
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Figure 18. (a) The evolution of ξ̄ (s) for three different values of s = 20, 30 and 50 h−1 Mpc (open circles, filled circles and open squares, respectively). There
is evidence for an increase in ξ̄ with increasing redshift in all cases. (b) The ratios of ξ̄ as a function of redshift for ξ̄ (20)/ξ̄ (30) (open circles) and ξ̄ (50)/ξ̄ (30)
(filled circles). The redshift-averaged mean values for the ratios are indicated by the solid lines. The ratios are consistent with an unchanging shape for ξ (s).
The WMAP/2dF cosmology is assumed. Also plotted are the expected ratios for a CDM model with WMAP/2dF parameters (dotted lines).

Table 2. 2QZ clustering results as a function of redshift for a WMAP/2dF cosmology. All fits are on scales s = 1–25 h−1 Mpc. We list the redshift interval,
and mean redshift, apparent magnitude and absolute magnitude (assuming h = 0.71) for each bin together with the number of QSOs used. The best-fitting
values of s0 (in comoving units of h−1 Mpc) and γ are given with their χ2 values, number of dof, ν and probability of acceptance, P(<χ2). Lastly we also
list the measured values of ξ̄ (s) for s = 20, 30 and 50 h−1 Mpc.

z interval z bJ MbJ N Q s0 γ χ2 ν P(<χ2) ξ̄ (20) ξ̄ (30) ξ̄ (50)

0.30,0.68 0.526 19.85 −22.16 2119 5.73+0.79
−0.94 −1.49+0.25

−0.25 15.9 10 1.02e−01 0.263 ± 0.075 0.162 ± 0.041 0.071 ± 0.023

0.68,0.92 0.804 19.93 −23.23 2067 3.94+1.00
−0.98 −1.15+0.24

−0.25 7.2 9 6.12e−01 0.332 ± 0.085 0.118 ± 0.044 0.020 ± 0.022

0.92,1.13 1.026 19.95 −23.86 2012 4.76+0.97
−1.02 −1.23+0.25

−0.25 6.7 9 6.71e−01 0.353 ± 0.094 0.146 ± 0.048 0.063 ± 0.024

1.13,1.32 1.225 19.97 −24.27 2066 5.52+0.98
−1.00 −1.04+0.25

−0.25 8.0 8 4.29e−01 0.511 ± 0.100 0.226 ± 0.050 0.082 ± 0.024

1.32,1.50 1.413 20.02 −24.57 2063 5.28+0.98
−1.00 −1.04+0.25

−0.25 3.4 7 8.51e−01 0.452 ± 0.099 0.211 ± 0.050 0.064 ± 0.023

1.50,1.66 1.579 20.02 −24.82 2011 4.87+0.95
−1.02 −0.94+0.25

−0.24 4.3 7 7.43e−01 0.379 ± 0.096 0.205 ± 0.050 0.066 ± 0.024

1.66,1.83 1.745 20.03 −25.06 2044 6.25+0.83
−0.85 −1.80+0.24

−0.25 3.5 10 9.66e−01 0.321 ± 0.098 0.096 ± 0.049 0.045 ± 0.023

1.83,2.02 1.921 20.05 −25.29 2020 6.39+0.98
−1.00 −1.09+0.25

−0.25 3.7 9 9.29e−01 0.483 ± 0.111 0.260 ± 0.057 0.100 ± 0.026

2.02,2.25 2.131 20.07 −25.51 2049 8.00+0.99
−1.00 −1.17+0.25

−0.25 5.6 9 7.82e−01 0.607 ± 0.128 0.249 ± 0.063 0.074 ± 0.028

2.25,2.90 2.475 20.09 −25.86 2235 8.81+0.98
−1.01 −1.24+0.25

−0.25 5.9 7 5.56e−01 0.701 ± 0.174 0.289 ± 0.086 0.144 ± 0.039

discussed by Croom et al. (2001a) which has the form

bQ(z) = 1 + [bQ(z = 0) − 1]/D(z). (14)

This model is equivalent to assuming that QSOs have ages of order
the Hubble time, and after formation at some arbitrarily high-redshift
subsequent evolution is governed by their motion within the gravita-
tional potential (Fry 1996). It is also equivalent to QSOs forming in
density peaks above a constant threshold (Croom & Shanks 1996).
The best-fitting value of bQ(z = 0) is 1.64 ± 0.05 (short dashed
lines in Fig. 21a); however, while Croom et al. (2001a) found this
model was marginally acceptable in a cosmology with �m = 0.3 and
�� = 0.7, we find that the extra signal in the final 2QZ data set re-
jects the long-lived model at a significance level of 99.97 per cent
in the WMAP/2dF cosmology. Fitting this model in the EdS uni-
verse gives bQ(z = 0) = 1.40 ± 0.04, and is marginally acceptable
(rejected at the 89 per cent level).

5.3 Bias, dark matter halo mass and the evolution of QSOs

By assuming an underlying cosmological model we are able to
convert the measured values of ξ̄ to an effective bias by making
comparisons to linear theory evolution. This allows us to determine
QSO bias directly as a function of redshift. In doing so, we need
to account for the effect of z-space distortions on the measured
values of ξ̄ (s). The non-linear z-space distortions have a small ef-
fect on the scales we are examining here (see Section 4.2). To de-
termine their effect on ξ̄ (s) we derive the ratio of ξ̄ (s) with lin-
ear and non-linear z-space distortions to that including only the
linear distortions, ξ̄non-lin(s)/ξ̄lin(s). This is plotted for the CDM
model with WMAP/2dF parameters as a function of redshift for
〈w2

z〉1/2 = 630, 690 and 750 km s−1 in Fig. 22 (solid, dotted and
dashed lines, respectively). In constructing the models we assume
values of β that are consistent with β(z = 1.4) = 0.4 ± 0.1 of Out-
ram et al. (2004) and also account for the evolution of bias we find
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Figure 19. The evolution of ξ̄ (s) for three different values of s = 20, 30
and 50 h−1 Mpc (open circles, filled circles and open squares, respectively)
in an EdS cosmology.

Figure 20. (a) The fitted values of s0 with freely varying γ (filled points)
and fixed γ (open points) as a function of redshift. (b) The best-fitting values
of γ as a function of redshift. The dotted lines indicate the best-fitting values
to the full redshift range. A WMAP/2dF cosmology is assumed.

below. This assumption of β only influences the shape of ξ (σ , π )
that is convolved with equation (8) to determine the non-linear z-
space distortions. Varying the assumed β within reasonable limits
results in negligible difference in the ξ̄non-lin(s)/ξ̄lin(s) ratio (less than
0.5 per cent). We plot the ratio for s = 20, 30 and 50 h−1 Mpc (top
to bottom) and see that even at s = 20 h−1 Mpc the worst correction
is only 12 per cent. Assuming 〈w2

z〉1/2 = 690 km s−1, the range of
reasonable values for 〈w2

z〉1/2 results in a scatter of only ∼2 per cent
at s = 20 h−1 Mpc and less at larger scales. This is considerably
smaller than the measurement errors in ξ̄ , and we therefore use the
derived ratio for 〈w2

z〉1/2 = 690 km s−1 to correct our results for
non-linear z-space effects (dotted lines in Fig. 22). Linear z-space
distortions (equation 9) have a more significant effect (e.g. a factor
of ∼1.3 at z ∼ 1.4). We use equation (13) to determine the QSO
bias self-consistently at a given redshift.

Figure 21. (a) Our measurement of ξ̄ (20) for 2QZ QSOs as a function
of redshift (filled points). The data are compared to linear theory gravita-
tional evolution (dotted lines) for two normalizations, one normalized to a
WMAP/2dF cosmology (lower dotted line) and a second normalized to pro-
vide a ‘best fit’ to the data points (upper dotted line). We also compare to the
best fit for a constant ξ̄ (20) (solid line) and a long-lived model (short dashed
line). (b) The QSO bias, bQ(z), as a function of redshift derived from a com-
parison of ξ̄ (20) for QSOs to that expected for the WMAP/2dF cosmology.
The open points are the raw bias values, i.e. ξ̄Q(s)/ξ̄ρ (r ), while the filled
points with error bars are the values after making a consistent correction for
z-space distortions. A simple empirical model is also shown (dotted line). (c)
The mean mass of DMHs containing QSOs derived from the measured bias
(filled points). We also show the mean mass averaged over redshift (solid
line) and the mean plus twice the rms of the points (long dashed line). M∗(z),
the characteristic mass which is just collapsing at a given redshift, is denoted
by a dotted line. The short dashed lines show the median expected growth
in DMH mass from the mean DMH mass of QSO hosts at z = 0.53, 1.41
and 2.48.

Fig. 21(b) shows the derived bias of 2QZ QSOs as a function of
redshift (filled points). The open points are the values found without
accounting for z-space distortions. Here we see that QSO bias is
strongly evolving with redshift, from bQ(z = 0.53) = 1.13 ± 0.18
to bQ(z = 2.48) = 4.24 ± 0.53 (see Table 3). A simple empirical
description of the bias evolution found is

bQ(z) = (0.53 ± 0.19) + (0.289 ± 0.035)(1 + z)2, (15)

which is shown in Fig. 21(b) (dotted line). At z ∼ 0.5 the value of bQ

is already close to 1, and a simple extrapolation of the trend observed
would predict that the bias would be at or below 1 at z = 0. We note
at this point that because of the apparent magnitude limit of the
2QZ, the mean absolute magnitude in each interval increases with
redshift (see Table 2). However, the 2QZ selects QSOs that are close
to ∼L∗

Q (the characteristic luminosity of the QSO optical luminosity
function) at every redshift, and the space density of objects in each of
the redshift slices is also approximately equal. Table 3 lists the values
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Figure 22. The ratio of ξ̄non-lin(s)/ξ̄lin(s)(ξ̄ including and not including
non-linear z-space distortions) as a function of redshift for 〈w2

z〉1/2 = 630,
690 and 750 km s−1 (solid, dotted and dashed, respectively) at scales s =
20, 30 and 50 h−1 Mpc (bottom to top).

Table 3. The derived QSO bias, bQ and DMH mass, MDH as for 2QZ
QSOs as a function of redshift in a WMAP/2dF cosmology. We also list the
mean redshift and absolute magnitude of each redshift interval, as well as
the value of M∗

bJ
derived from the polynomial evolution model of Paper XII

and the space density of QSOs, �, found by integrating the QSO luminosity
function between the apparent magnitude limits of the 2QZ.

z MbJ M∗
bJ

� h3 Mpc−3 bQ MDH h−1 M�
0.526 −22.16 −23.24 9.6 × 10−6 1.13 ± 0.18 0.82+1.55

−0.67 × 1012

0.804 −23.23 −23.94 7.6 × 10−6 1.49 ± 0.21 2.09+2.18
−1.30 × 1012

1.026 −23.86 −24.41 6.8 × 10−6 1.71 ± 0.24 2.31+2.23
−1.37 × 1012

1.225 −24.27 −24.78 6.6 × 10−6 2.31 ± 0.23 5.76+2.90
−2.21 × 1012

1.413 −24.57 −25.07 6.3 × 10−6 2.32 ± 0.27 3.69+2.24
−1.62 × 1012

1.579 −24.82 −25.29 6.1 × 10−6 2.24 ± 0.30 2.05+1.61
−1.07 × 1012

1.745 −25.06 −25.47 5.8 × 10−6 2.17 ± 0.35 1.15+1.24
−0.72 × 1012

1.921 −25.29 −25.61 5.3 × 10−6 2.91 ± 0.35 3.05+1.85
−1.34 × 1012

2.131 −25.51 −25.72 4.8 × 10−6 3.53 ± 0.38 4.46+2.20
−1.68 × 1012

2.475 −25.86 −25.76 3.5 × 10−6 4.24 ± 0.53 4.78+2.68
−1.99 × 1012

of M∗
bJ

(z) assuming the polynomial evolution model of Paper XII
(which is an uncertain extrapolation beyond z = 2.1). Although the
actual values of M∗

bJ
(z) should be used with caution as the fitted

value of M∗
bJ

(0) is correlated with the bright- and faint-end slopes
of the LF, it can be seen that there is little change in the relative
difference between M∗

bJ
(z) and MbJ (z) (less than 1 mag at z < 2.2).

Also listed is the space density found by integrating the observed
luminosity function over the apparent magnitude range of the 2QZ
for each redshift. Between z = 0.5 and z = 2.1 there is only a
factor of 2 change in space density (increasing to a factor of 2.7
if we include the highest-redshift bin). Paper XII found that the
extrapolated M∗

bJ
(the absolute magnitude equivalent of L∗

Q) at z =
0 lies in the range −20.5 to −21.6 (where the large range is due to
correlation between the value of M∗

bJ
and the bright/faint slopes of

the QSO LF, and uncertainty in the exact model to extrapolate to zero

redshift). Thus we would expect that at these moderate luminosities,
QSOs (or more properly AGN) would be close to unbiased at z =
0. It has been shown (Verdi et al. 2002; Hawkins et al. 2003) that
∼L∗

gal galaxies at low redshift are largely unbiased. This implies that
typical low-redshift AGN (which are much less luminous than those
at high redshift) are clustered similarly to ∼L∗

gal galaxies. There is
some direct evidence that this is the case, as Croom et al. (2004c)
have shown that the cross-correlation between low-redshift 2QZ
QSOs and 2dFGRS galaxies is equal to the autocorrelation of the
galaxies.

Once the bias is derived it is possible to relate this to the mean mass
of the DMHs that the QSOs reside in. Haloes of a given mass, M,
are expected to be clustered differently to the underlying mass dis-
tribution. Mo & White (1996) developed the formalism for relating
mass to bias. This was extended to low-mass haloes by Jing (1998).
Both of these works were based on the spherical collapse model.
Sheth, Mo & Tormen (2001) extend the formalism to account for
ellipsoidal collapse, to provide an improved relation between bias
and mass. It is this relation that we will use in our analysis. The bias
is related to the mass via

b(M, z) = 1 + 1√
aδc(z)

[
aν2√a + 0.5

√
a(aν2)1−c

− (aν2)c

(aν2)c + 0.5(1 − c)(1 − c/2)

]
, (16)

where ν = δc(z)/σ (M , z), a = 0.707 and c = 0.6. δc is the critical
overdensity for collapse of a homogeneous spherical perturbation.
For an EdS universe δc = 0.15(12π)2/3 � 1.69. For a general cos-
mology δc has a weak dependence on redshift, which is given by
Navarro, Frenk & White (1997). σ (M) is the rms fluctuation in the
linear density field on a mass-scale, M, and is given by

σ 2(M) = 1

2π2

∫ ∞

0

k2 P(k)w2(kr ) dk, (17)

where P(k) is the power spectrum of density perturbations and

w(kr ) = 3[kr sin(kr ) − cos(kr )]

(kr )3
, (18)

which is the Fourier transform of a spherical top-hat of size

r =
(

3M

4πρ0

)1/3

. (19)

ρ 0 is the mean density of the Universe at z = 0 and corresponds to
2.78 × 1011�m h2 M� Mpc−3. σ (M) at z = 0 is related to that at
arbitrary redshift by the linear growth factor, D(z), such that

σ (M, z) = σ (M)D(z). (20)

The characteristic mass at any given redshift, M∗(z), that is, the
mass-scale which is just collapsing at a given redshift, is defined by

σ [M∗(z)] = δc

D(z)
. (21)

We apply equation (16) to estimate the typical mass of the DMHs
containing our QSOs at each redshift. This typical mass is plotted in
Fig. 21(c). We find that the typical MDH of 2QZ QSO hosts is largely
constant as a function of redshift, even though their typical lumi-
nosity is increasing at high z. There appears to be a slight tendency
for low-redshift QSOs to be in lower-mass DMHs, but a Spearman
rank test shows no significant correlation between redshift and MDH

(ρ = 0.467, significant at only the 83 per cent level). The mean
mass corresponds to M DH = (3.0 ± 1.6) × 1012 h−1 M� (rms er-
ror). By comparison, the characteristic mass of the Press–Schechter
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mass function (Press & Schechter 1974), M∗, is declining quickly
at high redshift (dotted line in Fig. 21c). M∗ haloes are unbiased
(b = 1) at every redshift, with haloes more massive than M∗ becom-
ing progressively more biased. We therefore see that the increasing
bias of DMHs hosting 2QZ QSOs towards higher redshift makes
them increasingly more massive than M∗. However, the increase in
mass relative to M∗ is almost exactly cancelled out by the evolu-
tion of M∗ to give an approximately constant MDH. We find that
MDH for QSO hosts is in fact very similar to M∗(z = 0) � 3.5 ×
1012 h−1 M�. This is effectively the same result discussed above,
that by extrapolation L� ∗

Q QSOs would be largely unbiased at z ∼
0. The actual mass derived is dependent on the exact cosmology
used. Varying our assumed σ 8(z = 0) = 0.84 by ±0.08 (the 2σ

range from analysis of WMAP and other data; Spergel et al. 2003)
gives a range in MDH between (2.6 ± 1.3) × 1012 h−1 M� and
(3.4 ± 2.0) × 1012 h−1 M� for σ 8(z = 0) = 0.76 and σ 8(z = 0)
= 0.92, respectively. Such changes in normalization will affect all
redshift intervals equally, and also scale the value of M∗ by an equal
amount. So although the derived mass might be different our over-
all conclusions (in terms of constant MDH and bQ � 1 at z = 0) are
not affected. Using a different form for the relation between bQ and
MDH also slightly affects out results. The relations described by Mo
& White (1996) and Jing (1998) give a mean M DH � (1.9 ± 0.9)
× 1012 h−1 M�. These show even less dependence of MDH with
redshift, as the masses of the highest-redshift haloes are reduced the
most. We confirm that similar results are found using the estimates
of ξ̄ (30); these give a similar non-evolving MDH, with a mean of
(2.2 ± 1.3) × 1012 h−1 M�. Our mass estimates are consistent with
those derived by Grazian et al. (2004) based on the QSO clustering
results of Croom et al. (2001a).

5.3.1 The lifetime of QSOs

The observation that 2QZ QSOs sample the same mass DMHs at
every redshift further demonstrates that we cannot be seeing a cos-
mologically long-lived population. As the masses of DMHs grow
with time through the process of accretion and merging, the low-
redshift descendants of high-redshift QSOs will inhabit higher-mass
DMHs, and hence the QSOs we observe at high and low redshift
cannot be drawn from the same single coeval population. We use the
formalism for DMH evolution developed by Lacey & Cole (1993)
to predict the median mass of the descendants of DMHs hosting
QSOs at later epochs. Equation (2.22) of Lacey & Cole gives the
cumulative probability that a DMH of mass M1 at time t1 will merge
to form a new DMH of mass greater than M2 by time t2. By finding
the mass, M2, that corresponds to a probability of 0.5 at a given time
t2 we have the median mass of descendant DMHs. In Fig. 21(c) we
plot the evolution of the median DMH mass for a starting mass of
3.0 × 1012 h−1 M� (the mean QSO host MDH) at z = 0.53, 1.41
and 2.48 (dashed lines). At low redshift, there is only limited time
for growth, and the DMHs of QSO hosts at z � 0.5 would only
have evolved to a mass of �1 × 1013 h−1 M� at z = 0. However,
the highest redshift DMHs hosting QSO have more time to evolve
and would have typical masses of �6 × 1014 h−1 M� at z = 0. It
therefore appears that 2QZ QSOs at high redshift (z ∼ 2) inhabit
the progenitors of low-redshift galaxy clusters, while 2QZ QSOs
at lower redshift are located in the progenitors of galaxy groups.
The growth of MDH allows us to place constraints on the allow-
able lifetime of QSO activity. Low-redshift QSOs cannot be the
same population of objects as at higher redshift if they have masses
which are less than the mass of the high-redshift sources, after ac-
counting for their expected growth over time. Therefore calculating

Figure 23. The 2σ upper limits to QSO lifetime as a function of redshift
(connected filled circles), based on the growth in mass of DMHs.

the time taken to reach the mean QSO host DMH mass plus twice
the measured rms gives a ∼2σ limit on the lifetime of QSO activity
(the rms is 1.6 × 1012 h−1 M� and the long dashed line in Fig. 21
shows the mean plus twice this rms). The result of this is plotted
in Fig. 23 (connected filled circles). At high redshift, haloes merge
more quickly than at low redshift, therefore we find that the limits
on QSO lifetime using this method are smaller at high redshift than
at low redshift. At z = 2.48 the 2σ upper limit on QSO lifetime
is 6 × 108 yr, while at redshifts below z = 1.7, the upper limit is
�1 × 109 yr. At z = 0.53 the limit is 3 × 109 yr.

A number of authors have produced models for QSO clustering
in order to try and constrain the typical lifetime of QSOs. Martini &
Weinberg (2001) give fitting functions for their models which relate
r1, the scale at which the rms fluctuations in the QSO distribution is
1 (i.e. σ Q(r 1, z) = 1), to typical QSO lifetime. Their model makes
some assumptions, including that the brightest QSOs are always in
the most massive haloes at any given redshift and that the presence
of a black hole is the only requirement for QSO activity. This second
assumption may be valid at high redshift z � 2, but may not be at
low redshift where fuelling must be an issue. We therefore compare
their models to our data for z = 2 only and use our two bins at
z = 1.92 and z = 2.13 to make the comparisons. To convert from
ξ̄ (20) to r1 we assume an underlying CDM power spectrum with the
WMAP/2dF parameters. This results in r 1(z = 1.92) = 9.35+1.51

−1.69 h−1

Mpc and r 1(z = 2.13) = 11.29+1.58
−1.76 h−1 Mpc. We also need to convert

between the space density assumed by Martini & Weinberg (5.27
× 10−7 h3 Mpc−3 for �� = 0.7 and �m = 0.3) and the measured
space density of the 2QZ at z = 2 (5.1 × 10−6 h3 Mpc−3 for the
same cosmology). This difference increases the estimated lifetimes
by a factor of 9.7 compared to those derived by Martini & Weinberg.
We then use the Martini–Weinberg fitting function for lifetimes in
a �CDM universe (σ 8 = 0.9) to find that t Q = 9.7+9.7

−5.8 × 106 yr
(for the z = 1.93 point) and t Q = 2.4+2.4

−1.4 × 107 yr (for the z = 2.13
point). Thus the full range of lifetimes at z = 2 in this model is t Q �
4–50 Myr. This range is lower than, but consistent with, the upper
limits derived above.

The above determination of the typical QSO lifetime is the to-
tal period of activity for a single BH, which may be split up into
several episodes of activity. The short lifetime indicates that there
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are many generations of QSOs, and that a large fraction of galax-
ies pass through an AGN phase. The models used by Martini &
Weinberg and others generally assume that luminosity is perfectly
correlated with host mass, thus more luminous QSOs would be in
more massive DMHs and therefore be more strongly clustered. We
will investigate this below (see Section 6). A scatter in the relation
between DMH mass and QSO luminosity would tend to increase the
effective lifetime, and thus the estimates from the Martini–Weinberg
models become lower limits to the QSO lifetime.

5.3.2 Accretion efficiency and the mass of black holes

There is strong evidence for a correlation between bulge velocity
dispersion, σ c, and central BH mass (Ferrarese & Merritt 2000;
Gebhardt et al. 2000). This has been extended to a correlation be-
tween MBH and MDH by Ferrarese (2002). The exact connection
is uncertain, largely due to uncertainty in the DMH density profile.
Ferrarese suggests three possible relations, covering the likely range
of allowable assumptions:

MBH

108 M�
∼ 0.027

(
MDH

1012 M�

)1.82

(22)

for an isothermal dark matter profile,

MBH

108 M�
∼ 0.1

(
MDH

1012 M�

)1.65

(23)

for an NFW profile (Navarro et al. 1997) and

MBH

108M�
∼ 0.67

(
MDH

1012 M�

)1.82

(24)

for a profile based on the weak lensing results of Seljak (2002)
(henceforth S02). If we assume that these relations do not evolve
with redshift, then we can directly estimate the central BH mass of
the DMHs hosting the 2QZ QSOs. These BH mass estimates are
shown in Fig. 24(a) (points connected by solid lines). We assume
h = 0.71 in order to convert from h−1 M� to M�. As a comparison
we also plot estimates of MBH assuming the model of Wyithe &
Loeb (2004) in which it is the relation between velocity dispersion
(or circular velocity) and M BH, M BH–σ c, which is constant with
redshift (Shields et al. 2003). This results in a relation between MDH

and MBH of the form

MBH = εMDH

(
MDH

1012 M�

)2/3 [
	c�m(0)

18π2�m(z)

]5/6

(1 + z)5/2, (25)

where ε is a constant and

	c = 18π2 + 82[�m(z) − 1] − 39[�m(z) − 1]2. (26)

The constant ε depends on the density profile of the DMH and, based
on the work of Ferrarese (2002), Wyithe & Loeb suggest that for the
assumption of a singular isothermal sphere εSIS � 10−5.1. For a NFW
profile ε = 3.7εSIS and for an S02 profile ε = 25εSIS. These models
with, ε = εSIS, 3.7εSIS and 25εSIS (which are direct analogues of
equations 22, 23 and 24 for the case of a non-evolving M BH–σ c), are
plotted in Fig. 24(a) (points connected by dotted lines). Examination
of this plot shows that models in which the M BH–σ c is independent
of redshift predict higher-mass BHs, and a significant increase in
MBH with redshift for 2QZ QSOs. The masses in this case are a factor
∼50–100 greater at z = 2.5 than they are at z = 0.5. In contrast, for
the assumption that M BH–M DH is independent of redshift, there is
a much weaker trend of increasing MBH.

Figure 24. (a) The estimated MBH based on the relations of Ferrarese
(2002) (points connected by solid lines) and Wyithe & Loeb (2004) (points
connected by dotted lines). We show estimates of MBH based on equation
(22) (filled circles), equation (23) (filled squares) and equation (24) (filled
triangles) for the Ferrarese (2002) relations and for ε = εSIS (open circles),
3.7εSIS (open squares) and 25εSIS (open triangles). (b) The derived accretion
efficiency, L/L Edd, from the above MBH estimates, using the same symbols
as in the plot of MBH.

Given the known mean absolute magnitude of each redshift inter-
val, we can then calculate the accretion efficiency, L/L Edd, where
L is the bolometric luminosity of the QSOs and LEdd is the Edding-
ton luminosity [L Edd = 1039.1(M/108 M�)W]. To determine the
bolometric luminosity we convert from absolute magnitude in the
bJ band using the relation derived by McLure & Dunlop (2004) for
the B band and correcting by bJ = B − 0.06 for a mean QSO B −
V = 0.22 (Cristiani & Vio 1990). The relation is then

MbJ = −2.66 log(L) + 79.42 (27)

for L in watts. The resulting accretion efficiencies are shown in
Fig. 24(b). In some cases the mean efficiency of the population is
found to be super-Eddington. If the Eddington limit is a meaningful
constraint on the accretion of matter on to supermassive BHs, then
the M BH–M DH relations described by equations (22) and (23) are
unlikely to hold at high redshift, as they predict accretion that is
significantly super-Eddington. For the relation described by equa-
tion (24), L/L Edd evolves little and is at ∼0.1 at all redshifts. There
is also little evidence of evolution for the cases in which M BH–σ c

is independent of redshift (connected by dotted lines). The values
for L/L Edd range between L/L Edd ∼ 1 and ∼0.01 depending on
the value of ε assumed. The more realistic values of ε (3.7εSIS and
25εSIS) imply a lower accretion efficiency. We note that Wyithe &
Loeb (2004) have fitted models to the QSO clustering results pre-
sented by Croom et al. (2001a). They suggest that a model where
M BH–σ c is independent of redshift is preferred from this data; how-
ever, this assumes that the accretion efficiency is not a function of
redshift.

An independent estimate of MBH is available by invoking the
virial theorem in the QSO broad-line region and using the widths
of broad lines as a direct probe of the kinematics. Authors have
carried out this analysis on both the 2QZ (Corbett et al. 2003) and
SDSS (McLure & Dunlop 2004). There are a number of assump-
tions in these analyses, the most crucial of which is the radius–
luminosity relation for broad-line regions (Kaspi et al. 2000). This is
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Table 4. 2QZ/6QZ clustering results as a function of apparent magnitude, bJ, for a WMAP/2dF cosmology. All fits are over scales s = 1–25 h−1 Mpc. We
list the bJ interval and the mean redshift, apparent magnitude and absolute magnitude for each bin together with the number of QSOs used. We also give the
value of M∗

bJ
at the mean redshift of each sample derived assuming the polynomial evolution model of Paper XII. The best-fitting values of s0 (in units of h−1

Mpc) and γ are given with their χ2 values, number of dof, ν and probability of acceptance, P(<χ2). Lastly we also list the measured values of ξ̄ (s) for s = 20,
30 and 50 h−1 Mpc. We do not fit a power law to the brightest magnitude bin (6QZ data) as there are too few QSO–QSO pairs to make a reliable fit; we also
do not list ξ̄ (20) for this sample, as there are no pairs found on scales <20 h−1 Mpc.

bJ interval z̄ b̄J M̄bJ M∗
bJ

N Q s0 γ χ2 ν P(<χ2) ξ̄ (20) ξ̄ (30) ξ̄ (50)

16.00,18.25 1.063 17.81 −25.73 −24.48 275 – – – – – – 0.58 ± 0.71 −0.01 ± 0.26
18.25,19.45 1.261 19.02 −25.02 −24.84 3586 3.14+2.86

−3.08 −0.83+0.62
−0.55 3.2 6 7.83e−01 0.378 ± 0.150 0.140 ± 0.078 0.039 ± 0.036

19.45,19.90 1.336 19.69 −24.53 −24.96 3521 8.06+1.42
−1.53 −1.53+0.34

−0.32 3.2 8 9.23e−01 0.588 ± 0.175 0.209 ± 0.084 0.058 ± 0.038

19.90,20.25 1.369 20.09 −24.22 −25.01 3624 4.81+1.43
−1.39 −1.76+0.57

−1.05 5.5 7 6.02e−01 0.103 ± 0.139 0.121 ± 0.078 0.042 ± 0.036

20.25,20.55 1.384 20.40 −23.93 −25.03 3563 0.90+3.91
−0.84 −0.52+0.32

−0.76 1.7 6 9.43e−01 0.303 ± 0.156 0.167 ± 0.083 0.115 ± 0.039

20.55,20.85 1.405 20.70 −23.67 −25.06 3772 4.68+2.89
−4.62 −0.76+0.60

−0.46 4.4 7 7.34e−01 0.515 ± 0.158 0.167 ± 0.077 0.100 ± 0.036

generally assumed to be independent of redshift, although this has
not been demonstrated observationally. These works provide a rel-
atively independent comparison with the present analysis. Corbett
et al. (2003) find little evidence of any evolution of L/L Edd in the
2QZ. McLure & Dunlop (2004) also find only weak evolution in
L/L Edd for the SDSS. Note that both of these samples are flux lim-
ited so that higher-luminosity QSOs are at higher redshift; however,
it is then still true that QSOs with L ∼ L∗

Q have little evolution in
L/L Edd.

This implies that the evolution in luminosity of L∗
Q QSOs is not

caused by a decline in fuelling, but rather by less massive BHs
becoming active at lower redshift. It is also possible that the observed
break in the QSO LF (see Paper XII) may be due to the difficulty of
accreting with an efficiency above some limit (presumably close to
the Eddington limit). However, the shape of the QSO LF is likely
driven by a combination of accretion rate and MBH. Any spread
in accretion rate for a given MBH would suppress any luminosity
dependence of QSO clustering. We will investigate this issue in the
next section.

6 T H E L U M I N O S I T Y D E P E N D E N C E
O F Q S O C L U S T E R I N G

In this section we investigate whether there is any evidence for QSO
clustering being dependent on luminosity. There is evidence that
low-redshift AGN have nuclear luminosities that are correlated with
host galaxy luminosity (e.g. Schade, Boyle & Letawsky 2000), and
in particular with the luminosity of the bulge/spheroid component
of the host. It has also been shown that galaxy clustering is a strong
function of luminosity brighter than L∗

gal (e.g. Norberg et al. 2001).
Thus bright QSOs, which would be expected to inhabit the most
massive galaxies, should be clustered more strongly that faint QSOs.
Croom et al. (2002) investigated this in the first data release of
the 2QZ (Croom et al. 2001b), and found some weak evidence for
QSOs with brighter apparent magnitudes (approximately equivalent
to luminosity relative to L∗

Q) being more strongly clustered. A range
of physical effects could act to cancel any correlation of clustering
with luminosity, for example, a broad range of accretion efficiencies.

It is possible to examine the luminosity dependence of QSO clus-
tering in a number of ways. Ideally, we would split the sample up
into a number of redshift and luminosity bins and try to separate
the luminosity and redshift dependencies. This is hard simply due
to the low number density of QSOs, particular in the most luminous
intervals. In the analysis below we follow Croom et al. (2002) and

measure the clustering of QSOs as a function of apparent magnitude.
This has a number of advantages, as it allows us to split the QSOs
up into only a small number of subsamples. Apparent magnitude is
also approximately equivalent to a magnitude relative to L∗

Q over
the redshift range we are considering, due to the strong evolution of
the QSO LF. This means that in a given apparent magnitude inter-
val, QSOs will have approximately the same space density at every
epoch.

6.1 QSO clustering as a function of bJ

We split the 2QZ QSOs into five subsamples, on the basis of their
apparent magnitude, bJ. These intervals are listed in Table 4. To
enhance the dynamic range of this analysis we also include QSOs
from the 6dF QSO Redshift Survey (6QZ; Paper XII). This data set
contains 275 QSOs at 0.3 < z < 2.2 in the magnitude range 16.0 <

bJ < 18.25 selected from the same photometric data as the 2QZ. It
forms a bright extension to the 2QZ, in the SGP region only (see
Paper XII). All the QSOs in the 6QZ form a sixth magnitude interval.
The distribution of QSOs in the z–MbJ plane is shown in Fig. 25.

Figure 25. The redshift–absolute-magnitude distribution of 2QZ (small
points) and 6QZ (triangles) QSOs used in our analysis. The solid lines denote
the apparent magnitude limits applied to the data, while the dashed lines show
the redshift range used. A WMAP/2dF cosmology is assumed.
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Even with the large sample presented here, the steep bright-end
slope of the QSO luminosity function means that we can only cover
an effective dynamic range of �3 mag in apparent magnitude (or a
factor of �16 in luminosity). There is also only a relatively small
dynamic range in QSO space density, from a mean 4.5 × 10−6 h3

Mpc−3 mag−1 at the faintest magnitudes to 9.2 × 10−7 h3 Mpc−3

mag−1. The greatest luminosity dependence might be expected for
the brightest QSOs, as these are the rarest sources. This is exactly the
point at which the rarity of QSOs makes clustering measurements
most difficult. One solution to this problem is to cross-correlate
QSOs of a given luminosity with QSOs at all other luminosities.
This approach will be discussed by Loaring et al. (in preparation).

The measured bJ dependent ξ (s) are shown in Fig. 26. At bright
magnitudes (Fig. 26a) the small number and low space density of

Figure 26. The QSO ξ (s) from the 2QZ/6QZ (filled points) as a function of apparent bJ magnitude in six intervals from bright (a) to faint (f) magnitudes.
The best-fitting power law is shown in each case (solid line) as is the best-fitting power law for the full sample for comparison (dotted line). We also show the
best-fitting power law when fixing γ to a value of 1.20 (dashed lines). No power-law fit is attempted for the 6QZ data (a). A WMAP/2dF cosmology is assumed.

QSOs means that no significant signal is detected. At fainter mag-
nitudes the data appear reasonably consistent with the best-fitting
power law for the full sample (dotted lines). We also fit power laws
to each bJ interval, showing the results as the solid lines in Fig. 26.
The values are also listed in Table 4. The best-fitting parameters vary
considerably, but have large errors. Neither the slopes or amplitudes
are particularly well constrained. If instead we fix γ = 1.2 as found
above, we find values of s0 that are much closer to the mean (dashed
lines in Fig. 26). We also note that the faintest magnitude interval
(Fig. 26f) shows more structure on large scales than the other sam-
ples. It is possible that this is the result of increased incompleteness
at the faint limit of the sample, even though we have taken care
to correct for magnitude-dependent spectroscopic completeness, as
described in Paper XII. Estimation of ξ (s) using the RA–Dec and

C© 2004 RAS, MNRAS 356, 415–438

 at U
niversity of D

urham
 on A

ugust 11, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


436 S. M. Croom et al.

Figure 27. The dependence of ξ̄ (s) on bJ for three different values of
s = 20, 30 and 50 h−1 Mpc (open circles, filled circles and open squares,
respectively). We do not plot a point at s = 20, for the brightest bin, as there
are no QSO pairs found.

RA–Dec–z mixing methods described above cause some reduction
in this excess at large scales but does not completely remove it. This
suggests that some, but not all, of this excess power could be due
to residual incompleteness effects. Bearing this in mind we have
checked whether any of our results above are affected by removing
QSOs in the faintest bin from our sample and confirm that they have
no significant impact on our conclusions.

In order to use a robust measure of any luminosity dependence we
calculate ξ̄ (s) in each of the bJ intervals (Table 4), which is plotted
in Fig. 27. We confirm that the estimates of ξ̄ are not significantly
changed by using the RA–Dec mixing method to measure ξ (s). We
find that there is no significant evidence for any dependence of clus-
tering amplitude with bJ (or equivalently luminosity relative to L∗

Q).
However, given the relatively large errors found [∼30 per cent in
ξ̄ (20)] this result does not rule out models for which QSO clustering
should be dependent on luminosity. As pointed out above, the mean
space density of our brightest and faintest samples only differs by
a factor of ∼5. If this decrease in space density was solely due to
higher-mass (and therefore rarer) haloes acting as hosts then this
would correspond to a factor of ∼2 increase in MDH, but only a
∼15 per cent increase in bias (or ∼30 per cent in clustering am-
plitude) which is approximately at the level of our measurement
errors. This suggests that the increase in sensitivity provided by
cross-correlating different QSO samples may provide useful con-
straints on QSO models (see Loaring et al. in preparation).

7 C O N C L U S I O N S

We have performed a detailed analysis of the clustering of 2QZ
QSOs in redshift space as described by the two-point correlation
function. Here we now discuss our conclusions.

The QSO two-point correlation function, ξ (s), averaged over the
redshift range 0.3 < z < 2.2, shows a slope which changes as a
function of scale, being flatter on small scales and steeper on large
scales. A power law is an acceptable fit on scales less than 25 h−1

Mpc in a WMAP/2dF cosmology; the best-fitting parameters are
s 0 = 5.48+0.42

−0.48 h−1 Mpc and γ = 1.20+0.10
−0.10. We demonstrate that

QSO clustering on scales <10 h−1 Mpc is strongly affected by non-

linear z-space distortions, caused by redshift errors, shifts in QSO
broad emission lines and intrinsic peculiar velocities, which all con-
tribute similar amounts to the total velocity dispersion, of 〈w2

z〉1/2 �
690 km s−1. A power-law model which has been corrected for both
linear and non-linear z-space distortions is shown to be a good de-
scription of the shape of ξ (s). Here we note that in modelling non-
linear z-space distortions at high redshift it is important to include an
extra factor of 1 + z in equation (11) relative to the version normally
used.

On large scales power-law clustering is not an appropriate model
and we therefore compare the 2QZ ξ (s) to a model CDM ξ (s) in a
WMAP/2dF cosmology (�m = 0.27, �� = 0.73, σ 8 = 0.84) ac-
counting for the effects of non-linear clustering on small scales and
the effects of z-space distortions. This model is well matched to the
data after allowing for a linear bias of bQ = 2.02 ± 0.07 at the mean
redshift of the sample (z̄ = 1.35). The 2QZ ξ (s) also agrees remark-
ably well with that measured from the low-redshift galaxies in the
2dFGRS (Hawkins et al. 2003), in both shape and amplitude. While
the match in shape is unsurprising given that the physics (at least on
large scales) prescribing the shape should be identical, the match in
amplitude is impressive. Given that 2dFGRS galaxies are unbiased
tracers of the mass distribution at low redshift (Verdi et al. 2002),
it appears that the bias of QSOs exactly cancels out the growth of
density fluctuations, to give a measured clustering equivalent to an
unbiased population at low redshift. As we find evidence for evolu-
tion of QSO clustering in a WMAP/2dF cosmology, this agreement
must be something of a coincidence. Also, in an EdS universe the
2QZ ξ (s) is a factor ∼2 below the observed 2dFGRS clustering.

To investigate these issues further, we determine the clustering of
2QZ QSOs as a function of redshift. In a WMAP/2dF cosmology
we find a significant (at the 98 per cent level) correlation of clus-
tering amplitude with redshift as measured by the integrated cor-
relation function within 20 h−1 Mpc, ξ̄ (20). Clustering increases
with redshift and we find ξ̄ (20) = 0.263 ± 0.075 at z = 0.53, and
ξ̄ (20) = 0.701 ± 0.174 at z = 2.48. In an EdS cosmology we find
no evidence for evolution. By assuming an underlying WMAP/2dF
cosmology we are able to determine directly the bias of QSOs, which
we find to be a strong function of redshift. Even if there were no
evolution in the measured ξ̄ (20) with redshift, this would still imply
a strongly evolving QSO bias. At low redshift, 2QZ QSOs appear
largely unbiased, with bQ(z = 0.53) = 1.13 ± 0.18, while at high
redshift we find bQ(z = 2.48) = 4.24 ± 0.53. A complication is that
as the 2QZ is a flux-limited sample, we are sampling more luminous
QSOs at high redshift. However, the strong evolution of the QSO
population means that to good approximation we are sampling the
QSO population at the same space density at each redshift, and at the
same point relative to the evolving break in the luminosity function,
L∗

Q. It thus appears that L∗
Q QSOs at low redshift should be largely

unbiased, and clustered similarly to low-redshift galaxies. This has
indeed been seen by Croom et al. (2004c) who cross-correlate low-
redshift (and therefore low luminosity) 2QZ QSOs with 2dFGRS
galaxies and find no difference in the clustering properties of the
two populations (see also Wake et al. 2004).

By using the theoretical relation between MDH and bias derived
by Sheth et al. (2001) and others, it is possible for us to take the
measured bias values for 2QZ QSOs and calculate the typical masses
of the DMHs of their hosts. We find that the mass of DMHs hosting
2QZ QSOs is approximately constant with redshift, with a mean
M DH = (3.0 ± 1.6) × 1012 h−1 M�. The fact that the hosts of 2QZ
QSOs have the same mass at all redshifts demonstrates that they
cannot be cosmologically long lived, as DMHs tend to grow and
accumulate mass over time. Based on the formalism of Lacey &
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Cole (1993) we predict that DMHs hosting QSOs at z ∼ 2.5 would
typically have merged into DMHs of mass �6 × 1014 h−1 M� by
the present, and therefore exist in rich galaxy clusters (although
they would not generally be active at low redshift). In contrast, the
descendants of lower-redshift 2QZ QSOs would not have had time
to form more massive haloes, and should exist in either massive
galaxies or groups. By extrapolation it is suggested that at z = 0,
∼ L∗

Q QSOs should also sit in M DH = (3.0 ± 1.6) × 1012 h−1 M�
haloes, which is very close to the characteristic mass of the Press–
Schechter mass function, M∗(z = 0) � 3.5 × 1012 h−1 M�. The
predicted growth of DMH mass by accretion/merging allows us to
place upper limits on the lifetime of the QSO population. Low-
redshift QSOs cannot be the same population of objects as at higher
redshift if they have masses which are less then the mass of the
high-redshift sources, after accounting for their expected growth
over time. Therefore calculating the time taken to reach the mean
QSO host DMH mass plus twice the measured rms gives a ∼2σ limit
on the lifetime of QSO activity. We find this limit to be t Q < 6 × 108

yr at z = 2.48, but weaker at low redshift (3 × 109 yr at z = 0.53). We
note that this limit is not based on the measured number density of
QSOs compared to a Press–Schechter mass function (as many other
estimates are), but is only constrained by the clustering evolution of
QSOs. Various authors have provided more detailed models in order
to constrain the lifetime of QSO activity. When applied to our data,
the model of Martini & Weinberg (2001) suggests that z ∼ 2 QSOs
will have lifetimes t Q � 4–50 × 106 yr. If there is scatter in the
relation between MDH and luminosity, then this is an effective lower
limit on QSO lifetimes. The e-folding time for the evolution of L∗

Q

is ∼2 × 109 yr (Paper XII), much less than the ages determined
from the Martini–Weinberg model, and significantly less than our
clustering evolution upper limits at high redshift.

As a next step we determine the central BH mass, MBH, of 2QZ
QSOs based on their estimated MDH. For this we use the relations
suggested by Ferrarese (2002) to estimate MBH for different assump-
tions concerning the density profiles of the DMHs, and the evolu-
tion of the correlation (Wyithe & Loeb 2004). A model in which
the correlation between MBH and MDH is unchanging with redshift
predicts that BH masses should be slightly increasing with redshift,
with 	log(M BH) � 1.3 ± 1.1 from the lowest to highest redshift.
The derived BH masses are in the range 1–20 × 107 M� for NFW
profiles, or 0.9–20 × 108 M� for S02 profiles. The Eddington ratio,
L/L Edd, is seen to be approximately constant as a function of red-
shift when the M BH–M DH relation is independent of redshift. This
is found to be significantly greater than 1 if isothermal DMHs are
assumed, and approximately 1 for the NFW profile, while the S02
profile gives L/L Edd ∼ 0.1. A model in which it is the M BH–σ c rela-
tion which is invariant with redshift gives a much stronger evolution
of MBH, as DMHs of a given mass have a higher central velocity
dispersion when formed at higher redshift. Thus the change in MBH

from low to high redshift is more significant with 	log(M BH) � 2.1
± 1.1, and BHs of order ∼1010 M� being predicted at high red-
shift. This increase in estimated MBH is greater than (although not
significantly) the factor ∼30 increase in mean luminosity from our
lowest to highest redshift interval. As a result there is a small (fac-
tor of a few) decline in L/L Edd with increasing redshift, although
again this is not significant. As the BH masses predicted are higher,
the accretion efficiencies are lower, in the range L/L Edd ∼ 0.01–1,
depending on DMH profile assumed.

The above suggests that any model of BH formation in which su-
permassive BHs form at least as efficiently at high redshift as they
do at low redshift, will tend to have L/L Edd constant or decreasing
with redshift. This implies that it cannot be a reduction in efficiency

which is driving the fading of the QSO population to low redshift.
Instead active BHs at high redshift are more massive than those at
low redshift, and it is this reduction in the BH mass that causes
the population of bright QSOs to disappear in the local Universe.
Because supermassive BHs cannot be destroyed, the massive BHs
active at high redshift must be largely inactive at low redshift, oth-
erwise we would find that low-redshift QSOs would show lower
accretion efficiency, and be located in more massive DMHs. This
argument also implies that at any given redshift, the QSO popula-
tion must be dominated by objects which are active for the first time.
Hence it is likely that each QSO passes through only one bright ac-
tive epoch (possible at the point of BH formation), although at low
redshift massive BHs may accrete at levels well below LEdd without
contributing significantly to the total luminosity of the population
[see also the discussions in Corbett et al. (2003) and Croom et al.
(2004b)].

The above is valid at redshift below z ∼ 2.5, which is approx-
imately the point at which the space density of luminous QSOs
peaks. Clustering measurements of QSOs at z > 2.5 would help us
to understand the build-up of QSOs at this epoch. However the low
surface density of z > 2.5 QSOs currently makes any accurate clus-
tering measurements difficult or impossible. The increasing number
of high-redshift QSOs from the SDSS survey (Fan et al. 2001) may
remedy this situation.

Finally, we examine our sample to look for any indication of lu-
minosity dependence in the clustering of 2QZ QSOs, by measuring
ξ (s) as a function of apparent magnitude. This shows no indication
of any luminosity dependence that might be expected if more lumi-
nous QSOs inhabited more massive DMHs, but the errors are large
enough that we would not be able to detect reasonable amounts of
luminosity dependence. More detailed investigation of this problem
will be presented by Loaring et al. (in preparation).
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Finally, we note that near completion of this work we became
aware of a similar independent study by Porciani, Magliocchetti &
Norberg (2004), also based on analysis of the 2QZ. Their work gives
qualitatively similar results to the present paper.
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Miller C. J., Nichol R. C., Gómez P. L., Hopkins A. M., Bernardi M., 2003,

ApJ, 597, 142.
Miller L., Croom S. M., Boyle B. J., Loaring N. S., Smith R. J., Shanks T.,

Outram P. J., 2004, MNRAS, 355, 385
Mo H.J., Fang L. Z., 1993, ApJ, 410, 493
Mo H. J., White S. D. M., 1996, MNRAS, 282, 347
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493 (NFW)
Norberg P. et al., 2001, MNRAS, 328, 64
Osmer P. S., 1981, ApJ, 247, 762
Outram P. J. et al., 2004, MNRAS, 348, 745
Outram P. J. et al., 2003, MNRAS, 342, 483
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