
Minimal Unsatisfiable Formulas with Bounded

Clause-Variable Difference are

Fixed-Parameter Tractable 1

Stefan Szeider 2

Department of Computer Science, University of Durham, Durham, England

Abstract

Recognition of minimal unsatisfiable CNF formulas (unsatisfiable CNF formulas
which become satisfiable if any clause is removed) is a classical DP -complete prob-
lem. It was shown recently that minimal unsatisfiable formulas with n variables and
n + k clauses can be recognized in time nO(k). We improve this result and present
an algorithm with time complexity O(2kn4); hence the problem turns out to be
fixed-parameter tractable (FPT) in the sense of Downey and Fellows (Parameter-
ized Complexity, 1999).

Our algorithm gives rise to a fixed-parameter tractable parameterization of the
satisfiability problem: If for a given CNF formula F , the number of clauses in each of
its subsets exceeds the number of variables occuring in the subset at most by k, then
we can decide in time O(2kn3) whether F is satisfiable; k is called the maximum
deficiency of F and can be efficiently computed by means of graph matching algo-
rithms. Known parameters for fixed-parameter tractable satisfiability decision are
tree-width or related to tree-width. Tree-width and maximum deficiency are incom-
parable in the sense that we can find formulas with constant maximum deficiency
and arbitrarily high tree-width, and formulas where the converse prevails.
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1 Introduction

We consider propositional formulas in conjunctive normal form (CNF) repre-
sented as sets of clauses. A formula is minimal unsatisfiable if it is unsatisfiable
but omitting any of its clauses makes it satisfiable. Recognition of minimal
unsatisfiable formulas is computationally hard, shown to be DP -complete by
Papadimitriou and Wolfe [24] (DP—sometimes denoted as DP—is the class
of problems that can be considered as the difference of two NP-problems; DP

is located at the second level of the Boolean Hierarchy and contains all NP
and all co-NP problems; see, e.g., [23]).

Since for a minimal unsatisfiable formula F the number m of clauses is strictly
greater than the number n of variables (a result attributed to M. Tarsi in [1]),
it is natural to parameterize minimal unsatisfiable formulas with respect to
the parameter

δ(F ) := m − n,

the deficiency of F . Following [18] we denote the class of minimal unsatisfiable
formulas with deficiency k by MU(k).

It is known that for fixed k, formulas in MU(k) have short resolution refuta-
tions and so can be recognized in nondeterministic polynomial time (Kleine
Büning [17]). Moreover, deterministic polynomial time algorithms have been
developed for the special cases MU(1) and MU(2), based on the very struc-
ture of formulas in the respective classes (Davidov, et al. [8] and Kleine
Büning [18]). Finally it was shown by Kullmann [19] and by Fleischner, et
al. [12] that for any fixed k, formulas in MU(k) can be recognized in poly-
nomial time. The algorithm of [19] relies on the fact that formulas in MU(k)
not only have short resolution refutations, but such refutations can even be
found in polynomial time. On the other hand, the algorithm of [12] relies on
the fact that the search for a satisfying truth assignment can be restricted to
certain assignments which correspond to matchings in bipartite graphs (we
will describe this approach in more detail in the sequel. Both algorithms have
time complexity nO(k) ([12] provides the more explicit upper bound O(nk+1/2l)
for formulas of length l with n variables).

The degree of the polynomials constituting time bounds of the quoted algo-
rithms [19,12] strongly depends on k, since a “try all subsets of size k”-strategy
is employed. Consequently, even for small k, the algorithms become imprac-
ticable for larger inputs. The theory of parameterized complexity (Downey
and Fellows [10]) focuses on this issue. A problem is called fixed-parameter
tractable (FPT ) if it can be solved in time O(f(k) ·nα) where n measures the
size of the instance and f(k) is any computable function of the parameter k
(the constant α is independent from k).
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As a main result of this paper we show that MU(k) is fixed-parameter tractable,
stating an algorithm with time complexity O(2kn4). The gained speedup re-
lies on the interaction of two concepts, maximum deficiency and expansion,
both stemming from graph theory (the graph theoretic concepts carry over to
formulas by means of incidence graphs, see Section 4). Ultimately, we make
use of a characterization of q-expanding bipartite graphs due to Lovász and
Plummer [21] (Theorem 2 below).

1.1 Maximum deficiency and expansion

The maximum deficiency of a formula F is defined as

δ∗(F ) = max
F ′⊆F

δ(F );

thus always δ∗(F ) ≥ 0. This parameter was first considered for formulas by
Franco and Van Gelder [14]. For minimal unsatisfiable formulas, deficiency and
maximum deficiency agree. Moreover, it turned out that maximum deficiency
is the right pivotal point for attacking MU(k): if one has an efficient way
of deciding satisfiability for formulas with bounded maximum deficiency, then
one can also recognize efficiently minimal unsatisfiable formulas with bounded
deficiency [20,12].

Formulas with maximum deficiency 0, called “matched formulas” in [14], are
always satisfiable. The maximum deficiency of a formula can be considered
as its distance from being a matched formula, and provides a measure of its
hardness. For generalizations of the concept of matched formulas, see [28].

We call a formula F q-expanding if for every nonempty set X of variables of F
there are at least |X|+ q clauses C of F such that some variable of X occurs
in C. It is known that minimal unsatisfiable formulas are 1-expanding [1] and
that any formula contains an equisatisfiable 1-expanding subset (two formulas
are called equisatisfiable if either both are satisfiable or both are unsatisfiable);
moreover, any such subset is unique and can be found efficiently [20,12]. Fur-
thermore, if each literal of a formula F ∈ MU(k), k ≥ 2, is contained in at
least 2 clauses, then F is 2-expanding [17,18]. We extend the various quoted
results and pinpoint the importance of the notion of q-expansion for satisfia-
bility decision.

Let F [x = ε] denote the formula obtained from F by instantiating the variable
x with a truth value ε ∈ {0, 1} and applying the usual simplifications (see
Section 2.2 for exact definitions). It is known that in general δ∗(F [x = ε]) ≤
δ∗(F ) + 1 holds, and if F is 1-expanding, then even δ∗(F [x = ε]) ≤ δ∗(F ) (see
[20]). Moreover by simultaneous instantiation of δ∗(F ) variables one can reduce
any satisfiable formula to a formula with maximum deficiency 0 ([12], see
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Theorem 1 below). Thus, for deciding satisfiability of formulas with maximum
deficiency k, it sufficies to try all possible instantiations of ≤ k variables. If
k is fixed, then this can be carried out in polynomial time, but the degree of
the polynomial strongly depends on k. Hence this approach does not yield a
fixed-parameter tractable algorithm.

Key to our improvement is an efficient algorithm which reduces a given formula
to an equisatisfiable formula F such that instantiating any variable of F with
any truth value 0 or 1 decreases its maximum deficiency. We call such a formula
F to be δ∗-critical. We show that if every literal of a 2-expanding formula F
occurs in at least two clauses, then F is δ∗-critical (Lemma 12).

We present a variant of the DLL algorithm (Davis, Logemann, and Loveland
[6]) applying splittings (branchings from F to F [x = 0] and F [x = 1]) to
δ∗-critical formulas only. Consequently, the maximum deficiency decreases at
each splitting, and so the height of the resulting search tree is bounded by the
maximum deficiency of the input formula. A careful analysis of the reductions
applied at the nodes of the search tree gives the following time complexity
(the hidden constant does not depend on k).

(1) Satisfiability of formulas with n variables and maximum deficiency k can
be decided in time O(2kn3).

The presented algorithm provides certificates for its decision: if the input for-
mula is satisfiable, then it outputs a satisfying truth assignment, otherwise a
regular resolution refutation.

To decide whether a formula F belongs to MU(k), we first check the necessary
condition δ(F ) = δ∗(F ) = k; if this holds true, then we check whether F is
unsatisfiable, and whether F \ {C} is satisfiable for all clauses C of F . This
can be accomplished by n + k + 1 applications of the above result (1). Hence
we get the following.

(2) Minimal unsatisfiable formulas with n variables and n + k clauses can be
recognized in time O(2kn4).

1.2 Fixed-parameter tractable parameterizations of SAT

Our result on fixed-parameter tractable SAT decision for formulas with bounded
maximum deficiency is interesting by its own, as there are only a few known pa-
rameterizations which allow fixed-parameter tractable SAT decision (for a sur-
vey, see Szeider [27]). Most of such parameterizations are based on structural
decomposition: tree-width (Gottlob, et al. [15]), branch-width (Alekhnovich
and Razborov [2]), clique-width (Courcelle, et al. [4]). These graph parameters
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can be applied to CNF formulas via “incidence graphs” or “primal graphs,”
see [27].

The following remarks emphasize the significance of our algorithm.

(1) Maximum deficiency and the quoted parameters are incomparable: as
shown in [27], there are formulas with bounded maximum deficiency and
arbitrarily large clique-width (resp. tree-width or branch-width); con-
versely, there are formulas with bounded clique-width (resp. tree-width
or branch-width) and arbitrarily large maximum deficiency.

In particular, the maximum deficiency of formulas whose incidence
graphs are grids is at most 1, but the tree-width of n× n grids is n. The
significance of this discrepancy is further emphasized by Robertson and
Seymour’s deep Excluded Grid Theorem [25], which states that graphs
of high tree-width necessarily have large square grids as minors.

(2) Maximum deficiency can be computed in polynomial time by matching
algorithms [12]. Hence we can determine the hardness of a given instance
with respect to our algorithm in advance. This is not possible for tree-
width and related parameters: computation of tree-width or branch-width
is NP-hard [3,26], and it is not known whether graphs with fixed clique-
width ≥ 4 can be recognized in polynomial time [5].

(3) Franco, et al. [13] show that satisfiability of certain propositional formulas
whose only connective is the implication is fixed-parameter tractable with
respect to the number of occurrences of the always-false constant f (this
result is listed in the appendix of [10] as pure implicational satisfia-

bility of fixed f-depth); an improved algorithm is presented in [16].
As shown in [27], however, if one transforms a CNF formula F into an
equisatisfiable propositional formula PF of the type considered in [13],
then the maximum deficiency of F is a lower bound for the number of
f -occurrences in PF ; thus, our algorithm dominates the algorithm of [13]
if applied to CNF formulas.

(4) Most of today’s state-of-the-art SAT-solvers (see, e.g., [31] for a survey)
are based on the DLL procedure. Our algorithm is based on the DLL
procedure as well, and our techniques can be incorporated into existing
solvers.

The remainder of this paper is organized as follows. In Section 2 we define
the objects we are going to study (formulas in CNF, truth assignments, and
resolution derivations), and in Section 3 we develop the basic graph theoretic
tools (matchings in bipartite graphs and expansion properties). In Section 4 we
introduce the incidence graph construction and carry over the graph theoretic
concepts and results of the previous section to formulas.

Section 5 contains the main technical results: we develop an efficient reduc-
tion that transforms a given formula F into a smaller equisatisfiable formula
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F ′ such that any instantiation of any variable of F ′ decreases its maximum
deficiency (“F ′ is δ∗-critical”). In Section 6 we state the new algorithm for de-
ciding satisfiability of formulas with bounded maximum deficiency, deploying
the reduction of Section 5. This algorithm serves in turn as a subroutine for
the recognition of minimal unsatisfiable formulas with bounded deficiency. We
close with some remarks on how our techniques can be used in a SAT-solver
and on possible improvements.

2 Notation and Preliminaries

2.1 Formulas

We assume an infinite supply of propositional variables. A literal is a variable
x or a complemented variable x; if y = x is a literal, then we write y = x;
we also use the notation x1 = x and x0 = x. For a set S of literals we put
S = { x : x ∈ S }; S is tautological if S ∩ S 6= ∅. A clause is a finite non-
tautological set of literals; the empty clause is denoted by �. A finite set of
clauses is a CNF formula (or formula, for short). The length of a formula F
is

∑
C∈F |C|. For a literal x we write #x(F ) for the number of clauses of F

which contain x.

A literal x is a pure literal if #x(F ) ≥ 1 and #x(F ) = 0; x is a singular literal
if #x(F ) = 1 and #x(F ) ≥ 1. A literal x occurs in a clause C if x ∈ C ∪ C;
var(C) denotes the set of variables which occur in C. For a formula F we put
var(F ) =

⋃
C∈F var(C). Let F be a formula and X ⊆ var(F ). We denote by FX

the set of clauses of F in which some variable of X occurs; i.e.,

FX := {C ∈ F : var(C) ∩ X 6= ∅ }.

F(X) denotes the formula obtained from FX by restricting all clauses to literals
over X, i.e.,

F(X) := {C ∩ (X ∪ X) : C ∈ FX }.

2.2 Truth assignments

A truth assignment is a map τ : X → {0, 1} defined on some set X of variables;
we write var(τ) = X. If var(τ) is just a singleton {x} with τ(x) = ε, then we
denote τ simply by x = ε. We say that τ is empty if var(τ) = ∅. A truth
assignment τ is total for a formula F if var(τ) = var(F ). For x ∈ var(τ) we
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define τ(x) = 1 − τ(x). For a truth assignment τ and a formula F , we put

F [τ ] = {C \ τ−1(0) : C ∈ F, C ∩ τ−1(1) = ∅ };

i.e., F [τ ] denotes the result of instantiating variables according to τ and ap-
plying the usual simplifications. A truth assignment τ satisfies a clause if the
clause contains some literal x with τ(x) = 1; τ satisfies a formula F if it sat-
isfies all clauses of F (i.e., if F [τ ] = ∅). A formula is satisfiable if it is satisfied
by some truth assignment; otherwise it is unsatisfiable. A formula is minimal
unsatisfiable if it is unsatisfiable, and every proper subset of it is satisfiable.
We say that formulas F and F ′ are equisatisfiable (in symbols F ≡sat F ′) if
either both are satisfiable or both are unsatisfiable.

A truth assignment α is autark for a formula F if var(α) ⊆ var(F ) and α
satisfies Fvar(α); that is, α satisfies all affected clauses. Note that the empty as-
signment is autark for every formula, and that any total satisfying assignment
of a formula is autark. The key feature of autark assignments is the following
observation of Monien and Speckenmeyer [22].

Lemma 1 If α is an autark assignment of a formula F , then F [α] is an
equisatisfiable subset of F .

Thus, in particular, minimal unsatisfiable formulas have no autark assignments
except the empty assignment. If xε is a pure literal of F , ε ∈ {0, 1}, then x = ε
is an autark assignment, and F [x = ε] can be obtained from F by the “pure
literal rule”. We note that the reduction of F to F [α] by means of Lemma 1
can be considered as an instance of a “crown rule” as described in [11].

2.3 Resolution and Davis-Putnam resolution.

If C1, C2 are clauses and C1 ∩ C2 = {x} holds for some literal x, then the
clause C = (C1 ∪ C2) \ {x, x} is called the resolvent of C1 and C2.

Let F be a formula. A sequence C1, . . . , Cn is a resolution derivation from F if
for each i ∈ {1, . . . , n} either Ci ∈ F (“Ci is an axiom”), or Ci is the resolvent
of Cj and Cj′ for some 1 ≤ j < j ′ ≤ i−1 (“Cj and Cj′ are the parents of Ci”).
In general, a clause in a resolution derivation may have different “histories”;
that is, the clause may have different pairs of parents, and it may be both, an
axiom and a derived clause. However, we tacitly assume some arbitrary but
fixed history. A resolution derivation is a resolution refutation if it contains
the empty clause.

A thread of a resolution derivation R is a subsequence D1, . . . , Dk of R such
that for each i = 2, . . . , k, Di−1 is a parent of Di in R. A resolution derivation
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R is regular if for each thread D1, . . . , Dk of R we have (D1 ∩ Dk) ⊆ Di,
i = 1, . . . , k. It is well known that a formula is unsatisfiable if and only if it
has a regular resolution refutation (see, e.g., Urquhart [30]).

Consider a formula F and a literal x of F . We obtain a formula F ′ from F by
adding all possible resolvents w.r.t. x, and by removing all clauses in which x
occurs. We say that F ′ is obtained from F by Davis-Putnam resolution and we
write DPx(F ) = F ′. It is well known that F ≡sat DPx(F ). In fact, the so called
Davis-Putnam procedure [7] successively eliminates variables in this manner
until either the empty formula or a formula which contains the empty clause
is obtained. The Davis-Putnam procedure can be considered as a special case
of regular resolution (cf. [30]).

Usually, DPx(F ) contains more clauses than F , however, if #x(F ) ≤ 1 or
#x(F ) ≤ 1, then clearly |DPx(F )| < |F |. In the sequel we will focus on
DPx(F ) where x is a singular literal of F .

3 Graph Theoretic Tools

All considered graphs are finite and simple (no multiple edges or self-loops).
We denote a bipartite graph G by the triple (V1, V2, E) where V1 and V2 give
the bipartition of the vertex set of G, and E denotes the set of edges of G. An
edge between v1 ∈ V1 and v2 ∈ V2 is denoted as ordered pair (v1, v2). NG(X)
denotes the set of all vertices y adjacent to some x ∈ X in G, i.e., NG(X) is
the (open) neighborhood of X. For graph theoretic terminology not defined
here, the reader is referred to [9].

A matching M of a graph G is a set of independent edges of G; i.e., distinct
edges in M have no vertex in common. A vertex of G is called matched by M ,
or M-matched, if it is incident with some edge in M ; otherwise it is exposed
by M , or M-exposed. A matching M of G is a maximum matching if there is
no matching M ′ of G with |M ′| > |M |. A maximum matching of a bipartite
graph on v vertices and e edges can be found in time O(v1/2e) by the algorithm
of Hopcroft and Karp (see, e.g, [21]).

Consider a bipartite graph G = (V1, V2, E). We say that G is q-expanding if
q ≥ 0 is an integer such that |NG(X)| ≥ |X|+ q holds for every nonempty set
X ⊆ V1. Note that by Hall’s Theorem, G is 0-expanding if and only if G has a
matching of size |V1|; see [21]. We also note that the maximum q for which G
is q-expanding is known as the surplus of G, denoted by σ(G), and that the
equation σ(G) = max∅6=X⊆V1

|NG(X)| − |X| holds.

Let M be a matching of a graph G. A path P in G is called M-alternat-
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ing if edges of P are alternately in and out of M ; an M -alternating path is
M-augmenting if both of its ends are M -exposed. If P is an M -augmenting
path, then the symmetric difference of M and the set of edges which lie on P
is a matching of size |M | + 1. In this case we say that M ′ is obtained from
M by augmentation. Conversely, by a well-known result of Berge (see, e.g.,
[21, Theorem 1.2.1]) a matching M is a maximum matching if there is no
M -augmenting path.

In our considerations we often have to deal with bipartite graphs for which
an “almost” maximum matching is given. In such cases it would be inefficient
to construct a maximum matching from scratch, since a maximum matching
can be obtained by just a few augmentations:

Lemma 2 Let G = (V1, V2, E) be a bipartite graph and M a matching of G
which exposes s1 vertices of V1 and s2 vertices of V2. Then we can obtain a
maximum matching M ′ of G in time O(min(s1, s2) · (|E| + |V1 ∪ V2|)).

PROOF. Alternating paths are just directed paths in the bipartite digraph
obtained from G by orienting the edges in M from V1 to V2, and orienting the
edges in E \ M from V2 to V1. Hence we can find an M -augmenting path by
breadth first search starting from the set of M -exposed vertices in V2. Thus,
an M -augmenting path can be found in time O(|E| + |V1 ∪ V1|). Since each
augmentation decreases the number of exposed vertices in V1 and in V2, the
lemma follows. �

Let M be a matching of G. We define RG,M as the set of vertices of G which
can be reached from some M -exposed vertex in V2 by an M -alternating path
(see Figure 1 for an illustration). By means of the above breadth-first-search
approach we can easily obtain the basic graph theoretic results needed for our
considerations:

︸ ︷︷ ︸

V2 ∩ RG,M

V1 ∩ RG,M
︷ ︸︸ ︷

︸ ︷︷ ︸

V2 \ RG,M

V1 \ RG,M
︷ ︸︸ ︷

Fig. 1. A bipartite graph G with a maximum matching M (indicated by bold lines).

Lemma 3 Given a bipartite graph G = (V1, V2, E), V = V1 ∪ V2, and a max-
imum matching M of G, then the following statements hold true.

(1) RG,M can be obtained in time O(|V | + |E|).
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(2) No edge joins vertices in V1 \ RG,M with vertices in V2 ∩ RG,M ; no edge
in M joins vertices in V1 ∩ RG,M with vertices in V2 \ RG,M .

(3) All vertices in V1 ∩ RG,M and V2 \ RG,M are matched vertices.
(4) If G is not 0-expanding, then |V1 \ RG,M | > |NG(V1 \ RG,M)|.
(5) |V2 ∩ RG,M | − |NG(V2 ∩ RG,M)| = |V2| − |M |.
(6) If RG,M 6= ∅, then RG,M induces a 1-expanding subgraph of G.

PROOF. Let Si denote the set of M -exposed vertices in Vi, i = 1, 2.

(1) We consider G as a directed graph as in the proof of Lemma 2. Now
RG,M contains just the vertices which can be reached from vertices in S2 by
a directed path. And so RG,M can be obtained by breadth-first-search in time
O(|V | + |E|).

(2) Suppose there is some edge (u, w) ∈ E with u ∈ V1 \ RG,M and w ∈
V2 ∩ RG,M . If w ∈ S2, then u ∈ RG,M , a contradiction; hence w /∈ S2. By
definition of RG,M , there is an M -alternating path P from some s ∈ S2 to
w; the last edge of P is traversed from V1 to V2, hence it belongs to M ;
consequently (u, w) /∈ M . Now Pu is an M -alternating path from s to u, and
so u ∈ RG,M , again a contradiction. Thus there is no edge between vertices in
V1 \ RG,M and V2 ∩ RG,M . A similar argument shows that no edge of M joins
vertices in V1 ∩ RG,M with vertices in V2 \ RG,M .

(3) Consider any vertex u ∈ V1 ∩RG,M and let P be some M -alternating path
from some s ∈ S2 to u (P exists by definition of RG,M). It follows that u must
be M -matched, since otherwise P would be M -augmenting, contradicting the
maximality of M . On the other hand, vertices in V2 \ RG,M are M -matched
since S2 ⊆ RG,M by definition.

(4) By (2) and (3), M matches the vertices in (V1 \ RG,M) \ S1 to vertices in
V2 \ RG,M and vice versa. Hence |V1 \ RG,M | − |S1| = |(V1 \ RG,M) \ S1| =
|V2 \ RG,M | ≤ |NG(V1 \ RG,M)|. If G is not 0-expanding, then S1 6= ∅ follows
by Hall’s Theorem.

(5) By (2) and (3), M matches the vertices in V1 ∩ RG,M to vertices in (V2 ∩
RG,M) \ S2 and vice versa. Hence |S2| = |V2 ∩ RG,M | − |V1 ∩ RG,M | = |V2 ∩
RG,M | − |NG(V2 ∩ RG,M)|. In turn, |S2| = |V2| − |M | by definition of RG,M .

(6) Choose any nonempty set X = {u1, . . . , un} ⊆ V1∩RG,M . We have to show
that |NG(X) ∩RG,M | ≥ n + 1. Let w1, . . . , wn ∈ V2 such that (ui, wi) ∈ M for
i = 1, . . . , n. By (2) above, {w1, . . . , wn} ⊆ RG,M . Choose any x ∈ X. Since
x ∈ RG,M , there is some M -alternating path P which starts in some s ∈ S2

and ends in x. Let (u, w) be the first edge occurring on P with u ∈ X. Since P
traverses (u, w) from w to u, (u, w) /∈ M and so w /∈ {w1, . . . , wn}. However,
w ∈ NG(X) ∩ RG,M ; hence |NG(X) ∩ RG,M | ≥ |{w, w1, . . . , wn}| = n + 1
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follows. �

We note in passing that we get the same set RG,M for every maximum matching
M of G; this follows from the fact that every maximum matching M ′ matches
the vertices in V1∩RG,M (these vertices belong to every minimum vertex cover,
see [1]).

Let G = (V1, V2, E) be a bipartite graph. The deficiency of G is defined as
δ(G) := |V2| − |NG(V2)| (if V1 contains no isolated vertices, then δ(G) =
|V2|−|V1|). The maximum deficiency of G is defined as δ∗(G) := maxY ⊆V2

|Y |−
|NG(Y )|. Note that δ∗(G) ≥ 0 follows by taking Y = ∅. The next lemma, a
direct consequence of Lemma 3(5), is well-known (see, e.g., [21]). It shows that
δ∗(G) can be calculated efficiently.

Lemma 4 A maximum matching of a bipartite graph G = (V1, V2, E) exposes
exactly δ∗(G) vertices of V2.

Lemma 5 Let G = (V1, V2, E) be a 1-expanding bipartite graph and let Y be
a proper subset of V2. Then |Y | − |NG(Y )| ≤ δ∗(G) − 1.

PROOF. Choose a vertex w ∈ V2 \Y . Since G−w is 0-expanding, there is a
maximum matching M of G which exposes w. Let S2 be the set of M -exposed
vertices of V2. By the preceding lemma, |S2| = δ∗(G). Since w ∈ S2 \ Y ,
|Y ∩ S2| ≤ δ∗(G) − 1 follows. However, every vertex in Y \ S2 is matched to
some vertex in NG(Y ), thus |NG(Y )| ≥ |Y \S2|. Consequently |Y |−|NG(Y )| ≤
|Y | − |Y \ S2| = |Y ∩ S2| ≤ δ∗(G) − 1. �

4 Matchings and Expansion of Formulas

To every formula F we associate a bipartite graph I(F ), the incidence graph of
F , whose vertices are the clauses and variables of F , and where each clause is
adjacent to the variables which occur in it; that is, I(F ) = (var(F ), F, E(F ))
with (x, C) ∈ E(F ) if and only if x ∈ var(C); see Fig. 1. for an example.
By means of this construction, concepts for bipartite graphs apply directly to

v w x y z

{v, x, y} {v, w, y, z} {w, x, z}

Fig. 2. Incidence graph of the formula F = {{v, x, y}, {v, w, y, z}, {w, x, z}}.

formulas. In particular, we will speak of q-expanding formulas, matchings of
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formulas, and the (maximum) deficiency of formulas. That is, a formula F is
q-expanding if and only if |FX | ≥ |X|+ q for every nonempty set X ⊆ var(F ).
The deficiency of a formula F is δ(F ) = |F |−|var(F )|; its maximum deficiency
is δ∗(F ) = maxF ′⊆F δ(F ′). If var(F ) = ∅, then F is q-expanding for any q, and
we have δ∗(F ) = |F | ≤ 1. Note that 1-expanding formulas are exactly the
“matching lean” formulas of [20]. In terms of formulas, Lemmas 4 and 5 read
as follows (see [20] for an alternate proof of Lemma 7).

Lemma 6 Every maximum matching of F exposes exactly δ∗(F ) clauses.

Lemma 7 If F is 1-expanding and F ′ ( F , then δ∗(F ′) ≤ δ∗(F ) − 1.

A matching M of a formula F gives rise to a partial truth assignment τM as
follows. For every (x, C) ∈ M we put τM (x) = 1 if x ∈ C, and τM(x) = 0 if
x ∈ C. If |M | = |F |, then τM evidently satisfies F ; thus we have the following
(this observation has been made in [29] and [1]).

Lemma 8 If a formula F has a matching which matches all clauses, i.e., if
δ∗(F ) = 0, then F is satisfiable.

Formulas F with maximum deficiency 0 are termed matched formulas in [14]
(the probabilistic analysis of [14] shows that, in a certain sense, matched
formulas are more numerous than formulas belonging to several well-known
classes, including extended-, renamable-, and q-Horn formulas, CC-balanced
formulas, and single lookahead unit resolution (SLUR) formulas). For exam-
ple, the formula F of Figure 2 is matched, since all clauses of F are matched by
the matching M = {(v, {v, x, y}), (w, {v, w, y, z}), (x, {w, x, z})}. M gives rise
to the satisfying truth assignment τM with τM (v) = 0, τM (w) = 1, τM(x) = 0.

The next lemma is essentially [12, Lemma 10].

Lemma 9 Given a formula F of length l and a maximum matching M of F ,
then we can find in time O(l) an autark assignment α of F such that F [α] is
1-expanding; M ∩ E(F [α]) is a maximum matching of F [α].

PROOF. We apply the construction of Lemma 3 to the incidence graph I(F ).
Thus F splits into formulas F1 = F ∩ RI(G),M and F2 = F \ F1. We consider
Mi = M ∩ E(Fi), i = 1, 2. Consequently, α := τM2

is an autark assignment of
F with F [α] = F1. Moreover, by Lemma 3, F [α] is 1-expanding and M1 is a
maximum matching of F [α]. �

In view of Lemma 1 we get immediately the following (see also [1,14]).
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Lemma 10 Minimal unsatisfiable formulas are 1-expanding. Hence δ∗(F ) =
δ(F ) holds for minimal unsatisfiable formulas.

The next result extends Lemma 8 to formulas with positive maximum defi-
ciency.

Theorem 1 (Fleischner, et al. [12]) A formula F is satisfiable if and only
if F [τ ] is a matched formula for some truth assignment τ with |var(τ)| ≤
δ∗(F ).

In particular, for δ∗(F ) ≤ 1, Theorem 1 yields the following.

Lemma 11 Let F be a formula of length l on n variables. If δ∗(F ) ≤ 1, then
we can find a satisfying truth assignment of F (if it exists) in time O(nl).

Theorem 1 yields an nO(k) time algorithm for satisfiability of formulas with
δ∗(F ) ≤ k, since for checking satisfiability we just have to consider all instan-
tiations of at most k variables and to check whether the resulting formulas are
matched. Thus satisfiability of formulas with bounded maximum deficiency
belongs to the complexity class XP, see [10].

5 Main Reductions

5.1 δ∗-critical formulas

We call a formula F δ∗-critical if δ∗(F [x = ε]) ≤ δ∗(F ) − 1 holds for every
(x, ε) ∈ var(F ) × {0, 1}. The objective of this section is to reduce a given
formula F efficiently to a δ∗-critical formula F ′ ensuring δ∗(F ′) ≤ δ∗(F ) and
F ≡sat F ′. Thus δ∗-critical formulas constitute a “problem kernel” in the sense
of [10].

The next lemma pinpoints a sufficient condition for formulas being δ∗-critical.

Lemma 12 2-expanding formulas without pure or singular literals are δ∗-crit-
ical.

PROOF. Let F be a 2-expanding formula without pure or singular literals,
|F | = m. Choose any (x, ε) ∈ var(F )× {0, 1} and consider F ′ = F [x = ε]. We
can write F = {C1, . . . , Cm} such that for integers r, s, t with 1 ≤ r ≤ s ≤ t ≤
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m we have

xε ∈ Cj ⇔ 1 ≤ j ≤ r;

x1−ε ∈ Cj ⇔ r + 1 ≤ j ≤ t;

x1−ε ∈ Cj and Cj \ {x1−ε} ∈ F ⇔ r + 1 ≤ j ≤ s;

we have r ≥ 2 and t ≥ r + 2. We put Dj := Cj \ {x1−ε} and get

F ′ = {Ds+1, . . . , Dm} = {Ds+1, . . . , Dt, Ct+1, . . . , Cm}.

We choose a maximum matching M of F which exposes C1 and C2. (Such
matching exists: since F is 2-expanding, F2 = F \ {C1, C2} is 0-expanding;
and since F has no pure or singular literals, var(F2) = var(F ). Thus F2 has a
maximum matching M with |M | = |var(F2)| = |var(F )|; such M is a maximum
matching of F .) The matching M gives rise to a (possible non-maximum)
matching M ′ of F ′ by setting

M ′ = { (y, Dj) : (y, Cj) ∈ M, y 6= x, s + 1 ≤ j ≤ m }.

We show that the number of M ′-exposed vertices of F ′ is strictly smaller than
the number of M -exposed vertices of F . That is, |I ′| < |I| for I = { 1 ≤ j ≤
m : Cj is M -exposed } and I ′ = { s + 1 ≤ j ≤ m : Dj is M ′-exposed }.

Let jx ∈ {1, . . . , t} be the unique integer such that (x, Cj) ∈ M . If jx ≤ s, then
|I∩{s+1, . . . , m}| = |I ′|; otherwise, if jx > s, then |I∩{s+1, . . . , m}| = |I ′|−1.
Thus |I ∩{s+1, . . . , m}| ≥ |I ′|−1 holds in any case. On the other hand, since
1, 2 ∈ I by the choice of M , we have |I ∩ {1, . . . , s}| ≥ 2. Consequently

|I| = |I ∩ {1, . . . , s}| + |I ∩ {s + 1, . . . , m}| ≥ 2 + |I ′| − 1 ≥ |I ′| + 1.

By means of Lemma 6 we conclude δ∗(F ) = |I| > |I ′| ≥ δ∗(F ′). Thus F is
δ∗-critical as claimed. �

5.2 First step: eliminating pure and singular literals

Consider a sequence S = (F0, M0), . . . , (Fq, Mq) where Fi is a formula and Mi

is a maximum matching of Fi, 0 ≤ i ≤ q. We call S a reduction sequence
(starting from (F0, M0)) if for each i ∈ {1, . . . , q} one of the following holds:

• Fi = Fi−1[αi] for some nonempty autark assignment αi of Fi−1.
• Fi = DPxi

(Fi−1) for a singular literal xi of Fi−1.

Note that var(Fi) ( var(Fi−1), hence q ≤ |var(F0)|. By Lemma 1 and since
always DPx(F ) ≡sat F , F0 and Fq are equisatisfiable. The following can be
verified easily.
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Lemma 13 Let (F0, M0), . . . , (Fq, Mq) be a reduction sequence. Any satisfying
truth assignment τq of Fq can be extended to a satisfying truth assignment τ0

of F0; any regular resolution refutation Rq of Fq can be extended to a regular
resolution refutation R0 of F0.

PROOF. We put I = { 1 ≤ i ≤ q : Fi = Fi−1[αi] }, and I ′ = { 1 ≤ i ≤
q : Fi = DPxi

(Fi−1) }; I ∩ I ′ = ∅ and I ∪ I ′ = {1, . . . , q}.

If τq is a satisfying assignment of Fq, then we get a satisfying assignment of
F0 by setting τ0 = τq ∪

⋃
i∈I αi.

We obtain inductively a regular resolution refutation R0 of F0 as follows. Let
Ri be a regular resolution refutation of Fi for some i ∈ {1, . . . , q}. If i ∈ I,
then Ri is trivially a regular resolution refutation of Fi−1, since Fi ⊆ Fi−1.
Now assume i ∈ I ′. Let C1, . . . , Ck be the clauses of Fi−1 which contain x or x.
Every axiom C of Ri which is not contained in Fi−1 is the resolvent of clauses
Cj, Cj′, 1 ≤ j, j ′ ≤ k. Thus C1, . . . , Ck, Ri is a regular resolution refutation of
Fi−1. �

Lemma 14 Let F0 be a formula on n variables with δ∗(F0) ≤ n, and let M0

be a maximum matching of F0. We can construct in time O(n3) a reduction
sequence S = (F0, M0), . . . , (Fq, Mq), q ≤ n, such that exactly one of the
following holds.

(1) δ∗(Fq) ≤ δ∗(F0) − 1;
(2) δ∗(Fq) = δ∗(F0), Fq is 1-expanding and has no pure or singular literals.

PROOF. We construct the reduction sequence inductively; assume that we
have already constructed (F0, M0), . . . , (Fi−1, Mi−1) for some i ≥ 1. We obtain
Fi applying the first of the following cases which is appropriate.

Case 1: Fi−1 is not 1-expanding. We apply Lemma 9 and obtain a nonempty
autark assignment α of Fi−1. We put Fi := Fi−1[α] and Mi := Mi−1 ∩ E(Fi).

Case 2: Fi−1 has a pure literal xε, (x, ε) ∈ var(Fi−1) × {0, 1}. We remove the
clauses which contain xε from Fi−1 and get an equisatisfiable proper subset Fi.
(Note that Fi = Fi−1[x = ε] and that x = ε is an autark assignment of Fi−1; cf.
the discussion in Section 2.2.) Since Fi−1 is 1-expanding, δ∗(Fi) ≤ δ∗(Fi−1)−1
follows by Lemma 7. The matching M ′

i = Mi−1 ∩ E(Fi) is possibly not a
maximum matching of Fi, but it exposes not more clauses of Fi than Mi−1

exposes clauses of Fi−1; thus we need at most δ∗(Fi−1) augmentations to get a
maximum matching Mi of Fi (cf. Lemma 6). We put q = i and do not extend
the reduction sequence any further.
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Case 3: Fi−1 has a singular literal xε, (x, ε) ∈ var(Fi−1) × {0, 1}. We put
Fi = DPx(Fi−1). For integers 1 ≤ s ≤ t ≤ m we can write

Fi−1 = {C1, . . . , Cm},
Fi = {Ds+1, . . . , Dm} = {Ds+1, . . . , Dt, Ct+1, . . . , Cm},

such that xε ∈ C1, x1−ε ∈ Cj for 2 ≤ j ≤ t, and Dj is the resolvent of
C1 and Cj for j = s + 1, . . . , t (that is, for j ∈ {2, . . . , s}, the resolvent of
C1 and Cj is either tautological, or it is already contained in Fi). We may
assume, w.l.o.g., that (y1, C1) ∈ Mi−1 for some variable y1 ∈ var(Fi−1) (for, if
C1 is Mi−1-exposed, we consider the matching Mi−1 \ {(x, Cjx

)} ∪ {(x, C1)})
instead; jx is the unique integer in {1, . . . , t} with (x, Cjx

) ∈ Mi−1).

We define the matching

M ′
i = { (y, Di) : (y, Ci) ∈ M, y 6= x, s + 1 ≤ i ≤ m }.

If there is some j ∈ {s + 1, . . . , t} such that Cj is Mi−1-matched but Dj

is M ′
i -exposed, then (x, Cj) ∈ Mi−1 follows; and so, since y1 is M ′

i -exposed
and since y1 ∈ var(Dj) = (var(C1) ∪ var(Cj)) \ {x}, we conclude that M ′′

i =
M ′

i ∪ {(y1, Dj)} is a matching of Fi which exposes at most δ∗(Fi−1) clauses.
Otherwise, if such j does not exist, we simply put M ′′

i = M ′
i . In any case, M ′′

i

exposes at most δ∗(Fi−1) clauses of Fi, and so δ∗(Fi) ≤ δ∗(Fi−1) follows by
Lemma 6.

Case 3a: s = 1; (i.e., |Fi| = |Fi−1| − 1). We have var(Fi) = var(Fi−1) \ {x},
and consequently, the matching M ′′

i is a maximum matching of Fi; we put
Mi = M ′′

i .

Case 3b: s > 1; (i.e., |Fi| < |Fi−1| − 1). Since M ′′
i exposes at most δ∗(Fi−1)

clauses, we need at most δ∗(Fi−1) augmentations to obtain a maximum match-
ing Mi of Fi. We put q = i, and do not extend the reduction sequence any
further.

We show that in Case 3b even δ∗(Fi) ≤ δ∗(Fi−1)− 1 holds. Since Fi−1 is 1-ex-
panding, we can choose for every clause C ∈ Fi−1 some maximum matching
of Fi−1 which exposes C. In particular, we can assume that C2 is Mi−1-exposed
(and simultaneously, by the same argument as above, that C1 is Mi−1-matched).
Then, however, the matching M ′′

i constructed above exposes at most δ∗(Fi−1)−
1 clauses of Fi. Hence δ∗(Fi) ≤ δ∗(Fi−1) − 1 follows by Lemma 6.

In each of the above cases, the construction of Fi can be carried out in time
O(n2); in Cases 1 and 3a this also suffices to construct Mi. In Cases 2 and 3b
we have to perform at most δ∗(Fi−1) ≤ n augmentations; thus, by Lemma 2,
time O(n3) suffices for Cases 2 and 3b. Since q ≤ n, and since Cases 2 and
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3b occur at most once (we stop the construction of the reduction sequence in
both cases), the claimed time complexity follows. �

5.3 Second step: reduction to 2-expanding formulas

By the above results we can efficiently reduce a given formula until we end
up with a formula which is 1-expanding and has no pure or singular literals.
Next we present further reductions which yield δ∗-critical formulas.

Theorem 2 below is due to Lovász and Plummer [21, Theorem 1.3.6] and
provides the basis for an efficient test for q-expansion. We state the theorem
using the following construction: From a bipartite graph G = (V1, V2, E),
x ∈ V1, and q ≥ 1, we obtain the bipartite graph Gqx by adding new vertices
x1, . . . , xq to V1 and adding edges such that the new vertices have exactly the
same neighbors as x; i.e., Gqx = (V1 ∪ {x1, . . . , xq}, V2, E ∪ { xiy : xy ∈ E }).

Theorem 2 (Lovász and Plummer [21]) A 0-expanding bipartite graph
G = (V1, V2, E) is q-expanding if and only if Gqx is 0-expanding for every
x ∈ V1.

Lemma 15 Given a bipartite graph G = (V1, V2, E) and a maximum matching
M of G. For every fixed integer q ≥ 0, deciding whether G is q-expanding and,
if G is not q-expanding, finding a “witness set” X ⊆ V1 with |NG(X)| <
|X| + q, can be performed in time O(|V1| · |E| + |V2|).

PROOF. We may assume that G has no isolated vertices (for, if x ∈ V1 is
isolated, then G is not 0-expanding and {x} is a witness set; on the other
hand, we can delete any isolated vertex in V2 without affecting q-expansion).
We compute the set of vertices RG,M (recall the definition in Section 3). If
G is not 0-expanding, V1 \ RG,M is a witness set by Lemma 3(4), and we are
done. Hence we assume that G is 0-expanding; i.e., |M | = |V1|.

For each vertex x ∈ V1 we perform the following procedure. We obtain the
graph Gqx = (V ′

1 , V
′
2 , E

′) with V ′
1 = V1 ∪ {x1, . . . , xq} and V ′

2 = V2. Note
that the given matching M is also a matching of Gqx, and that x1, . . . , xq are
exactly the M -exposed vertices of V ′

1 . We extend M to a maximum matching
M ′ of Gqx by at most q augmentations. Now Gqx is 0-expanding if and only if
|M ′| = |V ′

1 | = |V1| + q.

Assume that Gqx is not 0-expanding; i.e., V ′
1 contains M ′-exposed vertices. As

above, we obtain the set RGqx,M ′ and put X ′ := V ′
1\RGqx,M ′. Lemma 3(4) yields

|NGqx
(X ′)| < |X ′|. Since X ′ contains M ′-exposed vertices, and since every

M ′-exposed vertex of V ′
1 belongs to {x1, . . . , xq} by construction, {x1, . . . , xq}∩
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X ′ 6= ∅ follows. We show that {x, x1, . . . , xq} ⊆ X ′ holds. Suppose to the
contrary that for some x′, x′′ ∈ {x, x1, . . . , xq} we have x′ ∈ X ′ and x′′ /∈ X ′.
Since x′′ ∈ RGqx,M ′, Gqx contains an M ′-alternating path P which starts in
some M ′-exposed vertex of V ′

2 and ends in x′′. For the last edge (x′′, y) of P ,
y ∈ RGqx,M ′∩V ′

1 follows. Since NGqx
(x′) = NGqx

(x′′) by construction of Gqx, we
have (y, x′) ∈ E ′. This, however, is impossible by Lemma 3(2). Hence indeed
{x, x1, . . . , xq} ⊆ X ′. We put X := X ′\{x1, . . . , xq}. Since NGqx

(X ′) = NG(X),
we have |NG(X)| < |X ′| = |X| − q; thus X is a witness set.

If we perform the above construction for all x ∈ V1, we either end up with
a witness set X ⊆ V1, |NG(X)| < |X| + q, or we may conclude by means of
Theorem 2 that G is q-expanding.

It remains to estimate the required time. The preprocessing (identification of
isolated vertices and the construction of RG,M) can certainly be carried out in
time O(|V1| + |V2| + |E|); see Lemma 3(1). This estimation is dominated by
the claimed time complexity. For each x ∈ V1 we construct Gqx, perform at
most q augmentations, and construct RGqx,M ′. In view of Lemmas 2 and 3(1),
and since q is a fixed constant, each of these three tasks can be carried out in
time O(|V1|+ |V2|+ |E|). Moreover, after the preprocessing, G has no isolated
vertices, thus |V1| + |V2| = O(|E|). Hence we need at most time O(|V1| · |E|)
to process all vertices in V1; this estimation is dominated by the claimed time
complexity as well. �

Lemma 16 Let F be a 1-expanding formula without pure or singular literals
and let X ⊆ var(F ) with |FX | ≤ |X|+1. Then F \FX ≡sat F and δ∗(F \FX) ≤
δ∗(F ) − 1.

PROOF. Since F is 1-expanding, |FX | = |X|+1 follows. We show that F(X)

is satisfiable. Because F is 1-expanding, every clause C ∈ F is exposed by
some maximum matching MC of F . Any maximum matching of F matches
the variables in X to clauses in FX ; hence, for every C ∈ FX , the assignment
τMC

(see Section 4 for the definition) satisfies FX \ {C}. Every proper subset
G of F(X) is a subset of (FX \ {C})(X) for some C ∈ FX ; thus τMC

satisfies G.
We conclude that F(X) is either satisfiable or minimal unsatisfiable.

If F(X) is minimal unsatisfiable, then |F(X)| ≥ |X| + 1 by Lemma 10; on the
other hand, |F(X)| ≤ |FX | = |X|+ 1; hence the deficiency of F(X) is exactly 1.
In [8] it is shown that every minimal unsatisfiable formula with deficiency
1 different from {�} has a singular literal; however, every singular literal of
F(X) is also a singular of F , but F has no singular literals by assumption. Thus
F(X) cannot be minimal unsatisfiable, and must therefore be satisfiable. Since
a satisfying total assignment α of F(X) is a nonempty autark assignment of
F with F [α] = F \ FX , we conclude by Lemma 1 that F ≡sat F \ FX . Using
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Lemma 7, we get δ∗(F \ FX) ≤ δ∗(F ) − 1. �

Lemma 17 Let F be a 1-expanding formula without pure or singular literals,
m = |F |, n = |var(F )|, and let M be a maximum matching of F . We need at
most O(n2m) time to decide whether F is 2-expanding, and if it is not, to find
an autark assignment α of F with δ∗(F [α]) ≤ δ∗(F ) − 1 and some maximum
matching M ′ of F [α].

PROOF. We apply Lemma 15 to the incidence graph of F . Thus O(n2m)
time suffices to decide whether F is 2-expanding, and if it is not, to find a
set X ⊆ var(F ) with |FX | = |X| + 1. Note that δ∗(F(X)) ≤ 1, and by the
preceding lemma, F(X) is satisfiable. By means of Lemma 11 we can find a
satisfying total assignment α of F(X) in time O(|X|2 · (|X| + 1)) ≤ O(n2m).
Since α is a nonempty autark assignment of F , δ∗(F [α]) ≤ δ∗(F ) − 1 follows
(Lemmas 1 and 7). We consider the matching M ′ = M ∩ E(F [α]). Since M
matches every variable x ∈ X to some clause C ∈ FX , and since |FX |−|X| = 1,
it follows that M matches at most one variable y ∈ var(F [α]) ⊆ var(F ) \X to
a clause C ∈ FX . Consequently, at most one variable of F [α] is M ′-exposed.
Therefore, we need at most one augmentation to obtain a maximum matching
M ′ of F [α]; this requires O(nm) time (Lemma 2). Whence the lemma is shown
true. �

We summarize the results of this section:

Theorem 3 Let F0 be a formula on n variables with δ∗(F0) ≤ n, and let
M0 be a maximum matching of F0. We can obtain in time O(n3) a reduction
sequence (F0, M0), . . . , (Fq, Mq), q ≤ n, such that exactly one of the following
holds:

(1) δ∗(Fq) ≤ δ∗(F0) − 1;
(2) δ∗(Fq) = δ∗(F0) and Fq is δ∗-critical.

6 Proof of the Main Results

Theorem 4 Satisfiability of formulas with n variables and maximum defi-
ciency k can be decided in time O(2kn3). The decision is certified by a satis-
fying truth assignment or a regular resolution refutation of the input formula.

PROOF. Let F be any given formula with |var(F )| = n, |F | = m, and
δ∗(F ) = k. Consequently, m ≤ n + k, and the length l of F is at most
nm ≤ n(n + k).

19



By trivial reasons, we can decide satisfiability of F in time O(2n), i.e., by
constructing a binary tree T , a “DLL tree”: The root is labeled by F , and
each vertex which is labeled by a formula F ′ with var(F ) 6= ∅ has two children,
labeled by F ′[x = 0] and F ′[x = 1], respectively, for some x ∈ var(F ′). The
leaves of F are labeled by ∅ or {�}. F is satisfiable if and only if some leaf w is
labeled by ∅. In this case, the path from the root to w determines a satisfying
truth assignment of F . On the other hand, if F is unsatisfiable, then all leaves
must be labeled by {�}. Now T gives rise to a regular resolution refutation R
of F by means of the following (well known) construction:

The formula {�} has the trivial resolution refutation R = �. Let F be a
formula and (x, ε) ∈ var(F ) × {0, 1}. If Rε is a regular resolution refutation
of F [x = ε], then adding x1−ε to some of the clauses in Rε yields a regular
resolution derivation R′

ε of {x1−ε} from F . The concatenation R′
0, R

′
1, � is a

regular resolution refutation of F .

Hence the theorem holds trivially if k ≥ n; next we consider the non-trivial
case k < n.

We apply the Hopcroft-Karp algorithm to the incidence graph of F and find
a maximum matching M of F in time O(l

√
n + m) ≤ O(n3).

We are going to construct a search tree T of height ≤ k such that each vertex
v of T has at most 2 children and is labeled by a reduction sequence Sv. If
Sv = (F0, M0), . . . , (Fr, Mr), then we write first(v) = F0 and last(v) = Fr.

We construct T inductively as follows. We start with a root vertex v0, and we
label it by a reduction sequence constructed by means of Theorem 3, starting
from (F, M). Assume that we have already constructed some search tree T ′.
If var(last(v)) = ∅ for all leaves v of T ′, then we halt. Otherwise, we pick a leaf
v of T ′ with var(last(v)) 6= ∅; let Sv = (F0, M0), . . . , (Fr, Mr). By Theorem 3,
one of the following holds:

(1) δ∗(Fr) ≤ δ∗(F0) − 1;
(2) δ∗(Fr) = δ∗(F0) and Fr is δ∗-critical.

In the first case we add a single child v′ to v, and we label v′ by a reduction
sequence starting from (Fr, Mr); i.e., first(v′) = Fr.

In the second case we pick a variable x ∈ var(Fr) and obtain the formulas
F ′ = Fr[x = 0] and F ′′ = Fr[x = 1]. We construct maximum matchings M ′

and M ′′ of F ′ and F ′′, respectively. As above, M ′ and M ′′ can be obtained
by the Hopcroft-Karp algorithm in time O(n3) (in practice it may be more
efficient to construct M ′ and M ′′ from Mr as in the proof of Lemma 12).
We add two vertices v′ and v′′ as children of v to T ′. We label v′ and v′′ by
a reduction sequence starting from (F ′, M ′) and (F ′′, M ′′), respectively; i.e.,
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first(v′) = F ′ and first(v′′) = F ′′.

For any pair of vertices v, v′, if v′ is a child of v, then δ∗(first(v′)) ≤
δ∗(first(v)) − 1. Hence the construction terminates and we get a tree T of
height at most δ∗(F ) = k. Hence T has at most 2k − 1 vertices. It follows now
from Theorem 3 that time O(2kn3) suffices for constructing T .

If v is a leaf of T , then deciding satisfiability of last(v) is trivial, since last(v) =
∅ or last(v) = {�}. However, since first(v) ≡sat last(v) holds for all vertices v
of T , and since for a non-leaf v, last(v) is satisfiable if and only if first(v ′) is
satisfiable for at least on of its children v′, we can inductively read off from T
whether F is satisfiable. That is, similarly to the DLL tree considered above,
F is satisfiable if and only if last(v) is satisfiable for at least one leaf v of T .
Moreover, Lemma 13 allows us to obtain from T a satisfying truth assignment
(if F is satisfiable) or a regular resolution refutation (if F is unsatisfiable)
similarly as from a DLL tree as described above. Thus the theorem is shown
true. �

Theorem 5 Minimal unsatisfiable formulas with n variables and n+k clauses
can be recognized in time O(2kn4).

PROOF. If k ≥ n, then the theorem holds by trivial reasons, since we can
enumerate all total truth assignments of F in time O(2n); hence we assume
k < n. Let F = {C1, . . . , Cm}, m = n + k < 2n. If F is minimal unsatisfi-
able, then it must be 1-expanding and so δ∗(F ) = δ(F ) = k; the latter can be
checked efficiently (Lemma 9). Furthermore, we have to check whether F is un-
satisfiable, and whether Fi := F \{Ci} is satisfiable for all i ∈ {1, . . . , m}. This
can be accomplished by m+1 applications of Theorem 4 (we have δ∗(Fi) ≤ k−1
by Lemma 7). Thus the time complexity O((m + 1)2kn3) ≤ O(2kn4) fol-
lows. �

7 Concluding Remarks

The reductions developed in Section 5 are well-suited for being included in
an actual DLL-type SAT-solver, as the computational costs of their appli-
cation is low—the average costs can be expected to be significantly lower
than the cubic worst-case time complexity stated in Theorem 3. Moreover,
the search tree traced out by such a SAT-solver is then guaranteed to have
at most 2min(δ∗(F ),|var(F )|) leaves. It makes sense to apply the reductions even
if the maximum deficiency of the given formula is large, since any subsequent
branching is then guaranteed to make significant progress.
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For implementing the reductions in a SAT-solver, we suggest to use a data
structure which holds a formula together with a maximum matching. The
maximum matching is then maintained incrementally when various operations
are applied to the formula, so it suffices to run a matching algorithm just once
at program initiation. As set forth in the proof of Lemma 9, any matching-
autarkies that arise at run time can so be pruned in linear time. by means of
a simple DFS procedure.

The algorithms presented above certainly leave room for improvements. For
example, a speed-up could be gained by a further postponement of branch-
ings, achieved by additional reductions. δ∗-critical formulas as obtained by the
reductions of Section 5 impose very specific structural properties which offer
a starting point for conceiving additional reduction rules.
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